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NEUROSCIENCE

Barcoded viral tracing of single-cell interactions in
central nervous system inflammation
Iain C. Clark†, Cristina Gutiérrez-Vázquez†, Michael A. Wheeler†, Zhaorong Li, Veit Rothhammer,
Mathias Linnerbauer, Liliana M. Sanmarco, Lydia Guo, Manon Blain, Stephanie E. J. Zandee,
Chun-Cheih Chao, Katelyn V. Batterman, Marius Schwabenland, Peter Lotfy, Amalia Tejeda-Velarde,
Patrick Hewson, Carolina Manganeli Polonio, Michael W. Shultis, Yasmin Salem, Emily C. Tjon,
Pedro H. Fonseca-Castro, Davis M. Borucki, Kalil Alves de Lima, Agustin Plasencia, Adam R. Abate,
Douglas L. Rosene, Kevin J. Hodgetts, Marco Prinz, Jack P. Antel,
Alexandre Prat, Francisco J. Quintana*

INTRODUCTION:Glial cells of the central nervous
system (CNS), including astrocytes and microg-
lia, play critical roles in development, tissue
repair, and homeostasis. However, dysregulated
astrocyte and microglia responses contribute to
the pathogenesis of neurologic diseases. Indeed,
environmental chemicals, microbial metabo-
lites, and cell-cell interactions have been shown
to modulate disease-promoting responses in
astrocytes and microglia in the context of mul-
tiple sclerosis (MS) and its model, experimen-
tal autoimmune encephalomyelitis (EAE). In
particular, although astrocyte interactionswith
microglia are known to play important roles in
the pathology of MS and other neurologic dis-
eases, the pathways that facilitate astrocyte-
microglia cross-talk are poorly understood,
and consequently, few therapeutic inventions
are available to target them.

RATIONALE: Understanding the complexity of
astrocyte-microglia cross-talk in CNS inflam-
mation requires the study of precise neuro-
immune interactions in vivo, butmethodologies
for defining the specific cell types, pathways,
and molecules that mediate these interactions
are limited.We developed a virus-based barcod-

ing method for the identification of thousands
of CNS cell interactions in vivo and the simul-
taneous analysis of the transcriptome of in-
teracting cells with single-cell resolution. We
applied this technique, named rabies barcode
interaction detection followed by sequencing
(RABID-seq), to the study of microglia-astrocyte
communication in the context of CNS inflam-
mation in EAE and MS.

RESULTS: TodevelopRABID-seq,we engineered
an mRNA-barcoded library in glycoprotein G–
deficient pseudorabies virus (RabDG-BC), which
spreads between interacting cells but can only
replicate in cells that transgenically express viral
glycoprotein G. We pseudotyped the RabDG-BC
plasmid library using envelope protein of sub-
group A (EnvA) packaging. Thus, the pseudo-
typed virus only infects cells that transgenically
express the EnvA receptor, TVA. After its rep-
lication in cells that express TVA and viral glyco-
protein G, RabDG-BC infects interacting cells,
labelling them with the virus-encoded bar-
code. To study RABID-seq astrocyte interac-
tions in vivo during CNS inflammation in the
EAE model of MS, we used transgenic mice
expressing glycoprotein G and TVA in astro-

cytes under the control of the Gfap promoter.
These studies identified several axon guidance
molecules as critical mediators of microglia-
astrocyte interactions in the context of in-
flammation. By combining RABID-seq with
genetic perturbation studies in vivo, valida-
tion with primary mouse and human cells in
vitro, and the analysis of MS patient samples
by immunostaining and single-cell RNA-seq,
we established that microglia-astrocyte inter-
actions mediated by Sema4D-PlexinB1, Sema4D-
PlexinB2, and Ephrin-B3–EphB3 promote CNS
pathology in EAE—and potentially MS. Nota-
bly, Ephrin-B3–EphB3 participated in forward
and reverse signaling, which boosted both
microglia and astrocyte pathogenic activities
via the regulation of nuclear factor kB and
mammalian target of rapamycin, respectively.
Finally, we demonstrated that a CNS-penetrant
small-molecule inhibitor of the kinase activity
of the EphB3 intracellular domain amelio-
rates EAE in both acute and chronic progres-
sive models.

CONCLUSION: We developed RABID-seq, a
novel approach for the simultaneous investi-
gation of cell interactions and the transcrip-
tome of interacting cells in vivo with single-
cell resolution. RABID-seq identified signaling
pathways controlled by the axon guidance
molecules Sema4D-PlexinB1, Sema4D-Plex-
inB2, and Ephrin-B3/EphB3 as mediators
of microglia-astrocyte interactions that pro-
mote CNS pathogenesis and also as candidate
targets for therapeutic intervention in neuro-
logic disorders.▪
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Elucidation of microglia-
astrocyte interactions by
rabies barcode interaction
detection followed by
sequencing (RABID-seq).
Pseudotyped rabies virus
expressing barcoded mRNA tar-
gets Gfap+ astrocytes, where it
replicates before infecting
neighboring cells, leaving a bar-
coded trace. Single-cell RNA
sequencing reads both cellular
mRNAs and viral barcodes,
allowing for the reconstruction of
in vivo cell interactions and the
transcriptional analysis of interact-
ing cells with single-cell resolution.
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Barcoded viral tracing of single-cell interactions in
central nervous system inflammation
Iain C. Clark1,2†, Cristina Gutiérrez-Vázquez1†, Michael A. Wheeler1,3†, Zhaorong Li1,3,
Veit Rothhammer1,4, Mathias Linnerbauer1,4, Liliana M. Sanmarco1, Lydia Guo1, Manon Blain5,
Stephanie E. J. Zandee6, Chun-Cheih Chao1, Katelyn V. Batterman7, Marius Schwabenland8,
Peter Lotfy1,3, Amalia Tejeda-Velarde1‡, Patrick Hewson1, Carolina Manganeli Polonio1,
Michael W. Shultis1, Yasmin Salem1, Emily C. Tjon1, Pedro H. Fonseca-Castro1, Davis M. Borucki1,
Kalil Alves de Lima1, Agustin Plasencia1, Adam R. Abate9,10, Douglas L. Rosene7, Kevin J. Hodgetts1,
Marco Prinz8,11,12, Jack P. Antel5, Alexandre Prat6, Francisco J. Quintana1,3*

Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study
astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by
sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-
seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-
astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis
(EAE) and, potentially, multiple sclerosis (MS). In vivo cell-specific genetic perturbation EAE studies, in
vitro systems, and the analysis of MS scRNA-seq datasets and CNS tissue established that Sema4D
and Ephrin-B3 expressed in microglia control astrocyte responses via PlexinB2 and EphB3,
respectively. Furthermore, a CNS-penetrant EphB3 inhibitor suppressed astrocyte and microglia
proinflammatory responses and ameliorated EAE. In summary, RABID-seq identified microglia-
astrocyte interactions and candidate therapeutic targets.

A
strocytes are central nervous system (CNS)–
resident glial cells with important roles
in health and disease. Astrocyte functions
in development, homeostasis, and disease
are controlled by cell interactions (1–10).

For example, astrocyte interactions with mi-
croglia regulate synaptic pruning (11), neuro-
degeneration (2), and CNS inflammation (12).

In the context of autoimmune CNS disorders
such as multiple sclerosis (MS) and its pre-
clinicalmodel, experimental autoimmune en-
cephalomyelitis (EAE), astrocyte activation
is modulated by T cells and other peripheral
immune cells recruited to the inflamed CNS
(3, 6, 10, 12–16). However, the full extent of
cell interactions that control astrocyte responses
and the molecular mechanisms involved are
poorly understood. The investigation of those
interactions is further complicated by the het-
erogeneity of astrocytes and other cell types, as
well as the need to define the specific cell sub-
sets participating in interactions of interest.
High-throughput genomic approaches such

as single-cell RNA sequencing (scRNA-seq) and
spatial transcriptomics can profile thousands
of individual cells, but challenges remain in
applying these approaches to study cell inter-
actions. Moreover, although some techniques
can profile immune cell interactions (17, 18)
and cell networks based on the sequencing of
microdissected units (19) or the use of photo-
activatable markers (20), these approaches
cannot easily profile cell interactions in the
CNS and may fail to detect interactions in-
volving only a small subset of cells.
We developed rabies barcode interaction

detection followed by sequencing (RABID-seq)
to identify astrocyte cell interactions and
the molecular phenotypes of interacting cells
in vivo. RABID-seq uses glycoproteinG–deficient
pseudorabies virus (RabDG) engineered to
express a fluorescent mRNA-encoded barcode

as it spreads between interacting cells, allow-
ing the reconstruction of cellular cross-talk
in vivo via scRNA-seq. By encoding spatial
relationships directly into the transcriptome,
RABID-seq detects cell interactions that other-
wise would not be detected by single-cell pro-
filing alone. Using RABID-seq, we identified
the axon guidance molecules Sema4D-PlexinB2
andEphrin-B3–EphB3asmediators ofmicroglia-
astrocyte interactions that promoted CNS
pathology in EAE. Moreover, we identified a
CNS-penetrant small-molecule inhibitor of
EphB3 signaling that ameliorates acute and
chronic progressive EAE. In summary, RABID-
seq provides an approach for the comprehen-
sive investigation of cell interactions in the
CNS with single-cell resolution, identifying
microglia-astrocyte interactions and candi-
date targets for therapeutic intervention in
neurologic disorders.

