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PARALLEL-IN-TIME MAGNUS INTEGRATORS

B. T. KRULL AND M. L. MINION *

Abstract. Magnus integrators are a subset of geometric integration methods for the numerical
solution of ordinary differential equations that conserve certain invariants in the numerical solution.
This paper explores temporal parallelism of Magnus integrators, particularly in the context of
nonlinear problems. The approach combines the concurrent computation of matrix commutators and
exponentials within a time step with a pipelined iteration applied to multiple time steps in parallel.
The accuracy and efficiency of time parallel Magnus methods up to order six are highlighted through
numerical examples and demonstrate that significant parallel speedup is possible compared to serial
methods.

Key words. Ordinary differential equations, nonlinear ordinary differential equations, Magnus
expansions, isospectral flows, Lax pairs, parallel-in-time

AMS subject classifications. 34L30, 65L05, 65Y05

1. Introduction. The solution of ordinary differential equations (ODEs) is a
well established field with applications across the spectrum of scientific disciplines.
Numerical methods date back at least to Euler’s work in 1768 [5], and the accuracy,
stability, and efficiency of various methods is well studied (see for example Refs. [8, 9]).
In more recent years, the study of specialized numerical methods for ODEs that
preserve certain mathematical properties of the numerical solution has seen increased
interest. Examples include methods for Hamiltonian systems that numerically conserve
invariants of the true dynamical system such as the energy or angular momentum.
More generally, the true solution of an ODE posed in N-dimensional space may reside
for all time on a manifold M of dimension d < N, and the goal is to devise a method
for which the numerical solution will also remain on M. Such methods are referred
to in general as geometric integrators. The interested reader is encouraged to consult
Ref. [7] for a comprehensive introduction to the subject.

As a concrete example, consider the ODE given by

(1) SYM=FO@),  Y0)=Y,

where Y and F(Y) are both N x N matrices. Depending on the form of F', certain
properties of the initial value Y may be preserved for all time, such as the determinant,
orthogonality, idempotency, or the spectrum of eigenvalues. In general, standard
numerical methods such as linear multistep or Runge-Kutta methods will not produce
solutions that conserve such properties [16].

Magnus integrators are a subset of geometric integrators based on the expansion
proposed by Wilhelm Magnus in 1954 [14]. The Magnus expansion is closely tied to
the concept of Lie groups and algebras due to the presence of matrix commutators,
also known as Lie brackets. The discussion concerning solutions to Eq. (1.1) can
in fact be generalized to differential equations on Lie groups (see e.g. Ref. [12]),
however in this work we strictly use matrix valued solutions. Magnus integrators can
also be viewed as a type of exponential integrator (see e.g. Ref. [11] for a review)
since they require that the matrix exponential be evaluated. The comprehensive
review of the Magnus expansion and applications by Blanes, et. al. [1] provides
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2 Krull and Minion

a description of several physical applications to which the Magnus expansion has
been applied including nuclear, atomic, and molecular dynamics; nuclear magnetic
resonance; quantum field theory and high energy physics; electromagnetism; optics;
geometric control of mechanical systems; and the search for periodic orbits.

In general, numerical Magnus integrators are constructed by applying quadrature
rules of suitable order to a truncation of the Magnus expansion. The review [12] presents
various types of Magnus integrators up to sixth-order, and methods of order up to eight
are considered in Ref. [2]. As the order increases, the number of commutator terms
required in the Magnus expansion grows quickly, hence in these papers and others, a
detailed discussion of how to minimize the number of commutators required for a given
order is presented. So called commutator-free Magnus integrators (e.g. Refs. [3, 18])
have also been proposed that replace the need to compute matrix commutators with
additional matrix exponentials. This can reduce the total computational cost of
the method depending on the relative cost of computing commutators versus matrix
exponentials. In this paper, an additional avenue for reducing the time to solution for
Magnus integrators is investigated, namely parallelization in time.

The study of parallel numerical methods for ODEs dates back at least to Nievergelt
in 1964 [17], and the field has seen an increase in activity in the last 15 years. (See
Ref. [6] for a recent review.) The standard classification of parallel methods for ODEs
includes parallelism across the method, across the problem, and across the time steps
[4]. In this work we demonstrate the utility of parallelization across both the method
and the time steps for Magnus integrators for both linear and nonlinear equations.
Special attention is paid to schemes for solving nonlinear differential equations for
isospectral flow problems, although the methodology that is described can be applied
more generally.

The remainder of this paper is organized as follows. Section 2 presents the
mathematical background behind the Magnus expansion and Magnus integrators
followed by some specific Magnus integrators based on Gaussian collocation in section 3.
The parallelization strategies for these integrators is presented in section 4. Numerical
results comparing the efficiency of different parallel methods is presented in section
5. The results demonstrate that significant parallel speedup over serial methods is
possible and show that parallel higher-order methods are superior in terms of accuracy
and time to solution compared to lower-order methods.

2. Mathematical Preliminaries. In this section, a review of the mathematics
behind the construction of Magnus integrators for both linear and nonlinear problems
is reviewed.

2.1. Matrix Calculus and Differential Equations. Given a constant matrix
A € FNXN where F can be either R or C, the exponential of A is defined by the power
series

(2.1) et = f: A

n!’
n=0

Given the time-dependent vector y(t) € FY, the solution to the differential equation

(2.2) y'(t) = Ay(t), y(0) = yo
is given by
(2.3) y(t) = e*'yo.
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Parallel in Time Magnus Integrators 3

This is easily shown by differentiating the power series definition (2.1) of the exponential
on the right hand side term-by-term to give

d
(2.4) ﬁem = Aet,
Now consider the more general case of a time-dependent matrix A(t). Again
differentiating definition (2.1) term-by-term and using the product rule yields
(2.5)

Lo — g+

A(A' (1) + A(DA(L) | AW AW + ADA (DA() + AW (1)
= .

2! 3!

