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Abstract

The Dynamics of Ecology and Evolution in Simple Experimental Microbial Communities

by

Joao Ascensao

Doctor of Philosophy in Bioengineering

University of California, Berkeley

Professor Oskar Hallatschek, Chair

A central problem of evolutionary biology lies in understanding how organisms adapt and
evolve in response to environmental and ecological challenges. This thesis delves into the
dynamics of evolutionary adaptation and ecology within microbial communities, focusing on
Escherichia coli as a model organism. Through a series of three interconnected studies, this
thesis illuminates the complex interplay between genetic mutations, environmental pressures,
and adaptive strategies that govern microbial evolution.

The first chapter sets the foundation by exploring the genetics of adaptation in a simple
E. coli community. Using controlled experimental settings, it examines how specific genetic
variations confer survival advantages under varying environmental conditions. This chapter
underscores the significance of genetic diversity as a reservoir for adaptive potential, illustrat-
ing how even minor genetic changes can lead to significant evolutionary shifts in microbial
populations.

Building on the genetic insights from the first chapter, the second chapter shifts focus to
ecological interactions and their impact on evolutionary outcomes. Here, the study investi-
gates how E. coli strains can diversify to exploit different ecological niches and the resulting
impact on their adaptive trajectories. This chapter reveals the importance of ecological fac-
tors in shaping evolutionary pathways, highlighting how microbial communities dynamically
respond to ecological constraints and opportunities.

The final chapter extends the discussion to focus on the evolutionary effects of non-adaptive
population fluctuations. Using the same E. coli communities, it shows how population
fluctuations can arise from differences in offspring number correlations between individuals.
These fluctuations are distinct from the classical source of population fluctuations, genetic
drift, and can have significant impacts on the trajectory of evolution.

Together, these findings emphasizes the multifaceted nature of evolutionary adaptation in
microbial communities. They highlight the critical role of genetic diversity in providing
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the raw material for evolution, the influence of ecological interactions in directing adaptive
pathways, and the effect of non-adaptive processes.

Future research can continue to explore the complex dynamics of microbial evolution, partic-
ularly focusing on the interplay between genetic and ecological factors over varying temporal
scales. This would not only enhance our understanding of microbial adaptation but also
provide insights applicable to broader evolutionary contexts, including those of higher or-
ganisms.
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Chapter 1: Introduction

The whole landscape showed design, like man’s noblest sculptures. How wonderful the power of its beauty! Gazing
awe-stricken, I might have left everything for it. Glad, endless work would then be mine tracing the forces that
have brought forth its features, its rocks and plants and animals and glorious weather. Beauty beyond thought
everywhere, beneath, above, made and being made forever.
— John Muir, My First Summer in the Sierra [1]

The study of evolutionary processes has historically been deeply tied with the mathe-
matical theory of population genetics. Over the past century, population geneticists have
developed a successful theoretical framework to predict and model how evolutionary forces,
such as natural selection and genetic drift, combine to affect evolutionary outcomes [2]. How-
ever, until recently, quantitative tests of these theories have been restricted to retrospective
approaches—inferring past evolutionary dynamics by looking at current genetic diversity—
which is akin to trying to understand a story by only reading its last chapter. The rise of
sequencing technologies and quantitative assays over the past two decades has given us an
unprecedented opportunity to precisely test quantitative theories of evolution in real time
[3–7].

Microbial populations, with their rapid generation times, have become ideal systems for
such studies, enabling observations of evolutionary processes that would span millennia in
larger organisms to be condensed into mere days. These evolution experiments have allowed
evolutionary biologists to begin to better understand and pull apart the various evolution-
ary forces acting on a population, such as natural selection, ecological forces, and random
population fluctuations (genetic drift). Evolutionary forces often interact in complex ways
to determine the fate of a population. For example, natural selection alters the frequency of
alleles (gene variants) in a population based on their fitness [8–12]. In contrast, genetic drift
randomly changes allele frequencies without a specific trend. Many studies in theoretical
population genetics have shown complex interactions between natural selection and genetic
drift. For instance, the likelihood of a new mutation becoming dominant in a population
largely depends on random drift when the mutation is rare, and on natural selection when
it becomes more common [10, 13, 14].

Through an increasingly large body of work, we increasingly see that the framework of
theoretical population genetics is unreasonably good at quantitatively predicting, and under-
standing, aspects of evolutionary dynamics [15–17]. This may come as a surprise because
biological systems are often viewed as unmanageably complex, immune to the penetration of
the quantitative theories that dominate engineering, physics, and chemistry. But population
genetics works so effectively because evolving populations are composed of many individuals,
and across nature, we often see that the (probabilistic) dynamics of many-bodied systems
are universal across a given class [13]. This allows us to coarse-grain biological idiosyncrasies
into effective parameters, which can be measured (at least in principal) by observing the
population dynamics, providing the ability to directly compare quantitative theories against
experimental data [15, 18]. Even simple, naive initial models can provide a springboard to
more correct and realistic theoretical descriptions. The prospect of accurate, quantitative
theories of evolution opens the possibility to controlling and designing evolving populations,
with potentially significant environmental and health applications.

Perhaps the longest and most significant evolution experiment has been the Escherichia
coli Long Term Evolution Experiment (LTEE) [19–21]. Started in 1988 by Dr. Richard
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Lenski, the LTEE has been continuously running ever since. An initially clonal strain of E.
coli B was inoculated in twelve identical, independent populations. Every 24 hours, a small
portion of the well-mixed, overnight culture is propagated into fresh media. The media and
environment has stayed the same for the entire duration of the experiment, and yet the
populations have not stopped adapting and evolving [6, 22].

At the outset of the Long-Term Evolution Experiment (LTEE), a notable development
was observed in one of the twelve lineages, specifically the ara-2 population. This population
spontaneously split into two distinct lineages, known as S and L (reflecting their small and
large colony sizes on specific agar plates), as a result of negative frequency dependence [23].
These lineages thrive in the LTEE environment, characterized by serial dilutions in glucose
minimal media, by occupying different temporal and metabolic niches. The L lineage shows
a faster growth rate on glucose during the exponential phase, whereas the S lineage is bet-
ter adapted for survival in the stationary phase and efficiently utilizes acetate, a byproduct
of overflow metabolism [24, 25]. Over time, these lineages have not only persisted but also
continued to evolve and differentiate at the genetic, transcriptional, and metabolic levels
[6, 23–28]. Although the ara-2 lineage is the most extensively studied case of diversification
within the LTEE, it is not unique in this respect. Recent time-resolved metagenomic sequenc-
ing has revealed that, in reality, nine out of the twelve LTEE populations have undergone
similar diversification, leading to the evolution of two separate lineages that have coexisted
for tens of thousands of generations while continuing to evolve and adapt. This demonstrates
that spontaneous diversification followed by coevolution is a significant adaptive strategy in
this system. Similar diversification and coevolution events have been observed in many other
evolving microbial populations. In both natural systems [29–32] and experimental settings,
people have observed rapid ecological diversification, typically propelled by mechanisms such
as cross-feeding [24, 33–36], resource partitioning [37–41], spatial niche differentiation [42–45],
and potentially other ecological trade-offs [46, 47].

Thus, it has become increasingly apparent that interactions between and within species
can dramatically influence evolutionary trajectories, but the precise ways in which this
happens remain poorly understood, and an area of active research. Theoretical population
genetics has historically paid little attention to explicitly considering ecological interac-
tions between species, although recent efforts have been devoted to bridging the gap with
theoretical ecology [48]. Testing and validation of theoretical ideas necessitates gathering
high-quality, quantitative data on the evolutionary dynamics of populations.

In this thesis, I use populations from the ara-2 lineage of the LTEE to investigate a
suite of related eco-evolutionary questions, centered around uncovering the contribution of
species interactions to evolutionary dynamics. The LTEE offers an unparalleled opportunity
to observe microbial evolution and diversification over extended periods. The spontaneous
diversification observed in the LTEE serves as an ideal model to study the evolutionary
dynamics in microbial communities.

This thesis contributes to a deeper understanding of microbial community dynamics by
integrating evolutionary biology, ecology, and advanced genetic methodologies. It sheds light
on the adaptive potential of microbial communities, the role of ecological interactions in
shaping evolutionary pathways, and the emergence of non-adaptive processes. The findings
have the potential to inform broader ecological and evolutionary theories, as well as practical
applications in environmental management, disease control, and biotechnology.
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Chapter 2: Quantifying the Local Adaptive Landscape of a

Nascent Bacterial Community

Abstract

The fitness effects of all possible mutations available to an organism largely shape the dynamics of evo-
lutionary adaptation. Yet, whether and how this adaptive landscape changes over evolutionary times,
especially upon ecological diversification and changes in community composition, remains poorly under-
stood. We sought to fill this gap by analyzing a stable community of two closely related ecotypes (”L” and
”S”) shortly after they emerged within the E. coli Long-Term Evolution Experiment (LTEE). We engi-
neered genome-wide barcoded transposon libraries to measure the invasion fitness effects of all possible
gene knockouts in the coexisting strains as well as their ancestor, for many different, ecologically relevant
conditions. We find consistent statistical patterns of fitness effect variation across both genetic background
and community composition, despite the idiosyncratic behavior of individual knockouts. Additionally,
fitness effects are correlated with evolutionary outcomes for a number of conditions, possibly revealing
shifting patterns of adaptation. Together, our results reveal how ecological and epistatic effects combine
to shape the adaptive landscape in a nascent ecological community.

Introduction

Microbial communities are ubiquitous across all environments, and are key players in disease
processes, biogeochemical cycling, and ecosystem functioning [1–6]. While most research on
natural microbiomes has been fueled by their ecological significance, recent studies have
begun to focus on microbial community evolution and uncovered clear signs of adaptation
and diversification [7–10]. Thus, microbiome assembly, structure, and function may have to
be understood against a backdrop of an ever-churning evolutionary dynamics.

That evolutionary and ecological changes often go together has been most clearly shown
in controlled experiments on synthetic microbial communities: evolution can change the way
microbes consume resources or otherwise interact with each other [11–15]. This leads to
environmental changes that modify selection pressures, forcing lineages into new evolutionary
paths [16–21]. Complex adaptive landscapes have been hypothesized to chiefly shape the
feedback between ecology and evolution in microbial communities [19, 22], but it is still
unclear how diversification and other ecological shifts change those landscapes.

In ecologically simple monoculture populations, population genetic theory has shown
that the evolutionary dynamics are largely predictable from knowing local aspects of a static
fitness landscape, encoding the fitness effects of all currently available mutations, which is
called the “distribution of fitness effects” (DFE) [23–28]. Such work has been successful in
rationalizing and predicting outcomes of evolution experiments from DFE measurements
[29, 30].

High-quality measurements of the DFE in a given system require sampling and measuring
the fitness effects of sufficiently many mutations across the genome. This has only become
possible recently, due to the rise of sequencing technologies. DNA barcoding systems have
become especially influential to better understand microbial adaptive evolution. By taking
advantage of amplicon sequencing methods to measure barcode frequency dynamics, these
systems have been used with great success to directly observe evolutionary dynamics [30–33],
and identify selected mutations and the statistical patterns that characterize them [34–39].
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However, the concept of a single, static DFE may not be applicable or useful to describe
a diversified population. It is possible that different ecotypes experience different adaptive
landscapes, even if they are closely related, which moreover may shift in response to com-
positional or other ecological changes. Despite the importance of microbial communities,
very little is known about how much the local landscape depends on biotic interactions with
their coexisting strains versus genetic background alone, and how those patterns shift upon
diversification.

Here we aim to elucidate the adaptive landscape of a recently diversified microbial com-
munity by measuring how the invasion fitness effects of a large panel of mutations depends
on the state of the ecosystem. Invasion fitness refers to the growth rate of a mutant rela-
tive to its ancestor when the mutant is rare in the population. To sample from the DFE,
we create genome-wide knockout libraries via random-barcoded transposon mutagenesis
[40, 41] on the backgrounds of the coexisting ecotypes. While knockout mutations do not
represent all possible mutations in the genome, this approach allows us to sample a wide
variety of mutations across the genome and to compare the effect of the same mutation
across different genetic backgrounds and community compositions. The resulting ecotype-,
and composition-dependent DFE statistically characterizes the abundance and specificity of
beneficial mutations and, thus, reveals how the rate and pattern of mutation accumulation
depends on the state of the ecosystem.

We reasoned that the ecologically-dependent DFEs accessible by our approach are par-
ticularly relevant to the fate of a recently diversified ecosystem, consisting of closely related
ecotypes with overlapping niches. Additionally, quantifying the DFEs of such a nascent
community would shed light on how the discovery and infiltration of a new niche changes
the local adaptive landscape, in both focal and “nearby” environments. The composition-
dependence of the DFE would also provide information on the types of mutations available
to the community–“pure fitness” mutations would show minimal fitness changes in response
to composition shifts, whereas frequency-dependent mutations may point to shifts in
niche occupation/strategy. Theory suggests that the relative availability of ”pure fitness”
versus frequency-dependent mutations may strongly influence the resulting evolutionary
dynamics, but there have been few empirical measurements of how many mutations show
frequency-dependent effects [19].

We therefore chose to focus on a model ecosystem that spontaneously emerged in the
course of the E. coli Long Term Evolution Experiment (LTEE) – an experiment that has
tracked the evolution of several E. coli populations over the course of over 70,000 generations
(at the time of writing). Early in the LTEE, it was recognized that one of the twelve lineages,
the ara-2 population on which we focus in this study, spontaneously diversified into two
lineages that coexist via negative frequency dependence, termed S and L (for their small
and large colony sizes on certain agar plates) [42]. S and L coexist by inhabiting different
temporal/metabolic niches in the LTEE environment, set up as serial dilutions in glucose
minimal media–L grows more quickly on glucose during exponential phase, while S specializes
on stationary phase survival and utilizing acetate, a byproduct of overflow metabolism [43,
44]. Following diversification, the lineages have persisted to this day and continued to evolve
and adapt, diverging on genetic, transcriptional, and metabolic levels [16, 42–47]. While our
focal ara-2 line is the best studied case of diversification in the LTEE, it is not the only
one. Recent time-resolved metagenomic sequencing of the LTEE has shown that, in fact, 9
out of the 12 populations evolved two separate lineages that coexisted with each other for
tens of thousands of generations, while continuing to accumulate mutations and adapt [47],
demonstrating that spontaneous diversification followed by coevolution is a major adaptive
route for this system.

Here we show how the adaptive landscapes change between the ancestor and derived
strains of the LTEE, and how they are different between two closely related ecotypes.
We found that the invasion fitness effects of many gene knockouts sensitively depends on
the genetic background and the ecological conditions, as set by the abiotic environment
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and relative frequency of both ecotypes. Despite the idiosyncratic behavior of individual
knockouts, we still see consistent statistical patterns of fitness effect variation across both
genetic background and community composition. Beneficial knockouts generally show a
strong dependence on the community composition, indicating that there are few “pure fit-
ness” mutations. Genes that are in the same operon, or that strongly interact with each
other, are more likely to be correlated with each other across backgrounds compared to ran-
dom pairs of genes. Additionally, fitness effects are correlated with evolutionary outcomes
for a number of conditions, possibly revealing shifting patterns of adaptation. Together, our
results reveal how ecological and epistatic effects combine to shape the adaptive landscape
in a nascent ecological community.

Results

Measuring knockout fitness effects

We sought to measure the knockout fitness effects available to the small LTEE-derived ecosys-
tem of S and L, and how they depend on ecological conditions, specifically, (i) the composition
of the community, and (ii) openness of a given metabolic niche. To this end, we created
randomly barcoded transposon libraries of three LTEE clones, using previously developed
methods (RB-TnSeq) [40, 41]–S and L clones sampled from 6.5k generations, shortly (¡500
generations) after diversification [16, 42], and their LTEE ancestor, REL606 (Figure 1A). We
used these libraries to measure the knockout fitness effects of nearly all non-essential genes
in various environments relevant to the evolution of the population in the LTEE (Table 1),
by propagating the libraries in defined conditions (with two biological replicates per experi-
ment) and using Illumina amplicon sequencing to track the frequency trajectories of different
barcodes (Figure 1B). By essentially measuring the log-slope of the frequency trajectories,
we can estimate the fitness effect, s, of a given mutant (Figure 1C), which we report in units
of 1/generation. Transposon insertion events were highly redundant, with a median of ∼20
insertions per gene, allowing us to combine information from multiple barcode trajectories
into one fitness measurement through our statistical fitness inference pipeline and identify
significantly non-neutral mutations (FDR correction; α = 0.05). We carefully quantified
sources of error in barcode frequency measurements and propagated them to our fitness esti-
mates, which was crucial to effective and accurate analysis of the data (see methods section
)–for example, we could exclude knockouts with overly noisy fitness measurements, or weight
measurements by their error.

Barcoded transposon mutagenesis has been successfully and consistently used to measure
knockout fitness effects across many contexts [40, 41], but as the knockouts are not bonafide
deletions, it is possible that some genes with transposon insertions retain some activity.
However, the fact that we have multiple transposon insertions spread across the length of
each gene, along with our outlier barcode detection scheme, allows us to be more confident
that our fitness measurements are dominated by the typical effects of an insertion.

After inferring the fitness effect of each gene knockout, we can compare fitness effects
across genetic backgrounds and environments. We can first look at knockout fitness effects
in the evolutionary condition proxies–the closest approximation to the environment where
evolution in the LTEE took place: the REL606 library in monoculture, and S and L libraries
together, coexisting at the ecological equilibrium frequency. We chose to highlight the con-
dition where S and L were coexisting at their ecological equilibrium to be able to distinguish
environmental versus genetic contributions to fitness effects–the libraries were cocultured
together, in the same flasks, thus experiencing the same environment. In coculture experi-
ments, the S/L libraries are mixed in the minority together with wild-type S/L clones at the
desired frequency (see methods section ). The ecotype frequencies do not change considerably
over the time period considered (Figure S3).

If we look at the overall DFE in the evolutionary condition proxies, we see that REL606
has access to beneficial knockouts of much larger effect size than either S or L (Figure 1D),
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Fig. 1 Measuring mutational fitness effects. (A) Timeline of evolution in the ara-2 LTEE population, showing mutation
accumulation and diversification into S and L around 6k generations, then clone sampling at 6.5k generations; data from [47],
jitter added to mutation fixation time for easier visualization. Hypermutator phenotype appeared around 2.5k generations [48].
(B) Schematic of transposon mutagenesis process to generate barcoded libraries of REL606, 6.5k S and L, as well as experimental
procedure to observe barcode dynamics. (C) Barcoded knockout mutant frequency trajectories in the evolutionary condition
for each genetic background, colored by estimated fitness. All barcodes within a gene were summed together; shown are the
trajectories from replicate 1 in the evolutionary condition for each genetic background (monoculture for REL606, together at
ecological equilibrium frequency for S and L; representative of both replicates). (D) Overall distributions of fitness effects in
the evolutionary condition for each genetic background. The majority of knockouts were neutral, so only genes that were called
as significantly non-neutral were included (see supplement section ). (E) Replicate-replicate correlation of estimated fitness
effects. Error bars represent standard errors. (F) Comparison of knockout fitness effects across genetic backgrounds, which are
generally uncorrelated. Points with a blue interior correspond to genes that were mutated (excluding S-SNPs) in 6.5k S/L
relative to REL606 (sequencing data from [46]). Points with red outlines correspond to genes that were mutated in parallel in
nonmutator LTEE populations (data from [47]). The correlation coefficients decrease slightly if we recompute them, excluding
likely neutral genes (ρ = 0.14, 0.03, 0.03; top to bottom). In panels E-F, knockouts with high measurement noise (σs > 0.3%)
were excluded (except for labeled genes), and ρ is the weighted pearson correlation coefficient. Also in panels E-F, the ”cloud”
of points around 0 mostly represents likely neutral knockouts.

suggesting that REL606 would adapt much quicker than S or L. Additionally, S has a larger
beneficial DFE compared to L, which may be because S is starting to exploit an under-utilized
niche (acetate specialization), where more significant gains can be made by improving the
exploitation of the niche. On the other hand, L has inherited the putative old niche (glucose
specialization), which was presumably the primary target of adaptation during the first ∼6k
generations of evolution. As previously mentioned, the overall shape of the DFE largely
controls the instantaneous speed of adaptation [23–28]. The evolutionary tendency towards
a “shrinking DFE” is known as global diminishing returns epistasis, which has previously
been proposed as a mechanism to explain the decelerating fitness trajectories of the LTEE
populations [49, 50]. While diminishing returns epistasis was previously observed to affect the
first couple common LTEE mutations [51], global diminishing returns (affecting the whole
DFE) after the accumulation of many mutations had not yet been directly observed.

We can also compare the fitness effects of each knockout mutation both between replicates
and across genetic backgrounds (Figure 1E-F), to contrast within-sample to between-sample
variance. In contrast to a strong replicate-replicate correlation, we see that fitness effects are
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Experiment Libraries Same flasks? Description

Mono R, S, L N Library monoculture

1:10 dil R, S, L N Library monoculture, 1:10 daily dilution

Glu exp R, S, L N Library monoculture, kept in glucose exponential phase

Ac exp R, S, L N Library monoculture, kept in acetate exponential phase

Eco Eq 1 S, L Y S + L libraries with wt L at ecological equilibrium

Eco Eq 2 S N S library with wt S + L at ecological equilibrium

Eco Eq 2 L N L library with wt S + L at ecological equilibrium

L in maj S N S library with wt L in majority

S in maj 1 L N L library with wt S in majority

S in maj 2 S, L Y S + L libraries with wt S in majority

S in maj 3 L N L library with wt S in majority
Table 1 Summary of BarSeq experiments reported in this work. Dilution rate was variable in the glucose/acetate
exponential phase experiments, to keep the populations in exponential phase (see methods section ), but unless otherwise
noted, the daily dilution rate was 1:100, consistent with the LTEE condition. All experiments were performed in the LTEE
media, DM25, except for the acetate exponential phase experiment. The abbreviations R, S, and L refer to REL606, and 6.5k
S/L, respectively. In coculture experiments, ⟨fS⟩ is the total frequency of S, averaged over all time points and replicates.

largely uncorrelated between genetic backgrounds. It may be unsurprising that mutational
effects of S and L are uncorrelated with those of their ancestor, as REL606 may be creating
and experiencing a slightly different environment compared to S and L, even though they
were all started in the same media. However, as previously mentioned, we measured the fit-
ness effects of S and L while they were coexisting in the same flasks, so the two ecotypes
were experiencing the exact same environment. Thus, the lack of correlation between the fit-
ness effects of S and L must be due to epistatic effects. It appears that individual mutations
behave idiosyncratically despite statistical patterns of epistasis, in contrast with previous
experiments [51, 52] which saw diminishing returns both globally and with individual muta-
tions. Most knockout mutations that were strongly beneficial in REL606 and then acquired a
mutation in that gene in the 6.5k S/L background became effectively neutral when knocked
out in S/L (nadR, pykF, ybaL, ygaZ ); it makes sense that mutating a gene that was already
mutated (with a fitness effect) wouldn’t have an effect, if the mutation was effectively a
loss-of-function. One gene, spoT, was beneficial in REL606 but deleterious in both S and L
when knocked out, indicating that the natural spoT SNP may represent a change-of-function
rather than a loss-of-function mutation. However, the majority of selected genes in REL606
were not mutated between 0 and 6.5k generations in S/L, so the fact that their fitness effects
significantly changed across genetic background implicates the role of widespread, global
idiosyncratic epistasis. Furthermore, there are several genes that were mutated in parallel
in multiple lines of the LTEE, but are only beneficial on the S background (trkH, ybbN ) or
both the S and L backgrounds (fadL) when knocked out, while being neutral or deleterious
on the REL606 background, suggesting that predictable epistasis could have shaped which
mutations became beneficial in the LTEE. ’Coupon collection’ is a null model of mutation
accumulation/epistasis, where a beneficial DFE is composed of a finite number of mutations,
and only changes due to the depletion of those mutations when they fix in a population.
While the coupon collecting model is clearly relevant for some mutations, the lack of fitness
effect correlation between genetic backgrounds seems to be largely driven by global epistasis.