RABID-seq overview

RabDG is a powerful tool for studying cell
interactions because it can be targeted to
specific cell types, including astrocytes and
other glia (21–25) (Fig. 1A). To study astrocyte
cell interactions, we engineered the RabDG
virus to express barcoded mCherry (RabDG-
mCherry-BC). Because barcode sequences are
inserted before the transcriptional stop of the
polyadenylatedmCherry transcript, the tran-
scribed mRNA barcode can be analyzed by
scRNA-seq (Fig. 1B). In addition,mCherry allows
the isolation by flow cytometry of fluorescently
labeled barcoded cells in a RabDG-transduced
cell network (Fig. 1C), enabling the simultaneous
analysis of cell transcriptomes and RabDG bar-
codes by high-throughput droplet-based scRNA-
seq (Fig. 1D).
After amplification and sequencing, we de-

tected ~1.5 million unique sequences in the
barcoded RabDG-mCherry-BC plasmid library
(fig. S1, A to C). We pseudotyped the rabies
virus from the barcoded RabDG-mCherry-BC
plasmid library using envelope protein of sub-
group A (EnvA) packaging, which only infects
cells expressing the EnvA receptor TVA and
thereby allows the genetic targeting of cells of
interest in vivo (21, 25, 26). Because the result-
ing pseudotyped rabies virus library was esti-
mated to contain 104 to 105 uniquebarcodes (fig.
S1D), we predicted that 91 to 99% of infected
cells will be uniquely barcoded if 1000 cells were
initially infected with the pseudotyped RabDG-
mCherry-BC virus library (Fig. 1, E and F).
We used an in vitro system to confirm that

infection with pseudotyped RabDG-mCherry-
BC virus is restricted to TVA-expressing cells
(Fig. 1, G to I) and developed a polymerase
chain reaction (PCR)–based strategy for ampli-
fying rabies connection barcodes from cDNA
generated by the inDrop workflow (Fig. 1J and
fig. S1, E and F). Notably, RabDG-mCherry-BC
sequencing libraries retain three crucial pieces
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of information: (i) a scRNA-seq cell barcode to
assign RabDG rabies barcodes to single-cell
transcriptome data, (ii) a unique rabies barcode
structure that allows efficient error correction,

and (iii) a unique molecular identifier (UMI) to
count RabDGbarcode transcripts (Fig. 1J). After
sequencing, barcodes were identified, counted,
and associatedwith individual cells captured by

scRNA-seq. Interactions between cells were
determined by the presence of shared barcodes
(fig. S1, G to H), allowing for the reconstruc-
tion of cellular networks with genome-wide

Clark et al., Science 372, eabf1230 (2021) 23 April 2021 2 of 15

Fig. 1. Reconstruction
of single-cell tran-
scriptomes and con-
nectomes using
RABID-seq. (A) Bar-
coded RabDG virus is
delivered via intracranial
injection, and barcodes
transfer to neighboring
cells as RabDG virus
spreads throughout
interacting cells.
(B) The RabDG genome
expresses mCherry,
which enables the
recovery and sequencing
of virus-infected cells.
The mCherry transcript
harbors a unique bar-
code with semirandom
structure, flanked by
constant regions to
facilitate amplification.
Base pair lengths are not
to scale. (C) Flow
cytometry recovery of
mCherry+ cells from the
CNS. FSC, forward scatter.
(D) Single-cell RNA-
sequencing of mCherry+

cells. RT, reverse
transcription. (E) Fraction
of uniquely labeled cells
as a function of RabDG
barcode library diversity
and number of cells
transduced. (F) Fraction
of the in vivo network
captured using inDrop
(maximum 60% cell
capture rate over a
maximum period of
12 hours of encapsulation)
as a function of the num-
ber of connections that
each cell makes for
different numbers of
transduced cells.
(G to I) RabDG pseudo-
typing for cell targeting.
(G) Schematic of RabDG
pseudotyping workflow
and cell infectability. WT,
wild type. (H) Fluorescence-activated cell sorting (FACS) analysis showing that
pseudotyped virus only infects HEK293-TVA cells in vitro. HEK293, human embryonic
kidney–293 cells. (I) Percent of HEK293 or HEK293-TVA cells infected with
pseudotyped RabDG virus. n = 4 samples per group. Unpaired two-tailed t test.
(J) Generation of scRNA-seq libraries from inDrop using a SMART-seq approach
with template switching and whole-transcriptome amplification (WTA). (Top right)

WTA material is further amplified using a two-step approach with mCherry-specific
primers followed by PCR primers targeting the constant region flanking the barcode.
(Bottom right) Sequencing libraries are prepared from WTA product to produce
scRNA-seq libraries. TSO, template-switching oligonucleotide. (K) Linkage of tran-
scriptome and connectome data enables reconstruction of genome-wide transcrip-
tional signatures of interacting cells in vivo. Data shown asmeans ± SEM. ***P < 0.001.
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transcriptional information in vivo at single-
cell resolution (Fig. 1K). Thus, RABID-seq
allows the high-throughput analysis of single-
cell interactions in vivo.

RABID-seq detects astrocyte cell interactions
in naïve and EAE mice

We used transgenic mice expressing the ra-
bies glycoprotein G and the EnvA receptor
(TVA) under the control of theGfap promoter
(GfapTVA/G mice) (27) to target the initial in-
fection of pseudotyped RabDG-mCherry-BC
virus to astrocytes and limit the subsequent
transfer of barcodes (Fig. 2A and fig. S2A).
Specifically, the RabDG-mCherry-BC virus
can only initially infect Gfap+ astrocytes ex-
pressing TVA, which also express the rabies
glycoprotein G. New viral particles produced
by Gfap+ astrocytes incorporate the rabies
glycoprotein G into their envelopes, thereby
acquiring the ability to infect and barcode
neighboring cells. However, because Gfap−

neighboring cells do not express the rabies
glycoprotein G, they cannot further dissemi-
nate the virus (28, 29). This approach genet-
ically targets Gfap+ astrocytes for initial
barcoding, revealing astrocyte-centric cell
interaction networks. Using this system, we
detected the spread of RabDG-mCherry-BC by
flow cytometry, which peaked 7 days after
transduction (fig. S2B). In validation studies,
we confirmed the expression of TVA/G in
astrocytes inGfapTVA/Gmice (fig. S2C), titered
the RabDG-mCherry-BC virus to seed 1000 cells
in GfapTVA/G mice upon infection (fig. S2,
D and E), and detected RabDG-mCherry-BC
spread to neighboring cells, such as microglia
(fig. S2F). Next, we transduced the forebrain
of naïve GfapTVA/G mice or EAE GfapTVA/G

mice with RabDG-mCherry-BC virus 7 or
12 days after immunization with MOG35-55

to target priming and peak EAE, respectively
(Fig. 2B). At 7.5 days after transduction, we
sorted mCherry+ cells by flow cytometry (fig.
S3A) and analyzed them by scRNA-seq (figs.
S3, B to F; S4; and S5). Cell types were evenly
distributed across each sample analyzed by
RABID-seq in naïve and EAEmice (figs. S3 to
S5). We detected RabDG-mCherry–encoded
barcodes in all samples analyzed and con-
firmed sufficient sequencing depth for all
samples (fig. S6 and S7, A to C). Specifically,
we detected an average of 1000 barcodes per
mouse across the eight mice analyzed (fig. S6,
D to F), consistent with our target seeding
rate (fig. S2E), previously set to minimize
barcode collisions (Fig. 1, E and F). In vitro
studies suggested that early- versus late-
seeded cells could be distinguished on the
basis of barcode UMI abundance (figs. S7D).
We used scRNA-seq to analyze 32,280 RabDG-

