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Abstract
A framework for the design and simulation of a building en-

velope and an HVAC system is used to compare advanced

control algorithms in terms of energy efficiency, thermal com-

fort, and computational complexity. Building models are first

captured in Modelica [1] to leverage Modelica’s rich building

component library and then imported into Simulink [15] to

exploit Simulink’s strong control design environment. Four

controllers with different computational complexity are con-

sidered and compared: a proportional (P) controller with time

varying temperature bounds, a tracking linear quadratic reg-

ulator (LQR) controller with time varying tuning parameters,

a tracking disturbance-aware linear quadratic regulator (d-

LQR) controller with time varying tuning parameters which

incorporates predictive disturbance information and a model

predictive controller (MPC). We assess the performance of

these controllers using two defined criteria, i.e. energy and

discomfort measured with appropriate metrics. We show that

the d-LQR and MPC, when compared to the P controller,

manage to reduce energy by 41.2% and 46% respectively, and

discomfort from 3.8 to 0. While d-LQR and MPC have simi-

lar performance with respect to energy and discomfort, simu-

lation time in the case of d-LQR is significantly less than the

one of MPC.

1. INTRODUCTION
We present an approach to optimize the energy efficiency

of HVAC systems by designing smart controllers with full in-

tegration of several factors such as system dynamics, weather

predictions, and occupancy schedules, with attention paid to

the needed computational power of the embedded platform.

We leverage a number of previous results: A physics-based

building model is proposed in [7, 9–12, 16]. A hierarchical

control architecture is utilized and simulation results are com-

pared with the ones obtained with a flat architecture. [18] lays

out a simple model predictive control (MPC) formulation for

building temperature control and presents the advantages and

disadvantages of model predictive control when applied to

building air temperature regulation. [3] uses a reduced-order

model of the airflow in buildings and derive an optimal con-

trol law in closed form for rejecting a known disturbance

while minimizing a quadratic cost.

In this paper, we build upon [13, 19], where we presented

a building automation and control system, and the co-design

of control algorithm and embedded platform with focus on

sensing system accuracy. In this paper, we extend the co-

design framework to include computational complexity of the

control algorithm. Hence, we analyze the computational com-

plexity of four control algorithms along with their perfor-

mance in terms of energy and comfort metrics. We compare

the performance of the following controllers: a proportional

controller, a linear quadratic regulator (LQR), a disturbance-

aware linear quadratic regulator (d-LQR), all suitable for plat-

forms with limited computational power, and MPC, a compu-

tationally demanding control algorithm, which requires on-

line computation of control policy through solving optimiza-

tion problems [11, 12].

Our flow is as follows:

1) Modeling: We first model the building HVAC system

and envelope in Modelica [1]1. Building models are usually

highly nonlinear. To automatically derive the mathematical

model of the building for control purposes, we use Model-

ica’s features to obtain the linearized systems about the op-

erating point of the system. This model is then imported into

Simulink that is particularly suited for simulation and control

design.

2) Control Design: We design the control strategy using

MATLAB and implement it using MATLAB/Simulink. The

plant model (originally in Modelica) and the control algo-

rithm (in MATLAB) are co-simulated using the MATLAB

(Simulink) simulation environment. We adapted four controllers

to the HVAC problem: a simple P controller, an LQR, a modi-

fied d-LQR, and an MPC. In particular, we modified the track-

ing LQR presented in [10] by using time-varying tuning pa-

rameters (matrices) reflecting different temperature bounds at

1The building library developed by LBNL [17] can also be used in our

framework for a more detailed modeling of the system.



different times of the day. We also modified the LQR con-

troller, called d-LQR, by using the a-priori knowledge of the

disturbance data. The performance of the four controllers is

compared and contrasted.

The paper is organized as follows. Section 2. introduces

a mathematical model for building. Section 3. describes the

four different control algorithms that have been used. It presents

the derivation of the closed-form solution to the tracking LQR

and d-LQR problems and lays out the formulation for MPC.

Finally, Section 4. shows results obtained from simulations

and discusses the performance and computational character-

istics of the four controllers. Conclusions are drawn in Sec-

tion 5..