As a simple check, we compared the fitness effect of one of the largest effect knockouts
in our collection, pykF, to previously collected data. We reanalyzed data from Peng et al.
(2018) Mol Biol Evol [53] (to recalculate fitness using the metric that we use) and found that
their pykF deletion mutant had a selective coefficient s ≈ 4%, compared to our measurement
s ≈ 12%; the highest fitness effect of a pykF nonsynonymous mutation on the ancestral
background was s ≈ 9%, which is similar to our measurement. Additionally, our measured
fitness effect of pykF is quite consistent—it is approximately the same across all replicates
in the Mono 1 and 2 experiments in REL606 (performed on different days). And all of the
individual barcodes that landed in pykF appear to have approximately the same slopes. One
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Fig. 2 Statistical properties of DFEs as well as effects of individual mutations sensitively depend on environ-
ment. (A) Knockout fitness effects tend to have a larger magnitude when S and L are at ecological equilibrium versus when
they are in monoculture. Line shown is a rolling average of fitness effects ± standard error. (B) Distribution of fitness effects
across environments, where we only included knockouts that were called as significantly non-neutral. Please note that the DFEs
of REL606 are on a different scale than S and L. (C) Illustration of how the sign of fitness effects changes across environments.
Few mutations are unconditionally beneficial or deleterious, many are non-neutral only in one or few environments, and sign-
flipping of fitness effects across environments is pervasive. REL606 only has 4 unique environments, compared to 6 for S and L.
Size of circle is proportional to number of genes that fall into each class.

possibility to describe the discrepancy could be the presence of frequency dependent fitness
effects—the strength of selection may be higher when the mutant is rare (as is the case in
our data), compared to when it occupies a sizable portion of the population (as in Peng et al.
2018). Another possibility could be that transposon insertions did not completely eliminate
pykF activity, as it would in a deletion.

Knockout fitness effects strongly depend on ecological conditions

The ecological interactions between S and L are mediated through the environment, most
likely primarily through cross-feeding [43, 44]. Therefore, it’s reasonable to think that the
environment will change with the ecosystem composition, which could be modified by both
ecological and evolutionary processes–indeed, ecotype composition does change significantly
and relatively rapidly over evolutionary time (∼1k-10ks generations) [42, 47]. Thus, we sought
to explore how mutational fitness effects varied with ecosystem composition. Notably, we see
a consistent trend where fitness effects generally have a smaller magnitude when S and L are
in monoculture compared to when they are in coculture (Figures 2A, S7A). Additionally, we
also see that the overall shape of the DFEs change as a function of frequency, with generally
larger fitness effects when the ecotype is in the minority, for both beneficial and deleterious
knockouts (Figures 2B, S7B). Analogous to the case of global diminishing returns epistasis,
this observation holds on a statistical level, but does not explain all of the fitness effect
variation between the different conditions, implying that individual mutations are affected
by the ecosystem composition in idiosyncratic ways–statistical properties of the DFE seem to
be strongly dependent on the ecosystem composition, but the effects of individual mutations
may depend on their underlying physiological consequences and how they affect ecological
interactions. Thus, it appears that the impact of both ecotypes on the environment is different
enough to make selection pressures strongly dependent on the current mixture of ecotypes.

The LTEE environment, while relatively simple, varies quite significantly over the course
of a single cycle [43, 54], allowing ecotypes to carve out different temporal ecological niches
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during cycles of lag, exponential, and stationary phases. To explore how selection pressures
vary in different niches in the growth cycle, we measured fitness in exponential growth on
glucose and acetate (which appears in the LTEE environment due to overflow metabolism),
and at a reduced dilution rate of 1:10 such that portion of the growth cycle in stationary
phase is increased (Table 1). We found that the shape of the DFE changed substantially
based on the environment (Figures 2B). For example, while S and L have a similar beneficial
DFE shape in monoculture, L has access to stronger beneficial knockout mutations in glu-
cose exponential phase compared to S. As another example, the beneficial DFE in acetate is
larger than any other DFE in both S and L, potentially pointing to a substantial, as-of-yet
unrealized adaptive potential for adaptation on acetate. Interestingly, despite the environ-
mental variation, REL606 always has a more pronounced beneficial DFE compared to S and
L.

It is important to note that measurement noise varied non-negligibly across experiments,
primarily because of changes in bottleneck size (and thus in the strength of genetic drift)
due to differences in library frequency and and other experimental differences (see methods
section ). Thus, our power to detect selected mutations close to neutrality varied across
experiments.

In contrast to previous work [35], it appears that there is no consistent relationship
between background fitness and shape of the deleterious DFE, which instead appears to
depend more on environment. Possible reasons for the discrepancy include species-dependent
differences, and the fact that our set of experiments used backgrounds connected by evolu-
tion, while Johnson et al. used evolutionarily unrelated yeast hybrids with varying fitness in
the test environment, whose changing DFEs were not controlled by evolution. One possible
evolutionary explanation could be second-order selection against mutants with wider delete-
rious DFEs, because those mutants would be more likely to pick up a deleterious hitchhiker
mutation along with any beneficial driver mutation.

In addition to the strong dependence of the macroscopic DFE on environment, it appears
that the fitness effects of individual mutations can also change radically by environment.
Strikingly, in the set of considered environments, conditional non-neutrality and sign-flipping
appear to occur across all three genetic backgrounds (Figure 2C). The majority of knockouts
are non-neutral in at least one measured environment; just about ∼20% of knockouts are
called as neutral across all environments. Very few mutations are unconditionally beneficial or
deleterious across all environments, and many more mutations flip signs across environments,
suggesting the presence of widespread trade-offs between adapting to different components
of an environment. The ubiquitous presence of sign-flipping also suggests that subtle changes
to environmental conditions–by changes to community composition or niche openness via
adaptation–could meaningfully affect evolutionary outcomes by changing which mutations
are likely to establish. The presence of sign-flipping still holds if we reduce the p-value
cutoff from 0.05 to 10−3 or 10−5 to determine non-neutrality (Figure S8), or only consider
genes with | s |> 1% or | s |> 2% as non-neutral (Figure S9), although more genes are
called as neutral, as would be expected. However, it is important to note that we only
considered genes to be non-neutral if their fitness was significantly different from 0; thus,
it is likely that some knockouts were incorrectly called as neutral, especially if their fitness
effect is small. Additionally, we have only measured a relatively small set of closely related
environments “nearby” the LTEE environment, so we might expect that if we measure fitness
in a sufficiently large number of environments, many more genes would be non-neutral in at
least one.

By computing the correlation of mutational fitness effects across environments (weighted
by measurement error), we can obtain a measure of the functional similarity of environments,
which we can also use to cluster said environments (Figure 3A). As a first observation and
check, it is reassuring to see the clustering of quasi-replicate experiments, i.e. experiments
with relatively minor differences in the experimental set-up and performed on different days–
Eco Eq 1/2, S in maj 1/2/3 (L), and Mono 1/2 (REL606) (see methods section ). However,
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the correlations between the quasi-replicates are lower than we see for replicate experiments
that we did at the same time–this could indicate either that some fitness measurements are
sensitive to the small experimental differences (size of flasks, whether libraries are cocultured
or not, etc.), or simply performing the experiments on different days with different environ-
mental fluctuations leads to deviations in measured fitness, as is perhaps the case in other
systems [37]. The latter hypothesis is further supported by the fact that two experiments
were in fact performed at the same time (S in maj 2 and 3), and had among the highest
correlation of all quasi-replicates.

Otherwise, there are still some interesting patterns that we can pick out by looking at
correlations across environments. For example, it looks like the environments related to the
putative ecotype niches–glucose and acetate exponential growth in L and S respectively–
cluster with conditions where the ecotype is in the minority. On the other hand, the
monoculture experiment in S clusters with glucose exponential phase. Also, in REL606 and
L, the acetate experiment is the outgroup compared to all the other environments, and
almost completely uncorrelated with fitness in glucose exponential phase, but most corre-
lated with the 1:10 dilution condition. In S, this is not the case, and acetate fitness is least
correlated with 1:10 dilution fitness. This may indicate that stationary phase in REL606 and
L may have much more acetate with which to grow on compared to S, and adaptation to
acetate may involve tradeoffs with adaptation to glucose, at least in REL606 and L. We also
performed a principal components analysis on our data, using (normalized) fitness effects as
features (Figure 3B). We see that L experiments cluster separately from the S and REL606
experiments, with the exception of the acetate exponential phase condition. This may be
surprising, given that S was thought to have diversified from an L-like common ancestor [46].
Otherwise, the PCA largely reproduces the insights from the previous correlation clustering
analysis.

Correlations between genes across environments

To explore the nature of the strong background dependence that we observed, we sought
to understand which genes are correlated with each other across environments, with the
intuition that genes that perform the same function should change their fitness effects across
environments in similar ways. For example, the sufABCDSE operon encodes proteins that
help to assemble iron-sulfur clusters [56], and they all have correlated knockout fitness effects
across environments in all three genetic backgrounds (Figure S11A)–as they should, if the
knockouts all have very similar metabolic/ physiological consequences. However, other gene
sets are only correlated in a subset of backgrounds. Most genes in the fecABCDE operon are
correlated with each other in all backgrounds except for fecA, which is well correlated with
the others in REL606, less correlated in S, and uncorrelated with the others in L (Figure
4A). Similarly, the genes in the proVWX operon are almost perfectly correlated, except
one condition where proV has a ∼7% higher fitness than the other two knockouts (Figure
S11B). We can also look at the fitness effects of a subset of knockouts that are beneficial
at least once for every genetic background, across environments (Figure S12). We see that
subsets of genes that are sometimes beneficial on a background are positively correlated with
each other, e.g. pykF/cyoA in REL606 and ptsP/mrcA/gppA in 6.5k L, perhaps suggesting
that the knockouts have common functional effects. These correlations often break when the
mutations appear on different genetic backgrounds, e.g. pykF/cyoA are no longer correlated
on (at least) the 6.5k L background, and ptsP/mrcA/gppA are no longer correlated on the
6.5k S background, while ptsP/mrcA actually appear negatively correlated on the REL606
background. Together, these examples suggest that correlations between knockout fitness
effects may change in idiosyncratic ways across genetic backgrounds.

We systematically quantified the pairwise correlation of knockout fitness across
environments–termed “cofitness”, previously defined in [41]–where we used the weighted
pearson’s correlation coefficient to account for differences in measurement error across envi-
ronments. We computed the cofitness of all pairs of genes (excluding those called as neutral
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Fig. 3 Similarity of fitness effects between environments. (A) Clustering environments by using fitness effect correlation
as a measure of similarity reveals which environments are the most functionally alike. For example, environments related to the
putative ecotype niches–exponential acetate growth and glucose growth, for S and L respectively–cluster with conditions where
the ecotype is in the minority. The red and yellow dots indicate that the branch has ≥ 90% or ≥ 70% support respectively,
computed via bootstrapping. (B) Principal components analysis (PCA) of our data, using (normalized) fitness effects as features
(% variance). We see that L experiments cluster separately from the S and REL606 experiments, with the exception of the
acetate exponential phase condition.

across all environments) across the REL606, S and L libraries, as well as a null cofitness dis-
tribution for each pair to determine if the two genes are significantly correlated; the set of all
significant gene-gene correlations determine the edges in the cofitness networks (see meth-
ods section ). We explored the structure of the resulting cofitness networks via clustering
[55] (see methods section ), where we found sets of communities for all three libraries with
modularity > 0, indicating that there are more edges within each community than between
communities (Figure 4B) [57]. We performed a number of controls to ensure that our results
weren’t driven by measurement noise or technical effects of clustering; see methods section
for more information.

The presence of strong communities suggests that most knockouts are significantly corre-
lated with others, potentially pointing to similar functional effects driving changes in fitness.
We then wanted to compare how these clusters differ between the different genetic back-
grounds, with the idea that how and if clusters change should reveal information on how
the effective functions of genes differ across genetic backgrounds. Surprisingly, we find that
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Fig. 4 Correlations between genes across environments. We observed that many pairs of genes have correlated fitness
effects across environments, for example (A) most genes of the fecABCDE operon. However, fecA is correlated with the other
genes to varying degrees, depending on the genetic background. (B) We computed the pairwise correlation of fitness effects
(cofitness) for all pairs of genes, and then clustered genes with a community detection algorithm [55].We then rearranged
the cofitness matrices by reordering genes based on ”optimal” clustering of other genetic backgrounds. For each column, we
ordered the genes based on the clustering of a given genetic background. For each row, we used the cofitness matrix for a given
background. It is apparent that replotting the cofitness matrix using another strain’s clustering does not produce noticeable
structure. (C, D) Cluster reassortment is not entirely random–pairs of genes (C) in the same operon and (D) that strongly
interact with each other (high EcoliNet score), tend to stay in the same clusters across genetic backgrounds. In contrast, the
cofitness of pairs of genes that are not in those categories appear to change in a way that is indistinguishable from random
reassortment. In panels C and D, the abbreviations R, S, and L refer to REL606, and 6.5k S/L, respectively. Error bars represent
standard errors.

gene clusters are not well preserved across genetic backgrounds, and in fact, genes are typ-
ically seemingly randomly reassorted between genetic backgrounds (Figures 4B, S17). In
further support of correlations breaking between backgrounds, if we recompute the cofitness
networks using only one of the biological replicates per experiment, we see that cofitness
networks are more similar within genetic backgrounds compared to between backgrounds
(Figure S15). There are a couple clusters that show non-random sampling across genetic
background, however, the deviation from random sampling is mostly small, with one notice-
able exception–clusters 5, 3, and 1 in REL606, S, and L, respectively, all seem to share a larger
than random number of genes with each other (p < 10−4 for all clusters). From a Gene Ontol-
ogy enrichment analysis, genes that are associated with biofilm formation (GO:0043708),
adhesion (GO:0022610), and pilus organization (GO:0043711) are over-represented in these
clusters, along with genes involved in organonitrogen compound biosynthesis (GO:1901566),
although to a weaker extent (Figure S18). This suggests that there is at least one (large)
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functionally related group of genes that stay correlated across genetic backgrounds, implying
that their fitness-determining effects are mostly the same, regardless of genetic background.

We wanted to know why other functional groups of genes do not stay correlated with
each other, and if there was any structure hiding in the seeming randomness of cluster
reassortment. A simple first test could ask if genes in the same operon are more likely to
stay correlated with each other across backgrounds, which is the case for several of our
aforementioned examples. This indeed appears to be the case across all genetic backgrounds
(Figure 4C). However, genes often share functions with other genes outside their operons,
so we turned to investigating the relationship between the cofitness and genetic networks.
We used EcoliNet as a representation of the E. coli genetic network, as it attempts to
capture all interactions between genes by integrating various data-types, regardless of the
mechanism (transcriptional, protein-protein, etc), and assigns a score to each interaction that
effectively represents the strength of the interaction [58]. We then computed the probability
that two genes are in the same community in one genetic background, given that they’re
together in another background, as a function of EcoliNet score (Figures 4D). We see that
gene pairs that are predicted to strongly interact (high EcoliNet score) are much more likely
to be correlated across genetic backgrounds. We can also see these same patterns without
referencing any cluster labels–if we look at the correlation between all cofitness pairs across
genetic backgrounds, pairs that are in the same operon (Figure S19A) and those with the
highest EcoliNet score (Figure S19B) give the highest correlation. It also appears that the
shortest distance between two nodes in the EcoliNet network (Figure S21) also predicts if
the two genes will stay correlated across genetic background, albeit the effect is weaker. We
should note that it is perhaps the case that there are weaker consistencies across backgrounds
for non-operon/non-interacting genes pairs that we don’t have the statistical power to detect.
Still, these analyses suggest that evolution significantly changes which functional effects of
genes are important for determining fitness, such that the cofitness of genes pairs is much
more preserved across genetic background for the most strongly interacting genes, but not
as much for other gene pairs.

Fitness effects are correlated with evolutionary outcomes

We sought to explore if the knockout fitness effects that we measured were correlated with
evolutionary outcomes in the LTEE, i.e. establishment of mutations and changes in gene
expression. So, we first investigated if genes with non-neutral knockout fitness were more or
less likely to be mutated and rise to a sufficiently high frequency in the population. Using
the clonal sequencing data from Tenaillon et al. (2016) [59] and Plucain et al. (2014) [46],
we identified genes that mutated between selected LTEE time-points, and ran a logistic
model with fitness effect as the predictor and mutated status as the response variable (see
methods section ), separately for beneficial (Figures 5A) and deleterious genes (S22A). We
used three sequenced clones (one available for each time point) for both S and L, while we
used all clones from all non-mutator populations (at a given time point) for REL606. We
used the appearance of a mutation (excluding synonymous SNPs) within a gene as a proxy
for establishment.

Fitness of beneficial knockouts in the 1:10 dilution condition and monoculture (LTEE
condition) in the REL606 background is strongly correlated with which mutations estab-
lish from 0-5k generations, while fitness in acetate exponential phase is only correlated with
establishment later in the evolution (difference in slopes between 0-5k and 5-20k is significant
at p < 0.05 via permutation test for 1:10 dilution and acetate conditions, not for mono-
culture or glucose conditions). This is potentially a signal that the targets of selection are
shifting over time–REL606 may initially adapt via lag phase shortening/stationary phase
survival, while only later adapting via increased acetate growth rate. This could happen, for
example, by either clonal interference favoring the highest-effect mutations, or due to global
epistatic effects [47]. The former hypothesis is supported by the observation that three muta-
tions appear in genes with beneficial acetate knockouts at 2k generations, but they then
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Fig. 5 Fitness effects of beneficial genes are correlated with evolutionary outcomes. We explored if genes with
beneficial knockout fitness effects are correlated with (A) establishment of a mutation in a gene, and (B) changes in gene
expression over evolutionary time, relative to neutral knockouts. (A) Slopes from logistic models, with presence of a mutation
in a gene as the response variable. The fitness effects were normalized by the median beneficial fitness effect, so that coefficients
can be interpreted as the average difference in log-odds establishment between neutral knockouts and the ’typical’ beneficial
knockout. REL606 beneficial knockout fitness is positively correlated with gene establishment probability for most environments,
but in different time intervals, potentially pointing to shifting targets of selection. Error bars represent standard errors. (B) We
compared the distributions of log-fold change in expression between genes with neutral knockout fitness effects, less beneficial
effects (lower 50%), and more beneficial effects (upper 50%). We used the change in expression from 0k gens (REL606) to 40k
gens (L), from 6.5k gens (S) to 40k gens (S), and from 6.5k gens (L) to 40k gens (L) for the REL606, 6.5k S, and 6.5k L panels,
respectively. The expression change between ancestor and 40k L (left) is nearly identical to the expression change between
ancestor and 40k S as well as other timepoints (Figure ??). Beneficial knockout fitness in REL606 is generally positively correlated
with increasing gene expression over time. In S and L, fitness in several environments–including the ecological equilibrium and
acetate and glucose growth–is correlated with decreasing gene expression. Asterisks denote coefficients/comparisons that are
significantly different from 0 (FDR correction; * p < 0.05, ** p < 0.01, *** p < 0.001).

disappeared by 5k generations, potentially indicating that they were out-competed by other
beneficial mutations (Figure S24). There is only one S/L condition that shows a significant
difference in mutation establishment probability between beneficial and neutral mutations–
genes with beneficial fitness in acetate are less likely to mutate compared to neutrals in S.
However, changes in gene expression suggest adaptation to acetate may be occuring through
indirect routes in S, as detailed below. However, we expect our power to detect correlations
between mutational fitness and mutation establishment to be lower for S and L. They have a
∼100x higher mutation rate than REL606 [48], implying that the ratio of neutral hitchhiking
to beneficial driver mutations is higher as well.

We also investigated if fitness effects are correlated with changes in gene expression, using
microarray data from Le Gac et al. 2012 [16], which measured gene expression in REL606,
and S/L at 6.5k, 17k, and 40k generations. These measurements serve as a distinct readout of
evolutionary change compared to genomic mutational dynamics, because even if a gene is not
directly mutated, gene expression can still change through indirect genetic interactions. Thus,
gene expression measurements allow us to probe the effects of the cumulative mutations fixed
by evolution. We compared the distribution of log-fold expression changes over approximately
40k generations for genes with neutral and non-neutral knockout fitness effects, separately
for beneficial (Figure 5B) and deleterious genes (Figure S22B). We see that the median
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change in gene expression is significantly different between neutral and beneficial genes across
several conditions, but generally only for the upper 50% of beneficial genes. This indicates
that the magnitude of the knockout fitness effect is important for determining how much the
median gene changes in expression. We can get more power to detect relationships between
the magnitude of the knockout fitness effect and log-fold change in gene expression by fitting
linear models to the data (Figure S25). The same patterns hold if we restrict our analysis to
highly expressed genes (Figure S26).

In REL606, genes with beneficial knockout fitness effects tend to increase in expression
(relative to neutral genes) over evolutionary time; this is perhaps surprising, because we
would expect selection to decrease gene expression if knocking out that gene is beneficial.
We saw the same pattern with deleterious genes (Figure S22B). One possibility to explain
tvery, the expression of growth-relevant genes is increased by some mutation with a highly
pleiotropic effect (e.g. in a master regulator), whose overall benefits outweigh the costs of
raising the expression of beneficial knockout genes.

In contrast, in S and L, there are a couple of environments where gene expression sig-
nificantly decreases over evolutionary time for genes with beneficial knockout fitness effects
(compared to neutrals). These conditions include environments related to the putative eco-
type niches–acetate and glucose exponential growth in S and L respectively. On the other
hand, while fitness in the ecological equilibrium is associated with decreased gene expression,
this is not the case for fitness in monoculture and the 1:10 dilution environments, indicating
again that the latter environments are less relevant for evolution in the LTEE environment.
Despite the fact that acetate-adapting mutations are not establishing on the S background
(at least initially), gene expression still decreases by 40k generations, perhaps indicating that
adaptation to acetate is occurring through routes other than directly mutating genes with
beneficial knockout effects.

We also saw that S and L beneficial knockout fitness in glucose exponential phase is pos-
itively correlated with an increase in gene expression from 0-6.5k (Figure S25). On average,
those same genes decrease in relative gene expression when evolving on the L background,
whereas they do not change on the S background. This set of data could indicate that from
0-6.5k many genes increased in gene expression via adaptive evolution that were actively
unhelpful for glucose growth, either because of transcriptomic misallocation or other types
of antagonistic pleiotropy, such that knocking them out conferred a benefit. Upon diversifi-
cation of S and L, the direction of gene expression change appears to switch for L, perhaps
suggesting that L is evolving towards a more glucose growth-optimized transcriptome, while
S is not. This set of observations provides a possible example of how diversification changes
the selection pressures acting on organisms.

Interestingly, deleterious knockout fitness effects across all environments in S/L tend to
be associated with an increase in gene expression between 0 and 6.5k generations (Figure
S22B). This observation may provide a partial explanation for why some knockouts become
deleterious in S/L when they were neutral in REL606–6.5k generations of evolution caused
the genes to suddenly become important, so they became more costly to knock out. Another,
unrelated observation could help us to understand why some genes have deleterious knockout
fitness effects–it appears that deleterious genes are more highly connected in the E. coli
gene interaction network (EcoliNet) compared to neutrals (on average), indicating that some
genes may be deleterious because when they’re knockout out, they also affect the functioning
of many other genes (Figure S27).

Discussion

In order to be able to predict how evolution will proceed in community contexts, we need
to know the distribution of mutational fitness effects, along with how it depends on genetic
background and ecological conditions. To that end, we measured the genome-wide knockout
fitness effects of a recently diversified ecosystem, S and L, and their ancestor, REL606.
Despite the fact that the fitness effects of individual mutations appear to be highly dependent
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on both genetic background and environment (strong (G ×) G × E effects), we saw consistent
statistical patterns of variation across both axes, namely global diminishing returns epistasis
and a negative frequency-fitness correlation (in S and L). In contrast, previous studies that
observed diminishing returns epistasis saw both the mean of the DFE as well as the fitness
effects of individual mutations decrease as a function of background fitness [51, 52]; this
discrepancy may indicate that uniform negative epistasis of individual mutations may only
be relevant for the first handful of mutational steps, before yielding to more complex and
idiosyncratic forms of epistasis. While the underlying mechanism that generates this form
of global epistasis is still unclear, our observations are consistent with recent theoretical [60]
and experimental work [61] that suggest that global diminishing returns epistasis may arise
as a general consequence of idiosyncratic epistasis.

