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INVESTIGATION

Efficient Software for Multi-marker, Region-Based
Analysis of GWAS Data
Jaleal S. Sanjak,*,†,1 Anthony D. Long,*,† and Kevin R. Thornton*,†

*Department of Ecology and Evolutionary Biology, and †Center for Complex Biological Systems, University of California
Irvine, California 92697

ABSTRACT Genome-wide association studies (GWAS) have associated many single variants with complex
disease, yet the better part of heritable complex disease risk remains unexplained. Analytical tools designed
to work under specific population genetic models are needed. Rare variants are increasingly shown to be
important in human complex disease, but most existing GWAS data do not cover rare variants. Explicit
population genetic models predict that genes contributing to complex traits and experiencing recurrent,
unconditionally deleterious, mutation will harbor multiple rare, causative mutations of subtle effect. It is
difficult to identify genes harboring rare variants of large effect that contribute to complex disease risk via
the single marker association tests typically used in GWAS. Gene/region-based association tests may have
the power detect associations by combining information from multiple markers, but have yielded limited
success in practice. This is partially because many methods have not been widely applied. Here, we
empirically demonstrate the utility of a procedure based on the rank truncated product (RTP) method,
filtered to reduce the effects of linkage disequilibrium. We apply the procedure to the Wellcome Trust Case
Control Consortium (WTCCC) data set, and uncover previously unidentified associations, some of which
have been replicated in much larger studies. We show that, in the absence of significant rare variant
coverage, RTP based methods still have the power to detect associated genes. We recommend that RTP-
based methods be applied to all existing GWAS data to maximize the usefulness of those data. For this, we
provide efficient software implementing our procedure.
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Revealing the genetic basis of common human diseases, such as
diabetes and heart disease, remains a central challenge in human
genetics. Family-based and twin-based studies estimate that the genetic
component of disease risk is typically large. Genome-wide association
studies (GWAS) have identified many genetic variants associated with
complex human diseases (Welter et al. 2014), yet the heritability ex-
plained by specific statistically significant variants remains small in
comparison to the total heritability estimates (Manolio et al. 2009;
Visscher et al. 2012a). Various hypotheses explaining the ”missing

heritability problem” exist (Manolio et al. 2009; Visscher et al. 2012a;
Gibson 2012; Robinson et al. 2014). Gene-by-gene, gene-by-environment,
and other complex epistatic interactions might create statistical chal-
lenges for the detection of causal variants (Eichler et al. 2010; Wei
et al. 2014), or might inflate total heritability estimates (Zuk et al.
2012). The missing heritability could be attributable to many com-
mon well-tagged variants that do not reach statistical significance
because of their miniscule effect sizes (Fisher 1930; Visscher et al.
2008). Rare variants with large effects (RALE) might drive heritability
and escape detection because they are not well-tagged by current
genotypingmethods (McClellan and King 2010; Cirulli and Goldstein
2010). Quantifying the roles of these nonmutually exclusive hypoth-
eses is important for the design of future studies, and the development
of new analytical tools (Visscher et al. 2012b). We still do not know
exactly how mutational effect sizes underlying specific diseases map
onto the human site-frequency spectrum. However, it is becoming
increasingly clear that rare variants are an important contributor to
the genetic basis of complex diseases (Auer et al. 2015; Prescott et al.
2015; Wessel and Goodarzi 2015; Purcell et al. 2014; Cruchaga et al.
2014; Huyghe et al. 2013; Nelson et al. 2012; Johansen et al. 2011).
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TheRALEhypothesis is particularly appealing to somebecause it is a
prediction that arises naturally from population-genetic models of
mutation-selection balance (Haldane 1927). Specifically, it arises from
a model in which equilibrium allele frequencies and phenotypic effect
sizes both reflect a balance between two things: recurrent uncondition-
ally deleterious mutations occurring in a disease gene, and their elim-
ination by natural selection (Pritchard 2001). A previous simulation
study (Thornton et al. 2013) investigated a novel model where standing
quantitative genetic variation in complex disease genes of large effect is
maintained via partially noncomplementing mutations. An important
prediction of this model is that a gene region can harbor several, in-
dividually rare, variants which all contribute to a complex disease phe-
notype. Such allelic heterogeneity is predicted to pose complications for
genome wide association studies (McClellan and King 2010). In par-
ticular, we know that single-marker association tests do not have suf-
ficient statistical power in these cases (Johnston et al. 2015; Sham and
Purcell 2014; Spencer et al. 2009). Further, associations under this
model are a mixture of two different types (Thornton et al. 2013). First,
associations may be due to tagging a causal marker whose effect size is
small, implying a sufficiently small effect on fitness, allowing the mu-
tation to reach intermediate frequency (. 5% in the population). The
second class of association is due to noncausative mutations in linkage
disequilibrium (LD) with causal markers. These “tagged” associations
tend to be rare, and of relatively large effect (Thornton et al. 2013).
Under this model, “missing heritability” arises from a combination of
allelic heterogeneity, and a lack of power to identify risk variants.

