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Absorbing boundary conditions in material point method adopting perfectly
matched layer theory

Jun Kurimaa, Bodhinanda Chandrab,c,∗, Kenichi Sogab

aInstitute of Industrial Science, The University of Tokyo, Japan
bDepartment of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, USA

cDepartment of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA

Abstract

This study focuses on solving the numerical challenges of imposing absorbing boundary conditions for dy-
namic simulations in the material point method (MPM). To attenuate elastic waves leaving the computational
domain, the current work integrates the Perfectly Matched Layer (PML) theory into the implicit MPM frame-
work. The proposed approach introduces absorbing particles surrounding the computational domain that
efficiently absorb outgoing waves and reduce reflections, allowing for accurate modeling of wave propagation
and its further impact on geotechnical slope stability analysis. The study also includes several benchmark
tests to validate the effectiveness of the proposed method, such as several types of impulse loading and sym-
metric and asymmetric base shaking. The conducted numerical tests also demonstrate the ability to handle
large deformation problems, including the failure of elasto-plastic soils under gravity and dynamic excita-
tions. The findings extend the capability of MPM in simulating continuous analysis of earthquake-induced
landslides, from shaking to failure.

Keywords: Material point method, Perfectly matched layer, Absorbing boundary, Dynamic analysis, Slope
stability, Earthquake-induced landslides

1. Introduction

Seismic activities have long posed significant challenges in geotechnical engineering, particularly due to
their potential to trigger landslides. Notably, the 2008 Sichuan earthquake in China and the 2015 Gorkha
earthquake in Nepal have demonstrated the consequences of seismic-induced landslides, leading to substantial
human, social, and economic losses [1–4]. These events underscore the need for advanced analysis methods
capable of accurately predicting the impacts of seismic activities on slope stability.

Traditionally, the assessment of earthquake-induced landslides has relied on classical analysis methods [5],
including the Limit Equilibrium Method (LEM) [6–8], Newmark’s sliding block analysis [9–12], and the Finite
Element Method (FEM) [13,14]. While these methodologies have significantly contributed to our understanding
and assessment capabilities, they each have inherent limitations. LEM is a static approach used to assess
the stability of slopes and ground masses. It cannot directly handle dynamic responses, such as those caused
by earthquakes. LEM assumes potential failure mechanisms along discontinuous surfaces (slip surfaces) and
analyses their equilibrium conditions. As a result, it does not capture the detailed processes of continuous
deformation and failure within the soil mass [5]. Meanwhile, Newmark’s method approximates the slope
material as rigid bodies, hence, neglecting internal deformation, stress distribution, as well as its elasto-
plastic behavior. This can lead to inaccurate predictions, especially in scenarios where material softens upon
shearing [15–17]. On the other hand, it is widely recognized that FEM faces numerical challenges in large-
deformation regimes, such as mesh entanglements [18–20], which limit its effectiveness in dealing with the
post-failure mechanism observed in many geotechnical engineering scenarios. Several mitigation strategies
such as the Arbitrary Lagrangian-Eulerian (ALE) [21,22], the Coupled Euler-Lagrangian (CEL) [23,24], and
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the Smoothed Finite Element Method (SFEM) [25–27] have been proposed in the past to alleviate the mesh
entanglement issues. However, other issues emerged within these methods including mass conservation,
numerical diffusion, and proper tracking of the evolution of history-dependent variables [28].

The mesh-free methods provide other alternatives to handle the limitations of traditional methods, such as
the Discontinuous Deformation Analysis (DDA) [29,30], for the analysis of rock structures, and the Smoothed
Particle Hydrodynamics (SPH) for the analysis of continuum materials. These approaches offer flexibility in
modeling large deformations and complex material behaviors without any mesh handling. In the past few
years, many research works have been developed to handle issues related to mesh-free methods to impose
boundary conditions (BCs). For geomechanical analysis, the boundary conditions proposed by Bui et al. [31]

are widely considered due to their effectiveness in handling inhomogeneous displacement boundaries. How-
ever, challenges persist in addressing boundary conditions for dynamic settings. While some strategies for
this aspect have been proposed for fluid wave applications in the past (e.g. [32,33]), boundary formulations
for seismic analysis are still limited. Recent efforts, such as introducing dashpot elements to dissipate stress
waves at the boundary, offer some progress [34].

The material point method (MPM) has been proposed by Sulsky et al. [35] and developed further as a
method capable of handling large-deformation solid mechanics problems. The method utilizes a hybrid ap-
proach that combines the advantages of both mesh-based and mesh-free methods. Over the past two decades,
the MPM has garnered significant attention to model many challenges in geomechanics [28,36–41], especially
in scenarios like landslides and other mass movement events. One of the major difficulties encountered in
MPM is simulating mass movement scenarios induced by earthquakes or other types of ground vibrations.
This is primarily because appropriate modeling of far-field boundary conditions is necessary to ensure that
waves traveling outward from the simulation domain do not get refracted back, and thus, should be properly
damped or absorbed. These types of boundary conditions prevent the energy generated by ground vibrations
from remaining within the simulation domain, thereby avoiding unrealistic accumulation that can lead to
excessive deformation [42].

The implementation of dynamic boundary conditions to prevent wave reflections within the simulation
domain is paramount. Typically, artificial boundaries based on rheological combinations of spring and dash-
pot (e.g. Lysmer and Kuhlemeyer [43]) are introduced primarily to mitigate reflections by imposing viscous
damping force on the boundary. The use of these boundary conditions in Lagrangian FEM and other mesh-
based methods is rather straightforward, as the material boundaries always conform with the Lagrangian
mesh and domain boundaries. However, a well-known challenge in MPM is that the material boundaries
are often incompatible with the domain and mesh boundaries [44], hence, the application of dynamic bound-
aries is not trivial, particularly when large shaking is involved. Many MPM studies in the past have used
some types of the aforementioned viscous boundaries, e.g. [45–51], even though it has been noted that viscous
boundaries alone will not be able to absorb reflected waves sufficiently [52,53]. Periodic boundaries are also
often employed in earthquake analysis, which has been employed for seismic analysis in MPM by Alsardi
and Yerro [54]. However, periodic boundaries present numerical limitations, including the restriction of using
spatially invariant input waves to the bottom boundary of the model, as well as their inapplicability for
geometrically asymmetric models, such as conditions with varying elevations or subsurface profiles.

Due to the aforementioned difficulties and limitations, many recent and prior studies have attempted
to integrate dynamic earthquake analysis using FEM or other mesh-based methods with transient large-
deformation analysis using MPM [55–57]. However, this approach raises two fundamental questions: (i) do
landslides occur after earthquake shaking has ceased or during the shaking? and (ii) when is the appropriate
condition to transition from the initial dynamic analysis to MPM, ensuring the accurate mapping of necessary
quantities? Naturally, landslides are triggered during the earthquake, making the concept of subsequent
analysis generally a simplification that divides continuous landslide-triggering phenomena into two phases.
As for the second question, it is challenging to establish a general rule. Some may argue that the transition
should occur when the initial method fails to converge, e.g. due to mesh entanglement. However, others
may contend that the numerical solution near the mesh-entanglement state is erroneous, suggesting that the
transition should take place earlier [56]. At the same time, faster transfer time may remove dynamic effects
towards material deformation, which is only modeled in the first analysis. A clear methodology defining
the most optimal time to transition from the initial analysis to the subsequent MPM analysis has yet to be
established.

Another alternative concept available in the literature is the absorbing boundary condition, which simu-
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lates waves reaching the boundary and then progressing into an external semi-infinite space. There are two
main classes of this method [58]: (i) one that modifies the boundary differential equations to eliminate re-
flected waves at artificial boundaries [59] and (ii) another that places an artificial body next to the boundary to
ensure rapid wave attenuation. Belonging to the second category, the Perfectly Matched Layers (PML) have
been developed as an efficient method for absorbing outgoing waves [60]. Initially introduced by Berenger [61]

for electromagnetic wave simulations, PML has since been adapted and extensively studied for various wave
equations, including those governing elastic wave behaviors, making it a preferred tool in seismic wave prop-
agation simulations [62–64]. Theoretically, PML absorbs waves at all incident angles and frequencies without
generating reflective waves using coordinate stretching in the frequency domain. Therefore, facilitating the
use of fixed boundaries. A recent review of PML development has been nicely summarized by Pled and
Desceliers [60].

Absorbing particles
Material points

PML domain

Elastic body

Damping

Earthquake loading

Surface input

Outgoing wave

Target domain

Time

L

L

A
cc

Figure 1: Illustration of MPM computational model for dynamic analysis using PML.