Even though S and L only diverged ∼500 generations ago, the mixing ratio of the two eco-
types strongly affects the DFEs, suggesting that strong eco-evolutionary coupling is possible
even in closely related strains. This would imply that selective pressures depend strongly on
the community mixture, which changes significantly and relatively rapidly due to evolution
[42, 47]. The sensitivity of knockout fitness effects to relatively minor variations on the LTEE
environment, such as changing niche availability or ecosystem composition, may be evolu-
tionarily significant–we know that the growth traits of S and L also change quite drastically
during their coevolution [16, 44], which along with changes to ecosystem composition, will
change the environment, and thus change which mutations are favored by selection. One spe-
cific hypothesis that emerges from our data is that selective forces may be more similar to
environments related to the putative ecotype niches when the ecotype is rare, for both S and
L. This is supported by both clustering environments by fitness effect correlations, and which
environments were correlated with changes in gene expression. It would follow that selection
could favor different degrees of specialization within the current niche as the ecotype frequen-
cies and growth traits change due to evolution. Regardless of the specific implementation,
the process where (i) mutations change growth traits and ecosystem composition, which (ii)
change ecological conditions, which in turn (iii) change the mutational fitness effects of both
ecotypes, could represent an important and pervasive type of eco-evolutionary feedback.

We aimed to better understand the background and environment dependence of muta-
tional fitness effects by systematically studying fitness correlations across environments. Our
intuition was that knocking out genes with similar functions should have similar effects across
environments. We saw that, by and large, different sets of genes were correlated with each
other across genetic backgrounds; only strongly interacting pairs of genes were likely to be
correlated across all backgrounds. These widespread changes could be caused by a number
of different evolutionary phenomena–for example, evolution could have induced widespread
changes in the functional effects of genes or which functional effects matter for fitness. Addi-
tionally, inasmuch as fitness in an environment is a reflection of phenotype–e.g. fitness in
exponential phase is likely a simple function of exponential growth rate–the extensive changes
in fitness across environments could be interpreted as support for ubiquitous pleiotropic
effects of knockout mutations.

We investigated if our measured knockout fitness effects were correlated with evolutionary
outcomes, i.e. mutation establishment and gene expression changes. We found significant
correlations across several, but not all environments, leading to hypotheses on how selection
has acted on LTEE populations. From correlations of knockout fitness effects with mutation
establishment, we found potential signals of shifting selection over time in REL606. Changes
in gene expression provide a distinct window into evolutionary change, as expression can
change through genetic interactions, even if a gene is not directly mutated. Among other
patterns, the fitness correlations with gene expression changes potentially reveal how the
traits under selection changed from pre- to post-diversification, and how they are different
between S and L. Pinpointing the precise causes of these patterns could be a fruitful avenue
for future work. Overall, the connections between evolutionary changes and knockout fitness
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effects demonstrates the utility of our approach to understand how adaptation happens in
the “natural” evolutionary context.

Ultimately, we would like to predict the outcomes of evolution in community contexts.
By showing how the distribution of invasion fitness effects changes as a result of genetic
background and ecological conditions, our dataset represents a major step forward in that
direction. The invasion fitness effects directly impact the establishment probability of a
beneficial mutation, as well as the mutant dynamics until it reaches a substantial proportion
of the population. The distribution of deleterious invasion fitness effects also controls other
relevant evolutionary phenomena, including the equilibrium reached by mutation-selection
balance, and the probability that a deleterious mutation will hitchhike on a beneficial mutant
(“genetic draft”). However, in principal, the fitness effect of a mutation could change as
it approaches fixation (within the ecotype) due to frequency-dependent effects. We are not
able to measure these effects with our experimental set-up, as our ability to measure fitness
effects in high-throughput requires that mutants remain rare. However, frequency-dependent
mutations could significantly alter expected evolutionary dynamics, so as such, measuring
such effects are a major direction for future work.

As previously mentioned, we only surveyed the fitness effects of knockout mutations,
which represent a subset of all mutations available to an organism. While it is possible that
other types of mutations could display different patterns, knockout mutations appear to be
prevalent and important for adaptation in the LTEE [47, 62], and our measured knockout
fitness effects are correlated with evolutionary outcomes. Additionally, we studied a relatively
simple ecosystem, consisting of just two recently diverged ecotypes; measuring the mutational
effects in more complicated ecosystems and how they change as a result of longer periods
of evolution is likely a fruitful future avenue of investigation. Overall, the methods and
results presented here pave the way for future studies investigating how mutational fitness
effects depend on eco-evolutionary processes, and how eco-evolutionary feedback arises from
changing fitness effects.

Methods

Barcoded transposon library construction

To construct the barcoded transposon libraries, we isolated subclones of REL606, REL11555
(6.5k S), and REL11556 (6.5k L), all gifts of Richard Lenski (Michigan State University).
Transposon mutagenesis was performed as previously described [40, 41] by mating each LTEE
clone with an E. coli WM3064 donor (Diaminopimelic acid [DAP] auxotroph and pir+) con-
taining previously described [40] randomly barcoded Tn5 plasmids with a kanamycin cassette
and an R6K origin of replication. The LTEE clones were grown in DM2000 (Davis Mini-
mal Media with 2000mg/L D-glucose), and the donor was grown in LB/Kan, all to mid-log
phase. After washing the cultures, each LTEE culture was then mixed with the donor in a 1:1
ratio, then placed on 0.45 µM nitrocellulose filters (Millipore cat. no. HAWP04700) on top
of a 1% agar plate with EZ-MOPS rich, defined media (Teknova cat. no. M2105) + 20mM
sodium pyruvate (’EZ-py’) + 0.3mM DAP. The rich media was chosen because it had a num-
ber of different carbon sources (glucose, amino acids, pyruvate) and sufficient amounts of all
other required macro/micronutrients, lessening the chances of substantial negative selection
in the growth media. After conjugation, the filters were picked up and placed in rich media;
subsequently, the resuspended cells were plated on EZ-py agar plates supplemented with 50
µg/mL kanamycin. After approximately 24hrs of growth at 37C, colonies were scraped up
and grown in EZ-py liquid media with 50 µg/mL kanamycin until OD∼1; we then saved the
cultures in several 10% glycerol stocks. Transposon insertion mapping (Tn-Seq) libaries were
prepared as previously described [40]; libraries were then sequenced on the Illumina HiSeq
4000 (150PE) at the Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley.
The resulting sequencing data was used to create a table relating each barcode to a genomic
insertion location, using a previously developed script (MapTnSeq.pl) [40].
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BarSeq experiments

Set-up of experiments

To start a BarSeq experiment, we first unfroze 1mL glycerol stock of the REL606, 6.5k S
and/or 6.5k L transposon libraries and transferred the entirety to 10mL EZ-py media (media
used for library construction) in 50mL glass erlenmeyer flasks, which were grown for 16-24hrs
at 37C, shaken at 120rpm. All cultures for all experiments were grown with the same shaker,
in the same 37C warm room. In several experiments where we measured fitness effects of 6.5k
S/L barcoded libraries at various ecotype frequencies, we also grew the wild type S/L with the
same media, under the same conditions. The next day, we washed the cultures by pelleting
via centrifugation for 3 minutes at 2500 xg, aspirating the supernatant, and resuspending in
DM0 (Davis Minimal Media without a carbon source) three times. After thoroughly vortexing
the cultures, we transferred them 1:1000 to the appropriate media in n flasks (see below)–
depending on the experiment, we used different numbers of flasks and different sizes, either
10mL media in 50mL glass flasks or 200mL media in 1L glass flasks (same ratios, scaled up).
We used multiple flasks and larger flasks to increase the total population size, decreasing
fluctuations due to genetic drift. We then performed two more transfers in the appropriate
conditions for the experiment to help physiologically adapt the cultures to the conditions.
If we were doing a coculture experiment, we would mix the cultures at the appropriate
frequencies during the second transfer. If we used multiple flasks in an experiment, we would
sample an equal amount of culture from each flask into a microcentrifuge or Falcon tube,
thoroughly mix the cultures, and redistribute among the same number of flasks with new
media–thus, the cultures distributed in multiple flasks were effectively all part of the same
population. After the third transfer, we would collect cells for day 0 of the experiment, and
use that culture to start two biological replicates that are independently propagated for the
remainder of the experiment. All cultures were grown at 37C, shaken at 120rpm. Cells were
harvested at defined time points by centrifugation at approximately 20,000xg for 10min of
∼60mL culture for all experiments except Ac Exp (10mL) and Mono 2 (30mL), pooling
culture from all flasks in an experiment/replicate at equal ratios. Subsequently, the pellets
were stored at -80C until the experiment was finished.

The number of generations does not depend on the growth rate, only on the initial and
final abundance of the cultures, # generations = log2(nf/n0). If the final density of the
culture is approximately the same across transfers, as is the case in all our experiments
except the “exponential phase” experiments, then the number of generations only depends
on the dilution rate, # generations = log2 (dilution rate).

Conditions for each experiment

Monoculture

For the Mono (1) experiments, we propagated the libraries alone in DM25 (Davis Minimal
Media with 25mg/L D-glucose) in 5x 50mL flasks over the course of 4 days. For the REL606
Mono 2 experiment, we used 3x 50mL flasks over the course of 8 days, with four biological
replicates in DM25. We transferred cultures 1:100 every 24hrs, and took the number of
generations per transfer as log2 100.

Coculture experiments

As mentioned above, we started wildtype cultures of 6.5k S and/or L clones (same clones
used to make the RB-Tn libraries) at the same time and with the same procedure as the
library cultures (Table 1), and mixing the cultures at the appropriate frequencies at the
second “adaptation” serial transfer. We measured the ecological equilibrium frequency to be
approximately 15 − 20% S (Figure S4), so we ensured that the S frequency was started in
that range for the “ecological equilibrium” experiments. We started the “S/L in majority”
experiments such that the minority ecotype was > 10% of the total population (Figure S3).
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We used DM25 media and propagated the cultures for 4 days, except for S in maj 2/3
where we used 6 days, transferring 1:100 every 24hrs (log2 100 generations) for all coculture
experiments. For the Eco Eq 1 experiment, we mixed both S and L libraries in the same
cultures along with wildtype L, using 4x 1L flasks. For the Eco Eq 2 experiments, S and L
libraries were in separate cultures, both with wildtype S and L set at the appropriate fre-
quency, with RB-Tn library frequency around 5−10% (Figure S3); cultures were propagated
in 10x 50mL flasks. For the L in Maj and S in Maj 1 experiments, we mixed wt L + S library
and wt S + L library, respectively; cultures were propagated in 10x 50mL flasks. For the S
in maj 2/3 experiments, we mixed wt S with S+L and L libraries respectively; cultures were
propagated in 4x 1L flasks.

We measured the frequency of S/L in the population by plating and counting colonies
at the end of a transfer on TM plates (tetrazolium maltose; 10g/L tryptone [Sigma T7293],
1g/L yeast extract [Sigma Y1625], 5g/L NaCl, 16g/L agar, 10g/L maltose, 1mL/L 5% TTC
[Sigma T8877]), where S appears as red colonies and L appears as white colonies, previously
used in [46]. We could also measure the frequency of cells from RB-Tn libraries by plating
the cultures on LB/Kanamycin plates, as the transposon has a kanamycin resistance cassette
(Figure S3). We diluted all cultures (at the end of a cycle) in DM0. Dilution rates varied over
experiments: in Eco Eq 1, we diluted cultures by a factor of 2 ∗ 10−5mL−1 to plate on both
TM and LB/Kan plates, in Eco Eq 2 we used dilution rates of 10−5mL−1 and 10−4mL−1 to
plate on TM and LB/Kan plates respectively, in the L in Maj and S in Maj 1 experiments
we used a 2 ∗ 10−5mL−1 dilution rate to plate on just TM plates, and in the S in maj 2/3
experiments we used dilution rates of 2 ∗ 10−5mL−1 and 2 ∗ 10−4mL−1 to plate on TM and
LB/Kan plates respectively.

1:10 dilution

We propagated cultures with a 1:10 dilution, instead of the standard LTEE dilution rate
of 1:100, to investigate the effect of a lengthened stationary phase relative to exponential
phase. We used DM27.8 media (Davis Minimal Media with 27.8mg/L D-glucose), because
the concentration of glucose would fall to 25mg/L after dilution. We used 1x 1L flask for
each library culture (180mL media + 20mL culture), propagating the cultures for 8 days
every 24hrs with log2 10 generations per day. We pelleted and saved cultures every other day
(0,2,4,6,8).

Acetate exponential phase

We sought to measure knockout fitness effects when the RB-Tn libraries were kept in acetate
exponential phase, where we used DM2000-acetate (Davis Minimal Media with 2000mg/L
Sodium Acetate) and grew the cultures in 1x 50mL flask. We first measured exponential
growth rates for wt REL606, L, and S clones in DM2000-acetate, which were approximately
0.08/hr, 0.12/hr, and 0.18/hr respectively. We also observed that all cultures were still in
mid-exponential phase at OD∼0.6. So, if we started at initial OD0 of 0.09, 0.03, 0.008 for
REL606, L, and S respectively, the cultures would end up at OD∼0.6 after 24 hours. Thus,
for each transfer, we would measure the actual OD for each culture (after 24hrs of growth)
and transfer the appropriate volume of old culture to new 10mL DM2000-acetate such that
the final concentration was the appropriate OD0. We recorded the number of generations for
each cycle as log2ODf/OD0. Due to the variable number of generations per transfer for each
genetic background (owing to different growth rates), we collected samples at days 0,2,4,6,8
for REL606; 0,1,2,4,5,6 for L; 0,1,2,3,4,5 for S.

Glucose exponential phase

We measured knockout fitness effects in glucose exponential phase with DM25 media in 1x 1L
flask. We measured the length of DM25 exponential phase to be about 8.25 hrs for REL606,
and 5.25 hrs for both S and L after a 1:100 dilution into new media. For the adaptation phase,
we did two full 24hr cycles of growth in DM25, followed by one cycle of growth for ∼8hrs and
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∼5hrs for REL606 and S/L, respectively. After the adaptation phase, we transferred cultures
1:100 into new DM25 media (warmed to 37C) four times, after 7.5-8hrs for REL606 and 4.5-
5hrs for S and L. As DM25 media is quite dilute and thus OD measurements are relatively
inaccurate, we estimated the number of cells that were transferred by plating the cultures on
LB plates at a 2 ∗ 10−5mL−1 dilution rate and counting colonies, calculating the number of
generations for that transfer as log2 100CFUf/CFU0. We only ended up including the first
two transfers of the REL606 library experiment (time points 0,1,2), as it was apparent from
CFUs that the third transfer resulted in a large bottleneck owing to a smaller than expected
population size before the transfer, likely because of slower than expected growth.

DNA extraction, PCR, Sequencing

After the experiment was finished, pellets were pulled from the -80C freezer and genomic
DNA was extracted with the Qiagen DNeasy tissue and blood extraction kit (cat no. 69504),
eluted in double distilled water with typical yields around 50ng/µL. DNA barcodes were
amplified from gDNA samples via PCR with Q5 Hot Start Polymerase (NEB, cat. no.
M0493S); 50ul reactions were composed of 5µL PCR primers, 5µL gDNA, 10µL 5x buffer,
10µL GC enhancer, 1µL dNTPs, 0.5µL Q5 polymerase, 18.5µL water. We used custom
dual-indexed primers that contained binding sites up- and down-stream of the barcode
region, along with the necessary Illumina read/index binding sites; fwd primer (AATGAT
ACGGCG ACCACC GAGATC TACACT CTTTCC CTACAC GACGCT CTTCCG ATCT
NnXXXXXX GTCGAC CTGCAG CGTACG) where X stands for the custom forward
6bp index, and Nn is 1-4 random nucleotides, varying with the primer pair; rev primer
(CAAGCA GAAGAC GGCATA CGAGAT XXXXXX GTGACT GGAGTT CAGACG
TGTGCT CTTCCG ATCTGA TGTCCA CGAGGT CTCT) where X stands for standard
Illumina 6bp IT index. We used a different primer pair for each gDNA sample from a different
experiment/replicate/time point, so that we could demultiplex the samples after sequenc-
ing. The PCR program was 4min at 95C, [30sec at 95C, 30sec at 55C, 30sec at 72C] x25
cycles, 5min at 72C. We verified that we had the correct PCR products via agarose gel elec-
tophoresis. All PCR reactions were then pooled and cleaned with the Zymo DNA Clean and
Concentrator kit (cat. no. D4013), and eluted in double distilled water. The final pooled
sample was then sequenced on an Illumina HiSeq 4000 (50SR) at the Vincent J. Coates
Genomics Sequencing Laboratory at UC Berkeley.

Fitness inference pipeline

Read counting and error correction

We first processed the raw (demultiplexed) sequencing reads using a previously developed
Perl script [40, 41] that pulls out the barcode sequence by trimming regions corresponding to
the sequencing primers and regions up/downstream of the barcode, as well as discarding reads
that do not match the secondary sequencing index or have insufficiently high quality scores
(MultiCodes.pl). Then, counts of unique barcodes are tabulated to get a table corresponding
barcode sequence to counts.

However, due to errors that arise during PCR and sequencing, some of the barcode
reads acquire mutations that would prevent them from directly mapping to a transposon
insertion location. Thus, we must correct for these sequencing errors by matching mutated
barcodes to their parent, and merging the read counts together. The aforementioned Perl
script identifies off-by-one barcode pairs; if the minority barcode (the one with fewer counts)
unambiguously maps to a single majority barcode, the barcode counts are merged. To detect
larger mutational distances between the derived and parent barcodes, we computed the
Levenshtein (edit) distance between pairs of barcodes (as implemented in the Python C
package Levenshtein [63]). Barcode read counts were merged if the edit distance was 4 or
less, and if the minority barcode only mapped to one majority barcode at the minimum edit
distance.
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We then used previously acquired TnSeq data that maps the barcode identity to its
transposon insertion location in order to identify which gene (if any) the barcoded transposon
disrupted. Transposons that hit the first or last 5% of the gene sequence were excluded, as it
is possible that these insertions do not result in disruption of production of the gene product.

To ensure that barcodes at least begin their trajectories at a sufficiently high read count,
if there were barcodes within a gene with low initial counts, r0,i < 80, we summed the lowest
(initial) count barcode into the next-lowest count barcode until mini r0,i ≥ 80. We restricted
our analysis to genes that had ≥ 4 barcodes, allowing us to gain confidence that the measured
knockout fitness is not dependent on rare fluctuations or secondary mutations. Additionally,
some barcodes went extinct during the course of the experiment, either due to genetic drift
or selection; if a barcode went extinct, i.e. has 0 counts from text to T , we would trim all time
points after, but not including, text. We eliminated barcodes that go extinct after just one
time point. Statistics of the final constructed RB-TnSeq libraries are summarized in Table 2.

Library # genes hit ≥ 3 times # barcodes % bc reads mapped
REL606 3,401 609,854 84%
6.5k S 3,382 522,253 84%
6.5k L 2,877 157,260 89%

Table 2 Summary of statistics of constructed RB-TnSeq libraries.

Probabilistic model of read count trajectories and fitness inference

To infer the fitness of individual genotypes from BarSeq count data, we must first understand
what frequency trajectories we would expect for a given fitness, and how technical noise
(e.g. from sample preparation and sequencing) and genetic drift affect those trajectories.
Consistent with previous work [30, 31, 35], we construct a maximum-likelihood estimator to
infer fitness from trajectories of barcode read counts, using a deterministic approximation of
frequency dynamics.

On average, when the frequency of a lineage is sufficiently small ft,i ≪ 1, the frequency
dynamics will exponentially grow/decay according to the genotype fitness, s, as well as the
mean fitness of the population, x̄t (see section ),

⟨ft,i⟩ = f0,ie
(s−x̄t)t

We measured the time in generations, which we measured for each time point in each
experiment (see section ). The reason we used a timescale of 1/generation instead of e.g.
1/cycle was to be able to better compare the magnitude of effects across experiments–e.g.
the two exponential phase experiments had varying numbers of generations from cycle-to-
cycle and between strains (due to differences in exponential growth rates). However, the
fitness effects can be scaled by a factor of approximately 6.64 to get per-cycle fitness effects,
at least in the 1:100 serial dilution experiments. The number of generations does not depend
on the growth rate, only on the initial and final abundance of the cultures, # generations
= log2(nf/n0). If the final density of the culture is approximately the same across transfers,
as is the case in our experiments, then the number of generations only depends on the dilution
rate, # generations = log2(dilution rate). This is the typical manner in which the number
of generations is calculated in both the LTEE and other serial transfer-based evolution
experiments.

The two sources of noise–genetic drift and measurement noise–both arise from counting
processes, so the combined noise will follow var (ft,i) ∝ ⟨ft,i⟩ (see section ). To account for
the inherent discreteness of counting sequencing reads–especially important to accurately
model deleterious genotypes that quickly drop to low frequencies–we modeled the observed
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counts at time t (always measured in generations) of barcode i inserted in a given gene, rt,i,
as a negative binomial random variable,

rt,i | s, f0,i ∼ NB (µt,i, ct) (1)

⟨rt,i⟩ = µt,i (2)

var (rt,i) = ct⟨rt,i⟩ (3)

µt,i = Rtf0,ie
(s−x̄t)t (4)

Where Rt is the total number of counts, and ct is the measured variance parameter.
The final likelihood for the fitness, s, of a given gene knockout is obtained by numerically
integrating over f0,i (’integrated likelihood’ with a flat prior)–incorporating the uncertainty
in the intercept nuisance parameters into the fitness estimate and turning the problem into
a one-dimensional maximum likelihood–and then combining the likelihoods of all barcodes
inserted into the gene,

P (ri | s, f0,i) =
∏
t

Γ
(
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(ct − 1)rt,i

c
rt,i+

µt,i
ct−1

t

(5)

L(s | r) =
∏
i

∫
df0,i P (ri | s, f0,i) (6)

The point estimate of the knockout fitness, ŝ, is then numerically computed as the maxi-
mum likelihood, and the standard error is approximated as the inverse, square-root observed
information,

ŝ = argmax
s

logL(s | r) (7)

std ŝ = 1/
√

−∂2s logL(s | r) |ŝ (8)

We ran biological replicates for all experiments reported here; to obtain combined
genotype fitness estimates across replicates we simply multiplied the likelihoods together,
repeating the maximum likelihood procedure.

As the majority of barcoded knockouts are neutral or nearly so (s ≈ 0), we must have a
method to distinguish between likely neutral and selected knockout mutations; this can be
accomplished by computing a p-value under the null hypothesis s = 0. For ease of computa-
tion and generality we compute the p-value as the posterior probability that the likelihood
ratio between null and alternative hypotheses is greater than 1, i.e. the probability that the
data more strongly support the null hypothesis over the alternative,

p = Ps|r

(
L(0 | r)
L(s | r)

> 1

)
P (s | r) ∝ L(s | r)

This convenient definition has been shown to be equivalent to the frequentist definition
of the p-value using a likelihood ratio test statistic (if the distribution is invariant under
transformation) [64, 65], and does not require asymptotic approximations.
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In practice, this p-value can be calculated by first, finely discretizing the likelihood curve
along s and normalizing it to get the posterior,

Pj(sj | r) =
L(sj | r)∑
j L(sj | r)

(9)

Then, calculating the log-likelihood ratio along all discretized s values,

LLRj = logL(0 | r)− logL(sj | r) (10)

And finally, summing to get the posterior probability that the data supports the null
hypothesis more than the alternative, where I[·] is the indicator function,

p =
∑
j

I[LLRj > 0]Pj(sj | r)

We used the standard method of Benjamini & Hochberg to control for the false discovery
rate at α = 0.05.

