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REVIEW ARTICLE Open Access

Decision making with visualizations: a
cognitive framework across disciplines
Lace M. Padilla1,2* , Sarah H. Creem-Regehr2, Mary Hegarty3 and Jeanine K. Stefanucci2

Abstract

Visualizations—visual representations of information, depicted in graphics—are studied by researchers in numerous
ways, ranging from the study of the basic principles of creating visualizations, to the cognitive processes underlying
their use, as well as how visualizations communicate complex information (such as in medical risk or spatial
patterns). However, findings from different domains are rarely shared across domains though there may be domain-
general principles underlying visualizations and their use. The limited cross-domain communication may be due to
a lack of a unifying cognitive framework. This review aims to address this gap by proposing an integrative model
that is grounded in models of visualization comprehension and a dual-process account of decision making. We
review empirical studies of decision making with static two-dimensional visualizations motivated by a wide range of
research goals and find significant direct and indirect support for a dual-process account of decision making with
visualizations. Consistent with a dual-process model, the first type of visualization decision mechanism produces
fast, easy, and computationally light decisions with visualizations. The second facilitates slower, more contemplative,
and effortful decisions with visualizations. We illustrate the utility of a dual-process account of decision making with
visualizations using four cross-domain findings that may constitute universal visualization principles. Further, we
offer guidance for future research, including novel areas of exploration and practical recommendations for
visualization designers based on cognitive theory and empirical findings.

Keywords: Decision making with visualizations review, Cognitive model, Visual-spatial biases, Graphs, Geospatial
visualizations, Healthcare visualizations, Weather forecast visualizations, Uncertainty visualizations, Graphical decision
making, Dual-process

Significance
People use visualizations to make large-scale decisions,
such as whether to evacuate a town before a hurricane
strike, and more personal decisions, such as which med-
ical treatment to undergo. Given their widespread use
and social impact, researchers in many domains, includ-
ing cognitive psychology, information visualization, and
medical decision making, study how we make decisions
with visualizations. Even though researchers continue to
develop a wealth of knowledge on decision making with
visualizations, there are obstacles for scientists interested
in integrating findings from other domains—including
the lack of a cognitive model that accurately describes
decision making with visualizations. Research that does

not capitalize on all relevant findings progresses slower,
lacks generalizability, and may miss novel solutions and
insights. Considering the importance and impact of deci-
sions made with visualizations, it is critical that re-
searchers have the resources to utilize cross-domain
findings on this topic. This review provides a cognitive
model of decision making with visualizations that can be
used to synthesize multiple approaches to visualization
research. Further, it offers practical recommendations
for visualization designers based on the reviewed studies
while deepening our understanding of the cognitive pro-
cesses involved when making decisions with
visualizations.

Introduction
Every day we make numerous decisions with the aid of
visualizations, including selecting a driving route, decid-
ing whether to undergo a medical treatment, and
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comparing figures in a research paper. Visualizations are
external visual representations that are systematically re-
lated to the information that they represent (Bertin,
1983; Stenning & Oberlander, 1995). The information
represented might be about objects, events, or more ab-
stract information (Hegarty, 2011). The scope of the pre-
viously mentioned examples illustrates the diversity of
disciplines that have a vested interest in the influence of
visualizations on decision making. While the term deci-
sion has a range of meanings in everyday language, here
decision making is defined as a choice between two or
more competing courses of action (Balleine, 2007).
We argue that for visualizations to be most effective, re-

searchers need to integrate decision-making frameworks
into visualization cognition research. Reviews of decision
making with visual-spatial uncertainty also agree there has
been a general lack of emphasis on mental processes
within the visualization decision-making literature (Kin-
keldey, MacEachren, Riveiro, & Schiewe, 2017; Kinkeldey,
MacEachren, & Schiewe, 2014). The framework that has
dominated applied decision-making research for the last
30 years is a dual-process account of decision making.
Dual-process theories propose that we have two types of
decision processes: one for automatic, easy decisions
(Type 1); and another for more contemplative decisions
(Type 2) (Kahneman & Frederick, 2002; Stanovich, 1999).1

Even though many research areas involving higher-level
cognition have made significant efforts to incorporate
dual-process theories (Evans, 2008), visualization research
has yet to directly test the application of current
decision-making frameworks or develop an effective cog-
nitive model for decision making with visualizations. The
goal of this work is to integrate a dual-process account of
decision making with established cognitive frameworks of
visualization comprehension.
In this paper, we present an overview of current

decision-making theories and existing visualization cog-
nition frameworks, followed by a proposal for an inte-
grated model of decision making with visualizations, and
a selective review of visualization decision-making stud-
ies to determine if there is cross-domain support for a
dual-process account of decision making with visualiza-
tions. As a preview, we will illustrate Type 1 and 2 pro-
cessing in decision making with visualizations using four
cross-domain findings that we observed in the literature
review. Our focus here is on demonstrating how
dual-processing can be a useful framework for examin-
ing visualization decision-making research. We selected
the cross-domain findings as relevant demonstrations of
Type 1 and 2 processing that were shared across the
studies reviewed, but they do not represent all possible
examples of dual-processing in visualization
decision-making research. The review documents each
of the cross-domain findings, in turn, using examples

from studies in multiple domains. These cross-domain
findings differ in their reliance on Type 1 and Type 2
processing. We conclude with recommendations for fu-
ture work and implications for visualization designers.

Decision-making frameworks
Decision-making researchers have pursued two dominant
research paths to study how humans make decisions under
risk. The first assumes that humans make rational deci-
sions, which are based on weighted and ordered probability
functions and can be mathematically modeled (e.g. Kunz,
2004; Von Neumann, 1953). The second proposes that
people often make intuitive decisions using heuristics
(Gigerenzer, Todd, & ABC Research Group, 2000; Kahne-
man & Tversky, 1982). While there is fervent disagreement
on the efficacy of heuristics and whether human behavior is
rational (Vranas, 2000), there is more consensus that we
can make both intuitive and strategic decisions (Epstein,
Pacini, Denes-Raj, & Heier, 1996; Evans, 2008; Evans &
Stanovich, 2013; cf. Keren & Schul, 2009). The capacity to
make intuitive and strategic decisions is described by a
dual-process account of decision making, which suggests
that humans make fast, easy, and computationally light de-
cisions (known as Type 1 processing) by default, but can
also make slow, contemplative, and effortful decisions by
employing Type 2 processing (Kahneman, 2011). Various
versions of dual-processing theory exist, with the key dis-
tinctions being in the attributes associated with each type
of process (for a more detailed review of dual-process the-
ories, see Evans & Stanovich, 2013). For example, older
dual-systems accounts of decision making suggest that each
process is associated with specific cognitive or neurological
systems. In contrast, dual-process (sometimes termed
dual-type) theories propose that the processes are distinct
but do not necessarily occur in separate cognitive or neuro-
logical systems (hence the use of process over system)
(Evans & Stanovich, 2013).
Many applied domains have adapted a dual-processing

model to explain task- and domain-specific decisions,
with varying degrees of success (Evans, 2008). For ex-
ample, when a physician is deciding if a patient should
be assigned to a coronary care unit or a regular nursing
bed, the doctor can use a heuristic or utilize heart dis-
ease predictive instruments to make the decision
(Marewski & Gigerenzer, 2012). In the case of the heur-
istic, the doctor would employ a few simple rules
(diagrammed in Fig. 1) that would guide her decision,
such as considering the patient’s chief complaint being
chest pain. Another approach is to apply deliberate men-
tal effort to make a more time-consuming and effortful
decision, which could include using heart disease
predictive instruments (Marewski & Gigerenzer, 2012).
In a review of how applied domains in higher-level cog-
nition have implemented a dual-processing model for
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domain-specific decisions, Evans (2008) argues that prior
work has conflicting accounts of Type 1 and 2 process-
ing. Some studies suggest that the two types work in
parallel while others reveal conflicts between the Types
(Sloman, 2002). In the physician example proposed by
Marewski and Gigerenzer (2012), the two types are not
mutually exclusive, as doctors can utilize Type 2 to make
a more thoughtful decision that is also influenced by
some rules of thumb or Type 1. In sum, Evans (2008) ar-
gues that due to the inconsistency of classifying Type 1
and 2, the distinction between only two types is likely an
oversimplification. Evans (2008) suggests that the litera-
ture only consistently supports the identification of pro-
cesses that require a capacity-limited, working memory
resource versus those that do not. Evans and Stanovich
(2013) updated their definition based on new behavioral
and neuroscience evidence stating, “the defining charac-
teristic of Type 1 processes is their autonomy. They do
not require ‘controlled attention,’ which is another way
of saying that they make minimal demands on working

