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Abstract

Purpose.—To test the validity of the Ecological Video Identification of Physical Activity (EVIP) 

computer vision algorithms for automated video-based ecological assessment of physical activity 

in settings such as parks and schoolyards.

Methods.—27 hours of video were collected from stationary overhead video cameras across 22 

visits in 9 sites capturing organized activities. Each person in the setting wore an accelerometer 

and each second was classified as moderate-to-vigorous physical activity (MVPA) or sedentary/

light activity. 57,987 seconds of data were used to train and test computer vision algorithms for 

estimating the total number of people in the video and number of people active (in MVPA) each 

second. In the testing dataset (38,658 seconds), video-based System for Observing Play and 

Recreation in Communities (SOPARC) observations were conducted every 5-minutes (130 

observations). Concordance correlation coefficients (CCC) and mean absolute errors (MAE) 

assessed agreement between (1) EVIP and ground truth (people counts+accelerometry) and (2) 

SOPARC observation and ground truth. Site and scene-level correlates of error were investigated.

Results.—Agreement between EVIP and ground truth was high for number of people in the 

scene (CCC=0.88; MAE=2.70) and moderate for number of people active (CCC=0.55; 

MAE=2.57). EVIP error was uncorrelated with camera placement, presence of obstructions or 

shadows, and setting type. For both number in scene and number active, EVIP outperformed 
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SOPARC observations in estimating ground truth values (CCCs were larger by 0.11–0.12 and 

MAEs smaller by 41%−48%).

Conclusion.—Computer vision algorithms are promising for automated assessment of setting-

based physical activity. Such tools would require less manpower than human observation, produce 

more and potentially more accurate data, and allow for ongoing monitoring and feedback to 

inform interventions.
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direct observation; built environment; park; school; video

Introduction

Physical activity occurs in multiple settings, including parks and schoolyards. The 

environmental features within these settings can support or inhibit physical activity (1). 

Thus, public health researchers and practitioners seeking to improve understanding of 

environmental influences on physical activity, evaluate physical activity interventions, and 

track population physical activity trends in such settings commonly use ecological (group-

level) physical activity assessment tools such as the System for Observing Play and 

Recreation in Communities (SOPARC) (2–7). These tools use momentary direct observation 

(4), which involves visiting a community setting (e.g., park) and conducting an 

environmental scan of users in the area to document the activity level of each user, at the 

moment they are observed, as sedentary, walking, or vigorous (8).

There are several limitations to existing tools. The scans can be challenging when people’s 

activity changes rapidly and when a large number of people are in the setting and crossing 

paths with one another. In-person observation requires substantial staffing, training, 

observation time, and data entry/management, which limits the scalability of these tools. 

Both inadequate training of staff conducting the scans and inadequate frequency of data 

capture can result in invalid data (9, 10). The momentary snapshots of behavior often do not 

generalize to a person’s activity during their entire time in the setting or to other people’s 

activity in the setting (11). Perhaps most importantly, assessing only a snapshot (moment) of 

physical activity substantially limits these tools’ utility for intervention monitoring and 

feedback. Moving to automated high frequency data capture would enable continuous 

assessment and allow researchers, program leaders, and decision makers to make rapid data-

informed decisions to support just-in-time interventions (12, 13).

Computer vision, a rapidly growing field of artificial intelligence that uses deep learning 

models to train computer algorithms to classify features within images and video (14), 

provides the opportunity to automate ecological physical activity assessment. While research 

has shown that computer vision is promising for assessing physical activity (15), valid 

computer vision-based ecological physical activity assessment tools do not yet exist. Such 

tools are needed because they could provide more accurate and representative (over time) 

estimates of physical activity due to high-frequency data capture, and likely result in greater 

use of ecological physical activity assessment (improved scalability).
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The purpose of this study was to develop and test the validity of the Ecological Video 

Identification of Physical Activity (EVIP) computer vision algorithms for analyzing video to 

estimate group-level physical activity in park and school settings. EVIP provided similar 

outputs as provided by SOPARC, including the number of people in the target area and 

number of people physically active.