The right hand side of (2.5) can be rearranged to give
d
(2.6) £ A0 = dexp (A (1)),
where the operator on the right is defined by
[A®), X(@)] | [A), [A), X (#)]
2 + 3] e

and brackets [, -] denote the matrix commutator [4, X] = AX — X A.
Now consider the linear system of ODEs

(2.7) dexp 44 (X (t)) = X (¢) +

(2.8) y'(t) = A)y(t), y(0) = yo.
To find a solution, suppose that it can be written in the form
(2.9) y(t) = *yy

for some matrix €2(¢). Using Eq. (2.6), Q(t) satisfies
(2.10) dexpgqy ('(t)) = A(t), Q(0) = 0.

The same formal derivation can be applied to a nonlinear system of equations
(2.11) y'(t) = A(y(t), )y (1), y(0) = wo-

Again, if the solution to this equation is to take the form of Eq. (2.9), then Q(¢)
satisfies

(2.12) dexpagy (Y (1) = A(y(D),0),  Q(0) =0,

In the next section, methods for finding €2(¢) are considered.

2.2. Magnus Expansion. In 1954, Magnus introduced an explicit expression
for the solution of Eq. (2.8), which is reviewed here [14]. The first step is the inversion
of the operator dexpg,y), which gives a differential equation for Q(t)

(2.13) Vt)=> %adg(t) (A(t)), 0(0) =0,

n=0

where the B,, are the Bernoulli numbers and

(2.14) add (X) = [Q,adf ' X], add(X)=X.

This manuscript is for review purposes only.
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4 Krull and Minion

Next, a Picard-type iteration is applied to Eq. (2.13)
k+1 "= Bn
(2.15) QFL(t) = /0 > —radgu ) (A(t)-
n=0 ’

Collecting terms in Eq. (2.15) yields an infinite series for 2(¢)
(2.16) Q) =V + Q@) + P @) 4+ ...,

where

(2.17) QW () = / t drA(T)
0

(2.18) (1) = /O s /O ¥ [A(), A()]

(2.19)

) _i t T. b T " T h T T T T T
Q) = 5 [Cam [ [an [ Can (4t A)). Al A
+

(74)
[A(74), [[A(73), A(72)], A(71)]
+[A(1a), [A(73), [A(72), A(71)]]]
(2.20) +[A(73), [A(72), [A(71), A(7a)]]] -

Each subsequent term in the series contains an additional integration operator, com-
mutators of one higher order, as well as an increasing number of commutator terms.
The reader is referred to the original work of Magnus [14] or the extensive review [1]
for further details. To summarize, the Magnus expansion gives an explicit formula for
the solution of the linear equation given by Eq. (2.8) in the form of the exponential of
a matrix defined by an infinite series given by Eq. (2.16).

2.3. The Magnus Expansion for Nonlinear Problems. The same formal
procedure used in the last section to construct the solution to the linear problem
Eq. (2.8) can also be applied to the nonlinear system Eq. (2.11). One can still represent
the solution in terms of the exponential of the function Q(¢), and the only difference
is that in the Magnus expansion terms given above in Eqgs. (2.17)-(2.20), the terms
A(7) must be replaced with A(y(7),7), which by the definition of the solution is
A(e?Myg, 7). Although this may appear at first a small change in notation, the
implication is quite important. For the nonlinear problem, the Magnus expansion
does not give an explicit formula for the function (t) as in the linear case. Instead,
the result is an equation for Q(¢) involving an infinite expansion of terms containing
integrals of commutators dependent on Q(t). The central insight of this paper is that
this equation for Q(¢) can be solved efficiently by a fixed point iteration that is readily
amenable to parallelization in the time direction.

This manuscript is for review purposes only.
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Parallel in Time Magnus Integrators 5

2.4. Isospectral Flows. A special type of matrix differential equation for which
the eigenvalues of the solution are independent of time is called isospectral flow.
Problems of this form exist in application domains including electronic structure, wave
dynamics, and linear algebra. Isospectral flow is often associated with the concept of
a Lax pair: two matrices or operators A(t), Y (t) dependent on time that satisfy the
Lax equation

(2.21) Yi(t) = [A(Y,1), Y (2)], Y(0)=Yy,

where Y (), A(Y,t) € FNXN,
It is straightforward to show that the solution to Eq. (2.21) can be written in the
form of the transformation

(2.22) Y(t) = (eﬂ(t))Yo(eQ(t))_l,

where Q(t) is defined by the Magnus expansion with respect to A(t). Since the form of
Y (t) takes on a similarity transformation, the eigenvalues of Y (¢) do not change in time,
hence the term isospectral. In the special case where A is Hermitian (or self-adjoint)
and Y is skew-Hermitian (or skew-adjoint), the exponential e*) is unitary, which
reduces Eq. (2.22) to

(2.23) Y (t) = ()Y (e D),

3. Numerical Methods Based on the Magnus Expansion. In this section,
the process for constructing numerical methods for differential equations based on the
Magnus expansion is discussed. In general, numerical methods are constructed by
designing appropriate quadrature rules for the Magnus expansion truncated to a given
order. The presentation here is focused on collocation type schemes based on Gaussian
quadrature rules. As proved in Ref. [13], quadrature rules for the terms in the Magnus
expansion based on s Gauss-Legendre quadrature nodes are sufficient for constructing
a method of order 2s. Here, methods of order two, four, and six are considered
using both Gauss-Legendre and Gauss-Lobatto quadrature nodes. These methods
correspond to quadrature rules applied to one, two, and four terms, respectively, in
Eq. (2.16).

Considerable attention in the literature on Magnus integrators is devoted to de-
signing methods requiring the minimum number of function evaluations and matrix
commutators for a given order of accuracy [13, 1, 12]. In the context of time paral-
lelization, the manner in which the cost of commutators and function evaluations are
counted must reflect the fact that much of the work can be done in parallel, and the
minimum parallel cost is not necessarily achieved by a direct parallelization of the
serial method with the fewest number of commutators.