2. MATHEMATICAL MODELING
In this paper, we use the model that was proposed in [10,

14] in which the building is considered as a network. There

are two types of nodes in the network: walls and rooms. There

are in total n nodes, m of which represent rooms and the re-

maining n−m nodes represent walls. Temperature dynamics

of the i-th wall is governed by the following equation:

Cwi

dTwi

dt
= ∑

j∈Nwi

Tj −Twi

R′
i j

+ riαiAiq
′′
radi

(1)

Where Twi
, Cwi

, αi and Ai are the temperature, heat capacity,

absorption coefficient and area of wall i, respectively. R′
i j is

the total resistance between wall i and node j. q′′radi
is the

radiative heat flux density on wall i. Nwi
is the set of all of

neighboring nodes to node wi and, ri is equal to 0 for internal

walls, and to 1 for peripheral walls.

The temperature of the i-th room is governed by the fol-

lowing equation:

Cri

dTri

dt
= ∑

j∈Nri

Tj −Tri

R′
i j

+ ṁri
cp(Tsi

−Tri
) (2)

+wiτwi
Awi

q′′radi
+ q̇int

Where Tri
, Cri

and ṁri
are the temperature, heat capacity and

air mass flow into room i, respectively. ca is the specific heat

capacity of air, Awi
is the total area of window on walls sur-

rounding room i, τwi
is the transmissivity of glass of window

i, q′′radi
is the radiative heat flux density radiated to node i and

q̇int1 is the internal heat generation in thermal zone i. Nri
is the

set of all of the neighboring nodes to room i and, wi is equal

to 0 if none of the walls surrounding room i has window, and

is equal to 1 if at least one of them has.

A detailed model of building envelope and HVAC sys-

tem is captured in Modelica with the air mass flow into each

thermal zone as inputs, and the temperature of each thermal

zone and temperature of walls as outputs. This plant is im-

ported into Simulink using the Dymola2-Simulink interface.

2Dymola is a commercial simulation environment for Modelica
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Figure 1. Validation of the proposed model against histori-

cal data. We concurrently estimate the model parameters and

the unmodeled dynamics using parameterization of the un-

modeled dynamics based on the measured data. Details can

be found in [12].

The entire plant is imported into Simulink by using first the C-

generation capability of Dymola and then encapsulating the

code so generated into a DymolaBlock. The DymolaBlock is

a wrapper around an S-function MEX block.

We capture the model obtained from (1), and (2) for a

three-room model in Modelica. The model has been validated

against historical data. The validation result is shown in Fig. 1.

3. CONTROLLER DESIGN
We implemented a P controller, a tracking LQR, a track-

ing LQR with disturbance knowledge (d-LQR), and a model

predictive controller (MPC).

In general, a P controller is the least computationally com-

plex, as the control input in this case is proportional to a tem-

perature offset. LQR is more computationally complex than

P, as it involves matrix multiplication and inversion. How-

ever, a closed form solution can be derived for the optimal

control policy. P easily handles a large number of states. LQR

with disturbance knowledge (d-LQR) makes use of the avail-

able predictive knowledge to enhance the control input to re-

ject disturbances in a smarter fashion than LQR. The com-

putational complexity of this controller is similar to that of

LQR. MPC is the most computationally complex algorithm

but it yields a solution that always meets the state and input

constraints optimally as defined by the cost function.

We use system dynamics that is linearized about the equi-

librium point of the system. Note that since the range of ther-

mal zone temperature is small (usually 20 - 22 ◦ C). The four

controllers adapted for the building problem are described as

follows:



3.1. P Control
The proportional controller used in this paper is given by

the following equations:

uk =











Kp[T k −T(k)] if T (k) > T k

0 if T k < T (K)< T k

Kp[T k −T(k)] if T (k) < T k

(3)

Where Kp is the proportional gain of the controller which

should be chosen for best performance. Note that we only

consider this controller as a basis against which to compare

the performance of other controllers.

