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Abstract: 

LBL-23079 

The macroscopic response of a semi-infinite Fermi fluid is reconsid­
ered. By retaining the first two terms in the expansion of the normal 
surface stress in powers of the external frequency, we obtain an improved 
dispersion relation which yields explicit expressions for the friction co­
efficient and the inertial mass for the damped surface motion. The re­
sulting response function has a finite integral and yields a good absolute 
reproduction of the response observed via inelastic proton scattering. 

* This work was_ supported by the Director, Office of High Energy and Nuclear 
Physics of the Departmen.t of Energy under contract DE-AC03-76SF00098. 
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1 Introduction 

Recently, the macroscopic response of the nuclear surface was studied within the 
framework of Landau's kinetic equation.[!) In that work, the idealized limit of van­
ishing quasiparticle interaction was considered and a surface mode with a purely 
imaginary frequency was found. In the present work, we incorporate the quasi­
particle interaction and obtain a dispersion relation that admits a truly complex 
eigenfrequency. This mode can be described as a damped harmonic oscillator and 
the associated parameters are determined. In this connection, our previous at­
tempt to do this for the purely damped surface mode [1] is discussed and corrected. 
Finally, it is demonstrated how the ensuing response function gives a good quan­
titative reproduction of the gross behavior of the experimental data on inelastic 
proton scattering. 

2 Dispersion relation 

We consider the free surface oscillations of a semi-infinite Fermi fluid described 
by Landau's semiclassical theory. The surface is located near the plane z = 0. 
and undergoes harmonic oscillations characterized by the wave vector k.L. The 
expression for the normal stress at the surface can be written as 

Pzz(z . 0, k.L) = . ~PoPFUk.1. P = ~PoPFUk.J. I: Pncn . 
n2:!:0 

(1) 

. Here p0 is the standard density of nuclear matter, PF = mvp is the corresponding 
Fermi mom~ntum, and Uk.1. = -iwZk.t is the (maximum) surface velocity. Fur­
thermore, the quantity P has been expanded in powers of the (supposedly small) 
dimensionless frequency c = w/vFk.L. In ref. [1] only the first (zeroth-order) term 
was· considered, corresponding to the limit F0 -+ 0. In the present work, we ad­
mit a finite value of F0 by incorporating the next (first-order) term in c. In the 
Appendix, the first three terms in the power expansion (1) are derived, with the 
following result, 

Po .,.-l, 

pl 
. 37r2 Fo 

(2) - z-
32 1 + Fo 

p2 - 8 F0 [ 1 1r
2 

F0 l 
51 + Fo + 12 1 + Fo 

Since the normal stress must be balanced by the surface tension, Pzz(z = 0, k.L) -
ukiZk, the following dispersion relation is obtained, 

. 3 1 ( 37r )2 Fo mpo 2 z-poppw +-- --w -
4 2 8 1 + F0 k.L 

(3) 
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when the first two orders in the frequency are retained. This result agrees with 
the more general relation derived by lvanov.[2] Moreover, when Fo-+ 0 the second 
term on the left-hand side vanishes and the result reduces to the simpler relation 
obtained in ref. [1]. 

3 Equation of motion 

The surface mode described by the above dispersion relation can be described by a 
standard damped harmonic oscillator, 

Since the stiffness coefficient is given by Ck.l. = uki, it follows that the friction 
coefficient is 

3 
'Yk.1. = 4,PoPF = 'Ywf , (5) 

where 'Ywf is the result of the standard wall formula [3], and the inertial-mass pa-
rameter is 

B = ~ (37r)2 Fo mpo 
k.1. 2 8 1 + Fo -r;- · (6) 

Although the same dispersion relation was already derived by Ivanov [2], he did 
not make the above inferences about the dynamical coefficients. While the result 
for the friction coefficient is expected on general grounds [3], the present treatment 
provides a different derivation. Moreover, the expression (6) for the inertia is novel. 
It shows that Bk.l. is proportional to the irrotational inertial-mass parameter, which 
is given by Birr = m p0 I k .L· [ 4] The factor of proportionality is ~ 0. 7 Fo I ( 1 + Fo), 
which vanishesfor F0 ....:... 0 and approaches 0.7 for F0 -+ oo. 

It might cause some concern that various recent calculations yield a negative 
value for the -parameter F0 .[5] However, our result (6) pertains to the simplified 
scenario when the momentum-dependent part of the quasi-particle interaction van­
ishes, F 1 = 0. When a finite' value of F1 is admitted [2], the expression for the 
inertia is modified to 

B _ ~ [c37r)2 Fo _ Ft l mpo 
k.1. - 2 8 1 + F0 1 + Ft/3 k.1 . 