memory resources” (p. 236). There is also debate on
how to define the term working memory (Cowan, 2017).
In line with prior work on decision making with visuali-
zations (Patterson et al., 2014), we adopt the definition
that working memory consists of multiple components
that maintain a limited amount of information (their
capacity) for a finite period (Cowan, 2017). Contempor-
ary theories of working memory also stress the ability to
engage attention in a controlled manner to suppress
automatic responses and maintain the most
task-relevant information with limited capacity (Engle,
Kane, & Tuholski, 1999; Kane, Bleckley, Conway, &
Engle, 2001; Shipstead, Harrison, & Engle, 2015).
Identifying processes that require significant working

memory provides a definition of Type 2 processing with
observable neural correlates. Therefore, in line with Ev-
ans and Stanovich (2013), in the remainder of this
manuscript, we will use significant working memory
capacity demands and significant need for cognitive con-
trol, as defined above, as the criterion for Type 2 pro-
cessing. In the context of visualization decision making,
processes that require significant working memory are
those that depend on the deliberate application of work-
ing memory to function. Type 1 processing occurs out-
side of users’ conscious awareness and may utilize small
amounts of working memory but does not rely on con-
scious processing in working memory to drive the
process. It should be noted that Type 1 and 2 processing
are not mutually exclusive and many real-world deci-
sions likely incorporate all processes. This review will at-
tempt to identify tasks in visualization decision making
that require significant working memory and capacity
(Type 2 processing) and those that rely more heavily on
Type 1 processing, as a first step to combining decision
theory with visualization cognition.

Visualization cognition
Visualization cognition is a subset of visuospatial rea-
soning, which involves deriving meaning from external
representations of visual information that maintain con-
sistent spatial relations (Tversky, 2005). Broadly, two dis-
tinct approaches delineate visualization cognition
models (Shah, Freedman, & Vekiri, 2005). The first ap-
proach refers to perceptually focused frameworks which
attempt to specify the processes involved in perceiving
visual information in displays and make predictions
about the speed and efficiency of acquiring information
from a visualization (e.g. Hollands & Spence, 1992;
Lohse, 1993; Meyer, 2000; Simkin & Hastie, 1987). The
second approach considers the influence of prior know-
ledge as well as perception. For example, Cognitive Fit
Theory (Vessey, 1991), suggests that the user compares a
learned graphic convention (mental schema) to the vis-
ual depiction. Visualizations that do not match the

Fig. 1 Coronary care unit decision tree, which illustrates a sequence
of rules that a doctor could use to guide treatment decisions.
Redrawn from “Heuristic decision making in medicine” by J.
Marewski, and G. Gigerenzer 2012, Dialogues in clinical neuroscience,
14(1), 77. ST-segment change refers to if certain anomaly appears in
the patient’s electrocardiogram. NTG nitroglycerin, MI myocardial
infarction, T T-waves with peaking or inversion
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mental schema require cognitive transformations to
make the visualization and mental representation align.
For example, Fig. 2 illustrates a fictional relationship be-
tween the population growth of Species X and a preda-
tor species. At first glance, it may appear that when the
predator species was introduced that the population of
Species X dropped. However, after careful observation,
you may notice that the higher population values are lo-
cated lower on the Y-axis, which does not match our
mental schema for graphs. With some effort, you can
mentally reorder the values on the Y-axis to match your
mental schema and then you may notice that the intro-
duction of the predator species actually correlates with
growth in the population of Species X. When the viewer
is forced to mentally transform the visualization to
match their mental schema, processing steps are in-
creased, which may increase errors, time to complete a
task, and demand on working memory (Vessey, 1991).
Pinker (1990) proposed a cognitive model (see Fig. 3),

which provides an integrative structure that denotes the
distinction between top-down and bottom-up encoding
mechanisms in understanding data graphs. Researchers
have generalized this model to propose theories of com-
prehension, learning, and memory with visual information
(Hegarty, 2011; Kriz & Hegarty, 2007; Shah & Freedman,
2011). The Pinker (1990) model suggests that from the
visual array, defined as the unprocessed neuronal firing in
response to visualizations, bottom-up encoding mecha-
nisms are utilized to construct a visual description, which
is the mental encoding of the visual stimulus. Following

encoding, viewers mentally search long-term memory for
knowledge relevant for interpreting the visualization. This
knowledge is proposed to be in the form of a graph
schema.
Then viewers use a match process, where the graph

schema that is the most similar to the visual array is re-
trieved. When a matching graph schema is found, the
schema becomes instantiated. The visualization conven-
tions associated with the graph schema can then help
the viewer interpret the visualization (message assembly
process). For example, Fig. 3 illustrates comprehension
of a bar chart using the Pinker (1990) model. In this ex-
ample, the matched graph schema for a bar graph speci-
fies that the dependent variable is on the Y-axis and the
independent variable is on the X-axis; the instantiated
graph schema incorporates the visual description and
this additional information. The conceptual message is
the resulting mental representation of the visualization
that includes all supplemental information from
long-term memory and any mental transformations the
viewer may perform on the visualization. Viewers may
need to transform their mental representation of the
visualization based on their task or conceptual question.
In this example, the viewer’s task is to find the average
of A and B. To do this, the viewer must interpolate in-
formation in the bar chart and update the conceptual
message with this additional information. The concep-
tual question can guide the construction of the mental
representation through interrogation, which is the
process of seeking out information that is necessary to
answer the conceptual question. Top-down encoding
mechanisms can influence each of the processes.
The influences of top-down processes are also empha-

sized in a previous attempt by Patterson et al. (2014) to
extend visualization cognition theories to decision mak-
ing. The Patterson et al. (2014) model illustrates how
top-down cognitive processing influences encoding, pat-
tern recognition, and working memory, but not decision
making or the response. Patterson et al. (2014) use the
multicomponent definition of working memory, pro-
posed by Baddeley and Hitch (1974) and summarized by
Cowan (2017) as a “multicomponent system that holds
information temporarily and mediates its use in ongoing
mental activities” (p. 1160). In this conception of work-
ing memory, a central executive controls the functions
of working memory. The central executive can, among
other functions, control attention and hold information
in a visuo-spatial temporary store, which is where infor-
mation can be maintained temporally for decision mak-
ing without being stored in long-term memory
(Baddeley & Hitch, 1974).
While incorporating working memory into a

visualization decision-making model is valuable, the Pat-
terson et al. (2014) model leaves some open questions

Fig. 2 Fictional relationship between the population growth of
Species X and a predator species, where the Y-axis ordering does
not match standard graphic conventions. Notice that the y-axis is
reverse ordered. This figure was inspired by a controversial graphic
produced by Christine Chan of Reuters, which showed the
relationship between Florida’s “Stand Your Ground” law and firearm
murders with the Y-axis reversed ordered (Lallanilla, 2014)
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about relationships between components and processes.
For example, their model lacks a pathway for working
memory to influence decisions based on top-down pro-
cessing, which is inconsistent with well-established re-
search in decision science (e.g. Gigerenzer & Todd, 1999;
Kahneman & Tversky, 1982). Additionally, the normal
processing pathway, depicted in the Patterson model, is an
oversimplification of the interaction between top-down
and bottom-up processing that is documented in a large
body of literature (e.g. Engel, Fries, & Singer, 2001;
Mechelli, Price, Friston, & Ishai, 2004).