3.2. Tracking LQR
We implemented a tracking LQR controller with time-

varying tuning matrices on the plant model. Consider the plant

model given by

xk+1 = Axk +Buk (4)

yk =Cxk (5)

Where the state vector xk ∈ R
n at time t = k contains the

temperatures of all the nodes in the thermal network of the
building: xk = [Tw1

(k) · · · Twp(k) Tr1
(k) · · · Trm(k)]. Where

p is the number of walls, m is the number of rooms, and
p+m = n. The vector uk ∈ R

m is the input at time k, uk =
[ṁ1(k) · · · ṁm(k)]. Vector yd

k is the desired output trajec-
tory (i.e. desired temperature for each room), specified for all
k = 1,2, · · · ,N and Uk := [uk uk+1 · · · uN−1]. The LQR
tracking problem is formulated as follows:

min
U0

1

2
(yd

N −yN)
T QN(y

d
N −yN)

+
1

2

N−1

∑
k=0

(

(yd
k −yk)

T Qk(y
d
k −yk)+uT

k Rkuk

)

(6)

The solution to the LQR problem is the optimal control input

of a linear system according to a quadratic cost function of

the states and the inputs, hence the name LQR. The offset

from the desired trajectory and the inputs are penalized with

weight matrices called Qk and Rk at each time k, respectively.

Qk = diag [q1
k, q2

k , ..., qm
k ] (7)

Rk = diag [r1
k , r2

k , ..., rm
k ] (8)

Where the superscript i refers to the room i in the building

and the subscripts k implies the kth time step.

Assumption 1: We assume that the matrices Qk are posi-

tive semidefinite and symmetric and the matrices Rk are pos-

itive definite and symmetric. This translates to qi
j ≥ 0 ∀i, j

and ri
j > 0 ∀i, j. Note that the symmetry assumption is ful-

filled by the diagonal structure of these matrices.
The controller can be tuned by varying the weight matri-

ces according to the occupancy schedules. Using Bellman’s

principle of optimality, a recursive relation can be obtained.
The resulting optimization problem can be solved by dynamic
programming backwards in time to determine the optimal con-
trol law. In [14] the optimal control law was shown to be as
follows:

uo
k = Fk −Kkxk (9)

Kk = [Rk +BT Pk+1B]−1BT Pk+1A (10)

Fk =−[Rk +BT Pk+1B]−1BT bk+1 (11)

Where Pk and bk can be calculated backwards in time using

Pk−1 =AT PkA−AT PkB[Rk−1 +BT PkB]−1BT PkA

+CT Qk−1C (12)

bk−1 =−AT PkB[Rk−1 +BT PkB]−1BT bk −CT Qk−1yd
k−1

+AT bk (13)

with the terminal conditions being PN = CT QNC and bN =
−CT QNyd

N . Note that Kk can be regarded as the feedback gain

and Fk as the feed-forward gain [4].

3.3. Tracking d-LQR
The difference of LQR and d-LQR is that d-LQR inte-

grates the predictive disturbance knowledge to enhance the

performance of the LQR. The classic LQR problem solu-

tion can be found in the literature [5]. The solution to the

non-homogeneous discrete time d-LQR was developed re-

cently [3] using Lagrange multipliers for the state dynamics

as constraints and then solving the problem using the Karush-

Kuhn-Tucker (KKT) optimality conditions. Here we derive

the same solution using a different method, namely dynamic

programming. Assume the plant model given by (14) where

dk is the disturbance to the system at time t = k.

xk+1 = Axk +Buk +Edk

yk =Cxk (14)

We consider the same cost function (6). We use dynamic pro-
gramming to solve for the solution of this problem. The opti-
mal control is given by

uo
k = Fk −Kkxk (15)

Kk = [Rk +BT Pk+1B]−1BT Pk+1A (16)

Fk =−[Rk +BT Pk+1B]−1BT (bk+1 +Pk+1Edk) (17)

Where Pk and bk can be calculated backwards in time using

Pk−1 =AT PkA−AT PkB[Rk−1 +BT PkB]−1BT PkA

+CT Qk−1C (18)

bk−1 =−AT PkB[Rk−1 +BT PkB]−1BT (bk +PkEdk−1)

−CT Qk−1yd
k−1 +AT (bk +PkEdk−1) (19)

with the terminal conditions being PN = CT QNC and bN =
−CT QNyd

N . Note the appearance of disturbances in the update



equation for bk−1. The solution to the problem developed here

agrees with the solution developed by [3] using a different

method.