Methods

Participants and Procedures

Data were collected from 9 sites during organized activities, including as after-school 

programs, park-based programs, and Physical Education classes. Across the 9 sites, the 

following types of settings were captured: 4 open green spaces/sports fields, 2 paved 

surfaces, 2 gymnasiums, and 2 playgrounds (examples in Photo 1). Data collection occurred 

across 1–4 visits per site (22 total visits), with each visit lasting approximately 1 hour. All 

people involved in the organized activities were enrolled in the study and outfitted with an 

accelerometer. Two cameras captured video recordings of the target area in which the 

activity occurred. The number of participants during each visit ranged from 9 to 56, and 

most were youth. A mean of 179.1 (SD = 87.3) minutes of data was collected at each site, 

for a total of 1611.9 minutes (26.9 hours). This study was approved by the sponsoring 

institution’s human subjects’ protection committee and participants provided informed 

consent.

Measures

Video.—Two DJI Osmo 4K wide angle cameras (Model X3 / FC350H; SZ DJI Technology 

Co.; Ltd, Shenzhen, China) were used to capture the video recordings. Each camera was 

affixed to a Studio Assets MegaMast camera tripod that was able to be telescoped to a height 

of 27.5 ft (Koll Ltd; Chicago, IL, USA). An Apple iPad (Apple Inc.; Cupertino, CA, USA) 

was used to control the camera via the DJI GO application. Each camera captured a different 

perspective of the target area and was moved halfway through each visit to capture a second 

perspective. Thus, a total of 4 videos capturing unique perspectives were collected during 

each visit, with the exception of 3 visits that were not long enough to capture the additional 

2 perspectives. Across the 22 visits, 82 videos capturing unique perspectives were collected. 

The camera height and distance from the base of the camera to the nearest/bottom part of the 

target area captured in the video ranged across videos by 8.5 to 24.4 ft (Median = 14.9 ft) 

and 5.3 to 35.4 ft (Median = 14.9 ft), respectively. After data collection, research staff 

viewed each of the 82 videos and rated the percent of the scene that was obstructed (e.g., due 

to trees or buildings) and the percent that was covered by shadows (i.e., appearing darker 

due to the sun being shadowed by trees or buildings).

Counting number of people (ground truth measure for number of total 
people).—Since the settings captured involved organized activities, the same number of 

people were generally in the target area for a given study visit. The target areas were 

restricted during data collection to minimize the occurrence of non-participants entering the 

area, and participants were instructed to stay within the area captured by the camera. 

However, in some circumstances it was difficult to prevent participants from entering and 
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exiting the viewing area. Thus, research staff viewed each video after the visits to identify all 

instances of when a person left and/or entered the viewing area and record this information 

in a database. To facilitate this process, participants wore t-shirts of various colors with 

distinct numbers on the front and back. This allowed the research staff to denote that a given 

participant’s accelerometer data (i.e., linked to their shirt number and color) should be set as 

“missing” for the second they left the scene until the second they returned. The number of 

people with non-missing accelerometer data for a given second served as the ground truth 

for the number of total people in the scene.

Accelerometers (used to provide ground truth measure for number of active 
people).—Participants wore an ActiGraph GT3X accelerometer (ActiGraph LLC; 

Pensacola, FL) on a belt at their left iliac crest, with vertical axis counts derived for 1-second 

epochs. The Freedson youth 3 METs (metabolic equivalents) age-based cut point was used 

to classify each second as MVPA or not MVPA (16). The cut point for 12 year olds was 

applied to all participants because participants’ ages were not collected and 12 years 

reflected the midpoint in the age range covered by the Freedson equation. We chose the 

Freedson 3 METs cut point because of its lower counts threshold than other cut points (17), 

which was preferred because it better matched the SOPARC walking category as walking 

can include light activity (18). Derived variables were created by aggregating the data across 

participants who were in the scene (based on the “counting number of people” methods 

described above) to derive the total number of active (in MVPA), each second. The purpose 

of using second-level activity level information was to provide high-frequency ground truth 

information for training the EVIP algorithms.

