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Delayed identification and treatment of septic shock is associated with increased 

mortality. A retrospective chart review was performed on patients admitted with 

hematologic malignancies in 2010 (188 control patients and 7 patients that developed 

septic shock). A mixed effects multivariate logistic regression model was used to 

determine if typical clinical biomarkers (vitals signs and routine laboratory studies) could 

be used to predict the development of septic shock in patients with hematologic 

malignancies prior to transfer to the intensive care unit. While routine vital signs could be 

used to differentiate control patients from patients that developed septic shock even at 4 

hours prior to intensive care transfer (AUC of 0.967), routine laboratory studies 

performed significantly worse (AUC of 0.761).    
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Introduction 
 
Sepsis, a clinical syndrome characterized by multiple physiologic derangements in 

response to infection, is a common disease and a leading cause of death in the United 

States and worldwide.  In a large U.S. epidemiologic study on a 1995 cohort based upon 

7 large states, the incidence of severe sepsis was estimated at 751,000 cases, with 

estimates projected at 934,000 in 2010 and 1,110,000 in 2020[1].  Despite advances in 

supportive care, mortality rates in the United States range from 20% to 50%, with delays 

in diagnosis associated with decreased survival. While the definition of sepsis involves 

the presence of systemic inflammatory response syndrome (temperature, heart rate, 

respiratory rate, white blood cell count) and evidence of infection, there have been few 

studies looking at the prediction of the development of sepsis in patients in the hospital. 

Given that delayed identification of septic patients and intensive care unit (ICU) transfers 

are associated with increased mortality[2-4], early recognition of patients at risk for 

developing septic shock is imperative. . 

 

Clinicians and medical staff fail to recognize patients with sepsis for a variety of reasons. 

First, current staffing models result in a system where patients are frequently “handed 

off” at various time intervals to another health care provider. These interruptions in 

continuity of care can impair the care team’s ability to recognize subtle signs of decline 

that are present in the initial stages of sepsis. Second, while it is easy to recognize 

someone who needs immediate transfer to the intensive care unit, projecting who will 

need ICU transfer over the next 24-48 hours given the patient’s present trajectory is 

difficult, even for seasoned clinicians, given the number of parameters (e.g., vital signs, 

lab results, mental status, etc.) that need to be assessed over time. Third, attempts to 

determine the severity of illness based upon objective clinical measures fail to account 

for the patient’s baseline and trajectory. For example, most of the models (e.g., MEWS 
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and ViEWS) that have been developed utilize static measures in predictors without 

taking into consideration the effect of the longitudinal changes in these predictors on 

outcome such as mortality or ICU admission[5, 6]. These considerations, along with the 

increasing number of patients that physicians are responsible for, have resulted in 

intense interest in the development of automated warning systems that can alert the 

care team to a potential impending deleterious change in clinical status.   

 

With the development of computerized charting and electronic medical records (EMRs), 

there is now ready access to vital signs and laboratory values over the patient’s entire 

hospital course. The ease with which these predictors can be accessed makes including 

these longitudinal trends into models of prediction for ICU admission tenable. Indeed, 

the Centers for Medicare and Medicaid Services have offered financial incentives for the 

“meaningful” use of EMRs and other health information technology (HIT). Presently, very 

little work has been done examining how the EMR could be used to make triage 

decisions in patients.[REF- NEJM editorial Feb 2013 Chen and Hofer] We therefore 

undertook this study to determine whether longitudinal patterns of routinely recorded 

clinical parameters, including  vital signs and laboratory tests, could be used to identify 

patients with sepsis who had impending need for ICU transfer. We chose to examine a 

relatively homogenous cohort of adult patients admitted to a hematologic specialty ward 

with either underlying hematologic malignancy or who were post hematopoietic stem cell 

transplant, who subsequently developed sepsis and needed ICU transfer. We predicted 

that in this group of patients, we could use longitudinal data from the EMR to build a 

prediction model for ICU transfer with high accuracy.  
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Hypothesis 

We hypothesize that we could use routine vital signs and laboratory values that are 

already being collected in hospitalized patients to develop a model that could predict the 

development of septic shock before it occurs. We define these routine vital signs and 

laboratory values as clinical biomarkers. Specifically, this includes diastolic blood 

pressure, systolic blood pressure, pulse pressure, heart rate, respiratory rate, 

temperature, sodium, potassium, chloride, total CO2 (bicarbonate), BUN, creatinine, 

glucose, white blood cell count, hemoglobin and platelet count. In particular, we wanted 

to focus on these clinical biomarkers as they were readily available for each patient and 

could be easily incorporated into an early warning system for development of septic 

shock. While there are other covariates (e.g., diagnoses at admission, reason for 

admission, treatments received and comorbidities) that are important, these are not 

readily available for real-time monitoring, hence they were not incorporated into the 

models. This is not unlike other models that have been proposed for the prediction of 

ICU admission[3, 5, 7-9]. The static covariates (in addition to the clinical biomarkers) that 

we included were age and sex which were both readily accessible and able to be 

monitored in real-time.  