Estimation of error parameters

In order to estimate fitness of individual genotypes from BarSeq data, we must first obtain
an estimate of the error parameters for each time point in the experiments. There are two
distinct sources of noise in our BarSeq measurements–measurement (technical) noise, arising
from library preparation and sequencing error, which is uncorrelated in time, and variance
due to genetic drift, which accumulates over time. Both sources of noise are count processes,
where the variance of barcode population frequencies will be proportional to the mean,

⟨ft,i⟩ =
⟨rt,i⟩
Rt

∝ var (ft,i)

In order to eliminate the dependence of the variance on the mean, we apply a variance-
stabilizing transformation,

ϕt,i ≡
√
ft,i

The variance of barcode frequencies of neutral lineages over two time points will then
depend on the variance that has accumulated due to genetic drift, as well as the technical
noise at the sampled time points. If there are sufficiently many read counts/individuals such
that the central limit theorem applies, the variances will simply be additive,

κj,k ≡ var (ϕi,j − ϕi,k) = ζj + ζk +
| j − k |
4Ne

(11)

Where ζt is the technical noise at time point t, Ne is the effective population size, and
| j − k | is the number of transfers performed between times j and k. The above equation
defines a set of linear equations, with ζt and Ne as unknown parameters.

We can measure κj,k for all possible combinations of tj and tk given large enough set
of neutral barcodes. Our RB-TnSeq libraries have a large number of transposons that were
inserted into intergenic regions, the vast majority of which presumably have no fitness effect;
thus, we use these intergenic barcodes as our set of putatively neutral barcodes. We confirmed
that our measured κj,k did not systematically vary as a function of rj (Figure S28), indicating
that the expected mean-variance relationship, var (ft,i) ∝ ⟨ft,i⟩, is consistent with our data.
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We only included intergenic barcodes that satisfy 50 < rt,i < 500, as our computation
depends on having sufficiently many counts such that the central limit theorem applies, and
barcodes at a higher frequency are more likely to have acquired secondary mutations and
be impacted by selection. In order to further guard against the effects of potential ’outlier’
barcodes (those with non-neutral fitnesses), we compute variance estimates, κ̂j,k, with a more
robust measurement of variability, the median absolute deviation (MAD),

ψi,j,k ≡ ϕi,j − ϕi,k (12)

MADj,k = med
i

| ψi,j,k −med
i
ψi,j,k | (13)

κ̂j,k =

(
MADj,k

0.67449

)2

(14)

We resampled barcodes with replacement (standard bootstrapping) 500 times to compute
the relative errors on the κ̂j,k measurements. To decompose variability into the correlated
(1/Ne) and uncorrelated (ζt) components, we numerically minimized squared error of the
expected relationship (eq. 11) between the noise parameters and the measured κ̂j,k, with
inverse variance weighting,

ζ, Ne = argmin
ζ,Ne

∑
j,k

(
ζj + ζk +

|j−k|
4Ne

− κ̂j,k

)2

var (κ̂j,k)

We subjected the minimization to the constraint that ζt ≥ 1
4Rt

, i.e. technical noise must
be at least as large as variance due to sampling. After converting the variance parameters
from frequencies back to read counts, the total marginal variance parameter at a single time
point is,

ĉt = (4ζt + 1/Ne)Rt

The number of intergenic barcodes included varies across RB-TnSeq libraries, experi-
ments, and time points, but approximately on the order of ∼104 intergenic barcodes are
used to estimate the variance parameters. The errors on the estimated ĉt are generally small
(≲ 1%), so the point estimate ĉt was directly used for all downstream inferences.

Estimation of mean fitness dynamics

As beneficial mutations increase in frequency, and deleterious mutations decrease, the mean
fitness of the population changes over time, impacting the rate of frequency change of all
genotypes in the population. To estimate the mean fitness dynamics for each experiment, we
can track the dynamics of neutral genotypes, again using the large set of intergenic barcodes.
We obtain an estimate of the mean fitness between times 0 and t by simply taking the
negative log slope over many barcodes,

ˆ̄xt,i = −1

t

[
log

(
rt,i
Rt

)
− log

(
r0, i

R0

)]
As detailed in the previous section, it is advantageous to use robust forms of estima-

tion to guard against the presence of outliers. Groups of ∼100 randomly selected intergenic
barcodes with rt,i < 500 were summed together to create “super-barcodes”, in order to
improve individual estimates. The mean fitness ˆ̄xt,i was estimated for each super-barcode
separately, and then the final estimate ˆ̄xt was obtained by taking the median over all super-
barcodes. The standard error was estimated via the median absolute deviation between all
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super-barcodes, analogous to equations 13-14. Again, the point estimate ˆ̄xt is used for all
downstream analyses, as mean fitness error was consistently small.

Identification of putative outlier barcodes

We observed that some barcodes had trajectories that noticeably differed from the rest of the
barcodes within the genotype, likely caused by the presence of secondary (selected) muta-
tions that arose elsewhere in the genome or rare frequency fluctuations. We observed outlier
barcodes with both beneficial and deleterious trajectories relative to the rest of the barcodes
within the genotype. Problematically, some of these outlier barcodes were at high abun-
dance relative to the other barcodes in the genotype, thus dominating the genotype fitness
estimate. This necessitated a need to either accommodate outliers in our fitness estimation
procedure or detect and reject outliers. We found that a number of robust estimators that
we explored (e.g. maximum median/trimmed likelihood) had unreasonably high variance in
fitness given our data (std ŝ ≳ ŝ). Thus, we opted to use a method to detect and reject
outlier barcodes within genotypes. We based our outlier detection method on the resistant
diagnostic RDi introduced by Rousseeuw and Leroy (1987) [66], a high-breakdown measure
of statistical deviation.

For every genotype with at nbc ≥ 4 unique barcodes, we computed a fitness estimate for
each barcode, ŝi, via maximum likelihood (eqs. 5-8). We then used a resampling approach
to randomly sample 200 different combinations of nr = ⌈nbc/2⌉ barcodes, where samples are
labeled J . To get an estimate of the ’typical’ fitness, ŝJ,typ, of the barcodes within a gene, we
either take the weighted median (nr < 10) or weighted trimmed mean (nr ≥ 10, trim 30%
off each tail) of the resampled barcode fitnesses, where in both cases, samples are weighted
by their inverse variance, wi = 1/(var ŝi). The weighted median is used for low number of
samples, while the trimmed weighted mean is used for high number of samples, because the
trimmed weighted mean generally has lower sampling variance when the number of samples
remaining after trimming is sufficiently large. To compare the strength of evidence for a
fitness of ŝi or ŝJ,typ for barcode i, we compute the likelihood ratio,

LRJ,i = log
Li(ŝi | ri)

Li(ŝJ,typ | ri)
The deviation of barcode i from the rest of the barcodes in the genotype is then,

ui = max
J

LRJ,i

med
i

LRJ,i

The final resistant diagnostic is finally calculated as a standardized version of ui,

RDi =
ui

med
i
ui

If RDi > cutoff, then barcode i is considered an outlier and thrown away.

Simulations

To determine an appropriate cutoff value, we performed simulations of the data generating
process, and calculated the RD for each barcode within a simulated gene using the above
method. Specifically, we simulated trajectories of lineage frequencies with s ∈ {−0.02, 0, 0.02}
gen−1 with the standard diffusion approximation, assuming f ≪ 1,

∂tf = sf +

√
f

Ne

η(t)
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⟨η(t)⟩ = 0

⟨η(t)η(t′)⟩ = δ(t− t′)

We ’observed’ trajectories at the end of each ’day’ (≈ 6.64 gen) for 4 days, and added
measurement noise,

ϕt ≡
√
ft

ϕobs
t | ϕt ∼ N (ϕt, ζ)

We used Ne = 108 day and ζ = 2∗10−8. We then grouped 20 simulated lineages together
into a ’gene’ (approximate median number of barcodes per gene in our libraries), with n ∈
{1, 2, 3} selected lineages (of the same sign), and the rest as neutral lineages. After calculating
the RD for each simulated gene, we calculated the true positive/negative rate for calling a
lineage as an outlier for a given threshold (Figure S29).

We can see that the method can sensitively detect relatively small, ∼2%, differences in
fitness, while minimizing the number of neutral barcodes that are incorrectly thrown away.
True positive rate decreases somewhat if there are multiple outlier barcodes within a gene,
but the difference appears to be minimal, as expected from the construction of the RD as
a high-breakdown deviance statistic. From the simulations, we chose a cutoff of 6, which
only falsely throws out ∼5% of neutral lineages, while detecting ∼85− 95% of outliers. This
threshold also seems to empirically work with our data, detecting at least the most obvious
outliers (see e.g. Figure S30).

Consequences of potential barcode frequency biases

One major assumption of the above analyses is that the frequency of barcodes from BarSeq
data represents an unbiased estimate of the actual frequency of barcoded cells in the popula-
tion. While we expect this assumption to generally hold, there are two major ways that this
assumption could be violated: (1) if barcodes are differentially amplified due to e.g. differ-
ences in GC content, and (2) if genomic regions near the chromosomal origin of replication
are present at a higher copy number due to fast growth. Both types of biases have been
observed in some previous RB-TnSeq experiments [40, 41]. We can check for the presence
of frequency biases by comparing the inferred value of the error parameter κt (see section )
for barcodes with different GC contents and across genomic positions, as biases in frequency
measurements will change the apparent strength of genetic drift. We see that κt generally
does not change across these conditions (Figure S31), and thus the aforementioned sources
of frequency biases do not seem to be particularly prevalent or strong in our system.

Of course, other unknown sources of frequency bias could be present, or too weak to
detect; but, under our inference pipeline, biases in frequency would only affect the variance
of inferred s, not its expected value, as long as the bias across time points remains constant.
We can see this by considering the deterministic (mean) dynamics of mutant frequencies f
in a population with m genotypes,

fi(t) =
f0,ie

sit∑m
j f0,je

sjt

We could then include a strain-specific, constant multiplicative bias parameter, γi. The
observed frequencies would then follow,

fi(t) =
γif0,ie

sit∑m
j γjf0,je

sjt
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By observing these biased frequencies instead of the actual frequencies, we would infer si
and γif0,i, therefore only biasing the nuisance intercept parameter.

As expected from the above analysis, there was no consistent, detectable correlation
between genomic position and inferred fitness (Figure S2). However, there is one exception:
in a couple of the L experiments, it looks like there is a dip in median fitness around ∼2.7
Mb, seemingly caused by a lack of neutral/beneficial variants. This position is about ∼1 Mb
downstream from the origin of replication (3.8Mb), and ∼1 Mb upstream of the termination
of replication and Dif site (∼1.5Mb). So it appears to be unlikely an artifact of uneven
copy numbers or a DNA extraction bias. The origin of this signal is unclear, but seems to
indicate that there is a region of the L genome that is more likely to have deleterious effects
from knockout mutations. However, in any case, the dip seems to be isolated to a seemingly
unremarkable portion of the genome, and thus does not call into question the general validity
and assumptions of our model.

Analysis

Similarity of fitness effects across environments

To compute the correlation of knockout fitness effects across environments for a given genetic
background (main text Figure 3), we first removed genes with noisy fitness effects (σs > 1%),
then calculated the weighted pearson correlation coefficient, where genes are labeled k and
environments are labeled i, j,

wk = 1/(var ŝi,k + var ŝj,k) (15)

µ(x) =

∑
k wkxk∑
k wk

(16)

wcov(x, y; w) =

∑
k wk(xk − µ(x))(yk − µ(y))∑

k wk

(17)

ρi,j =
wcov(ŝi, ŝj; w)√

wcov(ŝi, ŝi; w)wcov(ŝj, ŝj; w)
(18)

We then performed hierarchical clustering using Ward’s method across environments for
each genetic background, with 1−ρi,j as the distance metric. Environment pairs with ρi,j < 0
are set to 0 for the purposes of clustering, as there were few negative correlations, and all
were small.

We used a bootstrapping procedure to estimate the statistical support for each cluster of
environments. Using only the intersection of genes that passed across all environments, we
performed standard resampling of genes with replacement, and then repeated the correlation
measurement of knockout fitness values for each pair of environments. Then we repeated the
hierarchical clustering and compared each branching of the original tree to the bootstrapped
tree using the method of [67]. We repeated the resampling procedure 5000 times for each
genetic background and reported the average support for each clade.

We performed a principal components analysis on our data, using normalized fit-
ness effects as the features. We only included genes that had measured fitness effects
across all experiments. We normalized the fitness data separately for each experi-
ment so that the scale of fitness effects was comparable across conditions. We first
performed a quantile transform (to a gaussian distribution) on the fitness effects
using sklearn.preprocessing.quantile transform, and then subsequently centered and
scaled the data to turn it into a standard normal. We performed the PCA with
sklearn.decomposition.PCA.
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Network of gene-by-gene correlations

To investigate potential relationships between genes in the different strain investigated in our
work, we sought to quantify the degree of correlation of fitness measurements across all envi-
ronments between every pair of genes, a quantity that has been referred to as cofitness [41].
Highly correlated fitness measurements may indicate that genes are connected via gene reg-
ulation. In order to account for the fact that the measurement error in fitness measurements
varies between genes and environments, we computed the cofitness of every pair of genes i, j
as the weighted pearson correlation coefficient, where environments are labeled k, analogous
to equations 15-18. We excluded genes that were not called as significantly non-neutral in at
least one experiment, and genes with successful fitness measurements in < 4 experiments.

The vast majority of non-zero correlations are likely generated by chance, due to the rel-
atively small number of environments where fitness is measured. Therefore, for each pair of
genes, we generated a null cofitness distribution through a resampling procedure performed
300 times, by (1) randomly permuting the fitness assignments for both genes, (2) resam-
pling each fitness value such that ŝboot ∼ N (ŝ, std ŝ) (“parametric bootstrapping”), and (3)
recalculating cofitness via equations 15-18. We then compared the measured cofitness to the
null distribution to generate a 1-sided p-value. After correcting the set of p-values with a
Benjamini-Hochberg FDR correction, we considered gene pairs to be signficantly correlated
at α = 0.05, effectively drawing an edge between the two genes in the cofitness network.

After identifying statistically significant correlations between genes across environments,
we sought to cluster genes into communities, without considering the magnitude or sign of
the cofitness values. We used the ’Fluid Communities’ algorithm [55], as implemented in the
networkx python package [68], because of the flexibility of the algorithm, and the resulting
communities had the highest modularity of all community-finding algorithms we explored.
As the fluid communities algorithm is initialized stochastically, and requires pre-specifying k
communities, we ran the algorithm on our data across varying community sizes, k ∈ [4, 20],
with 200 replicates for each k (Figure S13). We then picked the communities with the highest
modularity for each genetic background. For the purposes of community finding, we treated
all significant edges as the same, without considering the actual cofitness value of the edge.
All community sets found had modularity > 0, indicating that genes were more tightly
connected within their community compared to between communities.

Standard gene ontology enrichment analysis was performed on each community in each
genetic background with the goatools python package [69], using Fisher’s exact test to
find significantly over-represented annotations in a gene set, with an FDR correction and
α = 0.05.

We sought to check if variance in fitness across environments for any given knockout
could predict if two genes would stay in the same cluster across genetic backgrounds, as a
control for the observed correlation with EcoliNet score. We average fitness variance across
environments over the two knockouts of interest, referring to the quantity as ⟨var (s)⟩. We fit
a logistic model with normalized EcoliNet score of the gene pair, nscore ≡ score/std score
and nvar ≡ ⟨var (s)⟩/std⟨var (s)⟩ as the predictors (standard deviation is taken over all
knockout pairs), and the probability that the two genes are together in strain 2, if they were
together in strain 1 as the response variable, log pi/(1−pi) = nscoreβscore+nvarβvar+β0+ϵi.
The results are shown in Figure S20.

It is known that community detection algorithms can have potential surfaces with large
plateaus without a clear maximum, i.e. can give many solutions with similar modularity but
different groupings [70]. We wanted to see if the observed (mostly) “random reassortment” of
genes among clusters between genetic backgrounds could be explained by this effect. Thus,
we compared the optimal partition of each background to the 100 next-best partitions across
all backgrounds (Figure S14). For each suboptimal partition, we asked if two genes were in
the same cluster in the optimal partition, what is the probability that they are also in the
same cluster in the suboptimal partition. We see that if we compare partitions in the same
genetic background, this probability is around 40%, while it is around 10% when comparing
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partitions across background. This suggests that different reasonable partitions of the cofit-
ness networks are much more similar within genetic backgrounds than between backgrounds.
We also re-ordered the genes of the cofitness network such that they followed the ordering of
another genetic background’s optimal partition (Figure 4B). It is apparent that replotting the
cofitness matrix using another genetic background’s clustering does not produce noticeable
structure. Together, these results suggest that while different reasonable partitions can give
slightly different clusters, the observed reassortment of knockout fitness correlations among
backgrounds cannot just be explained by failures of the community detection algorithm. We
also investigated the extent to which the structure of our cofitness networks was driven by
measurement noise (Figure S15, S16). We leveraged the fact that we had at least two biolog-
ical replicates per experiment, and computed new cofitness networks (in the same manner
as described above), only using either biological replicate “1” or “2”. We can see that even
when the data is independently split, the cofitness networks within a genetic background are
more similar than between backgrounds.

Genome evolution

We sought to understand if knockout fitness measurements could predict the probability
that a gene would mutate in the LTEE. To that end, we downloaded clonal sequencing data
from Tenaillon et al. (2016) [59], where the authors isolated and sequenced clones from a
number of time points across all 12 lines of the LTEE, and identified mutations relative to
the REL606 ancestor. We excluded synonymous SNPs from our analysis. A representation
of the raw data can be found in Figure S24.

We then sought to understand if knockout fitness effects can predict if a mutation will
appear in a gene in the Tenaillon et al. dataset, as a proxy for establishment. For REL606,
classified a gene as mutated if a mutation appeared in one of the 12 LTEE lines (excluding
mutator populations). For S and L, we classified genes as mutated only if they were present
in the appropriate sublineage, i.e. in REL11830, REL11036 or REL11831, REL11035 for S
and L respectively. We also excluded mutations that were already present in our S and L
clones, which we determined from clonal sequencing data from Plucain et al. (2014) [46].
We then fit a logistic model with knockout fitness effect as the predictor variable and gene
mutated status (between time points) as the response variable,

log pest,i/(1− pest,i) = ±s̃iβest± + β0 + ϵi
We fit two different coefficients for beneficial and deleterious mutations in each environ-

ment, βest+ and βest− respectively. We only include genes that are putatively neutral, i.e.
| s |< 0.005 and not called as significantly non-neutral, along with genes that are either
significantly beneficial or deleterious, all at significance level α = 0.05. We normalized the
fitness values by the median value of the non-neutral genes, i.e.

s̃i =
si

med
i/∈neutral

si
(19)

We use the logistic model implementation in the statsmodels python package [71]. We
used the standard method of Benjamini & Hochberg to control for the false discovery rate,
pooling all tests across beneficial and deleterious coefficients. To test if there is a significant
difference between REL606 logit slopes at 0-5k and 5-20k, we employed a permutation test.
To construct a null distribution of the difference in slopes, for each gene we shuffled whether
it ’established’ (0 or 1) between 0-5k and 5-20k and recomputed the regression coefficients
1000 times, recording the difference. We then compared the actual difference in coefficients
to the null distribution to get p-values.
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Changes in gene expression

We used a microarray gene expression dataset reported by Le Gac et al. (2012) [16] to
compare to our knockout fitness measurements, downloaded from the NCBI Gene Expression
Omnibus [72], importing data with GEOquery [73]. We primarily used the GEO2R tool to
process the raw microarray data along with the R package limma [74, 75]. After applying a
log2 transform to the data, we ensured that all collected samples had approximately the same
intensity distributions by performing a quantile normalization. Then, pooling all replicates
within a strain, we fit a linear model to our data to determine the relative log-fold change
in expression between different strains, taking into account the measured mean-variance
relationship. A representation of the raw data can be found in Figure S23. We also compared
the distribution of log-fold fitness effects between neutral and non-neutral genes (Figure 5B).
We computed p-values to compare the distributions with standard Mann-Whitney U tests.

We then fit a linear model to investigate if there was a correlation between fitness mea-
sured in a given environment, si, and log-change in gene expression between evolutionary
time points ∆Ei, such that

∆Ei = ±s̃iβexp± + β0 + ϵi
Similar to the gene establishment model, we fit two different coefficients for beneficial and

deleterious mutations in each environment, βexp+ and βexp− respectively (Figure S25). We
only include genes that are putatively neutral, i.e. | s |< 0.005 and not called as significantly
non-neutral, along with genes that are either significantly beneficial or deleterious, all at
significance level α = 0.05. We normalized the fitness values by the median value of the
non-neutral genes, in the same manner as equation 19. We fit the model with weighted
least squares, as implemented in the statsmodels python package [71], with weights wi ∝
1/var∆Ei, to incorporate the fact that there are different levels of measurement error in
the log-fold change expression for each gene. We used the standard method of Benjamini
& Hochberg to control for the false discovery rate, pooling all tests across beneficial and
deleterious coefficients.

As a control, we also investigated if our results would change if we excluded poorly
expressed genes. It is perhaps the case that neutral knockouts are potentially a bad compar-
ison class, because many of them may be poorly expressed at all times, and thus ineligible
to undergo large changes in expression. We can test for this alternative hypothesis by focus-
ing our analysis on solely initially highly expressed (50th percentile) genes, excluding poorly
expressed genes. The results are shown in figure S26. The regression coefficients change some-
what, but not qualitatively, showing that the aforementioned hypothesis is not likely the
driver of the signals we observed.

Data Availability

Glycerol stock copies of the REL606, 6.5k S, and 6.5k L Tn5 barcoded
libraries are available upon request. Raw sequencing reads have been deposited
in the NCBI BioProject database under accession number PRJNA900607
[https://www.ncbi.nlm.nih.gov/bioproject/PRJNA900607]. All processed data are available
on GitHub,
https://github.com/joaoascensao/S-L-REL606-BarSeq

Other datasets referenced may be accessed online: the LTEE time-resolved clonal
sequencing data (https://barricklab.org/shiny/LTEE-Ecoli/) [59]; the LTEE time-resolved
metagenomic sequencing data (https://github.com/benjaminhgood/LTEE-metagenomic)
[47]; S and L clonal sequencing data (Plucain et al. (2014) SI) [46]; EcoliNet
(https://www.inetbio.org/ecolinet/) [58]; transcriptomic measurements of LTEE strains
(BioProject PRJNA144635) [16].
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Code Availability

All code used to process the data and perform the analyses are available on GitHub,
https://github.com/joaoascensao/S-L-REL606-BarSeq
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Chapter 3: Rediversification following ecotype isolation reveals

hidden adaptive potential

Abstract

Microbial communities play a critical role in ecological processes, and their diversity is key to their
functioning. However, little is known about if communities can regenerate ecological diversity following
ecotype removal or extinction, and how the rediversified communities would compare to the original ones.
Here we show that simple two-ecotype communities from the E. coli Long Term Evolution Experiment
(LTEE) consistently rediversified into two ecotypes following the isolation of one of the ecotypes, coexist-
ing via negative frequency-dependent selection. Communities separated by more than 30,000 generations
of evolutionary time rediversify in similar ways. The rediversified ecotype appears to share a number of
growth traits with the ecotype it replaces. However, the rediversified community is also different com-
pared to the original community in ways relevant to the mechanism of ecotype coexistence, for example
in stationary phase response and survival. We found substantial variation in the transcriptional states
between the two original ecotypes, whereas the differences within the rediversified community were com-
paratively smaller, but with unique patterns of differential expression. Our results suggest that evolution
may leave room for alternative diversification processes even in a maximally reduced community of only
two strains. We hypothesize that the presence of alternative evolutionary pathways may be even more
pronounced in communities of many species, where there are even more potential niches, highlighting an
important role for perturbations, such as species removal, in evolving ecological communities.