(7) 

The inertia then remains positive when the typical values F0 ~ -0.4 and F1 ~ 
-0.9 are employed. (These values are representative of those calculated in various 
models and they also follow directly from the relations m* lm = 1 + F1l3 and 
K ~ 6€p(1 + F0 )mlm*, when the values m* ~ 0.7m and K ~ 200 MeV are used.[5]) 

In our previous treatment [1], we considered the limit F0 -+ 0, corresponding 
to a vanishing quasiparticle interaction. Accordingly, the dispersion relation was 
obtained as 

. ukl 
w = -z 3 

4PoPF 
(8) 
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The eigenfrequency is then purely imaginary and the surface mode can be described 
by a first-order equation of the form 

(9) 

The dispersion relation (7) and the fact that CkJ. = uki then imply that /kJ. = /wr, 
as in the more general case described above.1 

In general, the equation of motion ( 4) yields a complex eigenfrequency, 

w Wt + iw2 

- _!_[-h- ± ( _,2 + 4BC)I/2] 
2B 

(10) 

However, when the inertia B is sufficiently small the real part vanishes, w1 = 0, 
and the surface exhibits a purely exponential relaxation, ZkJ.(t) rv exp( -iw2t). An 
expansion of the above expression (9) through second order in B yields 

(11) 

Here the first term, w = iw2 = -iC/1, is the frequency pertaining to the limiting 
case when the inertia vanishes, cf. eq. (7). When the inertia is finite (but small), 
the frequency is decreased by the relative amount BC /2!2

• 

In a recent RPA study of the surface response in Fermi liquids [6], Bertsch and 
Esbensen calculated the values of the friction and inertial-mass coefficients for the 
vibrating nuclear surface. For the friction coefficient 1 they obtain a numerical result 
which is very close to the standard wall-formula value, /wf = mpv ~ 1.05 MeV· 
10-22s/fm4

• Moreover, for small values of the wave number k1., they find that 
the inertia approaches a small but finite value given by B(k1. -+ 0) = 0.26 MeV· 
(10-22s )2 /fm4. The smallness of the inertial mass supports the description of nuclear 
shape distortions in terms of a first-order equation of motion, as was first advocated 
in ref. [3]. Indeed, using these values, we find that the above finite-mass correction 
to the frequency is 0.06 fm2 kl, which amounts to ~ 10% for k1. = kF. This 
estimate indicates that that the overdamped equation (8), with /kJ. = /wf, provides 
an excellent dynamical description of the nuclear surface motion. 

1 In ref. [1] the ansatz for the equation of motion was of the general second-order form ( 4), rather 
that the first-order form (8) pertaining to purely damped motion. Unfortunately, in connection with 
that analysis, it was erroneously assumed that the stiffness coefficient was given by one half of uk}.. 
This would indeed have been the correct value if a surface wave of trigonometric form had been 
considered, Z"' cos(k.t·r.t), but in that case the friction coefficient would also be given by one half 
of the wall-formula value, since the average of cos2 is one half. However, when considering a surface 
wave of exponential form, Z "'exp(ik.t · r.t), as we do throughout for convenience, the appropriate 
coefficients are twice as large, since the norm of the exponential is unity. As a consequence of that 
confusion, it was mistakingly concluded that the purely damped surface mode is critically damped. 
In fact, when the proper ·value of the stiffness coefficient is used in conjunction with the general 
equation of motion ( 4), it follows that the inertial-mass coefficient is zero and, consequently, the 
above first-order equation (8) holds, with 'Yk.L = 'Ywf. 
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4 Response function 

It was shown in ref. [1] that if the surface oscillator (6) is driven by a harmonic 
external force of the form f 0 cos(wextt), then the response function is given by 

( k ) JJ ---:-W_ex_t ---:--
R Wext, .l = 'Y B2 ( 2 _ 2)2 + 4\2 2 • Wext Wo A Wext 

(12) 

Therefore, in the limit of vanishing quasiparticle interaction, Fo---+ 0, where B = 0, 
the response function becomes 

(13) 

Consequently, since R "' 1/wext for Wext ---+ oo, the integrated response diverges, 
J dwextR(wext, k.1.) -+ oo. Contrary to this rather unsatisfactory result, the inte­
grated response is finite when the quasiparticle interaction is taken into account, 
since the inertia is then finite, though small, so that R"' 1/w~xt for Wext ---+ oo. 

For values of Wext relevant for the inelastic proton scattering experiments [7], 
the above limiting response function (12) is still a quite accurate approximation, 
because of the smallnes of the inertia, which implies that A~ w0 • This is illustrated 
in fig. 1. For the values of Wext substantially above the frequency corresponding 
to the maximum of the response function (11), we may employ the asymptotic 
approximation 

!? ' 
R(wext, k.1.) ~ - 0

-
"(Wext 

(14) 

This approximation is included in fig. 1 and it is used for the calculation of differen­
tial cross sections. Furthermore, the smooth part of the observed differential cross 
section is rather well reproduced with this response function, without invoking any 
renormalization factor. The comparison between theory and experiment is shown 
in fig. 2. 