A proposed integrated model of decision making with
visualizations
Our proposed model (Fig. 4) introduces a dual-process
account of decision making (Evans & Stanovich, 2013;

Gigerenzer & Gaissmaier, 2011; Kahneman, 2011) into
the Pinker (1990) model of visualization comprehension.
A primary addition of our model is the inclusion of
working memory, which is utilized to answer the con-
ceptual question and could have a subsequent impact on
each stage of the decision-making process, except
bottom-up attention. The final stage of our model in-
cludes a decision-making process that derives from the
conceptual message and informs behavior. In line with a
dual-process account (Evans & Stanovich, 2013;
Gigerenzer & Gaissmaier, 2011; Kahneman, 2011), the
decision step can either be completed with Type 1
processing, which only uses minimal working memory
(Evans & Stanovich, 2013) or recruit significant working
memory, constituting Type 2 processing. Also following
Evans and Stanovich (2013), we argue that people can

Fig. 3 Adapted figure from the Pinker (1990) model of visualization comprehension, which illustrates each process

Fig. 4 Model of visualization decision making, which emphasizes the influence of working memory. Long-term memory can influence all
components and processes in the model either via pre-attentive processes or by conscious application of knowledge
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make a decision with a visualization while using minimal
amounts of working memory. We classify this as Type 1
thinking. Lohse (1997) found that when participants
made judgments about budget allocation using profit
charts, individuals with less working memory capacity
performed equally well compared to those with more
working memory capacity, when they only made deci-
sions about three regions (easier task). However, when
participants made judgments about nine regions (harder
task), individuals with more working memory capacity
outperformed those with less working memory capacity.
The results of the study reveal that individual differences
in working memory capacity only influence performance
on complex decision-making tasks (Lohse, 1997).

Figure 5 (top) illustrates one way that a viewer could
make a Type 1 decision about whether the average value
of bars A and B is closer to 2 or 2.2. Figure 5 (top) illus-
trates how a viewer might make a fast and computation-
ally light decision in which she decides that the middle
point between the two bars is closer to the salient tick
mark of 2 on the Y-axis and answers 2 (which is incor-
rect). In contrast, Fig. 5 (bottom) shows a second pos-
sible method of solving the same problem by utilizing
significant working memory (Type 2 processing). In this
example, the viewer has recently learned a strategy to
address similar problems, uses working memory to guide
a top-down attentional search of the visual array, and
identifies the values of A and B. Next, she instantiates a

Fig. 5 Examples of a fast Type 1 (top) and slow Type 2 (bottom) decision outlined in our proposed model of decision making with visualizations.
In these examples, the viewer’s task is to decide if the average value of bars A and B are closer to 2 or 2.2. The thick dotted line denotes
significant working memory and the thin dotted line negligible working memory
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different graph schema than in the prior example by
utilizing working memory and completes an effortful
mental computation of 2.4 + 1.9/2. Ultimately, the appli-
cation of working memory leads to a different and more
effortful decision than in Fig. 5 (top). This example illus-
trates how significant amounts of working memory can
be used at early stages of the decision-making process
and produce downstream effects and more considered
responses. In the following sections, we provide a select-
ive review of work on decision making with visualiza-
tions that demonstrates direct and indirect evidence for
our proposed model.

Empirical studies of visualization decision making
Review method
To determine if there is cross-domain empirical support
for a dual-process account of decision making with visual-
izations, we selectively reviewed studies of complex deci-
sion making with computer-generated two-dimensional
(2D) static visualizations. To illustrate the application of a
dual-process account of decision making to visualization
research, this review highlights representative studies from
diverse application areas. Interdisciplinary groups con-
ducted many of these studies and, as such, it is not accur-
ate to classify the studies in a single discipline. However,
to help the reader evaluate the cross-domain nature of
these findings, Table 1 includes the application area for
the specific tasks used in each study.
In reviewing this work, we observed four key

cross-domain findings that support a dual-process ac-
count of decision making (see Table 2). The first two
support the inclusion of Type 1 processing, which is il-
lustrated by the direct path for bottom-up attention to
guide decision making with the minimal application of
working memory (see Fig. 5 top). The first finding is that

visualizations direct viewers’ bottom-up attention, which
can both help and hinder decision making (see
“Bottom-up attention”). The second finding is that
visual-spatial biases comprise a unique category of bias
that is a direct result of the visual encoding technique
(see “Visual-Spatial Biases”). The third finding supports
the inclusion of Type 2 processing in our proposed
model and suggests that visualizations vary in cognitive
fit between the visual description, graph schema, and
conceptual question. If the fit is poor (i.e. there is a mis-
match between the visualization and a decision-making
component), working memory is used to perform cor-
rective mental transformations (see “Cognitive fit”). The
final cross-domain finding proposes that knowledge-dri-
ven processes may interact with the effects of the visual
encoding technique (see “Knowledge-driven processing”)
and could be a function of either Type 1 or 2 processes.
Each of these findings will be detailed at length in the
relevant sections. The four cross-domain findings do not
represent an exhaustive list of all cross-domain findings
that pertain to visualization cognition. However, these
were selected as illustrative examples of Type 1 and 2
processing that include significant contributions from
multiple domains. Further, some of the studies could fit
into multiple sections and were included in a particular
section as illustrative examples.

Type 1
Bottom-up attention
The first cross-domain finding that characterizes Type 1
processing in visualization decision making is that visu-
alizations direct participants’ bottom-up attention to spe-
cific visual features, which can be either beneficial or
detrimental to decision making. Bottom-up attention
consists of involuntary shifts in focus to salient features

Table 1 Application area for the tasks used in the reviewed studies

Task application area Studies

Meteorology, weather, and natural disaster
forecasting, weather communication

Cheong et al. (2016); Fabrikant et al. (2010); Gattis and Holyoak (1996); Hegarty et al. (2010); Joslyn and
LeClerc (2013); Padilla et al. (2015); Ruginski et al. (2016)

Health research, medical images,
health risk communication

Ancker et al. (2006); Fagerlin et al. (2005); Garcia-Retamero and Galesic (2009);
Keehner et al. (2011); Keller et al. (2009); McCabe and Castel (2008); Okan et al. (2015);
Okan, Garcia-Retamero, Cokely, and Maldonado (2012); Schirillo and Stone (2005);
Stone et al. (2003); Stone et al. (1997); Waters et al. (2006); Waters et al. (2007)

Land-use planning, spatial planning,
urban planning

Dennis and Carte (1998); Lee and Bednarz (2009); Smelcer and Carmel (1997);
Wilkening and Fabrikant (2011)

Cost comparison, finance Lohse (1993); Vessey and Galletta (1991)

Geospatial location Hegarty et al. (2016); McKenzie et al. (2016)

Error-bar interpretation, graph comparison,
statistics communication, science reasoning

Belia et al. (2005); Feeney et al. (2000); Newman and Scholl (2012); Sanchez and Wiley (2006);
Wainer et al. (1999)

Map reading, map perception Brügger et al. (2017); St. John et al. (2001)

Social network, computer connections Tversky et al. (2012); Zhu and Watts (2010)

Map-based threat identification,
emergency management

Bailey et al. (2007); Shen et al. (2012)
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of a visualization and does not utilize working memory
(Connor, Egeth, & Yantis, 2004), therefore it is a Type 1
process. The research reviewed in this section illustrates
that bottom-up attention has a profound influence on
decision making with visualizations. A summary of vis-
ual features that studies have used to attract bottom-up
attention can be found in Table 3.
Numerous studies show that salient information in a

visualization draws viewers’ attention (Fabrikant,
Hespanha, & Hegarty, 2010; Hegarty, Canham, &
Fabrikant, 2010; Hegarty, Friedman, Boone, & Barrett,
2016; Padilla, Ruginski, & Creem-Regehr, 2017; Schirillo
& Stone, 2005; Stone et al., 2003; Stone, Yates, & Parker,
1997). The most common methods for demonstrating
that visualizations focus viewers’ attention is by showing
that viewers miss non-salient but task-relevant informa-
tion (Schirillo & Stone, 2005; Stone et al., 1997; Stone et
al., 2003), viewers are biased by salient information
(Hegarty et al., 2016; Padilla, Ruginski et al., 2017) or
viewers spend more time looking at salient information
in a visualization (Fabrikant et al., 2010; Hegarty et al.,
2010). For example, Stone et al. (1997) demonstrated
that when viewers are asked how much they would pay
for an improved product using the visualizations in
Fig. 6, they focus on the number of icons while missing
the base rate of 5,000,000. If a viewer simply totals the
icons, the standard product appears to be twice as dan-
gerous as the improved product, but because the base
rate is large, the actual difference between the two prod-
ucts is insignificantly small (0.0000003; Stone et al.,
1997). In one experiment, participants were willing to
pay $125 more for improved tires when viewing the vi-
sualizations in Fig. 6 compared to a purely textual repre-
sentation of the information. The authors also
demonstrated the same effect for improved toothpaste,

with participants paying $0.95 more when viewing a vis-
ual depiction compared to text. The authors’ term this
heuristic of focusing on salient information and ignoring
other data the foreground effect (Stone et al., 1997) (see
also Schirillo & Stone, 2005; Stone et al., 2003).
A more direct test of visualizations guiding bottom-up

attention is to examine if salient information biases
viewers’ judgments. One method involves identifying sa-
lient features using a behaviorally validated saliency
model, which predicts the locations that will attract
viewers’ bottom-up attention (Harel, 2015; Itti, Koch, &
Niebur, 1998; Rosenholtz & Jin, 2005). In one study, re-
searchers compared participants’ judgments with differ-
ent hurricane forecast visualizations and then, using the
Itti et al. (1998) saliency algorithm, found that the differ-
ences in what was salient in the two visualizations corre-
lated with participants’ performance (Padilla, Ruginski et
al., 2017). Specifically, they suggested that the salient
borders of the Cone of Uncertainty (see Fig. 7, left),
which is used by the National Hurricane Center to dis-
play hurricane track forecasts, leads some people to in-
correctly believe that the hurricane is growing in
physical size, which is a misunderstanding of the prob-
ability distribution of hurricane paths that the cone is
intended to represent (Padilla, Ruginski et al., 2017; see
also Ruginski et al., 2016). Further, they found that when

