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Abstract 
This report presents a new adaptive operation strategy for MEMS z-axis gyroscopes. 
Specifically, a unified methodology is proposed for designing and analyzing the 
performance of control algorithm that can identify and, in an adaptive fashion, compensate 
for most fabrication defects and perturbations affecting the behavior of a MEMS z-axis 
gyroscope. Dynamic analysis of typical MEMS gyroscopes shows that fabrication 
imperfections are a major factor limiting the performance of the gyroscope. However, the 
motion of a conventional mode-matched z-axis gyroscope does not have sufficient 
persistence of excitation and, as a result, all major fabrication imperfections cannot be 
identified and compensated for in an on-line fashion. The proposed adaptive control 
algorithm with velocity estimation, which operates with only measurements of the x and y 
positions of the proof mass, estimates the component of the angular velocity vector, which 
is orthogonal to the plane of oscillation of the gyroscope (the z-axis) and the linear damping 
and stiffness model coefficients in an on-line fashion. The convergence and resolution 
analysis presented in report showed that the proposed adaptive controlled scheme offers 
several advantages over conventional modes of operation. These advantages include a 
larger operational bandwidth, absence of zero-rate output, self-calibration and a large 
robustness to parameter variations, which are caused by fabrication defects and ambient 
conditions. 
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1. Introduction 
 

Gyroscopes are commonly used sensors for measuring angular velocity in many areas of 

applications such as navigation, homing, and control stabilization. Although, conventional 

rotating wheel, fiber optic and ring laser gyroscopes have dominated a wide range of 

applications, they are too large and, most often too expensive to be used in most emerging 

applications. 

Recent advances in micro-machining technology have made the design and fabrication of 

MEMS (Micro-Electro-Mechanical Systems) gyroscopes possible. These devices are 

several orders of magnitude smaller than conventional mechanical gyroscopes, and can be 

fabricated in large quantities by batch processes. Thus, there is great potential to 

significantly reduce their fabrication cost. The emergence of MEMS gyroscopes is opening 

up new market opportunities and applications in the area of low-cost to medium 

performance inertial devices, including consumer electronics such as virtual reality, video 

games, 3D mouse and camcorder image stabilization; automotive applications such as ride 

stabilization, rollover detection and other vehicle safety systems; GPS augmentation such 

as MEMS inertial navigation sensor imbedded GPS; as well as a wide range of new 

military applications such as micro airplanes and satellite controls. 

The design and fabrication of MEMS gyroscopes has been the subject of extensive research 

over the past few years. [1] contains a comprehensive review of previous efforts in 

developing high quality cost-effective gyroscopes. Also noted in [1] is the fact that the cost 

of MEMS gyroscopes is decreasing while their accuracy is continuously being improved. 

Existing forecasts have indicated that this trend will continue. 

All MEMS gyroscopes are laminar vibratory mechanical structures fabricated on 

polysilicon or crystal silicon. Common fabrication steps include bulk micromachining, 

wafer-to-wafer bonding, surface micromachining, and high aspect ratio micromachining. 

Each of these fabrication steps involves multiple process steps such as deposition, etching 

and patterning of materials. In practice, small imperfections always occur during the 

fabrication process. Depending on the technology used, different numbers of steps may be 



 
 
 
 

2 
involved in the fabrication of a MEMS gyroscope, and different fabrication tolerances can 

be achieved. Generally, every fabrication step contributes to imperfections in the gyroscope 

[2]. Fabrication imperfections that produce asymmetric structures, mis-alignment of 

actuation mechanism and deviations of the center of mass from the geometric center, result 

in undesirable, systematic perturbations in the form of mechanical and electrostatic forces, 

which degrade the performance of a gyroscope. Resolution, drift, scale factor and zero-rate 

output (ZRO) are important factors that determine the gyroscope performance [1,3]. 

Geometrical imperfections as well as electrical coupling cause degradation of these 

performance indexes. As a consequence, some kind of control is essential for improving the 

performance and stability of MEMS gyroscopes, by effectively canceling “parasitic” effects. 

Traditionally, mechanical or electrical balancing has been used to cancel parasitic effects 

[4,5,6]. Although this procedure reduces the effect of a certain amount of imperfections, it 

is time consuming, expensive and difficult to perform on small, nail-size (mm level) 

gyroscopes. Moreover, this procedure is performed for a single operating condition. 

Variations in temperature and pressure may take place during the operation of the 

gyroscope, which affect parasitic effects. 

The control law for MEMS gyroscopes may be designed so as to estimate the angular rate 

directly or indirectly, depending on the operation mode. The operation mode is the 

operating topology of the gyroscope regarding its electro-mechanical design, its internal 

dynamics, how to manage its imperfections and environment variations and what sensing 

resources are to use to measure the gyroscope motion. The performance and accuracy of the 

gyroscope depends on the operation mode and corresponding control law design. Controls 

for MEMS gyroscopes are still theoretically immature. In terms of automatic controls, two 

different types of controllers have been proposed for conventional mode of operation in the 

literature. One is a Kalman filter based preview control [7] and the other is a recently 

published force-balancing feedback control scheme using sigma-delta modulation [8]. 

