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Variation of distribution factors with loading

Ross Baldick∗

September 13, 2002

Abstract

Power transfer distribution factors depend on the operating point and topology of an electric
power system. However, it is known empirically that, for a fixed topology, the power transfer
distribution factors are relatively insensitive to the operating point. We demonstrate this result
theoretically for lossless systems in two ways: as an exact result for a system having “series-
parallel” topology and a single point of injection and a single point of withdrawal and also
as an approximate result for systems of arbitrary topology but having reactive compensation
sufficient to keep voltages constant at all busses. To the extent that losses are small, the results
apply also for more realistic systems with losses. We also analyze two other distribution factors
that more closely relate to thermal and steady-state stability constraints.

1 Introduction

An (incremental) power transfer distribution factor (PTDF) is the relative change in power flow on a
particular line due to a change in injection and corresponding withdrawal at a pair of busses. PTDFs
depend on the topology of the electric power system, the behavior of controllable transmission
system elements as their limits are approached, and on the operating point [1]. That is, PTDFs
change when an outage of a line occurs, if a controllable element reaches its control limits, and
also as the pattern of injections and withdrawals change the loadings on the lines in the system.

Nevertheless, it is known empirically that, given a fixed topology and ignoring controllable
device limits, the PTDFs are relatively insensitive to the levels of injections and withdrawals. See,
for example, [2][3,§3.9] for empirical studies of the variation of PTDFs for certain systems.

In this paper we develop theoretical insight into this empirical observation in two forms:

1. showing that the PTDFs are exactly constant in a lossless system having “series-parallel”
topology and a single point of injection and single point of withdrawal (Theorem 1) and

2. showing that the PTDFs are approximately constant in a lossless system of arbitrary topology
but having reactive compensation sufficient to keep voltage magnitudes constant at all busses
(Corollary 4.)

∗The author is with the Department of Electrical and Computer Engineering, the University of Texas at Austin, and
was a CSEM Visiting Research Fellow during the Summer of 2002.
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These two results also apply approximately to slightly lossy systems. When the hypotheses of
these results do not hold, the PTDFs can be expected to vary significantly as loadings change.

The second result is due fundamentally to the fact that thesin function has a Taylor expansion
with zero quadratic term, so that linearization of thesin function about zero angle results in an
error that is cubic and higher order in the angle, not quadratic. Consequently, the variation of the
PTDFs with net power injection is quadratic and higher order rather than linear. However, the first
result shows that in some circumstances the power flow equations yield PTDFs that are exactly
constant independent of injections.

The significance of these results is that, in the context of flowgate right schemes for transmis-
sion rights [4, 5], capacity to flow power on a line or a group of lines is sold or leased to users
of the transmission system. A transmission system user wishing to inject power at one point and
withdraw it at another may want to purchase enough capacity on the line so as to hedge its con-
gestion costs. If the PTDFs for a particular line vary significantly with the flows on the other lines
then it is more difficult to predict the amount of capacity needed on each binding “flowgate.” Ei-
ther the risk due to variation of the PTDFs must be borne amongst the sellers and buyers of the
transmission capability or conservative capacity limits must be used to compensate for variation of
the PTDFs. If the PTDFs are relatively constant, however, then presumably the appropriate power
flow capacity on each flowgate could be reserved to hedge the transmission congestion costs.

However, a further issue is that relative constancy of the PTDFs may not be the best measure
of the lack of risk of unhedged transmission requirements. This is because, for example, in a
thermally limited line the fundamental limiting factor is not literally the power flow down the line
but rather the resistive losses in the line, which are proportional to the square of the magnitude of
the current. Similarly, in a steady-state stability limited line, the angle across the line (or between
a generation center and a demand center) is the limiting factor. For this reason, we investigate two
other distribution factors:

• power to current magnitude distribution factors (PIDFs) that measure the (incremental) effect
of a change in power injection on the magnitude of the current in a line, and

• power to angle distribution factors (PADFs) that measure the (incremental) effect of a change
in power injection on the angle across a line.

These distribution factors relate more closely to thermal and steady-state stability constraints, re-
spectively, than do PTDFs, and we will see that they have similar properties to PTDFs. Under
the DC power flow approximation, PTDFs, PIDFs, and PADFs are all proportional to each other.
However, in a nonlinear setting, the conditions for the PTDFs to be relatively constant as loadings
vary are more stringent than those for PTDFs and PADFs, pointing to technical requirements that
must be satisfied for workable flowgate rights on thermally limited transmission lines.