 

Methods 

The study was a retrospective study utilizing patient data from January 1, 2010 to 

December 31, 2010. The study population included hospitalized adult patients at the 

Ronald Reagan UCLA Medical Center admitted to the leukemia/stem cell transplantation 

floor. The majority of these patients were diagnosed with leukemia/lymphoma and 

received chemotherapy, stem cell transplantation (allogeneic and autologous) or were 

admitted for neutropenic surveillance. The exclusion criteria were age younger than 18 

years, if the patients were made DNR/DNI or transitioned to comfort care and shock that 
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was defined as other than septic shock (e.g, hemorrhagic shock or cardiogenic shock). 

In addition, patients that were not normally admitted to the oncological floor but who 

were boarded on those floors were excluded. There were 14 of these patients, and they 

were admitted for diagnoses such as rheumatological diseases, prior renal transplant 

and 1 patient was admitted for wrist pain. Patients that were initially transferred to the 

ICU for observation only to develop septic shock more than 1 hour after transfer to the 

ICU were excluded from the study. The reason these patients were excluded was 

because the plan was to develop a warning system that depended on the measurements 

performed on the medical oncological floor rather than the increased number of 

measurements that are often obtained in the ICU. Patients that were transferred to the 

ICU for reasons other than septic shock were excluded from the study. These exclusions 

included transfers for respiratory distress, including patients that were initially intubated 

and then developed vasopressor requirements only after intubation (excluded because 

some of the induction agents used for endotracheal intubation can cause hypotension 

requiring vasopressor use). In addition, congestive heart failure and hemorrhagic shock 

as the causes of shock would be excluded. The floor patients that remained on the floor 

until discharge from the hospital were the control patients. The patients that were 

admitted to the ICU for septic shock, defined as requiring the initiation of vasopressors 

after transfer to the ICU, were included as the study patients. Typically, the vital signs 

(blood pressure, heart rate, respiratory rate, temperature) were measured every 4 hours 

by the staff on the medical floor. The standard labs were measured once a day. 

 

Histograms were generated for each clinical biomarker, and logarithmic transformations 

were performed if the distribution was not normal. In particular, the distributions of BUN, 

white blood cell count and platelet count were not normally distributed. 
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A multivariate mixed effects logistic regression was performed to demonstrate that 

changes in the clinical biomarkers of each patient could be used to determine 

development of septic shock.  The analysis was clustered on the individual patient. The 

final model was arrived from the full model by backward stepwise logistic regression, 

removing the covariate with the highest p value step-by-step until the AIC (Akaike 

information criterion) was at a minimum. Each clinical biomarker (vital sign and 

laboratory value) included a covariate that included the initial value upon admission and 

then a change from the initial value (at every time point where the vital sign or laboratory 

value was measured). For instance, there was a covariate for the initial diastolic blood 

pressure upon admission and also a covariate that was the change in value of the 

diastolic blood pressure as compared to the initial diastolic blood pressure. The change 

in diastolic blood pressure was calculated for each patient as the change from their initial 

diastolic blood pressure upon admission. Similarly, other covariates were created for 

each vital sign and for each laboratory value. The initial value term could only be 

removed if the change in value of the corresponding term was first removed by 

backward stepwise regression. The static covariates, namely age and sex, were 

included in the full model because these covariates are readily accessible and are 

amenable to real-time monitoring. Other important static covariates (e.g., treatment 

received, time of antibiotics, diagnosis and other comorbidities) were not included 

because they are not easily amenable to real-time monitoring in our current system. 

However, treatment received (chemotherapy causing neutropenia, chemotherapy not 

causing neutropenia, allogeneic stem cell transplant received and autologous stem cell 

transplant received) and cancer diagnosis was included in one analysis and both were 

removed from the final model after backward regression, resulting in our final model. 

Like other current models of early warning, these static covariates were not included in 

the other current models of early warning[3, 5, 7-9]. Analysis was performed using the 
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lme4 package in R. Significance was defined at a level of p < 0.05 without correction for 

multiple comparisons. The ROC curves were developed using the ROCR package in R. 