Our study aims to advance the integration of PML into the implicit displacement-based MPM framework
by introducing a set of absorbing particles. The proposed formulation was built upon the formulation pro-
posed by Chen et al. [65] as their formulation can be easily implemented within the time domain Galerkin
framework. As depicted schematically in Fig. 1, reflected waves are attenuated within the PML domain,
and fixed displacement boundary conditions can be enforced at the domain boundaries. Additionally, the
computational model can be asymmetric and the various types of input loads can be applied. The proposed
method also allows seamless integration of dynamic analysis with elasto-plastic analysis of materials under
large deformation conditions. The developed framework is then validated against various loading condi-
tions, including impulse loading, symmetric base shaking, and asymmetric base shaking, to demonstrate its
effectiveness and potential.

In this paper, we first present the governing equations and implementation details that introduce PML
into the MPM in Section 2. Then, Section 3 presents the conducted numerical tests to assess the stability
and validity of the proposed method. In Section 3.1, a numerical analysis of an elastic body with pulse-like
loading on the ground surface is analyzed, whereas in Section 3.2, an elasto-plastic symmetrical embankment is
modeled with input ground motions of various amplitudes. Furthermore, in Section 3.3, the time evolution and
post-failure deformation of an asymmetric slope are investigated and compared with existing numerical results
performed by other boundary treatments. Lastly, Section 4 concludes the study and provides suggestions for
future works.
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2. Perfectly-matched-layer (PML) boundary in implicit MPM

In this section, we introduce the PML element formulation proposed by Chen et al. [65] and its adoption to
implicit MPM. Before delving into the mathematical formulations, let us first establish some useful notations.
Here, we introduce three types of subscripts or superscripts: □p for material point or particle variables, □I or
other capital alphabet subscripts for nodal variables, and □t for time indices, where t = n and t = n+1 denote
current and future variables, respectively. We consider a few mathematical operators: □̇ and □̈ indicate the
first and second-order material time derivatives, □ ·□ and □ : □ indicate the single and double contractions
of tensor indices, and □⊗□ indicates the tensorial dyadic operator. The subscript j or k = {1, 2, 3} are often
used to represent the directional index associated with x, y, and z-coordinates. This paper does not employ
Einstein’s summation convention in expressions with repetitive indices.

2.1. Time-domain PML formulation

The three-dimensional elastic wave equation can be expressed as the following equation for each direction
j:

ρüj =
∂

∂xj

[
(λ+ 2G)

∂uj
∂xj

]
+

3∑
k=1
k ̸=j

{
∂

∂xj

[
λ
∂uk
∂xk

]
+

∂

∂xk

[
G

(
∂uk
∂xj

+
∂uj
∂xk

)]}
, (1)

where ρ is the mass density and λ and G are the Lame’s constants. In the above notation, uj is the
displacement vector component in the j-th direction. Performing Fourier transform to Eq. (1) yields the
following expressions:

ρ(iω)2ûj =
∂

∂xj

[
(λ+ 2G)

∂ûj
∂xj

]
+

3∑
k=1
k ̸=j

{
∂

∂xj

[
λ
∂ûk
∂xk

]
+

∂

∂xk

[
G

(
∂ûk
∂xj

+
∂ûj
∂xk

)]}
. (2)

Here, i and ω denote the imaginary number and the angular frequency, respectively, whereas ûj denotes the
Fourier-transformed displacement vector component.

In PML theory, the wave equation is transformed using the concept of complex coordinate stretching.
This transformation is described using a directional-dependent damping function Cj . The complex coordinate
stretching is expressed using Cj as follows:

x̃j = xj −
i

ω

∫ xj

xj0

Cj dxj (in the j-th direction) . (3)

We can also obtain the partial derivative of Eq. (3) as:

∂

∂x̃j
=

iω

iω + Cj

∂

∂xj
, (4)

and by replacing all the spatial terms and derivatives in Eq. (2) with Eqs. (3)-(4), and performing certain
mathematical manipulations, we can obtain the following expression written in the frequency domain:

ρûj =
1

(iω + Cj)2
∂

∂xj

[
(λ+ 2G)

∂ûj
∂xj

]
+

3∑
k=1
k ̸=j

{
1

(iω + Cj)(iω + Ck)

∂

∂xj

[
λ
∂ûk
∂xk

]

+
1

(iω + Cj)(iω + Ck)

∂

∂xk

[
G
∂ûk
∂xj

]
+

1

(iω + Ck)2
∂

∂xk

[
G
∂ûj
∂xk

]}
.

(5)

To simplify Eq. (5), following Chen et al. [65], it is assumed that

Cj = iωC ′
j , (6)
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and by substituting Eq. (6) to Eq. (5), we can rewrite it to:

ρ
(
iω + iωC ′

j

)2
ûj =

∂

∂xj

[
(λ+ 2G)

∂ûj
∂xj

]
+

3∑
k=1
k ̸=j

{(
1 + C ′

j

)( ∂

∂xj

[
λ
∂ûk
∂xk

]
+

∂

∂xk

[
G
∂ûk
∂xj

])
+
(
1 + C ′

j

)2 ∂

∂xk

[
G
∂ûj
∂xk

]}
.

(7)

Notice that, in the above expression, we consider that C ′
k = 0 for a fixed direction j.

Furthermore, we perform an inverse Fourier transform of Eq. (7) to obtain the following modified governing
equation in the time domain:

ρ
(
1 + C ′

j

)2
üj =

∂

∂xj

[
(λ+ 2G)

∂uj
∂xj

]
+

3∑
k=1
k ̸=j

{(
1 + C ′

j

)( ∂

∂xj

[
λ
∂uk
∂xk

]
+

∂

∂xk

[
G
∂uk
∂xj

])
+
(
1 + C ′

j

)2 ∂

∂xk

[
G
∂uj
∂xk

]}
.

(8)

It is worth emphasizing that the original elastic wave equation can be recovered by setting the damping
function above to zero, i.e. by setting C ′

j = 0, Eq. (8) will in fact be Eq. (1). It is also important to note that
the equation above is direction-dependent because of the direction variability of the damping function.

The damping function utilized in the current work is defined as follows [66,67]:

C ′
j = αj

(
|xj − xjb |

Lj

)β

= αj

(
dj
Lj

)β

, (9)

where αj denotes the maximum values of C ′
j at the outermost boundary of the absorbing region (also referred

to as PML domain in Fig. 1) with a predefined thickness, Lj . The coordinates xjb denote the location of
the inner boundary of this absorbing region, while the superscript β indicates the polynomial power. In
Eq. (9), we also define a positive distance function dj = |xj − xjb | with range of 0 ≤ dj ≤ Lj , such that
the damping function is zero at the inner boundary and the non-PML domain, and dj = αj at the outer
boundary. In the current work, dj is predefined at the beginning of the simulation and its value is fixed in
the entire simulations.

2.2. Weak formulation

By applying the standard Galerkin approximation to Eq. (8), the weak form of momentum balance can
be written in a residual form as:

Rj(u, δuj) =

∫
Ω

ρ
(
1 + C ′

j

)2
üjδujdV +

∫
Ω

(
∂

∂xj

[
(λ+ 2G)

∂uj
∂xj

])
δujdV

+

∫
Ω

3∑
k=1
k ̸=j

{(
1 + C ′

j

)( ∂

∂xj

[
λ
∂uk
∂xk

]
+

∂

∂xk

[
G
∂uk
∂xj

])
+
(
1 + C ′

j

)2 ∂

∂xk

[
G
∂uj
∂xk

]}
δujdV = 0 ,

(10)

where δuj denotes the arbitrary displacement test function in the direction j, while Ω denotes the computa-
tional domain. Omitting the traction term is for simplicity, Eq. (10) can be rewritten as:

Rj(u, δuj) =

∫
Ω

ρ
(
1 + C ′

j

)2
üjδujdV +

∫
Ω

(λ+ 2G)
∂uj
∂xj

∂δuj
∂xj

dV

+

∫
Ω

3∑
k=1
k ̸=j

(
1 + C ′

j

)(
λ
∂uk
∂xk

∂δuj
∂xj

+G
∂uk
∂xj

∂δuj
∂xk

)
dV

+

∫
Ω

3∑
k=1
k ̸=j

G
(
1 + C ′

j

)2 ∂uj
∂xk

∂δuj
∂xk

dV = 0 .

(11)
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In the current work, Eq. (11) for direction j = {1, 2, 3} is to be solved at the PML domain along with the
regular momentum balance in the non-PML domain given as:

R(u, δu) =

∫
Ω

ρü · δudV +

∫
Ω

σ : ∇δudV = 0 . (12)

Here, σ is the symmetric Cauchy’s stress computed from the considered constitutive model.

