# UCLA

**Posters** 

## Title

Developments on the CENS Structural Health Monitoring Front

## Permalink

https://escholarship.org/uc/item/8qx229h5

## Authors

Skolnik, Derek Lukac, Martin Naik, Vinayak S <u>et al.</u>

# **Publication Date**

2007-10-10

**S** Center for Embedded Networked Sensing

# **Developments on the CENS** Structural Health Monitoring Front D. Skolnik, M. Lukac, V. Naik, W. Kaiser, J. Wallace, and D. Estrin

M. Kohler, I. Stubailo, R. Govindan, and P. Davis

Introduction: Structural Health Monitoring (SHM) Systems

SHM: Process of assessing state of health of instrumented structures from their measurements

**Objectives:** To improve safety and reliability of infrastructure by *damage detection* and *rapid post-event assessment* 

Requirements: Robust DAQ with rapid data processing, suite of sensors, damage detection algorithms



### **Background:** Build on Past CENS Experience

- **Factor Building**
- 72 channel embedded *accelerometer* network
- USGS installed after 1994 Northridge
- · CENS upgrades in 2003, 2005
- **Four Seasons** • nees@UCLA pilot
- project 2004
- forced vibration testing
- · floor accelerations, interstory displacement, strain

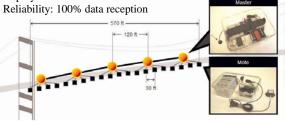


### **MASE Deployment**

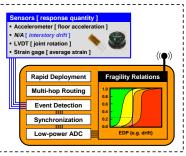
- 100-node array spanning over 500Km
- 50-node multi-hop wireless network
- · Collecting data for 2 years

· Challenges include variable network link quality and limited power while maintaining continuous data transport and operation




## **SHM Systems:** Development and Implementation

**ShakeNet:** Portable vibration sensor network for *system identification* and for locating potential damage due to earthquake motions.


- · Multi-tier wireless sensing system
- · Rapid deployment enables aftershock monitoring
- System identification & damage detection

### Vincent Thomas Bridge array deployed for 24 hours

- Mote sensors and stargate backbone
- CENS Tenet multi-tier software
- Deployment time: 2.5 hours



Probabilistic post-event assessment algorithms LVDT [ joint rotation ]



### Weld fracture detection

- · High frequency
- Preliminary experiment March 8, 2007



Accelerometer installed at moment-frame (UCSD)

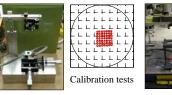


Cyclical loading

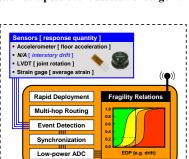


CENS CDCC box collected vibration data



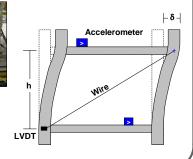

Fracture event

#### Power


- Building gird not always available (blackouts)
- LEAP2 architecture enables low-power DAQ

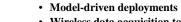
#### **Time Synchronization**

- · GPS does not work inside buildings
  - RBS provides time sync over 802.11




- Measuring interstory drift ( $\Delta = \delta / h$ )
- · Double integration of acceleration
- LVDT w/ spring tensioned wire
- Laser/Photodiode/Plano convex lens




#### Wireless Network

- Minimize interference/reliance with building infrastructure
- Robust to poor link quality and frequent unpredictable disconnections



# UCLA – UCR – Caltech – USC – UC Merced

SHM of Los Angeles Tall Buildings: A novel SHM system using tall buildings in Los Angeles as a testbed.



Wireless data acquisition toolbox

## A suite of sensors; including a new drift sensor