 

Results 

Study population characteristics 

Table 1 shows the characteristics of the study population, separated by the control group 

compared to the group of patients that developed septic shock. In addition, the cancer 

diagnoses and treatments received are noted. The patients in the septic shock group 

were admitted primarily with a diagnosis of acute myelogenous leukemia (AML) and 

were admitted for either chemotherapy that resulted in leukopenia, admitted for 

neutropenic surveillance or admission for allogeneic stem cell transplantation. The 

cancer diagnoses and treatments received in the control group were more varied. The 

median times to either discharge or development of septic shock were similar between 

the control group and the septic shock group, respectively. Figure 1 illustrates the 

number of patients that were included in the study and the number of patients that were 

excluded, along with the reasons for exclusion. There were a total of 12 patients that 

were initially transferred to the ICU for reasons other than septic shock. These included 

6 patients that were initially intubated for respiratory failure and then were placed on 

vasopressors, 1 that was intubated for respiratory failure but never placed on 

vasopressors, 1 that was transferred for respiratory distress and atrial fibrillation, 1 that 

was transferred for hemorrhagic shock, 1 that was transferred after developing a 

respiratory code on the medical oncological floor, 1 that was transferred for pulmonary 

embolism requiring vasopressors and 1 that was excluded because the patient was 

initially transferred to the ICU for observation given respiratory distress and eventually 

developed septic shock. For the control patients, 11 were excluded because they were 

DNR/DNI or made comfort care only and 14 were excluded because the patients were 
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not ones normally admitted to the oncological floor (e.g., admission for rheumatological 

diseases, prior renal transplant and wrist pain). 

 

Multivariate Logistic Regression Analysis 

Table 2 shows the results of the final mixed effects multivariate logistic regression model 

for vital signs after backward stepwise regression. The equations for the mixed effects 

multivariate logistic regression model are included in the statistical appendix below. Sex 

and age were included as static covariates in the initial full model, however sex fell out of 

the final model. These two static covariates were included because they were available 

in the real-time monitoring system. As expected, changes from the initial values of 

several key vital signs are associated with an increased odds ratio of developing septic 

shock. In particular, a decrease in systolic blood pressure and increase in heart rate 

from initial values are associated with increased odds ratio of developing septic shock (p 

< 0.05). An increase in temperature from the initial temperature was also associated with 

development of septic shock (p < 0.01). An initial higher heart rate (p < 0.05) and initial 

higher respiratory rate (p < 0.05) are also associated with development of septic shock. 

Finally, an increasing age was found to be associated with development of septic shock 

(p < 0.001).  

 

To evaluate whether other covariates would be more important in predicting septic 

shock, a separate analysis was performed including a static covariate that represented 

the type of treatment received (e.g., chemotherapy causing leukopenia, chemotherapy 

but no associated leukopenia, allogeneic stem cell transplantation and autologous stem 

cell transplantation), cancer diagnosis, age and sex. As before, the final model after 

stepwise backward regression kept only age as the static covariate, removing sex, the 

type of treatment received and cancer diagnosis from the final model. Therefore, 
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including type of treatment received and cancer diagnosis in the full model (along with 

age, sex and longitudinal vital covariate) resulted in the same final model as one that 

only included age and sex, after stepwise backward regression. Figure 2 shows the 

ROC curve for this final model utilizing only the vital signs with an AUC (area under the 

curve) of 0.985. If we use as the last measurement, the vital sign measurement 2 hours 

before the development of septic shock, the performance of the model is slightly worse 

but the ROC curve still has an AUC of 0.980 (figure 3). Moving 4 hours back from the 

time of development of septic shock, the performance of the model is diminished but still 

acceptable with an AUC of 0.967 (figure 4). 

 

Table 3 shows the results of the final mixed effects multivariate logistic regression model 

for laboratory values after backward stepwise regression. Significant covariates included 

increases in sodium, decreases in chloride, decreases in total CO2 and decreases in 

hemoglobin. While not statistically significant, increases in white blood cell count and 

decreases in platelet count are associated with development of septic shock.  

 

Discussion 

The use of readily measured clinical biomarkers (routine vital signs and laboratory 

studies) can be used to predict the development of septic shock for patients on the 

medical oncological floors where patients are primarily admitted for chemotherapy, 

neutropenic surveillance or stem cell transplantation. In the multivariate logistic 

regression model using vital signs, a decrease in systolic blood pressure, an increase in 

heart rate and an increase in temperature were associated with the development of 

septic shock (table 2). This is consistent with the pathophysiology of septic shock where 

peripheral vasodilation results in a drop in blood pressure. The increase in heart rate 

represents a response to the decrease in blood pressure. In addition, the increase in 
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temperature was also expected as the physiological response to infection is an 

increased temperature. The diastolic blood pressure covariates fell out of the final model 

as they measured approximately the same thing as the systolic blood pressure. 