The results are proven for lossless systems with fixed topology. The results for systems of
general topology are also dependent on the assumption of there being voltage support at all busses
sufficient to maintain constant voltage. In fact, the context of thermal constraints implies that there
are losses on the lines and, moreover, in typical systems only relatively few of the busses may have
controlled voltages. The applicability of these results to thermally limited lines is therefore limited
to lines with relatively small resistance to reactance ratios but which are, nevertheless, thermally
limited. The results will not hold where voltage constraints are binding, since by definition there
is inadequate reactive support to maintain constant voltage. In particular, the results are unlikely
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to hold on lower voltage parts of the transmission system but may be applicable to higher voltage
lines having sufficient reactive support and low ratios of resistance to reactance.

The structure of the paper is as follows. Section 2 presents a brief literature survey. In section 3,
we discuss the assumptions, the power flow formulation, and formal definition of PTDF. We
consider PTDFs in series-parallel networks in section 4. We then consider PTDFs in general
network topologies in section 5. In sections 6 and 7, we define and characterize PIDFs and PADFs,
respectively. We conclude in section 8.

2 Literature survey

Several authors discuss PTDFs in the context of approximating power flows. For example, Baugh-
man and Schweppe use distribution factors to approximate flows as a function of injections and
after a change in the topology of the network [6]. Sauer formulates PTDFs for linear load flows
in [7]. Wood and Wollenberg describe the calculation of PTDFs using the DC power flow approx-
ation in [8, Appendix 11A] and also discuss the calculation of PTDFs for outage conditions [8,
§11.3.2]. The evaluation of PTDFs at an operating point from the Jacobian of the power flow
equations is described in [8,§13.3].

Grijalva analyzes in detail the variation of PTDFs in a three bus, three line example system with
voltages maintained constant and also discusses how the PTDFs vary with loading. Grijalva shows
that if voltages are maintained constant at all busses then, as loading increases from zero injection
conditions, the PTDFs that were largest at zero injection tend to decrease while the PTDFs that
were smallest at zero injection tend to increase [3,§3.9]. Generalizing the three bus, three line
system, Grijalva discusses PTDFs from a given point of injection and a given point of withdrawal
to each of the lines in a cutset of the power system, observing that the sum of the PTDFs across
all lines in a cutset must be equal to one. Therefore, increases in PTDFs to some lines must be
accompanied by decreases in the PTDFs to other lines. Grijalva observes that PTDFs begin to
change significantly as “static transfer capability limits” are approached [3,§3.3 and Figure 3.3].

Grijalva also considers higher order terms in a Taylor expansion of the PTDFs using a rectan-
gular representation for the voltage phasor and evaluates a quadratic approximation to the solution
of the power flow [3,§3.9]. We take an analogous approach in section 5; however, we use a po-
lar representation of the voltage phasor and consider a Taylor expansion about the zero injection
operating point, which allows for convenient evaluation of the linear terms in the Taylor expansion.

Liu and Gross conduct an empirical study of the variation of PTDFs with injections and with
other changes [2]. They show that for the system considered the PTDFs typically change by a
relatively small amount as the levels of injections and withdrawals change.

Saueret al. introduce and analyze various distribution factors in [9], including two that are
closely related to the PIDFs and PADFs that we consider. In particular, they define distribution
factors of current injections to current flows (current transfer distribution factors or CTDFs), noting
that the CTDFs are customarily converted to PTDFs. The PIDFs that we define are similar in flavor
to the CTDFs except that our interest is in the effect of power injections on current flows.

Saueret al. also consider angle distribution factors under outage conditions, generalizing the
PADFs that we consider to the line outage case [9,§5]. The analysis that we present concerning the
relative constancy of distribution factors could be applied to the outage distribution factors in [9]
and also to the various other distribution factors defined there.
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Finally, Fradiet al. consider non-linear allocation of quantities to transactions [10]. They
emphasize the variation of PTDFs. In contrast, we consider the conditions under which the PTDFs
are relatively constant.

