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ABSTRACT

It is shown that although & scalar meson can be described by a
renormalizable field.theory, it is not possible for such a partiéie to "hootstrap"
itself, because the fqrce arising from the crossed channels is too great. This
result is in accordance with the "bootstrap” philosophy that there should he
oniy one solution of the S-matrix e@uations consistent with maximal anslyticity
of the second kind, and also indicates the need for symmetries in strong

interactions.
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INTRODUCTION -

It has been proposed that there should be only one'solutiqn for the
scatiering matrix in strong interactions which is consistent with unitarity
and maximal analyticity of the second kind.l All the poles should be continuable.
in angular momentum. This would mean that no experimental information need be
included to derive the properties of all the observed particles, whethef bound-
states or resonances., Alternatively it may be that it is necessary to knoﬁ
the masses and coupling constants of a certain number of "elementary" particles
before the properties of the other particles can be derived from purely
dynamical considerations,

As yef we are unable to perform calculations that encompass all the

known particles, and so no decision can be made in the matter, but one might

‘be able to show that a set of particles other than those which have been

observed can give rise to a self-consistent S-matrix, i. e., can "bootstrap"
themselves, and thus demonsirate the need for the inclusion of at least some
experimental information in order to arrive at the solution corresponding to
the real world.

| 0f course if the Hypothetical set of particles is too complicated one
is again unable to solve the S-matrix equations, but if only a single type of
particle is considered the problem is quite tractable., The neutral scalar
2

meson is a likely candidate, because it obeys the renormalizable Hurst-Thirring

field theory with an interaction Lagrangian

Z_o=ap3 | (1)
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anG thus is viable as an independent particle. Other renormelizable field
theories involve the interaction of two different types of particles. It is

o

certainly not obvious that a "bootstrap”solution can exist because, as we

show, there are fewer free parsmelers than conditions to be satisfied,

1.
S5

but of courss this is also true of the hypothetical solution invelving all the

strongly intey

in contradiction to the "bootstrap" philosephy.

WG SYMMETRIC SCATTERING AMPLITUDE

N

In our cal lation we include fore 5 bound state

a), os well as two-particle states (Fig. l. b), but neglect forces

exchange of three or more particles (Fig. l. ¢). Correspondingly

o]

<
O

the unitarity coadition the contribution of intermediate sta

. o "
es whose thresholds lie &t 9m“ and above.

Tr the delatan ntation the amplitude may te written
24 &
iz, cos 8) = e _ -
2 ) 2 s 2 ‘ Y
m" o+ + oog 0) n~ + 2¢_“(1 -~ cos 6]
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1 . A‘L Sy T 9 23441 w5 e
+ o= ] oAt - .
w 2 \
Y+ 2 “(1L 4+ cos 8
8

+ = du! e, - o {2)
TT : .

>bing particles.  In ihié»article we shall try to discover whether

ossible for neutral scalay mesons alone to form a solution of the "bootstrap”
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where. sy, T, and u are the usual squares of the four-momentum invariants,

g = 2% , and At. and Au are the absorptive pérts in - the t and u channels.
§ 1s the scattering angle, and gé is the'centgr—of-mass momentum, in the

s channel:

>

s5=U4{gC+m°) ;3 t = 2q82(1 +cos 0) 3 u= - QQSE(l -~ cos 8).

IT maximal analyticity of the second kind is assumed, the pole in' s 1is contained
in the integrals over A and A .
' t

u
We define the partial-wave amplitude

1

ASZ,(S) = %‘f d(cos 06) Pz(cos 8) A(s, cos 0) . : ' (3)
-1 ‘

Substituting (2) in (3), we find that the é-wave amplitude has, in addition>to
the fixed s singularitiesvof A(s, cos 0) éhown in Fig. 2, branch-points at

s = 3 m: from the pole terms, and at s = 0 from the elastic t and u
thresholds. The inelastic thresholds in the c¢rossed channels would give rise

to branch points at 5 n?

s but again we neglect these., The singulsrities of
AO are shown in Fig. 3.

The imaginary part of A along these left-hand cuts is.

0

227G
Im AO = B . for 0 < s « 3m2

sehm?

0
ong 2 l
N L B cmeedes L omwmws A (t,s)dt, for s <0

m &g s=lne s=lm? J’ t( Jat, . :

2

S

hg



. UCRL-11463

vhere we remember that AS = At'= Au for our symmetrical problem.
If we are to have a self-consistent solution, these left-hand cuts

should provide an attractive force sufficient to produée the bound state at
s = m ,  Since wve ha%e the parameter g at‘our disposal, it will be possible
to choose it such that this condition is satisfied, keeping AS = At . However,
self-consistency also demands that the residue of the pole be equal to the

value of g which we have used. 'There is no guarantee a priori that this can

be so, because.we have no further free parameters in the problem. It‘will‘be
realized that the mass, m , is not a parameter because it serves only to define
the size of our energy unit. There is only-éne diménsionless free parameter,
g/m2 but there are twb criteria to be satisfied;'crossing symmetry of both

the pole positions and its residue.
- THE KN/D EQUATIONS

The problem may conveniently be solved folloving thé method of Chew.
and Mandelstam.3 ’
We define the amplitude to be
(5)

Aols) = g(S)

s)

where N(s) has the left-hand cuts of Ay s and D(s) has the right-hand

unitary cut.

In 3i(s) = D(s) In A(s) for s <3m° .