Although these feedback control techniques increase the bandwidth and dynamic range of 

the gyroscope beyond the open-loop mode of operation, they still are sensitive to parameter 



 
 
 
 

3 
variations such as damping, spring constant and quadrature error variations, produce ZRO 

and require tedious calibrations. 

The objective of this report is to develop a new gyroscope operation mode, and to formulate 

a corresponding control algorithm that is well suited for the on-line compensation of 

imperfects and to operate in varying environments that affect the behavior of a MEMS 

gyroscope. The adaptive controlled gyroscope is self-calibrating, compensates for friction 

forces, and fabrication imperfections which normally cause quadrature errors, and produces 

an unbiased angular velocity measurement that has no ZRO. 

In the next section, the dynamics of MEMS gyroscopes is developed and analyzed, by 

accounting for the effect of fabrication imperfections. The conventional operation modes 

such as open-loop and closed-loop modes, is reviewed in section 3. An adaptive control 

approach for measuring angular rate is proposed as a new operation mode, and the 

convergence and resolution analysis of the proposed adaptive controlled gyroscope is 

presented in sections 4 and 5. The design of a new gyroscope to be operated under the 

proposed adaptive operation mode follows in section 6. Finally, computer simulations are 

performed in section 7. 

 

 

2. Dynamics of MEMS Gyroscopes 
 

Common MEMS vibratory gyroscope configurations include a proof mass suspended by 

spring suspensions, and electrostatic actuations and sensing mechanisms for forcing an 

oscillatory motion and sensing the position and velocity of the proof mass. These 

mechanical components can be modeled as a multi-degree-of-freedom mass, spring and 

damper system. The mass in a vibratory gyroscope is generally constrained to move either 

linearly or angularly. In this report, only linear vibratory gyroscopes are discussed. 

However, most of the results of this report are applicable to angular vibratory gyroscopes as 

well. To derive the gyroscope’s dynamic equations of motion, two coordinate systems are 

introduced: the inertial frame, which is fixed in an inertial space, and the gyro frame, which 



 
 
 
 

4 
is fixed to the rotation platform. Figure 1 shows a simplified model of a MEMS gyroscope 

having two degrees of freedom in the associated Cartesian reference frames. Assume that 

the gyro frame {g} is rotated with respect to inertial frame {e} by the angular velocity 

vector  , then the equation of the motion of the proof mass of the gyroscope is described 

as 
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where  is the position vector of the origin of the gyro frame with respect to the origin of 

the inertial frame, 

0R
r

rr  is a position vector of the proof mass with respect to the origin of the 

gyro frame, and 
dt

d(ba )
r

 denotes the time derivative of a vector b
r

 in the frame {a}. f
r

 is a 

total applied force to the proof mass, which includes spring, damping and control forces. 

The first term of the equation (1) is the linear acceleration of the gyro frame with respect to 

the inertial frame and the second term is a linear acceleration of the mass in the gyro frame. 
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3ê
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Figure 1. A model of a (planar vibratory) MEMS z-axis gyroscope 

 



 
 
 
 

5 
The third term is the Coriolis acceleration, which appears only if the equations of motion 

are written in the non-inertial frame. The fourth and fifth terms are respectively the linear 

acceleration due to angular acceleration and the centrifugal acceleration. 

If we wish to measure the component of the angular velocity along the z-axis, the motion of 

the proof mass can be constrained to be only along the x-y plane by making the spring 

stiffness in the z direction much larger than in the x and y directions. Assuming that the 

measured angular rate is almost constant over a long enough time interval and that linear 

accelerations are cancelled out, either as an offset from the output response or by applying 

counter-control forces, the equations of motion of a gyroscope simplify as follows. 
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where x and y are the coordinates of the proof mass relative to the gyro frame, ,  are 

damping and spring coefficients, 

2,1d 2,1k

zyx ,,Ω  are the angular velocity components along each 

axis of the gyro frame and yx,τ  are control forces. The two last terms in equation (2), 

 and , are due to the Coriolis forces and are the terms which are used to 

measure the angular rate Ω . As seen in equation (2), in an ideal gyroscope, only the 

component of the angular rate along the z-axis, Ω

xm z &Ω2 ym z &Ω2

z

z, causes a dynamic coupling between the 

x and y axes, under the assumption that Ω . In practice, however, small 

fabrication imperfections always occur, and also cause dynamic coupling between the x and 

y axes through the asymmetric spring and damping terms. These are major factors which 

limit the performance of MEMS gyroscopes 

022 ≈ΩΩ≈Ω≈ yxyx

Taking into account fabrication imperfections, the dynamic equations (2) are modified as 

follows [9]. 
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Equation (3) is the governing equation for a z-axis MEMS gyroscope. Fabrication 

imperfections contribute mainly to the asymmetric spring and damping terms,  and . 