Introduction

Ecological diversification refers to the evolution of a population or community of organisms
to occupy distinct ecological niches or habitats within an ecosystem [1]. Such diversifica-
tion can manifest through various mechanisms, including the evolution of unique physical
or behavioral traits that enable individuals to utilize diverse resources or withstand varied
environmental conditions [2–4]. The propensity for ecological diversification in a community
is influenced by factors like environmental conditions, prevailing biodiversity, and the inter-
actions among the species present [4–7]. The potential for diversification can be modulated
by the presence of unoccupied niches, or ”ecological opportunities” [5, 8]. These opportu-
nities may diminish as diversity increases and niches become occupied. However, existing
communities can also generate new niches, facilitating the introduction of novel ecotypes.
An example is cross-feeding, where species produce metabolites that pave the way for the
rise of new ecotypes by forming exploitable niches [9–13].

Microbial communities offer a valuable model for investigating the intertwined evolu-
tionary and ecological processes driving diversification due to their rapid reproductive and
evolutionary rates [11, 13–20]. In both natural settings [21–24] and experimental systems,
swift ecological diversification in microbial communities has been documented, typically pro-
pelled by mechanisms such as cross-feeding [25–29], resource partitioning [11, 30–33], spatial
niche differentiation [15, 34–36], and potentially other ecological trade-offs [37, 38]. Interac-
tions within microbial communities can either inhibit [17, 18], promote [11, 13], or have mixed
impacts [39] on diversification. The enduring coexistence of a new ecotype with its immedi-
ate ancestor is not assured and may hinge on community characteristics, such as metabolic



44

trade-offs [12, 40]. In experimental contexts, ecological differentiation of a diversified eco-
type is often indicated when an ecotype’s fitness inversely correlates with its frequency, i.e.
displaying negative frequency-dependent fitness effects. Stable coexistence between the diver-
sified ecotype and its ancestor is implied if the former can invade when rare but not when
abundant.

Even when ecotypes can stably coexist, it does not guarantee that they will coexist indef-
initely or at all locations. Ecotypes can migrate to new territories, potentially without other
community members, or some ecotypes within the community may spontaneously go extinct
(e.g. due to demographic stochasticity or environmental fluctuations). In either case, the
community becomes perturbed, losing one or more members and potentially leaving ecolog-
ical niches unfilled. Environmental disturbances that cause ecotype loss are prevalent across
diverse types of microbial ecosystems, including aquatic, soil, and human-associated environ-
ments [41–47]. Oftentimes, local ecotype/species extinction is not benign–loss of microbial
taxa has been associated with deterioration of ecosystem functioning in natural systems
[48, 49]. It has long been noted among biologists that newly isolated species, and species
extinctions, can open up ecological opportunities and lead to rapid diversification events
[50–53].

Theoretical models suggest that perturbed communities may respond with a combination
of ecological and evolutionary changes [54–57]. These evolutionary changes may include
both directional and diversifying selection [57], with newly evolved variants either replacing
existing community members or coexisting alongside them. However, it remains unclear
which communities have the potential to rediversify. When rediversification does occur after
ecotype removal, there are two possible scenarios: (i) the perturbed community rediversifies
and eventually returns to a state similar to the original community before the disturbance,
or (ii) the perturbed community rediversifies and forms a community that is qualitatively
different from the original one.

Here, we investigate the aforementioned questions surrounding rediversification using a
minimal microbial model community of only two, naturally diversified E. coli strains. Specif-
ically, we employ two strains derived from the E. coli Long-Term Evolution Experiment
(LTEE), which was started by Dr. Richard Lenski and has been running for over 30 years
or more than 70,000 generations [58]. An initially isogenic strain of E. coli was split into
12 replicate populations and propagated through daily dilutions in glucose minimal media
(DM25). At the outset of the LTEE around 6.5k generations, it was found that one lin-
eage, ara-2, spontaneously diversified into two lineages–S and L–that coexist via negative
frequency dependence [59]. The ecotypes were named for the sizes of their colonies on certain
agar plates, either small (S ) or large (L). The S and L lineages inhabit distinct temporal
and metabolic niches in the LTEE environment. During exponential phase, L grows more
quickly on glucose, while S specializes in stationary phase survival and utilizes acetate, a
byproduct of overflow metabolism [26, 60]. Since their diversification, the lineages have per-
sisted and evolved over time, exhibiting genetic, transcriptional, and metabolic divergence
[26, 59–65]. The LTEE-derived communities are ideal for our plan to investigate the possi-
bility and potential patterns of rediversification over evolutionary time. We can revive the
S -L community at 6.5k generations to probe rediversification right after emergence of the
community, and compare with rediversification at later stages of the evolution experiment.

We found that when we isolated the S ecotype under certain conditions, it would spon-
taneously rediversify, giving rise to a new big colony ecotype SB, even if we used S clones
separated by more than 30,000 generations of evolutionary time. The new ecotype, SB, dis-
plays hallmarks of ecological differentiation, including negative frequency-dependent fitness
effects when in coculture with its ancestral S clone. We dissected the new, rediversified
community, and found that while SB shares a number of traits with both L and S , it also
behaves in entirely new ways. Our findings suggest that even in a maximally reduced com-
munity of only two strains, evolution may leave room for alternative diversification processes,
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suggesting a hidden adaptive potential only revealed by ecotype removal. This raises the pos-
sibility that perturbations, such as ecotype removal, could play an important role in evolving
ecological communities by creating opportunities for alternative evolutionary pathways.

Results

S can quickly diversify into a new ecotype

The ability of the S ecotype to emerge and coexist with the L ecotype in the LTEE has been
attributed to its proficiency in scavenging acetate released from overflow metabolism during
glycolysis, as well as its ability to survive and thrive during stationary phase [26, 60]. It has
been proposed that the L-S and similar polymorphisms may arise because of a fundamental,
hard-to-break trade-off between glucose and acetate growth rates in E. coli [12, 66]. Based
on these explanations, one may suspect, that after removing either L or S in the two-
ecotype community, the community may eventually rediversify and will eventually approach
a two-ecotype community similar to the original L-S community.

We performed a simple experiment where we cultured an S clone isolated around 6.5k
generations, immediately after the ara-2 lineage diversified into S and L, in glucose minimal
media (DM25) for approximately 60 generations (9 days), with 12 biological replicates. To
visualize colony morphologies of the resulting cultures, we plated the cultures on tetrazolium
arabinose (TA) agar plates. Surprisingly, 2 of the independent cultures displayed a mixture
of large and small colonies (Figure 1A).

After eliminating contamination possibilities by sequencing several diagnostic genetic loci,
we examined whether the large colony phenotype was heritable. We isolated several large
and small colonies and propagated them in DM25 for around 30 generations (5 days). The
phenotype appeared to be stably heritable for all selected colonies. To avoid prematurely
associating the larger colony phenotype with the L type, we referred to the emerging type
in our experiments as SB, due to its large (big) colonies and its ancestor S .

To gain insights into the robustness of the observed rediversification after isolation of S
over evolutionary timescales, we isolated S from later generations, spanning more than 30,000
generations of evolution. We repeated the same experiment with S clones from 17k and
40k generations with 24 independent cultures each; however, we did not see any noticeable
emergence of big colonies after 60 generations (screened about 200 colonies per plate). It
is unclear why we did not see any big colonies; one possible explanation may be that the
rate at which S morphs transition to SB morphs may be low enough that we would need
to have many more replicate cultures to observe rediversification (as in the 6.5k S clones).
We previously noticed that 6.5k SB clones (labeled 1 and 6) grew much better in LB liquid
media compared to S clones (potentially accounting for their bigger colonies sizes on similar
agar plates). Thus, we sought to see if we could enrich for the appearance of SB by growing
6.5k, 17k, and 40k S clones in LB liquid culture. Under these growing conditions, we indeed
saw that SB colonies appeared rapidly, within 1-3 days, in nearly all of the independent S
cultures across the three LTEE timepoints (Figure S6). We attributed this to the higher
fitness of SB in LB, relative to S (Figure S7). The new SB clones were again stably heritable
for at least 30 generations.

The big colony phenotype SB bears at least a superficial resemblance to L, which begs the
question: do SB and S represent genuinely different ecotypes, occupying different ecological
niches, with the potential to coexist with each other? To answer this question, we performed
reciprocal invasion experiments, where we mixed S and SB clones at high and low frequencies,
and tracked how their frequencies change via flow cytometry over the course of three growth
cycles (see Methods), to estimate their relative, frequency-dependent fitness effects (Figure
1B). While relative frequencies of LTEE strains are typically measured by colony counting,
we found significant bias (Figure S2) in frequency measurements of S/L when measured
via colony forming units (CFUs). In contrast, we see that flow cytometry provides unbiased
frequency measurements (Figure S1). We thus chose to use flow cytometry for all further
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Fig. 1 Emergence of the stably heritable SB morph and frequency-dependent fitness effects. (A) Big colony morphs can
arise in S cultures derived from 3 different LTEE timepoints, separated by more than 30,000 generations of evolution (6.5k
clones are shown here as an example). When both small and big colonies are isolated and propagated in liquid DM25 culture
for about 30 generations, then plated on TA agar plates, we see that the colony size is heritable. (B-D) Reciprocal invasion
experiments, measuring relative fitness of clones when they are in the minority of the population (approximately 1%) or in the
majority (approximately 99%). Each point represents a biological replicate, horizontal lines represent mean across all points.
Competitions between (B) SB clones and S , (C) S and L, and (D) SB and L. We generally see negative frequency dependent
fitness effects across all strains and competitions. (E) Triple competition between SB , S , and L, where L and SB are near their
equilibrium frequencies and SB in the minority (around 1%).

measurements instead of CFUs, owing to its minimal bias and reduced measurement noise
(Figures S1 and S2B). The introduction of genomically-integrated fluorescent proteins does
not have a measurable impact on fitness (Figure S5).

We found that most SB clones had significant negative frequency-dependent fitness differ-
ences when in competition with their parental S clone, a hallmark of ecological differentiation
(p < 0.05 for all clones except 6.5k SB 3). These data suggest that many of the SB clones
can coexist with S , because relative fitness is greater than 0 at low frequencies and less than
0 at high frequencies. However, it is not clear if this is the case for all of the isolated SB

clones, as some have a relative fitness near or less than 0 at low frequencies. This may be
because the aforementioned SB clones either genuinely do not coexist with S , or perhaps
they coexist at a frequency around or lower than the one where we took the measurements.

The frequency-dependent fitness differences between SB and S were similar in magnitude
to the fitness differences between L and S (Figure 1C), which were all significant at p < 0.01.
We also competed SB against L (Figure 1D), and again found significant frequency-dependent
fitness differences for most clones (p < 0.01 for all clones except 6.5k SB 3 and 17k SB

1). However, if at least some SB clones can invade both S and L when rare, why has the
SB morph not appeared in the ara-2 population of the LTEE, where L and S have been
coexisting and coevolving for tens of thousands of generations? We hypothesized that SB

could not invade an already ”full” community, and could only have the chance to invade
when one of the ecotypes is removed. We performed a triple competition experiment, with L
and S near their equilibrium frequency and SB in the minority (Figure 1E). We found that
most SB clones had a significantly lower fitness compared to when it was in the minority
with either S or L alone (p < 0.05 except for 6.5k SB clones 2 and 3 compared to when
competed against S alone, and 17k SB 1 6.5k SB 3 when competed against L alone).

While we have shown that SB spontaneously emerges from a monoclonal population of
S and occupies a distinct ecological niche, it is not yet clear how SB compares to S and L.
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Fig. 2 Growth dynamics of cocultures over the course of one twenty-four hour growth cycle. Measurements were taken approx-
imately every hour via flow cytometry for the first eight hours after transfer into new media. An additional measurement was
taken approximately 24 hours after the start of the cycle. Mixed SB 1 with S along with L with S , all from 6.5k generations,
where ecotypes were mixed both in the majority and minority of the population. Different lines represent biological replicates.
(A-B) Frequency dynamics of S against SB and against L. (C-D) Total cell count dynamics, separated by each strain in the
cocultures. (E-F) Empirically measured growth rates over time for each strain in the cocultures, calculated as the slope of
log-transformed abundance between adjacent timepoints, using the second timepoint as the x-axis location. Insets show growth
rates during stationary phase, from around 8 to 24 hours, on the y-axis–presented to provide a more fine-grained view of the
slow changes in abundance during stationary phase. Error bars represent standard errors.

In particular, we want to understand if SB simply fills the same niche that L had occupied
before removal, making it somewhat functionally equivalent to L. The negative frequency-
dependent selection between L and SB suggests that they must be different to some degree,
but it is still unclear if SB represents a sort of intermediate between S and L, or if it shows
novel traits. In the following, we will show that while SB resembles L in some of its growth
properties, it also shows clear differences that are critical for its coexistence with S .

Within-cycle growth dynamics of cocultures

To better understand how ecological differentiation arises in the SB-S and L-S systems, we
measured the within-cycle growth dynamics of SB, L, and S in coculture with each other via
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flow cytometry. The LTEE environment is a seasonal one [26, 67]–every 24 hours, cultures
are transferred 1:100 into fresh glucose minimal media. The populations spend the first part
of the day in exponential phase; the remaining time, more than 2/3 of the day, is spent
transitioning out of exponential phase and in stationary phase. It has been previously shown
that L and S occupy different temporal niches from one another, where L specializes on
exponential growth on glucose, and S specializes on stationary phase survival and growth on
acetate. Thus, it is natural to ask how temporal variations in growth are similar or different
in the SB-S system.

To perform the experiments, we propagated S , SB, and L separately in monocultures
for two days, before mixing S with SB and S with L, both at high and low frequencies. We
mixed strains with their partners from the same LTEE generation. For simplicity, we only
used SB clone 1 for all experiments and LTEE generations. We propagated the cocultures
for one more cycle to allow the populations to physiologically adapt to the new environment.
At the end of the 24 hour cycle, we took a flow cytometry measurement of the culture, then
split the cultures into biological replicates and diluted the cocultures 1:100 into fresh media.
Afterwards, we took flow cytometry measurements from the cocultures approximately every
hour for about eight hours, then we took one last measurement at the end of the 24 hour
cycle (Figures 2, S10). We chose this design because the fastest dynamics occur during and
right after exponential phase–the first 8 hours–while dynamics in stationary phase are much
slower. The cultures were grown in a 37°C shaking water bath. We corrected the cell counts
measured in flow cytometry by the total dilution rate.

We initially focus on the dynamics of strains from 6.5k generations (Figure 2). Overall,
it is immediately clear that there are larger differences in dynamics in the L-S cocultures
compared to the SB-S cocultures. When S is in both the majority and minority, L has a
long, two hour lag time, while S starts growing much more quickly (Figure 2C-D), causing a
large upward spike in S frequency. We fit a generalized logistic model to the growth curves
to more precisely extract the lag times (Figure S11), and we see that 6.5k L has a longer lag
time than S (p < 0.01, in both cases). When S is cocultured with SB, we do not see any
noticeable lag time; however, when S is in the minority, S “wakes up” more quickly than SB

(p = 7 ·10−8), leading to a small spike in S frequency at the beginning of the time course. We
see similar patterns in the cocultures from 17k and 40k generations–both L and SB appear to
have growth rates very close to 0 at the beginning of the timecourse, but S consistently has
a larger initial growth rate (Figure S10). The initially faster growth of S only occurs when S
is in the minority for both L and SB strains (p < 0.02, across all comparisons); there is no
longer a noticeable difference when S is in the majority (p > 0.1, across all comparisons).

When 6.5k L starts growing, it has a significantly larger growth rate than S , pushing the
frequency of S back down. The magnitude of this growth rate difference is similar regardless
of the relative frequency of the ecotypes (Figure 2E-F). In contrast, the differences between
SB and S are much smaller. At both starting frequencies, SB may have a small growth rate
advantage compared to S early in exponential phase, then S appears to grow faster in late
exponential phase.

In contrast to the dynamics in lag and exponential phase, the later “stationary phase”
dynamics are highly dependent on which ecotype is in the majority. While most conditions
show non-zero growth rates after about eight hours of growth, we still refer to this period
as stationary phase, because the growth rates are small. When S is cocultured with L, S
grows better than L under both conditions, but the absolute growth rates differ between the
conditions (insets in Figure 2E-F). When S is in the minority with L, both S and L have
net positive growth in stationary phase, although it is higher for S (p = 9 ·10−4), potentially
pointing to the favorable conditions of L-dominated stationary phase and the putatively
large amount of excreted acetate available for exploitation. In contrast, when S is in the
majority with L, S has a smaller, albeit still positive, net growth rate, while L has a net
negative growth rate in stationary phase (p = 5 ·10−4). Concordantly, these patterns suggest
that S -dominated stationary phase is much less hospitable to both S and L.
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We see different stationary phase patterns when SB and S are in coculture, where SB now
performs consistently better than S (insets in Figure 2E-F). The ecotype growth rates are
significantly different (p = 0.016) when SB is in the majority with S–SB has a moderately
positive net growth rate, while S has essentially a net 0 growth rate in stationary phase.
Then when SB is in the minority, both SB and S have net negative growth rates, but S
declines more than SB, although the difference is non-significant (p = 0.16). If SB were
more similar to L, i.e. an exponential phase specialist that secretes a substantial amount of
acetate, we would have expected that SB-S and L-S cocultures would have similar behavior
in stationary phase. Instead, SB appears to have enhanced survival in stationary phase, and
decreases the survival prospects of S , perhaps because of the reduced availability of acetate.
Thus, while SB does not have a significant advantage over S in exponential phase, like L has,
it compensates with a clear advantage over S in stationary phase, essential for coexistence
of SB with S .

The results show differences in stationary phase behavior across generations, as well as
several conserved features (Figure S10). Similar to the 6.5k strains, when 17k S are in the
minority with L, S has a large positive growth rate during stationary phase, while L does not
grow. However, when S is in the majority with L, its growth rate is comparable to that of L.
The 40k S and L strains show different patterns, where L generally has a higher stationary
phase growth rate. However, this appears to be offset by a large growth advantage of S right
at the end of exponential phase/beginning of stationary phase; this growth advantage is
much larger when S is in the minority compared to when it is in the majority. This indicates
that the growth advantage of 40k S has shifted earlier, potentially because it has adapted
to consumed the acetate secreted by L much more quickly.

Again, the stationary phase behavior when 17k and 40k S and SB are grown in coculture
is noticeably distinct from the behavior of L-S coculture. Similarly, 17k S also does not grow
well in SB-dominated stationary phase. And 17k SB actually has a large positive stationary
phase growth rate when S is setting the environment, suggesting that SB has more to gain
from stationary phase when it is in the minority compared to vice versa. The picture shifts
again with the 40k strains–SB benefits very little from being in stationary phase, but in
contrast, S grows well in stationary phase, especially when dominated by SB. This is quite
different from the behavior of 40k S -L cocultures, albeit in a different direction than the
strains from the earlier generations. Thus, in 40k cultures, it appears that SB-S cocultures
act more like L-S cocultures from earlier generations, where SB is the clear exponential
phase specialist and S is the stationary phase specialist.

Together, these results show that growth traits of L-S cocultures change over evolutionary
time, and SB-S cocultures are similar in important ways (e.g. initial growth rates), but also
show departures from the original community (e.g. stationary phase behavior) that reveal
how the ecological dynamics have shifted with the new, rediversified ecotype.

Growth traits in novel environments

While we have shown that SB has distinct growth traits when in coculture with S in the
evolutionary condition, does SB also behave differently compared to S in novel environments
that neither have been in contact with before? If S and SB mostly behave similarly in
novel environments, then perhaps the underlying change between the two morphs is targeted
only towards traits relevant to the mechanism of ecological differentiation. Other newly
diversified ecotypes have previously shown targeted changes to niche adaptation, such as
acetate-specialist E. coli ecotypes that evolve due to specific mutations in the main acetate-
scavenging gene, acs [28, 29]. On the other hand, if pleiotropic effects are widespread, then
the underlying metabolic/physiological shift in SB may involve global, rather than targeted
changes.

To this end, we competed SB clones against S clones for each LTEE timepoint in the same
minimal media base as the evolutionary condition (DM), supplemented with different carbon
sources (Figure 3). For comparison, we also competed S against L clones for each LTEE
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Fig. 3 Competition of SB and L against S in novel environments. (A-D) Red and blue points represent the relative fitness
of S in competition with SB and L clones from the same LTEE timepoint, respectively, where different symbols represent
different clones. Competitions performed in exponential phase in the same media base (DM) supplemented with different carbon
sources: (A) 200mg/L acetate, (B) 1mg/mL casamino acids, (C) 20mM pyruvate, (D) 20mM glycerol.(E) Principal components
analysis, using relative fitness in each environment as features. Percentages in parentheses represent percent variance explained
by each principal component.

timepoint in each of the conditions. We chose four different carbon sources that support
growth of S , SB, and L clones from all timepoints and that enter into central metabolism at
different points [68], potentially allowing us to gain insight into global changes in physiology
and metabolism. After growing cocultures together for two days in DM25, we diluted them
1:100 in each different media. We kept the cultures in exponential phase, and took two
ecotype frequency measurements via flow cytometry: one right before transfer into the new
media, and one at the end of exponential phase. As usual, relative fitness was computed as
the change in logit frequency.

We see that for most SB clones, across most conditions, SB is noticeably non-neutral
relative to S (FDR-corrected two-sided t-tests; SI section 5). Consistent with previous
experiments[62], we see that L is also usually non-neutral relative to S across the different
carbon sources. The relative fitness of SB and L clones varies considerably across timepoints
and carbon sources. There is not a clear relationship between the fitness of SB (relative to
S ) and the fitness of L (relative to S ) from the same timepoint, also visible in the PCA
representation of the data (Figure 3E). In the PCA, it appears that SB clones within time-
points generally cluster together (but not completely), not with the L clones from their
timepoint; however, leveraging a modified permutational multivariate analysis of variance
(PERMANOVA) test (see Methods), we could not reject the null hypothesis that SB clones
within a timepoint cluster together more than the L clone within the timepoint (p > 0.15
for all timepoints).

Again, there is some variation between different SB clones. For example, the 17k SB 1
clone behaves noticeably differently compared to the 17k SB 2 and SB 3 clones especially in
the pyruvate (p < 0.001, both clones) and glycerol (p < 0.02, both clones) conditions, while
the three clones cluster together in the acetate condition. The 17k SB 2 and SB 3 clones also
appear to cluster together, away from the 17k SB 1 clone in the PCA plot (Figure 3E). The
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17k SB 1 clone also behaved differently compared to the other two in the reciprocal invasion
experiment against 17k L, where 17k SB 1 did not show noticeable frequency-dependence
(Figure 1D). The 6.5k SB 3 and 40k SB 1 clones also cluster away from the other two
clones within their timepoint. The conditions where these ”outlier” clones diverge from the
other clones varies between timepoints–6.5k SB 3 is different when grown in in pyruvate and
casamino acids (p < 0.03, all comparisons), and 40k SB 1 is primarily different in the acetate
condition (p < 0.03, all comparisons).

Across all three timepoints, we see that S is better at growth in acetate compared with
L. The evidence for this is stronger for strains from 6.5k generations (p = 5 · 10−4) and
17k generations (p = 0.017), compared to those from 40k generations (p = 0.093). This
is consistent with prior findings[60], and the notion that S represents a consistent acetate-
scavenging specialist over evolutionary time. In contrast, the behavior of SB in acetate is
more variable, both across time points and between different SB clones. Two of three 6.5k
SB clones have a fitness disadvantage in acetate (p < 0.03, in both cases) relative to S
(albeit less pronounced compared to L), whereas at least one SB clone from both 17k and
40k generations have a fitness advantage in acetate (p < 0.02, in both cases).

We found the fitness disadvantage of 6.5k SB in acetate puzzling, because it appears to
generally perform better in stationary phase compared to S (Figure 2). At least in the S -L
community, the advantage of S in stationary phase appears to be mostly driven by decreased
lag time to acetate growth [69], increased acetate growth rate [60], and increased ability to
scavenge dead cells [26]. We began by testing if SB has a smaller glucose-to-acetate lag time
compared to S , which could explain its stationary phase advantage. By growing SB, S , and L
strains on media containing both glucose and acetate, we could observe how they transition
from glucose to acetate growth (Figure S8). Contrary to expectations, SB actually has a
longer lag time than S , more similar to that of L, which should give it a disadvantage in
stationary phase. So we moved on to testing if SB could scavenge cell debris more efficiently
than S . To do so, we competed mixtures of SB and S , and L and S , together in heat-killed
cultures, resuspended in blank media to eliminate the presence of extracellular metabolites
(Figure S9). Consistent with prior data [26], we see that S is generally more efficient than L
at growing and surviving in an environment of dead cells, albeit with a frequency-dependent
effect. In contrast, SB is able to scavenge dead cells better than S , which may explain its
ability to perform better in stationary phase.