barcoded cells, including astrocytes, microglia,
monocytes, and T cells, from naïve or peak-
EAE mice (Fig. 2C). Our cell isolation method

removed oligodendrocytes and neurons to en-
able us to focus on astrocytes, microglia, and
infiltrating immune cells. We built astrocyte-
centric cell interaction networks by including
only rabies barcodes that were detected in at
least one astrocyte, limiting potential confound-
ing effects that could result from Cre leakiness.
In naïve mice, we detected astrocyte-astrocyte
interactions, aswell as interactionswithmicrog-
lia and other cells. In EAEmice at the peak of
disease, astrocyte interaction networks were
more diverse (Fig. 2, D and E) and included
interactions with peripheral cells, such as
T cells, that were recruited to the inflamed
CNS (3, 13, 16, 30).
We developed an inflammation score based

on the activation of the inflammatory response
defined by theGeneOntology initiative (fig. S8,
A to C, and data S1). We then selected astro-
cytes with the highest (>90th percentile) and
lowest (<10th percentile) proinflammatory
transcriptional phenotypes in EAE that dis-
played interactions with T cells (fig. S8D).
Astrocytes with the highest proinflammatory
scores were connected to T cells that ex-
hibited proinflammatory phenotypes and high
tumor necrosis factor–a (TNFa) signaling via
nuclear factor kB (NF-kB) (136 astrocytes, 506
T cells, 3796 connections) (fig. S8, E and F, and
data S2), in agreement with the reported in-
crease in proinflammatory astrocyte responses
by proinflammatory T cells (3). Conversely,
T cells connected to astrocytes displaying
the lowest proinflammatory phenotype (132
astrocytes, 684 T cells, 3847 connections)
showed higher expression of molecules asso-
ciated with the suppression of inflammation
(e.g., Ctla4, Ikzf4, Il2ra, and Il10) (fig. S8G).
Indeed, when we analyzed subnetworks of
Il10ra+ astrocytes and Il10+ T cells (fig. S8H),
we detected interleukin-2 (IL-2)–signal trans-
ducer and activator of transcription 5 (STAT5)
signaling pathways that have been associated
with regulatory T cells (fig. S8I) (31), recapit-
ulating IL-10–driven anti-inflammatory effects
of T cells on astrocytes (32, 33). Thus, RABID-
seq can be used to simultaneously identify
astrocyte cell interactions and the transcrip-
tional features of interacting cells at the single-
cell level.

Identification of microglia-astrocyte signaling
via axon guidance molecules by RABID-seq

Microglia-astrocyte interactions play important
roles during CNS development, homeostasis,
and disease (2, 11, 12). However, a comprehen-
sive understanding of these interactions and
how they shift during inflammation is still
missing (Fig. 2F). RABID-seq detected microg-
lial control of astrocytesmediated by IL-1, TNF,
and C1q in EAE mice relative to naïve mice,
consistent with previous reports (2) (Fig. 2, G
and H, and data S3 to S5). Moreover, we de-
tected the activation of proinflammatory sig-

natures and chemokine-mediated signaling in
microglia connected to astrocytes displaying a
high proinflammatory phenotype (>90th per-
centile) (Fig. 2, I and J). Indeed, the analysis
of ligand-receptor interactions (34) between
these high–proinflammatory phenotype astro-
cytes (>90th percentile) and microglia in peak
EAE recapitulated previous reports (12) of in-
creased proinflammatory FLT1 signaling and
decreased aryl hydrocarbon receptor–driven
anti-inflammatory responses in astrocytes trig-
gered bymicroglia-produced VEGF-B (vascular
endothelial growth factor B) (Fig. 2, K and L)
(12). The microglial phagocytosis of cell debris
containingmCherry protein did not generate a
fluorescent signal strong enough to mask the
signal generated by the RabDG-based tracing
of cell interactions (35) (fig. S2D).
We next used RABID-seq to identify mech-

anisms of microglia-astrocyte communication
in EAE mice at the peak of disease, detecting
the activation of pathways associatedwith axon
guidancemolecules (Fig. 3A and fig. S9A). Axon
guidance molecules play important roles dur-
ing development but are co-opted by tumors
and inflammatory processes in the periphery
(36). Thus,we examinedaxonguidancepathways
associatedwith semaphorin-plexin, ephrin-EPH,
netrin, and Slit/Robo signaling in the microglia-
astrocyte cell networks thatwe identified in naïve
andpeak-EAEmice. Theanalysis of the single-cell
RABID-seq dataset detected the activation of
Sema4D/PlexinB during peak EAE, driven by
Sema4d expression in microglia and Plxnb2
expression in astrocytes (Fig. 3, B to D, and
fig. S9B). Wemade similar observations during
the priming phase of EAE (fig. S9, C and D)
and when studying Plxnb2+ astrocyte inter-
actions with Sema4d+ monocytes during peak
EAE (fig. S9, F to H). We also detected sig-
nificant activation of Ephrin-B–mediated sig-
naling (Fig. 3, B and C).

Microglia-astrocyte Sema4D-PlexinB2
signaling promotes CNS inflammation in EAE

Sema4D signals through the PlexinB1 and
PlexinB2 receptors (36, 37), but the analysis of
the RABID-seq dataset detected higher Plxnb2
expression in astrocytes during EAE (Fig. 3, D
and E, and fig. S9B). Thus, to investigate the
role of Sema4D-PlexinB2 signaling during EAE,
we analyzed the single-cell transcriptional sig-
natures of interacting Sema4d+ microglia and
Plxnb2+ astrocytes detected by RABID-seq. We
subdivided our RABID-seq data into nonover-
lapping networks of Plxnb2+ or Plxnb2− astro-
cytes, connected to Sema4d+ or Sema4d−

microglia (Fig. 3, F to H). Plxnb2+ astrocytes
interacted preferentially with Sema4d+microg-
lia (Fig. 3, F and G), exhibiting increased
activation of semaphorin-plexin signaling con-
comitant with increased activation of proin-
flammatory responses (Fig. 3, H to J, and data
S6). In addition, the analysis of a published
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scRNA-seq dataset of 48 MS patients and
matched controls (3) detected increased in-
teractions between microglial SEMA4D and
astrocytic PLXNB2 in MS patients (fig. S10, A

to C), similar to observations made in astro-
cytes and microglia when we merged our
RABID-seq data with previously published
scRNA-seq data from MS patients (3) (fig.

S10, D and E). Thus, microglia-astrocyte in-
teractions mediated by Sema4D-PlexinB2 pro-
mote CNS inflammation during EAE—and
potentially MS.
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Fig. 2. RABID-seq
analysis of astro-
cyte cell interac-
tions in naïve
and EAE mice.
(A) Transgenic
mouse line gener-
ated to target
Gfap-expressing
cells with the
EnvA-TVA system.
(B) EAE disease
course. Mice were
transduced with
barcoded rabies
virus, and brains
were harvested
7.5 days after
infection for
scRNA-seq.
Error bars indi-
cate mean ± SEM.
(C) t-distributed
stochastic neigh-
bor embedding
(tSNE) plots of
single-cell RABID-
seq data from
naïve and peak-
EAE mice. The
number of cells
that passed bio-
informatic filters is
displayed near the
origin. (D) Circos
plots of astrocyte
cell interactions in
naïve and peak-
EAE mice. Percent-
ages are shown
relative to the total
number of connec-
tions. n is the
number of cells
of each cell type.
(E) Network rep-
resentation of
astrocyte cell
interactions. To
provide a sense of
scale, increasingly smaller portions of the network are selected and enlarged.
Cells are colored by cell type, as determined using scRNA-seq data. (F to
K) Analysis of astrocyte-microglia interactions during peak EAE by RABID-seq.
(F) Schematic of heterogeneous interactions between astrocytes and microglia
during EAE. (G) Network representation of astrocyte-microglia interactions
detected by RABID-seq. (H) IPA (ingenuity pathway analysis) network analysis of
single-cell RABID-seq data showing predicted upstream regulators in astrocytes
connected to microglia (MG) versus astrocytes connected to other cells.