Therefore these terms are unknown, but can be assumed to be small. The x and y axes 

spring and damping terms are mostly known, but have small unknown variations from their 

nominal values. The proof mass can be determined very accurately. However, even if there 

are small-unknown variations in the proof mass, this is not a problem, because equation (3) 

can be scaled by the proof mass. The components of angular rate along x and y axes are 

absorbed as part of the spring terms as unknown variations. Note that the spring 

coefficients k

xyk xyd

xx and kyy also include the electrostatic spring softness. 

Non-dimensionalizing the equations of motion of a gyroscope is useful because the 

numerical simulation is easy, even under the existence of large two time-scales differences 

in gyroscope dynamics. One time scale is defined by the resonant natural frequency of the 

gyroscope, mk xx / , the other by the applied angular rate zΩ . Nondimensionalization also 

produces a unified mathematical formulation for a large variety of gyroscope designs. In 

this report, controllers will be designed based on non-dimensional equations. The 

realization to a dimensional control for the specific gyroscope can be easily accomplished 

by multiplying the dimensionalizing parameters by the non-dimensional controller 

parameters. Based on m ,  and 0q  nω , which are a reference mass, length and natural 

resonance frequency respectively, where m  is a proof mass of the gyroscope, the non-

dimensionalization of equation (3) can be done as follows: 
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7 
where  and  are respectively the x and y axis quality factor, xQ yQ )/( 2

0ωω mk xxx = , 

)2
0ω/(ω my = k yy , , )/( 2

0ωω mk xyxy = )/( 0ωmdd xyxy ← , 0/ωzz Ω←Ω , 

 and . The natural frequency of the x or y axis can be 

used to define the nondimensionalizing parameter 

)0
2q/(xτ 0mx ωτ ← )/( 0

2
0 qmyy ωττ ←

0ω . Since the usual displacement range 

of the MEMS gyroscope in each axis is sub-micrometer level, it is reasonable to choose 

m 1µ  as a reference length q . Considering that the usual natural frequency of each of the 

axis of a vibratory MEMS gyroscope is in the KHz range, while the applied angular rate 

may be in the degrees per second or degrees per hour range, the non-dimensional angular 

rate that we want to estimate is respectively in the range of 10  or 10 ! 

 0

4− 10−

 

 

3. Conventional Mode of Operation 
 

The conventional mode of operation reduces to driving one of the modes of the gyroscope 

into a known oscillatory motion and then detecting the Coriolis acceleration coupling along 

the sense mode of vibration, which is orthogonal to the driven mode. The response of the 

sense mode of vibration provides information about the applied angular velocity. More 

specifically, the proof mass is driven into a constant amplitude oscillatory motion along the 

x-axis (drive axis) by the x-axis control xτ . When the gyroscope is subjected to an angular 

rotation, a Coriolis inertial specific force, xz &Ω− 2 , is generated along the y-axis (sense axis), 

whose magnitude is proportional to the oscillation velocity of the drive axis and the 

magnitude of z-axis component of angular rate. This force excites the proof mass into an 

oscillatory motion along the y-axis, and its magnitude is amplified according to the 

mechanical quality factor (Q-factor). Mathematically speaking, the governing equation for 

the conventional mode of operation is described as follows: 
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where  is the amplitude of x-axis oscillation, 0X xω  and yω  are resonant frequencies of 

both axes, xyω  is the quadrature error, d  is the asymmetric damping term, and Q  is the 

quality factor of the sense axis. 

xy y

The conventional mode of operation is classified into the open-loop mode and the closed-

loop mode. The main difference between the closed-loop and open-loop mode of operation 

lies in that in the former the displacement of the sense axis is controlled to zero, while in 

the latter it is measured. 

Most MEMS gyroscopes are currently operated in the open-loop mode. The main 

advantage of open-loop mode of operation is that circuitry used for the operation of 

gyroscope in this mode is simpler than in the other modes, since there is no control action 

in the sense axis. Thus, this mode can be implemented relatively easily and cheaply. 

However, under an open-loop mode of operation, the gyroscope’s angular rate scale factor 

is very sensitive, and not constant over any appreciable bandwidth, to fabrication defects 

and environment variations. Therefore, the application areas for the open-loop mode are 

limited to those which require low-cost and low-performance gyroscopes. 

In contrast to the open-loop mode of operation, in the closed-loop mode of operation, the 

sense amplitude of oscillation is continuously monitored and driven to zero. As a 

consequence, the bandwidth and dynamic range of the gyroscope can be greatly increased 

beyond what can be achieved with the open-loop mode of operation. 

However, under conventional closed-loop mode of operation, it is difficult to ensure a 

constant noise performance, in the face of environment variations such as temperature 

changes, unless an on-line mode tuning scheme is included. Moreover, there are practical 

difficulties in designing a feedback controller so that the closed-loop system is stable and 

sufficiently robust, for gyroscopes with high Q systems. Therefore, the application areas for 



 
 
 
 

9 
conventional closed-loop mode of operation are those which requires medium-cost and 

medium-performance (large bandwidth but limited resolution) gyroscopes. 