Table 2 Overview of the four cross-domain findings along with the type of processing that they reflect

Evidence for Type

Cross-domain finding 1 2 Either

1 Visualizations direct viewers’ bottom-up attention, which can both help and hinder decision making. ×

2 The visual encoding technique gives rise to visual-spatial biases. ×

3 Visualizations that have greater cognitive fit produce faster and more effective decisions. ×

4 Knowledge-driven processes can interact with the effects of the encoding technique. ×

The italicised words correspond to section titles

Table 3 Visual features used in the reviewed studies to attract
bottom-up attention

Features Studies

Color Fabrikant et al. (2010); Hegarty et al. (2010)

Edges and
lines

Fabrikant et al. (2010); Hegarty et al. (2010); Padilla,
Ruginski, and Creem-Regehr (2017)

Foreground
information

Schirillo and Stone (2005); Stone et al. (2003);
Stone et al. (1997)

Fig. 6 Icon arrays used to illustrate the risk of standard or improved
tires. Participants were tasked with deciding how much they would
pay for the improved tires. Note the base rate of 5 M drivers was
represented in text. Redrawn from “Effects of numerical and graphical
displays on professed risk-taking behavior” by E. R. Stone, J. F. Yates, &
A. M. Parker. 1997, Journal of Experimental Psychology: Applied, 3(4), 243
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the same data were represented as individual hurricane
paths, such that there was no salient boundary (see Fig.
7, right), viewers intuited the probability of hurricane
paths more effectively than the Cone of Uncertainty.
However, an individual hurricane path biased viewers’
judgments if it intersected a point of interest. For ex-
ample, in Fig. 7 (right), participants accurately judged
that locations closer to the densely populated lines
(highest likelihood of storm path) would receive more
damage. This correct judgment changed when a location
farther from the center of the storm was intersected by a
path, but the closer location was not (see locations a and
b in Fig. 7 right). With both visualizations, the re-
searchers found that viewers were negatively biased by
the salient features for some tasks (Padilla, Ruginski et
al., 2017; Ruginski et al., 2016).
That is not to say that saliency only negatively impacts

decisions. When incorporated into visualization design,
saliency can guide bottom-up attention to task-relevant
information, thereby improving performance (e.g.
Fabrikant et al., 2010; Fagerlin, Wang, & Ubel, 2005;
Hegarty et al., 2010; Schirillo & Stone, 2005; Stone et al.,
2003; Waters, Weinstein, Colditz, & Emmons, 2007).
One compelling example using both eye-tracking mea-
sures and a saliency algorithm demonstrated that salient
features of weather maps directed viewers’ attention to
different variables that were visualized on the maps
(Hegarty et al., 2010) (see also Fabrikant et al., 2010).
Interestingly, when the researchers manipulated the

relative salience of temperature versus pressure (see
Fig. 8), the salient features captured viewers’ overt atten-
tion (as measured by eye fixations) but did not influence
performance, until participants were trained on how to
effectively interpret the features. Once viewers were
trained, their judgments were facilitated when the rele-
vant features were more salient (Hegarty et al., 2010).
This is an instructive example of how saliency may dir-
ect viewers’ bottom-up attention but may not influence
their performance until viewers have the relevant
top-down knowledge to capitalize on the affordances of
the visualization.
In sum, the reviewed studies suggest that bottom-up at-

tention has a profound influence on decision making with
visualizations. This is noteworthy because bottom-up at-
tention is a Type 1 process. At a minimum, the work sug-
gests that Type 1 processing influences the first stages of
decision making with visualizations. Further, the studies
cited in this section provide support for the inclusion of
bottom-up attention in our proposed model.

Visual-spatial biases
A second cross-domain finding that relates to Type 1
processing is that visualizations can give rise to visual--
spatial biases that can be either beneficial or detrimental
to decision making. We are proposing the new concept
of visual-spatial biases and defining this term as a bias
that elicits heuristics, which are a direct result of the vis-
ual encoding technique. Visual-spatial biases likely

Fig. 7 An example of the Cone of Uncertainty (left) and the same data represented as hurricane paths (right). Participants were tasked with
evaluating the level of damage that would incur to offshore oil rigs at specific locations, based on the hurricane forecast visualization. Redrawn
from “Effects of ensemble and summary displays on interpretations of geospatial uncertainty data” by L. M. Padilla, I. Ruginski, and
S. H. Creem-Regehr. 2017, Cognitive Research: Principles and Implications, 2(1), 40
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originate as a Type 1 process as we suspect they are con-
nected to bottom-up attention, and if detrimental to de-
cision making, have to be actively suppressed by
top-down knowledge and cognitive control mechanisms
(see Table 4 for summary of biases documented in this
section). Visual-spatial biases can also improve
decision-making performance. As Card, Mackinlay, and
Shneiderman (1999) point out, we can use vision to
think, meaning that visualizations can capitalize on

visual perception to interpret a visualization without ef-
fort when the visual biases elucidated by the
visualization are consistent with the correct
interpretation.
Tversky (2011) presents a taxonomy of visual-spatial

communications that are intrinsically related to thought,
which are likely the bases for visual-spatial biases (see
also Fabrikant & Skupin, 2005). One of the most
commonly documented visual-spatial biases that we

Fig. 8 Eye-tracking data from Hegarty et al. (2010). Participants viewed an arrow located in Utah (obscured by eye-tracking data in the figure) and
made judgments about whether the arrow correctly identified the wind direction. The black isobars were the task-relevant information. Notice that after
instructions, viewers with the pressure-salient visualizations focused on the isobars surrounding Utah, rather than on the legend or in other regions. The
panels correspond to the conditions in the original study

Table 4 Biases documented in the reviewed studies

Bias Studies

Anchoring Belia et al. (2005)

Anecdotal evidence Fagerlin et al. (2005)

Containment McKenzie et al. (2016); Joslyn and LeClerc (2013); Grounds et al. (2017); Newman and Scholl (2012);
Ruginski et al. (2016)

Deterministic construal Grounds et al. (2017); Joslyn and LeClerc (2013)

High-quality image Keehner et al. (2011); McCabe and Castel (2008); St. John et al. (2001); Ancker et al. (2006); Brügger et al. (2017);
Hegarty et al. (2012); Wainer et al. (1999); Wilkening and Fabrikant (2011)

Risk aversion Schirillo and Stone (2005)

Side effect aversion Waters et al. (2006); Waters et al. (2007)
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observed across domains is a containment
conceptualization of boundary representations in visuali-
zations. Tversky (2011) makes the analogy, “Framing a
picture is a way of saying that what is inside the picture
has a different status from what is outside the picture”
(p. 522). Similarly, Fabrikant and Skupin (2005) describe
how, “They [boundaries] help partition an information
space into zones of relative semantic homogeneity” (p.
673). However, in visualization design, it is common to
take continuous data and visually represent them with
boundaries (i.e. summary statistics, error bars, isocon-
tours, or regions of interest; Padilla et al., 2015; Padilla,
Quinan, Meyer, & Creem-Regehr, 2017). Binning con-
tinuous data is a reasonable approach, particularly when
intended to make the data simpler for viewers to under-
stand (Padilla, Quinan, et al., 2017). However, it may
have the unintended consequence of creating artificial
boundaries that can bias users—leading them to respond
as if data within a containment is more similar than data
across boundaries. For example, McKenzie, Hegarty,
Barrett, and Goodchild (2016) showed that participants
were more likely to use a containment heuristic to make
decisions about Google Map’s blue dot visualization
when the positional uncertainty data were visualized as a
bounded circle (Fig. 9 right) compared to a Gaussian
fade (Fig. 9 left) (see also Newman & Scholl, 2012;
Ruginski et al., 2016). Recent work by Grounds, Joslyn,
and Otsuka (2017) found that viewers demonstrate a
“deterministic construal error” or the belief that visuali-
zations of temperature uncertainty represent a determin-
istic forecast. However, the deterministic construal error
was not observed with textual representations of the
same data (see also Joslyn & LeClerc, 2013).
Additionally, some visual-spatial biases follow the same

principles as more well-known decision-making biases re-
vealed by researchers in behavioral economics and decision
science. In fact, some decision-making biases, such as
anchoring, the tendency to use the first data point to make
relative judgments, seem to have visual correlates (Belia,