Increased age was noted to be predictive of development of septic shock, like prior 

studies.[10] Moving backwards in time from the time of septic shock diminished the 

performance of the model, however it continued to perform at an acceptable level 

(figures 2-4). 

 

While the mixed-effects multivariate logistic model using laboratory data only was not as 

accurate as the model utilizing vital signs, it did suggest some intriguing associations 

(table 3). In particular, a decrease in total CO2 was associated with development of 

septic shock. This makes physiological sense in that the increase in lactic acidosis with 

septic shock is buffered by the bicarbonate in the patient, lowering the total CO2. The 

increase in sodium may be due to increasing use of intravenous fluids prior to 

development of septic shock. Therefore the increasing sodium may reflect physician 

intuition about impending septic shock, as they perform maneuvers on the medical floor 

to augment a slight decrease in blood pressure by administering more intravenous fluids 

in the form of normal saline. There is also suggestion that increased sodium is 

associated with increased mortality in the ICU[11].  

 

In addition, a decrease in hemoglobin is associated with development of septic shock 

(table 3). This is consistent with the pathophysiology of septic shock where inflammation 

causes a decrease in production of red blood cells causing hypo-proliferative anemia 

and disseminated intravascular coagulation causes hemolytic anemia[12]. Another 

potential cause of the anemia may be dilutional as the patients may be receiving 

intravenous fluid (normal saline) that would dilute the blood. Similar to the anemia 
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associated with septic shock, thrombocytopenia (though not statistically significant in this 

analysis) can be the result of inflammation causing hypo-proliferative thrombocytopenia 

and disseminated intravascular coagulation causing consumptive thrombocytopenia. 

While not statistically significant, an increase in age was associated with development of 

septic shock (p = 0.1555) which is consistent with other findings. Figure 5 shows the 

ROC curve for this final model utilizing only the laboratory values with an AUC of 0.761. 

Unlike the mixed effects multivariate logistic regression model using vital signs, the one 

utilizing only laboratory values does not perform as well. 

 

As noted in the introduction, our focus on the readily available vital signs and routine 

laboratory studies as covariates was partially because the real-time monitoring system 

that is currently implemented does not incorporate other important covariates (e.g., 

diagnoses at admission, reason for admission, treatments received and comorbidities) 

that may have important effects on the outcome. However, as discussed above, the 

treatments received (e.g., chemotherapy or stem cell transplantation) and cancer 

diagnosis did not make it into the final model for the mixed effects multivariate logistic 

regression model. 

 

Previous studies have used clinical biomarkers (e.g., MEWS, ViEWS and use of 

recursive partitioning techniques) to predict the development of sepsis, however they 

have relied on fixed categories for vital signs and laboratory values[3, 5, 7-9]. As is 

demonstrated in this study, there is utility in knowing the changes in longitudinal clinical 

biomarkers. For instance, while a heart rate of 80 bpm may still be in the normal range 

and considered normal in models that use fixed categories, if one were to be given 

information that the patient’s heart rate upon admission was 50 bpm, it would be seen as 

an increase in 30 bpm from the initial heart rate, raising some concern that there may be 
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a change in the clinical picture.  Because these other models used fixed categories 

across different patients, these methods do not take advantage of the information in the 

changes in these clinical biomarkers over the course of the hospitalization of a patient.  

 

In addition, the recursive partitioning technique used in other studies[9] did not take into 

consideration the multiple repeated measures on each individual patient, as the analysis 

was not clustered on the individual patient. In the mixed effects multivariate logistic 

regression used here, the analysis was clustered on each patient and the changes in 

these clinical biomarkers are tracked by a change in these values from their initial value 

upon admission.  

 

One limitation with the current mixed effects logistic regression model used here is that it 

does not incorporate other clinical factors (e.g., treatment received, whether antibiotics 

were given, diagnosis, and comorbidities) that would have a direct impact on clinical 

outcome, however other current models do not incorporate these static covariates[3, 5, 

7-9]. An attempt to include sex, treatment received and cancer diagnosis resulted in the 

same final model as one that only included age as the only static covariate. These static 

covariates (other than age and sex) were not included because they were not readily 

accessible in the current electronic medical record system and also because we wanted 

to develop a model that relied primarily on vitals signs and laboratory studies. As more of 

these clinical factors become digitized and accessible to real-time monitoring, they will 

be incorporated into future renditions of the model. Another limitation is that we did not 

evaluate interaction terms due to our limited cases of septic shock. This is another 

venue that is worth pursuing as it is readily plausible that a patient with decreasing 

systolic blood pressure and increasing heart rate may have an interaction that increases 

the odds ratio of developing septic shock above just that of decreasing systolic blood 
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pressure or increasing heart rate alone. However, despite the current limitations of our 

study, we demonstrated good performance even 2 to 4 hours from the last vital sign 

measurement, suggesting that this approach may be valid and could be used to serve as 

an early warning for development of septic shock (figures 3 and 4). 