3 Assumptions and formulation

The material in this section is based on [8, 11, 12] and is mostly standard. We develop it in detail
so that we can precisely state the results to follow. We consider the single phase equivalent of
a power system havingn+ 1 busses. Bus number 0 is the reference bus and will be assumed to
have reference angle of zero, while the other busses are labeled 1 throughn. We use the symbols
j,k, `,m,s, t,u to index the busses. (We will use the symbol

√−1 for the square root of minus one.)
Unless otherwise specified, we assume that there is at most a single line between any pair of

busses, in which case we can refer tothe line between, say, busses` andm. When considering
“series-parallel” networks in section 4, we will occasionaly have to consider the case of more than
one line between a pair of busses. We will develop notation in section 4 to distinguish such lines.

For the analysis in section 4 we will not need to make any assumptions about voltage magni-
tude, whereas for the analysis in sections 5–7 we will have to assume that voltage magnitudes are
constant (so that each bus, besides the reference bus, is aPV bus [11,§10.2].) For both analyses,
we will have to consider the net power injections at each bus and the voltage angles at each bus
explicitly. Consequently, we will explicitly represent net power injections and angles as arguments
in the functions that we define to formulate the power flow equations. The voltage magnitudes will
not be represented explicitly as arguments, but will be considered parameters.

Let the(`,m) entry of the bus admittance matrix [11] be:

G`m+
√−1B`m,

where we note that the conductancesG`m and the susceptancesB`m satisfy:

• G`m≤ 0 andB`m > 0 for ` 6= m and

• G`` ≥ 0 and the sign ofB`` is indeterminate but typically less than zero unless there is
significant shunt capacitance on the line.

Let the net power injected by generation and demand at node` beP̀ , so that for generator busses,
P̀ > 0. Let the voltage magnitude at bus` be |v`| and its angle beΘ`. Collect the vector of power
injections at all the busses, except the reference bus, together into a vectorP∈ Rn and collect the
vector of angles at all busses, except the reference bus, together into a vectorΘ ∈ [−π,π]n.

For every bus̀ (including the reference bus) define functionsp` : Rn×Rn→ R by:

∀P∈ Rn,∀Θ ∈ Rn, p`(P,Θ) = ∑
m∈K(`)∪{`}

|v`||vm|[G`mcos(Θ`−Θm)+B`msin(Θ`−Θm)]− P̀ ,

whereK(`) is the set of busses directly connected to bus` by a line.
Collect the functionsp` for each bus̀ , except the reference bus, into a vector functionp :

Rn×Rn → Rn. Then, given a vector of net injectionsP, solving the power flow is equivalent to
solving forΘ in:

p(P,Θ) = 0, (1)

where:
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• 0 is the vector of all zeros and

• the injection at the reference bus can be calculated once the vector of anglesΘ is known.

Consider a vector of net injectionsP? and a corresponding solutionΘ? of the power flow
equations (1). We consider the properties of the solution as the vector of net injections is varied
aboutP?.

We first note thatp is infinitely partially differentiable with respect toΘ. Suppose that
∂p
∂Θ

(P?,Θ?)

is non-singular. Then by the implicit function theorem [13,§4.4] there exists an infinitely partially
differentiable functionθ : Rn→ Rn such that in some neighborhoodN of P = P?, the power flow
equations (1) has a solution satisfying:

∀P∈N , p(P,θ(P)) = 0.

That is, as is well-known, the power flow equations have a well-behaved solution in this neighbor-
hood.

Consider the flow along a line joining busses` andm. Neglecting shunt conductance in a line,
we can evaluate the power flowing from bus` into the line joining bus̀ andm by the function
p`m : Rn→ R defined by:

∀Θ ∈ Rn, p`m(Θ) = |v`||vm|[G`mcos(Θ`−Θm)+B`msin(Θ`−Θm)]−|v`|2G`m.

If there are losses in the system, so thatG`m < 0, then the flow will be different at different
points along the line. As a representative flow for the line joining` to m, we take the average of
the flows at the two ends of the line. That is, definep̃`m : Rn→ R by:

∀Θ ∈ Rn, p̃`m(Θ) = 1
2(p`m(Θ)− pm`(Θ)),

= |v`||vm|B`msin(Θ`−Θm)− 1
2(|v`|2−|vm|2)G`m.

(We would obtain essentially the same results in the theorems below if we considered the sending
end flow or the receiving end flow.) To relate the representative flow to the net injections, we define
the functionp̂`m : Rn→ R by:

∀P∈N , p̂`m(P) = p̃`m(θ(P)).