Methods for linear equations are discussed first, followed by a discussion of
additional considerations for nonlinear problems in section 3.3.

3.1. Quadrature Rules for the Magnus Expansion. In this section, the spe-
cific types of quadrature rules used in the numerical methods are described. Quadrature
rules based on Gauss-Lobatto or Gauss-Legendre quadrature rules using either two or
three quadrature nodes are considered here. Table 1 lists the specific nodes used for
each choice as well as the accompanying classical weights. For a method of a given
order, each term in the truncated Magnus expansion must be approximated using the
function values A,, = A(t,,) (or A, = A(y(tm),tm) for nonlinear problems) at the
quadrature nodes t,, corresponding to the quadrature nodes scaled to the time step

This manuscript is for review purposes only.
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6 Krull and Minion

Name | Order Nodes q(l)
Lob-2 2 0, 1 %7 %
Lob-3 | 4 0, L, 1 I 11
1 1 /3 1 1,1 /3|5 8 5
Leg3 | 6 | 35-3y5 3 §+§\/; 50 180 18
TABLE 1

Quadrature nodes and weights for Gauss-Legendre and Gauss-Lobatto rules.

interval [t,,t,+1]. For the schemes described below, the same quadrature nodes are
used at each term in the expansion in Eq. (2.16).

First consider the approximation to the first term of the expansion Q) (¢) on
the interval [t,,t,41] with At = ¢,41 — t,. Approximating the integral by Gaussian
quadrature gives

n

tnt1 M
(3.1) QW (t41) = /t A(t) dt =AY g A; =,
j=1

where M is the number of quadrature nodes. This is classical quadrature, and the
well-known coefficients qj(l) are given for completeness in Table 1.

In order to obtain a fourth-order method, the second term in the Magnus expansion
must be included. The simplest approximation to Qf_?_l sufficient for fourth-order
accuracy requires the calculation of only a single commutator term
(3.2) Q2T = A4y, Ay,
with ¢®?)=! = 1/12. The method denoted Lob-4-1 (where the 1 denotes one commutator
term) uses this approximation. To compute Q) to the accuracy required for a
sixth-order method, three nodes can be used and it is necessary to compute three
commutators
(3.3) Q" = a7 A Aa) + 06V AL As] + 457 T (Ao, Ay
with the values
(3.4)

qj(-2)73 = [—7.1721913818656e—2, —3.5860956909328e—2, —7.1721913818656e—2] .

Despite the increased computational cost of two additional commutators, in a parallel
implementation all three commutators can be computed simultaneously.

To achieve sixth-order accuracy, the first four terms of the Magnus expansion
must be included. The sixth-order method denoted Leg-6 approximates the Q) term
using three Gauss-Legendre nodes following the discussion in Ref. [12]. Specifically,

0P, = AtB([Q%)Al + qf%AQ + Q§?§A3» [A1, Ao]]+

0% Ay + q$) A5 + o) As, [Ay, Ag]]+
(3.5) 42 Ay + 4 As + ¢§) As, [As, A])).

3)

The values of the coefficients ¢;”/ are the same as those in Ref. [12], and in matrix

This manuscript is for review purposes only.
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Parallel in Time Magnus Integrators 7

form are
(3.6)
3.4538506760729e—3 —5.5849500293944e—3 —7.1281599059377e—3
¢®) = [1.6534391534391e—3 0.0 —1.6534391534391e—3
7.1281599059377e—3 5.5849500293945e—3 —3.4538506760729¢—3
Exploiting the linear property of commutators ([A, X] + [4,Y] = [4, X + Y]) allows

one to combine terms that share the same inner single commutator and reduce the
number of commutators from nine to three. Note that the single commutator terms,
ie. [A1, As], are computed during the formation of the Q;Q_?_l term and need not be
computed again.

The fourth term in the Magnus expansion can be approximated using a low-order
quadrature for a sixth-order method. Following the discussion in Ref. [2], the fourth

term is approximated by
(3.7) 0, = At'q™(Bo, [Bo, [Bo, Bl
where ¢*) = 1/60 and

(3.8) B; = Atz J(t; —0.5)' A,

with q( ) given in the last row of Table 1.

In section 5, numerical examples are presented for five different Magnus integrators.
Table 2 lists the specific discretization of each term included for a given method. The
overall order of each method is determined either by the number of terms used in the
expansion, or the order of the quadrature rules. For example, the methods Leg-2, Leg-
4-3, and Leg-6 use the same quadrature nodes, but differ in the number of terms used
in the expansion, while Lob-2 and Leg-2 use different nodes, but are both second-order
because only one term in the expansion is used.

Name | Order | Nodes Q
Lob-2 2 Lob-2 QM
Leg-2 2 Leg-3 Q@
Lob-4-1 | 4 Lob-3 QM + @1
Leg-4-3 4 Leg-3 Q) Q-3
Leg-6 6 Leg-3 | QU + Q@3 1 0B + W
TABLE 2

Description of the numerical schemes.

3.2. The Matrix Exponential and Solution Update. Once all of the quadra-
ture approximations are applied and the value of €, is computed, the solution can
be updated by

(3-9) Yn+1 = €Qn+1yn-

There are many approaches to computing the product of a matrix exponential and a
vector of the form ey [15], some of which explicitly compute the term e and some
which only approximate the product ey. The choice of method is problem dependent
and does not affect the discussion of time parallelism of the methods. In the numerical
examples presented here, the scaling-and-squaring method from [10] is used to form
the matrix exponential explicitly.

This manuscript is for review purposes only.
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8 Krull and Minion

3.3. Considerations for Nonlinear ODEs. Consider now problems of the
form

(3.10) y' = Ay, t)y

where non-linearity is introduced through the y-dependence of A. The terms in the
Magnus expansion approximations introduced above now depend on the solution
through A,,, and cannot simply be evaluated. The numerical solution at each quadra-
ture node t,, will be denoted y,,, and hence A,, = A(ym,tm). The values of y,, at
each quadrature node are computed by

(3'11) Ym = EQ’"ym

where (), is an approximation to the Magnus expansion on the interval [t,,t,,]. The
construction of €, is discussed below.

