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Abstract 

 30 

There is a great deal of interest in the effects of biotic interactions on 

geographic distributions. Nature contains many different types of biotic interactions 

(notably mutualism, commensalism, predation, amensalism and competition), and it 

is difficult to compare the effects of multiple interaction types on species’ 

distributions. To resolve this problem, we analyze a general, flexible model of 35 

pairwise biotic interactions that can describe all interaction types. In the absence of 

strong positive feedback, a species’ ability to be present depends on its ability to 

increase in numbers when it is rare and the species it is interacting with is at 

equilibrium. This insight leads to counterintuitive conclusions. Notably we often 

predict the same range limit when the focal species experiences competition, 40 

predation or amensalism. Similarly, we often predict the same range margin or 

when the species experiences mutualism, commensalism or benefits from prey. In 

the presence of strong positive density dependent feedback different species 

interactions produce different range limits in our model. In all cases, the abiotic 

environment can indirectly influence the impact of biotic interactions on range 45 

limits. We illustrate the implications of this observation by analyzing a stress 

gradient where biotic interactions are harmful in benign environments but 

beneficial in stressful environments. Our results emphasize the need to consider the 

effects of all biotic interactions on species’ range limits, and provide a systematic 

comparison of when biotic interactions affect distributions.  50 



 

 

Introduction 

 

One of the grand challenges in ecology is predicting how species’ 55 

geographical ranges will shift in response to environmental change, and indeed, 

understanding the factors that lead to range limits in the first place. One dimension 

of this challenge is teasing apart the impact of biotic interactions, such as 

competition and predation, from direct effects of abiotic environmental factors in 

driving range shifts (Elith and Leathwick 2009; Godsoe et al. 2015; Soberón 2007). 60 

There is increasing evidence that biotic interactions have strong effects on range 

margins (Pigot and Tobias 2013; Sexton et al. 2009). However, it is not clear how we 

can most easily anticipate these effects. There are many ways in which pairs of 

species interact (as measured for instance by effects of each species on the fitness or 

abundance of the other species; Figure 1), including predation, parasitism, 65 

competition, and mutualism. These pairwise interactions are furthermore 

embedded in webs of interactions, leading to chains of indirect effects, including 

trait-mediated indirect interactions (Ohgushi et al. 2012). These indirect effects can 

also affect range margins. Indirect effects may be difficult to distinguish from the 

direct effects of the abiotic environment on range margins. There has been a 70 

tendency in theoretical models to emphasize competition as a driver of range 

margins (Bull and Possingham 1995; Case et al. 2005; García-Ramos et al. 2000; 



Goldberg and Lande 2007; MacLean and Holt 1979; Pielou 1974), but models do 

exist exploring range limits generated by other kinds of biotic interactions such as 

predation (Holt and Barfield, 2009) and mutualism (Afkhami et al. 2014; Hutson et 75 

al. 1985; Parker 2001). The effects of asymmetric interactions such as amensalism 

and commensalism on range margins are mentioned less frequently (Colwell and 

Rangel 2009; Hirzel and Le Lay 2008; Lavergne et al. 2010).  

It can be difficult to study the effects of species interactions on range limits 

because a species’ response to other species vary as we move from one context to 80 

another (i.e. from one location or environment to another), a phenomenon that we 

will refer to as context dependency. Most obviously the growth rates and carrying 

capacities of each species can change as we move from one location to another 

(Davis et al. 1998; Holt and Keitt 2000; MacArthur 1972; Samaniego and Marquet 

2013). More subtly, the impacts of biotic interactions can change (Chamberlain et al. 85 

2014), both qualitatively and quantitatively. For example, as we move from benign 

environments to stressful environments plant species may switch from being 

competitors to facilitators (Callaway et al. 2002). It is thought that this trend 

strongly influences species’ range limits (Louthan et al. 2015) but it still isn’t exactly 

clear how to analyze the effects of this shift in interaction strength on where a 90 

species will be present.  

More generally, it is not at all clear which biotic interactions most influence 

species’ range margins, and why. Araújo and Rozenfeld (2014) have recently argued 

that negative interactions discernible at fine scales fade away at coarser scales of 



resolution, but that positive effects should scale up more broadly. This conclusion is 95 

at odds with many previous models where competition has a large effect across 

environmental gradients (Case et al. 2005; Case and Taper 2000; MacLean and Holt 

1979; Pielou 1974). Other authors have explored how positive interactions such as 

mutualisms can lead to alternative stable states for species along environmental 

gradients. For instance, Wilson and Nisbet (1997) examined cellular automata 100 

models (and mean-field approximations) for space-occupying organisms, where in 

addition to competing for space, individuals could experience reduced mortality 

when surrounded by neighbors, or neighbors could facilitate recruitment into 

empty patches. Such positive interactions can lead to abrupt range limits, and 

alternative states, along gradients (Wilson and Nisbet 1997), even when gradients 105 

have complex spatial structures (Buenau et al. 2007). There thus is a need to 

develop tools that predict the effects of biotic interactions on species’ range 

margins. Such tools can lead to a more general understanding of when biotic 

interactions affect where a focal species can be present.  

Here we seek to address the effects of biotic interactions on range margins 110 

using well-grounded models of population dynamics that flexibly incorporate a wide 

range of pairwise biotic interactions. To do this, we use a framework developed by 

Holland and DeAngelis (2009) that uses a single set of equations to organize many 

familiar models of pairwise biotic interactions  (Beddington 1975; de Villemereuil 

and López-Sepulcre 2011; Holland and DeAngelis 2009; Holland and DeAngelis 115 

2010; Holling 1959; Kot 2001; May 1973; Pulliam 2000; Rosenzweig and MacArthur 

1963). Holland and DeAngelis’s framework includes saturating nonlinearities in 



interaction strengths, and it encompasses predator-prey, consumer-resource, 

competitive, and mutualistic interactions. As a result, this framework can produce a 

broad range of dynamics, and it allows us to contrast the effects of biotic 120 

interactions with impacts of the abiotic environment across a range of spatial scales.  

Studies of species’ range limits often distinguish a species’ “fundamental 

niche” (the set of suitable abiotic environments) from its “realized niche”, normally 

defined as that set of environments where a focal species in fact occurs, considering 

impacts of (e.g.) other species on that species, and the influence of dispersal. Holt 125 

(2009) distinguished between what can be viewed two subsets of the realized niche 

-the “establishment niche”, and the “population persistence niche”. The former 

represents locations where we expect the species to be present so long as it has had 

access to the location. In these environments the focal species has a positive growth 

rate when it is rare, given that the rest of the community is at equilibrium (Chesson 130 

2000b; Smith et al. 2011). For our purposes, an “equilibrium” may include 

fluctuating densities, in a bounded attractor. When these conditions are met at a 

particular location, the species can colonize the location or recover even when it is 

close to extinction. Some authors use the term realized niche to denote just the 

“establishment niche” as defined here (Thuiller et al. 2014). This use of invasion 135 

criteria may be familiar from applications of coexistence theory in community 

ecology, or more generally from persistence theory, a body of mathematics that 

seeks to determine when species can be present in the face of negative interactions 

with other organisms (Chesson 2000a; Smith et al. 2011). 