2.3. Spatial discretization

In MPM, the volume integral of arbitrary physical quantities Φ(x) in the object domain can be approxi-
mated using the position vector xp of particle and the particle’s volume Vp as follows [68,35]:∫

Ω

Φ(xn)dV ≈
np∑
p=1

Φ(xn
p )Vp . (13)

Meanwhile, the standard FE discretization can be employed to compute arbitrary physical quantities Φ(x),
along with their test functions, in each material point p. One can write:

Φ(xn
p ) =

nn∑
I=1

Φ(xn
I )NI(x

n
p ) , (14)

where NI(x
n
p ) denotes the nodal basis function which is evaluated at the position of material point xp. Here,

we simplify the notation of the basis function NI(x
n
p ) ≡ NIp for brevity of the formulation. In addition, we

defined np and nn as the number of particles and nodes considered in spatial integration and interpolation.

2.4. Mapping information from particle to grid and vice-versa

In the standard MPM methodology, the background nodes do not store any information as time steps
advance. History-dependent information including kinematic variables, stresses, and material parameters,
is stored in the material point. Therefore, it is necessary to transfer information from particles to the
background nodes at the start of each time step. In the implicit MPM formulation, the nodal mass, velocity,
and acceleration are initially computed as follows:

mn
I =

np∑
p=1

mpNIp , vn
I =

1

mn
I

np∑
p=1

mpv
n
pNIp , an

I =
1

mn
I

np∑
p=1

mpa
n
pNIp . (15)

In the current study, few modifications and additions are needed to map necessary information, partic-
ularly at the absorbing particle. First, the nodal mass needs to include the information of the damping
function:

mn
Ij =

np∑
p=1

(
1 + C ′

pj

)2
mpNIp , (16)

where the subscript p in C ′
pj represents the damping function defined for each absorbing particle. Notice

that, the nodal mass expressed above becomes a direction-dependent nodal vector mn
I instead of a scalar; its

directional component is denoted by the subscript j. Using this nodal mass, the nodal displacement, velocity,
and acceleration can be initially determined as follows for each direction j:

unIj =
1

mn
Ij

np∑
p=1

(
1 + C ′

pj

)2
mpu

n
pjNIp , (17a)

vnIj =
1

mn
Ij

np∑
p=1

(
1 + C ′

pj

)2
mpv

n
pjNIp , (17b)

anIj =
1

mn
Ij

np∑
p=1

(
1 + C ′

pj

)2
mpa

n
pjNIp . (17c)
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Notice that, in the original formulation of implicit MPM, the nodal displacements do not need to be initialized.
However, for some reasons discussed below, the nodal displacement field must also be mapped from particles to
nodes in the proposed formulation. Moreover, it is worth emphasizing that the particle summation performed
in Eqs. (16)-(17) needs to generate continuous nodal field variables, which can be done by setting Cpj = 0
for material points outside the PML domain.

At the end of each time step, when the solution to the discrete momentum balance is obtained, the
interpolation of kinematic information from the background nodes to the particles is necessary. Here, we
follow the modified FLIP update scheme [69] for implicit MPM as [70,71]:

un+1
p =

n∑
I=1

NIpu
n+1
I , (18)

an+1
p =

n∑
I=1

NIpa
n+1
I , (19)

vn+1
p = vn

p +
1

2
∆t
(
an
p + an+1

p

)
. (20)

2.5. Implicit displacement-based MPM implementation with PML

In the current work, displacement-based MPM with an implicit time integration scheme is considered,
where the previously discussed PML theory is implemented and discretized. Employing the Newmark-beta
method, the discrete form of Eq. (11) can be constructed, yielding linear systems of equations in the following
form, which is to be solved iteratively following the Newton-Raphson’s method:

(Ktan
IJ )k∆uk+1

J = −Rk
I . (21)

Here, R represents the residual vector obtained from Eq. (11) after performing an MPM discretization
(i.e. Eq. (13)). Meanwhile, the superscript k denotes Newton’s iteration index. By invoking the arbitrariness
of the nodal test functions, the residual vector can be expressed as follows:

Rk
Ij =m

n
Ij ü

k
Ij +

np∑
p=1

(
nn∑
J=1

(λ+ 2G)
∂NIp

∂xj

∂NJp

∂xj
Uk
Jj

+

nn∑
J=1

3∑
m=1
m ̸=j

{(
1 + C ′

pj

)(
λ
∂NIp

∂xm

∂NJp

∂xj
+G

∂NIp

∂xj

∂NJp

∂xm

)
Uk
Jm + G

(
1 + C ′

pj

)2 ∂NIp

∂xm

∂NJp

∂xm
Uk
Jj

} )
V k
p .

(22)

In the expressions above and hereon, we differentiate three different discretized nodal displacement fields:
the previous-step cumulative displacement un

I , the incremental displacement uk
I , and the updated cumulative

displacement Uk
I = un

I + uk
I . At the beginning of Newton’s iteration, k = 0, the incremental displacement

is initiated as u
(k=0)
I = 0, which can be updated iteratively as uk+1

I = uk
I +∆uk+1

I . Once the convergence
of the Newton-Raphson’s algorithm is satisfied, the new displacement field can be assigned from the latest
cumulative displacement as un+1

I = U∗
I , where the superscript ∗ indicates the last iteration at convergence.

In Eq. (21), Ktan denotes the tangent stiffness matrix. As the deformation of the PML element is
significantly small, it is convenient to stick within the infinitesimal form of the tangent matrix, i.e. the
nonlinear geometric term is neglected for simplicity. The matrix can be divided into two sub-matrices:

Ktan = Kmat +Kdyn . (23)

The first sub-matrix is known as the material stiffness matrix and is expressed as follows:

Kmat =


K11 · · · K1Nn

...
. . .

...

KNn1 · · · KNnNn

 , (24)
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where Nn indicates the total number of active nodes. For each block KIJ corresponding to nodes I and J
pair, we perform a direction-wise computation for (m,n) = {1, 2, 3} as:

(KIJ)mn =



np∑
p=1

∂NIp

∂xm

∂NJp

∂xm
(2G+ λ) +

3∑
l=1
l ̸=m

G
∂NIp

∂xl

∂NJp

∂xl
(1 + C ′

pm)2

Vp , (m = n) ,

np∑
p=1

(
(1 + C ′

pm)

(
∂NIp

∂xm

∂NJp

∂xn
G+

∂NIp

∂xn

∂NJp

∂xm
λ

))
Vp , (m ̸= n) .

(25)

The form above is a 3D generalization of the form proposed by Chen et al. [65] previously for 2D triangular
elements. Moreover, the second sub-matrix in the right-hand side of Eq. (23) is the dynamic component and
can be computed as:

Kdyn
IJ =

np∑
p=1

1

βN∆t2
CpNIpmpIIJ , (26)

where matrix I is the identity matrix and Cp is a diagonal matrix containing the direction-dependent damping
function, i.e.:

Cp =


(
1 + C ′

p1

)2
0 0

0
(
1 + C ′

p2

)2
0

0 0 (1 + C ′
p3)

2

 . (27)

In addition to that, the term βN denotes the variable of the Newmark-beta method. In this study, the non-
dissipative choice of Newmark’s parameters (γN = 0.5 and βN = 0.25) is considered to minimize numerical
damping from the time integration scheme.

2.6. Further damping strategies

Chen et al. [65] introduced the use of visco-elasticity and Rayleigh damping to the PML formulation to
enhance the damping performance within the PML element. These two methods will also be added to the
proposed MPM-PML formulation in the current work.

2.6.1. Viscoelastic model with fractional derivative operators

The viscoelastic behavior of materials can be introduced to the absorbing particles in the PML domain
through a constitutive model that captures time-dependent deformation. In the present work, we utilized a
model proposed by Galucio et al. [72] that employs the Grünwald definition of fractional derivative operators.
In one-dimensional settings, the time-dependent stress-strain relationship can be expressed as:

σ(t) = E0

((
1 + c

(E∞ − E0)

E0

)
ε(t) + c

E∞

E0

Nt∑
q=1

(Aq+1 ε̄(t− q∆t))

)
, (28)

where σ(t) denotes the 1D stress, defined based on relaxed elastic modulus E0, non-relaxed elastic modulus
E∞, strain ε(t), and internal strain ε̄(t). In the above expressions, Nt dictates how many time steps of
strain history are to be considered. Furthermore, Aq is the term involving the Grünwald coefficient, which
incorporates the memory effect inherent in viscoelastic materials [72], whereas c is a coefficient that balances
the fractional derivative’s impact (0 ≤ c ≤ 1). The Grünwald coefficient and the coefficient c are defined as:

Aq+1 =
q − α− 1

q
Aq , where A1 = 1 , (29)

c =
(τ)α

(τ)α + (∆t)α
, (30)

where α is the fractional order (0 ≤ α ≤ 1). Here, τ and ∆t are the relaxation time and the time step,
respectively.
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In Eq. (28), the internal strain ε̄(t) is defined as:

ε̄(t) =

(
(1− c)

E∞ − E0

E∞

)
ε(t)− c

Nt∑
q=1

(
Aq+1ε(t− q∆t)

)
. (31)

Here, the following relationship between strain and displacement is valid:

ε̄(t) = Būv(t) , (32)

where B represents the spatial differentiation operator and ūv(t) denotes the displacement associated with
the defined internal strain function. From Eq. (31), ūv(t) is defined as follows:

ūv(t) = (1− c)
(E∞ − E0)

E∞
u(t)− c

Nt∑
q=1

(Aq+1ūv(t− q∆t)) , (33)

ūv(0) = (1− c)
(E∞ − E0)

E∞
u(0) . (34)

Notice that at a given time t, the internal displacement ūv(t) can be computed from the regular displacement
field u(t) and some components of the internal displacements obtained in the previous time steps, t − q∆t.
The extension of this viscoelastic model to 3D is straightforward. The detailed implementation of this model
to MPM will be presented later in Section 2.6.3.