Fidler, Williams, & Cumming, 2005). For example, Belia et
al. (2005) asked experts with experience in statistics to align
two means (representing “Group 1” and “Group 2”) with
error bars so that they represented data ranges that were
just significantly different (see Fig. 10 for example of stim-
uli). They found that when the starting position of Group 2
was around 800 ms, participants placed Group 2 higher
than when the starting position for Group 2 was at around
300 ms. This work demonstrates that participants used the
starting mean of Group 2 as an anchor or starting point of
reference, even though the starting position was arbitrary.
Other work finds that visualizations can be used to reduce
some decision-making biases including anecdotal evidence
bias (Fagerlin et al., 2005), side effect aversion (Waters et
al., 2007; Waters, Weinstein, Colditz, & Emmons, 2006),
and risk aversion (Schirillo & Stone, 2005).
Additionally, the mere presence of a visualization may

inherently bias viewers. For example, viewers find scientific
articles with high-quality neuroimaging figures to have
greater scientific reasoning than the same article with a
bar chart or without a figure (McCabe & Castel, 2008).
People tend to unconsciously believe that high-quality sci-
entific images reflect high-quality science—as illustrated
by work from Keehner, Mayberry, and Fischer (2011)
showing that viewers rate articles with three-dimensional
brain images as more scientific than those with 2D images,
schematic drawings, or diagrams (See Fig. 11). Unintui-
tively, however, high-quality complex images can be detri-
mental to performance compared to simpler visualizations
(Hegarty, Smallman, & Stull, 2012; St. John, Cowen, Small-
man, & Oonk, 2001; Wilkening & Fabrikant, 2011).
Hegarty et al. (2012) demonstrated that novice users prefer
realistically depicted maps (see Fig. 12), even though these
maps increased the time taken to complete the task and
focused participants’ attention on irrelevant information
(Ancker, Senathirajah, Kukafka, & Starren, 2006; Brügger,
Fabrikant, & Çöltekin, 2017; St. John et al., 2001; Wainer,
Hambleton, & Meara, 1999; Wilkening & Fabrikant,
2011). Interestingly, professional meteorologists also

Fig. 9 Example stimuli from McKenzie et al. (2016) showing circular semi-transparent overlays used by Google Maps to indicate the uncertainty of
the users’ location. Participants compared two versions of these visualizations and determined which represented the most accurate positional
location. Redrawn from “Assessing the effectiveness of different visualizations for judgments of positional uncertainty” by G. McKenzie, M. Hegarty,
T. Barrett, and M. Goodchild. 2016, International Journal of Geographical Information Science, 30(2), 221–239
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demonstrated the same biases as novice viewers (Hegarty
et al., 2012) (see also Nadav-Greenberg, Joslyn, & Taing,
2008).
We argue that visual-spatial biases reflect a Type 1

process, occurring automatically with minimal working
memory. Work by Sanchez and Wiley (2006) provides
direct evidence for this assertion using eye-tracking data
to demonstrate that individuals with less working mem-
ory capacity attend to irrelevant images in a scientific article
more than those with greater working memory capacity.
The authors argue that we are naturally drawn to images
(particularly high-quality depictions) and that significant
working memory capacity is required to shift focus away
from images that are task-irrelevant. The ease by which vi-
sualizations captivate our focus and direct our bottom-up
attention to specific features likely increases the impact of
these biases, which may be why some visual-spatial biases
are notoriously difficult to override using working memory
capacity (see Belia et al., 2005; Boone, Gunalp, & Hegarty,
in press; Joslyn & LeClerc, 2013; Newman & Scholl, 2012).
We speculate that some visual-spatial biases are intertwined
with bottom-up attention—occurring early in the

decision-making process and influencing the down-stream
processes (see our model in Fig. 4 for reference), making
them particularly unremitting.

Type 2
Cognitive fit
We also observe a cross-domain finding involving Type
2 processing, which suggests that if there is a mismatch
between the visualization and a decision-making compo-
nent, working memory is used to perform corrective
mental transformations. Cognitive fit is a term used to
describe the correspondence between the visualization
and conceptual question or task (see our model for ref-
erence; for an overview of cognitive fit, see Vessey,
Zhang, & Galletta, 2006). Those interested in examining
cognitive fit generally attempt to identify and reduce
mismatches between the visualization and one of the
decision-making components (see Table 5 for a break-
down of the decision-making components that the
reviewed studies evaluated). When there is a mismatch
produced by the default Type 1 processing, it is argued
that significant working memory (Type 2 processing) is
required to resolve the discrepancy via mental transfor-
mations (Vessey et al., 2006). As working memory is
capacity limited, the magnitude of mental transform-
ation or amount of working memory required is one
predictor of reaction times and errors.
Direct evidence for this claim comes from work dem-

onstrating that cognitive fit differentially influenced the
performance of individuals with more and less working
memory capacity (Zhu & Watts, 2010). The task was to
identify which two nodes in a social media network dia-
gram should be removed to disconnect the maximal
number of nodes. As predicted by cognitive fit theory,
when the visualization did not facilitate the task (Fig. 13
left), participants with less working memory capacity
were slower than those with more working memory cap-
acity. However, when the visualization aligned with the
task (Fig. 13 right), there was no difference in perform-
ance. This work suggests that when there is misalign-
ment between the visualization and a decision-making
process, people with more working memory capacity
have the resources to resolve the conflict, while those
with less resources show performance degradations.2

Other work only found a modest relationship between
working memory capacity and correct interpretations of
high and low temperature forecast visualizations
(Grounds et al., 2017), which suggests that, for some vi-
sualizations, viewers utilize little working memory.
As illustrated in our model, working memory can be

recruited to aid all stages of the decision-making process
except bottom-up attention. Work that examines cogni-
tive fit theory provides indirect evidence that working
memory is required to resolve conflicts in the schema

Fig. 10 Example display and instructions from Belia et al. (2005).
Redrawn from “Researchers misunderstand confidence intervals and
standard error bars” by S. Belia, F. Fidler, J. Williams, and G.
Cumming. 2005, Psychological Methods, 10(4), 390. Copyright 2005 by
“American Psychological Association”
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Fig. 11 Image showing participants’ ratings of three-dimensionality and scientific credibility for a given neuroimaging visualization, originally
published in grayscale (Keehner et al., 2011)

Fig. 12 Example stimuli from Hegarty et al. (2012) showing maps with varying levels of realism. Both novice viewers and meteorologists were
tasked with selecting a visualization to use and performing a geospatial task. The panels correspond to the conditions in the original study
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matching and a decision-making component. For ex-
ample, one way that a mismatch between a viewer’s
mental schema and visualization can arise is when the
viewer uses a schema that is not optimal for the task.
Tversky, Corter, Yu, Mason, and Nickerson (2012)
primed participants to use different schemas by describ-
ing the connections in Fig. 14 in terms of either transfer
speed or security levels. Participants then decided on the
most efficient or secure route for information to travel
between computer nodes with either a visualization that
encoded data using the thickness of connections, con-
tainment, or physical distance (see Fig. 14). Tversky et al.
(2012) found that when the links were described based
on their information transfer speed, thickness and dis-
tance visualizations were the most effective—suggesting
that the speed mental schema was most closely matched
to the thickness and distance visualizations, whereas the
speed schema required mental transformations to align
with the containment visualization. Similarly, the thick-
ness and containment visualizations outperformed the
distance visualization when the nodes were described as
belonging to specific systems with different security

levels. This work and others (Feeney, Hola, Liversedge,
Findlay, & Metcalf, 2000; Gattis & Holyoak, 1996;
Joslyn & LeClerc, 2013; Smelcer & Carmel, 1997) pro-
vides indirect evidence that gratuitous realignment be-
tween mental schema and the visualization can be
error-prone and visualization designers should work to
reduce the number of transformations required in the
decision-making process.
Researchers from multiple domains have also

documented cases of misalignment between the task, or
conceptual question, and the visualization. For example,
Vessey and Galletta (1991) found that participants
completed a financial-based task faster when the
visualization they chose (graph or table, see Fig. 15)
matched the task (spatial or textual). For the spatial task,
participants decided which month had the greatest dif-
ference between deposits and withdrawals. The textual
or symbolic tasks involved reporting specific deposit and
withdrawal amounts for various months. The authors ar-
gued that when there is a mismatch between the task
and visualization, the additional transformation accounts
for the increased time taken to complete the task