Together, this is another sign that SB is occupying a genuinely different ecological niche
compared to L, which may be shifting over evolutionary time.

Transcriptional differences between ecotypes

Given the strong heritability of the SB phenotype, and multiple traits that differ with
respect to S , we reasoned that the SB phenotype may have an underlying genetic cause.
Thus, we performed whole-genome shotgun sequencing of several S and SB clones with both
short-read sequencing (Illumina) and long-read sequencing (Nanopore) (see Methods). After
reference-based assembly, we saw that all SB clones had several mutations relative to their
ancestor, and all S clones from the same LTEE generation also has several mutations rel-
ative to each other. The mutations were a mix of synonymous and non-synonymous point
mutations, insertions and deletions, and several large genomic rearrangements (see SI section
4). However, none of the mutations differentiated S and SB–there were no consistent muta-
tions in specific genes or operons. The large number of mutations separating SB clones from
their S ancestor is not surprising; the ara-2 lineage fixed a hypermutator allele before the S
and L lineages split, such that the germline mutation rate is about 100x higher than that of
the LTEE ancestor [70]. This makes it likely that many of the mutations are likely (nearly)
neutral hitchhikers, or otherwise were not affected by selection. We attempted to determine
if there was any parallelism on the level of KEGG annotations instead of genes, but again,
we did not detect anything. Thus, because of the combination of the high mutational back-
ground and lack of detectable genetic parallelism, we cannot determine if the SB phenotype
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Fig. 4 Results from RNA-Seq of L, S , and SB clones from 6.5k generations. (A) Principal components analysis of RNA-
Seq data, after processing. Samples with the same name represent biological replicates of the same clone; the 1 and 2 labels
are to indicate which clone the samples come from. (B) Distributions of log2 fold changes in gene expression across all genes,
comparing different strains to each other. (C-F) Results of a KEGG gene set enrichment analysis to identify pathways with
coordinated changes in gene expression between ecotypes, where (C-D) is comparing SB to S and (E-F) is comparing L to
S . Only pathways that are called as significant at p < 0.05 after an FDR correction are included; points are colored by FDR-
corrected log10 p-value. Pathways are ordered by normalized enrichment score, which is roughly a measure of the extent to
which pathway-associated genes are overrepresented at the top or bottom of the entire list of genes, ranked by fold expression
change. The size of the points is proportional to the ”gene ratio”, which is the ratio of core enrichment genes to the total number
of genes in the pathway, i.e. the fraction of genes in the pathway that show differential expression.

has a genetic cause, or what the causative mutation(s) would be. If the SB phenotype is
caused by some genetic change, it is likely that many different mutations are able to cause
a similar phenotype.

To further understand the underlying causes of the SB phenotype, we turned to measuring
transcriptional differences between L, S , and SB from 6.5k generations using RNA-Seq. We
chose to focus on 6.5k strains because this is the LTEE timepoint immediately after the S
and L lineages diversified, allowing us to focus on the ”minimal” differences between S and L,
rather than after extensive evolution and divergence. We cultured two biological replicates of
two independent clones of each L, S , and SB from 6.5k generations in glucose minimal media,
and collected samples in mid-exponential phase (see Methods), in line with previous, similar
transcriptomic measurements [62, 71]. For a broad overview of the data, we first performed a
principal components analysis, using (normalized, transformed) expression for each gene as
the features (Figure 4A). We see that the first principal component already captures more
than half of the variance between samples, which primarily serves to separate the L clones
from the S and SB clones. The S clones appear to cluster together strongly, with the SB

clones flanking them. Hierarchical clustering also reveals that the S clones cluster together,
with the SB 2 clone as the next most similar, and the SB 1 clone as the outer-most member
of the cluster (Figure S12). This suggests that there are more differences between S and SB
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than there are between the two S clones, but there are stronger differences comparing both
S and SB with the L clones. The same picture emerges if we look at the distribution of log2
fold expression changes between different ecotypes (Figures 4B, S13). Comparing S and SB

with L, there are many genes with a large range of expression changes, both increasing and
decreasing in expression. In contrast, there are generally smaller differences between the two
SB clones and S . Again, there are larger and more differences between SB 1 and S , compared
with SB 2 and S , suggesting variability between the two SB clones.

Given that there are noticeable differences between SB and S , we next sought to under-
stand what those differences represent. Are there identifiable pathways with coordinated
expression changes? How do they compare with the differences between L and S? To this end,
we performed gene set enrichment analyses to identify differentially expressed KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways [72]. We first compared SB to S and L to S ,
and only look at pathways that are significantly enriched at p < 0.05 after a multiple-testing
correction (Figure 4C-F). We see that there are a number of pathways significantly down-
regulated in SB compared to S , and only one pathway significantly up-regulated (Figure
4C-D). Most of the down-regulated pathways are related to different aspects of amino acid
metabolism. We also separately compared SB 1 and SB 2 against S to better understand
the variability between the two clones (Figure S14). As expected, most of the terms identi-
fied in the pooled analysis (e.g. ribosomal proteins, amino acid metabolism terms) appeared
as the top terms when we analyzed the clones separately, albeit at a lower significance level
than when the data from the two clones are pooled together. There are potentially a hand-
ful of differences in enriched pathways between the two clones. For example, terms related
with O-antigen biosynthesis (e.g. Biosynthesis of nucleotide sugars, O-Antigen nucleotide
sugar biosynthesis) may be upregulated in SB 1, but not SB 2. The differentially expressed
pathways between L and S are mostly different, there are no terms related to amino acid
biosynthesis, and many terms related to lipid metabolism and O-antigen biosynthesis (Figure
4E-F). Differentially expressed pathways in L tend to not be differentially expressed in SB,
and vice versa (Figure S15).

There are two pathways that are enriched in both comparisons: flagellar assembly and
ribosomal proteins. The changes to flagellar assembly expression is in the opposite direction
for SB and L, where it is up-regulated in SB but down-regulated in L, suggesting that gene
expression for this pathway is ordered L ¡ S ¡ SB. In contrast, expression of ribosomal proteins
is down-regulated in both L and SB, perhaps indicating some degree of parallelism involving
a fundamental aspect of cell physiology between the two ecotypes. But overall, with the
exception of the down-regulation of ribosomal proteins, it appears that the transcriptional
changes that differentiate SB and L from S are quite distinct.

Our RNA-Seq data-set was restricted to monoculture mid-exponential phase culture, so
we sought to elucidate gene expression changes throughout the growth cycle, while varying
community composition, by leveraging the fluorescent reporters we introduced into the eco-
types, all inserted into the same genomic location. Fluorescence intensity is commonly used
to measure protein concentration and promoter activity [73–76]. The genes encoding the flu-
orescent proteins are under the control of a constitutive σ70 promoter, giving a read-out of
σ70 activity. The net activity of σ70 is a useful measure of the global transcriptional state
because it is highly responsive to changes in environmental conditions and growth phases.
It plays a crucial role in coordinating the expression of genes in response to environmental
stresses, nutrient availability, and other external stimuli [77–80]. By monitoring σ70 activ-
ity, we hope to gain insights into how the cell responds and adapts to different conditions,
providing a snapshot of the global transcriptional state.

To this end, we performed an experiment where we mixed 6.5k S 1 with either 6.5k L 1 or
SB 1 at high and low frequencies, after three days of growth in monoculture, and measured
their frequencies over time and population-averaged fluorescence intensity at the end of each
cycle (Figure S18A-D). We see large, consistent, community composition-dependent shifts
in fluorescence intensity for several conditions upon introduction to the community context,
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especially noticeable when S is in the minority with L, and when SB is in the minority with
S . Specifically, in both cases, the fluorescence intensity sharply increases after one day of
coculture growth, a shift that is maintained for the duration of the experiment. The parallel
changes in putative σ70 activity across SB and S reveal that both actively change their
transcriptional programs in response to community composition. To a less noticeable degree,
we see that the fluorescence intensity of L is lower when it is in the minority with S , again
pointing to a degree of composition-dependence.

We measured the fluorescence dynamics over the course of the growth cycle to investigate
how the difference arise (Figure S18E-F). We see substantial, parallel changes throughout
the cycle, with fluorescence intensity dropping during exponential phase, before increasing
again during stationary phase. These data reveal that increased fluorescence intensity at the
end of the growth cycle seen when S and SB are in the minority with L and S respectively
accumulates during stationary phase, with the difference mostly disappearing during expo-
nential phase. Together, these data provide evidence that SB has a transcriptional reaction
to the presence of S in the majority that is parallel to how S reacts to the presence of L in
the majority.

Discussion

Our study explores the capacity of an evolved microbial community to quickly regenerate
ecological diversity following the removal of an ecotype. Our results suggest that even in the
case of a community composed of only two strains in a minimal environment, evolution can
leave room for alternative diversification processes.

The rediversified ecotype, SB, demonstrates the robustness of microbial communities to
perturbations by sharing several growth traits with the ecotype it replaces, L. For instance,
both SB and L exhibit slower initial growth or longer lag times compared to S across all LTEE
timepoints, which may be involved in a trade-off allowing for higher exponential growth rates,
as observed in other systems [81]. However, differences between the rediversified and original
communities suggest that the mechanism of ecotype coexistence has shifted. Notably, we
observe variations in stationary phase responses, survival, and ability to scavenge dead cells,
as well as distinct patterns of gene expression. At least in the 6.5k strains, coexistence between
S and SB appears primarily driven by a tradeoff between glucose growth in late exponential
phase (where S does better), and the ability to survive in stationary phase, owing to the
advantage in scavenging dead cells (where SB does better). Together, these findings indicate
that ecological rediversification in the S -L system may be influenced by a combination of
constraints and opportunities. While some traits may evolve nearly deterministically due to
strong ecological or physiological constraints, other trait values may more unconstrained.
The interplay between contingency and determinism mirrors patterns observed in various
other evolving systems, including the LTEE [82–84]. Dissecting why some traits are more
evolutionarily constrained during diversification compared to others could be a fruitful avenue
for future investigation.

We attempted to determine a potential genetic origin of the SB phenotype. However, we
did not find any consistent mutations shared between the independent SB clones, relative
to their S ancestor. Thus, the SB phenotype likely either has a large target size, such that
many different mutations can cause the same phenotype [85, 86], or it is caused by a non-
genetic heritable change. Despite the fact that we did not find any shared mutations, the
transcriptional changes of two SB clones were targeted to the same handful of pathways,
predominantly related to amino acid metabolism. This points to parallelism among indepen-
dent SB clones, at least on the transcriptional level, if not on the genetic level. Additionally,
while the differentially expressed pathways in SB and L relative to S were generally differ-
ent, we saw decreased expression of ribosomal proteins in both ecotypes. The fraction of the
proteome devoted to ribosomes is known to control many growth traits in bacteria [87, 88],
so the similar changes in L and SB may help to explain the handful of observed similarities
in growth traits. One might expect that ribosome expression should be lower in S , due to
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its slower exponential growth rate [89, 90]; so the fact that this is not the case may suggest
that SB and L are both allocating their proteome not just to optimize exponential growth
rate, but also other growth traits as well.

While we saw that S could rediversify following isolation, we did not see any obvious
ecological or phenotypic diversification when L was isolated. There may be several reasons for
this. (i) S may have some amount of physiological/ genetic/ metabolic plasticity that allows
it to diversify that L lacks. (ii) Diversification of L may happen slowly or rarely, or more
quickly only under certain environmental conditions. (iii) Perhaps L can rapidly diversify, but
cryptically, where no phenotypic changes are obvious without more extensive phenotyping. It
is certainly the case that we would not have found SB without the obvious changes in colony
size. It could be that rediversification is much more common than currently appreciated,
but simply not detected. Sequencing technologies, including metagenomic [64] and DNA
barcoding-based methods [91], could help to better reveal the full extent of rediversification
across microbial communities. In fact, through metagenomic sequencing, we now know that
ecological diversification is much more common in the LTEE than previously thought [64].

Our study contributes to the understanding of the ecological consequences of ecotype
removal or extinction, which often occurs in natural microbial communities due to sudden
environmental shifts [41–47]. The ability of these communities to recover their diversity after
such disruptions might be key to maintaining their functions and stability over time. Con-
trary to the notion that evolutionary processes are too slow to influence ecological recovery,
our findings underscore the importance of evolution in the rebound of communities after a
disturbance. We used simplified two-ecotype communities, which are ideal for such studies
because they are well-documented and amenable to experimental manipulation [26, 59–65].
The methods we developed to investigate rediversification in this simple model could serve
as a framework for understanding this process in more complex ecosystems. The presence of
alternative eco-evolutionary pathways, even in a maximally reduced community of only two
strains, hints at more complex dynamics in richer ecosystems. Ultimately, our work sheds
light on the resilience of microbial communities, their ability to recover ecological diversity,
and their adaptability to environmental changes. Future research on the processes that con-
trol these dynamics is essential for a comprehensive understanding of microbial community
function and stability, especially in the face of environmental shifts.

Methods

Growth Conditions and Media

Most of the experiments presented here were performed in Davis Minimal Media (DM)
base [5.36 g/L potassium phosphate (dibasic), 2g/L potassium phosphate (monobasic), 1g/L
ammonium sulfate, 0.5g/L sodium citrate, 0.01% Magnesium sulfate, 0.0002% Thiamine
HCl]. The media used in the LTEE and the competitions shown in Figures 1 and 2 is DM25,
that is DM supplement with 25mg/L glucose.

For competition experiments, generally we first inoculated the strain into 1mL LB +
0.2% glucose + 20mM pyruvate (which we found prevented the emergence of the SB while
allowing for robust growth). After overnight growth, we washed the culture 3 times in DM0
(DM without a carbon source added) by centrifuging it at 2500xg for 3 minutes, aspirating
the supernatant, and resuspending in DM0. We transferred the washed culture 1:1000 into
DM25 in a glass tube. If a strain was isolated directly from a colony, we would instead
directly resuspend the colony in DM25. Generally, we grew 1mL cultures in a glass 96 well
plate (Thomas Scientific 6977B05). We then grew the culture for 24 hours at 37°C in a
shaking incubator. The next day, we transferred all the cultures 1:100 again into 1mL DM25.
After another 24 hours of growth under the same conditions, we would mix selected cultures
at desired frequencies, then transfer the mixture 1:100 to DM25. After another 24 hours of
growth under the same conditions, we would transfer the culture 1:100 to a desired media and
start taking flow cytometry measurements–in the competitions of Figures 1 and 2, the media
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is DM25, for the competitions of Figure 3, the media is DM supplemented with 200mg/L
acetate, 1mg/mL casamino acids, 20mM pyruvate, or 20mM glycerol. For the competitions of
Figure 1, we took measurements for 3-4 total days, doing 1:100 serial transfers every 24 hours
in DM25; for Figure 2 we took measurements approximately every hour for 8 hours, then
another measurement at 24 hours; for Figure 3 we took a second measurement after 8 hours,
when the cultures were still in exponential phase. For growth in glucose/acetate media, we
grew all strains in DM + 250mg/L acetate + 250mg/L glucose, after three cycles of growth on
DM25, measuring OD600 absorbance in a shaking plate reader (SpectraMax 190; Molecular
Devices) over the course of 24 hours. For the competitions in the heat-killed cultures, we
grew 6.5k S 1, L 1, and SB 1 cultures overnight in DM2000. We washed all the cultures in
DM0 3x, as described above, to eliminate the presence of extracellular metabolites. We then
heat-killed a portion of the S 1 culture by incubating it at 70°C for 45 minutes. We then
mixed 6.5k S 1, L 1, and SB 1 cultures appropriately, took a flow cytometry measurement,
and resuspended them 1:1000 in 1mL of the heat-killed culture. We allowed the cultures
to grow at 37°C for 16 hours (the approximate length of stationary phase), and then took
another measurement.

Integration of fluorescent proteins

We sought to use flow cytometry to quantify ecotype abundances, which would necessitate
that we could differentiate the strains via fluorescence. We decided to integrate fluorescent
proteins into a neutral genomic location of our various strains rather than using plasmids,
because plasmids can carry a significant metabolic burden, and it is often necessary to add
antibiotics to the media to select against plasmid loss. We used a system based on that
of Schlechter et al. [92] to integrate fluorescent proteins with miniTn7, a transposon that
inserts cargo at a putatively neutral intergenic site downstream of glmS. Briefly, the system
works by mating the recipient strain-of-interest with a donor strain, harboring a plasmid
with the miniTn7 proteins, an ampicillin-resistance gene, a temperature-dependent origin of
replication, and the cargo flanked by the left and right Tn7 recognition sites. In this case,
the cargo consists of a fluorescent protein, under the control of a broad host-range promoter,
and a chloramphenicol resistance gene, for selection of integration.

Our protocol for integration proceeded as follows. First, we grew the donor strain with
the desired plasmid in LB + 100µg/mL carbenicillin + 10µg/mL chloramphenicol at 30°C
shaken, overnight. We also grew the recipient strain overnight in DM2000 media at 37°C,
directly from glycerol stock. The next day, we washed the donor culture by centrifuging it
at 2500xg for 3 minutes, aspirating the supernatant, and resuspending in DM0. We then
measured the optical density (OD) of both cultures, and mixed about 1 OD · mL of each
culture on a 20mL LB/agar plate supplemented with 0.2% glucose + 20mM pyruvate. The
cultures were allowed to grow into a lawn overnight at 30°C, allowing the donor strain to
conjugate with the recipient. Afterwards, we scraped up the lawn and resuspended it in
3mL DM0. We washed the resuspended culture 3 times, as previously described, and then
streaked out the culture on a DM2000 + 10µg/mL chloramphenicol + agar plate, then
allowing the plates to incubate overnight at 37°C. This step simultaneously selects against
the presence of the donor (the donor is a proline auxotroph), against the Tn7 plasmid (it
has a temperature-sensitive origin of replication), and for integration of the Tn7 cargo (via
the chloramphenicol resistance gene). After two days of growth, we restreaked a number of
colonies that appeared on DM2000/agar plates for isolation. We then tested for integration
of the Tn7 cargo by amplifying and sanger sequencing the junction between the genome
and the fluorescent protein insertion (see SI section 3 for oligonucleotide sequences), and
by looking for fluorescence via fluorescence microscopy. We confirmed that the plasmid was
not present in the colony by testing resistance against carbenicillin. We ensured that the
colony was not the donor or a contaminant by checking colony morphologies on tetrazolium
-maltose (TM), -arabinose (TA), and -xylose (TX) agar plates. We further confirmed identity
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by sanger sequencing the arcA and aspS loci of the clones we moved forward with (see SI
section 3 for oligonucleotide sequences).

We found that the fluorescence provided by the plasmids designed in Schlechter et al. [92]
were insufficiently strong for our purposes. We also needed two different fluorescent proteins
with non-overlapping fluorescence profiles so that we could distinguish the two in our flow
cytometer. We decided to use the fluorescent proteins sYFP2 [93] and eBFP2 [94] because
they share the same ancestor and are highly homologous, and are thus likely to have the
same or similar physiological effects on their host, and they have sufficiently different fluo-
rescence profiles that are compatible with our flow cytometer. Thus, we sought to increase
the expression levels of the fluorescent proteins, and add in BFP, by constructing new plas-
mids. We chose to use the strong, constitutive σ70 BBa J23119 promoter [95] and a ribosome
binding site (RBS) designed in silico with the Salis lab ”RBS calculator” [96], placing them
immediately upstream of the fluorescent protein sequences. We used Gibson assembly to
construct the plasmids by ordering compatible oligonucleotides with the promoter and RBS
sequences on them, and then using the backbone of pMRE-Tn7-133 from Schlechter et al.
[92] and the eBFP2 gene from pBad-EBFP2 [94] for the BFP plasmid (see SI for plasmid and
oligonucleotide information). Final plasmid sequences were confirmed via sanger sequencing.

Flow cytometry

For all population measurements taken with flow cytometry, we used the ThermoFisher
Attune Flow Cytometer (2017 model) at the UC Berkeley QB3 Cell and Tissue Analysis
Facility (CTAF). For every measurement, we loaded the samples into a round bottom 96 well
plate, for use with the autosampler. Typically we diluted the samples 1:5 in DM0, but we
changed the dilution rate over the course of the 8 hour within-cycle timecourse. We set the
flow cytometer to perform one washing and mixing cycle before each measurement, and ran
50µL of bleach through the autosampler in between each measurement to ensure that there
was no cross-contamination between wells. We used the ”VL1” channel to detect eBFP2
fluorescence, which uses a 405nm laser and a 440/50nm bandpass emission filter. We used
the ”BL1” channel to detect sYFP2 fluorescence, which uses a 488nm laser and a 530/30nm
bandpass emission filter. For the triple competitions shown in Figure 1E, we used a BFP-
tagged S , a YFP-tagged SB, and a non -fluorescent L strain. To estimate the frequency
of L, we added 5 µM of Syto62 red fluorescent dye (ThermoFisher S11344) to the sample
immediately before measurement. We used the ”RL1” channel to detect Syto62 fluorescence,
which uses a 637nm laser and a 670/14nm bandpass emission filter. We always used a sample
flow rate of 25µL/min.

To analyze flow cytometry data, we first perform a hyperlog transform [97] and then
created threshold gates to sufficiently separate the ”noise cloud” (nonfluorescent particles
present even when running blank media) from particles with clear fluorescence. We noticed
that in addition to seeing single positive BFP+ and YFP+ particles, we also see some particles
called as fluorescent in both channels (Figure S3). We observed that the proportion of double
positive events decreased as a function of fluid flow rate and dilution rate (Figure S4),
suggesting that sometimes multiple cells end up in front of the flow cytometry laser at the
same time, and are counted as one event. Thus, we sought to correct for this effect. We
assume that the probability of a cell ending up in front of the laser is constant per unit time,
and uncorrelated in time, i.e. that it is a Poisson process. Thus, for any given window of time,
the probability of observing some number of events is distributed as a Poisson distribution.
So under this model, the observed BFP or YFP “clouds” will consist of single cells, double
cells, triple cells, and so on. Similarly, there are many combinations of BFP/YFP cells that
can end up in the double positive cloud. So, in order to get the expectation of the observed
frequencies, we add up the contributions of singlets, doublets, triplets, etc by considering the
probability of n cells passing in front of the laser together times the probability of all n cells
being the same color,
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f obs
i =

∞∑
n=1

p(n cells)fn
i (1)

where i ∈ {1, 2}. As previously mentioned, p(n cells) will follow a Poisson distribution,
but as we do not observe the case when zero cells pass in front of the laser, we will use a
zero-truncated Poisson.

f obs
i =

∞∑
n=1

λn

n!(eλ − 1)
fn
i =

eλfi − 1

eλ − 1
(2)

Where λ is the average number of cells per event. We have two equations (for f obs
1 and

f obs
2 ) and two unknowns (λ and f1), so we can solve for the real frequencies, which we
solve for via numerical root-solving. The total cell count N also must be corrected, where
Ncorrected = Nobservedλe

λ/(eλ−1). The post-correction frequencies appear to be well-reflective
of frequencies measured with colony counting (Figure S1). The primary reason why we chose
to use a mathematical correction rather than diluting the samples to the point where λ ≈ 0
was for time and efficiency. We found that in order to reduce the number of mixed events
to near zero, we would have to run a much larger volume through the flow cytometer, which
takes much more time. This is especially problematic for the growth curve experiments in
Figure 2, where the dynamics are quite rapid, and long times spent in the flow cytometer
would likely distort the data.

Analysis of ecotype dynamics

Once we obtained estimates of strain frequencies and total abundances, we can calculate
several downstream metrics of the dynamics. Throughout the manuscript, we estimate the
fitness effect of a strain s from the dynamics of ecotype frequencies, f(t), using the model

logit f(t) = st+ logit f0 + ϵt . (3)

We measure time t in units of 24-hour growth cycles, and thus fitness effects are measured
in units of 1/cycle. We fit the model using ordinary least squares, jointly estimating s and
the intercept f0. We calculated p-values for differences in fitness effects as a function of
initial ecotype frequency (Figure 1B-D) using a standard two-sample t-test, then performed
a standard Benjamini-Hochberg FDR correction, pooled across all of the comparisons.