2.6.2. Rayleigh damping within PML domain

In the current work, we consider an additional Rayleigh damping to be applied within the PML domain.
Here, the damping matrix can be written as a linear function of the modified lumped mass matrix, M , where
its components can be evaluated following Eq. (16). One can write:

CM = αMM , (35)

where αM indicates the mass-proportional damping coefficient. In MPM, the local Rayleigh damping force
in each node can be computed considering the nodal lumping of the nodal mass as follows:

f c
I = CM

I ⊙ u̇I = αMmn
I ⊙ u̇I , (36)

where ⊙ denotes the component-wise multiplication of the nodal mass and the nodal velocity vectors.

2.6.3. Implementation of damping terms within PML domain

In the following section, we rewrite the new residual vector and tangential stiffness formulations specific
to the PML elements. Here, we denote the modified residual vector as R̃, where it can be computed at each
Newton’s iteration k as follows:

R̃k
Ij =m

n
Ij ü

k
Ij + CM

Ij u̇
k
Ij + c

E∞

E0

(
nn∑
J=1

Kmat
IJ

Nt∑
q=1

(Aq+1) (ū
n−q
vJ )

)
j

+ (1 + c)
(E∞ − E0)

E∞

np∑
p=1

(
nn∑
J=1

(λ+ 2G)
∂NIp

∂xj

∂NJp

∂xj
Uk
Jj

+

nn∑
J=1

3∑
m=1
m̸=j

{(
1 + C ′

pj

)(
λ
∂NIp

∂xm

∂NJp

∂xj
+G

∂NIp

∂xj

∂NJp

∂xm

)
Uk
Jm

+G
(
1 + C ′

pj

)2 ∂NIp

∂xm

∂NJp

∂xm
Uk
Jj

})
V k
p .

(37)
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In the above expression, ūn
vI can be computed as follows:

ūn
vI =

1

mn
Ij

np∑
p=1

(
1 + C ′

pj

)2
mpū

n
vpNIp , (38)

ūn
vp = (1− c)

(E∞ − E0)

E∞
un
p − c

Nt∑
q=1

(
Aq+1ū

n−q
vp

)
. (39)

In the current work, the parameter Nt is fixed to be 4 to balance both computational costs to store the
internal displacement variables and performance of the visco-elastic model. With Nt = 4, the value of
Grünwald coefficient A5 is determined to be −4.2 × 10−3, which is considered to be sufficiently small and
does not anymore compromise the accuracy and reliability of the model.

For the left-hand side terms, we denote the modified tangential stiffness matrix component as K̃
mat

and

K̃
dyn

, where they can be computed respectively as follows:

K̃
mat

=

(
1 + c

E∞ − E0

E0

)
Kmat , (40)

K̃
dyn

IJ =

np∑
p=1

(
1

βN∆t2
+
αMγN
βN∆t

)
CpNIpmpIIJ . (41)

Finally, by substituting Eqs. (37)-(41) into Eq. (21), the linear systems of equations can be solved using
classical iterative algorithms, e.g. [73,74].

2.7. Summary of computational procedure

For simulations involving elasto-plastic confinement-dependent material properties, the initial stress field
is often required before performing any subsequent analysis. To obtain the in-situ stress fields, a geo-static
step is initially performed. In this step, the absorbing particles are treated as general material points and
their attenuation with respect to gravity is not considered. We denote the initial static stress as σinit, which
can be connected to gravitational load particle-wise as follows during the static condition:

BIpσp,init = −ρpbpNIp , (42)

where BI is the deformation matrix related to each node I in the element and b indicates the gravitational
acceleration. The geo-static step is also performed to achieve the initial K0 condition commonly considered
in geotechnical analysis.

The initial stress field obtained in the geo-static step is then appended to the balance equation along with
setting the initial displacement to zero. The residual vector component given in Eq. (37) can be rewritten as
follows:

R̃k
Ij =m

n
Ij ü

k
Ij + CM

Ij u̇
k
Ij + c

E∞

E0

(
nn∑
J=1

Kmat
IJ

Nt∑
q=1

(Aq+1) (ū
n−q
vJ )

)
j

+ (1 + c)
(E∞ − E0)

E∞

np∑
p=1

(
nn∑
J=1

(λ+ 2G)
∂NIp

∂xj

∂NJp

∂xj
Uk
Jj

+

nn∑
J=1

3∑
m=1
m ̸=j

{(
1 + C ′

pj

)(
λ
∂NIp

∂xm

∂NJp

∂xj
+G

∂NIp

∂xj

∂NJp

∂xm

)
Uk
Jm

+ G
(
1 + C ′

pj

)2 ∂NIp

∂xm

∂NJp

∂xm
Uk
Jj

})
V k
p −

np∑
p=1

(
ρbnpjNIp + (BIpσp,init)j

)
V k
p .

(43)

When the body force is only gravity, Eq. (42) shows that the initial stress field is balanced by gravity, so
the damping of the absorbing particles does not act on the gravity load and is only effective during the
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dynamic step. During material deformation, the change in the stress field due to a change in geometry
results in a displacement field that satisfies the dynamic equilibrium equation. In other words, any difference
in stress from the initial stress is represented by a displacement field. However, this displacement may be
discontinuous between the PML domain and the elastic base due to differences in the stiffness matrix. It
is worth emphasizing that the volumetric strain caused by the change in geometry is so small that this
displacement discontinuity is also remarkably small.

Non-PML domain

• Initialization phase:
-Eq. (15) 

• Assemble tangential stiffness matrix and residual vector:

PML domain

• Initialization phase:
- Eq. (16)-(17) 

• Assemble tangential stiffness matrix and 
residual vector:
 - Eqs. (37) or (43), (40), (41)

• Solve linear systems of equations using BiCG-Stab solver: Eq. (21)
• Update nodal acceleration, velocity, and displacement using Newmark’s method. 
• Convection phase:

-Eqs. (18)-(20)

Figure 2: Summary of computational procedure of the dynamic step.

Subsequently, the algorithm during the dynamic step is summarized in Fig. 2 together with the equations
needed at the non-PML domain. The detailed formulation of the non-PML domain follows the standard
displacement-based implicit MPM as suggested by Guilkey and Weiss [70]. At the beginning of each time
step, the nodes associated with the absorbing particles are first identified; we denote P as the PML node set
andN as the regular nodes not associated with the PML domain. Once these nodes are identified, the particle-
to-grid mapping should be performed independently, as described in Section 2.4. Care must be taken when
mapping mass information at the boundary between PML and non-PML domains; specifically, the nodal mass
is now a vector in each node in P, rather than a scalar. This can be achieved by specializing the mapping
function for material points located in cells adjacent to the PML domain, which we refer to as interface
material points (highlighted in yellow in Fig. 3). Since nodal displacement information is required at PML
nodes to compute internal forces (cf. Eq. (37) and (43)), the displacements of interface material points should
be mapped to PML nodes, along with other kinematic quantities such as velocity and acceleration. Given
that the current PML framework assumes a displacement-based formulation, consistent with the implicit
MPM scheme, the external and internal forces, as well as the assembly of the tangent stiffness matrix, can
be handled straightforwardly using the standard FE procedures, incorporating contributions from both the
interface material points and the absorbing boundaries at the interface PML nodes.

In the current work, dynamic loadings are applied by imposing Neumann traction at the particles near
the Neumann boundary at the non-PML domain. Once the global tangent matrix and residual vectors
are assembled, the linear systems of equations, Eq. (21), are solved using a biconjugate gradient stabilized
(BiCGStab) solver; the current work utilized the solver available within the Eigen solver library [75]. Once the
Newton-Raphson’s iterations converged, the updated kinematic variables are advected back to the particles
following Eqs. (18)-(20).
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PML domain

Elastic body

PML interface

Material points
Interface material points
Absorbing particles

Regular nodes

PML nodes

Nodal mass and displacement:

Figure 3: Mapping mass and displacement fields from both material points and absorbing particles near the PML interface.
Here, nmp and nap denote the number of material points and absorbing particles associated with a given PML node near the
interface, respectively. The interface material points can be identified as material points with at least one connectivity marked as
PML nodes, i.e. I ∈ P. Here, for simplicity of the illustration, a standard ”local” quadrilateral element is considered. However,
the extension to higher-order ”non-local” basis functions should follow an analogous approach.