Table 5 Decision-making components that the reviewed studies evaluated the cognitive fit of

Cognitive fit examined Studies

Visualization - > task Dennis and Carte (1998); Grounds et al. (2017); Huang et al. (2006); Nadav-Greenberg et al. (2008);
Smelcer and Carmel (1997); Vessey and Galletta (1991); Zhu and Watts (2010)

Visualization - > primed schema Tversky et al. (2012)

Visualization - > learned schema Feeney et al. (2000); Gattis and Holyoak (1996); Joslyn and LeClerc (2013)

Fig. 13 Examples of social media network diagrams from Zhu and Watts (2010). The authors argue that the figure on the right is more aligned
with the task of identifying the most interconnected nodes than the figure on the left
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(Vessey & Galletta, 1991) (see also Dennis & Carte,
1998; Huang et al., 2006), which likely takes place in the
inference process of our proposed model.
The aforementioned studies provide direct (Zhu &

Watts, 2010) and indirect (Dennis & Carte, 1998; Feeney
et al., 2000; Gattis & Holyoak, 1996; Huang et al., 2006;
Joslyn & LeClerc, 2013; Smelcer & Carmel, 1997;

Tversky et al., 2012; Vessey & Galletta, 1991) evidence
that Type 2 processing recruits working memory to re-
solve misalignment between decision-making processes
and the visualization that arise from default Type 1 pro-
cessing. These examples of Type 2 processing using
working memory to perform effortful mental computa-
tions are consistent with the assertions of Evans and Sta-
novich (2013) that Type 2 processes enact goal directed
complex processing. However, it is not clear from the
reviewed work how exactly the visualization and
decision-making components are matched. Newman and
Scholl (2012) propose that we match the schema and
visualization based on the similarities between the salient
visual features, although this proposal has not been tested.
Further, work that assesses cognitive fit in terms of the
visualization and task only examines the alignment of
broad categories (i.e., spatial or semantic). Beyond these
broad classifications, it is not clear how to predict if a task
and visualization are aligned. In sum, there is not a suffi-
cient cross-disciplinary theory for how mental schemas
and tasks are matched to visualizations. However, it is
apparent from the reviewed work that Type 2 processes
(requiring working memory) can be recruited during the
schema matching and inference processes.

Either type 1 and/or 2
Knowledge-driven processing
In a review of map-reading cognition, Lobben (2004)
states, “…research should focus not only on the needs of
the map reader but also on their map-reading skills and
abilities” (p. 271). In line with this statement, the final
cross-domain finding is that the effects of knowledge
can interact with the affordances or biases inherent in
the visualization method. Knowledge may be held tem-
porally in working memory (Type 2), held in long-term
knowledge but effortfully used (Type 2), or held in
long-term knowledge but automatically applied (Type 1).

Fig. 14 Example of stimuli from Tversky et al. (2012) showing three
types of encoding techniques for connections between nodes
(thickness, containment, and distance). Participants were asked to
select routes between nodes with different descriptions of the
visualizations. Redrawn from “Representing category and continuum:
Visualizing thought” by B. Tversky, J. Corter, L. Yu, D. Mason, and J.
Nickerson. In Diagrams 2012 (p. 27), P. Cox, P. Rodgers, and B.
Plimmer (Eds.), 2012, Berlin Heidelberg: Springer-Verlag

a b

Fig. 15 Examples of stimuli from Vessey and Galletta (1991) depicting deposits and withdraw amounts over the course of a year with a graph (a)
and table (b). Participants completed either a spatial or textual task with the chart or table. Redrawn from “Cognitive fit: An empirical study of
information acquisition” by I. Vessey, and D. Galletta. 1991, Information systems research, 2(1), 72–73. Copyright 1991 by “INFORMS”
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As a result, knowledge-driven processing can involve ei-
ther Type 1 or Type 2 processes.
Both short- and long-term knowledge can influence

visualization affordances and biases. However, it is diffi-
cult to distinguish whether Type 2 processing is using
significant working memory capacity to temporarily hold
knowledge or if participants have stored the relevant
knowledge in long-term memory and processing is more
automatic. Complicating the issue, knowledge stored in
long-term memory can influence decision making with
visualizations using both Type 1 and 2 processing. For
example, if you try to remember Pythagorean’s Theorem,
which you may have learned in high school or middle
school, you may recall that a2 + b2 = c2, where c repre-
sents the length of the hypotenuse and a and b represent
the lengths of the other two sides of a triangle. Unless
you use geometry regularly, you likely had to strenuously
search in long-term memory for the equation, which is a
Type 2 process and requires significant working memory
capacity. In contrast, if you are asked to recall your
childhood phone number, the number might automatic-
ally come to mind with minimal working memory re-
quired (Type 1 processing).
In this section, we highlight cases where knowledge ei-

ther influenced decision making with visualizations or
was present but did not influence decisions (see Table 6
for the type of knowledge examined in each study).
These studies are organized based on how much time
the viewers had to incorporate the knowledge (i.e.
short-term instructions and long-term individual differ-
ences in abilities and expertise), which may be indicative
of where the knowledge is stored. However, many factors
other than time influence the process of transferring
knowledge by working memory capacity to long-term
knowledge. Therefore, each of the studies cited in this
section could be either Type 1, Type 2, or both types of
processing.
One example of participants using short-term know-

ledge to override a familiarity bias comes from work by
Bailey, Carswell, Grant, and Basham (2007) (see also
Shen, Carswell, Santhanam, & Bailey, 2012). In a com-
plex geospatial task for which participants made judg-
ments about terrorism threats, participants were more
likely to select familiar map-like visualizations rather

than ones that would be optimal for the task (see Fig. 16)
(Bailey et al., 2007). Using the same task and visualiza-
tions, Shen et al. (2012) showed that users were more
likely to choose an efficacious visualization when given
training concerning the importance of cognitive fit and
effective visualization techniques. In this case, viewers
were able to use knowledge-driven processing to im-
prove their performance. However, Joslyn and LeClerc
(2013) found that when participants viewed temperature
uncertainty, visualized as error bars around a mean
temperature prediction, they incorrectly believed that
the error bars represented high and low temperatures.
Surprisingly, participants maintained this belief despite a
key, which detailed the correct way to interpret each
temperature forecast (see also Boone et al., in press).
The authors speculated that the error bars might have
matched viewers’ mental schema for high- and
low-temperature forecasts (stored in long-term memory)
and they incorrectly utilized the high-/low-temperature
schema rather than incorporating new information from
the key. Additionally, the authors propose that because
the error bars were visually represented as discrete
values, that viewers may have had difficulty reimagining
the error bars as points on a distribution, which they
term a deterministic construal error (Joslyn & LeClerc,
2013). Deterministic construal visual-spatial biases may
also be one of the sources of misunderstanding of the
Cone of Uncertainty (Padilla, Ruginski et al., 2017;
Ruginski et al., 2016). A notable difference between
these studies and the work of Shen et al. (2012) is that
Shen et al. (2012) used instructions to correct a familiar-
ity bias, which is a cognitive bias originally documented
in the decision-making literature that is not based on
the visual elements in the display. In contrast, the biases
in Joslyn and LeClerc (2013) were visual-spatial biases.
This provides further evidence that visual-spatial biases
may be a unique category of biases that warrant dedi-
cated exploration, as they are harder to influence with
knowledge-driven processing.
Regarding longer-term knowledge, there is substantial

evidence that individual differences in knowledge impact
decision making with visualizations. For example, nu-
merous studies document the benefit of visualizations
for individuals with less health literacy, graph literacy,