But in some circumstances, at a given location, an alternative locally stable 140 

equilibrium exists where a species could persist, even if it cannot increase when 

rare. So a population may be able to persist, bounded away from low numbers, 

because of impacts that population has directly on its own growth rates, indirectly 

on the abiotic environment, or indirectly on biotic interactions. For instance, a 

generalist predator could exclude a prey species when that prey is initially rare, 145 

even though a high density of the same prey species would be able to persist 

because it can satiate the predator (Sinclair and Krebs 2002). This positive density-

dependent feedback can lead to alternative stable states, and affect the range limit of 

a species along a smooth environmental gradient (Donahue et al. 2011). Such 

alternative states can arise because of a wide range of positive feedbacks of a 150 

species on its own growth rate (DeAngelis et al. 2012; Petraitis 2013; Scheffer 

2009). These feedbacks may act rapidly and would be represented as positive 

density dependence (Courchamp et al. 2008; Keitt et al. 2001) in single species 

models (Holt 2009). Other examples of positive feedbacks act indirectly and over 

longer time scales, via impacts on the abundance of other species, or even 155 

ecosystem properties (Chase and Leibold 2003). The environmental conditions that 

promote such positive feedbacks should be viewed as niche dimensions that can 

determine where a species can be present. The population persistence niche 

concept highlights that sometimes a species can persist in a locality, in part because 

of how that species influences its own environment (including direct density-160 

dependent processes). The model we explore in this paper incorporates such 

feedback effects.  



We aim at developing several results. We present parallel analyses across 

pairwise interactions, revealing that all may be important in determining range 

margins. We show that there are similarities among the establishment niches among 165 

several different types of biotic interactions. As a result, characterizing a species’ 

establishment niche, after considering biotic interactions, can be a strong predictor 

of that species’ range margin.  However, when there is strong positive feedback a 

species’ persistence niche may extend past its establishment niche increasing the 

range of conditions where the species may b be present. These theoretical results 170 

complement the recent review of Wisz et al. (2013) to buttress the proposition that 

biotic interactions often act jointly with abiotic conditions to set range margins.  

 

The model 

The landscape 175 

 

Our model considers interactions among two species in a study region 

consisting of locations organized along two spatial dimensions denoted by the 

vector x (see table 1 for a list of terms). Biogeographers might refer to x as 

geographic space (Elith and Leathwick 2009). As we move from one location to 180 

another, the response of each species to the environment and the response of each 

species to the other can change (Callaway et al. 2002; Hargreaves et al. 2014). Note 

that the response of one species to another can indirectly reflect changes in the 



abiotic environment. To represent this, each of the parameters in our dynamic 

model (see Equations 4) can change as we move from one location to another. Our 185 

analyses identify the environments that allow a species to be present; this 

information is then used to identify portions of geographic space where our species 

can be present. Species interactions change range limits when they change the 

portion of geographic space where each species can be present. We assume that 

individual locations are sufficiently small that they can be considered internally 190 

spatially homogeneous (but still large enough to ignore demographic stochasticity). 

Because we are concerned with the joint effects of biotic interactions and the 

abiotic environment on geographic range limits we make a simplifying assumption 

about dispersal; specifically, we assume that both species can potentially migrate to 

all locations in the region of interest, but that dispersal rates are low enough that 195 

they do not affect local population growth rates. This assumption can arise when 

individuals disperse through space via a small amount of passive diffusion (i.e. a 

random walk; Case et al. 2005). However, our results will generalize to many other 

dispersal mechanisms, for example, the spatial arrangement of locations can be 

represented either explicitly or implicitly, just so long as dispersal is weak. We 200 

revisit the effect of dispersal in the Discussion.  

 

Biotic interactions at a single location 

 



To analyze the presence of species 1 at a single location, we start with a 205 

general schematic model for change in the density (Ni) of each of two interacting 

species (i = 1, 2): 

𝑑𝑁1
𝑑𝑡
= (𝑔1 + 𝑓1(𝑁1,𝑁2))𝑁1 (1a) 

𝑑𝑁2
𝑑𝑡
= (𝑔2 + 𝑓2(𝑁1,𝑁2))𝑁2. (1b) 

Here, gi represents the density independent growth rate of species i while fi(N1, N2) 210 

represents the effect of each species on the per capita growth rate of species i, 

including intraspecific density dependence. We assume that fi(N1, N2)=0 when 

N1=N2=0. 

In the absence of biotic interactions involving species 2 we expect species 1 

to occur in locations within its fundamental niche. These are by definition 215 

environments where its density independent growth rate is positive: 

𝑔1 > 0 (2). 

When the two species interact, species 1 should be present in locations 

where conditions are inside its establishment niche, which means species 1 

increases in numbers (and hence establishes) when it is rare, and species 2 is 220 

present at equilibrium (formally, we define “rarity” as the limit: lim N1→0):  

𝑔1 + 𝑓1(𝑁1 → 0, 𝑁̂2) > 0. (3) 



Here 𝑁̂2 is the equilibrium density of species 2 when species 1 is either 

absent, or sufficiently rare to be neglected.  

Even if species 1 cannot establish when rare and species 2 is at equilibrium, 225 

it still may be able to persist locally under some conditions. The population 

persistence niche describes these cases. For a location to have conditions within the 

persistence niche of species 1, there should be some values of N1 and N2 that allow 

species 1 to resist extinction. 

To understand the effects of establishment and persistence on range limits 230 

we study an expanded version of the Holland-DeAngelis (2009) model that allows 

self-interference, (i.e. when individuals of a given species are at high density they 

interfere with each other, reducing the impact of interactions with other species). 

Following a suggestion in Fishman and Hadany (2010) we use a Beddington-

DeAngelis functional response (Beddington 1975; DeAngelis et al. 1975), a 235 

generalization of the type II functional response used by Holland and DeAngelis 

(2009). There are formal derivations of the Beddington-DeAngelis formulation from 

mechanistic assumptions for both mutualistic (Fishman and Hadany 2010) and 

predator/prey interactions (Beddington 1975; Huisman and De Boer 1997). For the 

predation case, there is substantial support for the Beddington-DeAngelis model 240 

over simpler alternative functional responses (Skalski and Gilliam 2001). 

Beddington-DeAngelis models have been used to describe competition mediated by 

behavioral interference among competitors. For example, de Villemereuil and 

López-Sepulcre (2011) used this model to characterize competition between two 



predator species (the Trinidadian guppy Poecilia reticulata and Hart’s Killifish 245 

Rivulus hartii) each of whom interferes with the foraging of the other.  