A simple fixed-point Picard-type iteration is used to simultaneously solve for the
values €2, and y,,. The iterative scheme is initialized by setting y*=! =y, at each
node m, where k denotes the iteration. The solution at each quadrature node is
updated by

(3.12) yhtl = ¢y,
Then QF+1 is computed using values A(y%+1, ¢,,) as described below.

To compute Q¥ | the process for constructing the quadrature rules in section 3.1
needs to be applied to each quadrature node. Evaluating the values A(yX,,t,,) at
each node t,, is straight-forward but needs to be performed each iteration. In all
cases considered here, the same matrix commutators are used for each quadrature
rule, so computing the commutators is also identical to the linear case. The significant
difference is that a quadrature rule for each term in the Magnus expansion must be
computed for each interval [t,, t,,] rather then just [t,,t,11] as in the linear case. The
coefficients for each of the terms are included in Appendix A.

Once each QF is computed, the matrix exponential can be computed for each
node, and a new solution is obtained at each node by Eq. (3.12). The solution is
considered converged when the maximum absolute value of the residual

k
(3.13) RE, = Py, —yk =gkt

is less than a predefined tolerance. In a traditional implementation of this iteration
using Gauss-Legendre nodes, it is not necessary to compute the values QF 11 and Yn 1
at the end of the time step during the iterations; however, when pipelining of iterations
is employed as discussed in the next section, y,1 is computed each iteration to update
the initial condition for the next time step.

3.4. Considerations for Isospectral Flows. Consider now problems of the
form of Eq. (2.21). The procedure for constructing Magnus integrators follows exactly
that laid out in the previous section except that the solution is defined at quadrature
nodes by

(3.14) YEHL = ey e,

and likewise for the computation of Y,ffll from QF ;.

This manuscript is for review purposes only.
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4. Parallelization in Time for Magnus Integrators. In this section, we
investigate the theoretical computational cost of the Magnus integrators introduced in
the previous section in both serial and parallel settings. We consider both parallelization
across the method and parallelization across the time steps. In the following discussion,
it is assumed that arbitrarily many processors are available for a given problem and
the cost of communication between processors is ignored. It is also assumed that the
matrix exponential is formed explicitly as is done for the the numerical results given
in Section 5.

4.1. The Linear Case. First consider linear problems where A(t) does not
depend on the solution y. For each of the N time steps, the following tasks must be
performed:

L1. Evaluate A,, = A(t,,) for each quadrature node t,,

L2. Compute commutators necessary for each term in the truncated Magnus

expansion

L3. Apply quadrature rules to compute Q(¢,,+1)

L4. Form the exponential of £(¢,,11)

L5. Compute the solution y,,+1 from y, by matrix multiplication
Denote by Cy4 the computational cost of computing A(¢) for a given time. Then if M
quadrature nodes are used, L1 has a computational cost of M C4. Next let n? denote
the number of commutators required to compute the pth term in the Magnus expansion
and C¢ the cost of computing one commutator. Assuming that each commutator
in the p 4+ 1 term can be formed with one additional commutator applied to a term
from term p, the total number of commutators to compute is simply n' + ...n".
Denoting this sum by N¢, the cost of L2 is NoC¢. Task L3 requires only that a
linear combination of the terms computed in L2 be computed. We can denote this cost
by NcCp, where Cp, is the cost of adding a term in the linear combination. Denote
by Cg the cost of the matrix exponential, and hence the cost of L4 is Cg. Likewise
denote by C)j; the cost of multiplying the solution by a matrix which corresponds to
the cost of task L5. Putting these together, the serial cost for NV time steps is

(4.1) CS:N(MCA+N0<00+CL)+CE+C]\/[).

Now consider the parallelization of the method for the linear problem across the
time steps. In task L1, each function evaluation can be done concurrently, so that the
cost is reduced from MC'4 to C 4. For task L2, all the commutators of a given order
can be computed concurrently, so that cost is reduced from NoC¢ to PCe. Task L3
can be done with cost log,(N¢)CL, and the cost of task L4 and L5 remains the same.

Next consider the cost when both parallelization across the method and across the
time steps is employed. Given sufficient processors, tasks L1-1.4 can all be computed
on all time steps concurrently. Only task L5 must be done serially so that the total
cost using both forms of parallelism becomes

(4.2) Cp :CA+PCC+1Og2(Nc)CL-‘rCE-l-NCM.

Clearly this is a significant reduction in computational cost. If the cost of computing
the commutators and matrix exponential (L2 and L4) dominate the other terms, the
theoretical parallel speedup approaches .

An important point to make about this counting is that the cost per step when
using parallelization across the method depends very little on the number of quadrature
nodes or commutators used in each term since only the cost of task L3 depends on

This manuscript is for review purposes only.
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10 Krull and Minion

these factors. Hence higher-order methods are only modestly more expensive per
step than lower-order methods and there is less benefit from reducing the number of
commutators required in each term of the Magnus expansion since multiple terms can
be computed in parallel. Furthermore, for a given accuracy, higher-order methods will
typically require fewer time steps (i.e. smaller N).

4.2. The Nonlinear Case. For nonlinear problems, the theoretical accounting
of cost must be modified somewhat. Since we are using an iterative procedure to
compute Q(t,,), the following steps must be done for each iteration in each time step:

N1. Evaluate A(y¥,,t,,) for each quadrature node t,,

N2. Compute commutators necessary for each term in the truncated Magnus

expansion

N3. Apply quadrature rules to compute QF, at each quadrature node t,,

N4. Form exponential of QF at each quadrature node t,y,.