SOPARC observations.—To identify whether EVIP had a similar level of validity as 

direct observations conducted by humans (i.e., current standard of practice for field-based 

observations), SOPARC observation scans were conducted approximately once every 5-

minutes on the testing video data, for a total of 130 observations. The SOPARC scans 

captured the total number of people in the scene and the number active (walking and 

vigorous were combined) (18). Each scan took between 4 and 44 seconds to complete (Mean 

= 20.7 seconds). The video was not stopped or rewound during the observation to mimic in-

person observations. The observations were completed by two raters who were trained using 

the SOPARC training materials (18). A subset of 26 observations were completed 

independently by both raters, and inter-rater agreement for the number of people active was 

good (ICC = 0.86).

Training and testing datasets

The videos were divided into 1-second clips, with 60% of the clips from each site being 

randomly allocated to a training dataset and the remaining 40% to a testing dataset. The 

training dataset comprised 57,987 seconds from all 82 videos (camera perspectives) from all 

22 visits representing all 9 sites, and the testing dataset comprised 38,658 seconds from 78 

videos (camera perspectives) from all 22 visits representing all 9 sites.
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Computer vision algorithm development

The EVIP algorithms were developed by adapting existing validated computer vision 

modules for action recognition. The system is illustrated in Figure 1. First, the C3D feature 

extraction module was used to extract local visual and motion features. It had been pre-

trained on a large-scale activity dataset (19) and was transferred to the EVIP data by fine-

tuning. It implements a fully convolutional 3D neural network to extract features from the 

video clips (20). Since the module uses deep learning, features were not determined a priori 

but rather are extracted using layers of multiplicative information and thus are not always 

well understood or interpretable. Next, the output from the feature extraction module was 

used in a Multi-layer Perceptron (MLP) regression, which was trained for multi-task 

regression to predict both the number of total people in the scene and number of people 

active (in MVPA) using a loss function that optimized both predictions.

Analyses

For both the number of people in the scene and number of people active, boxplots were used 

to examine the distribution of EVIP error (predicted - ground truth) across the range of 

ground truth values in the second-level dataset. Agreement between EVIP and ground truth 

measurements was assessed by computing the mean absolute error (MAE) and the value of 

Lin’s Concordance Correlation Coefficient (CCC), which measures goodness of fit around 

the line of perfect agreement (21). To compute confidence limits for the MAE and CCC, a 

non-parametric bootstrap procedure was carried out. A bootstrap sample of videos was 

constructed by randomly selecting 78 videos with replacement, then randomly selecting one 

1-second clip from each of the selected videos. The MAE and CCC were computed for each 

of 2,000 such bootstrap samples, and the bootstrap MAE and CCC distributions were used to 

compute 95 percent confidence limits. This procedure was chosen to minimize the effect of 

clustering of clips within videos while capturing the variability in sampling both videos and 

clips within videos. The agreement analyses described above were repeated on an 

aggregated dataset created by dividing the data into 30-second intervals and averaging the 

EVIP and ground truth measurements across each such interval. Where clips could not be 

divided evenly into 30s intervals, the final interval was less than 30s. Intervals covering less 

than 10s were excluded from analysis.

To examine potential sources of bias, associations of site and scene features with EVIP error 

(predicted - ground truth) were estimated by fitting linear mixed models. Camera height, 

camera distance, percent of scene obstructed, and percent of scene covered by shadows were 

explanatory variables in one model, and setting type (open green space/sports field, paved 

surface, gymnasium, or playground) was the explanatory variable in the second model, fitted 

separately due to correlations between feature type and other explanatory variables. Each 

model included a random intercept for video number to adjust for clustering of clips within 

videos. The bootstrap procedure described above was used to obtain bootstrap samples, the 

mixed models for the two types of EVIP error (number in scene, number active) were fitted 

to each bootstrap sample, and the bootstrap distributions of the regression coefficients were 

used to obtain 95 percent confidence limits.
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To compare the performance of EVIP and SOPARC observations in predicting the number 

of people in the scene and number active, EVIP and ground truth estimates were averaged 

across each SOPARC observation time period. MAEs and CCCs were computed to assess 

agreement between each test method and ground truth (predicted - ground truth). 

Bootstrapping was used to construct 95% confidence limits for MAE and CCC by re-

sampling from the 130 direct observations.