Statistical analysis: right-tailed Fisher’s exact test. (I) Visualization of >90th
percentile proinflammatory astrocyte-microglia subnetworks. (J) GSEA (gene set
enrichment analysis) preranked analysis of scRNA-seq data comparing microglia
connected to >90th percentile proinflammatory astrocytes versus microglia
connected to <10th percentile proinflammatory astrocytes. (K) Analysis by gene
ontology: molecular function of microglia connected to >90th percentile
proinflammatory astrocytes. (L) CellPhoneDB identification of VEGFB-FLT1
signaling between microglia and >90th percentile proinflammatory astrocytes.
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We next investigated the role of microglia-
astrocyte interactions mediated by Sema4D-
PlexinB2 signaling in EAE pathogenesis. By
immunostaining, we detected increased Sema4D

in microglia and PlexinB2 in astrocytes during
EAE (Fig. 4A) and in MS patient samples (Fig.
4B), validating our RABID-seq findings. More-
over, the activation of primary mouse microglia

in culture with TNFa/IL-1b proinflammatory
cytokines known to contribute to the patho-
genesis of EAE and MS (3) increased Sema4d
expression (Fig. 4C). In addition, the treatment
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Fig. 3. RABID-seq
identifies a role
for Sema4D-
PlexinB2 signaling
in microglia-
astrocyte commu-
nication. (A) IPA
analysis of axon
guidance pathway
genes activated in
astrocyte-microglia
networks in peak-
EAE versus naïve
mice. (B) Differen-
tially regulated
axon guidance path-
ways in astrocyte-
microglia networks
in peak-EAE versus
naïve mice. FDR,
false discovery rate.
(C) Differentially
regulated axon
guidance pathways
in microglia
connected to astro-
cytes in peak-EAE
versus naïve mice.
(D) Differential gene
expression analysis
of astrocytes
connected to
microglia in peak-
EAE versus naïve
mice. Differentially
expressed genes
[adjusted P value
(P.adj) < 0.05] from
axon guidance path-
ways in astrocytes
(left) and microglia
(right) are colored
and labeled by gene
name on volcano
plots of −log10(P.adj)
versus fold change.
(E) Expression of
Plxnb1 and Plxnb2 in
peak-EAE astro-
cytes. Two-tailed
paired t test on
percent per mouse.
(F) Subnetworks of
Plxnb2+/− astrocytes connected to Sema4d+/− microglia. (G) Density plots of the
number of interactions between Plxnb2+ astrocytes connected to Sema4d+

microglia and Plxnb2− astrocytes connected to Sema4d− microglia. (H) Normalized
single-cell expression of Plxnb2 in astrocytes and Sema4d in microglia within
the subnetworks shown in (F). A+: Plxnb2+ astrocytes; A-: Plxnb2− astrocytes;

MG+: Sema4d+ microglia; MG-: Sema4d− microglia. (I) Differential gene expression
between astrocytes in the Plxnb2-Sema4d subnetworks determined by RABID-seq.
(J) GSEA preranked analysis of single-cell RABID-seq data comparing Plxnb2+

astrocytes connected to Sema4d+ microglia (A+ MG+) to Plxnb2− astrocytes
connected to Sema4d− microglia (A- MG-). NES, normalized enrichment score.
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Fig. 4. Microglia-astrocyte Sema4D-PlexinB2 signaling promotes CNS
inflammation in EAE. (A) Immunostaining analysis of PlexinB2, GFAP, Iba1,
and Sema4D in the spinal cords of naïve and peak-EAE mice. Images are

representative of n = 3 mice per group. (B) Immunostaining of MS patient and
healthy control CNS tissue. n = 6 images from N = 3 patients per region.
Statistical analysis: unpaired two-tailed t test. NAWM, normally appearing white
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of primary mouse or human astrocytes with
a recombinant Sema4D fragment with plexin
agonist activity (38–40) increased the expres-
sion of the proinflammatory genes Nos2 and
Il1b (Fig. 4, D and E, fig. S11, A and B), sug-
gesting that Sema4D-triggered Plexin signaling
boosts astrocyte proinflammatory responses.
To determine whether microglia-astrocyte

interactions mediated by Sema4D-PlexinB2
promote CNS inflammation during EAE (Fig.
4F), we developed CRISPR-Cas9 lentiviruses
to inactivate Sema4d in microglia and Plxnb2
in astrocytes using Itgam- or Gfap-driven Cas9
and targeting single guide RNA, respectively
(fig. S11, C to F). The inactivation of Sema4d in
microglia ameliorated EAE (Fig. 4G).Moreover,
astrocytes isolated from sgSema4d-targeting
knockdown mice coexpressing Itgam-driven
Cas9 showed decreased activation ofNos2 and
proinflammatory signaling, supporting a role
for microglia-derived Sema4D in promoting
astrocyte pathogenic activities (Fig. 4, H and I).
Indeed, Plxnb2 inactivation in astrocytes also
resulted in EAE amelioration (Fig. 4J), con-
comitant with the down-regulation of proin-
flammatory pathways in astrocytes associated
with NOS2 and IL-1b (Fig. 4, K and L, and fig.
S11, C and D).
PlexinB1 and PlexinB2 show redundancy in

some biological systems (41, 42). The analysis
of our RABID-seq dataset suggested that Plxnb1
and Plxnb2 are expressed by different astrocyte
subpopulations and that Plxnb2+ astrocytes are
more abundant than Plxnb1+ astrocytes (Fig. 3E
and fig. S11G). Thus, we investigated whether
Sema4D signaling via PlexinB1 might also
contribute to EAE pathogenesis. Knockdown
via Gfap-driven Cas9 coexpressing sgPlxnb1 in
astrocytes also ameliorated EAE via IL-1b and
NOS2, although to a lesser extent than Plxnb2
(fig. S11, H to K). Indeed, we also detected
increased interactions between microglial
SEMA4D and PLXNB1 expressed in astrocytes
in MS patients (3), although the detected in-
crease in this interaction inMSwas lower than
the increase detected for SEMA4D-PLXNB2
(fig. S10, A and C). Thus, microglia-astrocyte
Sema4D-PlexinB2 (and, to a lesser extent,

Sema4D-PlexinB1) interactions promote CNS
inflammation during EAE.

EphB3 receptor signaling boosts astrocyte
proinflammatory activities

Our RABID-seq studies of astrocyte interac-
tions in EAE also detected microglia-astrocyte
signalingmediated by erythropoietin-producing
human hepatocellular B (EphB) receptors
(Fig. 3, A and B), which belong to a family of
transmembrane receptor tyrosine kinases that
have important roles in axon guidance, among
other biological processes (43). EphB recep-
tors are activated by interactions with their
membrane-bound ligands Ephrin-B1, Ephrin-
B2, and Ephrin-B3, encoded by Efnb1, Efnb2,
and Efnb3, respectively (43). Efnb3 is mostly
expressed in the CNS,whereasEfnb1 andEfnb2
show a broader expression pattern (44). We
detected increased expression of Efnb3, but not
Efnb1 or Efnb2, in microglia during EAE (fig.
S12A). Efnb3 expression levels in monocytes
recruited to the CNS during EAEwere similar
to the expression levels detected in microglia
in naïve mice (fig. S12A), suggesting that the
Ephrin-B3 in monocytes does not play a ma-
jor role in the control of EphB3 receptor–
dependent astrocyte proinflammatory activities
during EAE. Moreover, flow cytometry analysis
of neonatal mouse microglia-astrocyte cocul-
tures detected higher EphB3 expression in
astrocytes than inmicroglia (fig. S12B). Finally,
the analysis of CNS human samples detected
an increase in EPHRINB3+ microglia and
EPHB3+ astrocytes in MS lesions (Fig. 5, A to
C). Thus, signaling between microglial Ephrin-
B3 and EphB3 receptors in astrocytesmay play
a role in CNS inflammation in EAE and, po-
tentially, MS.
Both EphB3 and its ligand Ephrin-B3 are

plasma membrane proteins (43). We used
transmission electron microscopy to detect
increased microglia-astrocyte contacts during
EAE (Fig. 5, D to F), suggesting a potential rea-
son for increased Eph signaling mediated by
microglia Ephrin-B3 and astrocyte EphB3 inter-
actions. To study the effects of EphB3 signaling
in astrocytes, we treated neonatalmouse astro-

cytes in culture with plate-bound Ephrin-B3–
Fc chimera and activated themwith TNFa and
IL-1b. EphB3 activation boosted the expression
of genes associated with astrocyte proinflam-
matory activities such as Il6, Nos2, Csf2, and
Tnfa (Fig. 5G); EphB3 activation also boosted
IL-6 and CCL2 production (Fig. 5H). We ob-
tained similar results when we analyzed the
effects of EphB3 activation with plate-bound
Ephrin-B3–Fc chimera on primary human
astrocytes in culture (fig. S12C). Thus, EphB3
signaling may boost astrocyte proinflamma-
tory activities.