Note that the boundedness of the Riccati equation solu-

tion of the homogeneous LQR problem, and the asymptotic

stability of the resulting closed-loop system is guaranteed [6].

3.4. Model Predictive Control
A model predictive control problem is formulated with

the objective of minimizing a cost function which is a linear

combination of the total cooling and heating power consump-

tion and the peak of air flow and temperature-bound violation

at each time subject to system dynamics and constraints. The

predictive controller solves at each time step t the following

problem

min
Ut ,ε̄,ε

{||Ut||1 + c1||Ut||∞ + c2(||εt||1 + ||εt||1)}

subject to:

xt+k+1|t = Axt+k|t +But+k|t +Edt+k|t (20a)

yt+k|t =Cxt+k|t (20b)

T t+k|t − εt+k|t ≤ yt+k|t ≤ T t+k|t + εt+k|t (20c)

ut+k|t ≤ u (20d)

εt+k|t , εt+k|t ≥ 0 (20e)

MPC Algorithm:

where Ut = [ut|t ,ut+1|t , · · · ,ut+N−1|t ] is the vector of control

inputs, εt = [εt+1|t , · · · ,εt+N|t ] is the temperature violations

from the lower bound, εt the temperature violation from the

upper bound, yt+k|t is the thermal zone temperatures, dt+k|t is

the load prediction, and T .|t and T .|t are the lower and upper

bounds on the zone temperature, respectively. u is the upper

bound on the input air flow. c2 is the penalty on the comfort

constraint violations, and c1 is the penalty on peak power con-

sumption. Note that constraints (20a), and (20d) should hold

for k = 0,1, ...,N − 1 and constraints (20b), (20c), and (20e)

should hold for k = 1,2, ...,N.

At each time step only the first entry of Ut is implemented

on the plant. At the next time step the prediction horizon N is

shifted leading to a new optimization problem. This process

is repeated over and over until the total time span of inter-

est is covered. The prediction horizon is N = 24. We used

YALMIP [8] to formulate the MPC problem in MATLAB,

and used IBM CPLEX [2] to solve the resulting optimization

problem.

Figure 2. Schematic of the closed loop system including the

nonlinear system model in Modelica and the control imple-

mentation in Simulink.

4. SIMULATION RESULTS
4.1. Simulating Heterogeneous Models

To verify the performance of the controllers, we simulated

the combination of controller and plant (Fig. 2). We argued

that modeling the plant in Modelica has several advantages

while the design and implementation of the controller is best

done in Simulink. There are two strategies to simulate the

composed system:

• Hosted Simulation where either the Modelica model is

imported into the Simulink input language and simula-

tion occurs in Simulink or the Modelica model is im-

ported into the Simulink environment and simulation

occurs in Modelica.

• Co-simulation. where the two components are evalu-

ated during simulation each in its own simulation en-

vironment (for Modelica, the simulation environment

we chose is Dymola). In this case, a ”master” is needed

that orchestrates the actions of the two simulators while

simulation progresses. Commercial co-simulation plat-

forms have been developed to act as the ”master”, for

example, EXITE, Silver and TISC [1]. EXITE, for in-

stance, provides interfaces to Dymola, Simulink, AS-

CET, Rhapsody, ARTISAN Studio and C/C++. During

co-simulation all models stay in their simulation en-

vironment and EXITE implements the communication

among them via dedicated communication blocks.

Simulink has a feature (the S-Function C-Mex mecha-

nism) that can be used to deal with models described in Dy-

mola if the models are expressed in terms of input and output

signals (Modelica has also the capability of capturing models

in equation form where inputs and outputs are not explicitly

identified, a feature that is not available in Simulink). The

models can be imported into Simulink as an S-Function C-

Mex file.

