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Abstract Alzheimer’s disease (AD) and Parkinson’s dis-

ease (PD) are the most common causes of dementia and

movement disorders in the elderly. While progressive

accumulation of oligomeric amyloid-b protein (Ab) has been

identified as one of the central toxic events in AD leading to

synaptic dysfunction, accumulation of a-synuclein (a-syn)

resulting in the formation of oligomers has been linked to

PD. Most of the studies in AD have been focused on inves-

tigating the role of Ab and Tau; however, recent studies

suggest that a-syn might also play a role in the pathogenesis

of AD. For example, fragments of a-syn can associate with

amyloid plaques and Ab promotes the aggregation of a-syn

in vivo and worsens the deficits in a-syn tg mice. Moreover,

a-syn has also been shown to accumulate in limbic regions in

AD, Down’s syndrome, and familial AD cases. Ab and a-syn

might directly interact under pathological conditions leading

to the formation of toxic oligomers and nanopores that

increase intracellular calcium. The interactions between Ab
and a-syn might also result in oxidative stress, lysosomal

leakage, and mitochondrial dysfunction. Thus, better

understanding the steps involved in the process of Ab and

a-syn aggregation is important in order to develop inter-

vention strategies that might prevent or reverse the accu-

mulation of toxic proteins in AD.

Keywords Synuclein � Alzheimer’s � Parkinson’s �
Amyloid � APP

Abbreviations

AD Alzheimer’s disease

Ab Amyloid-b protein

a-syn a-Synuclein

PD Parkinson’s disease

Introduction to the Pathogenesis of AD

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are

the most common causes of dementia and movement dis-

orders in the elderly. While progressive accumulation of

amyloid-b protein (Ab) oligomers has been identified as

one of the central toxic events in AD leading to synaptic

dysfunction (Klein et al. 2001; Walsh and Selkoe 2004;

Glabe 2005), accumulation of a-synuclein (a-syn) resulting

in the formation of oligomers has been linked to PD

(Giasson et al. 2000; Lee et al. 2001; Lashuel et al. 2002;

Hashimoto et al. 2003b; Tsigelny et al. 2007). Alzheimer’s

disease and PD overlap in a heterogeneous group of dis-

orders denominated Lewy body disease (LBD) (McKeith

et al. 2005) where both Ab and a-syn accumulate in the

brain. Several lines of evidence now support a role for
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a-syn not only in PD but also in additional disorders

including AD, multiple system atrophy (MSA), and others

(Trojanowski et al. 1998).

Alzheimer’s disease continues to be the leading cause of

dementia in the aging population (Ashford 2004). Over 5

million people live with this devastating neurological

condition and it is estimated that the US will experience an

average 50% increase in patients with AD by the year 2025

(Hebert et al. 2004). Alzheimer’s disease is a progressive

neurodegenerative disorder that specifically damages lim-

bic structures, the association neocortical pathways (Hof

and Morrison 1991; Masliah et al. 1993; Braak and Braak

1994; Hof and Morrison 1994), and the cholinergic system

(Perry et al. 1978; Perry 1995). Although the key neuro-

pathological diagnostic features of AD are the presence of

plaques—composed of amyloid-b (Ab) peptides (Selkoe

1990)—and tangles containing the microtubule binding

protein Tau (Trojanowski et al. 1993), the neurodegener-

ative process in AD probably initiates with damage to the

synaptic terminals (Scheff et al. 1990; Terry et al. 1991;

Masliah and Terry 1994). It has been postulated that the

early synaptic pathology leads to axonal abnormalities

(Goldstein et al. 2003), spine (Spires et al. 2005) and

dendritic atrophy (Moolman et al. 2004), and eventually

neuronal loss (Terry et al. 1991; Mucke et al. 2000).

Therefore, disruption of the mechanisms involved in

modulating synaptic plasticity might be responsible for the

characteristic cognitive deficits in AD patients and as such

represent an important target for treatment development.

Although the precise mechanisms leading to neurode-

generation in AD are not completely understood, several

lines of investigation indicate that alterations in the amy-

loid precursor protein (APP), resulting in the accumulation

of amyloid-b protein (Ab) and APP C-terminal products,

might play a key role in the pathogenesis of AD (Selkoe

1994a, b; Sisodia and Price 1995; Sinha et al. 2000;

Kamenetz et al. 2003) (Fig. 1). Several products are

derived from APP through alternative proteolytic cleavage

pathways, and enormous progress has recently been made

in identifying the enzymes involved (Selkoe 1999; Sinha

et al. 1999; Vassar et al. 1999; Cai et al. 2001; Luo et al.