Microglial Ephrin-B3 and astrocyte EphB3
promote CNS pathology in EAE

To study the role of Ephrin-B3 and EphB3 in
the regulation of microglial and astrocyte re-
sponses in the context of CNS inflammation,
we knocked down Ephb3 in astrocytes and
Efnb3 in microglia during EAE using lentivirus-
delivered short hairpin RNAs (shRNAs) ex-
pressed under the control of Gfap or Itgam
promoters, respectively (12) (fig. S13, A and
B). EAE mice were injected intracerebroven-
tricularly at day 7 after immunization, before
disease onset, to target CNS resident cells
as previously described (3, 9, 12, 13). We did
not detect reduced Efnb3 expression in CNS-
infiltrating monocytes, confirming that these
cells were not affected by the knockdown (fig.
S13B). The lentiviruses reached the spinal cord,
and the knockdown of Ephb3 in astrocytes or
Efnb3 in microglia resulted in a comparable
amelioration of EAE (Fig. 6A and fig. S13, C to
G) but did not affect T cell responses (fig. S13,
H to K). Ephb3 and Efnb3 knockdown led to a
reduction in proinflammatory Ly6CHi mono-
cytes recruited to the CNS during EAE (45)
(Fig. 6B). The simultaneous knockdown of
Ephb3 in astrocytes and Efnb3 in microglia
did not ameliorate the disease more than
single knockdowns did (fig. S13L). Moreover,
no EAE amelioration was detected after Efnb3
knockdown in astrocytes (fig. S13M).
Analysis of the transcriptional response of

astrocytes fromEAEmice after the knockdown
of Ephb3 in astrocytes or Efnb3 in microglia
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matter. (C) Sema4d expression determined by quantitative PCR (qPCR) in
primary mouse microglia treated with IL-1b/TNF versus vehicle. n = 6 vehicle,
n = 5 IL-1b/TNF. Statistical analysis: Kolmogorov-Smirnov t test. (D) Nos2 and
Il1b expression determined by qPCR in primary mouse astrocytes treated with a
recombinant Sema4D fragment with agonistic activity. n = 9 samples per
group, n = 8 samples for Nos2 vehicle. Statistical analysis: Kolmogorov-
Smirnov t test per group. (E) Nos2 and Il1b expression determined by qPCR in
primary human fetal astrocytes treated with the indicated compounds. n = 5
vehicle Nos2, n = 4 vehicle Il1b, n = 3 otherwise. Statistical analysis: unpaired
two-tailed t test. (F) Schematic depicting microglial Sema4D binding PlexinB2
expressed in astrocytes. (G) EAE disease course in mice transduced with
Itgam::Cas9 coexpressing sgSema4d- or sgScrmbl-targeting lentiviruses. n = 10
sgScrmbl, n = 5 sgSema4d mice. Statistical analysis: two-way repeated measures

analysis of variance (ANOVA). (Top) Schematic of lentiviral vector. Lentiviral
transduction occurred 7 days before EAE induction to avoid targeting recruited
myeloid cells. (H and I) RNA-seq analysis of gene expression (H) and GSEA
preranked (I) of astrocytes isolated from mice transduced with Itgam::sgSema4d
or Itgam::sgScrmbl. (J) EAE disease course in mice transduced with Gfap::Cas9
coexpressing sgPlxnb2 or sgScrmbl. n = 10 sgScrmbl, n = 5 sgPlxnb2 mice.
Statistical analysis: two-way repeated measures ANOVA. (Top) Schematic
of lentiviral vector. (K) Differential gene expression determined by RNA-seq in
astrocytes from mice transduced with Gfap::sgPlxnb2 versus Gfap::sgScrmbl.
(L) Upstream regulator analysis by IPA of Gfap::sgPlxnb2 astrocytes relative to
Gfap::sgScrmbl shows down-regulation of Nos2- and Il1b-driven proinflammatory
pathways. Data shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001. ns,
not significant.
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revealed decreased expression of genes asso-
ciated with inflammation and neurodegenera-
tion (Fig. 6, C to E). Thus, microglial Ephrin-B3
and astrocyte EphB3 receptors participate in
the control of astrocyte proinflammatory activ-
ities during EAE.

Reverse Ephrin-B3 signaling boosts NF-kB
driven responses in microglia during EAE

In addition to forward signaling in Ephb-
expressing cells, the interaction between EphB
receptors and their membrane-bound Ephrin-
B ligands triggers reverse signaling in Efnb-
expressing cells (46–50). In support of a role of
reverse Ephrin-B3 signaling in the control of
microglial responses during EAE, the knock-
down of Efnb3 in microglia or Ephb3 in astro-
cytes decreased proinflammatory gene expression
inmicroglia (Fig. 6, F to H). Moreover, in agree-

ment with decreased microglial proinflam-
matory transcriptional responses detected by
RNA-seq, we detected decreased NF-kB acti-
vation after the knockdown of Efnb3 in mi-
croglia or Ephb3 in astrocytes, suggesting that
astrocyte Ephrin-B3 signaling boosts NF-kB–
driven proinflammatory transcriptional pro-
grams in microglia (Fig. 6, I and J).
Ephrin-B3–EphB3 interactions may modu-

late microglial responses via reverse signaling
through Ephrin-B3 in microglia and also in-
directly via EphB3-controlled astrocyte secreted
factors. To study the role of reverse Ephrin-B3
signaling in the control of microglial responses,
we coculturedmouseneonatalmicroglia in vitro
with mouse neonatal astrocytes prestimulated
with TNFa and IL-1b. Coculture with prestimu-
lated astrocytes increased microglial Nos2 ex-
pression, and this increase was diminished by

Ephb3 knockdown in astrocytes (Fig. 6K), sug-
gesting that EphB3-induced reverse signaling
contributes to the control of microglia activation
by astrocytes. Indeed, plate-bound EphB3-Fc
chimera boosted Il1b, Il6, and Nos2 expres-
sion as well as CCL2 and IL-6 secretion by
mouse primary microglia activated in culture
with lipopolysaccharide (LPS) (Fig. 6, L
and M). Thus, reverse Ephrin-B3 signaling
boosts microglial proinflammatory activities
during EAE.

Pharmacologic inhibition of EphB3 receptor
kinase ameliorates EAE

Multiple signaling events are triggered by EphB3
receptor activation; one of these signaling mech-
anisms is EphB3 kinase activity (43). A38 is a
CNS-penetrant small molecule that inhibits
EphB3 kinase activity (Fig. 7A) (51).We detected
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Fig. 5. EphB3 receptor
signaling boosts astro-
cyte proinflammatory
responses. (A to
C) Immunostaining anal-
ysis of MS and healthy
control (HC) CNS tissue
samples for the colocal-
ization of EPHB3 and
GFAP in astrocytes (A)
or EPHRINB3 and
TMEM119 in microglia
(B). (C) Quantification of
immunostaining data.
n = 6 or 16 images from
N = 3 patients per
region. Statistical analy-
sis: one-way ANOVA and
Dunnett post-test.
(D and E) Representa-
tive electron micro-
graphs of naïve (D) and
EAE (E) spinal cords.
Microglia (MG) cells
exhibit elongated and
dark nuclei with clumped
chromatin and dark
cytoplasm, and astro-
cytic cells (AS) are
characterized by pale
nuclei that are usually
regular in shape with a
thin rim of hetero-
chromatin beneath the
nuclear membrane.
Green arrow, intact
myelin; red arrow, myelin
destruction; blue arrow, remyelination. The black space in the top right
corner of (E) indicates the edge of the tissue section. (F) Quantification of
microglia-astrocyte distance in electron microscopy images. n = 63 naïve
mice, n = 167 EAE mice. Statistical analysis: unpaired two-tailed t test.
(G) Csf2, Nos2, Il6, and Tnfa expression determined by qPCR in neonatal
mouse astrocytes stimulated with TNFa and IL-1b in the presence of plate-
bound Ephrin-B3–Fc chimera. n = 6 samples per group. Statistical analysis:

