## Lawrence Berkeley National Laboratory

**Recent Work** 

## Title

Phylogeonomics and Ecogenomics of the Mycorrhizal Symbiosis

### Permalink

https://escholarship.org/uc/item/8r32p8t2

### Authors

Kuo, Alan Grigoriev, Igor V. Kohler, Annegret <u>et al.</u>

## Publication Date

2013-05-25

#### **Phylogenomics and Ecogenomics of the Mycorrhizal Symbiosis**

Alan Kuo<sup>1</sup>, Igor V. Grigoriev<sup>1</sup>, Annegret Kohler<sup>2</sup>, Francis Martin<sup>2</sup>

<sup>1</sup>DOE Joint Genome Institute, USA <sup>2</sup>INRA-Nancy, France

May 2013

The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231

#### DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.



# Phylogenomics and Ecogenomics of the Mycorrhizal Symbiosis Alan Kuo<sup>1\*</sup>, Igor Grigoriev<sup>1</sup>, Annegret Kohler<sup>2</sup>, Francis Martin<sup>2</sup>, Mycorrhizal Genomics Initiative Consortium <sup>1</sup>DOE Joint Genome Institute, USA, <sup>2</sup>INRA-Nancy, France. \*akuo@lbl.gov

Simple model is that plant

nutrients, but can be much

fungus contributes soil

more complex.

contributes photosynthate and

## I. Abstract

Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze 2 dozen mycorrhizal genomes of numerous known mycorrhizal orders and several ecological types (ectomycorrhizal [ECM], ericoid, orchid, and arbuscular). JGI has developed and deployed high-throughput pipelines for genomic, transcriptomic, and re-sequencing, and platforms for assembly, annotation, and analysis. In the last 2 years we have sequenced 21 genomes of mycorrhizal fungi, and resequenced 6 additional strains of *L. bicolor*. Most of this data is publicly available on JGI MycoCosm's Mycorrhizal Fungi Portal (http://jgi.doe.gov/Mycorrhizal\_fungi/), which provides access to both the genome data and tools with which to analyze the data. These data allow us to address long-standing issues in mycorrhizal evolution and ecology. For example, a major observation of mycorrhizal evolution is that each of the major ecological types appears to have evolved independently in multiple fungal clades. Using an ecogenomic approach we provide preliminary evidence that 2 clades (Cantharellales and Sebacinales) of a single symbiotic ecotype (orchid) utilize some common regulatory (protein tyrosine kinase) and metabolic (lipase) paths, the latter of which may be the product of HGT. Using a phylogenomic approach we provide preliminary evidence that a particular ecotype (ericoid) may have evolved more than once within a major clade (Leotiomycetes).

## **IV. Ecogenomics of mycorrhizal fungi**

IV.A. 4 major types of mycorrhizal symbioses







| 0 <del>▼</del><br>Cluster | 1+ ▼   T. calospora v1.0   FilteredModels1 | 0 ▼<br>T. melanosporum from Genoscope<br>Genoscope_genes ≑ | 0 ▼<br>T. matsutake<br>FilteredModels2 ≑ | 0 ▼<br>S. luteus v1.0<br>FilteredModels1 ≑ | 0 ▼<br>S. brevipes<br>FilteredModels1 ≑ | 1+ ▼   S. vermifera v1.0   FilteredModels1 |
|---------------------------|--------------------------------------------|------------------------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------------------------|--------------------------------------------|
|                           | Totals: 183                                | Totals: 0                                                  | Totals: 0                                | Totals: 0                                  | Totals: 0                               | Totals: 161                                |
| <u>1628</u>               | 7                                          | 0                                                          | 0                                        | 0                                          | 0                                       | 24                                         |
| 2786                      | 23                                         | 0                                                          | 0                                        | 0                                          | 0                                       | 1                                          |
| <u>3123</u>               | 22                                         | 0                                                          | 0                                        | 0                                          | 0                                       | 1                                          |
| <u>5831</u>               | 4                                          | 0                                                          | 0                                        | 0                                          | 0                                       | 13                                         |
| <u>6442</u>               | 1                                          | 0                                                          | 0                                        | 0                                          | 0                                       | 15                                         |
| <u>6449</u>               | 15                                         | 0                                                          | 0                                        | 0                                          | 0                                       | 1                                          |
| <u>7378</u>               | 12                                         | 0                                                          | 0                                        | 0                                          | 0                                       | 1                                          |
| <u>7651</u>               | 4                                          | 0                                                          | 0                                        | 0                                          | 0                                       | 8                                          |
| 8454                      | 9                                          | 0                                                          | 0                                        | 0                                          | 0                                       | 1                                          |
| <u>8470</u>               | 6                                          | 0                                                          | 0                                        | 0                                          | 0                                       | 4                                          |
|                           |                                            |                                                            |                                          |                                            |                                         |                                            |