 

Another limitation of the current model is that it can not predict a time to event, in this 

case, the development of septic shock. An attempt had been made to use joint modeling 

as a method to model prediction of time to development of septic shock[13]. However, 

because of the difficulty in simultaneously modeling multiple time-varying covariates and 

inability to accurately the non-linear time trends in these clinical biomarkers, this method 

of analysis was abandoned in favor of the mixed effects multivariate logistic regression 

model as this analysis could take advantage of the information in multiple clinical 

biomarkers. 

 

Another limitation is the small sample size. This small sample size limited our ability to 

include interaction terms in the mixed effects multivariate logistic regression model. More 

importantly, the small sample size prevents us from obtaining accurate statistical 

estimates. Typically, we would want 10-15 cases for each term in logistic regression to 

obtain valid statistical estimates, however we were limited in the lack of cases in 2010. 

An ongoing effort is being made to obtain more cases in order to improve the statistical 

estimates and then to validate the model. 

 

Intriguingly, consistent with the expected pathophysiology of septic shock where 

peripheral vasodilation with preserved to higher-than-normal stroke volumes occur, the 

pulse pressure increases (reflecting an intact stroke volume) while the diastolic blood 

pressure decreases (reflecting peripheral vasodilation) in the patients that developed 
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septic shock compared to the control group of patients (table 2). This is similarly 

demonstrated by the increase in pulse pressure/diastolic blood pressure ratio in patients 

that developed septic shock compared to the control patients. While we did not study 

patients that developed cardiogenic shock, we would expect that the pulse pressure 

would be decreased in these patients due to a decrease in stroke volume secondary to 

the pathophysiology of cardiogenic shock. In addition, we would expect that there would 

be compensatory peripheral vasoconstriction resulting in a smaller decrease in diastolic 

blood pressure. Thus, in contrast to septic shock, we might see a decrease in the pulse 

pressure and pulse pressure/diastolic blood pressure ratio in cardiogenic shock 

compared to septic shock. In future studies, we propose studying whether changes in 

pulse pressure and pulse pressure/diastolic blood pressure ratio (or pulse 

pressure/systolic blood pressure ratio) may be used to distinguish between septic shock 

and cardiogenic shock earlier, leading to distinguishing these patients appropriately and 

treating them in a more timely fashion. 

 

Future directions will involve validation of the findings of the mixed effects multivariate 

logistic regression model on a different cohort after collection of more cases to complete 

development of the model, including analysis of interaction terms. We expect the AUC of 

the validation cohort to be lower than that shown in our study. If the results are 

promising, then we plan to implement a real-time monitoring system in the hospital to 

screen for development of septic shock. This system would then warn the treating floor 

physicians, alerting them to potential development of septic shock before it occurs, 

allowing for appropriate changes in medical therapy if needed, e.g., initiation or change 

of antibiotics and a search for source of infection. However, it might also facilitate a 

quicker transfer to the ICU if needed, as there are studies that show benefit to earlier 

transfer compared to emergent transfers to the ICU where the patient has already 
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deteriorated[14, 15]. By alerting the treating floor physician that there may be a 

development of septic shock with extremely poor prognosis, earlier discussions of goals 

of care may be initiated so that patients and their families may be better prepared. In 

addition, as more clinically relevant static covariates are able to be electronically 

accessed, we will incorporate these covariates into the model to see if the performance 

improves. Finally, models of prediction of respiratory failure and ARDS (acute respiratory 

distress syndrome) for patients on the medical/surgical floors will also be pursued, along 

with models for predicting other emergent ICU transfers such as cardiogenic shock. 