N5. Compute y*+1 at each quadrature node by matrix multiplication by QF, .
The main difference between these tasks and the linear case is that N2-N5 are done
for each quadrature node instead of only once. For simplicity, the serial cost of these
steps will be assumed to be M times that of the linear case. Hence, denoting by Kg
the number of iterations required for each step in a serial implementation, the serial
cost for the nonlinear Magnus method iteration becomes

(4.3) Cs = NKsM(Cp+ Nc(Ceo + CL) + Cg + Cu).

As will be shown below, the number of iterations required for convergence Kg depends
on At in a nontrivial way.

If we allow parallelization across the method, the tasks above can all be computed
concurrently at each quadrature node, and hence the cost of each iteration for the
nonlinear method is essentially that of one step in the linear case using parallelization
across the method.

(4.4) C1=Cy4 + PCc +logy(Ne)Cr + Cg + Chy.

The speedup across the method is bounded by M.

Now consider parallelization across the time steps. The simplest way that this can
be accomplished is to pipeline the iterations. We first divide the N time steps into
blocks of size Np with each step in a block assigned to a group of processors indexed by
np. At each time step n, for each iteration £, the initial condition is assigned the final
value from iteration £ — 1 of the time step n, — 1. For each block, Np — 1 pipelined
iterations are required before the last processor has a consistent initial condition. After
this initialization step, assume Kp additional iterations are needed for convergence
on every time step in the block. As in the serial case Kp depends in general on the
time step At and now also on Np, increasing as Np increases and decreasing at At
decreases. Furthermore Kp > Kg.

The parallel cost on each block will be (Np — 14 Kp)Cy compared to (NpKg)Cy
when no parallelization across the time steps is applied (i.e. Np = 1). The potential
speedup from parallelization across the time steps is then

NpKs Kg
Np—14+Kp 14 (Kp—1)/Np’

(4.5) S =

Clearly the speedup is bounded by the number of serial iterations required and the
best speedup will occur when the quantity Kp/Np remains small as Np increases.
This ratio will be investigated in the numerical examples.

This manuscript is for review purposes only.



412
413
414
415
416

417
418
419
420

Parallel in Time Magnus Integrators 11

5. Numerical Examples. In this section, the performance of the different
Magnus integrators introduced in section 3 is examined in both serial and parallel
settings. First, the performance of the methods is considered as applied to a Toda
lattice problem from the literature. Serial results demonstrating the relative accuracy
and efficiency of the various methods are presented. In section 5.1.3, some preliminary
results on parallelization of the methods are presented. In section 5.2, the parallel
performance of the methods is considered on a problem motivated by real-time time-
dependent density functional theory.

5.1. Test Case 1: The Periodic Toda Lattice. The numerical methods will
first be evaluated on the test problem of a d-particle periodic Toda lattice [19], a
one-dimensional chain whose dynamics are governed by nonlinear nearest-neighbor
interactions. The equations of motion are a Hamiltonian system for positions ¢; and
momenta p; (assuming unit masses)

(5.1)
(5.2)

4 =P
Py = e (0=a-1) _ o—(g511—;)

In order to cast the dynamics in terms of a Lax pair as in Eq. (2.21), one uses the
Flaschka change of variables

16—(%+1—q1‘)/2

(53) (Xj =
1
(5.4) B = 3P
which leads to definitions of Y and A
(5.5)
(/1 a1 O ag ] 0 —o 0 ag |
ar fPa g (€3] 0 —Q2
Y = 0 as 0 JA(YY) = 0 (a7 0
: i1 : —0g—1
| vq 0 ag-1  Ba | | —ag 0 ag— 0 ]

The numerical example considered here is an 11-particle periodic Toda lattice
taken from Ref. [21] with the initial conditions

q(0) = [0,...,0]”
4, 1<j<4,
(5.6) pj<0>={07 P>

The periodic Toda lattice is not asymptotically free and has considerably complicated
motion. Figure 1 shows the position and momenta of the 11 particles up to ¢ inq; = 10.0.

5.1.1. Simulation parameters. The following numerical experiments are all
performed on this 11-particle periodic Toda lattice with initial conditions as in Eq. (5.6)
and a fixed ¢ £4,,q; = 10.0. A Picard iteration tolerance of 1072 is used on the maximum
absolute value of the residual at the end of the timestep. The reference solution is
taken as the Leg-6 method with At = 2’15tfmal or 32768 steps. The reported error
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12 Krull and Minion

Position Momentum

Fic. 1.

is defined as the matrix 2-norm of the absolute value of the difference between the
solution in question and the reference solution.

The methods have been implemented using the LibPFASST ! library. Communi-
cation between pipelined iterations is done in LibPFASST using MPI, and the variable
Np corresponding to the number of parallel steps is also the number of MPI ranks.
For parallelization across the method, OpenMP is used to parallelize the steps in the
nonlinear iteration. All timing results were performed on a single compute node of
NERSC’s Cray XC30 supercomputer, Edison, which contains 24 hardware cores and
64 GB of memory.

5.1.2. Serial Results. We first perform convergence tests to examine the error
with respect to At for different Magnus methods. Figure 2 shows the behavior for
each method summarized in Table 2. Each method displays the proper convergence
rate for a range of At. For the second-order methods, note that the error for Leg-2
is significantly smaller than that of Lob-2, which implies the dominant error term
for Lob-2 is due to the quadrature rule as opposed to the truncation of the Magnus
expansion. The Leg-2 method requires more serial work in this case due to the use
of three quadrature nodes instead of two. The difference between the fourth-order
methods is less significant. Leg-4-3 is more accurate than Lob-4-1 (with a higher serial
cost), but since the main difference between the two methods is how the second term
in the Magnus expansion is treated, the difference between the two is smaller than
for the second-order methods. Leg-6 is clearly more accurate than the other methods.
Note that only about nine significant digits of accuracy is attainable for the reference
solution for this problem using double precision due to the sensitivity of the solution
to perturbations.