one-way ANOVA and Dunnett post-test. Data are representative of two
independent experiments. (H) IL-6 and CCL2 concentration in supernatants of
neonatal mouse astrocytes stimulated with TNFa and IL-1b in the presence of
plate-bound Ephrin-B3–Fc chimera. n = 6 samples per group. Statistical
analysis: one-way ANOVA and Dunnett post-test. Data are representative of
two independent experiments. Data shown as mean ± SEM. *P < 0.05,
**P < 0.01, ***P < 0.001.
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a dose-dependent inhibition of EphB3 kinase
activity by A38 in a cell-free assay (fig. S14A).
A38didnot induce cytotoxicity or apoptosis (fig.
S14, B and C). To study the effects of EphB3

signaling in astrocytes, we pretreated neonatal
mouse astrocytes in culture with A38 and
activated them with TNFa and IL-1b. A38
reduced Il6 expression in astrocytes in a dose-

dependentmanner (Fig. 7B); it also decreased
the production of IL-6, CCL2, and TNFa (Fig.
7C). Similar results were obtained when we
used C9, an additional inhibitor of EphB3
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Fig. 6. Microglia-astrocyte
Ephrin-B3–EphB3
signaling promotes CNS
pathology in EAE. (A) EAE
in knockdown mice trans-
duced with lentiviral
constructs targeting Ephb3
in astrocytes (red), Efnb3 in
microglia (blue), or nontar-
geting control (black).
Ctrl (n = 24 mice),
pGfap::shEphb3 (n = 17
mice), pItgam::shEfnb3 (n =
22 mice). Statistical analysis:
two-way ANOVA. (B) Quanti-
fication of proinflammatory
monocytes in the CNS of
EAE mice after the
knockdown of Ephb3 in
astrocytes (red), Efnb3 in
microglia (blue), or nontar-
geting control (black). n = 5
mice per group. Statistical
analysis: one-way ANOVA
and Dunnett post-test. (C to
E) RNA-seq analysis of
astrocytes. (C) Differentially
regulated pathways in
astrocytes after Efnb3
knockdown in microglia
analyzed by ingenuity path-
ways analysis. (D and E)
Heatmap of differentially
expressed genes in astro-
cytes after the knockdown
of Ephb3 in astrocytes (D) or
Efnb3 in microglia (E).
(F to H) RNA-seq analysis of
microglia isolated from EAE
mice transduced with lenti-
viral vectors targeting Ephb3
in astrocytes, Efnb3 in
microglia, or non-targeting
control. (F and G) Heatmap
of differentially expressed
genes in microglia after
knockdown of Ephb3 in
astrocytes (F) or Efnb3 in
microglia (G). (H) Relevant
pathways selected from
ingenuity pathway analysis
of the genes differentially
expressed in microglia after Ephb3 knockdown in astrocytes (left) and Efnb3
knockdown in microglia (right). (I) Immunostaining analysis of acetylated p65 (ac-
p65) and Iba1 in the CNS of EAE knockdown mice. (J) Quantification of ac-p65+

Iba1+ cells. n = 6 mice per group. Statistical analysis: one-way ANOVA and
Tukey post-test. (K) Astrocytes treated with control or Ephb3-targeting small
interfering RNA and pretreated with TNFa and IL-1b were cocultured overnight
with microglia, and microglial Nos2 expression was determined by qPCR. n = 6

samples per group. Statistical analysis: one-way ANOVA and Tukey post-test.
(L and M) Neonatal mouse microglia cultured in plates precoated with EphB3-
FcChimera and stimulated with LPS. (L) Il1b, Il6, and Nos2 expression determined
by qPCR and (M) CCL2 and IL-6 production quantified by enzyme-linked
immunosorbent assay (ELISA) in supernatants. n = 4 samples per group. Statistical
analysis: unpaired two-tailed t test. Data are representative of two independent
experiments. Data shown as mean ± SEM. *P < 0.05, ***P < 0.001.
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Fig. 7. Pharmacologic inhibition of EphB3 receptor kinase ameliorates EAE.
(A) A38 structure. (B) Il6 mRNA expression determined by qPCR in neonatal
mouse astrocytes stimulated with TNFa and IL-1b in the presence of the
indicated concentrations of A38. n = 3 samples per group. Statistical analysis:
one-way ANOVA and Sidak post-test. (C) IL-6, CCL2, and TNFa concentration
measured by ELISA in supernatants of neonatal mouse astrocytes stimulated as
in (B) with the indicated concentrations of A38. n = 4 and 2 samples (0.1 and
10 groups). Statistical analysis: one-way ANOVA and Dunnett post-test. Data are
representative of three independent experiments. (D) Nos2 and Tnfa mRNA
expression determined by qPCR in neonatal mouse microglia stimulated with LPS
in the presence of A38. n = 4 samples. Statistical analysis: one-way ANOVA and
Tukey post-test. Data are representative of two independent experiments. (E and
F) Primary mouse astrocytes were activated with TNFa and IL-1b, and treated
with A38 or C9. Media was replaced, cells were extensively washed, and new
medium was added 24 hours later; ACM was collected 48 hours later. (E) ACM
was added to the mouse neuron cell line N2A preactivated with IFNg, and
cytotoxicity was determined by quantifying lactate dehydrogenase release after

24 hours; TNF blocking antibody was added where indicated. n = 8 samples per
group but n = 4 samples for anti-TNFa groups. Statistical analysis: one-way ANOVA
and Tukey post-test. Data are representative of two independent experiments.
(F) Migration assay of splenic CD11b+ monocytes performed using ACM. n = 3
samples (- and A38), n = 3 samples (C9). Statistical analysis: one way ANOVA
and Dunnett post-test. Data are representative of two independent experiments.
(G) EAE in C57Bl/6J mice treated twice a day with vehicle or 20 mg/kg A38
injected intraperitoneally, starting at the peak of the disease. n = 5 mice per
group. Statistical analysis: two-way ANOVA. Data are representative of two
independent experiments. (H) Quantification of monocytes in the CNS of C57Bl/
6J mice treated as in (A). n = 5 Ctrl mice, n = 6 A38 mice, and n = 2 naïve mice.
Statistical analysis: one-way ANOVA and Tukey post-test. (I to L) RNA-seq
analysis of astrocytes from naïve or EAE mice treated with A38 or vehicle.
(I) Heatmap of differentially expressed genes in astrocytes. (J) GSEA of astrocytes.
(K and L) Ingenuity pathway analysis of genes differentially expressed in
astrocytes from A38-treated mice compared with vehicle-treated mice. Data
shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001. ns, not significant.
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kinase activity (52) (fig. S14, D and E), or
when A38 was tested on adult rodent astro-
cytes (fig. S14, F and G) or primary human
astrocytes cultured in the presence of serum or
in serum-free medium (fig. S14, H to J). Con-
sistent with the higher levels of EphB3 de-
tected in astrocytes compared with microglia
(fig. S12B), A38 showed no effect on the mi-
croglial expression of the proinflammatory
genes Nos2 and Tnfa induced by LPS stimula-
tion (Fig. 7D), confirming that EphB3 intra-
cellular signaling is important for the regulation
of astrocyte responses but not microglial
responses.
TNFa (53, 54) and nitric oxide (13, 55) have

been linked to astrocyte pathogenic activities.
Moreover, CCL2 produced by astrocytes pro-
motes monocyte recruitment to the CNS (5, 56).
Thus, based on the effects of A38 and C9 on
TNFa,Nos2, andCCL2 expression,we evaluated
neurotoxic and chemotactic activities of astrocyte-
conditioned medium (ACM) collected from
astrocytes pretreated with A38 or C9. The
pharmacological inhibition of EphB3 in astro-
cytes reduced ACM neurotoxic and chemo-
attractant activity (Fig. 7, E and F). The neurotoxic
activity was TNF independent (Fig. 7E and fig.
S14K), suggesting that its inhibition by A38
involved the regulation of additional neuro-
toxicity mechanisms.
To evaluate the potential of the EphB3 kinase