2001).

While most research has been centered at investigating

the role of APP/Ab and Tau in the pathogenesis of AD,

however, recent studies suggest that a-syn might also play

a role in the pathogenesis of this neurodegenerative dis-

order (Iwai et al. 1995a; Iwai 2000) (Fig. 2).

The Synuclein Family of Proteins in Health and Disease

a-Synuclein is an abundant presynaptic molecule (Iwai

et al. 1995b) that plays a role in modulating vesicular

synaptic release (Murphy et al. 2000). Synucleins belong

to a family of related proteins including a-, b-, and c-syn.

a-Synuclein belongs to a class of so-called naturally

unfolded proteins (Lansbury 1999; Wright and Dyson

1999) (Fig. 3). a-Synuclein contains a highly amyloido-

genic hydrophobic domain in the N-terminus region (aa

60–95) (Fig. 3) which is partially absent in b-syn and

might explain why b-syn has a reduced ability to self-

aggregate and form oligomers and fibrils (Hashimoto

et al. 2001; Uversky et al. 2002). Moreover, previous

studies have shown that b-syn interacts with a-syn and is

capable of preventing a-syn aggregation and related def-

icits both in vitro and in vivo (Hashimoto et al. 2001).

Overall, synucleins are believed to be involved in regu-

lation of synaptic plasticity and dopamine neurotrans-

mitter release (Murphy et al. 2000).

a-Synuclein plays a role in synaptic adaptations,

including synaptic plasticity during development, learning

(Clayton and George 1998), and regulation of synaptic

vesicle mobilization at nerve terminals (Cabin et al. 2002).

Additionally, previous studies have shown that a-syn may

have important non-synaptic physiological functions that

occur through interactions with other molecules such as the

scaffolding protein Sept4 (Ihara et al. 2007) and the syn-

aptic vesicle protein cysteine-strong protein-a (CSPa)

Fig. 1 Schematic representation of the metabolism of APP and the

formation of Ab aggregates

Fig. 2 Role of the interactions between Ab, a-syn, and Tau in the

pathogenesis of AD and LBD
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(Chandra et al. 2005). a-Synuclein has been implicated in

the pathogenesis not only of LBD (Trojanowski et al. 1998;

Hashimoto and Masliah 1999) but also of other disorders

with parkinsonism, including MSA (Spillantini et al. 1998;

Wakabayashi et al. 1998b; Wakabayashi et al. 1998a).

These disorders are collectively referred to as synuclein-

opathies (Hardy and Gwinn-Hardy 1998) and might share

common pathogenic pathways that promote toxic conver-

sion of a-syn.

Various lines of evidence support the contention that

abnormal aggregates arise from a partially folded inter-

mediate precursor that contains hydrophobic patches. It has

been proposed that the intermediate a-syn oligomers form

annular protofibrils and pore-like structures (Ding et al.

2002; Volles and Lansbury 2002; Lashuel et al. 2003;

Rochet et al. 2004; Tsigelny et al. 2007) (Fig. 3). The

mechanisms through which monomeric a-syn converts into

a toxic oligomer and later into fibrils is currently under

intense investigation. Recent studies suggest that a-syn

oligomerization might occur on the membrane and

involves interactions between hydrophobic residues of the

amphipathic a-helices of a-syn (Zhu et al. 2003). These

studies indicate that the hydrophobic lipid-binding domains

in the N-terminal region might be important in modulating

a-syn aggregation (Conway et al. 1998; Lansbury 1999;

Uversky et al. 2001; Jao et al. 2004).

Molecular modeling and molecular dynamic simulations

showed that a-syn homodimers could adopt non-propa-

gating (head-to-tail) and propagating (head-to-head) con-

formations (Tsigelny et al. 2007) (Fig. 3). Propagating

a-syn dimers on the membrane incorporate additional

a-syn molecules, leading to the formation of pentamers and

hexamers, which form rings suggestive of pore-like struc-

tures (Tsigelny et al. 2007) (Fig. 3). Oligomers form

complexes in the membranes of neurons that facilitate

abnormal calcium currents that might disturb synaptic and

neuronal function leading to neurodegeneration (Danzer

et al. 2007).