Consider a busk and a line joining busses̀andm. We consider the effect on the representative
flow along the line joining̀ andm of a change in the net injection at busk from the levelP?

k
(and assuming a corresponding change in the net withdrawal at the reference bus to maintain a
solution of the power flow equations.) Following Wood and Wollenberg [8], the (incremental)
power transfer distribution factor (PTDF) from injection at busk to flow on the line joining̀ to m
is the sensitivity:

∂p̂`m

∂Pk
(P?) =

∂p̃`m

∂Θ
(Θ?)

∂θ
∂Pk

(P?).

For brevity, we call this sensitivity “the PTDF fromk to line `m.”
In general, transactions may involve a change in injection at a busk and a corresponding change

at another busj (that may not be the reference bus.) In this case, and if the system is lossless, then
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the PTDF from injection at busk and withdrawal at busj to flow on the line joining̀ to m is the
difference of sensitivities:

∂p̂`m

∂Pk
(P?)− ∂p̂`m

∂Pj
(P?) =

∂p̃`m

∂Θ
(Θ?)

(
∂θ
∂Pk

(P?)− ∂θ
∂Pj

(P?)
)

.

For brevity, we call this sensitivity “the PTDF fromk j to line `m.”
In the following sections we calculate the PTDFs fromk to line `mand fromk j to line `m. We

will specialize to the case of lossless networks, but mention the qualitative effect of losses on the
results.

4 Series-parallel networks

In this section, we consider a lossless electric power network with one-line diagram having a
specific topological property related to combining branches in a “series-parallel” reduction [14],
which is specified in:

Definition 1 A series-parallel reduction of an electrical network is either:
A parallel reduction involving the combining of two parallel lines that both join a given pair

of busses into a single line having admittance equal to the sum of the admittances of each line, or,
A series reduction involving the combining of two lines that are incident to a common bus

(and where the common bus is not incident to any other line) into a single line having admittance
equal to the inverse of the sum of the inverse admittances of the lines. The bus that was common
to the two lines before the reduction is deleted from the system in forming the reduced system.

2

We are interested in networks that can be series-parallel reduced to a single line joining bussesk
and j, as specified in:

Definition 2 Consider a network with two distinguished nodesk and j. Suppose that through a
sequence of series-parallel reductions, we can reduce the network to a single line joining bussesk
and j. We call such a network “k j series-parallel.”2

An example of ak j series-parallel network is a “triangular” network consisting of three busses
with three lines joining them. Figure 1 illustrates the one-line diagram of such a system. The lines
k1 and1 j, having susceptancesBk1 andB1 j , can be series reduced to a linek j, having susceptance(

1
Bk1

+ 1
B1 j

)−1
that can be parallel reduced with the other line joiningk to j to produce a single line

joining k and j. Considerably more complicated topologies than shown in figure 1 can be series-
parallel reduced to a single line [14]. However, if the graph of the network has as a sub-graph the
complete graph on four vertices then it is notk j series-parallel.

We can now prove:

Theorem 1 Consider a losslessk j series-parallel network and any particular linèm. In such a
network, the PTDFs fromk j to line `m are constant independent of injection atk if the only point
of real and reactive power injection in the network isk and the only point of real and reactive
power withdrawal in the network isj.
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Figure 1: Ak j series-parallel
system.

Proof We prove by induction on the number of linesL in the (connected) one-line diagram of
the network.

If there is onlyL = 1 line in the network (necessarily the line joining busk to bus j) then the
PTDF fromk j to line k j is exactly 1 independent of the injection atk since all power injected atk
must flow on the line joiningk to j.

Suppose that the result is true for allk j series-parallel networks with at mostL lines. Consider
anyk j series-parallel network withL + 1 lines. Then by definition it can be reduced by a series-
parallel reduction to ak j series-parallel network withL lines.

Consider the reduction. Either it was a series reduction or a parallel reduction. We consider
each case in turn:

Series reductioninvolving two lines joining, say, busses` to sands to m. The reduced network
hasL lines and isk j series-parallel. By the induction hypothesis, the PTDF fromk j to line `m in
the reduced network is constant independent of injection atk.