Both the open-loop and closed-loop modes are inherently sensitive to some types of 

fabrication imperfections which can be modeled as the cross-damping term d , which 

produce ZRO. The detrimental effect of the asymmetric damping term d  on gyroscope 

performance has not been considered by many researchers so far. However, its effect 

should not be underestimated. For example, using typical conventional gyroscope 

parameters adopted from Clark [4], various angular rate equivalent tilt angles 

xy

xy

κ  between 

the principal and physical damping axes yield Table 1. The values of  rad/sec, 

 and Q  were used in calculating this table. 

510=xω

410=xQ 310=y

 

 

1  
0  
1
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Moreover, with the conventional mo

compensate for all fabrication im

internal dynamics of the gyroscope

achieve on-line compensation of 

gyroscope dynamics than can be a

idea led us to formulate a new opera
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κ (deg)              zΩ  
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des of operation, it is also very difficult to identify and 
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4. New Adaptive Mode of Operation 
 

This section proposes a new operating strategy for MEMS gyroscopes, which will be 

referred to as the adaptive mode of operation. Its aim is to achieve (1) on-line compensation 

of fabrication imperfections, (2) closed-loop identification of the angular rate, (3) to attain a 

large bandwidth and dynamic range, and (4) self-calibration operation. 

Proposed adaptive mode of operation will operate based on observer-based adaptive control 

algorithm which needs only position measurements of the proof mass of the gyroscope. 

Since observer-based adaptive control is the extension of the adaptive control based on 

velocity measurement, we first briefly present basic idea and control algorithm of it. 

 

4.1 Velocity Measurement-Based Adaptive Control 
 

The basic idea of the adaptive control approach is to treat the angular rate, along with the 

effect of fabrication defects, as an unknown gyroscope parameter, which must be estimated 

using a parameter adaptation algorithm (PAA). 

The adaptive control problems of the gyroscope is formalized as follows: given the 

equation with unknown constant parameters D , K  and Ω , 
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11 
determine the control lawτ  based on measuring q  and , such that the dynamic range is 

constrained within an intended region and 

q&

zΩ  is estimated correctly. With this kind of 

problem formulation, we treat the gyroscope as a multi-dimensional dynamic device. 

Like in other adaptive control problems, the persistent excitation condition is an important 

factor to estimate the angular rate correctly. To solve this problem, a trajectory following 

approach is used. The reference trajectory that the gyroscope must follow is generated such 

that the persistent excitation condition is met. Suppose that a reference trajectory is 

generated by an ideal oscillator and that the control objective is to make trajectory of real 

gyroscopes follow that of the reference model. The reference model is defined as 

 

  0     =+ mmm qKq&&                                                                    (7) 

 

where  are the reference resonant modes of both axis. We present 

following two theorems whose proof may be found in [10]. 
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Theorem 1 (Stability) 

With following control law (8) and parameter adaptation laws (9), the trajectory error 

, and its time derivative e  and e&  converge globally and exponentially to zero. mp qqe −= p& p&
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where ,  are estimates of D, R and mKKR −= Ω̂,ˆ,ˆ RD Ω ,  and pe&γτ −=0

},{ 21 γγγ diag= . 
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Theorem 2 (Persistent excitation condition) 

With control law (8) and parameter adaptation laws (9), if the gyroscope is controlled to 

follow the mode-unmatched reference model, i.e. 21 ωω ≠ , the persistent excitation 

condition is satisfied and all unknown gyroscope parameters, including the angular rate, are 

estimated correctly. 

 

Theorems 1 and 2 show that the motion of a mode-unmatched gyroscope, in which the 

resonance frequency of the x-axis is different from that of the y-axis, has sufficient 

persistence of excitation to permit the identification of all major fabrication imperfections 

as well as “input” angular rate. This means that adaptive controlled gyroscope has no ZRO 

and is self-calibrating. 

 

4.2 Velocity Observer-Based Adaptive Control 
 

The position and velocity measurements are corrupted by electrical noise in the sensing 

circuit. The analysis of the stochastic properties of the sensing noises, as well as the 

estimation of their intensity is given in literatures [5,11], and only results are presented here. 

The estimated power spectral densities of the position (Sp) and velocity (Sv) measurements 

is given by 

wireB
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=                         (10) 

 

where kB, Cp, C0, Rw and T are respectively Boltzmann’s constant, the device’s parasite 

capacitance, nominal sensing capacitance, wiring resistance and absolute temperature. Both 

are assumed zero-mean white noises. Ideally, the power spectral density of velocity 

measurement noise should be given by  
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pv SS 2ω=                                   (11) 

 

where ω  is a resonant frequency of the gyroscope. However, current velocity sensing 

circuitry technology produces a noise with spectral power that is 3~4 orders of magnitude 

larger than this ideal value. Thus, it is necessary to introduce an adaptive observer, to avoid 

measuring directly the velocity of the proof mass. 