In conclusion, it is likely that a-syn oligomers might be

responsible for the neurodegenerative process in LBD/PD.

The Lewy bodies (LBs), which primarily contain a-syn

fibrils, might represent a cellular mechanism to isolate

more toxic oligomers. The a-syn oligomers most likely

associate with the neuronal membranes and synapses,

interfering with neurotransmission and plasticity. Thus,

better understanding the steps involved in the process of

a-syn aggregation is important in order to develop inter-

vention strategies that might prevent or reverse a-syn

oligomerization and toxic conversion.

Disease Models, Knockouts, Assays

APP tg Animal Models of AD

The main focus of the following sections in AD will be on

models involving amyloid deposition and Tau hyper-

phosphorylation. In AD, mutations in PS1 and 2 and

polymorphisms in apolipoprotein E (ApoE) have been also

linked with AD and as such are important targets. Recently

developed tg animal models have shown that it is possible

to reproduce certain aspects of AD pathology over a shorter

period of time (Masliah et al. 1996b; Games et al. 1997;

Price et al. 2000). In one such model, the platelet-derived

growth factor (b chain) (PDGF-b) promoter drives an

alternatively spliced human APP (hAPP) minigene

(PDAPP) encoding mutated V ? F hAPP695, 751, 770

(Games et al. 1995; Rockenstein et al. 1995). This confers

Fig. 3 Molecular dynamics of

a-syn structure and progressive

aggregation leading to the

formation of toxic oligomers
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a high ratio of mRNA encoding mutated hAPP versus wt

mouse APP (Rockenstein et al. 1995) that promotes

development of typical amyloid plaques, dystrophic neu-

rites, loss of presynaptic terminals, astrocytosis, and

microgliosis (Games et al. 1995; Masliah et al. 1996b;

Games et al. 1997).

Other models have expressed mutant hAPP under the

regulatory control of either the human or murine (m)Thy-1

promoter (Andra et al. 1996; Sturchler-Pierrat et al. 1997;

Moechars et al. 1999; Bornemann and Staufenbiel 2000) or

the protease-resistant prion protein (PrP) promoter (Hsiao

et al. 1996; Borchelt et al. 1997). Amyloid deposition

begins at 12 months of age; however, co-expression of

mutant PS1 accelerates amyloid deposition, beginning at

4 months of age (Borchelt et al. 1996; Borchelt et al. 1997;

Holcomb et al. 1998). Another more recently developed

model, where APP is also expressed under the control of

the PrP promoter, displays even earlier onset of amyloid

deposition, starting at 3 months and progressing to mature

plaques and neuritic pathology from 5 months of age,

accompanied by high levels of Ab1–42 (Chishti et al. 2001).

While the PrP promoter has provided several models that

mimic aspects of familial AD (FAD), other promoters

targeting expression of APP to neurons provide alternative

models demonstrating pathology that recapitulate similar

and additional aspects of FAD. In this regard, we have

generated lines of tg mice expressing hAPP751 cDNA

containing the London (V717I) and Swedish (K670M/

N671L) mutations under the regulatory control of the

murine (m)Thy-1 gene (mThy1-hAPP751) (Rockenstein

et al. 2001). Therefore, while expression of mutant hAPP

under the PDGF-b promoter results in the production of

diffuse (and some mature) plaques (Games et al. 1995;

Mucke et al. 2000), tg expression of mutant hAPP under

the mThy-1 (Andra et al. 1996) and PrP (Hsiao et al. 1996;

Borchelt et al. 1997) promoters favors the formation of

mature plaques in the hippocampus and neocortex. This

suggests that the differential patterns of Ab deposition

might be dependent on the specific neuronal populations

selected by the promoter, levels of expression and topo-

graphical distribution of the transgene, and levels of Ab1–40

and Ab1–42. Consistent with this, in FAD and Down syn-

drome, production of high levels of Ab1–42 results in early

plaque formation (Citron et al. 1997). This suggests that

early age of onset and plaque formation depends on high

levels of Ab1–42 production (Rockenstein et al. 2001).