Under the model of noncomplementing mutations, regions harbor-
ing risk alleles show a statistical signature of a large number of markers
with single-marker p-values approaching, but still below, a genome-wide
significance threshold (Thornton et al. 2013). These latter authors fur-
ther showed that, under this model, the excess of significant markers
(ESM) test, a permutation-based regional association test, had more
power to detect a causal gene region in typical GWAS data than single
marker methods, and many popular region-based tests (Thornton et al.
2013), even for GWAS containing only commonmarkers (MAF. 0:05).
Although the test statistic of the ESM test is inspired by order statistics,
under the permutation procedure for evaluating statistical signifi-
cance, it is equivalent to the rank truncated product (RTP) of p-values
(Dudbridge and Koeleman 2003). This equivalence was not initially
recognized by Thornton et al. (2013). Multiple variations on the RTP
exist to address issues related to correlation between p-values (De la
Cruz et al. 2010), and the need to specify a truncation threshold (Yu
et al. 2009). Although the RTP test has been used recently to obtain
pathway- or gene-level associations in GWAS, and other, genomic
applications (Meyer et al. 2012; Brenner et al. 2013; Ahsan et al. 2014;
Li et al. 2014; Lee et al. 2014; Arem et al. 2015; Lai et al. 2015), it is not
widely used. Here, we demonstrate the utility of mining existing
datasets with an RTP approach, which we call the ESM test from
here on, and provide an efficient implementation that can perform
genome-wide scans without the need to restrict only to coding regions.

GWASdatadonot have sufficient coverage of rare variants for direct
analysis, but the ESM test is a powerful tool for extracting useful
information despite this fact. Here we perform an empirical analysis
of the performance of the ESM test on theWellcomeTrustCaseControl
Consortium (WTCCC) GWAS data set (Wellcome et al. 2007). We
chose this dataset to determine the empirical efficacy of the ESM test
because the dataset is well-characterized and easy to obtain. In addition,
the choice of a dataset without substantial rare variant coverage, allows
us to show that the ESM test has the power to detect the slight differ-
ences in allele frequencies between cases and control at common neu-
tral markers, which is predicted by RALE models. We discover four

novel gene regions that contribute to complex disease variation not
detected in the original study, and propose that the ESM test is even
better-suited to data sets that employ moremodern, denser, SNP chips.

MATERIALS AND METHODS

Dataset
Data were obtained from the Wellcome Trust Case Control Con-
sortium (http://www.wtccc.org.uk/), and are as described in Well-
come et al. (2007). Briefly, we obtained � 2000 cases for each of
seven diseases, and a set of � 3000 shared controls typed on an
Affymetrix 500K SNP chip. Diseases included in the dataset are
Bipolar Disorder (BD), Coronary Artery Disease (CAD), Hyperten-
sion (HT), Chron’s disease (IBD), Rheumatoid Arthritis (RA), Type
1 Diabetes(T1D), and Type 2 Diabetes (T2D). Case and control
samples are obtained from across Great Britain. Control samples
contain two subgroups: � 1500 individuals come from the 1958
British Birth Cohort (1958BC), and � 1500 belong to the national
UK Blood Services donor pool (NBS).

Data preprocessing
The rawWTCCC data were formatted for use in PLINK 1.90a (Purcell
et al. 2007). Single nucleotide polymorphisms (SNPs) listed in the
WTCCC genotype file by their Affymetrix identification were trans-
lated into RefSNP (rsID) with the Affymetrix chip annotations. The
SNP identifications and chromosome positions were updated to the
most recent dbSNP Build 144. The SNP and individual exclusions lists
provided were applied, and only genotyping calls with quality score
over 0.9 were included.