Now note that because the system is lossless and there is no real power injected or withdrawn
at buss then, in the system before reduction, the real power flow on the line` to s is the same as
the real power flow on the lines to m. Furthermore, these real power flows are the same as the
real power flow on the linèmafter the reduction. Moreover, the combination of the lines does not
affect the flow on any other lines since there was no real nor reactive power injection at buss. That
is, the PTDF fromk j to line`sand the PTDF fromk j to linesmin the system before reduction are
constant independent of flows and both equal to the PTDF fromk j to line `m in the system after
reduction.

Parallel reduction involving two lines joining, say, busses` to m. To distinguish the lines, we
will label the lines in the system before reduction as`mα and`mβ having susceptancesB`mα and
B`mβ, respectively. We will refer to the line in the reduced system as`m and it has susceptance
B`m = B`mα +B`mβ.

By the induction hypothesis, in the reduced system the PTDF fromk j to line `m is constant
independent of injection atk. Now note that the lines̀mα and `mβ share flow between them
in proportion to their susceptances and that this sharing is independent of flow along them. In
particular, the flows along these lines, which we will denote byp̃`mα and p̃`mβ, respectively, are
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given by:

∀Θ ∈ Rn, p̃`mα(Θ) = |v`||vm|B`mα sin(Θ`−Θm),
∀Θ ∈ Rn, p̃`mβ(Θ) = |v`||vm|B`mβ sin(Θ`−Θm),

and the ratio of these is fixed. Moreover, the parallel combination of these lines does not affect
the flow on any other lines and the flow̃p`m on the parallel combination in the reduced system
satisfies:

∀Θ ∈ Rn, p̃`mα(Θ) =
B`mα
B`m

p̃`m,

∀Θ ∈ Rn, p̃`mβ(Θ) =
B`mβ

B`m
p̃`m.

That is, the PTDFs fromk j to line `mα and fromk j to line `mβ are equal to the PTDF fromk j to

line `m in the reduced system multiplied by constant factorsB`mα
B`m

and
B`mβ
B`m

, respectively.
2

Theorem 1 is restrictive in that it only applies to lossless systems with series-parallel topologies
and, furthermore, because it only applies to a system with a single point of real and reactive power
injection and a single point of real and reactive power withdrawal, whereas practical applications
of PTDFs involve multiple simultaneous points of injection and withdrawal. The assumption of a
single point of injection and a single point of withdrawal is utilized in the induction step when a
series reduction is made. To the extent that intermediate points of withdrawal and injection involve
relatively small injections, the result will hold approximately true in more practical applications.

To emphasize the importance of the assumption of a single point of real and reactive power
injection and a single point of real and reactive power withdrawal, consider the three bus, three
line network shown in figure 1. If the voltages at all nodes are held constant (potentially involving
a large reactive power injection at bus 1) then the PTDFs are no longer independent of the real
power injection atk and the real power withdrawal atj. The variation of PTDFs for a three bus,
three line network is discussed in detail in [3,§3.9].

The lossless assumption is used in relating the flows on the lines before and after reduction.
The result will hold approximately true in lossy systems to the extent that losses are relatively
small.

In general, power systems are not necessarily series-parallel in topology. Moreover, reactive
power sources are used to maintain bus voltages approximately constant, violating the assumption
of a single point of injection and a single point of withdrawal in the system. In the next section,
we consider general network topologies and explicitly assume that the voltages are held constant.

5 General network topologies

In the more general case of a lossless network that may not be series-parallel, we calculate an
estimate of the PTDF directly, under the assumption that all the voltage magnitudes are constant.
That is, we assume that all busses arePV busses [11,§10.2] with adequate reactive support to
maintain constant voltage. Consider the PTDF fromk to line `m at some operating pointP?,Θ?
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such that the Jacobian
∂p
∂Θ

(Θ?) is non-singular. Again, using the implicit function theorem, we can

solve the power flow equations in a neighborhoodN of P? for a solutionθ as a function ofP.
Suppose that this neighborhoodN of P? includes a line segment joining0 andP?. Then, by

Taylor’s theorem applied to the derivative ofp̂`m, and assuming that the voltage magnitudes are
constant, the PTDF satisfies:

∂p̂`m

∂Pk
(P?) =

∂p̂`m

∂Pk
(0)+

∂2p̂`m

∂Pk∂P
(0)P? +o(P?), (2)

whereo(P?) is a function such that‖o(P?)‖
‖P?‖ → 0 as‖P?‖→ 0, and where we note that