The model is as follows:  

 

𝑑𝑁1
𝑑𝑡
= 𝑁1 ( 𝑔1 − 𝑑1𝑁1⏞      

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑔𝑟𝑜𝑤𝑡ℎ

+ 𝑐1𝑁2
1+𝑐1𝑏2𝑁2+𝑐1ℎ2𝑁1
⏞        

𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑜 1

− 𝑞1𝑁2
1+𝑞1𝑒1𝑁1+𝑞1𝑎2𝑁2
⏞          

ℎ𝑎𝑟𝑚 𝑡𝑜 1

) (4a) 

 250 

𝑑𝑁2
𝑑𝑡
= 𝑁2 ( 𝑔2 − 𝑑2𝑁2⏟      

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑔𝑟𝑜𝑤𝑡ℎ
+ 𝑐2𝑁1
1+𝑐2𝑏1𝑁1+𝑐2ℎ1𝑁2⏟        

𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑜 2

− 𝑞2𝑁1
1+𝑞2𝑒2𝑁2+𝑞2𝑎1𝑁1⏟          

ℎ𝑎𝑟𝑚 𝑡𝑜 2

) (4b) 

 

 

In the absence of biotic interactions, the populations show logistic growth 

(Gabriel et al. 2005) with a density independent growth rate of gi and a density 255 

dependent mortality rate of di. These terms could represent the effect of the abiotic 

environment or diffuse interactions with species other than the focal pair of species 

including other competitors, consumers or mutualists. The equilibrium density 

(“carrying capacity”) of species i in the absence of species interactions (𝑁̂𝑖) is gi/di 

when gi>0. If the density independent growth rate of species i is negative, then 𝑁̂𝑖=0. 260 

Interactions between species 1 and 2 are described by terms denoted benefit 

to i and cost to i. For species 1 to be a prey, and species 2 a predator, species 1 would 



receive only harm, whereas species 2 would receive a benefit (q1 > 0, c2 > 0, but c1, q2 

= 0). This could also formally describe parasitism, such as brood parasitism. The 

quantity ci is the maximum benefit species i can obtain from species j per unit time, 265 

while qi is the maximum harm species i can receive from species j per unit time 

(Huisman and De Boer 1997). The parameters b2, h2, e1 and a2 expresses how the 

impact of species 2 on species 1 saturates when either species 1 or species 2 are at 

high densities see Table 2 for a full list of terms.  

A biological example may help illustrate how species interactions are 270 

represented in this model. Van Gils and Piersma (2004) describe a prey species (the 

blue mussel Mytilus edulis). The mussel, species 1, is consumed by a predatory 

shorebird, the red knot Calidris canutus, species 2. The term “harm to 1” in equation 

4a describes the cost that blue mussels incur from predation. The term q1 describes 

the maximum per-capita harm that blue mussels can receive from predation by an 275 

individual red knot. In our model, individual red knots attack individual mussels 

most efficiently when both species are scarce. Red knots take time to digest 

captured mussels, so are less efficient consumers (per mussel) at high densities of 

blue mussels. High values of e1 correspond to blue mussels experiencing less harm 

from predation (per capita) when blue mussels are abundant. Red knots aggregate 280 

into dense flocks of tens of thousands of individuals, and individual red knots 

interfere with each other’s foraging, reducing the harm that red knots inflict on 

mussels, a process expressed by high values of a2. 



We model the effect of the interaction on the red knot using the “benefit to 2” 

term in Equation 4b. Individual red knots benefit most from individual blue mussels 285 

when both species are at low density (modeled by the term c2). High values of b1 

denote limitations on the benefits red knots can obtain from high mussel densities, 

while high values of h1 indicate that interference among knots limits their ability to 

benefit from consuming prey. 

The establishment niche 290 

A location will be a part of species 1’s establishment niche if species 1 can 

increase in numbers when it is rare and the other species is at its equilibrium 

density when alone (denoted 𝑁̂2). From equation 4, this requires: 

 

𝑔1 +
𝑐1𝑁̂2

1+𝑐1𝑏2𝑁̂2
− 𝑞1𝑁̂2
1+𝑞1𝑎2𝑁̂2

> 0. (5) 295 

 

Inequality 5 states that species 1’s establishment niche depends on the 

balance of species 1’s intrinsic growth rate (g1) and the net effect of species 2 on the 

growth rate of species 1 (the remaining terms). There are two ways interactions 

might alter the establishment niche of species 1, relative to what might be expected 300 

considering just the fundamental niche alone. The first is range expansion. This 

occurs in locations that are otherwise unsuitable to species 1 (g1 < 0) when species 1 

benefits sufficiently from its interaction with species 2 to increase in numbers when 



rare (inequality 5 holds when g1= 0). The second possibility is range contraction. 

This occurs when the environment is inherently suitable to species 1 (g1 > 0) but the 305 

effect of species 2 is sufficiently harmful to prevent species 1 from increasing in 

numbers when rare (inequality 5 is false when g1= 0). 

Because the establishment niche depends only on the ability of species 1 to 

increase in numbers when rare, considerably less information is needed to model 

the establishment niche than is needed to model the complete dynamical 310 

consequences of biotic interactions. As a result, inequality 5 omits many aspects of 

the interactions between the two species. Specifically, the establishment niche has 

the same form for species 1 when it benefits from a commensalist, a prey species, or 

a mutualist. The establishment niche also has the same form, whether species 1 is 

harmed by an amensalist, a predator or a competitor. 315 

The effect of biotic interactions on the establishment niche (Inequality 5) 

reflects how both species respond to the environment. By implication, the effects of 

biotic interactions on range limits can be strongly mediated by the environment, at 

least when range limits reflect local conditions. Thus, inequality 5 includes the 

equilibrium density of species 2 (𝑁̂2) and the ability of species 1 to increase in 320 

numbers when it is rare (g1). Even when biotic interactions strongly shape species 

1’s range limits, climatic variables might provide an excellent predictor of a focal 

species’ current range limit. The influence of biotic interactions on the 

establishment niche of species 1 increases with: (1) increasing 𝑁̂2; (2) increasing 



maximum benefit or harm (c1 or q1); or (3) decreasing mutual interference among 325 

individuals of species 2 on their interactions with species 1 (b2, a2).  

The population persistence niche 

  

It is difficult to analyze the persistence niche because this requires one to 

take into account the full gamut of nonlinear interactions and feedbacks a species 330 

has on itself, mediated through other species. Using phase portraits, we do find that 

some of the interactions we consider do not allow species 1’s persistence niche to 

extend past its establishment niche. For other interaction types, the population 

persistence niche can extend past the establishment niche, at least when special 

conditions are met. When the persistence niche extends past the establishment 335 

niche changing interaction type typically changes the range of environments where 

species can persist.  

To determine where species 1 can persist it is helpful to characterize the zero 

net growth isoclines (conditions where dNi/dt = 0), for each species (which we 

denote by I1, I2 respectively). Isoclines for species 1 can take on four distinct shapes 340 

(Figure 2 a-d; See Appendix 1 for details). When the interaction has no effect on 

species 1, I1 is a vertical line (Figure 2 a). When species 1 benefits from the 

interaction, I1 starts at N1 = g1/d1, then increases monotonically as N1 increases 

(Figure 2 b). When the interaction harms species 1, I1 can take on one of two shapes. 