Once we obtained fitness data to measure growth traits in novel environments (Figure 3),
we were first interested in testing how often fitness effects are significantly non-neutral rela-
tive to S (i.e. deviate from 0). Thus, we performed standard two-sided, one-sample t-tests on
all environment-strain conditions, then corrected the p-values with a Benjamini-Hochberg
FDR correction (SI section 5). To test if SB clones (within a timepoint) had significantly
different fitness effects in each condition, we used two-sided, two-sample t-tests, then again
corrected with a Benjamini-Hochberg FDR correction. Then, we were interested in testing
the hypothesis that the SB clones within a timepoint cluster together more strongly than
with the L clone within the timepoint. Thus, we turned to using a slightly modified version
of permutational multivariate analysis of variance (PERMANOVA) [98], to better reflect the
structure of our data, where we have multiple biological replicates for each measurement. To
calculate the F statistic, we first computed the mean relative fitness effect of each strain in
each environment, across biological replicates, s̄. We used total Euclidean distance between
mean fitness effects as the metric, i.e. the total squared distance is the sum over all environ-
ments of the squared difference in fitness between two strains. We only computed the distance
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for the four strains (SB clones 1-3, L clone) within a timepoint. As previously described [98],
and without modification, we used the total sum-of-squares and the within groups sum-of-
squares to compute the F statistic, using the distance metric. Then, we needed to estimate
a null distribution to compare the F statistic. If we were to estimate the null distribution
with the standard method, we would only get 3 values (treating either SB clone 1, 2, or 3
as the outgroup), which is not sufficient to construct a null distribution. However, the esti-
mated mean fitness effects are calculated from a finite number of biological replicates; with
resampling, the mean will change. Thus, we use a parametric resampling scheme to model
the variability from sampling. We resampled each mean fitness effect 10,000 times using a
Student’s t distribution, srs = s̄ − t

√
var s/n, where srs is the resampled fitness effect, s̄ is

the empirical mean fitness effect, var s is the empirical (unbiased) variance across biological
replicates, n is the number of replicates, and t ∼ tn−1 is drawn from a t-distribution with
n− 1 degrees of freedom. We get similar results if we resample using a gaussian distribution
instead of a t distribution. We then treat either SB clone 1, 2, or 3 as the outgroup (instead
of L), and repeat the multivariate ANOVA procedure to get F statistics for each resampled
sample. We concatenate the samples from cases where each of the SB clones is treated as the
outgroup, so that the final size of the null distribution is 30,000 samples. We calculate the
p-value as the fraction of values in the null distribution that are larger than the F statistic.

We calculated empirical growth rates (Figures 2, S10) over the course of the 24 hour
cycle using the total ecotype abundance data, n(t). For each pair of adjacent time points in
a cycle, we used ordinary least squares to extract estimates of the growth rate (r) and its
standard error, using the model log n(t) = rt+n0+ϵt. Growth rate estimates were compared
using Wald’s test, and p-values were corrected via a Benjamini-Hochberg FDR correction.

We fit generalized logistic models (Richard’s curves) to the 24 hours growth curve abun-
dance data to extract estimates of lag times for each strain and condition (Figure S11) [99].
Denoting the fitted abundance as n̂(t), we use the following form for the generalized logistic
model,

n̂(t) = a(1 + Te−k(t−tm))−1/T + b , (4)

We jointly infer the parameters a, T , b, k, tm by using inverse-variance weighted least
squares, i.e. min

∑
i

∑
j(nj(ti)− n̂j(ti))

2/vi,j, where i labels time points and j labels biolog-
ical replicates. We use vi,j as the variance of the measurement error, which is taken to be
the variance of a Poisson random variable. We implement the global minimization by using
the differential evolution optimization algorithm implemented in scipy [100]. We used stan-
dard bootstrapping to estimate the sampling distributions of the lag times, L, with 1000
resamples. We removed outliers from the bootstrapped distributions by first robustly esti-
mating the standard deviation, σ̂, of the distribution via the median absolute deviation
(MAD), σ̂ = med L - –med˝ L/0.67449. Then we counted a bootstrapped replicate as an
outlier, and discarded it, if it was more than 3 standard deviations away from the median,
3σ̂ > L - –med˝ L. We then used the bootstrapped distributions to compute confidence
intervals and p-values.

Whole Genome Sequencing

To perform short-read sequencing of SB and S clones (see SI), we first grew the clones
overnight in 1mL of DM2000, then pelleted the cultures and extracted genomic DNA with
the DNeasy Blood and Tissue Kit (Qiagen 69504). We prepared the sample libraries with
NEBNext DNA Library Prep kit for Illumina according to the manufacturer’s protocol (New
England Biolabs E7645). We sequenced the samples with the Illumina 4000 HiSeq 150PE.
We used breseq (v0.33.2) [101] to compare raw reads to the REL606 genome [102] (Gen-
Bank: CP000819.1) and to the S ancestor of each SB, and then call genetic variants. Read
coverage was around 100x across the genome, for all samples. We used default parameters for
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the breseq pipeline, which uses a bayesian model to call single nucleotide polymorphisms,
incorporating information from the FASTQ phred quality score from each read [101].

We attempted to determine if there was any parallelism between 6.5k SB clone mutations
on the level of KEGG annotations, focusing on nonsynonymous and indel mutations. We
excluded 6.5k SB clone 4 from the analysis, as it is a sister to clone 2. We first compiled all
KEGG annotations of all genes with nonsynonymous and indel mutations across the 6.5k
SB clones, and computed how many times a gene mapped to a given annotation. For each
annotation that appeared, only one gene in our set mapped to it. We then expanded our
list to include genes immediately adjacent to intergenic mutations, as well as pseudogenes
affected by mutations. In the expanded gene set, we see two genes each map to three different
annotations (carbon metabolism, exopolysaccharide biosynthesis, sulfur metabolism). We
had planned to implement the multiplicity test to detect parallelism presented in Good et
al. (2017) [64], however, they recommend focusing on set items with 3 or more hits to avoid
false positives from low counts. We thus do not believe that there is any parallelism between
mutations on the level of KEGG annotations.

To perform long-read sequencing of SB and S clones (see SI), we again grew the clones
overnight in 1mL of DM2000, then pelleted the cultures. High-molecular weight DNA
extraction was performed via a standard phenol-chloroform extraction and isopropanol pre-
cipitation. Distribution of DNA fragment sizes were obtained using the Agilent Femto Pulse
System. Fragment size selection was performed using Pippin Prep (Sage Biosciences). The
samples were prepared for sequencing with the Nanopore ligation sequencing kit (Oxford
Nanopore, SQK-LSK109). The libraries were then sequenced on an Oxford Nanopore Min-
ION. We used minimap2 [103] and sniffles [104] with default parameters to detect
structural variants.

RNA Sequencing

6.5k S and L clones 1 and 2 were isolated from REL11555 and REL11556 respectively; 6.5k
SB clones 1 and 2 were the same clones as previously described. Cultures of 6.5k S , SB,
and L clones 1 and 2 were started directly from glycerol stock into 1ml LB + 2g/L glucose
+ 20mM pyruvate, as a pre-culture. We started two independent cultures for each clone as
biological replicates. After overnight growth, the cultures were washed by centrifuging the
cultures at 2500xg for 3 minutes, aspirating the supernatant, and resuspending in DM0,
repeated three times. Then, the cultures were diluted 1 : 10−4 into 1mL fresh DM media
supplemented with 4g/L glucose, in glass tubes. After approximately four hours of growth
at 37°C, the cultures were again diluted 1 : 50 in 1mL of the same media in glass tubes. The
cultures were grown shaken at 37°C. The cultures were grown to mid-exponential phase, i.e.
until OD ∼ 0.4, then the entire culture was immediately centrifuged at 2500xg for 3 minutes
to pellet. Immediately after centrifugation, we resuspended the pellets in 25µL TES buffer
(10 mM Tris-HCl [pH 7.5], 1 mM EDTA, and 100 mM NaCl) and then lysed the pelleted
cultures with 250U/µL lysozyme (Ready-Lyse Lysozyme Solution; Lucigen R1804M) at room
temperature for 5 minutes. For all subsequent steps, we used Monarch Total RNA Miniprep
Kit (New England BioLabs T2010S) according to the standard given protocol for gram-
negative bacteria. Samples were eluted in 30µl nuclease-free water, and stored at -80°C. The
concentration and purity of all RNA samples was quantified using Qubit.

RNAse-free DNAse (Invitrogen AM2222) was used to treat the samples for DNA removal.
The library preparation was conducted using Illumina’s Stranded Total RNA Prep Liga-
tion with Ribo-Zero Plus kit and 10bp IDT for Illumina indices. Subsequently, the samples
were sequenced using NextSeq2000, resulting in 2x51bp reads. The process of demultiplex-
ing, quality control, and adapter trimming was carried out using bcl-convert (v3.9.3) and
bcl2fast (v2.20.0.445) (both are proprietary Illumina software for the conversion of bcl
files to basecalls). HISAT2 (v2.2.0) [105] was used for read mapping. Reads were mapped to
the REL606 genome [102] (GenBank: CP000819.1). The read quantification was performed
using the functionality of featureCounts (v2.0.1) in Subread [106]. All of the above steps in
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the pipeline were performed with default parameters, the last two steps also were run with
--very-sensitive and -Q 20 tags, respectively. All sequencing and pre-processing steps
were performed by SeqCenter, LLC.

After pre-processing, we obtained a matrix of read counts for each gene for each sam-
ple. With this table, we used DESeq2 (v1.38.3) [107] to compute fold change in expression
between strains and variance-stabilized relative expression values for each gene across sam-
ples (blindly with respect to the design matrix), all with default parameters. We used the
variance-stabilized relative expression values for the principal components analysis (PCA).
We used the ashr method (v2.2) [108] with default parameters to shrink and regularize
the log2 fold changes in expression. We computed log2 fold change in expression between
samples in two ways, (1) treating the SB clones as one ”strain”, and (2) treating the SB

clones as separate, so that we get different fold changes in expression for each clone. Oth-
erwise, for S and L, we pooled data across the two clones and biological replicates when
computing fold change in expression. We used the package clusterProfiler (v4.6.2) [109]
to perform the KEGG gene set enrichment analysis (GSEA) [110]. We used the previously
computed log2 fold change in expression as the metric to pre-sort the list of genes. We
used the gseKEGG method along with the parameters organism="ebr", nPerm=1000000,
minGSSize=3, maxGSSize=800, eps=1e-20 to perform the analysis. We also generated the
GSEA plots (Figures S16, S17) with clusterProfiler.

Code, data, and strain availability

All raw genomic and transcriptomic data has been deposited at the NCBI Sequence Read
Archive (SRA), under BioProject accession number PRJNA970313. Code and processed data
are available at https://github.com/joaoascensao/Rediversification. All newly constructed
strains and plasmids presented in this paper are available upon request.
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Chapter 4: Large genotype frequency fluctuations are linked to

decorrelated offspring number stochasticity

Abstract

Understanding the factors that drive population fluctuations is crucial for predicting and controlling eco-
logical and evolutionary dynamics. Our group and others have observed large population fluctuations
that are difficult to explain through genetic drift, thought to be the primary source of genotype fre-
quency fluctuations. We developed a model to delve deeper into this issue, focusing on the dynamics
of genotypes within a community. Genetic drift generically arises from independent offspring number
fluctuations. However, in our model, when offspring fluctuations are correlated between individuals, fluc-
tuations appear with distinctive scaling behaviors. The correlated offspring fluctuations can strongly
affect the total population abundance, and can also affect the genotype frequency if the correlated fluc-
tuations between genotypes are sufficiently decoupled from each other. We thus refer to these frequency
fluctuations as ”decoupling fluctuations”. Empirical measurements using model microbial populations
quantitatively supported our model, revealing that decoupling fluctuations between strains can lead to
frequency fluctuations far larger than those from genetic drift. By measuring densely sampled intra-cycle
time-courses across many replicates, we show that initially close trajectories exponentially diverge from
each other, suggesting that underlying chaotic dynamics cause the observed correlated offspring numbers
between individuals. Subtle environmental fluctuations can be amplified by the chaotic dynamics, causing
batch correlations between replicates grown in the same environment. We also explored the evolutionary
implications of these decoupling fluctuations, showing that they can significantly influence the fixation
probability of a strain and the site frequency spectrum. Notably, decoupling fluctuations arise from a suf-
ficiently generic mechanism such that we expect they are common across biological populations, strongly
affecting evolutionary dynamics. Overall, our findings highlight the importance of considering correlated
fluctuations in understanding population dynamics and their evolutionary consequences.

Introduction

The process of evolution is deeply shaped by the interplay between the deterministic and
stochastic forces acting on populations. Natural selection pushes allele frequencies up or
down in the population, depending on the relative allele fitness, while genetic drift causes
random allele frequency fluctuations, with no preferred direction [1–5]. Theoretical popu-
lation genetics has provided many examples of how natural selection and genetic drift can
interact with each other in complex ways. For example, the probability that a mutant will
fix, or take over, in a population is determined primarily by dynamics dominated by genetic
drift at low mutant frequencies, along with dynamics dominated by natural selection at
high frequencies [3, 6, 7]. The transition point between the two regimes is set by the rela-
tive strength of selection and drift. Even in purely neutral scenarios, where natural selection
is not present, genetic drift can cause surprisingly complex dynamics. For example, while
new mutations increase genetic diversity in a population, genetic drift can cause mutants
to go extinct, decreasing diversity. The interaction leaves behind a characteristic power-law
spectrum of the fraction of mutants in a population [8].

Direct and precise measurements of population stochasticity have recently become pos-
sible, allowing us to compare experimental observation with theoretical expectations. These
measurements, primarily in microbial populations, have given us a deeper understanding of



71

Fig. 1 Observation of large genotype frequency fluctuations. (A, B) Randomly barcoded libraries of E. coli strains S and
L were propagated together in their native serial dilution environment (previously reported data [16]). In the muller plot
representation of lineage sizes, we see that the total frequency of S relative to L shows large fluctuations. However, neutral
barcoded lineages within S show substantially smaller fluctuations relative to each other. (C) By quantifying the strength of
fluctuations, we see that total frequency fluctuations between S and L are several orders of magnitude larger than fluctuations
between neutral lineages and expected fluctuations from bottlenecking. (D, E) We propagated replicate cocultures of S and L
strains together, after splitting them from the same mother culture at day zero. We see that even after one day of propagation,
there is already more variance between replicates than expected from genetic drift, and the variance accumulates over time.
Note that the experiments in panels A-C and in D-E were performed at different culture volumes (800mL versus 1mL), but
at the same daily dilution regime.

how genetic drift arises from the behaviors and interactions of individuals within the popu-
lation [9–11]. However, groups often observe anomalous fluctuations in laboratory microbial
populations that are neither consistent with genetic drift nor with measurement error [12–
15]. These fluctuations are often too large to be easily explained by genetic drift, and share
other unexpected features, such as batch correlations [13]. The microbial populations are
grown under tightly controlled laboratory conditions, so the presence of these large fluctu-
ations is currently unexplained. It is possible that a new source of fluctuations, aside from
genetic drift, must be invoked to explain the fluctuations, which could alter the evolution of
these populations.

To explore the nature of these frequency fluctuations, we turned to using strains iso-
lated from the E. coli Long Term Evolution Experiment (LTEE). The LTEE is a well-known
model system in experimental evolution, that has been propagating and evolving populations
of E. coli for over 70,000 generations [17]. As a simple system, we used two LTEE-derived
strains that have coevolved with each other, referred to as S and L [18–22]. S and L diverged
from each other early in the LTEE evolution, around 6.5k generations, where S emerged
as an ecologically-distinct, but closely related strain that partially invaded the initially
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L-dominated population [22, 23]. They are a useful model system because they are well-
characterized, and they differ significantly even right after they diverged from one another
at 6.5k generations.

We propagated 6.5k S and L clones (tagged with fluorescent proteins[24]) together over
several days in coculture and precisely measured the relative strain frequency with flow
cytometry. We observed large genotype frequency fluctuations; independent biological repli-
cates, grown in the exact same environments, fluctuated apparently randomly, with frequency
displacements of up to several percent (Figure 1A). Measurement error is not strong enough
to fully account for the observed strength of the fluctuations. It also cannot be explained
by genetic drift. The strength of genetic drift is controlled by a parameter known as the
effective population size, Ne. The variance induced by genetic drift from one time point to
the next is var f ′ = f(1 − f)/Ne [8]. We previously [16] obtained estimates of Ne for the S
and L clones by measuring the fluctuations of many neutrally-barcoded variants of S and L,
across both monoculture and coculture conditions. The estimates were consistent with an
effective population size that was an O(1) factor smaller than the census bottleneck popula-
tion size, Ne ≈ 5 · 104/mL. Given the estimated Ne, genetic drift is too weak to account for
the strength of the observed fluctuations (Figure 1BC). In fact, Ne would have to be several
orders of magnitude smaller to account for the fluctuation strength. We obtained the Ne

estimate with barcoded variants at a low frequency, f ≲ 10−3, and used the with-in strain
frequency fluctuations rather than between strain fluctuations. Thus, we hypothesized that
the observed large frequency fluctuations were either caused by a source of fluctuations that
is only detectable at high frequencies, or is a something unique to between-strain fluctua-
tions. We built a mathematical model of population fluctuations to quantify possible sources
of fluctuations.

Results

Model of population fluctuations

To model the process of population fluctuations, we first consider a simple population con-
sisting of one strain, where all individuals are identical. The change in population size of a
strain µ from size Nµ in the current time point to size N ′

µ in the next time point can be
decomposed as

∆Nµ ≡ N ′
µ −Nµ =

Nµ∑
i=1

n′
µ,i − nµ,i ≡

Nµ∑
i=1

∆nµ,i , (1)

where ∆nµ,i ∈ [−1, 0, 1, . . . ], i ∈ [1, Nµ] is -1 plus the offspring number of the ith cell of
the Nµ cells of the µ strain that exist at the current time step. We know that if all cells
behave the same way, we have to demand

⟨∆nµ,i∆nµ,j⟩ =
{
cµ,0 for i = j

cµ,1 for i ̸= j
(2)

This is the only mathematical form of the covariance parameters that won’t change if
we relabel the cells–a symmetry argument that can easily be extended to multiple strains.
This assumes that the offspring number distributions have finite covariances, i.e. are not
heavy-tailed. Note that c1 < c0 follows from 0 < ⟨(∆ni −∆nj)

2⟩ = 2c0 − 2c1.
We can express the variance in total population size in terms of c0 and c1,

var(N ′
µ) = (cµ,0 − cµ,1)Nµ + cµ,1N

2
µ . (3)

The form of this variance scaling has been previously noted [25, 26]. Power law mean-
variance scaling of population abundance has been widely observed in ecology, where it is
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Fig. 2 Model of population fluctuations. (A) We consider a population of individuals, subdivided into two strains. At time
zero, there are a specified number of individuals in each strain. After some period of time, each individual has left behind some
random number of descendants, drawn from a distribution that may be correlated between individuals. (B, C) The abundance
of populations and relative frequencies of strains will generally differ across different instances/replicates, due to the random
nature of the process. (D, E) Our model suggests specific scaling behaviors for both the variance of a total number of individuals
in each strain and variance of the relative frequencies. Specifically, there is a linearly scaling component caused by independent
fluctuations (genetic drift), and a quadratically scaling component caused by fluctuations correlated between individuals. The
quadratically scaling fluctuations will appear in abundance trajectories if there are correlated fluctuations, but they will only
appear in frequency trajectories if intra-strain correlations are stronger than inter -strain correlations.

known as Taylor’s power law [27–30]. For large enough values of Nµ, the distribution of
N ′

µ will converge in distribution to a gaussian random variable, because of the central limit
theorem. So the fluctuations of N ′

µ will solely depend on the variance, var(N ′
µ).

We can now extend the analysis to a population consisting of two strains labeled A and
B, possibly with non-identical properties (Figure 2A). Extending the symmetry argument
from above, we now require five covariance parameters to fully describe the population,

⟨∆nµ,i∆nν,j⟩ =


c0A for i = j and µ = ν = A
c0B for i = j and µ = ν = B
c1A for i ̸= j and µ = ν = A
c1B for i ̸= j and µ = ν = B
cAB for i ̸= j and µ ̸= ν

(4)

The expression for the variance of the total population size for each strain is the same as
in equation 3. The covariance of the total population sizes between strains is,

cov(N ′
A, N

′
B) = cABNANB = cABN

2
totfA(1− fA) . (5)

Where Ntot = NA + NB is the total population size, and fA = NA/(NA + NB) is the
frequency of strain A in the population. The frequency of a strain will also change from one
time point to the next, induced by the fluctuations of individuals. The expected frequency
variance at the next time point can be written as,

var(f ′
A) =

〈( ∑NA

i=1 1 + ∆nA,i∑NA

i=1 1 + ∆nA,i +
∑NB

j=1 1 + ∆nB,j

− NA

Ntot

)2〉
(6)

If we assume that the frequency deviations are small, we can expand in the deviations to
obtain,
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var(f ′
A) ≈ f 2

A

〈(∑NA

i=1 ∆nA,i

NA

−
∑NA

i=1∆nA,i +
∑NB

j=1∆nB,j

Ntot

)2〉
(7)

=
fA(1− fA)

Ntot

[(c0A − c1A)(1− fA) + (c0B − c1B)fA]

+ (c1A + c1B − 2cAB)︸ ︷︷ ︸
=δ

f 2
A(1− fA)

2 . (8)

Similar forms for the frequency variance were found by Takahata et al. (1975)[31] and
Melbinger and Vergassola (2015)[32]; however, their models are both special cases of our
model, and our model can be derived in a more generic way. The new composite parameter
δ quantifies the degree of decoupling between the two strains. If the strains are identical
such that c1A = c1B = cAB, then the quadratically-scaling fluctuations will vanish. These
fluctuations will only appear if individuals within a strain are more correlated with each
other compared to individuals between strains.

We note that if we consider the case where c0A − c1A = c0B − c1B, then we can simplify
equation 8,

var(f ′
A) =

fA(1− fA)

Ne

+ δf 2
A(1− fA)

2 . (9)

Where the effective population size is defined as Ne = Ntot/(c0A − c1A). This form of the
variance of strain frequencies clearly shows that it is composed of two components. The first
component arises from independent fluctuations of individuals, linearly scales with frequency,
and corresponds to classical genetic drift. The second, quadratically scaling part arises when
individual fluctuations between strains are decoupled to a degree, thus we call them ”decou-
pling fluctuations”. Elsewhere in the literature, similar fluctations have been described as
”fluctuating selection” [31, 32]. However, the mechanism through which these fluctuations
arise in our model does not depend on invoking selection. Various other mechanisms [27–30]
can cause the correlated individual fluctuations that are linked to Taylor’s power law abun-
dance fluctuations that scale varN ∝ N2, including inherently chaotic dynamics [33] and
dispersal [34].

Empirical fluctuation scaling measurements

Our model of population fluctuations suggests that measuring the scaling of abundance
and strain frequency fluctuations with respect to initial abundance and strain frequency
may provide insight on the nature of those fluctuations. Thus, we sought to measure those
relationships in the S and L coculture system, measuring population abundance via flow
cytometry (see Methods). Briefly, we initially grow each strain in monoculture for several
serial dilution cycles, before mixing the two strains together at a defined frequency. After
one more growth cycle, we take a flow cytometry measurement of the population, and then
split it into biological replicates (Figure 2BC). After another growth cycle, we again take
flow cytometry measurements of all replicates, and then calculate variances across replicates.