In designing such a velocity observer, if we are careful not to modify the velocity 

measurement-based adaptive control structure, the analytic convergence and resolution 

results of the velocity measurement-based adaptive control can be easily extended for the 

case when velocity estimation is utilized. In order to estimate velocity, we introduce the 

following observer. 

pmv
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where  is the estimate of the position, q  is the estimate of the velocity, q  is an 

additional state of the velocity observer, and L is a observer gain matrix given by 

. To complete the modification, the velocity term q  in the adaptive 

control law given by equation (8) and parameter adaptation laws in equation (9) is replaced 

by q . 

pq̂

{diag

p
&̂

vˆ

}, 21 LLL =

p
&̂

&

In order to derive the closed loop error equations, we need to define the trajectory 

estimation error q qq pp −= ˆ~  and qqq vv &−= ˆ~ . When the velocity term q  in the adaptive 

control and parameter adaptation laws is replaced by the observer generated estimate q , 

the trajectory error, trajectory estimation error and parameter estimation error dynamics are 

given by the sum of a known linear time-varying and an unknown linear time-invariant 

components as follows: 

&

p
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where [ ]T
vpppo qqee

 ~  ~  ~    θ&=x , [ ] T
o nb     =w  and the known time varying term A  is 

given by 

)(to

 

             























Γ−ΓΓ−
−−−

−
−−−

=

0),(),(),(0
),(0

000
),(

0000

)(

γγγ
γγγ

γγγ

mmmmmm

mm
T

m

mm
T

m

o

qqWLqqWqqW
qqWLK

IL
qqWLK

I

t

&&&

&

&

A

 

the known noise distribution matrix, and  the unknown time invariant term  are given by uA
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where b and n are Brownian and position measurement noise, W  is signal 

regressor, 

),( mm qq &

θθθ −= ˆ~  is parameter estimation errors and 
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where ,  and  are respectively elements of R, D and ijr ijd zΩ Ω . 



 
 
 
 

15 
The mean trajectory of the system under the stochastic environment is the same as the 

deterministic case and its convergence properties are also the same as the deterministic case. 

Unfortunately, the trajectory and trajectory estimation error dynamics part of equation (13) 

are not strictly positive real (SPR), and therefore it is difficult to prove the stability of this 

system using standard adaptive control techniques, based on the use of a Lyapunov function 

candidate. 

In order to prove stability, we will make use of the fact that A  is a periodic time-

varying matrix with known period 

)(to

21

24
ωω
π

=T , where 1ω  and 2ω  are model reference 

frequencies. The stability of periodic time-varying linear systems can be analyzed using 

Floquet-Lyapunov theory [12]. 

 

Theorem 3 (Stability) 

Given the observer (12), the adaptive control and parameter adaptation laws, it is always 

possible to choose a velocity observer gain L, which makes the closed loop error dynamics 

(13) locally, uniformly and exponentially stable. 

 

Proof: 

According to Floquet-Lyapunov theory, there exists a periodic transformation matrix that 

converts a periodic time-varying linear system into a time invariant linear system [12]. Let 

 be a state transition matrix of the known linear part of equation (13), i.e.,  )0,(tΦ

 

)0,()()0,( tt
dt

td
o Φ=

Φ A                                                 (14) 

 

then it can be written as product of two matrices as 

 

  ( )ttt AF exp)()0,( =Φ                                       (15) 
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where  is a continuous periodic nonsingular matrix with period T, which satisfies the 

condition   and 

)(tF

F IT == )()0( F A  is a constant matrix. The stability of a linear known 

part is determined by the eigenvalues of A . In order to determine , the state transition 

matrix  must be computed. However, there is no simple way to compute 

)(tF

)0,(tΦ )0,(tΦ  

analytically. Instead, the transition matrix at the end of one period is computed by 

numerical integration of equation (14) and A  is obtained by 

 

( )0,(ln1 T )
T

Φ=A                                                       (16) 

where . ( ) )0,()0,(ln(exp TT Φ=Φ

In Figure 2, the calculated stability boundaries of the time varying part of equation (13) are 

presented in terms of the observer gain L, for various reference model frequencies. As 

shown in the figure, it is always possible to choose a velocity observer gain L such that A  

is asymptotically stable. Now, let the Lyapunov candidate be 

 

       V                                         (17) )()()()( 1 tttt o
TT

o xMFFx −−=

 

where  is the solution of the Lyapunov function, M IMAAM −=+ T . Since A  is 

asymptotically stable,  and  for all t . Differentiating V with 

respect to time, we obtain 

0>M 0)()( 1 >−− ttT MFF 0≥

 

u
TT

oo
TT

oV AMFFxxFFx 11 2)( −−−− +−=&  

 

Since  is a nonsingular matrix for all ,  for all t . Thus, )(tF 0≥t 0)()( 1 >−− ttT FF 0≥

 

( ) 0 )(2 2
max

2
max

2
min <−−≤ oV xMβλαα&  
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Figure 2. Stability bounds with respect to observer gain L : 

                    (a) 5.0,1, 21 === ωωγ I , (b) 1,1, 21 === ωωγ I  
(c) 5.1,1, 21 === ωωγ I , (d) 2,1, 21 === ωωγ I  

(e) 5.1,1,5.0 21 === ωωγ I   (f) is the same as (c) 
 

 

within the domain of attraction, 

 

                                                                  (18) )(2 max
2
max

2
min Mβλαα >

 

where  )(min 1

0min t
Tt

−

≤≤
= Fα , )(max 1

0max t
Tt

−

≤≤
= Fα  and uA=β . Notice that the unknown 

matrix  is composed of the damping D, frequency modeling error R and applied angular 

rate Ω , which all have very small values. Therefore, 

uA

β  is a small number. 
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5. Performance Analysis 
 

We now examine the convergence rate and stochastic variance of the angular rate estimate. 