When the following inequality is true: 345 



𝑒1𝑔1𝑞1(1 − 𝑎2𝑔1) ≤ 𝑑1 (6), 

I1 decreases monotonically as N1 increases (Figure 2 c). When inequality 6 is false 

(Figure 2 d), I1 increases, reaches a local maximum (Arditi and Ginzburg 1989; 

Huisman and De Boer 1997). See appendix S1 for the derivation of Equation 6. I2 can 

take on similar shapes to I1, but with the N1 and N2 axes switched. 350 

In the case that the focal species benefits from the interaction (c1>0, q1=0) its 

persistence niche can only extend past its establishment niche when the two species 

are mutualists. This occurs when high densities of species 1 benefit species 2, which 

in turn benefits species 1 enough to allow species 1 to persist when otherwise it 

would disappear (Figure 3 a). A familiar example of this phenomenon would be an 355 

obligate pollination mutualism such as that between a yucca and its yucca moth 

pollinators (Pellmyr 2003). Yuccas cannot establish in the absence of yucca moths 

and only persist if yucca moths are also present, and in sufficient numbers. When 

species 2 is a commensal (b) or prey (a), in the above model, high densities of 

species 1 cannot feedback to increase the density of species 2 (in the former case, 360 

because by definition species 2 has no effect on species 1, and in the latter case, 

because predators typically depress the abundance of their prey, and so increases in 

predator numbers should indirectly provide a negative rather than positive 

feedback on predator growth). As a result, the environment is no more favorable to 

species 1 (as mediated through species 2) when it is at high densities, than it is 365 

when species 1 is at low density. 



The observations in the previous paragraph can be demonstrated with a 

phase portrait. When species 1 benefits from species 2, the establishment niche can 

only extend past the persistence niche when the phase portrait has three 

characteristics. First, since the location must be unsuitable for species 1 in the 370 

absence of species 2, I1 must not have a N1 intercept when N1 > 0. Second, since 

species 1 cannot increase in numbers when rare, I1 must be above I2 on the N2 axis 

(See Appendix 2 for a full explanation). Third, there must be an equilibrium where 

both N1 and N2 > 0, this implies that I1 and I2 cross in the positive quadrant of the 

phase portrait. We can meet these criteria when both species are mutualists (Figure 375 

3 a). We cannot meet these criteria when species 2 is a prey species or a 

commensalist since, in these cases, I1 must be above I2 at the N2 axis and the 

isoclines move apart to the right of the N2 axis (Figure 3 b,c). 

When the focal species is harmed by biotic interactions (c1=0, q1>0), our 

model predicts several cases where the establishment niche extends past the 380 

persistence niche. When I1 reaches a local maximum, species 1 can persist at high 

densities even if it establish when species 2 is a predator, an amensalist, or a 

competitor (Figure 3 d, e, f). Oro et al. (2006) provide a concrete example of a 

system where this could occur in a predator-prey system. Nesting colonies of 

Audouins gulls are subject to predation by the larger yellow legged gull. When a 385 

colony has a low density of Audouin’s gulls, this species is subject to severe 

predation. When a colony has a higher density of Andouin’s gulls, this species is 

better able to resist predation and so it will have a higher fitness. 



When species 1 is harmed by species 2 and I1 is strictly decreasing (Figure 2 

c), the persistence niche can only extend past the establishment niche when species 390 

1 and 2 compete. This occurs when high densities of species 1 depress the density of 

species 2 sufficiently to allow species 1 to persist. In other words, species 1 

indirectly benefits itself, by reducing the numbers of its competitor. In this case I2 

starts above I1 at the N2 axis, and both isoclines may converge as N1 increases 

(Figure 3 i). By contrast, when species 2 is an amensalist or a predator, I2 starts 395 

above I1 at the N2 axis but the isoclines do not converge as N1 increases. As a result, 

there is no equilibrium with species 1 present (Figure 3 g, h). 

The observations we have made about the persistence niche when species 1 

is harmed can be demonstrated using phase portraits. When species 1 is harmed by 

the interaction, the population persistence niche of species 1 will only extend past 400 

its establishment niche when three criteria are met. First, the location must be 

suitable to species 1 in the absence of species 2. On a phase portrait, this implies 

that I1 crosses the N1 intercept when N1 > 0. Second, species 1 must be unable to 

increase in numbers when rare. This is true when I1 is below I2 at the N2 axis (see 

Appendix 1 for an explanation). Third, there must be at least one positive 405 

equilibrium; this implies that I1 and I2 cross in the positive quadrant. For some 

phase portraits this positive equilibrium is unstable, while the equilibrium at (𝑁̂1,0) 

is stable. These conditions can be met when I1 has a local maximum when species 2 

is an amensalist, predator or competitor (Figure 3 d, e, f). When I1 decreases 

monotonically, they can only be met when species 2 is a competitor (Figure 3 i). 410 

Changing between predation, amensalism and competition typically changes 



whether I2 is increasing, flat or decreasing (Figure 3 d, e, f). This changes the 

conditions under which the two isoclines intersect, changing the conditions where 

the focal species can persist.  

The stress gradient hypothesis and range limits 415 

 

The analyses we present helps to clarify which ecological mechanisms shape 

range limits across environmental gradients. Consider the stress gradient 

hypothesis which asserts that facilitation (mutualistic interactions) are stronger in 

stressful environments while competitive interactions are stronger in benign 420 

environments (Callaway et al. 2002). As a result, stress gradients are believed to 

produce range limits in benign environments  (Louthan et al. 2015), but it isn’t clear 

if it can produce other types of range limits.  

To analyze this, we present a graphical analysis of where a focal species can 

establish, when stress depresses the density independent growth rate of the focal 425 

species (g1; solid line Figure 4 a) and changes interactions from harmful to 

beneficial (dotted line Figure 4 b). A stress gradient can produce range limits in 

benign environments (Figure 4 c). However, it can produce many other types of 

range limits, including range limits in harsh environments Figure 4 d. Expansion of a 

species’ range limit into harsh environments Figure 4 e or a “hole” in a species’ 430 

distribution, with the species relying on beneficial interactions to survive in 

stressful environments.  



The conditions under which a focal species can establish are even more 

complex when we consider the details of the Beddington DeAngelis model we have 

analyzed. Figure 5 considers a relatively simple scenario where the equilibrium 435 

density of the non-focal species (𝑁̂2) decreases with x. This detail is enough to make 

the impact of the non-focal species on the focal species (𝑓1(𝑁1 → 0, 𝑁̂2)) curve 

substantially (Figure 5 a). In the portion of x where species 2 is harmful, much of 

this curvature arises because the impact of the non-focal species saturates when 𝑁̂2 

is large. In the portion of the environmental gradient where the non-focal 440 

species is beneficial, its impact switches from highly beneficial to negligible. 

This is the result of the joint influence of 2 processes. The non-focal species 

is becoming more beneficial, while the density of the non-focal species is 𝑁̂2 

is declining towards 0. 

Because the impact of the non-focal species curves along the environmental 445 

gradient, there can be many boundaries of the focal species’ establishment niche. 

Recall that each boundary corresponds to an intersection of g1 and 𝑓1(𝑁1 → 0, 𝑁̂2) 

Figure 5 b. In some cases, the boundaries look like those described above. 