∂p̂`m

∂Pk
(0) is the

PTDF fromk to line `m for zero injections. For a lossless system,
∂p̂`m

∂Pk
(0) is the PTDF fromk to

line `mcalculated according to the DC power flow approximation. In the development that follows,

we will show that the vector of coefficients
∂2p̂`m

∂Pk∂P
(0) of the linear term in the expression (2) for the

PTDF is zero. That is, the PTDF evaluated atP? is equal to a constant plus terms that are higher
order than linear inP?. This accounts for the relative constancy of the PTDFs at low to medium
load in power systems when voltage constraints are not binding.

We evaluate the terms in the PTDF in the following:

Lemma 2 Consider a lossless system and a line`m. We have the following expressions for the
derivatives:

∀Θ,
∂(Θ`−Θm)
∂Θ

(Θ) = [I `− Im]†,

∀Θ,
∂p̃`m

∂Θ
(Θ) = |v`||vm|B`mcos(Θ`−Θm)[I `− Im]†,

∂p̃`m

∂Θ
(0) = |v`||vm|B`m[I `− Im]†,

∀Θ,
∂2p̃`m

∂Θ2 (Θ) = −|v`||vm|B`msin(Θ`−Θm)[I `− Im][I `− Im]†,

∂2p̃`m

∂Θ2 (0) = 0,

∀P,Θ,
∂p
∂Pk

(P,Θ) = −Ik,

∀P,Θ,∀t,
∂2p
∂Pk∂Pt

(P,Θ) = 0,

∀P,Θ,∀s, t,
∂ps

∂Θt
(P,Θ) =

{
∑u∈K(s) |vs||vu|Bsucos(Θs−Θu), if t = s,

−|vs||vt |Bstcos(Θs−Θt), if t ∈K(s),

∀P,∀s, t,u,
∂2ps

∂Θt∂Θu
(P,0) = 0,

9



where we note that:

• superscript† denotes transpose,

• 0 denotes a vector or matrix of all zeros, and

• I ` is the vector with all zeros except for a one in the`-th place.

Proof All of the terms follow from definition of the functions, direct calculation, and substitu-
tion. 2

Corollary 3 Consider a lossless system. If
∂p
∂Θ

(0,0) is non-singular then
∂2p̂`m

∂Pk∂P
(0) = 0.

Proof We note that for a lossless system,P = 0 andΘ = 0 is a solution of the power flow equa-
tions (1). Again using the implicit function theorem, there is an infinitely partially differentiable
functionθ : Rn → Rn such that in some neighborhoodN0 of P = 0, the power flow equations (1)
has a solution satisfying:∀P∈ N , p(P,θ(P)) = 0. Differentiating this expression with respect to
Pk, we obtain:

0 =
∂p
∂Pk

(0,0)+
∂p
∂Θ

(0,0)
∂θ
∂Pk

(0),

= −Ik +
∂p
∂Θ

(0,0)
∂θ
∂Pk

(0),

so that since
∂p
∂Θ

(0,0) is non-singular by hypothesis,
∂θ
∂Pk

(0) is well-defined. Differentiating again

with respect toPt :

0 =
∂2p
∂Pk∂Pt

(0,0)+

[[
∂θ
∂Pk

(0)
]†∂2ps

∂Θ2 (0,0)
∂θ
∂Pt

(0)

]

s=1,...,n

+
∂p
∂Θ

(0,0)
∂2θ
∂Pk∂Pt

(0),

= 0+

[[
∂θ
∂Pk

(0)
]†

[0]
∂θ
∂Pt

(0)

]

s=1,...,n

+
∂p
∂Θ

(0,0)
∂2θ
∂Pk∂Pt

(0),

=
∂p
∂Θ

(0,0)
∂2θ
∂Pk∂Pt

(0),

by lemma 2, where the terms of the form[· · · ]s=1,...,n mean a vector havings-th entry given by the

term inside the square brackets. Again, since
∂p
∂Θ

(0,0) is non-singular, we have
∂2θ
∂Pk∂Pt

(0) = 0.