Criteria for interpreting and CCCs were: small (≤ 0.40), moderate (0.41–0.60), large (0.61–

0.80), and very large (0.81–1.0) (22). Statistical analyses were performed in R (23).

Results

According to ground truth measurements for the 38,658 clips in the testing data, the median 

number of total people in a scene was 16 (interquartile range [IQR] 11–23, range 0–50), and 

the median number of people active in a scene was 4 (IQR 2–8, range 0–32; Table 1). The 

CCC representing agreement between EVIP and ground truth for the number of people in 

the scene was very large (CCC = 0.88), and the MAE was 2.70 people (16.9% of the ground 

truth median). The CCC representing agreement between EVIP and ground truth for the 

number of people active in the scene was moderate (CCC = 0.55), and MAE was 2.57 

people (64.3% of the ground truth median). Agreement between EVIP and ground truth was 

somewhat improved when values were aggregated across 30-second clips, particularly for 

number active, for which the CCC went from moderate to good.

Figure 2a (left) shows that, for number of people in the scene, EVIP errors tended to be 

largest at very low (<4) and very high (>46) ground truth values. These plots also show that 

the variability in errors tended to be larger for ground truth values that were represented in a 

smaller number of clips. The outliers reflected in the boxplot for ground truth values of 38 

and 39 were traced to EVIP measurements from two videos.

Figure 2b (right) shows that, for number of people active, EVIP error was generally small 

when there were between 0 and 10 people active based on ground truth, and then increased 

in the direction of underestimation as the true number of people active increased. Virtually 

all EVIP estimates (99.8%) of the number of people active were ≤12 people, and none were 

>14, whereas 6.1% of ground truth values were >14. EVIP underestimation coincided with a 

reduction in the number of clips available, such that the number of seconds representing 

each ground truth value generally decreased as the number of people active increased.

Figure 3 shows that the EVIP error was uncorrelated with EVIP estimates/predictions. 

Furthermore, EVIP error for the number of people in the scene and the number of people 

active was not associated with camera placement or the percentage of the scene obstructed 

or shadowed, and errors related to feature type were 1.5 people or smaller (Table 2).

For both number of people in the scene and number active, EVIP outperformed SOPARC 

observation of the video data in estimating ground truth values (Table 3). For number of 

people in scene, the EVIP MAE was 41% smaller than the SOPARC MAE (2.50 vs. 4.24), 

and the EVIP CCC was higher by 0.16 (0.88 vs. 0.72). For number of people active, the 
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EVIP MAE was 48% smaller than the direct observation MAE (2.14 vs. 4.11), and the EVIP 

CCC was higher by 0.11 (0.66 vs. 0.55).

Discussion

Present findings indicated the computer vision-based EVIP algorithms can validly estimate 

the number of people in target areas captured by overhead video in settings such as parks 

and schoolyards. EVIP’s validity for estimating the number of people active was less strong 

but considered moderate-to-good according to established criteria for interpreting CCCs, and 

its validity was more favorable than that of traditional SOPARC observation methods. 

Though more work is needed to improve the algorithms, particularly for estimating the 

number of people who are active in more people-dense scenes, evidence is accumulating in 

support of the use of computer vision in physical activity research and practice (15, 24).

Substantial work has been conducted in the field of computer vision related to counting 

people in crowded areas (25, 26). However, the present study is among the first to train and 

show validity of a computer vision algorithm for counting people in organized physical 

activity settings for public health research. The people counting feature of EVIP alone, 

without estimating number active, could make a novel contribution to public health research 

and practice. Such information would inform decision making in health-related settings such 

as parks, for which leaders (e.g., park managers) commonly have little-to-no information on 

the number of people who use the park and areas of the park that are most used. Given the 

strong validity observed in the present study for estimating number of people, next steps 

should be to explore the use of EVIP and similar tools for supporting decision making in 

such settings.

EVIP’s most significant and novel contribution is its estimation of the number of people in 

the scene who are active. Validity estimates were only moderate-to-good and distinguishing 

MVPA from sedentary/light activity was a challenging task for the algorithms. This was 

apparent given the large variations in error across clips and MAE that suggested an average 

over- or under-estimation of 2.2 people (≈54%) in physical activity in the 30-second clips. 