For example, in Figure 5 c the focal species can only establish in the most 

benign environments (small values of x; grey background). Other potential 450 

range limits are much more complex. In Figure 5 d competition keeps the 

non-focal species from establishing in the middle of the environmental 

gradient, though the species can establish at larger values of x or at smaller 

values of x. The same gap in the distribution appears in Figure 5 e, but in 



addition the distribution of the focal species expands into harsher 455 

environments because of facilitation from the non-focal species. In Figure 5 f 

the focal species cannot establish anywhere in its fundamental niche though 

it can establish in more stressful environments because of facilitation. The 

ultimate distribution of the focal species can of course be even more 

complex because it may be able to persist in environments where it cannot 460 

establish. Such areas are denoted by the dashed lines in Figures 5 c-f. 

Discussion 

 

Ecologists seek to anticipate when biotic interactions affect the presence of 

individual species (Pigot and Tobias 2013; Sexton et al. 2009; Wisz et al. 2013). 465 

When they do so they confront a tremendous diversity and complexity of biotic 

interactions. This in turn makes it difficult to understand which interactions will 

most influence species’ range margins and why. Our key finding is that seemingly 

disparate biotic interactions often have comparable effects on species’ 

establishment niches; by implication, they may have similar effects on species’ range 470 

margins. This emphasizes that information on a diverse range of interaction types 

could improve predictions of species’ range margins and highlights the information 

needed to make those predictions. 

Our most salient result is the value in asking a single, simplified question: can 

a species increase in numbers when it is rare and the rest of the community is at 475 



equilibrium? If the focal species can increase when rare, the environment in 

question is a part of the establishment niche and we should expect the species to be 

present. If it cannot increase in numbers when rare we should either expect it to be 

absent, or expect its presence to be contingent on initial conditions (and thus be 

sensitive to history), because of the presence of positive feedbacks of a species upon 480 

itself. This question is particularly valuable because well studied trends in nature 

such as the stress gradient hypothesis (Callaway et al. 2002; Louthan et al. 2015) 

can produce very different range limits (Figure 4). Though community ecologists 

have long recognized the value in investigating the ability of species to increase in 

density when rare, particularly in the context of coexistence among competing 485 

species (Adler et al. 2007; Chesson 2000b; MacArthur and Levins 1964), this insight 

is absent from many contemporary reviews of species’ interactions and species’ 

range margins (Araújo and Rozenfeld 2014; Holt 2009; Sexton et al. 2009; Wisz et al. 

2013).  

Our results suggest similarities in how biotic interactions shape species’ 490 

range margins. The focal species’ ability to increase in numbers when rare is 

comparably affected when it interacts with a mutualist, commensal or prey. 

Similarly, the focal species’ ability to increase in numbers when rare is comparably 

affected when it interacts with a predator, amensalist or competitor; all make life 

worse for the focal species. We can also use this approach when the type of 495 

interaction changes as we move along an ecological gradient. A focal species may 

have a range limit at the edge of its establishment niche even if the species it is 

interacting with switches from being a competitor to an amensalist as we move 



across other sites in its distribution. We expect these results to generalize to other 

models of biotic interactions because invasion criteria generalize across many 500 

models (Chesson 2000b; Holt 2009). We have only studied pairwise species 

interactions, but invasion criteria can also be used to determine where a species is 

expected to be present (regardless of initial conditions) in a community consisting 

of multiple species. As such, invasion analyses like those we present can be used to 

identify a species’ establishment niche in multispecies communities. See Chesson 505 

(2000) for a discussion of when the presence of a species in a community depends 

primarily on its ability to invade when rare.  

Generalizing our observations regarding the persistence niche would be 

more difficult. Our analytic results provide some insight into why species 1’s 

persistence niche is identical to its establishment niche when species 2 is prey or a 510 

commensalist. When species 2 is a predator or amensalist, the persistence niche can 

only extend past the establishment niche under somewhat restrictive conditions, 

namely that the isocline for species 1 increases then decreases (implying that 

inequality 6 is false). There are empirical examples of a persistence niche emerging 

from mutualism (Dickie et al. 2010; Parker 2001), competition (Hirota et al. 2011; 515 

Staver and Levin 2012) and predator-prey interactions (Gascoigne and Lipcius 

2004), so this is certainly plausible, but maybe it is an exception rather than the 

norm for range limits. This strikes us as a significant question for future studies. To 

study the persistence niche of a focal species in a multispecies community, it makes 

more sense to search for a (locally) stable equilibrium where the focal species is 520 

present. This approach could be particularly important when competition is 



intransitive (Soliveres et al. 2015). In this case there are conditions where a 

deterministic model would predict that different species will in turn cyclically 

decrease in density to the point where they can go extinct (May and Leonard 1975). 

As a result, a focal species may ultimately be present, or absent, depending on initial 525 

conditions and stochastic effects. However, to understand these cases, it may be 

necessary to study the effects of stochasticity on population persistence, an 

important topic beyond the scope of the current manuscript. 

We believe that there is much to learn about the importance of the 

persistence niche at large spatial scales. On the one hand phenomena that are 530 

crucial for biogeography such as dispersal often limit the impact of a species’ 

persistence niche on its range margin (Hutson et al. 1985; Shurin et al. 2004); if 

during the history of a given location, all species initially are rare, being drawn from 

a sparse rain of colonists from a broader landscape, there is little scope for positive 

density dependence and impacts on the local environment to exert an influence. 535 

However, species might be able to persist in changed circumstances, where they 

established in different conditions, and became common enough to lead to positive 

density-dependent feedbacks. There are tantalizing examples in the literature of 

large-scale influences of species’ persistence niches on current distributions. For 

example Hirota et al. (2011) and Staver et al. (2011) show that there are large 540 

portions of several continents that can be either forest or grassland depending on 

the history of a particular site. Such sites may be a part of the persistence niche of 

grassland-associated species and forest-associated species, even though the 

presence of one species frequently excludes the others. Our work shows that the 



persistence niche has a limited effect on species’ range margins across a swath of 545 

well-studied models, but a rigorous assessment of its importance will require a 

careful integration of empirical systems with theoretical studies. 

Our goal has been to understand how biotic interactions and the abiotic 

environment affect species’ range margins. To accomplish this, we used a fairly 

general model of biotic interactions, and we assumed that biotic interactions happen 550 

at a small scale relative to the environmental gradient of interest (Eqations 4a and 

4b). We have represented the effects of the environment by studying the growth 

rate when rare of species in the absence of biotic interactions, the carrying 

capacities of species, and by recognizing that the consequences of species 

interactions frequently depend on indirect influences of the environment. This is, at 555 

most, a starting point because it provides a simplified representation of space, a 

representation that can miss outcomes that emerge from more realistic models 

(Dieckmann et al. 2000).  In particular, we have simplified the effects of dispersal 

among locations, though our results provide insights into dispersal’s effects. One of 

the best studied mechanisms of dispersal is passive diffusion (i.e. a random walk). 560 

This can be modeled by adding a diffusion term to our dynamical models. So long as 

the region under consideration can support some individuals of each species, and so 

long as the environmental variables change smoothly as we move from one location 

to another the analyses we present should hold approximately when dispersal is 

weak (Cosner 2005). This is because the equilibrium solution of our model typically 565 

approaches the solution with no dispersal. Weak dispersal would imply that each 

species has a small but positive density throughout our study region; in practice 



though, it would rarely be detected past the range limits we predict. Stronger 

dispersal could result in the presence of the species past the range limits we predict; 

sufficiently strong dispersal might change the predictions of our model, say by 570 

eliminating a species from across the study region. Our results would also hold if 

individuals of each species dispersed to maximize their fitness, so that the 

abundance of individuals were governed by an ideal free distribution (Cosner and 

Winkler 2014; Kimbrell and Holt 2005). A full synthesis of models that represent 

space more realistically is a much larger task, particularly because existing models 575 

tend to focus on a few interactions, notably predation and competition (Bever et al. 