This analysis gives us an estimate of the bandwidth and resolution of an adaptive controlled 

gyroscope. 

 

5.1 Convergence Rate Analysis 
 

In this section, the parameter convergence rate of the adaptive control scheme designed in 

previous section is studied using averaging analysis. Averaging analysis is commonly used 

in the adaptive control literature [13], and will be used to estimate the convergence 

properties of gyroscope parameter estimates including the applied angular rate. The 

convergence rate of the angular rate estimate is important because it determines the 

bandwidth of the gyroscope. 

Using the fact that parameter estimation dynamics is slower than trajectory and trajectory 

estimation dynamics, we can relate the slow parameter estimation dynamics with the 

following averaged dynamics. 

 

    { } avmm
T

ommav qqWMqqWAVG θθ ~ )),((ˆ ),(   ~
&&& Γ−=                         (19) 

 

where  is a transfer function matrix, oM̂
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Note that the transfer function M  has two different forcing frequencies, i.e., one is the 

x-axis resonant frequency and the other is the y-axis resonant frequency, i.e. 

)(ˆ so
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A sufficient condition for avθ~  in equation (19) to converge to zero is that cross-correlation 

matrix ( ))TW(ˆ
ˆ oww MWAVGR =  is a positive-definite. If the gains 1γ  and 2γ  are too small, 

and/or 1ω  and 2ω  are too far apart, the magnitudes A  and  are negligible and phase 1 2A

090±

ww ˆ

2,1 ≥φ

1

. In that case, the filtered steady-state response of the cross-axis signals, 

including the angular rate term, cannot make any significant contribution to the cross-

correlation matrix R  or may cause instability. This results in large un-damped 

oscillations, or divergence in the parameter estimation response. On the other hand, when 

ω  and 2ω  are too close to each other, the error dynamics response still results in large un-

damped oscillations, because of lack of persistence of excitation. It is important to mention 

here that the observer gain L should be chosen such that the closed loop system is stable, 

which is always possible to do. 

The appropriate choice for the frequency ratio 12 /ωωω =∆  also depends on the choice of 

the control gains 1γ  and 2γ . Selecting gains 1γ  and 2γ  to be too small, makes the choice of 

an appropriate 12 /ωωω =∆  hard, since a slight mismatch in 1ω  and 2ω  results in small 

values for A  and 2,1
090

1

2, >1φ . Selecting large values for observer gains makes the 

response of the gyroscope resemble that of the velocity measurement-based gyroscope. 

According to the simulation study that will be subsequently described in this section, a ratio 

between 10% to 40% between the two resonant frequencies is a reasonable choice, when 

sufficiently large values of γ  and 2γ , and appropriate values of gains  and  are 

employed. 

1L 2L

Using the facts that the products of sinusoids at different frequencies have zero average, the 

average equation for parameter estimate error dynamics can be obtained. All cross-term 

parameter estimates dynamics are coupled with each other. However, as the control gains 

1γ  and 2γ , and observer gains L  and  are made sufficiently large and/or the reference 

model resonant frequencies 

1 2L

1ω  and 2ω  are close enough, all cross-terms in the parameter 
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estimates dynamics become less coupled, because 121 ≈≈ AA  and 021 ≈≈φφ . In this case, 

the parameter estimates errors are almost uncoupled with each other, except for the 

estimates errors of the asymmetric damping term and the angular rate. Their dynamics are 

coupled and given by 
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By the equation (21), if we set the reference model oscillations such that 20ωY= , the 

dynamics of the angular rate estimate can be decoupled from that of the asymmetric 

damping estimate. In this case, all estimates dynamics is almost decoupled, and therefore it 

is possible to adjust the dynamics of angular rate estimate independently, without 

significantly affecting the estimation dynamics of fabrication imperfections. 

 
0 50 100 150 200

nondimensional time

A
ng

ul
ar

 R
at

e

Analysis 

w2 / w1 = 1.7 

w2 / w1 = 1.05

w2 / w1 = 0.8 

w2 / w1 = 1.2 

Figure 3. Convergence rate comparisons between analytical equation  

and various ratios of resonant frequencies. 
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Figure 4. Convergence rate comparisons between analytical equation  

and various control gains 
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Figure 5. Convergence rate comparisons between analytical equation  

and various observer gains 
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Applying this decoupling condition, the average dynamics of the angular rate estimate is 

approximately given by 

 

zavzav X Ω−≈Ω Ω
~2~ 2

1
2
0ωγ&                                                    (22) 

 

This is the exactly same result that is obtained for the adaptive control system without 

velocity estimation [14]. Thus, the bandwidth of the adaptive controlled gyroscope with 

velocity estimation is also approximately given by BW , which implies that 

the bandwidth of the MEMS gyroscope under the observer based adaptive control is 

proportional to the adaptation gain 

2
1

2
02 ωγ XΩ≈

Ωγ  and the energy of oscillation of the reference model. 