 

Statistical Appendix 

Joint modeling[13] was initially chosen to model prediction of time to septic shock, as 

clinical biomarkers are endogenous covariates. It also has the advantages of removing 

measurement errors and short term biological fluctuations from the observed data. The 

details of the joint model are listed in the paragraph below. The results of the joint 

modeling analysis are listed in table 4. In contrast, using a time-dependent Cox 

proportional hazards model for predicting time to septic shock would be inappropriate 

given that it would treat the clinical biomarkers as exogenous covariates rather than as 

endogenous covariates. However, that being said, it would be an analysis to attempt 

given that it does not assume a form for the time trend of the clinical biomarkers, and we 

plan on pursuing this analysis as another direction. Joint modeling has previously been 

used in cancer and AIDS literature[16]. In general, most literature has used univariate 

time-to-event data with very few studies using multivariate time-to-event data[17]. The 

use of a univariate longitudinal joint model was attempted in this study. Limitations in this 

approach included the inability to utilize multivariate longitudinal time trends to better 

develop a prediction model for septic shock. In addition, the restriction that the 

longitudinal time trends had to be modeled using a linear approach caused the joint 
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model predictions to be inaccurate. This is, in part, due to the fact that patients are 

sometimes hospitalized for a while before developing septic shock and the changes in 

the longitudinal time trends are usually most dramatic around the time of development of 

septic shock. An example of this is seen in figure 6 where the diastolic blood pressure 

remains stable throughout the hospitalization but drops near the time of development of 

septic shock. Thus, using a linear model starting from time of admission, in effect, 

decreases the impact of the more drastic changes in vitals signs and lab values seen 

around the time when septic shock develops. Despite all these limitations, table 4 

demonstrates that decreases in diastolic blood pressure, decreases in systolic blood 

pressure and increases in heart rate were associated with the development of septic 

shock, utilizing the joint modeling approach. However, because of the inaccuracy due to 

the limitation of the joint modeling approach, we pursued a mixed effects multivariate 

logistic regression approach which sacrifices time-to-event analysis but allows the 

integration of multiple covariates simultaneously. 

 

The hazard function for joint modeling is listed below where Mi(t) represents the 

longitudinal process up to time t for subject i, wi is the vector of baseline covariates such 

as age and sex, h0(t) is the baseline hazard function, g is the vector of regression 

coefficients for the baseline covariates, mi(t) represents the time-varying covariate (e.g., 

diastolic blood pressure). 

 

hi(t | Mi(t), wi) = h0(t)exp(gwi + ami(t)) 

Exp(a) then represents the relative increase in the risk for an event at time t that results 

from a one unit increase in the time-varying covariate mi(t) at the same time point.  

Exp(g) represents the ratio of the hazards for a one unit change in wi. 
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The time-varying covariate is modeled by a linear mixed effects model with a random 

slope and intercept. The longitudinal sub-model of the joint model is listed below, where 

Yi(t) is the vital sign data, mi(t) is the underlying trajectory of the time-varying covariate, 

ei(t) is the error term, b0 represents the intercept for the fixed effects and b1 represents 

the slope for the fixed effects. In addition, b0i and b1i represents bivariate normal 

variables to represent the random intercept and random slope, respectively. 

 

Yi(t) = mi(t) + ei(t) 

mi(t) = b0 + b1t + b0i+ b1it 

 

While the trend in vitals signs and laboratory values are not necessarily linear, a linear 

mixed effects model was used as a first approximation because the software package 

responsible for joint modeling could not handle nonlinear time trends in the longitudinal 

trend component. Again, figure 2 serves as an example. Because the actual longitudinal 

trends were not linear and the joint modeling software assumes a linear longitudinal 

trend in the clinical biomarkers, the prediction of development of septic shock was not 

accurate. In addition, an attempt was made to fit splines to the longitudinal trends, 

however given that the time to development of septic shock was variable depending on 

the patient, there was not a common knot that could be placed, so the use of splines 

was unsuccessful. 

 

Given the limitations of the joint modeling approach (inability to use more than one 

longitudinal covariate and inability to accurately predict development of septic shock), we 

pursued a mixed effects multivariate logistic regression approach. For the mixed effects 

multivariate logistic regression model using only vital signs, the AUC was good at 0.985 

(figure 2), however we expect that the actual performance on a testing cohort will be 
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lower. Even going back 2 hours or 4 hours prior to development of septic shock, the 

performance of the model performed well (figures 3 and 4). One limitation with logistic 

regression is the inability to determine a time to event. However given that the joint 

modeling approach produced an inaccurate prediction of septic shock, using the 

multivariate logistic regression approach gave us the advantage of utilizing multiple 

longitudinal covariates (changes of vitals signs and laboratory values from their 

corresponding initial values) and controlling for the other covariates. We did not evaluate 

for interaction terms as we did not have a large number of cases of septic shock and 

realize that this is a limitation which will be addressed as we obtain a larger training 

cohort with more cases of septic shock. From a physiological perspective, there is at 

least some motivation to look at the interaction between blood pressure and heart rate.  