2010; Bolker and Pacala 1999; Chesson et al. 2005; Dieckmann 2000; Snyder and 

Chesson 2004). Different interactions can operate across different spatial scales, and 

integrating these into single population models can be.  

There are tremendous challenges in identifying the effects of species’ 580 

interactions on species’ range margins. Our work indicates that a diverse range of 

biotic interactions can have a major effect on species’ range margins and that these 

effects can be predicted by answering a few basic questions, questions that 

transcend traditional classifications of interaction types (Figure 1). These results 

indicate a need to better study some interactions, notably mutualism, 585 

commensalism and amensalism, and the need to study how climate and biotic 

interactions combine to shape species’ range margins.   

 

 



Fig. 1 Compass of interaction types where symbols in parentheses indicate the 590 

interaction among the two species. The first symbol indicates the effect of the 

interaction on species 1, the second indicates the effect of the interaction on species 

2. A “+” indicates that a given species benefits from the interaction, while a “-” 

indicates that the species is harmed and a “0” indicates no effect of the interaction 

on a species. So, for example, (+ -) indicates an interaction from which species 1 595 

benefits and species 2 is harmed (i.e. predation). 

Fig. 2 An illustration of the four qualitatively different isoclines produced by our 

model for species 1. (a) The isocline for interactions with no effect on species 1 i.e. 

Amensalism (0 -), or commensalism (0 +). (b) The isocline for interactions that 

benefit species 1. (c) The isocline for interactions that inflict limited harm on species 600 

D) The isocline with a local maximum from interactions that harm species 1.  

 

Fig. 3 Phase portraits where species 1 cannot increase in numbers when rare. These 

illustrations include I1 (light green), I2 (dark brown), the change in population 

density (grey arrows), stable equilibria where species 1 can persist (black circles) 605 

and unstable equilibria (open circles). The top row illustrates interactions that 

benefit species 1 including mutualism (a), commensalism (b), and predation (c; 

species 1 is predator). Species 1 can persist when both species are mutualists; 

species 1 will not persist in the commensalism or predation cases. The center row 

illustrates interactions that harm species 1 when I1 increases, reaches a local 610 

maximum then decreases. It is possible for species 1 to persist when species 2 is a 



predator (d), an amensalist (e) or a competitor (f). The bottom row illustrates 

interactions that harm species 1 when I1 increases monotonically. Species 1 cannot 

persist when species 2 is a predator (g) or an amensalist (h). It is possible for 

species 1 to persist in the competition case (i). 615 

 

 

Fig. 4 An analysis of range limits that can emerge from the stress gradient 

hypothesis. Panel (a) represents a gradient where environments to the left are 

benign and environments to the right are progressively more stressful. As a result, 620 

the density independent growth rate of the focal species declines as x increases 

(solid line). The grey portion of this panel represents the species’ establishment 

niche in the absence of biotic interactions. The stress gradient hypothesis asserts 

that as we move from benign to stressful environments, the effects of biotic 

interactions switch from harmful to beneficial (Panel b, dashed line). This 625 

mechanism can affect a species’ distribution by altering its establishment niche 

(EN). This happens when biotic interactions switch equation 3 from negative to 

positive or vice versa. Graphically this occurs when the line representing density 

independent growth crosses the line representing the effects of biotic interactions. 

Depending on where exactly biotic interactions switch from harmful to beneficial, 630 

they can remove stressful environments from the EN (c), remove benign 

environments from the EN (d), expand the species’ EN (e) or expand a species’ 

distribution past some gap. Under some parameter values and some initial 



conditions, the species can persist in portions of the environmental gradient 

indicated with a horizontal “}”. 635 

 

Fig. 5: When competition and mutualism are mediated by Beddington DeAngelis 

functional responses, stress gradients can lead to complex range margins. a) This is 

easiest to study by considering when the focal species can establish. Even assuming 

the density of species 2 changes linearly with x the impact of species 2 curves 640 

(dashed line; 𝑓1(𝑁1 → 0, 𝑁̂2)). As a result, 𝑓1(𝑁1 → 0, 𝑁̂2) may cross g1 (black 

line) several times b). Each of these crossings represents a boundary of the 

establishment niche of the focal species. Panels c-f shows how this can produce 

dramatic differences in environments where the focal species can establish (grey 

shading), relative to the boundary of its fundamental niche (dark grey line). The 645 

black solid line to denotes the equilibrium abundance of the focal species when it 

can establish. The black dashed line represents the equilibrium abundance of the 

focal species when initial conditions are favorable to it. These environments are in 

the focal species’ persistence niche. The only difference between the panels c-f is 

how g1 changes with x. c) g1=-4x+2000, d) g1=-3.6x+2000, e) g1=-2.7x+2000, f) g1=-650 

9x+900. To model the switch from competition to mutualism we assume that for 

small x, c1=-0.01x+3, until the point where c1=0. Past this point we assume that c1=0, 

but q1=0.01x-3. We used a similar procedure to model the switch from competition 

to facilitation for species 2. In all simulations, g2=-1.5x+1000, d1=d2=0.1, b2=0.0005, 

all other parameter values were set to 0.001.  655 



Table 1: List of symbols used in this paper. 

Symbol Definition 

bj Describes the saturation of species i’s ability to obtain a benefit 

from species j when the density of species j is high.+ 

ci The maximum benefit species i can obtain from interactions with 

species j 

ei Describes the saturation of the harm species j inflicts on species i 

di Density dependent mortality of species i 

fi The effects of species i and j on the per capita growth rate of species 

i 

aj Describes the saturation in the harm species j inflicted on species i 

at high densities of species j 

gi Density independent growth of species i 

hj Describes the saturation in the benefit species i can obtain from 

species j at high densities of species j 

Ii Zero net growth isoclines for species i 

Ni The density of species i at a location along the environmental 

gradient 

𝑁̂𝑖 Equilibrium density of species i in the absence species j 

qi The maximum harm that species i can receive from 

x  A two dimensional vector representing spatial coordinates (for 

example latitude, longitude) 
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Online Appendix 1: phase portraits

analysis of isoclines

The isocline of species 1 (I1), can be found by setting equation 4a equal to zero, after

setting irrelevant parameters to zero. I1 can take on several shapes, as a result it

is useful to distinguish shapes that arize when species 2 has no e↵ect on species 1,5

species 2 harms species 1 and species 2 benefits species 1.