II. Mycorrhizae are symbioses between fungi and plants

- 80% of land plants do it.
- Many and diverse fungi do it.
- Including familiar edible mushrooms such as porcini, matsutake, chanterelles.
- Oh, and truffles too.



V. Phylogenomics of mycorrhizal fungi

# III. Genomics of mycorrhizal fungi

## Mycorrhizal Fungi Eco-Group Portal (http://jgi.doe.gov/Mycorrhizal\_fungi/)

| JGI≶   | 👫 Home | <u>∕</u><br><u>MycoCosm</u> | Project List | Login | _ |
|--------|--------|-----------------------------|--------------|-------|---|
| SEARCH | BLAST  | CLUSTERS                    | DOWNLOAD     | INFO  | H |

Within the framework of the JGI Mycorrhizal Genomics Initiative, we are sequencing a phylogenetically ecologically diverse suite of mycorrhizal fungi (Basidiomycota and Ascomycota), which include the major of of symbiotic species associating with trees and woody shrubs. Analyses of these genomes will provide ins into the diversity of mechanisms for the mycorrhizal symbiosis, including endo- and ectomycorrhiza.

| ## | Names                                   | Assembly length | # genes | Phylogeny       | Ecology     | transcripts<br>per gene | genes per<br>family |
|----|-----------------------------------------|-----------------|---------|-----------------|-------------|-------------------------|---------------------|
| 1  | Amanita muscaria Koide v1.0             | 40,699,759      | 18,153  | Agaricales      | ECM         | ND                      | 2.05                |
| 2  | Boletus edulis v1.0                     | 46,637,611      | 16,933  | Boletales       | ECM         | 3.70                    | 2.42                |
| 3  | Cenococcum geophilum 1.58 v2.0          | 177,557,160     | 14,748  | Dothideomycetes | ECM         | 2.17                    | 1.95                |
| 4  | Hebeloma cylindrosporum h7 v2.0         | 38,226,047      | 15,382  | Agaricales      | ECM         | 3.22                    | 1.82                |
| 5  | Laccaria amethystina LaAM-08-1 v1.0     | 52,197,432      | 21,066  | Agaricales      | ECM         | 2.99                    | 2.09                |
| 6  | Laccaria bicolor v2.0                   | 60,707,050      | 23,132  | Agaricales      | ECM         | ND                      | 2.58                |
| 7  | Meliniomyces bicolor E v2.0             | 82,384,847      | 18,619  | Leotiomycetes   | ECM/ericoid | 2.57                    | 2.01                |
| 8  | Meliniomyces variabilis F v1.0          | 55,857,776      | 20,389  | Leotiomycetes   | ericoid     | 2.35                    | 2.24                |
| 9  | Oidiodendron maius Zn v1.0              | 46,426,256      | 16,703  | Leotiomycetes   | ericoid     | ND                      | 2.15                |
| 10 | Paxillus involutus ATCC 200175 v1.0     | 58,301,126      | 17,968  | Boletales       | ECM         | ND                      | 2.78                |
| 11 | Paxillus rubicundulus Ve08.2h10 v1.0    | 53,011,005      | 22,065  | Boletales       | ECM         | 3.05                    | 2.38                |
| 12 | Piloderma croceum F 1598 v1.0           | 59,326,866      | 21,583  | Atheliales      | ECM         | ND                      | 2.01                |
| 13 | Pisolithus microcarpus 441 v1.0         | 53,027,657      | 21,064  | Boletales       | ECM         | 2.92                    | 2.38                |
| 14 | Pisolithus tinctorius Marx 270 v1.0     | 71,007,534      | 22,701  | Boletales       | ECM         | ND                      | 2.24                |
| 15 | Rhizophagus irregulare DAOM 197198 v1.0 | 91,083,792      | 30,282  | Glomeromycota   | Arbuscular  | ND                      | 2.77                |
| 16 | Scleroderma citrinum Foug A v1.0        | 56,144,862      | 21,012  | Boletales       | ECM         | 3.23                    | 2.20                |
| 17 | Sebacina vermifera MAFF 305830 v1.0     | 38,094,242      | 15,312  | Sebacinales     | orchid      | 2.73                    | 2.15                |
| 18 | Suillus brevipes v1.0                   | 51,712,595      | 22,453  | Boletales       | ECM         | 3.45                    | 2.74                |
| 19 | Suillus luteus UH-Slu-Lm8-n1 v1.0       | 37,014,302      | 18,316  | Boletales       | ECM         | 3.82                    | 2.00                |
| 20 | Tricholoma matsutake 945 v3.0           | 175,759,688     | 22,885  | Agaricales      | ECM         | 2.10                    | 2.84                |
| 21 | Tuber melanosporum from Genoscope       | 124,945,702     | 7,496   | Pezizomycetes   | ECM         | ND                      | 1.42                |
| 22 | Tulasnella calospora AL13/4D v1.0       | 62,392,858      | 19,659  | Cantharellales  | orchid      | 1.94                    | 2.35                |