To better demonstrate the relative computational cost of each method, Figure 3
shows the total serial wall-time versus number of steps for the experiment above. As
expected, Lob-2 is the method with the shortest time to solution. Lob-4-1, the simplest
fourth-order method that can be constructed, is actually less expensive than the second-
order Leg-2 scheme despite the fact that Lob-4-1 requires a matrix commutator. For
the small problem size used here, the matrix commutators are relatively inexpensive,
and the fact that matrix exponentials must be computed at three internal quadrature
nodes for Leg-2 more than makes up for the lack of commutator terms. Leg-4-3 and

LLibPFASST is available at https://github.com/libpfasst/LibPFASST.
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Error

F1G. 2. Error at tfinq = 10.0 versus At for the Toda lattice test case.

Leg-6 are unsurprisingly the most expensive in serial.

—e— Lob-2
—0— Lob-4-1
6 —0— Leg-2
—0— Leg-4-3
5 Leg-6
m
°
C
S 4
9]
o
[0}
E3
'_
©
=2
1
0
0 500 1000 1500 2000 2500 3000 3500 4000

Number of steps

F1G. 3. Total wall-time for the solution for the Toda lattice test case for fived tinq; = 10.0.

Note that the cost of the methods displayed in Figure 3 does not grow exactly
linearly with the number of time steps. This is due to the fact that the number of
Picard iterations needed to converge to the tolerance depends on the time step At.
Figure 4 shows the average number of iterations over all time steps for each method as
a function of At. Note the higher-order methods require moderately fewer iterations
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14 Krull and Minion

than lower-order methods, and as the time step gets larger, the number of iterations
required for convergence grows rapidly.

256
—8— Lob-2
—0— Lob-4-1
—0— lLeg-2
—0— lLeg-4-3
64
> Leg-6
2
(%]
o
[
o
(%2}
c
o 16
=]
o
[}
E=]
C
@©
[
= 4
1
0.001 0.01 0.1 1.0 10.0

At

FiG. 4. Average number of iterations as a function of At for serial methods on the Toda lattice
test case.

The three figures provided above demonstrate that it is not necessarily trivial to
choose a method and time step that will provide a solution to a given accuracy with
the least computational effort. To illustrate this, Figure 5 shows the accuracy versus
wall-clock time for the Toda lattice test. Reading from left to right for a given accuracy
shows in increasing order, the methods with the fastest time-to-solution. While Lob-2
is by far the cheapest method, it only the fastest method for simulations where the
error is O(1). Lob-4-1 is the most efficient for error tolerances to about 1076, after
which Leg-6 becomes the most efficient. For an error of about 10~°, Leg-6 and Lob-4-1
are more than an order of magnitude more efficient than the second-order methods.

5.1.3. Parallel in Time Results. In this section, the relative performance
of parallel Magnus integrators is explored. We first consider the speedup due to
parallelization over time steps by pipelining the Picard iterations. As discussed in
Section 4, the theoretical speedup from pipelining is bounded by the number of serial
iterations required for the method and depends on how the total number of parallel
iterations required to reach convergence grows as the number of time parallel steps
is increased. As in the serial case, the number of iterations required depends on the
time step but now depends also on the number of parallel time steps in the pipeline.
Figure 6 demonstrates this dependence for the Toda lattice test using method Leg-6 by
plotting the average number of iterations required for convergence for different At and
parallel steps, denoted by Np. As in the serial case, the number of iterations required
decreases with decreasing At and here it also increases for fixed At as Np increases.

A second way to display the convergence behavior of the pipelined iteration is to
plot the residual after each iteration for each time rank. Figure 7 shows this data for
the Leg-6 method using a time step of At = 10/128 in the top panel and At = 10/1024
in the bottom panel for 16 parallel time steps. As discussed in section 4.2, the speedup
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—8— Lob-2
—0— Lob-4-1
10° —e— Leg-2
¢}
—0— lLeg-4-3
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1072
S
£ 1074
w
A
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0.1 1.0 10.0

Time to Solution (seconds)

FiG. 5. Error versus time to solution for the serial Toda lattice test case. Each point on a line,
read from top to bottom, represents a two-fold increase in the number of steps.
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FIG. 6. Average number of pipelined iterations to reach residual of 10712 for the parallel Toda
lattice test case using the Leg-6 method.

achievable from pipelining depends on the ratio Kp/Np. In this example it is clear
that Kp/Np is decreasing for large Np as more pipelined time steps are used.

The nontrivial dependence of the parallel iterates on both At and Np makes it
difficult to predict which method with which parameters will minimize the time to
solution for a given accuracy. As in the serial case, it is instructive to consider the
accuracy versus wall-clock for different methods with different number of time-parallel
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Residuals of last 16 steps
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F1G. 7. Residual convergence for each processor in a 16 MPI task simulation using the second-
order Legendre method Leg-6 with 128 steps (above) and 1024 steps (below). Every reoccurrence of a
given color is another 6 iterations.

493  steps. Figure 8 displays this information for each of the methods with increasing
494  number of processors. Across a single method, e.g. Leg-6, there’s an optimal value
495  of parallelization due to the fact that the increased number of iterations required in
496 the pipeline algorithm starts to cost more than it gains. It is also likely for this test
497 case that the small problem size implies that communication latency is not negligible.
498  Nevertheless, it is again clear that higher-order parallel method gives a shorter time
499  to solution than lower-order alternatives. The second-order methods are only less
500 expensive than the higher-order methods when no digits of accuracy are computed.
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10° —@— Leg-2
—0— Leg-4-3
Leg-6
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S
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w
10-°
108
0.1 1.0 10.0

Time to solution (seconds)

Fic. 8. Error versus time to solution for an 11-particle periodic Toda lattice example. Each color
represents a different method and each marker represents a different number of time-parallel steps,
Np =1,2,4,8,16. Closed circles represent the serial computation, open circles Np = 2, triangles
Np =4, squares Np = 8, and pentagons Np = 16.