Neutral interactions

When species 2 has no e↵ect on species 1 the isocline for species 1 can be found by

setting q1 = c1 = 0 in equation 4a, giving an isocline of:

N1 =
g1

d1
(S.1)

This is as a vertical line figure 2 A.10

Harmful interactions

So long as we restrict ourselves to positive population densities (N1, N2 > 0), I1 can

have two shapes when species 1 is harmed by species 2. I1 will either be a strictly

1



decreasing function figure 2 C or a function that increases initially, reaches a local

maximum then decreases figure 2 D. In this subsection we explain how these two15

shapes emerge and how to distinguish them. To find I1 take equation 4a, set c1 = 0

then solve for dN1/dt = 0 giving:

I1 : N2 = �(g1 � d1N1)(e1q1N1 + 1)

q1(a2(g1 � d1N1)� 1)
(S.2)

To determine the shape of I1 predicted by S.2, we first note that this function is

a ratio of two polynomials. This type of function known as a rational function can

be plotted using information on its asymptotes, and intercepts (Forbes et al., 1989).20

To find the N2 intercept set N1 = 0. equation S.2 reduces to:

N

intercept
2 = � g1

q1(a2g1 � 1)
. (S.3)

Equation S.2 includes two N1 intercepts, which can be found by identifying values

which make the numerator of equation S.2 equal to 0. The first intercept can be found

by solving g1 � d1N1 giving:

N

intercept1
1 =

g1

d1
(S.4)

in this section we are concerned with cases where harm inflicted by species 225

eliminates species 1. As a result we need only consider cases where N

intercept1
1 > 0

2



(i.e. species 1 could be present in the absence of species 2).

The second intercept can be found by solving e1q1N1 + 1 = 0 giving:

N

intercept2
1 =

�1

e1q1
(S.5)

We have already assumed that e1, q1 > 0, as a result N intercept2
1 is always less than

zero.30

Equation S.2 has a single, vertical asymptote when species 1 is harmed by species

2 (i.e. when q1 > 0). This can be found by finding values where the denominator of

S.2 is equal to 0. By re-arranging we obtain:

V erticalAsymptote : N1 =
a2g1 � 1

d1a2
(S.6)

To understand the shapes of I1, it is important to note that the vertical asymptote

always has an opposite sign as the N

intercept
2 . This is because the vertical asymptote35

is the same sign as a2g1 � 1 (we have assumed that d1 and a2 are never negative),

while N

intercept
2 will be the opposite sign as a2g1 � 1 (q1, a2 and g1 are presumed to

be non-negative).

Next, we check for diagonal asymptotes (Forbes et al., 1989). To do this we first

expand the numerator and denominator of equation S.2 giving:40

3



I1 : N2 = �

largest powerz }| {
�d1e1q1N

2
1 +g1e1q1N1 � d1N1 + g1

�q1a2d1N1| {z }
largest power

+q1a2g1 � q1
(S.7)

In the numerator the largest power of N1 is N

2
1 while in the denominator the

largest power of N1 is N1
1 . Such a rational function has a diagonal asymptote (Forbes

et al., 1989). The slope of this asymptote can be found by comparing the leading

coe�cients associated with the largest power in the numerator and denominator:

N2 = ��d1e1q1N
2
1

�q1a2d1N1
(S.8)

simplifying this gives:45

N2 = �e1N1

a2
, (S.9)

equation S.9 indicates that the slope of the diagonal asymptote is �e1/a2. Since

e1, a2 � 0, the slope is never positive.

As we move from small values of N1 to larger values, the intercepts always occur

in the same order because N intercept2
1 < 0, N intercept

2 occurs at 0, while N intercept1
1 > 0.

This observation is illustrated in figure S.1 where N

intercept2
1 is a triangle, N intercept

250

is a square and N

intercept1
1 is a circle.

4
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Figure S.1: Ilustrations of three qualitatively di↵erent shapes possible for I1 (green),
including the vertical asymptote (blue dotted line), N intercept2

1 (triangle), N intercept
2

(square) and N

intercept1
1 (circle). The positive quadrants of each plot (i.e. the portions

where N1, N2 > 0) are white. Portions in grey represent other quadrants, and hence
population densities we would not observe in nature.

We can distinguish three qualitatively di↵erent shapes for I1 based on the position

of the vertical asymptote. In case A, the asymptote occurs at a lower N1 value

than any of the intercepts (figure S.1 A). Since the vertical asymptote is less than

0 (N1 < 0), the N

intercept
2 is positive (N2 > 0). So, starting slightly the right of55

the vertical asymptote, I1 starts at negative infinity, moves through N

intercept2
1 , then

N

intercept
2 , down through N

intercept1
1 and approaches its diagonal asymptote as N1

becomes large. In case B, the asymptote occurs between N

intercept2
1 and N

intercept
2

(figure S.1 B). Here again, N intercept
2 > 0, because the vertical asymptote is less than

0. To the right of the vertical asymptote I1 begins at positive infinity, then moves60

down through N

intercept
2 , N intercept1

1 then approaches its diagonal asymptote as N1

gets large. In case C, the vertical asymptote occurs between N

intercept
2 and N

intercept1
1 .

Here N

intercept
2 is less than zero because the vertical asymptote is greater than zero.

As a result, starting from to the right of the vertical asymptote, I1 decreases, crosses

N

intercept1
1 , then approaches the diagonal asymptote as N1 gets large.65
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In each of the cases listed above, the portion of I1 to the left of the vertical

asymptote has no direct e↵ect on the population dynamics. In cases A and B, this

branch only occurs for values of N1 < 0. In case C this branch never reaches feasible

population densities where N1, N2 > 0. Starting at N1 = �1, the branch is close

to its diagonal asymptote, moves through N

intercept2
1 (at this point N1 < 0), I1 then70

moves through N

intercept
2 (at this point N2 < 0), I1 then approaches negative infinity

as it nears the vertical asymptote.

Does I1 have local maxima?

In the previous section we described the behavior of I1 in coarse terms. We did not

determine if it has local turning points (maxima or minima), which could lead to75

an isocline with a local maximum, which in turn alters population dynamics. To

investigate this later question we consider the derivative of I1 (i.e. equation S.2)

with respect to N1:

dI1

dN1
= �e1d

2
1a2N

2
1 q1 � 2e1d1a2g1N1q1 + 2e1d1N1q1 + e1a2g

2
1q1 � e1g1q1 + d1

q1(�d1a2N1 + a2g1 � 1)2
.

(S.10)

For there to be a local maximum somewhere on I1,
dI1
dN1

must be equal to zero.

dI1
dN1

= 0 occurs when the numerator of equation S.12 is equal to zero. The numerator80

of equation S.12 can be expressed as a quadratic equation (i.e. it can be expressed

6



as ↵N2
1 + �BN1+, where ↵, �, and  are constants). Quadratic equations have no

more than two solutions. As a result I1 has no more than two turning points.