5 Concluding Remarks 

Because the effective quasiparticle interaction depends on the local nucleon density, 
the Landau parameters F0 and F1 vary strongly in the nuclear surface region. As 
a consequence, the present results, to the extent that they depend on these quanti­
ties, can not be expected to be quantitatively accurate. The result for the friction 
coefficient (that it equals identically that of the wall formula) does not depend on 
the quasiparticle interaction and is therefore expected to be retain its validity in 
a more refined treatment. This expectation is verified by the considerably more 
realistic RPA calculation by Bertsch and Esbensen.[6] 

On the other hand, the expression derived for the inertial mass is directly pro­
portional to F0 and should not be regarded as reliable. One obvious problem is the 
fact that Fo may conceivably be negative, in which case the interpretation would 
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be dubious. Anotherproblem is the proportionality to the irrotational-flow inertia, 
which diverges as k1. becomes small; the more realistic RPA calculations [6) yield a 
finite (and small) limiting value. 

The dependence of the response function on the parameters characterizing the 
quasiparticle interaction is rather weak (the response function changes by only 5% 
when F0 varies in the interval 0.5- 3). However, a non-zero value of F0 is essential 
for obtaining a non-divergent result for the total response. The macroscopic surface 
response reproduces rather well the smooth part of the nuclear response function 
observed via inelastic proton scattering at small momentum transfer. 

In summary then, it appears that the damping of the nuclear surface motion 
is well described by the wall-formula friction coefficient and the associated inertial 
mass is sufficiently small to be immaterial for the dynamics of the surface, although 
a reliable analytical derivation of this quantity has not yet been made. 

The authors wish to acknowledge useful discussions with H. Esbensen. This work 
was supported by the Director, Office of High Energy and Nuclear Physics of the 
Department of Energy under contract DE-AC03~76SF00098. 

Appendix 

In this appendix we show the coefficient in eq. (2) are derived. The staring point is 
the Fourier representation of the normal stress at the surface (see eqs. (2.15, 2.17, 
2.18) of ref. [1]). 2 The normal stress at the surface can be written 

1
00 dkz 3 

Pzz(z = 0, k1.) - -oo 271" Pzz(k) = 4PoPFUkJ. P , (101) 

P - -i~ 1oo dx { Fo [s2 (w + 1) + (2- 3s2 )s2w]2 
c -oo 271" 4~( s) c2 c2 

2( 2 1) s
4 

[ 2 1 )] +s s w - - + - 3w - 5( s w - -
3 c2 3 

+~ :: [3(w + 1)- 30s
2
w + 35s2(s2

w- ~)]} 
Here c = w/vFkl. is the dimensionless frequency and s = cf../x2 + 1 with x = kz/kJ.. 
Moreover, 

s s+1 .11" 
w(s) = -lnl-l-1- t-'--sB(Isl-1) 

2 s;_1 2 ' 
(102) 

where ~( s) = 1 - F0w( s) and 8( x) denotes the truncation function. 
In the further derivation, it will be assumed that the dimensionless frequency is 

small, lei ~ 1. By exploting this assumption we can expand the quantity (A-3) in 

2 Unfortunately, there are some misprints in (2.15) and (2.16) in ref. [1]: In (2.15), an overall 
factor of - k~ is missing from the last expression; furthermore, the bracket following Fo should be 
squared. In (2.16), the last term should have the opposite sign; also note that the 0-function denotes 
the truncation function, i.e. O(x < 0) = 1 and O(x > 0) = 0, rather than the step(-up) function. 
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powers of c, 

w(s) 
4 

- -1- i 7r s + s 2 + ~ + ... 
2 3 

(103) 

1r c c2 c4 

- - 1 - i 2 .J x2 + 1 + x 2 + 1 + 3( x 2 + 1 )2 + .. · · 

By inserting this latter result into the expression (A-2) for P, we find the quoted 
result (2) for the normal stress at the surface,· 

(104) 
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In deriving the above result, we assumed that lei ~ 1. After obtaining the 
dispersion relation (3), we can verify that this assumption is justified. Indeed, by 
using ( 10) we find 

lwl [C BC l 1 C 1 uk1. lei = -- ~ -(1 - -) -- < --- = - ~ 0.1k.L ~ 1 . 
Vpkp I 1 2 Vpkp . I Vpkp VFI 
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Figure captions 

Figure 1: Response function. 
Surface response function (11) for two different values of the momentum transfer 
1ik1., using a strength of fo = 1 MeV /fm3 • Also shown are the response function cor­
responding to the limit of vanishing quasiparticle interaction, F0 -+ 0, (dot-dashed 
curve) and the asymptotic approximation (13) (dashed curve). 

Figure 2: Differential cross sections. 
Observed [7] and calculated differential cross sections for inelastic scattering of 800 
MeV protons off 116Sn to an angle of 5°. Also shown is the differential cross section 
calculated with the RPA response function (dashed curve).[6] 
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Figure 1: Response function. 
Surface response function (11) for two different values of the momentum transfer hkJ., using a 

strength of /o = 1 MeV /fm3
. Also shown are the response function corresponding to the limit of 

vanishing quasiparticle interaction, F0 __. 0, (dot-dashed curve) and the asymptotic approximation 
(13) (dashed curve). 
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Figure 2: Differential cross sections. 
Observed [7) and calculated differential cross sections for inelastic scattering of 800 MeV protons 

off 116Sn to an angle of 5°. Also shown is the differential cross section calculated with the RPA 
response function (dashed curve). [6) 
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