Basic association and permutation
The basic single marker association test was executed with the PLINK
1.90a command –assoc. A total of N permuted single marker p-values
are obtained from PLINK!1.90a by specifying –mperm = N. We
take N ¼ 2 · 106 permutations, such that the resolution of our per-
mutation p-value is 1

N ¼ 0:5 · 1026, which can allow us to establish
a region as genome-wide significant below a marginal p-value
threshold of a# 1e2 6. We stored the observed association p-values,
the permuted association p-values, and the R2 between each marker
(from plink –ld command) into HDF5 file format for use in the
ESM test.

Excess of significant markers test
We implement the ESM test as described in Thornton et al. (2013). The
test is a permutation based variation of rank truncated Fisher’s combined
p-valuemethod using a null hypothesis based on order statistics. The test
statistic is the sum of the differences between the observed and expected
2 log10ðpÞ. However the expected value under the null is the same for
each permutation and thus the statistic is equivalent to the sum of
observed 2 log10ðpÞ, i.e., the RTP. For a set ofmmarkers, the expected
p-value, under the nullmodel of no association, of the ith most significant
marker is i

m. Let Y be a vector of length, m, containing the observed
2 log10ðpÞ, sorted in order of decreasing significance, from the single
marker association test. Then the ESM test statistic is defined to be:

ESM ¼
Xm
i¼1

�
Yi þ log10

�
i
m

��

For each region, we calculate the ESM test statistic based for the
observeddata, and for eachpermutation of the data. For a given region,
let the set of ESM test statistics be ESMj : j ¼ 0; . . . ;N , such that ESM0
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is the observed value and the rest are calculated from permuted data.
Then, the p-value for that region is:

p ¼

XN
j¼1

Ið jÞ

N

where,

Ið jÞ ¼
�
1 ESMj $ESM0

0 ESMj ,ESM0

We performed the ESM test using a two-stage sliding window approach.
Using 100-kbwindows, we performed a genome scanwith a jump size of
50 kb, withm ¼ 25. The effect of changingmwas explored in Thornton
et al. (2013), and the choice of 25 was based on average SNP density in
theWTCCC data.Within each region, we filteredmarkers based on LD,
taking only SNPs whose R2 was less than 0.2; always removing the SNP
with the greater chromosomal position. While choosing this particular
LD pruning rule is arbitrary, it prevents the introduction of bias due to
selecting SNPs based on association significance. Regions that contained
a marginally significant hit, with ESM p-values less than 1e–04, were
rescanned using a finer (1 kb) jump size. The code for implementing the
test can obtained at from github: https://github.com/ThorntonLab/
ESMtest. Contiguous genomic regions that contain windows reaching
genome-wide significance at a# 1e–6 were taken and explored for
functional annotations. This significance threshold results in a predicted
genome-wide Type-1 error rate of approximately 0.06; the mean (across
diseases) number of total windows analyzed is 58,724, and, thus, the
idealized type-1 error rate is 58; 724 · 1e2 6 ¼ 0:0587. However, this
estimate is quite conservative because the windows are spatially auto-
correlated across the genome, making the effective number of tests
performed much lower than the number of windows analyzed.

Intersection with other GWAS data
Significant regions were initially queried against the NHGRI GWAS
database (http://www.ebi.ac.uk/gwas/). Regions were classified as being
potentially novel if there were no significant SNPs in the NHGRI GWAS
database for the specific disease whose genomic position fell within the
boundaries of the region. Regions containing significant SNPs in the
NHGRI GWAS database that were not contributed by the Wellcome
Trust were also taken for further analysis. The regions were queried
against gene and transcript annotations in human reference genome
GRCh38 using the R package biomaRt (Durinck et al. 2005, 2009).
The resulting gene and transcript annotations were manually curated
for novelty and functional relevance.

Data availability
Datawere obtained from theWellcomeTrustCaseControl Consortium
(http://www.wtccc.org.uk/).