Table 6 Type of knowledge examined in each study

Knowledge Studies

Short-term training, instructions Boone et al. (in press); Shen et al. (2012)

Individual differences Galesic and Garcia-Retamero (2011); Galesic et al. (2009) Keller et al. (2009) Okan et al. (2015); Okan, Garcia-Retamero,
Galesic, and Cokely (2012); Okan, Garcia-Retamero, Cokely, and Maldonado (2012); Okan, Garcia-Retamero, Galesic,
and Cokely (2012); Reyna et al. (2009); Rodríguez et al. (2013)

Semester-long course Lee and Bednarz (2009)

Experts Belia et al. (2005); Riveiro (2016); St. John et al. (2001)
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and numeracy (Galesic & Garcia-Retamero, 2011;
Galesic, Garcia-Retamero, & Gigerenzer, 2009; Keller,
Siegrist, & Visschers, 2009; Okan, Galesic, &
Garcia-Retamero, 2015; Okan, Garcia-Retamero, Cokely,
& Maldonado, 2012; Okan, Garcia-Retamero, Galesic, &
Cokely, 2012; Reyna, Nelson, Han, & Dieckmann, 2009;
Rodríguez et al., 2013). Visual depictions of health data
are particularly useful because health data often take the
form of probabilities, which are unintuitive. Visualiza-
tions inherently illustrate probabilities (i.e. 10%) as nat-
ural frequencies (i.e. 10 out of 100), which are more
intuitive (Hoffrage & Gigerenzer, 1998). Further, by
depicting natural frequencies visually (see example in
Fig. 17), viewers can make perceptual comparisons ra-
ther than mathematical calculations. This dual benefit is
likely the reason visualizations produce facilitation for
individuals with less health literacy, graph literacy, and
numeracy.
These studies are good examples of how designers can

create visualizations that capitalize on Type 1 processing
to help viewers accurately make decisions with complex
data even when they lack relevant knowledge. Based on
the reviewed work, we speculate that well-designed

visualizations that utilize Type 1 processing to intuitively
illustrate task-relevant relationships in the data may be
particularly beneficial for individuals with less numeracy
and graph literacy, even for simple tasks. However,
poorly designed visualizations that require superfluous
mental transformations may be detrimental to the same
individuals. Further, individual differences in expertise,
such as graph literacy, which have received more atten-
tion in healthcare communication (Galesic &
Garcia-Retamero, 2011; Nayak et al., 2016; Okan et al.,
2015; Okan, Garcia-Retamero, Cokely, & Maldonado,
2012; Okan, Garcia-Retamero, Galesic, & Cokely, 2012;
Rodríguez et al., 2013), may play a large role in how
viewers complete even simple tasks in other domains
such as map-reading (Kinkeldey et al., 2017).
Less consistent are findings on how more experienced

users incorporate knowledge acquired over longer pe-
riods of time to make decisions with visualizations.
Some research finds that students’ decision-making and
spatial abilities improved during a semester-long course
on Geographic Information Science (GIS) (Lee &
Bednarz, 2009). Other work finds that experts perform
the same as novices (Riveiro, 2016), experts can exhibit

Fig. 16 Example of different types of view orientations used by examined by Bailey et al. (2007). Participants selected one of these visualizations
and then used their selection to make judgments including identifying safe passageways, determining appropriate locations for firefighters, and
identifying suspicious locations based on the height of buildings. The panels correspond to the conditions in the original study
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visual-spatial biases (St. John et al., 2001) and experts
perform more poorly than expected in their domain of
visual expertise (Belia et al., 2005). This inconsistency
may be due in part to the difficulty in identifying when
and if more experienced viewers are automatically apply-
ing their knowledge or employing working memory. For
example, it is unclear if the students in the GIS course
documented by Lee and Bednarz (2009) developed auto-
matic responses (Type 1) or if they learned the informa-
tion and used working memory capacity to apply their
training (Type 2).
Cheong et al. (2016) offer one way to gauge how per-

formance may change when one is forced to use Type 1
processing, but then allowed to use Type 2 processing.
In a wildfire task using multiple depictions of uncer-
tainty (see Fig. 18), Cheong et al. (2016) found that the
type of uncertainty visualization mattered when partici-
pants had to make fast Type 1 decisions (5 s) about
evacuating from a wildfire. But when given sufficient
time to make Type 2 decisions (30 s), participants were
not influenced by the visualization technique (see also
Wilkening & Fabrikant, 2011).
Interesting future work could limit experts’ time to

complete a task (forcing Type 1 processing) and then

determine if their judgments change when given more
time to complete the task (allowing for Type 2 process-
ing). To test this possibility further, a dual-task paradigm
could be used such that experts’ working memory capacity
is depleted by a difficult secondary task that also required
working memory capacity. Some examples of secondary
tasks in a dual-task paradigm include span tasks that re-
quire participants to remember or follow patterns of infor-
mation, while completing the primary task, then report
the remembered or relevant information from the pattern
(for a full description of theoretical bases for a dual-task
paradigm see Pashler, 1994). To our knowledge, only one
study has used a dual-task paradigm to evaluate cognitive
load of a visualization decision-making task (Bandlow et
al., 2011). However, a growing body of research on other
domains, such as wayfinding and spatial cognition, dem-
onstrates the utility of using dual-task paradigms to
understand the types of working memory that users em-
ploy for a task (Caffò, Picucci, Di Masi, & Bosco, 2011;
Meilinger, Knauff, & Bülthoff, 2008; Ratliff & Newcombe,
2005; Trueswell & Papafragou, 2010).
Span tasks are examples of spatial or verbal secondary

tasks, which include remembering the orientations of an
arrow (taxes visual-spatial memory, (Shah & Miyake, 1996)

Fig. 17 Example of stimuli used by Galesic et al. (2009) in a study demonstrating that natural frequency visualizations can help individuals
overcome less numeracy. Participants completed three medical scenario tasks using similar visualizations as depicted here, in which they were
asked about the effects of aspirin on risk of stroke or heart attack and about a hypothetical new drug. Redrawn from “Using icon arrays to
communicate medical risks: overcoming less numeracy” by M. Galesic, R. Garcia-Retamero, and G. Gigerenzer. 2009, Health Psychology, 28(2), 210
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or counting backward by 3 s (taxes verbal processing and
short-term memory) (Castro, Strayer, Matzke, & Heathcote,
2018). One should expect more interference if the primary
and secondary tasks recruit the same processes (i.e.
visual-spatial primary task paired with a visual-spatial mem-
ory span task). An example of such an experimental design
is illustrated in Fig. 19. In the dual-task trial illustrated in
Fig. 19, if participants responses are as fast and accurate as
the baseline trial then participants are likely not using sig-
nificant amounts of working memory capacity for that task.
If the task does require significant working memory cap-
acity, then the inclusion of the secondary task should in-
crease the time taken to complete the primary task and
potentially produce errors in both the secondary and pri-
mary tasks. In visualization decision-making research, this
is an open area of exploration for researchers and designers
that are interested in understanding how working memory
capacity and a dual-process account of decision making ap-
plies to their visualizations and application domains.

In sum, this section documents cases where
knowledge-driven processing does and does not influ-
ence decision making with visualizations. Notably, we
describe numerous studies where well-designed visuali-
zations (capitalizing on Type 1 processing) focus viewers’
attention on task-relevant relationships in the data,
which improves decision accuracy for individuals with
less developed health literacy, graph literacy, and numer-
acy. However, the current work does not test how
knowledge-driven processing maps on to the
dual-process model of decision making. Knowledge may
be held temporally by working memory capacity (Type
2), held in long-term knowledge but strenuously utilized
(Type 2), or held in long-term knowledge but automatic-
ally applied (Type 1). More work is needed to under-
stand if a dual-process account of decision making
accurately describes the influence of knowledge-driven
processing on decision making with visualizations. Fi-
nally, we detailed an example of a dual-task paradigm as

a b

c d

e f

Fig. 18 Example of multiple uncertainty visualization techniques for wildfire risk by Cheong et al. (2016). Participants were presented with a house
location (indicated by an X), and asked if they would stay or leave based on one of the wildfire hazard communication techniques shown here. The
panels correspond to the conditions in the original study
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one way to evaluate if viewers are employing Type 1
processing.