More recent models have been focused toward modeling

the role of Ab protofibril generation and other mutations in

APP in the pathogenesis of AD. Of them, the most inter-

esting are those expressing APP bearing the Arctic muta-

tion. These mice rapidly develop extensive plaque

formation (Cheng et al. 2004). For a review of these and

additional tg models of neurodegenerative disease, please

visit the Alzheimer’s Forum website at: http://www.alz

forum.org/res/com/tra.

a-Synuclein Transgenic Models of PD and LBD

Since progressive intraneuronal aggregation of a-syn has

been proposed to play a central role in the pathogenesis of

PD and related disorders (Hashimoto and Masliah 1999;

Trojanowski and Lee 2000; Volles and Lansbury 2002),

most tg models have been focused at investigating the in

vivo effects of a-syn accumulation utilizing neuron-spe-

cific promoters. Several recent reviews have been pub-

lished addressing this subject (Hashimoto et al. 2003a;

Fernagut and Chesselet 2004). Among these models,

overexpression of wt a-syn under the regulatory control of

the PDGF-b promoter has been shown to result in motor

deficits, dopaminergic loss, and formation of inclusion

bodies (Masliah et al. 2000). Mice with the highest levels

of expression (line D) showed intraneuronal accumulation

of a-syn that started at 3 months of age and was accom-

panied by the loss of tyrosine hydroxylase (TH) fibers in

the caudoputamen region and synapses in the temporal

cortex. Although no apparent neuronal loss was detected in

the substantia nigra (SN), measurements of dopamine

levels in the caudoputamen region showed a 25–50%

reduction at 12 months of age. Consistent with these

results, tg mice showed mild to moderate motor deficits in

the rotarod, particularly in mice with the greatest loss of

dopamine, indicating that more substantial deficits ([75%)

of this transmitter might be necessary for more overt def-

icits to appear. In mThy-1-hasyn tg mice, this protein

accumulated in synapses and neurons throughout the brain,

including the thalamus, basal ganglia, SN, and brainstem

(Rockenstein et al. 2002; Fleming et al. 2004).

Because previous studies have shown that mutations

associated with familial parkinsonism accelerate a-syn

aggregation and oligomerization (Conway et al. 1998;

Narhi et al. 1999), we compared the patterns of neurode-

generation, a-syn aggregation, and neurological alterations

in tg mice expressing wt or mutant (A53T) ha-syn at

comparable levels under the PDGF-b promoter. Remark-

ably, we found that mice expressing low levels of mutant

ha-syn developed progressive motor deficits and neurode-

generation associated with ha-syn accumulation in syn-

apses and neurons, but very few or no inclusions were

found (Hashimoto et al. 2003a). Similarly, mice expressing

high levels of mutant A53T, but not wt or A30P mutant,

a-syn developed a severe and complex motor impairment

leading to paralysis and death (Giasson et al. 2002; Lee

et al. 2002; von Coelln et al. 2006). In contrast to our

model expressing low levels of mutant a-syn, animals

expressing higher levels of A53T a-syn developed age-

dependent intracytoplasmic neuronal a-syn inclusions
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paralleling disease onset, and the a-syn inclusions reca-

pitulated features of human disorders. Moreover, immu-

noelectron microscopy revealed that the a-syn inclusions

contained 10–16 nm wide fibrils similar to human patho-

logical inclusions. These mice demonstrate that A53T

a-syn leads to the formation of toxic filamentous a-syn

neuronal inclusions that cause neurodegeneration (Giasson

et al. 2002).

This spectrum of a-syn-associated neurodegenerative

phenotypes in various tg models can be partially attributed

to the different effects conferred by expressing mutant

versus wt a-syn. Another important factor is the promoters

selected to drive a-syn expression, which regulate both

expression levels and cell-type specificity. For example,

under the mThy-1 promoter, expression of either wt or

mutant a-syn (van der Putten et al. 2000) results in

extensive insoluble a-syn accumulation throughout the

CNS including, in some cases, in the SN or motor neurons

(Rockenstein et al. 2002). Under the mouse PrP promoter,

expression of mutant A53T a-syn enhanced the accumu-

lation of aggregation-promoting C-terminally truncated

species of a-syn (Li et al. 2005). Under the rat TH pro-

moter, expression of double mutant ha-syn adversely

affects the integrity of dopaminergic terminals and leads to

age-related declines in motor coordination and dopami-

nergic markers (Richfield et al. 2002).