There are two mechanisms that can be used to perform

simulation in the Dymola environment:

• In-line Integration. The simulation engine is Simulink.

In this option, the user has to select a particular integra-



Figure 3. Temperature bounds for occupied and unoccupied

hours.

tion method that is used by Dymola (e.g., explicit/implicit

Euler, trapezoidal method, explicit/implicit Runge Kutta)

to generate ”C”-code that is then managed by the Simulink

simulation engine.

• In-line integration method not used. The generated ”C”

code includes variable declarations and a call to the Dy-

mola environment to evaluate the model. In this case,

Simulink acts as the master.

For some integration methods such as Explicit Euler, the

output diverges (this is to be expected because of the limited

absolute stability region of this method), while no divergence

is observed in the case of No in-line integration since the in-

tegration methods are dictated by the two tools that use robust

numerical integration methods. Hence, we use “No in-line in-

tegration” for the simulations presented in this paper.

4.2. Comparing Controllers
We compare now the four different controllers described

in Section (3.). The comfort zone is defined to be the space

between the lower and upper temperature bounds as shown in

Fig. (3).

For the disturbance model we assume that the disturbance

load from the outside weather to the building is a sinusoidal

load which is negative at night and positive during the day.

We also assume an additive load due to a high density of oc-

cupants (e.g. a meeting) in the considered room from 11 am

to 1 pm. The cumulative effect of both disturbances is shown

in Fig. (4)

To be consistent and fair to all controllers we used a sam-

pling time of one hour for all cases. In order to be fair for

evaluation of the energy savings, we kept running simulations

until we experienced a difference of less than 0.2 ◦C between

the room temperature at the start time of one day (12am) and

the end time of the same day (12am next day).

4.2.1. P Control

P control logic is given by (3).
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Figure 4. Aggregate effect of disturbance from outside

weather and internal loads.

4.2.2. Tracking LQR

In this case we have considered the desired temperature,

yd
k to be a constant temperature of 21oC. We consider time

varying tuning parameters Qk and Rk to reflect the occupancy

schedule knowledge in the LQR control derivation.

We exploit the following strategy for tuning the weight

matrices which reflects the temperature constraints at each

time t = k:

Qk =































Q1 if 12am ≤ k ≤ 4am

Q1 +
(Q2−Q1)∗[k−4]

4
if 4am ≤ k ≤ 8am

Q2 if 8am ≤ k ≤ 4pm

Q2 +
(Q1−Q2)∗[k−4]

4
if 4pm ≤ k ≤ 8pm

Q1 if 8pm ≤ k ≤ 12am

(21)

Where Q1 and Q2 are the weight matrices corresponding to

unoccupied and occupied hours, respectively, as shown in

Fig. 3. The same strategy can be defined for Rk as well. In

this case the disturbance knowledge is not used in the control

derivation.

4.2.3. Tracking d-LQR

In this case we also assume a constant temperature of

21oC as the desired temperature and pick the tuning parame-

ters of Qk and Rk based on the same strategy as (21). The dif-

ference of this case with case 1 is that the disturbance knowl-

edge is used in the control derivation for a better tracking and

disturbance rejection.

4.2.4. MPC

We have considered an MPC with soft constraints on the

room temperature. However, to have a fair comparison among

different controllers, we choose a large value for c2 to force

the temperature to stay within the upper and lower bounds (i.e

comfort zone).

The results are shown in Fig. (5). A quantitative compar-

ison of different controllers is depicted in Fig. (6). The con-

troller parameters and the simulation time for each is pro-

vided in Table (1).



Figure 5. Temperature and optimal input for four different

controllers.

4.3. Control Performance Comparison
To compare the overall performance of the proposed con-

trollers we define two metrics to measure the energy con-

sumption and comfort level provided by each controller. The

energy metric is defined as:

Ie =

∫ 24

t=0
[Pc(t)+Ph(t)+Pf (t)]dt (22)

Where cooling power Pc, heating power Ph and fan power Pf

are defined as

Pc(t) = ṁc(t)cp[Tout(t)−Tc(t)] (23)

Ph(t) = ṁh(t)cp[Th(t)−Tout(t)] (24)

Pf (t) = αṁ3(t) (25)

The discomfort metric is defined as the sum of all the temper-
ature violations during the course of a day.