RESULTS
We implement the ESM test as a sliding-window genome-wide scan for
significant regions; we use 100 kb windows and 2 million permuta-
tions to reach genome-wide significance at an empirical p# 1e-6.
Region-/set-based methods result in far fewer tests than single-
marker methods. By analyzing 60,000 windows with a marginal
a# 1e-6, our genome-wide type 1 error rate was roughly 0.06; this
estimate is conservative because the windows are not independent,
and thus we effectively performed fewer tests than is suggested by
the number of windows analyzed. Permutation procedures on ge-
nomic datasets are notoriously computationally expensive, and are
thus typically avoided, despite their appealing statistical properties.
With this in mind, we developed an efficient and freely available
computational pipeline to implement the ESM test, which relies on
new software and PLINK 1.90a (Purcell et al. 2007) (see Materials
and Methods). The pipeline leverages PLINK’s fast permutation
procedures for single marker association tests, stores the data in
I/O optimized HDF5 file format, and performs the test. Our analysis
recapitulates most, but not all, of the associations established in the
standard analysis of Wellcome et al. (2007) and finds new associa-
tions demonstrating that the ESM test is an excellent candidate for
application in addition to standard methods.

Overlap between the ESM test and standard analysis
The majority of the regions found in Wellcome et al. (2007) that
showed strong associations with case-control status were also sig-
nificant under the ESM test. In Wellcome et al. (2007), the standard
1–df x2 test resulted in 21 regions showing strong association sig-
nals (p# 5e-7). Supplemental Material, Table S1 shows that 18 of
these regions also have an ESM test p# 1e–6. Of the three regions
that do not reach genome-wide significance under the ESM test,
two have p-values between 1e–4 and 1e–6 (Table S2). In particular,
multiple windows containing rs2542151, the main SNP reported
for region chr18:12.77–12.92(Mb) in association with inflamma-
tory bowel disease, reach ESM p ¼9e–6. A third SNP, rs420259, in
region chr16:23.38-23.7(Mb) reported in association with bipolar
disorder byWellcome et al. (2007) did not replicate in other studies
(Tung et al. 2011), and the region does not show strong association
via the ESM test. Applying the SKAT (Wu et al. 2011; Lee et al.
2012) test to the same genomic windows results in less overlap with
the WTCCC results (Table S4 and Table S5). Some of the regions
not deemed significant by SKAT have been validated in other stud-
ies and can be viewed as false negatives. The ESM test has fewer
false negatives. Because SKAT is not a permutation-based test, it is
orders of magnitude faster computationally. However, our concern
should focus primarily on getting better answers within the con-
straints of what is tractable. The ESM test is computationally fea-
sible (Figure S2), and is shown here to give useful results. When we
look at the overlaps and differences between the results of the ESM

n Table 1 New Associations: regions with ESM test p£ 1e-6 with no corresponding hit from Wellcome et al. (2007) are reported below

Disease Chr Position (Mb) Gene Region Source

CAD 7 80.78–80.88 SEMA3C This analysis
CAD 7 129.993–130.123 ZC3HC1/KLHDC10 (Erbilgin et al. 2013)
T1D, RA 22 37.096–37.203 IL2RB (Plagnol et al. 2011; Eleftherohorinou et al. 2011; Okada et al. 2014;

Chimusa et al. 2014)
IBD 1 172.872–172.983 FASLG/TNFSF18 (Franke et al. 2010; Jostins et al. 2012; Dubois et al. 2010)

Three out of four regions contain corresponding hits in the NHGRI GWAS database not due to Wellcome et al. (2007) or were otherwise previously indicated in the
particular disease as cited in the source column above. One region is novel based on our analysis, and overlaps with a biologically plausible gene SEMA3C. CAD,
coronary artery disease; T1D, type 1 diabetes; RA, rheumatoid arthritis; IBD, Chron’s disease.
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test and the single marker test, we make two important observa-
tions. First, the ESM test has the power to detect genomic regions in
association with disease status. Second, because there are regions
that are only identified by either the ESM test, or the single marker
test, we should view these methods as complementary. The second
point is conceptually important, but computationally trivial be-
cause one has to do a single marker test to serve as the input to
the ESM test. The suggested workflow is essentially as follows: run
the single marker test, run the ESM test, analyze both results sep-
arately, and then observe their union and intersection.