A decrease in systolic blood pressure along with an increase in heart rate may represent 

an interaction that increases the odds ratio of developing septic shock more than that of 

a decreased systolic blood pressure and an increased heart rate by themselves. In 

addition, as the real-time monitoring capabilities increase, we plan on incorporating other 

potentially important covariates (e.g., diagnoses at admission, reason for admission, 

treatments received and comorbidities), though cancer diagnosis and treatment received 

did fall out of the final model. 

 

The mixed effects logistic regression model is as follows: 

 

Logit P(yij = 1 | Xij) = bXij + ei where yij is the outcome measurement on subject i at time j, 

b is a vector of regression coefficients, Xij  is a vector of predictors for subject i at time j,  

ei is a zero-mean normal variable representing the random intercept. For each subject 

that enters that ICU for septic shock, yij is zero except for the last observation and which 
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point yij = 1. For control subjects that do not enter the ICU and are discharged home, yij = 

0 for all time points j. 

 

In R code, the equation for the full mixed effects logistic regression model using vital 

signs is listed below. 

 

Septic shock ~ Initial diastolic blood pressure value + Change in diastolic blood pressure 

value from initial measurement + Initial systolic blood pressure value + Change in 

systolic blood pressure value from initial measurement + Initial heart value + Change in 

heart rate value from initial measurement + Initial respiratory rate value + Change in 

respiratory rate value from initial measurement + Initial temperature value + Change in 

temperature value from initial measurement + Age + Sex + Random intercept term for 

each patient 

 

In R code, the equation for the final model using vital signs after backward stepwise 

regression is listed below. 

 

Septic shock ~ Initial systolic blood pressure value + Change in systolic blood pressure 

value from initial measurement + Initial heart value + Change in heart rate value from 

initial measurement + Initial respiratory rate value + Initial temperature value + Change 

in temperature value from initial measurement + Age + Random intercept term for each 

patient 

In addition, there may be binary covariates that are important in the prediction of septic 

shock that do not involve actual values. For instance, the very act of ordering a lactate or 

arterial blood gas may predict the development of septic shock. These binary covariates 

may not be in and of themselves important pathophysiologically but rather they may 
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serve as a surrogate that the physician on the medical floor is concerned with the 

patient. In this case, the actual value may be of little value, and the binary act of ordering 

the test may be of interest. This, too, can be transformed into a rate. For instance, if one 

were to monitor the number of times these tests were ordered over a rolling time period 

(for example, 12 hours), it could serve as a rate, and therefore an increasing rate of 

ordering these tests may serve to “predict” the development of septic shock. In actuality, 

what this might represent would be that the physician is increasingly concerned about 

the patient and ordering, in increasing frequency, tests that are not routinely ordered for 

patients on the medical floor. Therefore, in this case, it may be that instead of ordering 

more tests in hopes of assuring themselves that the patient is doing well, the mere act of 

ordering these tests represents an intuition the physician has about impending septic 

shock, and this intuition is one that the physician should listen to. 

 

Another modeling approach that we plan on pursuing is the use of a rolling time frame 

and the calculation of a slope for each clinical biomarker. For instance, looking at heart 

rate, we would compute slopes of the heart rate over a rolling period of 12 hours, for 

example, where linear regression would be used during this 12 hour window to model 

the slope of heart rate change. While the overall slope of the course of a biomarker may 

not be linear, a smaller rolling window over time may be better approximated as linear. 

This heart rate slope change over time would then serve as a covariate that would vary 

over time. Similarly, a rolling slope calculation would be performed for each clinical 

biomarker. Again, given sufficient cases of septic shock, we would include these slope 

covariates along with their interactions. 

 

Histograms were plotted demonstrating that the vitals signs and laboratory values had a 

normal distribution. If they did not, then a logarithmic transformation was performed so 



20	
  

that the resulting histogram of the non-Gaussian vital signs and laboratory values had a 

normal distribution. In particular, the vital signs (blood pressure, heart rate, respiratory 

rate and temperature) had a normal distribution, so no transformation was necessary 

(figures 7, 8). The chemistry values were also normally distributed with the exception of 

BUN (figure 9, 10). Taking logarithmic transformation of BUN made the distribution 

normal, however this did not change the results of the analysis. Hemoglobin had a 

normal distribution and no transformation was performed (figure 11). Both white blood 

cell count and platelet count had a right skewed distribution and a logarithmic 

transformation was able to make the distributions more normal (figure 12). However, the 

logarithmic transformation did not significantly change the results. The results of the 

mixed effects multivariate logistic regression using laboratory values with the appropriate 

logarithmic transformations for initial white blood cell count and initial platelet count are 

show in table 5. For comparison, table 3 demonstrates the results without the logarithmic 

transformations and that they were not significantly different.  