Further studies to investigate the role of a-syn mutations

and selective neuronal vulnerability in the SN have been

performed in rats utilizing lentiviral and adeno-associated-

viral vectors (Kirik et al. 2002; Klein et al. 2002; Lo

Bianco et al. 2002). In contrast to tg mice models, a

selective loss of nigral dopaminergic neurons associated

with a dopaminergic denervation of the striatum was

observed in animals expressing either wt or mutant forms

of ha-syn. This neuronal degeneration correlates with the

appearance of abundant a-syn-positive inclusions and

extensive neuritic pathology detected with both a-syn and

silver staining. Rat a-syn similarly leads to protein aggre-

gation but without cell loss, suggesting that inclusions are

not the primary cause of cell degeneration in PD (Lo Bi-

anco et al. 2002).

In summary, these in vivo models support the contention

that a-syn-dependent neurodegeneration is associated with

abnormal accumulation of detergent-insoluble a-syn

(probably representing oligomeric forms) rather than with

inclusion formation representing fibrillar polymeric a-syn.

The specific accumulation of detergent-insoluble a-syn in

these tg mice recapitulates a pivotal feature of LBD (Kahle

et al. 2001) and it is of significant importance in the future

development and evaluation of novel treatments.

Disease Targets and Ligands for Combined AD and PD

a-Synuclein as a Target in Combined AD/PD

a-Synuclein was originally identified in AD plaques as the

precursor protein of the non-Ab component (NAC) of AD

amyloid (Fig. 4a) and thus was called non-amyloid compo-

nent of plaques (NACP) (Ueda et al. 1993; Iwai et al. 1995a;

Masliah et al. 1996a; Iwai 2000). NAC, a highly hydrophobic

35-amino acid domain within the a-syn molecule, may be

involved in amyloid formation (Iwai et al. 1995a) (Fig. 3).

NAC is highly amyloidogenic and aggregates to form fibrils

under oxidative conditions (Hashimoto et al. 1997;

Hashimoto et al. 1999), and NAC also interacts with Ab and

promotes Ab aggregation (Yoshimoto et al. 1995).

Remarkably, several studies have now confirmed that

the pathology of AD and PD overlap in a heterogeneous

group of conditions denominated jointly LBD (McKeith

2000; Lippa et al. 2007). Approximately 25% of all cases

of AD develop parkinsonism and about 50% of all cases of

PD develop AD-type dementia after 65 years of age

(Hansen et al. 1990). Moreover, 70% of patients with

Fig. 4 Characteristics of a-syn aggregates and inclusions in the

brains of AD patients. a Representative section from the brain of an

AD patient immunostained with an antibody against the NAC region

of a-syn. The staining shows characteristic plaques composed of Ab
protein. b Representative section from the brain of an AD patient

immunostained with an antibody against a-syn that detected Lewy

body-like inclusions in the neocortex. c Representative section from

the brain of an AD patient double immunolabeled with antibodies

against Ab and a-syn shows co-localization of the two signals in

plaques. Scale bar, 20 lm (a), 10 lm (b, c)

310 Neurotox Res (2009) 16:306–317
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sporadic AD display the formation of a-syn-positive

LB-like inclusions in the amygdala and limbic structures

(Lippa et al. 1998; Trojanowski et al. 1998; Hamilton

2000) and by the time of autopsy, approximately 90% of

patients with probable LBD also meet the Reagan patho-

logic criteria for AD (Hyman and Trojanowski 1997;

McKeith et al. 2005). Similarly, in patients with FAD and

Down’s syndrome, LB-like pathology and parkinsonism

have been reported (Lippa et al. 1999). Interestingly, the

brains of patients with DLB and PDD display very similar

pathology, with the exception that recent studies have

shown extensive deposition of Ab and a-syn in the striatum

and hippocampus in DLB compared to only a-syn in PDD

cases (Duda et al. 2002; Jellinger and Attems 2006). Fur-

thermore, previous studies provide extensive support for an

interaction between pathogenic pathways in AD and PD, in

particular FAD cases with presenilin mutations that present

with significant LB pathology (Rosenberg 2005; Snider

et al. 2005; Leverenz et al. 2006). The amyloidogenic

fragment, NAC, of a-syn is found in the amyloid plaque

(Hashimoto et al. 2000) (Fig. 4a), although some contro-

versy has emerged in this respect (Culvenor et al. 1999).