# V.B. Leotiomycetes clade has both ericoid symbionts and non-symbionts. Did ericoid symbiosis arise once? 1.Do Blastp-MCL clustering of all 2156 Leotiomycetes proteins in 3 ericoid (Oidiodendron, Meliniomyces), 2 pathogen, and 1

<sup>2.</sup>Find orthologs and build clustalW-RaxML species tree, and then build gene trees.

| O. maius<br>FilteredModels1 ≑ |            | M. variabilis<br>FilteredModels1 ≑ | M. bicolor<br>FilteredModels2 ≑ | Neurospora crassa<br>BroadModels ≑ | B. cinerea<br>ExternalModels ≑ | A. resinae<br>FilteredModels1 ≑ |
|-------------------------------|------------|------------------------------------|---------------------------------|------------------------------------|--------------------------------|---------------------------------|
| Tota                          | als: 16703 | Totals: 20389                      | Totals: 18619                   | Totals: 10785                      | Totals: 16447                  | Totals: 9642                    |
|                               | 2          | 10                                 | 5                               | 0                                  | 0                              | 0                               |
|                               | 6          | 3                                  | 3                               | 1                                  | 1                              | 1                               |
|                               | 7          | 2                                  | 1                               | 1                                  | 2                              | 2                               |
|                               | 0          | 0                                  | •                               | <u>^</u>                           |                                | 0                               |

## Transcription factor Pfams Locus synteny Exons and introns 1203 Oidma1:137909 🗕 jgi|Melbi2|596619|2321 ─■ jgi|Melva1|487960|232]<u>Oidma1:181679</u> ─■ jgi|Oidma1|32591|2321 \_\_\_\_jgi|Oidma1|32591|2321 - jgi|Oidma1|137909|232 = jgij0idma1|45276|2321 Amore1 jgi|Oidma1|127192|232 ■Amore1\*LOST Loss jgi|Melbi2|187426|2321 -- jgi|Melva1|419102|232] Loss Amorel\*LOST 🗕 jgi|Melbi2|524621|2321 inilMelva116022471233 Melbi2:187426 -**=** jgijAmore1|19661|232 📲 jgi|Oidma1|199854|23 - jgi|Botci1|2020|2321.5 <u>Melbi2:596619</u>



| and    |  |
|--------|--|
| clades |  |
| sight  |  |
| - g    |  |
|        |  |
|        |  |

| _ |  |
|---|--|
| _ |  |
|   |  |
|   |  |
| _ |  |
|   |  |
|   |  |
|   |  |
|   |  |
| _ |  |
|   |  |
|   |  |
|   |  |
|   |  |