3. Numerical examples

3.1. Two-dimensional elastic soil under point-source impact loading

In this section, we perform a numerical analysis of a 2D semi-infinite plane problem assuming an elastic
body. In this problem, we simulate the propagation of elastic waves in an isotropic, homogeneous half-space.
This model employs a directional force point source applied to the upper free surface of the domain. To realize
the semi-infinite plane, absorbing particles are placed surrounding the target domain to absorb outgoing waves
and suppress reflected waves. Fig. 4 depicts the simulation domain, boundary conditions, and the location of
receiver points. The coordinates for the receiver points are given as: A1(1525,65), A2(1805,65), A3(2205,65),
A4(2795,65), B1(1125,575), B2(1125,805), B3(1125,1205), B4(1125,1795), C1(1725,725), C2(1105,1105),
C3(1865,1865), all measured from the coordinate origin located at the top left corner of the elastic body.

PML domain

P

Elastic body

(a) Computational domain

x

z

(b) Receiver points

Figure 4: 2D elastic soil under point loading: model geometry and boundary conditions.
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The background cell is set as 20 m × 20 m, where initially each cell contains four particles, yielding a total
of 80,000 particles: 20,000 material points and 60,000 absorbing particles. Young’s modulus E, Poisson’s
ratio ν, and mass density ρ are set as 2 GPa, 0.25, and 2000 kg/m

3
, respectively. The time increment is set as

∆t = 0.01 s. For the PML damping function’s parameters, αj (the maximum values of C ′
j) and β (polynomial

power of C ′
j), we adopted the values of 4 and 1 respectively, as they were suggested as the optimal values

in a similar case study conducted by Chen et al. [65] (we further confirm these values through a sensitivity
analysis in Appendix A). The relaxed Young’s modulus and the fractional order for the visco-elastic model
are set to be E0 = 0.99E = 1.98 GPa and α = 0.95, respectively. Meanwhile, the relaxation time is set
to τ = 2∆t = 0.02 s. To achieve a greater damping effect, we have deliberately set the Rayleigh damping
factor αM to 1.0, which is higher than the typical values used for modeling numerical damping. Note that, in
the current model and subsequent models, the visco-elastic damping and Rayleigh damping are only applied
within the PML domain, not the main elastic (or elasto-plastic) domain.
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(c) Test 3

Figure 5: 2D elastic soil under point loading: input impulse loadings for three different tests.

Using the same geometry and conditions, we conducted three validation tests, each with different loading
conditions (cf. Fig. 5). Test 1 involves a small amplitude sinusoidal pulse force, as illustrated in Fig. 5a, while
Test 2 is considered to specifically analyze situations involving large deformation with a large amplitude of
impulse force (×100 of the load of Test 1), as illustrated in Fig. 5b. For Test 3, the input wave is a Ricker
wavelet with a central frequency of 3 Hz as illustrated in Fig. 5c. Since MPM is often employed to model
large-deformation problems, this analysis aims to assess the performance of the proposed implementation for
such conditions. To illustrate the improved performance, we compared the obtained numerical results with
the same simulations performed with the standard implicit MPM scheme without absorbing particles. At
the same time, a reference analysis with an extended simulation domain was conducted. An elastic buffer
zone of 7000 m was added around the target domain to ensure that waves refracted by the boundaries would
not reach the receiver points within the selected time interval. It is important to note that different choices
of PML parameters may lead to slightly different wave propagation results and absorption performance.
Therefore, we conducted an additional sensitivity analysis of these parameters in Appendix A, using Test 2
as a case study.

Fig. 6 plots the displacement magnitudes for Test 1 measured at the aforementioned receiver points,
with a comparison to the reference solution and results without absorbing particles The analyses of exper-
iments A1-A4 demonstrate that our proposed methodology effectively attenuates horizontally propagating
waves. Similarly, observations from B1-B4 reveal that vertically propagating waves are also mitigated by our
approach. The data from C1-C3 further elucidate that our method attenuates waves traversing in both hori-
zontal and vertical planes. Notably, findings from C3 illustrate that our methodology significantly diminishes
the amplitude of diagonally propagating waves. The ratio of the maximum amplitude in comparison to the
standard implicit MPM after 5 seconds averaged about 10% for A1-A4, 12.1% for B1-B4, and 11.96% for
C1-C3. From the given plots, we can observe that the proposed method can absorb outgoing waves quite well,
limiting any significant reflection waves from returning to the target domain. In comparison to the reference
solution, the PML method performs relatively well. However, minor fluctuation errors are still observed in
the later stages of the recording, t ≥ 3 s. Several reasons that may cause this error and improvements to
alleviate these errors will be discussed with the other two tests in later paragraphs.

Fig. 7 illustrates the displacement magnitudes for Test 2. Similar to the results obtained in Test 1, all
observation points A to C demonstrate that the proposed method attenuates reflected waves in vertical,
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(c) Proposed method with reference

Figure 6: 2D elastic soil under point loading – Test 1: displacement magnitudes comparisons between the standard implicit
MPM scheme, the proposed method, and the reference simulation.

horizontal, and diagonal directions. The ratio of the maximum amplitude compared to the standard implicit
MPM results after 5 seconds is about 7.24% for A1-A4, 9.81% for B1-B4, and 7.69% for C1-C3. From this
test, it is evident that even though the magnitude of the maximum displacement has increased by more than
100 times compared to those in Test 1, the proposed method remains effective with a minor reduction in
damping capacity. In addition, Fig. 8 presents the magnitude of displacement contours for Test 2 captured at
a few different time snapshots. As highlighted in the figures in the center column, despite the relatively coarse
mesh, the proposed implementation is able to absorb most of the outgoing waves even with comparatively
large displacement waves.

Fig. 9 presents the displacement magnitudes for Test 3. Due to the influence of multiple frequency loading
given by the Ricker wavelet, the results from the standard implicit MPM show larger magnitudes of reflected
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(a) Standard implicit MPM
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(b) Proposed method
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Figure 7: 2D elastic soil under point loading – Test 2: displacement magnitudes comparisons between the standard implicit
MPM scheme, the proposed method, and the reference simulation.

waves compared to the previous two test cases. This can be observed at receiver point A4, with notably
higher amplitudes near the lateral boundary (upper right corner). After 5 seconds, the average ratio of
maximum amplitude averaged about 10.1% for A1-A4, 13.5% for B1-B4, and 11.6% for C1-C3. The damping
performance of the method is further solidified by the evolution of displacement magnitude contours presented
by Fig. 10. This demonstrates that the proposed method is adept not only at handling waves of singular
frequencies but also complex waveforms that span multiple frequencies. Furthermore, by comparing the
results at t > 4 s, it is evident that body and surface waves, characterized by relatively large displacements,
are significantly attenuated.

Despite the relatively good performance of the proposed PML method, it is important to highlight that the

15



(a) t= 2 s

(b) t= 4 s

(c) t= 6 s

(d) t= 10 s
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Figure 8: 2D elastic soil under point loading – Test 2: displacement magnitude contours obtained by (left) standard implicit
MPM, (center) the proposed method, and (right) the reference analysis with an enlarged domain at t = 2.0, 4.0, 6.0, and 10.0 s.

classical PML formulation, including the one we propose, still faces challenges in attenuating low-frequency
surface waves. This is evident in Figs. 8 and 10 at t = 4 s, where the PML domain does not sufficiently
absorb propagating waves near the free surface. Specifically, the proposed formulation (cf. Eq. (8)) struggles
to damp pure or quasi-one-dimensional motion, where compression or shear waves propagate exclusively in
one direction in regions where the damping function Cj is only applied in one direction, either x or y direction
in 2D. This scenario is analogous to the conditions near the free surface observed here. Furthermore, these
surface waves may get refracted back into the simulation domain, causing errors, as shown in Figs. 6, 7, and
9. While this error can be minimized by increasing the PML length (L), as demonstrated in Appendix A.2
and suggested by Festa et al. [76], further extensions to the current formulation are necessary, e.g. to include
cut-off frequency [76].

Moreover, the current PML formulation is designed only to dampen propagating waves in the simulation
domain, not evanescent waves. This approach was adopted to simplify the formulation, focusing on first
establishing the PML framework within MPM. However, since evanescent waves can transform into body
waves and generate spurious oscillations in the main domain, improving the PML formulation to include a
damping term for both propagating and evanescent waves is necessary to enhance accuracy [77,78,66].