We can break I1 into a branch to the left to its asymptote and a branch to the

right of its asymptote. It is impossible for one such branch to have two turning points.85

If one branch did, then there would need to be an inflection point between the two

turning points. This would imply that there was a location where the d

2
I1/d

2
N1.

However the second derivative of I1 is:

d

2
I1

d

2
N1

= �2d1(e1q1(1� a1g1) + d1a2)

q1(a2(g1 � d1N1)� 1)3
, (S.11)

and since no value of N1 makes the numerator equal to zero, there are no inflection

points.90

I1 can have a local maximum in the positive quadrant in the case illustrated

in figure S.1 A. In this case, the right branch of I1 starts at �1 reaches a single

minimum then decreases as it approaches its diagonal asymptote (figure S.2 A). To

determine if this maximum occurs in the positive quadrant, determine if dI1/dN1 > 0

when I1 crosses into this quadrant by substituting N1 = 0 into equation S.12, giving:95

dI1

dN1
= �e1a2g

2
1q1 � e1g1q1 + d1

q1(a2g1 � 1)2
. (S.12)

This expression will be positive when e1a2g
2
1q1 � e1g1q1 + d1, which can be re-

arranged to obtain:

7
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Figure S.2: The relationship between the shape of I1 (green solid line) in the positive
quadrant (white portions of the chart) and its derivative (the green dotted line) at
its N2 intercept (square). In A)

e1g1q1(1� a2g1) > d1 (S.13)

If inequality S.13 is true, I1 has a local maximum in the positive quadrant figure

S.2 B. If inequality S.13 is fase, I1 decreases monotonically in the positive quadrant

(figure S.2 A). Inequality S.13 is simply the reverse of inequality 6 in the main text.100

We can also use inequality S.13 to test for local maxima in the other two cases

illustrated in (figure S.1 B and C). In both cases, each branch of I1 is strictly de-

creasing (implying both that dI1/dt < 0 at N1 = 0 and that I1 has no local maxima).

We know that each branch is strictly decreasing because each branch starts at +1

and finishes at �1 (figure S.1 B and C). This is only possible if each branch has105

zero turning points. If a single branch had a single turning point, it could not go

8



from +1 to �1. We have already established that a single branch has no more

than one turning point.

If we ignore a2, inequality S.13 is easy to interpret, e1, q1 and g1 all increase

the left-hand side of this expression making an isocline with a local maximum more110

likely; high values of e1 indicate that the harm species 2 inflicts on species 1 saturates

when the density of species 1 is high. High values of g1 indicate a high density inde-

pendent growth rate for species 1; while high values of q1 indicate that species 2 can

dramatically harm species 1. High values of d1 indicate strong density dependence

for species 1, this makes an isocline with a local maximum less likely. High values of115

a2 indicate that the the harm species 2 inflicts on species 1 saturates at high densities

of species 2. Increasing a2 > 0 makes a isocline with a local maximum likely. When

a2 > 0, increasing g1 can make it either easier or harder to get a local maximum,

depending on the size of g1 versus g

2
1. Large values of g1 make e1g1q1(1 � a2g1)

negative, eliminating the maximum.120

Interactions that benefit species 1

When biotic interactions benefit species 1, the isocline for species 1 can be found

by taking equation 4a, setting q1 = 0 then solving for dN1/dt = 0 and re-arranging,

giving:

N2 = �(c1h2N1 + 1)(g1 � d1N1)

c1(b2(g1 � d1N1) + 1)
(S.14)

9



The N2 intercept of equation S.14 is:

I1(N1 = 0) : � g1

c1(b2g1 + 1)
. (S.15)

Equation S.14 has two N1 intercepts given by:125

N1 = � 1

c1h2
, (S.16)

which is always negative and:

N1 =
g1

d1
(S.17)

which is negative when species 1 cannot persist in the absence of species 2.

Equation S.14 approaches a vertical asymptote, so long as b2 > 0, d1 > 0. This

asymptote is given by:

N1 =
g1 + 1/b2

d1
, (S.18)

Note that this asymptote is equal to equation S.17 plus a positive constant. As130

such, the vertical asymptote is to the right of this intercept on a phase portrait.

Equation S.14 also has a slant asymptote with a slope of �h2/b2. This asymptote

10
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Figure S.3: Graphs of potential shapes for I1.

always has a negative slope.

For I1 to cross into the positive quadrant, the vertical asymptote must be to

right of both N1 intercepts (figure S.3 A). In this case the left most branch of I1135

starts at N2 = +1 decreases, crosses the left most N1 intercept, arrives at a turning

point, crosses the right most intercept and increases towards N2 = +1. This branch

of I1 can only reach the positive quadrant after crossing through the right most

asymptote. As a result I1 is increasing in the positive quadrant, or entirely absent

from this quadrant. The right branch of I1 does not reach the positive quadrant.140

It is mathematically possible for the vertical asymptote to occur between the

two N1 intercepts (figure S.3). In this case the left and right branches of I1 start

at N2 = +1 and decrease towards N2 = �1. For this scenario to occur, both N1

intercepts must be negative. Neither branch crosses into the positive quadrant. No

other shapes occur because the vertical asymptote must be to the right of at least145

one of the intercepts.
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Parameter values

Table S1. List of parameter values used in Figure 3 organized by panel.

A B C D E F G H I

g1 -9.50 -6.00 -9.50 5.00 5.00 5.00 5.00 5.00 4.00

g2 5.00 3.00 5.00 5.00 3.50 5.00 5.00 5.00 8.00

c1 2.00 2.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00

c2 0.00 10.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00

q1 0.00 0.00 0.00 5.00 5.00 5.00 5.00 5.00 2.00

q2 0.00 0.00 2.00 0.00 0.00 0.80 0.00 0.00 3.00

b1 0.20 0.15 0.20 0.20 0.20 0.20 0.20 0.20 0.20

b2 0.03 0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03

h2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

h1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

f1 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.01

f2 0.00 0.00 0.00 0.01 0.01 0.01 0.14 0.14 0.14

e1 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

e2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

d1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

d2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Online Appendix 2: the relationship between inva-150

sion and phase portraits

On a phase portrait, we can check if species 1 can increase in numhers when rare by

examining the N2 axis, which represents conditions where species 1 is rare enough to

be essentially absent. Along the N2 axis I2 = N̂2 (the equilibrium density of species

2 in the absence of species 1), while the point where I1 crosses the N2 axis is the155

boundary between densities of species 2 where species 1 increases in numbers when

rare dN1/dt > 0, and densities at which species 1 decreases in numbers when rare

dN1/dt < 0.

When species 1 benefits from species 2, a value of I1 above N̂2 indicates that

when species 1 is rare, the benefit it obtains from species 2 is too low for species 1160

to increase in numbers when rare. As a result species 1 cannot invade. A value of I1

below N̂2 indicates that species 1 could increase in numbers, even if species 2 were

less dense than N̂2. Thus, when species 1 benefits and I1 is above I2 at the N2 axis,

species 1 cannot invade. When I1 is below I2, species 1 can invade.

When species 1 is harmed by species 2, a value of I1 above I2 on the N2 axis165

indicates that when species 1 is rare, it could resist extinction even if it were harmed

by more individuals of species 2 than would be present at equilibrium (dN1/dt = 0 at

a point where N2 > N̂2). Conversely, a value of I1 below I2 on the N2 axis indicates

that when species 1 is rare it could not resist extinction even if it were harmed by

fewer individuals of species 2 than would be present at equilibrium (dN1/dt = 0 at a170
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point where N2 > N̂2). Thus, when species 1 is harmed by species 2 and I1 is above

I2 at the N2 axis, species 1 can invade. When I1 is below I2, species 1 cannot invade.
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