as a therapeutic target during CNS inflamma-
tion, we induced EAE in B6 wild-type mice
by immunizationwithMOG35-55 and initiated
treatment with A38 (20 mg/kg body weight
twice a day by intraperitoneal injection) at
the peak of the disease, using vehicle as a con-
trol. A38 administration ameliorated EAE, as
indicated by the reduction in EAE scores (Fig.
7G) and the reduced demyelination and axonal
loss detected in histopathological analyses (figs.
S13,D toG). A38 also reduced the recruitment of
Ly6CHi proinflammatory monocytes to the CNS
(Fig. 7H) but did not affect T cell responses (fig.
S15, A to C). A38 did not affect the glia limitans
when compared with the vehicle-treated group
(fig. S15D), asdeterminedby the analysis ofCLDN5
as described (57). Moreover, A38 administration
decreased astrocyte and microglial expression
of transcriptional modules associated with CNS
inflammation and neurodegeneration, as deter-
mined by RNA-seq (Fig. 7, I to L, and fig. S15,
E to H). A38 administration concomitant with
Ephb3 knockdown in astrocytes did not fur-
ther increase the therapeutic effects achieved
by these interventions alone (figs. S14, D to G,
and S15I), suggesting that the amelioration of
EAE by A38 involves the inhibition of EphB3
kinase activity in astrocytes.
To further validate the potential of EphB3

kinase inhibition for the therapeutic modula-
tion of CNS inflammation and neurodegener-
ation, we used the nonobese diabetic (NOD)
mouse model of chronic progressive EAE in-

duced by immunization with MOG35-55, which
recapitulates aspects of secondary progres-
sive MS, including the progressive and ir-
reversible accumulation of neurologic disability
(5, 9, 58, 59). Specifically, we evaluated the ef-
fects of A38 administration or Ephb3 knock-
down in astrocytes during the progressive phase
of NOD EAE (fig. S16A). Both the pharmaco-
logical inactivation of EphB3 kinase activity
with A38 and the knockdown of Ephb3 in
astrocytes by lentivirus-delivered shRNAs
ameliorated NOD EAE, as indicated by the
reduced clinical scores and the decreased
recruitment of proinflammatory monocytes
to the CNS; we did not detect changes in the
peripheral T cell response (fig. S16, A to C).
Additionally, A38 administration and Ephb3
knockdown in astrocytes suppressed the astro-
cyte andmicroglial expression of transcriptional
modules associatedwithCNS inflammation and
neurodegeneration (fig. S16, D to G). Thus,
EphB3 signaling in astrocytes promotes CNS
inflammation and is a candidate target for
therapeutic intervention.

EphB3 kinase activates mTOR and boosts
mitochondrial ROS production in astrocytes

Finally,we investigated themechanisms involved
in the control of astrocyte proinflammatory ac-
tivities by EphB3 signaling. We established a
signature score for the activation of the Ephrin
pathway in astrocytes and analyzed microglia-
astrocyte subnetworks that contained astro-
cytes with high (>90th percentile) and low
(<10th percentile) scores (Fig. 8A). Differen-
tial expression analysis of astrocytes in these
subnetworks identified PI3K-AKT-MTOR sig-
naling as a potential pathway involved in
Ephrin receptor signaling (Fig. 8B). Further
analysis of protein interaction networksmod-
ulated by A38 treatment identified Pik3r1 as
a candidate mediator of the effects of EphB3
signaling (Fig. 8C). PIK3R1 encodes the reg-
ulatory subunits (p85a, p55a, and p50a) of
class I PI3Ka, which is associated with the
control of innate immunity (60). Supporting
a role for PIK3R1 in EphB3 signaling in astro-
cytes, A38 suppressed the phosphorylation of
p85a, p55a, and their downstream signaling
molecule AKT in primarymouse astrocytes in
culture (Fig. 8D). Similarly, the pharmaco-
logical inhibition of class I PI3Ka by ZSTK474
suppressed the phosphorylation of its target
AKT (Fig. 8D).
AKT is reported to activate the transcription

factor NF-kB and the mammalian target of
rapamycin (mTOR) (61). The inhibition of AKT
phosphorylation by A38 did not suppress NF-
kB activation, as determined by the analysis of
its phosphorylation and nuclear translocation
in primary astrocytes stimulated with TNFa
and IL-1b (Fig. 8D and fig. S17A). However, A38
suppressed S6 phosphorylation downstreamof
mTORC1, suggesting that A38 interferes with

mTORactivation (Fig. 8D). Indeed, we detected
reduced S6 phosphorylation when we used
flow cytometry to analyze the effects of the
pharmacological inhibition of EphB3 ki-
nase or PI3K in primary astrocytes activated
in vitro with TNFa and IL-1b (Fig. 8E). Thus,
through its effects on the PI3K-AKT axis,
EphB3 kinase activity promotes mTOR acti-
vation in astrocytes.
To investigate the role of mTOR on astro-

cyte responses, we used the mTOR inhibitor
rapamycin (62). Rapamycin treatment sup-
pressed the expression of proinflammatory
genes in astrocytes stimulated in vitro with
TNFa and IL-1b (Fig. 8F), recapitulating our
previous observations on the effects of A38
on astrocytes. Consistent with its inhibitory
effects on mTOR, rapamycin suppressed S6
phosphorylation but did not suppress the
phosphorylation of AKT, p85, or NF-kB sub-
unit p65 (Fig. 8D).
mTOR controls mitochondrial function (63),

which has been linked to pathogenic activities
of astrocytes and microglia in neurologic dis-
orders (9, 64). Indeed,mTOR-drivenmitochon-
drial respirationproduces reactive oxygen species
(ROS), which promote proinflammatory gene
expression and contribute to neurodegenera-
tion (65–67). Thus, we investigated the effects
of A38 on mitochondrial function and ROS
production. The inhibition of EphB3 kinase
activity by A38 decreased basal and maximal
mitochondrial respiration, as well as adeno-
sine triphosphate (ATP)–linked respiration in
primary astrocytes (Fig. 8, G and H); similar
results were obtained with rapamycin. Con-
sistent with its suppressive effects on mito-
chondrial respiration, A38 and rapamycin also
decreased the mitochondrial production of
ROS induced in astrocytes by stimulation with
TNFa and IL-1b (Fig. 8I). Accordingly, we de-
tected a decrease in the expression of genes
related to ROS metabolic processes in astro-
cytes isolated from A38-treated EAEmice (Fig.
7J). Moreover, treatment with rotenone and
antimycin A, which increase mitochondrial
ROS levels (68–70) (fig. S17B), boosted the ex-
pression of proinflammatory genes in astrocytes
(fig. S17C). Thus, the production of mitochon-
drial ROS driven by PI3K-AKT-mTOR signaling
contributes to the proinflammatory effects of
EphB3 kinase activation in astrocytes.

Discussion

Several techniques have been developed to infer
cell interactions on the basis of spatial tran-
scriptomics (71–77), physical interactions (17, 18)
or colocalization in tissue (19, 20). However,
these approaches remain difficult to apply to
the study of cells in the CNS, owing to technical
complexity, throughput limitations, or a lack of
single-cell resolution with respect to transcrip-
tional or interaction information. To overcome
these limitations, we developed RABID-seq,
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an unbiased, high-throughput, and acces-
sible technology for the study of cell in-
teractions. RABID-seq uses glycoprotein
G–deficient pseudotyped rabies virus engi-
neered to express a unique mCherry mRNA
barcode to capture interactions directly from
transcriptomic data, thereby exploiting the
maturity and ubiquity of next-generation

sequencing (78) and lowering the barrier
to technology adoption.
Microglia-astrocyte communication plays

a central role in CNS physiology (79). Using
RABID-seq, we identified axon guidance mol-
ecules as participants in microglia-astrocyte
communication in the context of CNS inflam-
mation. Axon guidance molecules have been