3.2. Deformation of elasto-plastic embankment due to underground vibration

In this section, we present a case study demonstrating the application of the proposed method to analyze
embankment failure under dynamic loading. In this example, an elasto-plastic embankment is considered
and modeled using the strain-softening Mohr-Coulomb model. Fig. 11 illustrates the initial configuration of
the model and the location of receiver points for the analysis; they are denoted as points A-D. The locations
for the receiver points are as follows: A(38,30), B(46,34), C(57,39), D(69,39), all measured from the origin
at the bottom left corner. The embankment slope is set at an angle of 26.57◦. The geometric configuration
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(a) Standard implicit MPM
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Figure 9: 2D elastic soil under point loading – Test 3: displacement magnitudes comparisons between the standard implicit
MPM scheme, the proposed method, and the reference simulation.

and material properties are derived from a prior investigation conducted by Bui et al. [79], which explored
the application of the SPH method in slope stability analysis. However, the geometry is slightly modified to
ensure symmetry on both sides.

Due to the absorbing mechanism of the PML formulation, it is important to note that the PML domain
cannot directly interact with the elasto-plastic model1. To address this limitation, our approach involves

1The PML theory works by introducing a coordinate transformation that attenuates the amplitude of elastic waves as they
propagate into the PML domain. This transformation relies on the fact that the governing equations of motion for elastic waves
(i.e. Eq. (1)) are linear and can be manipulated mathematically to introduce damping without reflections.
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Figure 10: 2D elastic soil under point loading – Test 3: displacement magnitude contours obtained by (left) standard implicit
MPM, (center) the proposed method, and (right) the reference analysis with an enlarged domain at t = 2.0, 4.0, 6.0, and 10.0 s.

encasing the target domain within an elastic base, which is then surrounded by absorbing particles to simulate
infinite boundary conditions effectively. To prevent unwanted stress concentration and plastic localization in
sharp corners, a gradual transition between an elastic base and elasto-plastic soil is achieved using a quadratic
function, as depicted in Fig. 11 (more on this will be discussed in Remark 1).
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Figure 11: Symmetric elasto-plastic embankment under underground vibration: model geometry and boundary conditions.

The simulation initiates with static loading under gravity to establish the geo-static stress field, a crucial
step before the dynamic analysis of confinement-dependent elasto-plastic materials. The specific parameters
of the linear-strain-softening Mohr-Coulomb model are listed in Table 1. The soil layer parameters are
determined based on Bui et al. [79] where they suggested that slope failure occurs under static loading when
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the peak friction angle and peak cohesion are 14◦ and 6.9 kN/m, respectively. In the current model, we used
these values as the residual values. For peak strength, we adopted the value at which static loading causes
almost no displacement. The linear-strain-softening behavior is shown in Fig. 12. Furthermore, the material
parameters of the elastic base are set based on the elastic parameters of the soil layer, where the parameters
of the PML domain follow. The length of the PML domain, L, is set to 20 m, which corresponds to 40
PML elements. Here, αj , β, and the fractional order of the visco-elastic model were fixed at 4, 1, and 0.95,
respectively. The relaxed Young’s modulus E0 is set to 0.99 times Young’s modulus of the absorbing particles,
whereas the relaxation time τ was set to twice ∆t. For a more comprehensive discussion on the rationale
behind these parameter choices and their impact on the simulation results, please refer to the Appendix A.

Plastic deviatoric strain

=(Internal friction angle   , cohesion c)

Figure 12: Illustration of the linear-strain-softening Mohr-Coulomb model behavior.

As depicted in Fig. 13, the seismic input for the analysis involves varying the amplitude of input between
254 N, 381 N, 508 N, 635 N, and 762 N to assess the model’s response under different seismic intensities.
The inputs shown in Fig. 13 are applied to the particles in the elastic base as seismic body forces. Although
such input methods are not generally used for seismic loading, which commonly employs moving traction BC
at the finite element nodes, this approach was adopted to avoid handling nonconforming Neumann traction
BC, which is known to be cumbersome in MPM; see [80,44]. In the MPM simulations, we use a quadrilateral
background grid with a cell size of h = 0.5 m, resulting in a total of 23,940 cells. The domain is entirely
discretized into 68,960 particles (20,000 material points and 48,960 absorbing particles), initially arranged in
a configuration of 2× 2 particles per cell. The time step is set as ∆t = 0.001 s. As the elasto-plastic analysis
requires considerably more time to perform, reference simulation with an enlarged domain is not performed
for this test.

Fig. 14 plots the displacement magnitudes obtained from the proposed method compared to the results
of standard implicit MPM performed without the absorbing particles. Here, the dynamic loading conditions
range from the amplitude of 254 N to 762 N, which are ordered in increasing order from top to bottom. Here,
we refer to them as Test 1-5, respectively. From Fig. 14 (a)-(e), we can observe that the proposed method
induced a comparatively smaller displacement magnitude compared to the standard implicit MPM results.
This indicates that by attenuating outgoing waves via absorbing particles, we can reduce the overall energy
in the system which, if it is not absorbed properly, may induce excessive estimation of soil deformation.

Fig. 15 shows the plastic strain distribution of the standard implicit MPM and the proposed method for
Test 5, with the red dashed line representing the deformation shape of the standard implicit MPM in Fig. 15
(b). In comparison to the standard implicit MPM results, the proposed method has a narrower strain zone,
indicating that the strain is not distributed over the entire embankment. The shape of the deformed slopes
also differs from that of the dashed line because the displacement induced by the refraction waves can be
optimally suppressed.

To measure the damping performance quantitatively, we define the relative displacement change ratio Rd
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Figure 13: Symmetric elasto-plastic embankment under underground vibration: example of input wave over time for Test 1 with
254 N amplitude.

Table 1: Symmetric elasto-plastic embankment under underground vibration: material parameters for different layers.

Parameter Value

Elastic base

Young’s modulus, Ebase (MPa) 100

Poisson’s ratio, νbase 0.33

Density, ρbase (kg/m3) 2041

Soil layer

Young’s modulus, Elayer (MPa) 100

Poisson’s ratio, νlayer 0.33

Density, ρlayer (kg/m3) 2041

Peak internal friction angle, ϕpeak (◦) 16

Residual internal friction angle, ϕr (◦) 14

Peak cohesion, cpeak (kN/m) 8

Residual cohesion, cr (kN/m) 6.9

Residual plastic deviatoric strain, εpd,r 0.13

Dilatancy angle ψ (◦) 9

PML domain

Young’s modulus, Ebase (MPa) 100

Poisson’s ratio, νbase 0.33

Density, ρbase (kg/m3) 2041

Maximum damping ratio, αj 4

Damping power, β 1

Visco elastic relaxed youngs modulus, E0 (MPa) 99

Visco elastic fractional order, α 0.95

Visco elastic relaxation time, τ (s) 0.002

Rayleigh damping factor, αM 1.0

as follows:

Rd =
uIm − uPr

uIm
× 100% , (44)
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Figure 14: Symmetric elasto-plastic embankment under underground vibration: displacement magnitudes measured at different
measurement points at five different loading cases.

where uIm and uPr denote the displacement magnitudes of the standard implicit MPM and the proposed
method, respectively. The obtained relative displacement change ratio is plotted in Fig. 16 for all five cases.
First, notice that in all tests, the values of Rd for points A, B, and C are approximately the same, while
point D shows a slightly different Rd value compared to the other points. This is because the displacements
of points A-C consist of more dominated horizontal deformation and vertical deformation, whereas point
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(a) Standard implicit MPM

(b) Proposed method

Figure 15: Symmetric elasto-plastic embankment under underground vibration: comparison of the plastic strain of standard
implicit MPM (top) and the proposed method (bottom) at t = 15 s for Test 5. The red dashed line plots the deformed surface
of the standard implicit MPM results for comparison and the orange dashed line plots the original surface of the embankment.

D moves only vertically due to the symmetric geometry. In Test 1 (254 N), points A-C exhibited relative
displacement change ratios of approximately 80%. As the input amplitude increases, the relative displacement
change ratio shows a decreasing trend. This indicates that the displacement caused by the input wave itself
becomes more dominant as the amplitude increases, inducing larger deformation relative to the deformation
caused by the undamped outgoing waves.

Remark 1. We tested the effect of interface geometry between elastic-base and elasto-plastic soils, as il-
lustrated in Fig. 17. This analysis considers Test 5, which involves the highest amplitude of base shaking,
i.e. 762 N. The figure shows the distribution of plastic strain for different interface geometries, where the
shapes are modified by varying the coefficients of a quadratic function, i.e. from left to right: 5/152, 5/7.52,
and 0 (a jump). We denote these cases as ”long,” ”medium,” and ”sharp” interfaces, respectively. Here,
the lengths of the interfaces differ and are determined so that all intersect at the height of 2.5 m (half of the
elasto-plastic soil thickness).