Strong associations replicated in independent datasets
Table 1 shows that the ESM test identifies four genomic regions that
were not significant in the original WTCCC single-marker based anal-
ysis. Three out of four of these regions have since been associated with
disease statuses in independent studies published in the years following
the introduction of the WTCCC analysis (Table 1). These subsequent
independent studies all leveraged datasets employing larger case/con-
trol panels and/or more densely genotyped SNPs than were originally
used in Wellcome et al. (2007). Published simulations suggest that the
ESM test should accrue additional benefits when used on datasets with
improved genotyping (see Figure 3 in Thornton et al. 2013). In contrast,
applying SKAT (Wu et al. 2011; Lee et al. 2012) to these same data and
genomic windows was less promising. Although SKAT finds three
significant regions that are not significant with a single marker test
(Table S3), only two have support in studies, and no completely novel
candidate genes are found. The number of new results is not signifi-
cantly different between the ESM test and SKAT, but there does appear
to be a qualitative difference in the level of plausibility. However, at

present we cannot rule out differences in optimal approach to parti-
tioning the genome, or differences in the type of signal detected in
explaining the observed differences in ESM and SKAT results. Overall,
three of the four novel associations identified using the ESM test are
replicated, providing empirical support that the ESM test can detect
novel true positive associations, even in relatively small data sets. We
briefly describe the known biological significance of these three geno-
mic regions below.

The region chr7:129.99-130.12(Mb) is strongly associated with
coronary artery disease (CAD) (Figure 1 and Table 1). This region
overlaps two genes: ZC3HC1 and KLHDC10. A missense mutation in
ZC3HC1, which is also a cis-eQTL for KLHDC10, has been previously
associated with CAD (Erbilgin et al. 2013). Neither gene currently has a
clearly understood role in the etiology of CAD. The region chr22:37.09-
37.21(Mb), containing IL2RB, is associated with type-1 diabetes (T1D)
(Figure 1 and Table 1). This region was nominally associated with
rheumatoid arthritis (RA) by the WTCCC, but not with T1D. IL2RB
has been associated with both diseases inmultiple studies (Plagnol et al.
2011; Eleftherohorinou et al. 2011; Okada et al. 2014; Chimusa et al.
2014). Epidemiological associations with immune related genes like
IL2RB have motivated many important basic and clinical research
studies (Pozzilli et al. 2015). Finally, we find an intergenic region,
chr1:172.87-172.99(Mb), which contains SNPs previously associated
with inflammatory bowel disease (IBD) (Franke et al. 2010; Jostins
et al. 2012) and Celiac Disease (Dubois et al. 2010), to be associated
with IBD (Figure 1 and Table 1). Both nearby genes, TNFSF18 and
FASLG, are part of the immunologically important TNF superfamily.
The presence of putatively active regulatory elements within this asso-
ciated region (Figure S1), supports the association between variation in

Figure 1 Manhattan plots with ESM significant regions highlighted. Single marker 2 log10ðpÞp-values vs. chromosomal position (BP) for all seven
diseases analyzed, with SNPs in ESM significant (ESM p# 1e–6) regions highlighted in green. Horizontal lines are placed at 2 log10ðpÞ ¼ 8 to
illustrate the typical single marker genome-wide significance threshold. SNP clusters that are highlighted in green, but do not contain a single
genome-wide significant SNP, are reported as novel.
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regulatory sequences and common diseases (Maurano et al. 2012;
Mathelier et al. 2015).

Novel association: SEMA3C
The ESM test finds one additional novel region, not shown to be of
genome-wide significance in any study to date, showing strong
association with CAD: chr7:8.08-8.09(Mb) (Table 1 and Figure 1).
The only known protein-coding gene in this region is SEMA3C
(Figure 2). A single SNP (rs4236644) in SEMA3C reached marginal
significance (p ¼2e–6) in a meta-analysis of GWAS for total serum
bilirubin levels (Johnson et al. 2009). SEMA3C is a secreted neuro-
vascular guiding molecule that has a number of developmental
functions, and plays a role in cardiovascular development during
embyrogenesis (Püschel et al. 1995; Feiner et al. 2001). Certain
congenital heart diseases are attributed to disregulation of SEMA3C,
and its associated receptor PLXNA2 (Kodo et al. 2009). SEMA3C is
also an adipokine indicated in extracellular changes during white
adipose tissue hypertrophy in human obesity (Mejhert et al. 2013).
In total, SEMA3C is a plausible candidate gene driving the observed
ESM signal. However, we should note that the nearby (0.5 Mb
away) gene CD36 is associated with heart-disease-related traits, in-