shown to be co-opted in the context of cancer
and inflammation (80, 81), but their partici-
pation in microglia-astrocyte interactions was
unknown. We identified a role for Sema4D-
PlexinB1 and Sema4D-PlexinB2 interactions
in the microglial control of astrocytes during
EAE and MS. Sema4D is described to par-
ticipate in neurodevelopment (82, 83), T cell
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Fig. 8. EphB3 kinase activates mTOR and boosts mitochondrial ROS
production in astrocytes. (A) Subnetworks of astrocytes interacting with
microglia, as determined by RABID-seq and binned (<10th versus >90th
percentile) based on their expression of Ephrin receptor pathway genes (MSigDB
ID: M5923). (B) GSEA preranked analysis of RABID-seq data comparing
>90th percentile astrocytes to <10th percentile astrocytes. (C) Protein-protein
interaction analysis of the effects of A38 on astrocytes. (D) Western blot analysis
of phosphorylated (p-) or total protein for p85a PIK3R1, p55a PIK3R1, AKT, S6,
p65, and GAPDH in primary neonatal mouse astrocytes activated for 30 min
with TNFa and IL-1b in the presence of the indicated compounds. Z74, ZSTK74
(class I PI3K isoforms inhibitor); Rapa, rapamycin. Blots are representative of three
independent experiments. (E) Analysis of S6 phosphorylation determined by
intracellular staining and flow cytometry of astrocytes stimulated as in (D).
Statistical analysis: one way ANOVA and Tukey post-test. (F) Il6, Ccl2, Tnfa, Csf2,

and Nos2 expression determined by qPCR in neonatal mouse astrocytes stimulated
with TNFa and IL-1b in the presence of A38 or rapamycin. n = 4 samples per group.
Statistical analysis: one way ANOVA and Dunnett post-test. Data are representative
of three independent experiments. (G) Seahorse mitochondrial stress test performed
on astrocytes pretreated overnight with A38 or rapamycin. n = 2 samples. OCR,
oxygen consumption rate; FCCP, trifluoromethoxy carbonylcyanide phenylhydrazone.
(H) Quantification of basal mitochondrial respiration, maximal mitochondrial
respiration, and ATP-linked respiration calculated from mitochondrial stress assay
from (E). n = 2 samples per group. Statistical analysis: one-way ANOVA and Tukey
post-test. Data are representative of three independent experiments. (I) Mitochondrial
ROS measured by MitoSOX staining after overnight treatment with IL-1b/TNFa and
A38 or rapamycin. n = 6 samples per group. Statistical analysis: one-way ANOVA and
Tukey post-test. Data are representative of three independent experiments. Data
shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
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activation (36, 84), and T cell–driven microg-
lial activation in EAE (36, 85). Our findings
suggest that developing MS therapies that
target SEMA4D could be improved if the
therapeutic agent reaches the CNS (86).
Mostmicroglia-astrocyte interactions known

to participate in the control of CNS inflam-
mation are mediated by soluble factors
(2, 5, 6, 11, 12, 58, 87). We identified Ephrin-
B3–EphB3 signaling as aparticipant inmicroglia-
astrocyte contact–dependent cross-talk. Eph
receptor signaling plays important roles in
development (43); immune regulation (88);
maintenance of epithelial architecture (89);
and control of neural progenitor prolifera-
tion, axonal guidance, and synapse formation
(90–92). Eph receptors participate in astrocyte-
neuron communication (93–95), which sug-
gests that, in the context of inflammation,
Ephrin-B3–EphB3 signaling may mediate
interactions of astrocytes with cell types other
than microglia. Notably, EphA receptor up-
regulation in astrocytes has been reported in
MS patients (96), and EphB2 (1) and EphB3
(97) are increased in astrocytes after spinal
cord injury. Eph receptor signaling has also
been linked to the pathology of Alzheimer’s
disease (98), Parkinson’s disease (99), amy-
otrophic lateral sclerosis (100), and schizophrenia
(101). In this sense, Eph receptor signaling
resembles IL-33 (11, 102) and complement
(103–106), which participate in CNS develop-
ment but are also reactivated in neurologic
diseases. However, a distinguishing feature
of Ephrin-Eph receptor interactions is the
induction of reverse signaling in Ephrin-
expressing cells (46–50), which amplifies
NF-kB–driven proinflammatory responses in
microglia.
We found that EphB3 kinase activity in

astrocytes modulates mTOR activation and
mitochondrial ROS production. In myeloid
cells in the CNS, the genetic inhibition of ROS
production decreases proinflammatory gene
expression (67). ROS triggers the production
of proinflammatory cytokines via the regu-
lation of NLRP3 and MAPK (65, 66). EphB3
and EphA4 signaling in astrocytes induces the
production of D-serine (107), which promotes
synaptic damage by acting on N-methyl-D-
aspartate receptors (108). Thus, EphB3 sig-
naling provides a mechanism for the microglial
control of astrocytemetabolism and its multiple
effects on CNS inflammation. It is conceivable
that microglial control of astrocyte metabolism
via EphB3 not only affects proinflammatory and
neurotoxic responses but also interferes with
the metabolic support of neurons by astrocytes
in the context of inflammation, as recently re-
ported (5, 9).
Our studies identify Ephrin-B3–EphB3 sig-

naling as a candidate target for the therapeu-
tic modulation of astrocyte and microglial
pathogenic activities in MS. The therapeutic

blockade of Ephrin-B3–EphB3 signaling may
interfere with disease-promoting responses
in astrocytes and microglia, as well as addi-
tional mechanisms associated with MS pathol-
ogy and linked to this pathway, including the
disruption of the blood-brain barrier (109) and
the inhibition of remyelination (110). In this
context, CNS-penetrant small molecules, such
as A38 described in this work, provide bet-
ter therapeutic approaches than other Eph-
targeting therapies (111) that have limited
access to the CNS. However, potential off-
target effects are possible as a result of the
multiple cell- and context-specific signaling
mechanisms that have been linked to Eph
receptors (43, 112, 113).
In summary, we developed RABID-seq, an

approach for the high-throughput identifica-
tion of cell interactions and the molecular
phenotype of interacting cells with single-cell
resolution. RABID-seq enabled the identifica-
tion of microglia-astrocyte interactions mediated
by the axon guidance molecules Sema4D-
PlexinB1, Sema4D-PlexinB2, and Ephrin-B3–
EphB3, which represent candidate targets for
therapeutic intervention in MS and other
neurologic disorders.

Materials and methods summary

The supplementary materials provide a de-
tailed description of ourmaterials andmethods.
Adult C57BL/6J (no. 000664) and NOD/ShiLtJ
(NODmice) (no. 001976) were obtained from
The Jackson Laboratory. B6.Cg-Tg(Gfap-cre)
73.12Mvs/J hemizygous mice (The Jackson
Laboratory, no. 012886) were crossed to
homozygousB6;129P2-Gt(ROSA)26Sortm1(CAG-
RABVgp4,-TVA)Arenk/Jmice (The Jackson Lab-
oratory, no. 024708). Tg(CAG-Kaede)15Kgwa
mice (114) on a C57Bl/6J background were ob-
tained from RIKEN BRC. EAE was induced as
previously described (3, 9, 13).
Barcoded rabies virus was created by re-

placing green fluorescent protein (GFP) with
mCherry in pSADDG-GFP-F2 (Addgene, no.
32635), followed by insertion of a 28–base
pair semirandom anchored barcode down-
stream of the mCherry translational stop
codon using Gibson assembly. Pseudotyped
G-deficient rabies virus was produced as pre-
viously described (115). Intracranial delivery of
RabDG was performed largely as described
previously (3, 13). The forebrain was targeted
unilaterally using the following coordinates:
+1.25 (lateral), +1.0 (rostral), −3.0 (ventral)
relative to Bregma. Cells were isolated by
flow cytometry on a FACS Aria IIu cell sorter
(BD Biosciences). Sorting of mCherry+ cells
at low flow rates through a 100-mm nozzle
was judged in the PE-Texas Red channel
using a yellow-green laser. After sorting, cells
were scRNA-sequenced using the inDrops
workflow (116) (v3 beads, Harvard Single
Cell Core) with modifications to the molec-

ular biology to enable reverse transcription
with template switching in drops. Illumina
sequencing libraries for transcriptome se-
quencing were prepared from purified whole-
transcriptome–amplified product using an
adapter ligation approach with the NEBNext
Ultra II FS Kit (NEB, no. E7805). Illumina
sequencing libraries for rabies barcode se-
quencing were prepared from the same ma-
terial using a two-step nested PCR protocol.
InDrops scRNA-seq data were processed using
the publicly available bioinformatics pipeline
(https://github.com/indrops/indrops) (117).
Connectome data were analyzed using scripts
developed for this work that are publicly avail-
able on GitHub at https://github.com/Zha0rong/
RABID-seq.
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