We performed the described experiment, starting S in the minority, and varying the initial
frequency over about two orders of magnitude, and using 16 biological replicate per initial
frequency. Once we calculate the frequency variance across replicates, we see that the variance
clearly scales like var fS ∼ f 2

S (Figure 3A). From equation 9, we see that the quadratically
scaling frequency fluctuations are predicted to occur at small frequencies fS ≪ 1, so that
the 1 − fS nonlinearity is negligible, but large enough so that the effect of genetic drift is
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Fig. 3 Empirical scaling of population fluctuations. (A) After growing S and L together at defined relative frequencies, we
split the cocultures into 16 biological replicates. We then grew the culture for another cycle, and measured the variation across
cocultures. We measured (B) variance of genotype frequency along with (C) variance and covariance of absolute abundance.
The points represent experimental measurements, and the dashed lines are fitted lines with the indicated scaling. All of the
scaling relationships are consistent with our model of population fluctuations. Error bars represent 95% CIs.

negligible, fS ≫ 1/(Neδ) (slightly different expression when the genetic drift parameters
differ between strains). Thus, it appears that the data falls into this regime. There is some
evidence that the lowest data point in Figure 3A may fall into the cross-over between the
linear and quadratic regimes, but it is not completely clear. We compared the variance to
the mean frequency, instead of the frequency at the beginning of the cycle, because the
within-cycle frequency dynamics show that the mean frequency is a better measure of the
frequency right because variance starts to accumulate (Figure 4). But either comparison does
not change the scaling behavior significantly.

We also measured the scaling behavior of the variance of the absolute abundance of
S and L, var(NS( and var(NL) respectively, and the covariance between the two strains
cov(NS, NL) (Figure 3B). Consistently, S abundance scales like var(NS) ∼ f 2

S, L abundance
stays approximately constant, and the covariance scales like cov(NS, NL) ∼ fS. Given the
regime the data lies in, these scaling behaviors are consistent with equations 3 and 5. We also
measured total abundance fluctuations as a function of initial population sizes, by varying
the volume of the culture while holding the dilution rate constant. We also found that
var(N ′) ∝ N2, in both monoculture and coculture conditions, also consistent with equation
3. This indicates that the abundance fluctuations are present even in the absence of coculture
conditions.

These data very clearly indicate that the large frequency fluctuations we see cannot be
explained by independent fluctuations of individuals, i.e. genetic drift. Instead, fluctuations
must be correlated across individuals. Furthermore, the data indicate that it is not the
case that the fluctuations predominantly arise from only one strain; S and L abundance
fluctuations are of about the same magnitude, with S perhaps fluctuating slightly more by an
O(1) factor. The correlation between S and L abundance fluctuations ρAB = cAB/

√
c1Ac1B is

over 90%, demonstrating that a slight decoupling in correlated fluctuations between strains
in sufficient to generate noticeable decoupling fluctuations.

The form of frequency fluctuation scaling also appears in other datasets collected by inde-
pendent groups. Venkataram et al.(2016) [12] used a barcoding system to track frequency
trajectories of many adaptive variants of S. cerevisiae yeast. They also find large frequency
fluctuations when adaptive variants are at high frequencies. They see that variance in fre-
quency across time points scales like ∼ f at low frequencies and ∼ f 2 at high frequencies,
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Fig. 4 Within-cycle chaotic dynamics of strain frequencies. (A) After splitting cocultures of S and L into multiple biological
replicates, we measured strain frequencies over the course of a twenty-four hour cycle (purple lines: 5 replicates; blue/green lines:
23 replicates). Each line represents a biological replicate. (B) Quantifying the variance across replicates over time, we see that
the variance peaks both in the first 5 hours, and at the end of the cycle. However, the initial variance is not maintained beyond
the first 5 hours, suggesting that the later accumulation of variance is the primary contributor to the decoupling fluctuations.
(C) We plotted the variance (after 7 hours) on a semilog scale, revealing that the variance appears to increase exponentially over
time. The black dashed line represents the exponential fit. Exponentially increasing variance between initially close replicates
is indicative of chaotic dynamics. All error bars represents 95% CIs.

again consistent with equation 8. While Venkataram et al. only measured relative frequen-
cies and did not collect total abundance data, the frequency fluctuation scaling suggests that
decoupling fluctuations might be ubiquitous across systems.

Overall, the data quantitatively supports our model of population fluctuations, where
decoupled fluctuations between strains can give rise to frequency fluctuations far larger than
from genetic drift.

Within-cycle growth measurements reveal chaotic dynamics

Populations derived from the E. coli LTEE are grown in a serial dilution, glucose minimal
media environment, such that the populations are transferred at a 1:100 dilution into fresh
media every twenty-four hours. This set-up creates a seasonally-varying environment, where
the populations are switching strategies throughout a cycle as it proceeds from feast to famine
and back again [20, 35, 36]. We reasoned that the within-cycle dynamics of replicate cultures
could help to reveal the origin of decoupling fluctuations. We find evidence that underlying
chaotic dynamics are the source of the birth-death correlations between individuals and
decoupling fluctuations.

Thus, we measured the population dynamics of S and L coculture over the course of the
twenty-four growth cycle. In a similar process as previously described, after several initial
monoculture growth cycles, we mixed S and L such that S initially occupies around 5% of
the population. After one more growth cycle in coculture, we split the culture into multiple,
independent biological replicates, and started to take population measurements over defined
time increments via flow cytometry. We grew all of the populations together in a shaking
37°C water bath, to minimize the effects of any potential environmental fluctuations. We
measured the dynamics of the first eight hours and those of the last sixteen hours separately
(on different days), because we found that the two periods had distinct experimental design
requirements. This is primarily because the first eight hours (i.e. during exponential phase)
is the period of the fastest dynamics, so we had to use both fewer biological replicates and
a more dense sampling strategy (see Methods for details).

We first look at a representation of the raw data of the within-cycle population dynamics,
the dynamics of S frequency, fS (Figure 4A). We see relatively complex dynamics, especially
in the first eight hours. As previously described, [24] the dynamics can be explained by
differences in lag time, exponential growth, and stationary phase behavior. The frequency
of S initially increases because it ”wakes up” from lag phase earlier than L. However, L
has a higher growth rate on glucose, so fS starts to decline once it wakes up. Then after a
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transition period, fS starts to increase again due to a stationary phase advantage and better
growth on acetate [20, 24, 37].

We quantify the variance between replicates, and observe that there are periods of
increased variance in approximately the first 5 hours, and the last 7 hours (Figure 4B). The
increased variance between replicates in the first 5 hours may be caused by higher measure-
ment error or fast dynamics, but its origin is still not clear. The fact that the variance drops
close to zero by eight hours, instead of accumulating, suggests a non-biological origin to
explain the initial variance. In contrast, after a period where the variance does not increase
much, we see a steady accumulation of variance later in the cycle. Specifically, the variance
appears to be increasing exponentially at a constant rate, from around 7 hours to the end
of the 24 hour cycle (Figure 4C)). The data fits an exponential trajectory better than linear
or various other non-linear models.

Exponentially increasing variance between replicates that are initially close to each other
is significant because it is indicative of chaotic dynamics. Chaotic dynamics are classically
indicated by extreme sensitivity to tiny perturbations (and a bounded phase space), such that
small differences in the initial conditions exponentially increase over time. The observation
of exponentially increasing variance is equivalent to the observation of pairwise exponential
divergence.

We used another standard method to detect chaotic dynamics and infer a largest Lya-
punov exponent [38]. We inferred a Lyapunov exponent of 0.15 hr−1 (95% CI: [0.119, 0.184]),
which is significantly positive (p = 0.006). This is consistent with the Lyapunov exponent
estimated from the exponentially increasing variance, 0.11 hr−1 (95% CI: [0.072, 0.140]). The
inverse of the Lyapunov exponent (“Lyapunov time”) represents a characteristic timescale of
the system, effectively representing how long a system will appear to be predictable. The Lya-
punov time is approximately 5-10 hours, implying that trajectories appear to be stochastic
on longer timescales.

The replicate cultures were all grown in the same shaking water bath, and seeded from
the same mother culture, so initial variance between cultures should arise from the initial
bottleneck, i.e. var f(0) = f(1−f)/Nb ≈ 4.8 ·10−7. The exponential fit of the variance from 7
to 24 hours can give a prediction for the initial variance, if exponential growth was constant
over the timecourse. Intriguingly, the prediction is very similar to the variance induced by
the bottleneck, var f(0) = (5.2 ± 1.2) · 10−7. This raises the possibility that variance is
accumulating in a steady manner over the timecourse, including during exponential phase.
However, this possibility would be obscured by the fast dynamics in exponential phase, which
makes it difficult to accurately measure how variance is changing over time.

Together, these data suggest that decoupling fluctuations originate from underlying
chaotic dynamics. The overnight timecourses were necessary to reveal chaos, because the sys-
tem shows a relatively fast lyapunov time of approximately 5-10 hours, so timepoints taken
every 24 hours appear effectively stochastic.

Evolutionary implications of decoupling fluctuations

As fluctuations from genetic drift have strong effects on evolutionary outcomes, it is rea-
sonable to expect that the presence of decoupling fluctuations may also have evolutionary
implications. To study the implications of decoupling fluctuations, we consider our model in
the limit of continuous time and individuals under constant selection,

∂tf = [s− c1Af + c1B(1− f)− cAB(1− 2f)] f(1− f)

+
√

f(1− f) [κA(1− f) + κBf ] + δf 2(1− f)2η(t) . (10)

Where η(t) is standard gaussian white noise, ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = δ(t − t′).
Takahata et al. (1975)[31] and Melbinger and Vergassola (2015)[32] studied similar stochastic
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Fig. 5 Theoretical predictions of the evolutionary implications of decoupling fluctuations. (A) The fixation probability of
strain A, when in coculture with strain B, as a function of the fitness effect of A. (B) The site frequency spectrum as a function
of the frequency. In both plots, the blue lines represent quantities with decoupling fluctuations, across different values of c1A.
The black dotted lines represent the case where there are no decoupling fluctuations, but there is still natural selection. The
red dashed lines represents the case where there is neither decoupling fluctuations nor natural selection. Across both plots,
c1A = c1B , ρAB = 0.5, κA = κB = 10−3. In (A), fA,0 = 10−3, and in (B), sA = 0.02.

processes, but we consider the more general form. We have combined several parameters for
notational simplicity,

κA = (c0A − c1A) /Ntot (11)

κB = (c0B − c1B) /Ntot . (12)

Fixation probability

We first consider the fixation probability of strain A in our two-strain community, i.e. the
probability that A completely takes over the population, or that B goes extinct. By applying
the Kolmogorov backwards equation that corresponds to equation 10, we find the fixation
probability of strain A in terms of the initial strain frequency fA,0,

pfix =

(
β+δ(1−2fA,0)−κA+κB

β−δ(1−2fA,0)+κA−κB

)γ/β
−
(

β+δ−κA+κB

β−δ+κA−κB

)γ/β
(

β−δ−κA+κB

β+δ+κA−κB

)γ/β
−
(

β+δ−κA+κB

β−δ+κA−κB

)γ/β . (13)

Which is in terms of new compound parameters,

β =
√

(κA − κB)2 + δ(δ + 2(κA + κB)) (14)

γ = 2s− c1A + c1B + κA − κB (15)

In the limit of weak correlated fluctuations and when κA = κB, we find that pfix reduces
to the classical fixation probability of a mutant under constant selection[8], as expected.
When correlated fluctuations are stronger, and when fA,0 ≪ 1, we see that the fixation
probability is higher at low s compared to the case without decoupling fluctuations (Figure
5A). This is an effect of the effective negative frequency-dependent selection arising from the
correlated fluctuations[31, 32]–the strain A has an effective positive relative fitness at low
frequencies, the crucial period for new mutations when they are most at risk for extinction.
Thus, selection is not effective when s ≪ c1B − cAB.
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Site frequency spectrum

The site frequency spectrum (SFS) is a commonly used summary of the genetic diver-
sity within a population. It describes the expected density of derived alleles at a given
frequency; specifically pSFS(f)df is the number of derived alleles in the frequency range
[f − df/2, f + df/2] [39]. Different dynamical processes can leave different characteristic sig-
natures on the site frequency spectrum, so empirical site frequency spectra are often measured
to infer aspects of the underlying evolutionary dynamics.

We calculate the SFS for alleles effected by decoupling fluctuations by leveraging previ-
ously described approaches [40]. We find a general closed form solution for the SFS in terms
of the frequency of alleles with parameters from A,

pSFS(fA) = θ
ϕ(fA)− ϕ(1)

(1− ϕ(1))(1− fA)fA
(16)

ϕ(fA) =

(
(β + δ − κA + κB)(β − δ(1− 2fA) + κA − κB)

(β − δ + κA − κB)(β + δ(1− 2fA)− κA + κB)

)γ/β

. (17)

Where θ = Ntotµ is the population mutation rate. Again, we find that in the limit of weak
correlated fluctuations and when κA = κB, equation 16 reduces to the classical expression[8]
for the site frequency spectrum for mutations under constant selection, i.e.

pclassSFS (fA) = θ
e2s/κA(1− e−2s(1−fA)/κA)

(e2s/κA − 1)fA(1− fA)
. (18)

We see that at low frequencies, the SFS both with and without decoupling fluctuations
decays as ∼ 1/f , which is also the expectation for purely neutral alleles [8] (Figure 5B). The
major difference between the SFS with and without decoupling fluctuations lies in the uptick
at high frequencies, where the uptick rises more quickly when the decoupling mutations are
present (Figure 5B). Specifically, the asymptotic scaling behavior of the SFS as fA → 1 is,

pclassSFS (fA) ∼ f
s−κA
κA

A (19)
In contrast, in the presence of decoupling mutations, we find a different asymptotic scaling

behavior,

pSFS(fA) ∼ f
s+κA−2κB+c1B−cAB

κB
A (20)

Thus, the shape of the SFS at large frequencies can be strongly affected by the presence
of decoupling fluctuations. The magnitude of the power-law exponent is not sufficient to
distinguish the effects of constant selection and decoupling fluctuations.

Discussion

In this study, we identified significant population fluctuations that are much larger than
what can be attributed to genetic drift or measurement error. We constructed a simple
and generic model of population fluctuations, revealing that their magnitude is the sum of
linearly-scaling genetic drift, and quadratically-scaling decoupling fluctuations. While genetic
drift arises from independent individual fluctuations, decoupling fluctuations arise arise when
individuals are more correlated within strains compared to between strains. By measuring
the scaling relationships of the population fluctuations, we showed that the observed large
fluctuations were indeed caused by the presence of decoupling fluctuations.

Population abundance fluctuations are a well known, near-universal feature of popula-
tions across the tree of life, many of which follow Taylor’s power law [27–30]. Our model
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provides a general description of abundance fluctuations with few assumptions–namely it
just requires that populations must be large enough so that the central limit theorem applies,
and descendant number variances are finite. The scaling behavior of abundance and fre-
quency variance over time will be valid for any population dynamics where the assumptions
apply. The presence of ubiquitous abundance fluctuations suggests that correlated fluctua-
tions between individuals are common. Importantly, our model predicts that any population
composed of two or more strains that have sufficiently decoupled individual fluctuations will
experience decoupling fluctuations. Because many populations experience abundance fluc-
tuations with a Taylor’s law exponent near 2 [cite], we expect that decoupling frequency
fluctuations should be common if offspring number correlations are at least partly genetically
determined, and thus able to be changed by mutation.

In our system, the correlated birth-death fluctuations, and decoupling fluctuations in
frequencies, appear to be caused by underlying chaotic dynamics, as demonstrated by the
exponential divergence of nearby trajectories. The fluctuations appear even under the most
tightly controlled environment we could create–among replicates from the same mother cul-
ture in the same shaking water bath. Chaotic dynamics are known to be possible even in
simple, single-strain populations, caused by e.g. overcompensation [41, 42]. Thus, we believe
that these decoupling fluctuations are inescapable, and a fundamental aspect of the sys-
tem. The underlying source of the fluctuations in other, related microbial systems [12–15]
remains unclear. A number of mechanisms are known to cause abundance fluctuations [27–
33]. However, the recently reported extreme sensitivity of barcoded yeast populations to
subtle variations in the environment [13] is consistent with chaotic dynamics. Chaotic abun-
dance dynamics have been suggested to be common among wild populations [43], and have
been demonstrated in a number of carefully controlled laboratory [44–47] and field [48–50]
systems. Together, this opens the possibility that chaotic dynamics are also common in exper-
imental microbial populations, and could play an important role in evolutionary dynamics
by influencing genotype frequency dynamics across different systems.

The results of our study have implications for the inference of fitness effects in microbial
populations. Subtle environmental fluctuations can be amplified by the chaotic dynamics,
which can cause batch correlations among replicates grown in the same conditions. These
batch correlations may be mistaken for a genuine fitness effect, especially if the autocorre-
lation time of the environment is on a similar timescale as the evolution experiment. Thus,
special care must be taken when designing experiments to measure genotype fitness effects.
For example, experimenters could perform biological replicates separately on different sets
of days, or continuously measure environmental variables (e.g. temperature, humidity) over
the time course to quantify the effect of environmental fluctuations.

A number of emergent effects on evolution could arise from the presence of decoupling
fluctuations. For example, we showed that the fixation probability can be drastically shifted
by the presence of decoupling fluctuations; thus, the fate of a mutant will not only depend
on its fitness effect, but also on its decoupling parameters. The distribution of mutant fitness
effects (DFE) is currently thought to largely shape the evolutionary dynamics [51, 52]. But
the DFE may (partially) lose its predictive power in the face of decoupling fluctuations; we
may need to consider a more general joint distribution, between fitness effects, drift effects,
and decoupling parameters, especially if the joint distribution has non-trivial structure.

In our theoretical analysis, we focused on the strong selection-weak mutation regime,
where beneficial mutations rise and fix before another establishes. However, it is still unclear
how decoupling fluctuations would change the dynamics under other regimes, for example
in the clonal interference regime [53]. Additionally, broad-tail offspring number distributions
can emerge out of a diverse array of growth processes [54–56], but their effects on dynamics
may change if such distributions could be correlated across individuals. Both extensions are
likely fruitful avenues for future work.

Overall, we presented experimental measurements for the scaling behavior of population
fluctuations, and showed that we could explain them through a generic and extendable
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theoretical framework. We found that decoupling fluctuations affecting genotype frequencies
can arise quite generally, through a number of mechanisms, so we believe that they may be
common across systems.

Methods

Growth conditions, media, and strains

All of the experiments presented here were performed in Davis Minimal Media (DM) base
[5.36 g/L potassium phosphate (dibasic), 2g/L potassium phosphate (monobasic), 1g/L
ammonium sulfate, 0.5g/L sodium citrate, 0.01% Magnesium sulfate, 0.0002% Thiamine
HCl]. The media used in the LTEE and all experiments presented here is DM25, that is
DM supplement with 25mg/L glucose. For coculture experiments, we first inoculated the
desired strain into 1mL LB + 0.2% glucose + 20mM pyruvate. After overnight growth, we
washed the culture 3 times in DM0 (DM without a carbon source added) by centrifuging it
at 2500xg for 3 minutes, aspirating the supernatant, and resuspending in DM0. We trans-
ferred the washed culture 1:1000 into 1mL DM25 in a glass tube. Generally, we grew 1mL
cultures in a glass 96 well plate (Thomas Scientific 6977B05). We then grew the culture for 24
hours at 37°C in a shaking incubator. The next day, we transferred the cultures 1:100 again
into 1mL DM25. After another 24 hours of growth under the same conditions, we would
mix selected cultures at desired frequencies, then transfer the mixture 1:100 to DM25. After
another 24 hours of growth under the same conditions, we proceed with the experiment and
start collecting measurements.

We used strains with fluorescent proteins inserted at the attTn7 locus, integrated via a
miniTn7 transposon system, as previously reported [24]. The 6.5k S strain was tagged with
eBFP2, the 6.5k L strain was tagged with sYFP2, REL606 was tagged with sYFP2, and the
REL606 ∆pykF mutant was tagged with mScarlet-I.

Flow cytometry

For all population measurements taken with flow cytometry, we used the ThermoFisher
Attune Flow Cytometer (2017 model) at the UC Berkeley QB3 Cell and Tissue Analysis
Facility (CTAF). For every measurement, we loaded the samples into a round bottom 96
well plate, for use with the autosampler. We set the flow cytometer to perform one washing
and mixing cycle before each measurement, and ran 50µL of bleach through the autosampler
in between each measurement to ensure that there was no cross-contamination between
wells. We used the ”VL1” channel to detect eBFP2 fluorescence, which uses a 405nm laser
and a 440/50nm bandpass emission filter. We used the ”BL1” channel to detect sYFP2
fluorescence, which uses a 488nm laser and a 530/30nm bandpass emission filter. We used the
”YL2” channel to detect mScarlet-I fluorescence, which uses a 561nm laser and a 620/15nm
bandpass emission filter. We used a previously described and validated analysis framework
[24] to extract cell counts and strain frequencies from raw flow cytometry data.

Within-cycle timecourses

After the initial growth cycles of fluorescently tagged S and L as previously described, we
mixed the strains together such that the relative frequency of S was around 6%. We grew
the coculture for one more cycle in DM25, then took a flow cytometry measurement at the
end of the 24 hour cycle, which we took as time 0. We then immediately inoculated new
replicate cultures from the overnight mother culture by diluting the culture 1:100 into DM25
(e.g. 300µL of culture + 30mL of DM25), vortexing the mixture well, and then splitting
the resulting mixture into 1mL cultures in individual wells of a glass 96 well plate. We used
5 biological replicates for the 8 hour time-course and 23 replicates for the 24 hour time-
course. We secured the 96 well plate in a 37°C water bath, shaking at 180rpm. We briefly
removed the plate at designated time intervals (about every 30 minutes and 2 hours for the 8
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and 24 hour time course, respectively) to subsample approximately 50µL of culture for flow
cytometry measurements. Subsamples were discarded after measurement. Exact times of
plate sampling were documented. We subsampled the cultures from the 24 hour time course
in two batches (one of 11, one of 12), where we subsampled the second batch immediately
after the flow cytometry measurement of the first batch was finished. We utilized the batch
structure to minimize the amount of time subsample have to wait outside of the water bath
to be measured by the flow cytometer.

Following data processing, we computed the variance between biological replicates at
the same time points. For the 24 hour time-course, we first computed the variance among
all samples in the same batch for each time point, then averaged the variance between the
two batches at the same time point, because the batches were taken at slightly different
actual times. The confidence intervals for variance measurements were computed with stan-
dard asymptotic formulas. We fit a simple exponential to the variance trajectory after 7
hours by first log-transforming the variances (as an approximate variance-stabilizing trans-
form), and then performing linear ordinary least squares regression. Confidence intervals for
the regression were obtained by resampling trajectories of biological replicates with replace-
ment (standard bootstrapping), computing the variance in the same manner as previously
described, and performing the regression again.
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Chapter 5: Conclusions

The evolutionary stories of Escherichia coli strains that we unraveled through this thesis
offers far more than just a glimpse into the life of a single microorganism. It provides a
powerful, albeit imperfect, lens through which the complexity and dynamism of evolution
itself can be understood.

The story begins at the microscopic level, with genetic variations acting as the initial
brush strokes in the broader picture of evolution. These genetic variations, though minute,
set the stage for the diverse evolutionary paths observed in E. coli. As we zoom out, the
ecological interactions come into focus, adding complexity and depth to this evolutionary
canvas. The interplay between E. coli and its environment, highlighted in the research,
underscores the adaptive dance between organism and habitat. This dance is not a simple
two-step but a complex ballet, choreographed by evolutionary pressures, survival strategies,
and non-adaptive processes. The journey of E. coli, therefore, becomes a metaphor for the
evolutionary journey of life itself–a journey marked by constant adaptation, resilience, and
transformation.

The implications of this thesis extend beyond the confines of microbial evolution. It
challenges us to think about evolution not just as a series of genetic mutations or ecological
responses, but as a complex process shaped by a myriad of interconnected factors. It invites
us to ponder the adaptability of life in the face of environmental changes and the ongoing
evolution of species on our planet.

While this thesis was focused on a few humble strains of E. coli–hardly wholly repre-
sentative of life on this planet–it still allows us to celebrate the complexity and beauty of
evolution as a whole. It serves as a reminder of the intricate interplay between genetics and
ecology–a reminder that the evolution of life is a tapestry woven from countless threads, each
significant in its own right.