Also, by lemma 2,
∂2p̃`m

∂Θ2 (0) = 0.
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By direct calculation:

∂p̂`m

∂Pk
(0) =

∂p̃`m

∂Θ
(0)

∂θ
∂Pk

(0),

∀t,
∂2p̂`m

∂Pk∂Pt
(0) =

∂p̃`m

∂Θ
(0)

∂2θ
∂Pk∂Pt

(0)+
[

∂θ
∂Pk

(0)
]†∂2p̃`m

∂Θ2 (0)
∂θ
∂Pt

(0).

Substituting in from the terms previously calculated, we obtain:∀t,
∂2p̂`m

∂Pk∂Pt
(0) = 0. 2

Corollary 4 Consider a lossless system with reactive compensation such that all bus voltage mag-
nitudes are constant. Also consider an operating pointP? sufficiently close to the condition of zero
net injection such that for all operating points on the line segment joining0 andP? we have that:

• the solution of the power flow equations are well-defined and unique and

• the Jacobian
∂p
∂Θ

is non-singular.

Then the incremental PTDFs at the operating pointP? differ from the PTDFs calculated from the
DC load flow by an error that is small compared toP?. 2

Corollary 4 shows that in a lossless system with constant bus voltage magnitudes, the PTDFs
are approximately constant for operating points near to the condition of zero injection; that is, for
what we might define as “light” to “medium” flows on the system from the perspective of angle
differences across lines.

In contrast, at “heavy” loadings where angles across lines are large, or if the assumption of con-
stant voltage is not maintained, then the error may become large. For example, if there are binding
voltage constraints because of a lack of reactive power support, the PTDFs may vary significantly.
While this condition is of great interest in the context of flowgate rights for transmission, it is not
appropriate to rely on the constancy of PTDFs under these circumstances. We note that some er-
rors in the PTDFs are positive while others are negative since, as discussed in [3,§3.3], the PTDFs
from a point of injection and withdrawal to each of the lines in a cutset of a lossless power system
must always sum to one.

In practical systems having small but non-zero losses, we observe that in lemma 2 we would
have that:

∂2p̃`m

∂Θ2 (0) ≈ 0,

∀s, t,u,
∂2ps

∂Θt∂Θu
(P,0) ≈ 0,

so that we also have
∂2p̂`m

∂Pk∂P
(0) ≈ 0, again implying that the PTDFs are relatively insensitive to

variations in injections and withdrawals.
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6 Power to current distribution factors

Although PTDFs are often discussed in relation to thermally limited lines, in fact it is the heating
due to current flowing on the line that determines the thermal limit. Instead of considering the
effect of the change of power injection on the power flowing down a line, a more direct measure
of the effect on a thermal constraint is the effect of a change in injection on the magnitude of the
current flowing down the line. (In practice, the magnitude of the complex flow is often used as a
proxy to the magnitude of the current.)

We again maintain the assumption that the voltage magnitude at each bus is constant and as-
sume that losses are small. However, these assumptions are insufficient to yield a result similar to
corollary 4. In order for the power to current magnitude distribution factor fromk to line `m to be
approximately constant, we will see that we must additionally require that|v`|= |vm|. The reason
for this is that if these voltages are different then there will be reactive power flowing along the
line and the PTDFs will change more rapidly with flow.

Moreover, since we are interested in current magnitudes but the current magnitude is not dif-
ferentiable at the condition of zero current, we will define a “directed” current magnitude that is
differentiable and captures the relevant behavior of the current magnitude. We will assume that
the power to current distribution factor of interest is relevant to a thermal limit that corresponds to
power flowing from bus̀ to busm, so thatΘ` > Θm at the operating point.

Ignoring the current flowing in the shunt capacitance of the line, the square of the current
magnitude is given by:

∀Θ ∈ Rn,(G2
`m+B2

lm)(|v`|2 + |vm|2−2|v`||vm|cos(Θ`−Θm))
= (G2

`m+B2
lm)([|v`|− |vm|]2 +2|v`||vm|[1−cos(Θ`−Θm)]),

= 2|v`||vm|[1−cos(Θ`−Θm)],

if |v`|= |vm|.
Paralleling the development in section 3, we define the functionĩ`m : Rn→ R by:

∀Θ ∈ Rn, ĩ`m(Θ) =





√
G2

`m+B2
lm

√
2|v`||vm|[1−cos(Θ`−Θm)], if Θ` > Θm,

−
√

G2
`m+B2

lm

√
2|v`||vm|[1−cos(Θ`−Θm)], if Θ` < Θm,

0, if Θ` = Θm.