The dystrophic neurites in the plaques from AD patients

display intense a-syn immunoreactivity (Masliah et al.

1996a) (Fig. 4), a-syn-positive aggregates are found in

limbic regions in AD (Lippa et al. 1999) (Fig. 4b) and the

overall levels of a-syn are abnormal in the early stages of

AD (Iwai et al. 1996). Moreover, genetic polymorphisms in

the a-syn gene have been shown to regulate the suscepti-

bility to AD (Xia et al. 1996; Tsigelny et al. 2008).

Underlying interactions between a-syn and Ab play a

fundamental role in the pathogenesis of LBD (Lippa et al.

1998; Hashimoto et al. 2000; Masliah et al. 2001; Plet-

nikova et al. 2005). Specifically, Ab worsens the deficits

associated with a-syn accumulation (Pettegrew 1989;

Lippa et al. 1998; Lippa et al. 2005; Pletnikova et al. 2005;

Deramecourt et al. 2006; Mandal et al. 2006; Lippa et al.

2007), and Ab promotes the oligomerization and toxic

conversion of a-syn (Masliah et al. 2001; Mandal et al.

2006) (Fig. 5), suggesting that Ab and a-syn might directly

interact in vitro and in vivo. In support of this possibility,

under pathological conditions, both aggregated Ab and

a-syn might associate with membranes and accumulate in

caveolae (Soto et al. 1994; Bouillot et al. 1996; Eliezer

et al. 2001; Fortin et al. 2004; Kubo et al. 2005; Bar-On

et al. 2006; Kim et al. 2006; Bar-On et al. 2008; Wil-

liamson et al. 2008). Consistent with these findings, our

recent studies have shown that Ab and a-syn co-localize in

membrane and caveolar fractions, and Ab stabilizes a-syn

multimers that might form channel-like structures in the

membrane (Tsigelny et al. 2008). Moreover, lipid rafts in

the membrane have been postulated to play a role in

oligomerization of misfolded proteins (Soto et al. 1994;

Kazlauskaite and Pinheiro 2005; Kim et al. 2006) including

a-syn (Fortin et al. 2004; Bar-On et al. 2006; Bar-On et al.

2008) and Ab (Soto et al. 1994; Kim et al. 2006; Wil-

liamson et al. 2008) and might represent a suitable site for

the abnormal interactions between aggregated forms of

a-syn and Ab. Furthermore, highly amyloidogenic intran-

euronal Ab (Wilson et al. 1999) has been shown to accu-

mulate in the endoplasmic reticulum (Cook et al. 1997;

Hartmann et al. 1997), Golgi apparatus (Xu et al. 1997; Xia

et al. 2000), and the endosome–lysosome system (Koo and

Squazzo 1994), and these organelles may provide addi-

tional sites for interaction between Ab and a-syn. In sup-

port of this possibility, aggregated forms of Ab and a-syn

have been independently described in several intracellular

membranous structures (Bahr and Bendiske 2002;

Hashimoto et al. 2003b; Lee et al. 2005; Nixon and Cataldo

2006); (Tsigelny et al. 2007).

Mechanisms of Neurodegeneration and Interactions

Between a-syn and Ab in Combined AD/PD

The aggregates of a-syn might independently contribute to

the neurodegenerative process in AD or via interactions

with Ab. Most studies have investigated the formation of

toxic oligomeric species derived from homologous mono-

mers. We have recently investigated the interactions

between heterogeneous proteins that can form toxic hybrid

oligomers, showing that Ab and a-syn can interact in vivo

and in vitro (Tsigelny et al. 2008). Supporting these find-

ings, Ab and a-syn co-immunoprecipitated in the brains of

patients with LBD as well as in double APP/a-syn trans-

genic (tg) mice. Furthermore, molecular modeling studies

showed that these interactions promoted the formation of

Fig. 5 Molecular dynamics of a-syn and Ab interactions leading to

the formation of hybrid pores in the membrane. a Conformation of

a-syn dimer in the presence of one molecule of Ab. b Conformation

of a-syn trimer with the Ab monomer. c Conformation of a-syn

pentamer with the Ab monomer and the formation of a central pore-

like channel. d Space-filled model showing the pore-like a-syn

pentamer with the Ab monomer embedded in a membrane

Neurotox Res (2009) 16:306–317 311
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highly stable ring-like oligomers composed of both Ab and

a-syn and these species dock in the membrane (Fig. 5).