As shown in the figures, concentrated plastic strains develop at the surface during shaking. In the medium
and sharp cases, the plastic strain concentrations are more than twice as large as those in the long interface
case (as shown in Fig. 17, with the color bar presented on a logarithmic scale for better visualization). While
this effect is not particularly pronounced in this example, the development of plastic regions could induce
inaccuracies in surface wave propagation. In certain cases, especially with more sensitive soils, plastic strain
concentration may also lead to shear strength softening, resulting in excessive plastic deformation near the
interface. To mitigate this issue, a more gradual transition between the elastic base and elasto-plastic soils is
recommended for improved stability and accuracy.
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Figure 16: Symmetric elasto-plastic embankment under underground vibration: relative displacement change ratio obtained at
receiver points for different vibration amplitudes.
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Figure 17: Symmetric elasto-plastic embankment under underground vibration: plastic deviatoric strain comparison for different
interface shape between elasto-plastic soil layer and elastic base at t = 8 s. The geometry of the interface is modified by varying
the coefficients of a quadratic function (from left to right: 5/152, 5/7.52, and 0). Red arrows highlight the plastic strain
concentration at the free surface. Here, a log-scale color contour is considered for better visualization of the magnitude range.

3.3. Earthquake-induced slope failure analysis

An example case of asymmetry base shaking with an elasto-plastic slope is conducted in this section
following the numerical example done by Kohler et al. [47]. The geometry settings are defined in Fig. 18.
Here, we modify the geometry to be enclosed in an elastic base. Input waves recorded from the Imperial
Valley event in 1979 (RSN 165, H2 direction) were used following Kohler et al. [47]. Waveforms were obtained
from the PEER (Pacific Earthquake Engineering Research) strong-motion database [81], and are shown in
Fig. 19.

The MPM simulations are performed using quadrilateral background grids with a cell size of h = 0.5 m,
resulting in a total of 94,400 cells. The entire domain is discretized as 254,619 particles (137,899 material
points and 116,720 absorbing particles) which are initially arranged in 2×2 particles per cell configuration.
The initial volume of material points is assumed to be uniform. Moreover, the time step is set as ∆t =
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Figure 18: Earthquake-induced slope failure analysis: model geometry and boundary condition.
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Figure 19: Earthquake-induced slope failure analysis: seismic input wave (the Imperial Valley event in 1979 (RSN 165, H2
direction [81])).

0.001 s. Similar to Section 3.2, reference simulation with an enlarged simulation domain is not performed
for this numerical example. In addition, we utilized the B-bar method [82,83] to mitigate volumetric-locking
effects associated with fast undrained deformation. The considered material parameters and parameters for
absorbing particles are listed in Table 2 as adopted from Kohler et al. [47]. Kohler et al. [47] used the von
Mises yield criterion, whereas we used the Tresca model as it aligns better with the shear-dominated failure
mechanisms of undrained cohesive soils. Even though the considered yield criteria are different, the linear
strain softening model is considered to be the same, with residual undrained shear strength, Sur, and the
residual plastic deviatoric strain, εpd,r, are set to be the same values as Kohler et al. [47]. The behavior of the
linear strain softening model is similar to that shown in Fig. 12. The parameters of the absorbing particles
are set in the same way as described in Section 3.2. The length of the PML domain, L, is set to 20 m, which
corresponds to 40 PML elements. This setting is based on the sensitivity study elaborated in Appendix A.

The obtained numerical results are presented in Fig. 20, where the plastic strain distribution at different
snapshots is plotted for comparison. The figure presents three rows of results: the top row features standard
implicit MPM results without absorbing particles, the middle row shows the results of the proposed MPM-
PML method, and the bottom row is taken from the analysis results performed by Kohler et al. [47]. The
results without absorbing particles reveal that a slip surface forms at 10 sec and the slope collapses catas-
trophically due to strength softening over time. The onset and propagation of the shear bands are similar to
the simulations performed by Kohler et al. [47], despite differences in mesh size and analysis conditions. It is
worth emphasizing that, Kohler et al. [47] considers a mesh size of h = 0.25 m, which is half of the currently
considered mesh size, with 3×3 particle per cell, which is higher compared to our simulations. They also
employed a viscous surface traction BC to absorb outgoing waves. However, the accuracy of such methods in
MPM is known to present inaccuracy and challenges in large-deformation settings as the material boundary
becomes nonconforming to the element boundary. On the other hand, in the results of the proposed method,
a slip surface is first formed at around t = 15 s, and through comparisons at a later stage, the generated
landslide is much less severe compared to the standard implicit MPM simulations and those performed by
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Table 2: Earthquake-induced slope failure analysis: material and PML parameters.

Parameter Value

Elastic base

Young’s modulus, Ebase (MPa) 250

Poisson’s ratio, νbase 0.25

Density, ρbase (kg/m3) 2200

Soil layer

Young’s modulus, Elayer (MPa) 40

Poisson’s ratio, νlayer 0.495

Density, ρlayer (kg/m3) 2200

Peak undrained strength, Sup (kN/m) 35

Residual undrained strength, Sur (kN/m) 19.44

Residual plastic deviatoric strain, εpd,r: 0.231

PML domain

Young’s modulus, Ebase (MPa) 250

Poisson’s ratio, νbase 0.25

Density, ρbase (kg/m3) 2200

Maximum damping ratio, αj 4

Damping power, β 1

Visco elastic relaxed youngs modulus, E0 (MPa) 247.5

Visco elastic fractional order, α 0.95

Visco elastic relaxation time, τ (s) 0.002

Rayleigh damping factor, αM 1.0

Kohler et al. [47]. This indicates that the addition of absorbing particles can effectively dampen the refracted
seismic waves from over-exciting the slope failures, potentially enabling a more precise analysis.

To measure the evolution of soil deformation during earthquake shaking, we approximate the total kinetic
energy of the system following:

ΠK =

Np∑
p=1

1

2
mpṽp · ṽp , where ṽp =

nn∑
I=1

NIpvI . (45)

The evolution of the kinetic energy ΠK of the soil layer without the elastic base and the PML domain over
time is plotted by Fig. 21. In the standard implicit MPM, the kinetic energy increases at a constant rate
from the formation of the sliding surface (at around t = 6 s) and then gradually decreases after the majority
of the slopes have failed. The results of the proposed method show that there is a time lag of about 6 to 7
seconds before the kinetic energy starts to increase compared to the standard implicit MPM, and the peak
value is also smaller than that of the standard implicit MPM result. Such continuous energy transitions
during earthquake shaking can only be obtained by considering continuous simulations of earthquakes and
slope failure. As presented in a recent study conducted by Sordo et al. [56], this was difficult to be achieved
using subsequent analysis of FEM and MPM.

4. Conclusions

This study proposes the implementation of PML theory in the dynamic MPM framework utilizing a set
of absorbing particles. The governing equations of PML in the time domain proposed by Chen et al. [65]

are integrated into the implicit MPM along with the enhanced damping strategies. The discretized form of
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Figure 20: Earthquake-induced slope failure analysis: comparison of the evolution of plastic strain from the standard implicit
MPM (top), the proposed method (middle) and numerical results of Kohler et al. [47] (bottom) at t = 10.0 s, 15.0 s, and 20.0 s.
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Figure 21: Earthquake-induced slope failure analysis: (a) comparison of the evolution of kinetic energy and (b) a zoomed-in
region around t = 20 ∼ 40s. The zoomed plot reveals minor but non-vanishing fluctuations in kinetic energy due to the ongoing
seismic excitation, with values significantly smaller than the peak increase in kinetic energy resulting from the transient post-
failure slope deformation.

the modified balance equations is derived and proposed, which can be solved concurrently with the standard
elasto-plastic implicit MPM equations employing the Newton-Raphson algorithm.

The effectiveness of the proposed approach is confirmed by simulating different types of numerical ex-
amples, considering impulse loading on elastic bodies and input waves on symmetric and asymmetric bases.
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The method has been shown to effectively dampen outgoing waves adequately and minimize wave reflections
at boundaries. It has been verified to handle large deformations and complex wave patterns with remark-
able accuracy. In particular, the analysis of elastoplastic slope cases highlighted the influence of absorbing
particles on the timing and developed mechanism of slope failure, demonstrating that the generated simu-
lation is comparatively more stable compared to conventional methods. This development enhances MPM’s
capabilities in geotechnical analysis and contributes to a better understanding of the complex mechanisms
that govern earthquake-induced landslides. While the proposed method shows promising results, further
validation tests with controlled experiments or recorded past events are necessary to confirm the accuracy of
simulating dynamic, time-dependent phenomena.