Review summary
Throughout this review, we have provided significant
direct and indirect evidence that a dual-process account
of decision making effectively describes prior findings
from numerous domains interested in visualization deci-
sion making. The reviewed work provides support for
specific processes in our proposed model including the
influences of working memory, bottom-up attention,
schema matching, inference processes, and decision
making. Further, we identified key commonalities in the
reviewed work relating to Type 1 and Type 2 processing,
which we added to our proposed visualization
decision-making model. The first is that utilizing Type 1

processing, visualizations serve to direct participants’
bottom-up attention to specific information, which can
be either beneficial or detrimental for decision making
(Fabrikant et al., 2010; Fagerlin et al., 2005; Hegarty et
al., 2010; Hegarty et al., 2016; Padilla, Ruginski et al.,
2017; Ruginski et al., 2016; Schirillo & Stone, 2005;
Stone et al., 1997; Stone et al., 2003; Waters et al., 2007).
Consistent with assertions from cognitive science and
scientific visualization (Munzner, 2014), we propose that
visualization designers should identify the critical infor-
mation needed for a task and use a visual encoding tech-
nique that directs participants’ attention to this
information. We encourage visualization designers who
are interested in determining which elements in their vi-
sualizations will likely attract viewers’ bottom-up atten-
tion, to see the Itti et al. (1998) saliency model, which

Fig. 19 A diagram of a dual-tasking experiment is shown using the same task as in Fig. 5. Responses resulting from Type 1 and 2 processing are
illustrated. The dual-task trial illustrates how to place additional load on working memory capacity by having the participant perform a
demanding secondary task. The impact of the secondary task is illustrated for both time and accuracy. Long-term memory can influence all
components and processes in the model either via pre-attentive processes or by conscious application of knowledge
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has been validated with eye-tracking measures (for im-
plementation of this model along with Matlab code see
Padilla, Ruginski et al., 2017). If deliberate effort is not
made to capitalize on Type 1 processing by focusing the
viewer’s attention on task-relevant information, then the
viewer will likely focus on distractors via Type 1 process-
ing, resulting in poor decision outcomes.
A second cross-domain finding is the introduction of

a new concept, visual-spatial biases, which can also be
both beneficial and detrimental to decision making. We
define this term as a bias that elicits heuristics, which is
a direct result of the visual encoding technique. We
provide numerous examples of visual-spatial biases
across domains (for implementation of this model
along with Matlab code, see Padilla, Ruginski et al.,
2017). The novel utility of identifying visual-spatial
biases is that they potentially arise early in the
decision-making process during bottom-up attention,
thus influencing the entire downstream process,
whereas standard heuristics do not exclusively occur at
the first stage of decision making. This possibly ac-
counts for the fact that visual-spatial biases have proven
difficult to overcome (Belia et al., 2005; Grounds et al.,
2017; Joslyn & LeClerc, 2013; Liu et al., 2016; McKenzie
et al., 2016; Newman & Scholl, 2012; Padilla, Ruginski
et al., 2017; Ruginski et al., 2016). Work by Tversky
(2011) presents a taxonomy of visual-spatial communi-
cations that are intrinsically related to thought, which
are likely the bases for visual-spatial biases.
We have also revealed cross-domain findings involv-

ing Type 2 processing, which suggest that if there is a
mismatch between the visualization and a
decision-making component, working memory is used
to perform corrective mental transformations. In sce-
narios where the visualization is aligned with the men-
tal schema and task, performance is fast and accurate
(Joslyn & LeClerc, 2013). The types of mismatches ob-
served in the reviewed literature are likely both
domain-specific and domain-general. For example, sit-
uations where viewers employ the correct graph
schema for the visualization, but the graph schema
does not align with the task, are likely domain-specific
(Dennis & Carte, 1998; Frownfelter-Lohrke, 1998;
Gattis & Holyoak, 1996; Huang et al., 2006; Joslyn &
LeClerc, 2013; Smelcer & Carmel, 1997; Tversky et al.,
2012). However, other work demonstrates cases where
viewers employ a graph schema that does not match
the visualization, which is likely domain-general (e.g.
Feeney et al., 2000; Gattis & Holyoak, 1996; Tversky et
al., 2012). In these cases, viewers could accidentally
use the wrong graph schema because it appears to
match the visualization or they might not have learned
a relevant schema. The likelihood of viewers making
attribution errors because they do not know the

corresponding schema increases when the visualization
is less common, such as with uncertainty visualiza-
tions. When there is a mismatch, additional working
memory is required resulting in increased time taken
to complete the task and in some cases errors (e.g.
Joslyn & LeClerc, 2013; McKenzie et al., 2016; Padilla,
Ruginski et al., 2017). Based on these findings, we rec-
ommend that visualization designers should aim to
create visualizations that most closely align with a
viewer’s mental schema and task. However, additional
empirical research is required to understand the nature
of the alignment processes, including the exact method
we use to mentally select a schema and the classifica-
tions of tasks that match visualizations.
The final cross-domain finding is that knowledge-driven

processes can interact or override effects of visualization
methods. We find that short-term (Dennis & Carte, 1998;
Feeney et al., 2000; Gattis & Holyoak, 1996; Joslyn &
LeClerc, 2013; Smelcer & Carmel, 1997; Tversky et al.,
2012) and long-term knowledge acquisition (Shen et al.,
2012) can influence decision making with visualizations.
However, there are also examples of knowledge having little
influence on decisions, even when prior knowledge could
be used to improve performance (Galesic et al., 2009; Gale-
sic & Garcia-Retamero, 2011; Keller et al., 2009; Lee &
Bednarz, 2009; Okan et al., 2015; Okan, Garcia-Retamero,
Cokely, & Maldonado, 2012; Okan, Garcia-Retamero, Gale-
sic, & Cokely, 2012; Reyna et al., 2009; Rodríguez et al.,
2013). We point out that prior knowledge seems to have
more of an effect on non-visual-spatial biases, such as a fa-
miliarity bias (Belia et al., 2005; Joslyn & LeClerc, 2013; Riv-
eiro, 2016; St. John et al., 2001), which suggests that
visual-spatial biases may be closely related to bottom-up at-
tention. Further, it is unclear from the reviewed work when
knowledge switches from relying on working memory cap-
acity for application to automatic application. We argue
that Type 1 and 2 processing have unique advantages
and disadvantages for visualization decision making.
Therefore, it is valuable to understand which process
users are applying for specific tasks in order to make
visualizations that elicit optimal performance. In the
case of experts and long-term knowledge, we propose
that one interesting way to test if users are utilizing
significant working memory capacity is to employ a
dual-task paradigm (illustrated in Fig. 19). A dual-task
paradigm can be used to evaluate the amount of
working memory required and compare the relative
working memory required between competing
visualization techniques.
We have also proposed a variety of practical recom-

mendations for visualization designers based on the em-
pirical findings and our cognitive framework. Below is a
summary list of our recommendations along with rele-
vant section numbers for reference:

Padilla et al. Cognitive Research: Principles and Implications  (2018) 3:29 Page 21 of 25



� Identify the critical information needed for a task
and use a visual encoding technique that directs
participants’ attention to this information (“Bottom-
up attention” section);

� To determine which elements in a visualization will
likely attract viewers’ bottom-up attention try
employing a saliency algorithm (see Padilla, Quinan,
et al., 2017) (see “Bottom-up attention”);

� Aim to create visualizations that most closely align
with a viewer’s mental schema and task demands
(see “Visual-Spatial Biases”);

� Work to reduce the number of transformations
required in the decision-making process (see "Cogni-
tive fit");

� To understand if a viewer is using Type 1 or 2
processing employ a dual-task paradigm (see
Fig. 19);

� Consider evaluating the impact of individual
differences such as graphic literacy and numeracy
on visualization decision making.

Conclusions
We use visual information to inform many important
decisions. To develop visualizations that account for
real-life decision making, we must understand how and
why we come to conclusions with visual information.
We propose a dual-process cognitive framework expand-
ing on visualization comprehension theory that is sup-
ported by empirical studies to describe the process of
decision making with visualizations. We offer practical
recommendations for visualization designers that take
into account human decision-making processes. Finally,
we propose a new avenue of research focused on the in-
fluence of visual-spatial biases on decision making.

Endnotes
1Dual-process theory will be described in greater detail

in next section.
2It should be noted that in some cases the activation

of Type 2 processing should improve decision accuracy.
More research is needed that examines cases where
Type 2 could improve decision performance with
visualizations.
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