More work is needed to train more robust algorithms that can consistently estimate with 

accuracy and provide more valid estimates in circumstances involving large numbers of 

people.

In regards to understanding situations when EVIP fails, there was evidence that error 

increased as the number active increased, which was likely at least partly due to the 

underrepresentation in the dataset of scenes with many people active. Although it may 

appear that the algorithm could be improved by adjusting estimates upward as the estimated 

number of people active increases, this is not likely because there was little evidence that 

EVIP errors were negatively correlated with EVIP estimates themselves. Future studies 

should strive to include more of these rarer but potentially more challenging people-dense 

and highly active scenes. Other potential sources of error that were measured did not appear 

to impact error, including occlusions rated at the level of the video/perspective and setting 

type. Qualitative review of video suggested that EVIP had the lowest accuracy in the sites in 

which people were smallest/furthest from the camera. Multi-scale problems (in the case of 
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EVIP having both large/near and small/far people) are well-known in computer vision. 

While researchers have created tools for overcoming multi-scale problems (27), more work 

is need to create tools that can address the particularly small size of people in many EVIP 

scenes.

EVIP addresses many of the limitations of traditional SOPARC observations through 

automation and high-frequency data capture. Traditional SOPARC observation scans are 

known to involve error (11), so it was important to investigate how EVIP error compared to 

error involved in SOPARC observations. The finding that error was slightly lower for EVIP 

than SOPARC observations provides additional evidence in support of EVIP. It is important 

to note that the video was not stopped or rewound during the SOPARC observations, which 

would have likely led to increased accuracy. It is also important to note that SOPARC 

observations were not made in real-time in this study but on the video data, likely improving 

observation accuracy over field-based observations, which are subject to greater distraction. 

A major source of error in human observation relates to sampling and the use of momentary 

assessment, which involves observing each person one at a time only for a moment (4, 8). 

EVIP overcomes these limitations by capturing every person every second – a primary 

advantage of the high-frequency data capture made possible by automation. High frequency 

data capture also supports the capture of short-term variations in setting-based activity, such 

as comparing the number active across the duration of a 30-minute activity (e.g., sports 

practice) (28, 29). Similarly, automation supports researchers and practitioners to better 

capture a representation of activity in a setting by assessing multiple full days of data rather 

than relying on a sample of brief time periods across a limited number of days, which is the 

standard of practice for field-based SOPARC observations (18). Another unique advantage 

of automated assessment is that it has potential for supporting just-in-time monitoring and 

feedback systems to inform interventions (12, 13, 30).

Strengths, limitations, and future directions

Strengths of the present study included capturing a variety of setting types, free-living 

activities, and people densities; investigating potential sources of bias; and comparing 

performance between EVIP and traditional SOPARC observations. There were several 

limitations that should be considered when interpreting the findings. The EVIP algorithms 

were both trained and tested on all sites, so the validity of EVIP when applied to a new 

untrained site is unknown. Calibration data and processes are likely to be needed to 

“transfer” the algorithms to a new site. A larger number of sites with greater diversity is 

likely needed to train algorithms that can generalize across sites and should be captured in 

future studies. All data were collected during daylight, so the algorithms are not likely to 

perform well in the dark. The ground truth measure was limited by providing only scene-

level information (the total number of people and number active). Using person-/location-

linked ground truth information, which could be done with high quality using direct 

observation of video, would allow the use of additional computer vision modules and 

techniques and should be explored in future studies. Rigorous second-by-second video 

observations may also provide a more accurate ground truth measure than that used in the 

present study. EVIP is currently not readily usable without computer vision expertise. Future 

work is needed to package and disseminate validated algorithms in a user-friendly platform. 
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A limitation of the camera approach compared to human in-person observations is the 

restricted field of view. A limitation to automated video assessment is the inability to capture 

equity-related variables such as age, gender, and race/ethnicity, though these characteristics 

are also challenging to collect via human observations.