Finally, we present preliminary results using parallelization across the method and
across the time steps. Figure 9 shows the error versus time to solution for the serial
implementation and time- and method-parallel methods. The particular configuration
of N, =8 and 3 OpenMP threads uses the entirety of 1 hardware node on NERSC’s
Edison Cray XC30 supercomputer with no hyperthreading. The additional parallel
across method provides an additional factor of at best two using simple OpenMP
parallel do loops over nodes. Using both types of parallelism in this context gives
up to a factor of 4.7 in the overall compute time compared to serial methods using
24 total processors. Note that compared to serial second-order methods, the parallel
sixth-order method can compute a solution in less time with more than four orders of
magnitude lower error.

5.2. Test Problem 2: An RT-TDDFT Proxy. The movitating application
for the parallel Magnus methods introduced here is the simulation of electron dynamics
using real-time time-dependent density functional theory (RT-TDDFT). In this section
we study the parallel performance of the time-parallel Magnus methods on a test
problem with a similar but simpler structure than RT-TDDFT.

5.2.1. Physical Background. RT-TDDFT describes the time evolution of the
density matrix P through the von Neumann equation of motion

(5.7) P’ = —i[F(P), P,
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Fic. 9. Error versus time to solution for an 11-particle periodic Toda lattice example. Solid
markers indicate serial calculations and open markers indicate time- and method-parallel runs with 8
MPI tasks and 8 OpenMP threads.

where F'(P) is the Fock matrix. The size of the matrices N scales with the number of
electrons times the number of basis functions used to represent the electron density.
The evaluation of F(P), the construction of the Fock matrix, requires for each entry in
P the approximation of one- and two-electron integrals which formally requires O(N*)
work. Furthermore, the time scales on which electron dynamics occur are typically
on the order of tens or hundreds of atto-seconds, hence even simulations of moderate
sized molecules at the femto-second range are extremely computationally expensive.
In the RT-TDDFT simulation suite in the NWChem code [20], Eq. (5.7) is integrated
using a serial second-order Magnus integrator, and part of the motivation of this paper
is to improve the efficiency of this choice.

5.2.2. The Proxy Problem. To give an example of the performance of the
parallel Magnus methods without requiring the considerable infrastructure necessary
to compute the true Fock matrix, we consider a test problem inspired by a simplified
one-dimensional RT-TDDFT problem. Here P is again an N x N complex matrix,
and

N i N N 1
(58) F(P)ij=>_ > (Zflu,j) + > D Efali.jom,n) — 2f2(i,n,m,j>>>
i=1 j=1 m=1n=1

The functions f; and fs correspond to the one- and two-electron integrals in RT-
DTDFT, with the f; term corresponding to the single electron Hamiltonian and the
two fo terms corresponding to the Coulomb and exchange operators respectively. The
simplified forms here are derived by considering single Gaussian basis functions in one
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dimension with single point approximations of the integrals. Specifically

B 2(3) — 2(i))2
(59) i) = P2t (2D,
with r = (2(¢) + x(j))/2. Similarly
(5.10) i )
m,npn,mpi,jpj,i (I(Z) — SU(]))2 (:L'(m) — x(n))z

fa2(i,j,m,n) = exp(— ) exp(—

r2 2 2 )
with 7 = ((«(¢) + 2(j))/2 — (z(m) + x(n))/2). Note that the computation of F(P)
in the problem is formally O(N%) whereas the matrix commutator terms are O(N3).
The matrix exponential when computed by power series is also O(PN?3) where P is
the number of terms in expansion. Hence in this application (as in full RT-TDDFT
simulations), the computation of F'(P) is the dominant cost for even moderate N.
In the numerical tests, the spatial locations are uniformly spaced on [—1,1] so that
(i 4+ 1) —x(i) = 2/(N — 1). The values for Z and E are 0.5 and 0.05 respectively.

5.2.3. Parallel in Time Results. For the test problem described above, we run
the parallel Magnus algorithms Lob-2, Lob-4-1, and Leg-6 on a 20 particle RT-TDDFT
proxy problem as described above, using a final time of the run 7" = 0.05. For each
choice of method, runs using 48, 96, 144, and 192 time steps are compared for different
numbers of parallel processors IV, = 1,2,4, 8,16 and 24. A uniform time step is used
in all cases, which is justified since the character of the dynamics does not change in
time. As above, computations are run on 1 hardware node on NERSC’s Edison Cray
XC30 consisting of 24 cores. For these comparisons, only the parallelism across time
steps is used. Unlike the results in the previous section, the convergence tolerances
are adjusted by case to avoid unnecessary iterations. In practice this means that
the tolerances are larger for less accurate simulations since additional SDC iterations
will reduce the residual but not the numerical error determined by the underlying
quadrature rule. The tolerances here were chosen using knowledge of the error in the
simulations and are shown in table 3 . Dynamically choosing the optimal tolerance for
serial or parallel SDC methods is an open problem.

48 96 144 196
Lob-2 | le—4 | le—4 | 2e—5| le—5
Lob-4-1 | le—5|1le—6 | be—T7 | le—7
Leg-6 le—6 | 1le—8 | 1le—9 | le—10
TABLE 3
Residual tolerances for the RT-TDDFT proxy problem for different methods and number of steps.

Fig. 10 compares the accuracy versus total computational time for each variation
and demonstrates the attractiveness of both higher-order methods and time parallelism.
The reported error in each case is the maximum absolute error along the diagonal of
P (which in RT-TDDFT are the relevant quantities). It is clear from the timings that
significant parallel speedup is attainable for methods of all order. As expected, the
smaller the error tolerance, the larger the possible parallel speedup since there are
in general more iterations to amortize over processors. Note that serial second-order
methods are more expensive than the fastest fourth-order methods. In particular,
the fastest serial fourth-order method runs in less time than the fastest serial second-
order method because fewer iterations are needed for convergence (despite the smaller
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20 Krull and Minion
residual tolerance). Parallel sixth-order methods run faster than serial second-order

methods while producing smaller errors by several orders of magnitude. In general,
the optimal choice of method and parallelization depends on the error tolerance.

lDD 4 —8— Lob-2
—8— Lob-4-1
1071 A Leg-6

102 A

Error

104

1075 A

10—? 4

lD_B _I T T T T T T
0 5 10 15 20 25 30 35 40
Time to solution (seconds)

F1a. 10. Error versus time to solution for a 20-particle RT-TDDFT proxy example. Each color
represents a different method and each marker represents a different number of time-parallel steps,
Np =1,2,4,8,16,24. Closed circles represent the serial computation, open circles Np = 2, triangles
Np =4, squares Np = 8, pentagons Np = 16, hexagons Np = 24.