The functionĩ`m is twice partially differentiable and its absolute value is the magnitude of the
current on the linèm. (Strictly speaking, in the presence of shunt capacitance, this function is
equal to the current only at the mid-point of the line between the busses` andm.) To relate the
current to the net injections, we define the functionî`m : Rn→ R by:

∀P∈N , î`m(P) = ĩ`m(θ(P)).

The (incremental) power to current magnitude distribution factor (PIDF) from injection at bus
k to current magnitude on the linèm is the sensitivity:

∂î`m
∂Pk

(P?) =
∂ĩ`m
∂Θ

(Θ?)
∂θ
∂Pk

(P?).
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For brevity, we call this sensitivity “the PIDF fromk to line `m.”
As in section 5, we have:

∂î`m
∂Pk

(P?) =
∂î`m
∂Pk

(0)+
∂2î`m
∂Pk∂P

(0)P? +o(P?).

Theorem 5 Consider a lossless system with reactive compensation such that all bus voltage mag-
nitudes are constant. Consider a busk and a line`mand suppose that|v`|= |vm|. Also consider an
operating pointP? sufficiently close to the condition of zero net injection such that for all operating
points on the line segment joining0 andP? we have that:

• the solution of the power flow equations are well-defined and unique and

• the Jacobian
∂p
∂Θ

is non-singular.

Then the incremental PIDFs at the operating pointP? differ from the PIDFs calculated from the
DC load flow by an error that is small compared toP?. 2

Note that under the assumption of constant voltages, the PTDFs and the PIDFs calculated from
the DC power flow are proportional to each other. At other operating points, however, the PIDFs
can be expected to change more rapidly with flows than the PTDFs unless the condition|v`|= |vm|
is maintained.

Theorem 5 assumes a lossless system; however, the assumption of thermal limits implies losses.
Again, we observe that theorem 5 remains approximately true in the presence of losses. The
implication of theorem 5 is that in a thermally limited system, to enable flowgate rights to be
effective, voltage support must be provided on the constrained lines to make the voltages constant
and equal at both ends of each flowgate. If these conditions are not satisfied, then the PIDFs (and
indeed the thermal capacity) will vary with loading. In particular,

• the PIDFs will vary as|v`|− |vm| varies and

• the capacity to transmit real power will fall as the voltage at the receiving end falls (as more
of the capacity is used for transmitting reactive power.)

In the extreme, if voltage constraints are binding then flowgate approaches are unlikely to be ef-
fective [15, 1]. Fortunately, voltage support is often relatively cheap to provide [16].

7 Power to angle distribution factors

In steady-state stability limited systems, the angle across lines (or between generation and demand)
is the limiting factor. Instead of considering the effect of the change of injection on the power
flowing down a line, a more direct measure of the effect on a stability limit is the effect of a change
in injection on the angle difference across a line. Under the same assumptions as in corollary 4,

∂θ
∂Pk

(P?) =
∂θ
∂Pk

(0)+
∂2θ
∂Pk∂P

(0)P? +o(P?),

=
∂θ
∂Pk

(0)+o(P?),
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and the PADFs are again relatively constant independent of injections forP? close enough to the
condition of zero net injections.

8 Conclusion

In this paper we presented conditions for PTDFs to be completely or approximately independent
of the injections and withdrawals in a lossless electric power system. For particular topologies,
and assuming a single point of injection and a single point of withdrawal, the PTDFs are constant.
In more practical systems with arbitrary topology, multiple points of injection and withdrawal, and
losses, the PTDFs are relatively independent of injections and withdrawals if topology is fixed,
voltages are held constant, the losses are relatively small and the angles across lines not too large.

We also analyzed power to current magnitude distribution factors PIDFs and power to angle
distribution factors PADFs. For relative constancy of the PIDFs fromk to a line`m, we found that
we must assume that|v`| = |vm| in addition to the assumptions for relative constancy of PTDFs
and PADFs. That is, we must assume that there is adequate voltage support as a condition for
the effectiveness of flowgate rights schemes. In the context of a contingency limited system, this
requires that controllable voltage support must also be available under contingency conditions. The
conditions for the relative constancy of the distribution factors are stringent and may not hold in
typical transmission systems.
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