Similarly, in vitro studies confirmed that both freshly sol-

ubilized as well as aggregated Ab and a-syn can directly

interact and form hybrid ring-like structures.

In agreement with this possibility, a previous study

showed that Ab promotes the aggregation of a-syn in vivo

and worsens the deficits in a-syn tg mice (Masliah et al.

2001). Moreover, a-syn has also been shown to accumulate

in the brains of APP tg (Yang et al. 2000) and APP/

presenilin-1 (PS1) double tg mice that produce large

amounts of Ab (Kurata et al. 2007). In addition, as

described in the previous section, several studies have now

shown that in the brains of LBD patients, Ab contributes to

the levels and state of a-syn aggregation and LB formation

(Pettegrew 1989; Lippa et al. 1998; Lippa et al. 2005;

Pletnikova et al. 2005; Deramecourt et al. 2006; Mandal

et al. 2006; Lippa et al. 2007). Taken together, these studies

in tg mice and human brains support the contention that Ab
and a-syn interact in vivo and that these interactions are of

significance in the pathogenesis of the disease.

Ab might promote a-syn aggregation by directly inter-

acting with a-syn molecules bound to the membrane and

therefore facilitating the formation of more stable oligo-

mers. However, Ab might promote a-syn aggregation

through other pathways, including increased oxidative

stress, calpain activation with C-terminal cleavage of a-syn

(Mishizen-Eberz et al. 2005; Dufty et al. 2007), and

aberrant phosphorylation induced by secreted forms of Ab.

The hybrid multimers of Ab and a-syn might embed in

the membrane (Fig. 5d) of mitochondria, lysosomes, and

the plasma membrane, leading to the formation of nano-

pore-like structures resulting in abnormal ion conductance

(Tsigelny et al. 2008). Previous studies have shown that Ab
penetrates in the membrane and aggregates to form chan-

nels that facilitate the abnormal trafficking of cations such

as Ca2? and K? (Arispe et al. 1993; Arispe et al. 1996; Lin

et al. 2001; Mattson 2007). Studies of a-syn aggregation by

atomic force microscopy have shown that the oligomers

form heterogeneous pore-like structures that might induce

cell death via disruption of calcium homeostasis (Quist

et al. 2005; Danzer et al. 2007).

Next Frontiers in Drug Discovery

Alterations in the balance between factors promoting

aggregation, clearance, and synthesis of Ab and a-syn

might be centrally involved in the formation of oligomers

and the pathogenesis of neurodegeneration. Clearance of

Ab and a-syn oligomers occurs primarily via degrading

enzymes (neprilysin), chaperone molecules (b-syn, HSP27,

70), and lysosomal pathways (autophagy). Immunotherapy

approaches might reduce a-syn accumulation by stimulat-

ing autophagy. Gene therapy approaches using viral vec-

tors can be used to target these pathways involved in Ab
and a-syn clearance. For example, delivery of neprilysin,

an Ab-degrading enzyme, into the brains of APP tg mice

results in amelioration of the behavioral deficits, improved

synaptic formation, and decreased Ab accumulation. Since

Ab also promotes the aggregation of a-syn, gene therapy

delivery of neprilysin has also been shown to reduce the a-

syn pathology and deficits in tg mice expressing both APP

and a-syn. Another important clearance mechanism ame-

nable for manipulation by gene therapy is the autophagy

pathway. For this lysosomal degradation system, the olig-

omers are targeted to the chaperone-mediated system or to

the macroautophagy pathway. In both AD and PD the

autophagy pathway is abnormal. Therefore increasing

autophagy with mTor antagonists and gene therapy to

promote autophagy might be of therapeutical value. Such

pro-clearance properties might also provide a novel strat-

egy for the treatment of other neurodegenerative disorders.

Conclusions

In combined AD/PD, both Ab and a-syn might directly

interact under pathological conditions leading to the for-

mation of toxic oligomers and nanopores that increase

intracellular calcium. Other mechanisms involved include

oxidative stress, lysosomal leakage, and mitochondrial

dysfunction. Thus, better understanding the steps involved

in the process of Ab and a-syn aggregation is important in

order to develop intervention strategies that might prevent

or reverse the toxic conversion in AD.
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