Conclusions

The present study found that novel computer vison algorithms can be used to estimate the 

number of total people and number people active from video recordings of target areas in 

parks and schoolyards with moderate-to-good validity, when trained on the same settings 

they are applied to. Thus, computer vision appears promising for automating ecological 

assessment of setting-based physical activity, but further work is needed to create 

generalizable algorithms with low error variability. Such automated high-frequency data 

capture is advantageous because it can circumvent some of the key limitations to traditional 

field-based direct observations and support just-in-time monitoring and feedback for those 

delivering interventions. More research is needed on the application of computer vision-

based physical activity assessment tools in both observational and intervention studies in a 

variety of settings.
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Figure 1. Computer vision system for EVIP and example video screen shots
Note: Image from left to right, top to bottom are open green space/sports field, paved 

surface, gymnasium, and playground.
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Figure 2. Error boxplots (top) and number of testing clips (bottom) for number of people in 
scene and number active
Note: The top plots show EVIP error predicted – ground truth) in the number of total people 

(left) and number active (right) as a function of the ground truth values for number of total 

people and number active; whiskers indicate 5th and 95th percentiles of observed error 

distribution; the bottom plots show the distribution in the number of total people (left) and 

number active (right) across video clips in the testing dataset..
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Figure 3. Error boxplots by EVIP predicted number active in scene
Notes: The plot shows EVIP error (predicted – ground truth) in the number active as a 

function of the predicted values for number of people active; whiskers indicate 5th and 95th 

percentiles of observed error distribution; predicted counts ≥14 (n = 2) excluded.
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Table 2.

Associations of site and scene features with EVIP error (N = 38,658)

EVIP error (predicted – ground truth), estimate (95% CI)
a

Number of people in scene Number active in scene

Model 1

Camera height (ft) 0.0 (−0.2, 0.2) 0.0 (−0.2, 0.2)

Camera distance (ft) 0.1 (−0.1, 0.3) 0.0 (−0.2, 0.2)

Percent of scene obstructed
b 0.2 (−1.0, 1.0) −0.1 (−0.7, 0.7)

Percent of scene covered by shadows
b 0.1 (−0.4, 0.2) 0.0 (−0.2, 0.3)

Model 2

Feature type

 Open green space/sports field −0.8 (−2.2, 0.4) −0.4 (−1.4, 0.5)

 Gymnasium −1.4 (−3.4, 0.6) 1.5 (−5.3, 7.0)

 Paved surface −1.1 (−3.1, 0.9) −0.4 (−2.1, 1.1)

 Playground 0.3 (−0.7, 1.4) 0.2 (−0.9, 1.1)

a
95% bootstrap confidence interval.

b
Scaled: 1 unit change = 10 percentage point change.

Ground truth was captured using video observations (people counts) and accelerometers (activity level).

EVIP = Ecological Video Identification of Physical Activity; CI = confidence interval.
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Table 3.

Performance of EVIP and SOPARC observations in predicting ground truth values (N = 130 observations)

Target variable and data source Median (IQR; range) Mean absolute error (95% CI) CCC (95% CI)

Number of people in scene

 Ground truth 16.0 (11.2–22.0; 1.9–46.8) - -

 EVIP 15.8 (11.3–21.0; 4.5–43.2) 2.50 (1.87, 3.22) 0.88 (0.77, 0.95)

 SOPARC observations 14.5 (10.3, 21.0; 0–36) 4.24 (3.36, 5.17) 0.72 (0.64, 0.79)

Number active in scene

 Ground truth 3.5 (1.9–7.6; 0.0–18.2) - -

 EVIP 4.1 (2.0–7.5; 0.8–11.6) 2.14 (1.78, 2.55) 0.66 (0.58, 0.76)

 SOPARC observations 8.0 (5.0, 11.8; 0–25) 4.11 (3.57, 4.71) 0.55 (0.42, 0.65)

Ground truth was captured using video observations (people counts) and accelerometers (activity level); second-level ground truth and EVIP values 
were averaged across the duration of each SOPARC observation period.

EVIP = Ecological Video Identification of Physical Activity; SOPARC = System for Observing Play and Recreation in Communities; IQR = 
interquartile range; CI = confidence interval; CCC = concordance correlation coefficient.
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