Figure 3 and 4 show the comparison between analytical convergence rate of angular rate 

given by equation (22) and the simulation results for various resonant frequency ratios and 

control gains. The observer-based adaptive control system derived is more sensitive to the 

variations in the resonant frequency ratio and control gains than the velocity measurement-

based adaptive control design. This is because, given a moderate value for the observer 

gains, the phase differences in M  are larger than that of the adaptive control case for 

the same changes in resonant frequency. Although large control gains 

)(sˆ
o

1γ  and 2γ  are good 

for decoupling the parameter estimation dynamics, selecting large values for these control 

gains is not desirable since they may cause large overshoot in the transient response of the 

gyroscope dynamics and may cause decrease the resolution performance of the gyroscope, 

as well be discussed in the next sub-section. Figure 5 shows a comparison between the 

analytical convergence rate of the angular rate estimate given by equation (22) and 

simulation results for various observer gains.  As shown in Figure 5, if the observer gain is 

sufficiently large, the actual convergence rate is very close to the analytical result. 
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5.2 Resolution Analysis 
 

Measurement and Brownian noises limit the minimum detectable signal of angular rate 

estimate. Brownian noise is a thermal noise that is produced by the collisions between air 

molecules and the structure, or by viscoelastic effects in the suspension of the gyroscope, 

and enters to the system as a noisy force generator. Brownian noise can be modeled as a 

zero-mean white input noise, and its power spectral density is given by 
m
Tdk B

b

4
=S  [4], 

where m is the mass of the proof mass and d is a damping coefficient. The standard 

deviation of the angular rate estimate error, or resolution, is obtained from covariance 

matrix of x  of equation (13). Covariance Po o of x  can be easily pre-computed 

independently with mean trajectory by solving the following familiar Lyapunov equation. 

o

 

                                          (23) T
ooooo

T
ooo GSGPAAPP ++≈&

 

where . Resolution of angular rate estimate, } ,{ pbo SSdiag=S Ωσ , is computed by 

 

T
oCCP=Ωσ                      (24) 

 

where C . The ultimate achievable resolution can be calculated by setting ]10[ 141×= 0=pS  

and computing Ωσ using equation (24). 

Figure 6 shows the effects of various design parameters such as control gains and parameter 

adaptation gains on the variance of the angular rate estimate error. The plots in Figure 6 

were obtained from the time domain response of equation (24) and the steady-state values 

represent the resulting steady-state covariance. Except for the fact that control gain 

variations make slight changes in the covariance matrix Po of Ω z
~ , only the angular rate 

adaptation gain Ωγ  significantly affects the variance. This implies that the resolution can be 
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adjusted with the angular rate adaptation gain independently, without significantly affecting 

the other dynamics of the fabrication imperfection estimates.  

The resolution performance of the observer-based adaptive controlled gyroscope is almost 

the same as the one that would be obtained if the power spectral density of velocity 

measurement noise is ideally given by equation (11). 
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Figure 6. Variance variations of angular rate estimate error zΩ~  due to  
(a) angular rate adaptation gain Ωγ , (b) control gains 2,1γ ,  

(b) spring coefficient adaptation gain Rγ   
(c) and (d) damping coefficient adaptation gain Dγ . 
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5.3 Advantages of Adaptive Mode of Operation 
 

The main advantages of the adaptive mode of operation, proposed in this report, include 

self-calibration, large robustness to parameter variations, and no zero-rate output. Moreover, 

because a single adaptive scheme controls all operation tasks of the gyroscope, i.e. from 

initiating the vibratory motion of proof mass to estimating the angular rate, analytic 

predictions for the bandwidth and resolution of the gyroscope are easy to obtain and 

relatively precise. The proposed adaptive controller design is also easy to implement in 

high Q systems. Thus, the noise properties associated with a high Q system can be fully 

utilized. Another advantage of the adaptive mode of operation is that it is easy to adjust the 

trade-off between bandwidth and resolution by simply adjusting the angular rate adaptation 

gain. In contrast, in a gyroscope operating under the conventional open-loop or force-

balancing closed-loop mode of operation, the bandwidth and ultimate resolution of the 

gyroscope depend on the low-pass filter characteristics that is used to demodulate the 

angular rate estimate. Thus, it is difficult to adjust both bandwidth and resolution, without 

changing the demodulation filter. Therefore, the adaptive mode of operation is better suited 

for medium-cost gyroscopes that are used in high-performance applications. One 

disadvantage of the adaptive mode of operation is that it cannot be applied to a 

conventional gyroscope structure, since it requires the unmatched resonance mode of the 

gyroscopes and equal movements in the x and y axes. This means that for applying 

proposed adaptive operation scheme of MEMS gyroscopes, new gyroscope should be 

designed. 

 

6. Design of Adaptive Control-Configured  MEMS Gyroscopes 
 

A MEMS gyroscope, suitable for the adaptive mode of operation, is designed in this section. 