Immediate work is needed to extend the accuracy of the proposed model by incorporating the coordinate
stretching term, which will dampen not only propagating waves but also evanescent waves. Future challenges
include the need to consider new ways of handling seismic input waves that can handle nonconforming
Neumann BC and, at the same time, avoid direct inputs of external forces into the PML domain. Furthermore,
as the elasto-plastic model and the PML domain cannot be in direct contact, this study necessitates a more
in-depth examination of how elastic bodies are managed around the elasto-plastic model. The application of
the proposed method to more complex scenarios, including hydro-mechanical coupled conditions, will be a
major research theme in the future, as will the analysis of large ground displacements, including the presence
of liquefaction.
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Appendix A. Sensitivity analysis of PML parameters for elastodynamics problems

This appendix provides useful guidelines for selecting the parameters required when using the proposed
PML elements and absorbing particles. These parameters include mesh size, the length of the PML domain
L, PML damping parameters αj and β, as well as viscoelastic and Rayleigh damping parameters. To enable a
comprehensive and in-depth investigation, we consider the 2D elastic soil problem under point-source impact
loading described in Section 3.1. Specifically, we examine the accuracy of the measured displacements at
receiver points under Test 2 loading (cf. Fig. 5b), within the time interval t = 5 ∼ 10 s, and compare them
to a reference simulation with an extended domain.
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Appendix A.1. Changing mesh size, h

In this section, we evaluate the damping effects of the proposed method with respect to mesh size. In the
analysis conducted in Section 3.1, the cell size was set to 20 m, and the particle size to 10 m (4 particles per
cell in 2D). Here, we performed analyses with mesh sizes of 10 m and 40 m, and corresponding particle sizes
of 5 m and 20 m (keeping the 4 PPC ratio constant), respectively. We refer to the cases with mesh sizes of
40 m, 20 m, and 10 m as coarse, medium, and fine cases. All other parameters remained identical to those
given in Section 3.1, in particular, we kept the PML distance L to be constant as L = 1000 m.

Fig. A.22 plots the displacement at receiving point B1 (1125,575) for the three cases. Since particles with
exactly the same coordinates do not exist across different mesh sizes, the displacement of the nearest particle
was used. From the figure, the coarse case exhibits a considerably smaller peak displacement amplitude
compared to the other two cases, which is mostly attributed to the over-damping effects resulting from the
larger mesh size. The results for the medium and fine cases show similar trends, with a slight increase in
peak magnitude as the mesh is refined. In the coarse case, despite having the smallest peak displacement
compared to the other cases, the reflection waves are recorded to be the highest, as shown by Fig. A.22 at
around t = 2 ∼ 4 s. During the time interval of t = 5 ∼ 10 s, we qualitatively observe an improvement as
the mesh is refined. However, it is evident that even in the finest mesh case, the refraction wave persists.
Unfortunately, the error reduction with mesh refinement does not follow the desired convergence trend. As
discussed earlier, this is likely due to inaccuracies in dampening surface waves and evanescent waves, which
have not yet been addressed in our proposed implementation.
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Figure A.22: 2D elastic soil under point loading – Test 2: comparisons of displacement magnitudes at receiving point A1 between
different mesh sizes.

Appendix A.2. Varying the length of PML domain, L

In this section, we examined the impact of the PML domain size, L, on the damping performance of
the proposed method. This is specifically related to the number of PML elements over L as we keep the
mesh size constant. In the analysis conducted in Section 3.1, the thickness L of the PML domain was set
to 1000 m, corresponding to 50 PML elements. Here, we performed additional analyses by varying L from
200 ∼ 2000 m. Fig. A.23a presents the recorded displacement at receiving point A1 (2525,65) relative to
the reference simulation. For each analysis of L, we measured the maximum, minimum, and time-averaged
displacement magnitudes over the interval t = 5 ∼ 10 s. These values are then subtracted from the time-
averaged displacement of the reference case for the same time interval. Since the reference analysis does not
yield exactly zero displacement, primarily due to discretization errors inherent in the MPM, the displacement
range of the reference analysis is highlighted with a red band to provide an estimate of the maximum accuracy.

Fig. A.23a demonstrates that as the PML domain size increases, the amplitude of the reflection waves
decreases. Additionally, for L ≥ 1400 m, there is no significant difference in the results, indicating conver-
gence. Furthermore, the reduction of errors begins to plateau at L ≈ 800 m. On the other hand, Fig. A.23b
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illustrates the average computation time required to complete 1000 steps for each case, revealing an expected
increasing trend in analysis time with the increase of L. The environment used to conduct the measurement
is a PC with an Intel Core i9-13900KF Processor (@5.80 GHz). This suggests that larger PML domains incur
higher computational costs without proportional gains in damping effectiveness. Therefore, considering the
balance between computation time and damping performance, we selected a PML element number of 40 for
the analyses in Sections 3.2 and 3.3.
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Figure A.23: 2D elastic soil under point loading – Test 2: (a) difference of measured displacement magnitudes between t = 5 ∼ 10
s with the reference solution for different sizes of L, (b) average time spent per 1000 simulation steps.

Appendix A.3. Varying PML damping parameters, αj and β

Next, we examine the PML parameters, specifically the damping power, β, and the maximum damping
ratio, αj . First, we conducted analyses by varying β from 1 to 4. The results are shown in Fig. A.24a in
a similar fashion to those presented earlier in Fig. A.23a. The plot shows that although the trend is not
significant, the best results are obtained when β is set to 1. Mathematically, this is because the integrated
damping capacity over the PML length L is maximized when the polynomial β is set to linear. We then
performed analyses by varying the maximum damping ratio, αj . In this case, we kept the ratio αj/L constant
at 0.004 to avoid abrupt changes in the damping ratio, which tend to induce reflection waves. The analyses
were carried out with αj values of 0.8, 1.6, 2.4, 3.2, 4.0, 4.8, 5.6, 6.4, 7.2, and 8.0 (with L = 200, 400, 600,
800, 1000, 1200, 1400, 1600, 1800, and 2000 m, respectively). The results are presented in Fig. A.24b. It is
observed that the trend is similar to the results obtained by simply changing L as presented in Fig. A.23a.
However, up to αj = 2.4, the amplitudes are measured to be larger relative to Fig. A.23a, which is performed
with αj = 4. On the other hand, we also observe a non-significant change in accuracy for αj ≥ 3.2. Based on
these results, αj = 4 and β = 1 are generally recommended as the optimal PML parameters. These findings
suggest the same values as the one proposed previously by Chen et al. [65].

Appendix A.4. Varying visco-elastic and Rayleigh damping parameters

We further examined the effects of Rayleigh damping and the viscoelastic model. Chen et al. [65] introduced
two overdamping terms to achieve additional damping effects at the PML elements. Here, we investigate
the differences in results by varying the relaxed Young’s modulus E0 and Rayleigh damping αM . First, the
analysis in Section 3.1 assumed E0 = 0.99E and αM = 1.0 by default, considering the value suggested by
Chen et al. [65]. We then performed sensitivity analyses by setting E0 = 0.999E and 0.9E. Additionally,
we varied the Rayleigh damping factor by setting αM to 0.1, 0.5, and 0.8. In total, we carried out nine
simulation cases, which are summarized in Table A.3.
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Figure A.24: 2D elastic soil under point loading – Test 2: difference of measured displacement magnitudes between t = 5 ∼ 10
s with the reference solution for different values of (a) β and (b) αj .

Table A.3: 2D elastic soil under point loading – Test 2: summary of simulation cases involving visco-elastic model and Rayleigh
damping.

Case Description

Case 1 Without Viscoelastic Model, αM = 1.0

Case 2 E0 = 0.999E, αM = 1.0

Case 3 E0 = 0.99E, αM = 1.0 (Default)

Case 4 E0 = 0.9E, αM = 1.0

Case 5 Without Rayleigh Damping, E0 = 0.99E

Case 6 αM = 0.1, E0 = 0.99E

Case 7 αM = 0.5, E0 = 0.99E

Case 8 αM = 0.8, E0 = 0.99E

Case 9 Without Rayleigh Damping and Viscoelastic Model

The results compared to the reference solution are shown in Fig. A.25. For Cases 1–4, Figure A.25 demon-
strates that when the difference in magnitude between Young’s modulus and the relaxed Young’s modulus
is small, the simulation results show no significant variation. When E0 = 0.9E, the relative displacement
slightly decreases due to higher viscoelastic damping. In contrast, removing or reducing the Rayleigh damp-
ing factor αM leads to a significant increase in the amplitude and standard deviation of reflected waves.
Conversely, increasing the Rayleigh damping ratio results in a noticeable reduction in the measured relative
displacement. In general, setting E0 to a much lower value or αM to a much higher value is not recommended,
as excessive damping in the PML domain can introduce refraction waves from the PML interface into the
main analytical domain, potentially causing undesired dynamic vibrations in the system.
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