Histograms of the initial values of diastolic blood pressure, systolic blood pressure and 

pulse pressure were approximately normal (figure 13). Histograms of the initial values of 

the heart rate, respiratory rate and temperature were also noted to be approximately 

normal (figure 14). The histograms of the initial values of the sodium, potassium, 

chloride and total CO2 were also normal (figure 15). The histograms of the initial values 

of the creatinine and glucose were approximately normal and did not change much with 

logarithmic transformation (figure 16). The histogram of the initial BUN values was 

approximately normal but looked more normal after logarithmic transformation (figure 

16). The histogram of the initial hemoglobin values was normal (figure 17). The 

histograms of the initial white blood count values and initial platelet values were not 

normal, and were normal after logarithmic transformation (figure 18). This is similar to 
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the discussion above when the values of all the vitals signs and laboratory values were 

used, instead of just the very first initial values used for the histograms generated in this 

paragraph. 
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Figure 1: 
Flowchart of patients that were included and excluded from the study
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Figure 2: 
ROC curve for the mixed effects multivariate logistic regression model 
for vital signs only. The AUC is 0.985.
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Figure 3: 
ROC curve using vitals only, however in this case the last 
measurement was taken 2 hours before development of septic shock. 
The performance is slightly worse with an AUC of 0.980 as compared 
to figure 2.
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Figure 4: 
ROC curve using vitals only, however in this case the last 
measurement was taken 4 hours before development of septic shock. 
The performance is slightly worse with an AUC of 0.967 as compared 
to when the last measurement was taken 2 hours before development 
of septic shock.



26	
  

Figure 5: 
ROC curve for the mixed effects multivariate logistic regression 
model for laboratory values only
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Figure 6: 
Time trend for diastolic blood pressure for representative 
patient that developed septic shock. The last time point 
represents the measurement prior to admission to the ICU for 
septic shock. The black line represents the linear fit through the 
data. Notice, however, that most of the changes occurs close to 
the time of septic shock and that the linear fit is a poor fit. The 
decrease in diastolic blood pressure is consistent with the 
peripheral vasodilation associated with septic shock.
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Figure 7: 
Histogram of blood pressure associated vitals signs showing 
that the distributions are approximately normal.
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Figure 8: 
Histograms of heart rate, respiratory rate and temperature 
showing that the distributions are approximately normal.
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Figure 9: 
Histograms of sodium, potassium, chloride and total CO2 
(bicarbonate) showing that they are approximately normal.



31	
  

Figure 10:
Histograms of BUN, creatinine and glucose along with histograms 
of their logarithmic transformations. Logarithmic transformation of 
BUN was eventually performed because this transformation 
produced a more normal distribution. Logarithmic transformations 
were not performed for creatinine or glucose because the 
logarithmic transformations did not change the distribution 
significantly from the non-transformed histograms.
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Figure 11:
Histogram of hemoglobin showing that the distribution 
is approximately normal.
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Figure 12:
Histograms of the white blood cell count and platelet count and 
also of their logarithmic transformations showing that the 
logarithmic transformations produced a more normal distribution. 
Logarithmic transformations were performed for WBC and platelet 
count, as the logarithmic transformation made the distributions 
more normal.
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Figure 13:
Histograms of the initial measurements of diastolic blood 
pressure, systolic blood pressure and pulse pressure. The 
distributions are approximately normal.



35	
  

Figure 14:
Histograms of the initial measurements of the heart rate, respiratory 
rate and temperature. The distributions are approximately normal.



36	
  

Figure 15:
Histograms of the initial values of sodium, potassium, chloride and 
total CO2 (bicarbonate) showing that they are approximately normal.
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Figure 16:
Histograms of the initial values of BUN, creatinine and glucose 
along with histograms of their logarithmic transformations. 
Logarithmic transformation of BUN was eventually performed 
because this transformation produced a more normal distribution. 
Logarithmic transformations were not performed for creatinine or 
glucose because the logarithmic transformations did not change 
the distribution significantly from the non-transformed histograms.
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Figure 17:
Histogram of the initial values of hemoglobin showing that the 
distribution is approximately normal.
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Figure 18:
Histograms of the initial values of white blood cell count and 
platelet count and also of their logarithmic transformations 
showing that the logarithmic transformations produced a more 
normal distribution. Logarithmic transformations were performed 
for WBC and platelet count, as the logarithmic transformation 
made the distributions more normal.
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