The main difference between this gyroscope and a conventional z-axis gyroscope lies in the 

fact that the present design allows equal movements in the x and y axes. Thus, there is no 
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specific drive and sense axis in the sense of conventional MEMS gyroscopes. Figure 7 

shows a comparison between a conventional mode and an adaptive mode of operation. It 

should be noted that a conventional gyroscope structure is normally designed based on the 

assumption that the movement of the proof mass in the drive axis (say x-axis) is relatively 

large, but the movement in the sense axis (say y-axis) is very small. 

The proposed gyroscope design consists of a proof mass, four hairpin type spring 

suspensions and several pairs of parallel electrodes for actuation and sensing. Parallel 

electrodes are used for both actuation and sensing, and are located at both the x and y axes. 

Because the normal direction to the sensing area in the y-axis sensing electrodes is parallel 

to the y-axis of motion, only a movement of the proof mass in the y direction changes the 

capacitance. On the other hand, a movement in the x direction will not result in any change 

in the capacitance of the y-axis sensing electrodes. Therefore, the y-axis sensing electrodes 

only detect movements of the proof mass in the y direction. Similarly, the x-axis sensing 

electrodes will only detect movement of the proof mass in the x direction. 

Figure 8 depicts the layout of the designed MEMS gyroscope using the MIT-SOI 

fabrication technology. Detailed description of the MIT-SOI process is in reference [15]. 
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Figure 7. Comparison between a conventional  

and an adaptive mode 
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Figure 8. Layout of the control-configured gyroscope 

 

 

7. Simulation 
 

A simulation study using the preliminary design data of the MIT-SOI MEMS gyroscope 

was conducted, to test the analytical results presented in this report and verify its predicted 

performance. The data of some of gyroscope parameters in the model is summarized in 

Table 2. For simulation purposes, we allowed %5±  parameter variations for the spring and 

damping coefficients and assumed %1±  magnitude of nominal spring and damping 

coefficients for their off-diagonal terms. Notice that the simulation results are shown in 

non-dimensional units, which are non-dimensionalized based on the proof-mass, length of 

one micron and x-axis nominal natural frequency. 

The estimate of angular rate response to step input angular rate is shown in Figure 9. In this 

figure, the upper and lower bounds of its analytically estimated standard deviation are also 

plotted. Figure 10 shows the estimate of angular rate response to sinusoidal input angular 

rate. These simulation results support the theoretical results obtained in this report. 
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parameter value 

mass 5.095x10-7 kg 

x-axis frequency 4.17 KHz 

y-axis frequency 5.11 KHz 

Quality factor 104 

Brownian noise PSD 1.47x10-26 N2sec 

Position noise PSD 1.49x10-27 m2sec 

Velocity noise PSD 2.94x10-12 (m/sec)2sec 

 
Table 2. Key parameters of the designed gyroscope 
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Figure 9. Time responses of angular rate estimate 

to the 5 deg/sec step input 
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Figure 10. Time responses of angular rate estimate 

to the 5 deg/sec sinusoid input at 50 Hz 

 

 

8. Conclusions 
 

Dynamic analysis of typical MEMS gyroscopes shows that fabrication imperfections are a 

major factor limiting the performance of the gyroscope. Thus, the main purpose of 

gyroscope control should be to null out these imperfections and cross-couplings effectively 

during the operation of the gyroscope. However, the motion of a conventional mode-

matched z-axis gyroscope does not have sufficient persistence of excitation and, as a result, 

all major fabrication imperfections cannot be identified and compensated for in an on-line 

fashion. Moreover, some types of fabrication imperfections, which can be modeled as 

cross-damping terms, produce inherent zero-rate output (ZRO). 

An analysis technique for identifying z-axis gyroscope operating conditions, which permit 

the on-line compensation of fabrication imperfections and self-calibration, was developed. 

It showed that the motion of a mode-unmatched gyroscope, in which the resonance 

frequency of the x-axis is different from that of the y-axis, has sufficient persistence of 
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excitation to permit the identification of all major fabrication imperfections as well as 

“input” angular rate. Based on this analysis, new operation strategies were formulated for 

MEMS gyroscopes with two un-matched oscillatory modes. A new adaptive control 

algorithm with velocity estimation was developed, which operates with only measurements 

of the x and y positions of the proof mass. The parameter adaptation algorithm (PAA) in the 

adaptive controller simultaneously estimates the component of the angular velocity vector, 

which is orthogonal to the plane of oscillation of the gyroscope (the z-axis) and the linear 

damping and stiffness model coefficients. The convergence and resolution analysis 

presented in report showed that the proposed adaptive controlled scheme offers several 

advantages over conventional modes of operation. These advantages include a larger 

operational bandwidth, absence of zero-rate output, self-calibration and a large robustness 

to parameter variations, which are caused by fabrication defects and ambient conditions. 

A simulation study using the preliminary design data of the MIT-SOI MEMS gyroscope 

was conducted, to test the analytical results derived in this report and to verify the predicted 

performance of the different proposed controlled schemes. Simulation results were in 

strong agreement with the analytically derived predicted results and performance estimates. 
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