cluding response to blood lipid drugs (Frazier-Wood et al. 2012),
platelet count, and HDL cholesterol in African Americans (Qayyum
et al. 2012; Coram et al. 2013). Although Figure 2 demonstrates
lower support for CD36, its presence could be driving the associa-
tion with SEMA3C through long-range LD. Alternatively, the pres-
ence of CD36 might reflect the typical spatial clustering of
functionally related genes found in many organisms (Hurst et al.
2004). Overall, the association of SEMA3C with CAD is consistent
with its known physiological function in the development of the
heart, and thus makes it an intriguing candidate for future studies.

DISCUSSION
The power of the ESM test is highlighted by the fact that it can identify
novel, biologically plausible associations in an approximately 10-yr-old
data set that has been highly studied.We provide open-source software
implementing the test, which can be applied to GWAS data in PLINK .
ped/.bed file format. As a caveat, although the test is simple, performing
millions of permutations on GWAS data sets is computationally in-
tensive. Individual-level genotypedataarea requirementof theESMtest.
The test cannot be applied to summary statistics from case/control
studies. If it is applied to data with greater SNP coverage across the

Figure 2 Region plot for SEMA3C hit. The top panel contains single marker (black points) and ESM test (red triangles) 2 log10ðpÞ-values for
coronary artery disease vs. chromosomal position in the region chr7:80-82 (Mb). Each ESM test point is plotted at the midpoint of a genomic
window to which that 2 log10ðpÞ-values corresponds. The single 100 kb ESM significant (ESM p#1e–6) region chr7:80.78-80.88 (Mb) is de-
marcated by vertical dashed lines, and the horizontal lines are placed at 2 log10ðpÞ ¼ 6 to indicate the ESM test significance threshold. The
middle panel contains the recombination rate in cM/Mb obtained from HapMap througout the same region. The lower panel shows the refseq
gene UCSC genome browser track for the region.
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genome, a finer-scale sliding window may be desirable, requiring more
permutations to keep Type-1 errors low. Nevertheless, simulations
suggest that the power of the ESM test will increase significantly when
the test is applied to data sets that have employed more modern higher
density SNP chips (Thornton et al. 2013). False positives due to LD
between markers is often a concern for region-based analysis, although
it has been shown that using permutation does adequately address the
impact of LD on variations of Fisher’s combined p-value (Moskvina
et al. 2012; Alves and Yu 2014). However, when SNP pruning is ap-
plied, as it is here, to reduce the maximum pairwise correlation to 0.2,
the effect is predicted to be quite insignificant (Alves and Yu 2014). This
agrees with the observation from Thornton et al. (2013) that the ESM
test did not result in any false positives under neutral simulations.

We find that using rank truncated product methods in conjunction
with single-marker analysis yields an approximately 20% gain in power
over single-marker analysis alone, as illustrated by the finding of four
new results on top of the preexisting 21 results from the standard
method. It is clear to see the potential benefit of applying the ESM test in
thisway toall of the existingGWASdata.GiventheextentofGWASdata
currently in existence, it is conceivable that a broad application of the
ESM test would establish thousands of new associations. An additional
benefit of a broad application the ESM test is the opportunity to validate
hits in new datasets with older ones, as we demonstrated here.

A key limitation of region/SNP-set based tests in general, including
rank truncated product methods, is that one cannot simply validate a
single or small set of markers in a second panel. It is instead necessary to
do deep genotyping of a candidate region in an independent panel in
order to gain a perspective on the genetic variation present in the
associated region. A corollary is that the lack of simple single SNP
markersmakes the estimation of effect sizes and variance explained by a
detected gene region difficult; this problem should be a focus of future
studies. Using existing data, rank truncated product methods have
power to detect new associations between genomic regions and disease.
Notably, the development of more powerful region-based tests seems
likely. The ESM test was designed to detect an association signal in case/
control panels under aparticular geneactionmodel, and a small range of
population genetic scenarios. Recent work (Moutsianas et al. 2015)
demonstrates that predictions from simulation studies regarding per-
formance of region-based tests are impacted by various model details.
Thus, future research should focus on the behavior of association tests
under various models of gene action and demography.
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