Id =
∫ 24

t=0

[

min
(
∣

∣T (t)−T (t)
∣

∣ , |T (t)−T (t)|
)

.1B(t)c(T (t))
]

dt

Where B(t)= [T (t),T (t)] is the allowable temperature bound-

ary at time t and 1 is the indicator function.

Remark 1. As shown in the lower plot of Fig (5) the con-

trol input for the d-LQR is more similar to the MPC control

input rather than to the LQR. On the other hand, the control

input of the LQR is comparable to the one from P control.

Remark 2. The d-LQR and MPC use the disturbance knowl-

edge to pre-cool the space several hours before the distur-

bance load hits as opposed to the LQR and P control which

only react to the disturbance load instantaneously. The uti-

lization of the disturbance knowledge results in a lower peak

air flow demand and full satisfaction of temperature bounds

for these two controllers versus the high peak air flow and

constraint violation for the LQR and P controllers.

Remark 3. As shown in Table (1) the time required to

simulate the MPC operations is three orders of magnitude

Table 1. Simulation time and Parameters for different con-

trollers.

Controller: P Ctrl LQR d-LQR MPC

Simulation 1.31 0.13 0.11 115.1

time [s]

Parameters Kp = 4 q1 = 0.01 q1 = 0.24 c1 = 5

q2 = 100 q2 = 0.54 c2 = 500

r1 = 10 r1 = 1

r2 = 0.02 r2 = 0.09

Figure 6. Quantitative comparison of different controllers.

higher than the one required for the simulation of LQR. This

is because the LQR problems have closed-form solutions while

the MPC solves optimization problems on the fly. The high

computational effort and delay of MPC can be problematic as

also indicated in [18], for implementing on embedded plat-

forms with limited computational power. The d-LQR con-

troller introduced in this paper can be regarded as a less com-

putationally intensive alternative to MPC for large systems

with a high number of states and inputs.

The comparison result is shown in Fig. 7. From this com-

parison, we note that the LQR is not sensitive to parame-

ter changes, the P controller is the worst controller among

the proposed controllers and the performance of d-LQR and

MPC are very close.

It was shown that the developed d-LQR controller acts

more like an MPC rather than an LQR controller in terms

of rejecting disturbances, and results in a smarter controller

which uses disturbance knowledge to decrease both the total

air mass and the peak air mass flow into the thermal zone.

5. CONCLUSION AND FUTURE WORK
We presented and compared four controllers for the con-

trol of an HVAC system in smart buildings. We presented and

validated a heterogeneous model comprising a building en-

velope and an HVAC system model in DymolaBlock.It was

shown that the d-LQR controller is able to reject the distur-
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Figure 7. Normalized discomfort level versus normalized

energy consumption for different controllers. It is shown that

P control exhibits the worst performance; LQR, in the pres-

ence of disturbance is not so responsive to parameter changes;

and d-LQR and MPC have similar performances. Normal-

ized values along each axis are obtained by dividing the abso-

lute values for each axis, by the maximum experienced value

along that axis.

bance by using the knowledge of the disturbance and to keep

the temperature within a set of given bounds at all times as

opposed to the LQR derived with no a-priori knowledge of

the disturbance characteristics. As a result the energy index of

the d-LQR was reduced by 41.2% and the discomfort metrics

from 3.8 to 0 when compared to the P control. A model pre-

dictive controller was also designed and implemented. This

controller was shown to reduce the energy index by 46% and

the discomfort index from 3.8 to 0 when compared to the P

controller. d-LQR and MPC manage to keep the temperature

within the temperature bounds at all times as opposed to P

control and LQR which fail in doing so.

In future work, we will extend the co-design approach

presented in [13] of control algorithm and embedded plat-

form considering the computational complexity of the con-

trol algorithms and and the computational capabilities of the

embedded platforms.
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