6. Discussion. Much of the initial work on Magnus integrators is focused on
linear problems where only a single evaluation of the Magnus expansion is required
for each time step. In contrast, this paper explores the accuracy and cost of Magnus
integrators applied to nonlinear problems. Nonlinear Magnus methods require solving
an implicit equation involving the Magnus expansion to obtain the solution in each
timestep, and the methods proposed here use a simple fixed point iteration for this
solution that can be readily parallelized in time.

One conclusion presented here is that in both the linear and nonlinear case,
straight-forward parallelization across the method is possible, leading to higher-order
methods with only marginally higher computational cost than lower-order methods.
This is complimentary to previous results in the literature where considerable effort is
placed on reducing the complexity of each of the terms in regards to the number of
commutators required.

The second level of parallelism described in this work, namely parallelization
across the time steps through pipelined iterations, can further decrease the overall
time-to-solution for nonlinear problems. There is a non-trivial relationship between
the number of pipelined time steps, the time step size, and the number of iterations
required for convergence of the iteration, hence it is not easy to predict a priori which
choice of parameters will lead to the shortest wall clock time given a desired level
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of accuracy. Nevertheless, for the test cases considered here, in most situations, the
parallel sixth-order methods require the least computation time and are far superior
to serial second-order methods.

It is important to note that the results here are preliminary and are performed on
two test cases of moderate size. In general, the possible parallel speedup attainable
for a given problem will depend on the sensitivity of the problem to perturbations,
the relative cost of the operations such as computing commutators or the matrix
exponential, and the ratio of computation to communication costs. In future work,
the authors will use this parallel methodology to investigate real-time electronic
dynamics, where the calculation of the right-hand side values is more expensive than
both commutators and matrix exponentials as in the second numerical example. This
paper addresses only the use of time-parallelism to reduce the wall clock time of serial
Magnus methods, and not important issues like the best way to compute the matrix
exponential, the optimal choice of time step, nor the dynamic stopping criteria for
iterations. Such issues are present in both serial and parallel implementations of
Magnus methods and are most likely problem dependent.

7. Acknowledgments. The work here was supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied
Mathematics program under contract number DE-AC02005CH11231. Part of the
simulations were performed using resources of the National Energy Research Scientific
Computing Center (NERSC), a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-ACO02-
05CH11231.

Appendix A. Quadrature Rules for Intermediate Nodes. The necessary
weights for implementing each of the methods Lob-4-1, Leg-2, Leg-4-3, and Leg-6 for
nonlinear problems are presented here. For Lob-2, no additional rules are necessary.

For the computation of the single integrals in the first Magnus term, the necessary
rules take the form

(A.1) Q) = Ath(l) A,

and the coefficients q( )j correspond to the classical collocation schemes (see e.g. [9])

For Lob-3, only one additional rule is needed at the midpoint ¢5,

5 1 1
A2 (SO e
(A-2) 12,5 24°3" 24

1)

For Leg-3, rules for each node are required, and the g, ; are given by

5 2 _ V15 5 V15
76—’_7 R G 36

For the second term Q) there are two versions described in the linear case by

Egs. (3.2) and (3.3). In the first case, only one additional coefficient is needed, namely

q§2)71 = 1/48. In the second case, we have

(A4) O3 = D314y, Ao] + ¢ [AL, As) + 65 [ As, As),
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636 with the values of ‘17(3,)]‘_3 given by
(A.5)
—7.0825623244174e—4 —3.5291589565775e—2 —7.8891497044705¢—2
637 P70 = | 2.0142743933468e—4  4.4826196136660e—3 —1.8131905893999¢—2

g —2.6081558162830e—6 —5.6936734355286e—4 —3.5152700676886e—2
638 The third term takes the form
639 QP :[Qr(s,)LlAl + Q$?1,2A2 + qr(s,)1,3A37 [A1, Ao]]+
640 [qr(r?:,)llAl + q$?2,2A2 + QS,)Q,?)A& [A1, As]]+
o (A6) (dr 1 A1+ G 2 Az + 4105 5 As, [z, As]).
643 with
(A7)

[ 1.4667828928181e—6 —2.5468454487434e—6 7.1885579589404e—7
644 qggz)] = [—3.0653702506833e—7  6.9623363228690e—7 —1.9684558120029¢—7
| —2.2622163607144e—8 —2.7279719400850e—9  8.5484354192049¢—10 |

(A.8)
[ 1.0401143365317e—3 —1.7143302808715¢—3 1.9808827525182e—4]
645 qéi‘),j: —6.9105495969459¢—5 2.9054016014502e—4 —3.4658846939476e—5
9.2451884893203e—5 1.2595057164957e—5  —2.4709074423914e—6 |

(A.9)
4.1482959753609¢—3 —6.3874218931689¢—3 —3.5942319108173e—3
646 qégfj = [9.9737811032708e—4 1.2415302375576e—4 —3.8059754231607e—4
3.7183849345731e—3 1.6935142950568e—3 —1.0604085845381e—3

647 Finally, for the fourth term, Qi is computed as in Egs. (3.7) and (3.8), with
615 ¢ =1/60 and qj(.l) in (3.8) replaced with q(l)» from Eq. (A.3).

m,]
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