Along the right-hand unitary cut we may write

(1)

18(s) sin §(s)

_ &
AO(S) p(s)
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where §(s) is the phase-shift, and p(s) = [(s - Ln®)/s] , and comparing

real and imaginary parts, we have

In (l/Ad).= < o(s) , . - (8)
or |

Im D = =« p(s) N(s) for s > bm® ‘ (9)

Thus we may write dispersion relations for N sand D,

3m2

D(s') Im A0<s')

|+~

ds! | (10)

n(g)
s' - s

3

p(s!) N(s') 41 | VA (11)

' o
n )-&mz . S =8

o
)

2

n

l—J

! .
=
\\

where we have normalized D to 1 , and N to O , at infinity, selecting

the solution without poles in N or D  prescribed by second-degree analyticity.

Substituting (10) in (11) and integrating over the right-hand cut, we obtain

3me A
D(s) = 1 + lg _J— K(s,s') Im Ao(s') D(s') ds' , (12)
om 2 oo
.ﬁhere
_ 1/2 5 1/2 1/2
_ 2 s-hmz ((s-hm) + s
K(s,s') = s' = s -_1;-——-) toe 2m

. 1/2 | ‘ ‘1/2 }/2
_ (_g_:__:_'_l_glﬁ_) log((s" - hmz) + s )
s 2m e
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If an A(s") vanishes as s' + - o, this is a Fredholm equation for D
which can be solved providing that we know At’ in Eq. (5). Along the right-
hand cut Re(l/A) = Re D/N , and comparing real and imaginary parts in Eq. (8),

we find

In Ao(s) e o P(s) > for s > m? . | ' (13)
02(s) + Cg%é%)_ | |

If we suppose that the imaginary part of the amplitude is contained wholly in

the s-wave, we can'identify o

Im Ay(s) = A(5,t) + | - | (1k)
The validity of this approximation will be discussed later. Remembering that
.As should be equal to At s We ndw ha%e ; megns of calculating ﬁﬁe seédﬁd
term on the right-hand side of formula (5) in a self-consistenf manner, One
easily verifies that the resulting _Im-AO(s) vanishes as s * = .
o ‘to be given just by fhe first term of (L), and
solve (12) for "D . With this solution we solve (10) for N , and then obtain

© We first take Im A

AS from (;5). Substituting this value of Al in Eq._(h); we can repeat the
cycle, and contiﬁue uﬁtil Eelf—cbnsistéhcy is achieved. |

The equations were solved on a compufer; using the transformed variable
x° =!9(hm2/s-hm2) for the integral equation, so that the range of integration
in (12) bééomegv x =0 to 2. 1In this fdnge:fifty mesh points were taken, and
the equation was solved by matrix inversion. Five cycles were required to
producé self-cOnsistehcy_betwéen the elastic disqontinuities in the crossed
and direct channels. Various vélues of g weée tried until a solution with .

a zero in D(s) at s = m® was obtained. This gives an amplitude which is

’

1%

br
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also self-consistent as regards the pole positions in the crossed and direct
channels, and fixes the value of g . A graph of the solution is given in
Fig. k4,

It only remains to discover whether the residue of this direct channel

pole is equal to g . Now Kz§7-= ﬁ%%% s énd expanding about s = m2 s and

remembering that D(m?) = 0, we have

l ® e 0
o (s = m * ’
N(m?2)
so that the residue is
- N(m . (15)

( D(s

If we have found a bootstrap solution, g' will be equal to g . In fact

we find that to get a direct channel pole at m2 ‘requires g;/m2 = 9,3 , but
that in this case g'/m2 = 67 . This discrepancy is so great that it is most
unlikely that it could be rectified by improving the approximations,

- One. approximation has been to use Eq. (14), whereas the full expression

is
QO
A (s,t) = Z (2 +1) Im A (s) P (1 + tg) , (16)
s 'Q’=O . 2q‘S

though this is not convergent for large |t| . Because of parity, there is
no coupling of the even and odd partial waves, so the lowest neglected wave
is the D-wave. We can estimate its order of magnitude by taking the D-wave

Born term generated by the crossed channel poles,
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| S 2 2
m : m" -
B (s) = =2—1|g (1 + -—-—-') - 9 (.1 - -———-) "
2 0q 2| 2 5q 2 e oq 2
4g dg e
: : : \
and applying elastic unitarity,
Im Ay(s) = o(s) 5 . (17)

We £find that Im A, is only a few percent of Im AO in the region

2
~between the thfeshold and the inelastic threshold, although it rises to nearly
one-third of its value at 8 = 15 n? , However, it is thg low=-energy region
just above threshold which is- important for the integral in Eq. (5), except
for large negative s . [Remember that A, is obtained from (16) by inter-
changing s and t]. The D-wave contribution to the total force should

thus be small, and even if there is some additional force it is unlikely

that it will change the ratio_of' g to g' greatly. An indication is given
by the fact that if we solve the problem including only the force from the
poles but not from the S-wave elastic discontinuity, though g has to be

increased to 26.0 , g' becomes 165 , and the large discrepancy is

maintained.

>

DISCUSSION OF THE RESULTS

Of course if we had included a pole in the equation for N , writing

(10) in the form ) o o .
B . A 3m D( ') Im A ( ,') R .
- l s O s ds' + ——-E-— F)
N(s) = = — - T T2
s' = § mM-=g

-00



~\J

-9- UCRL-11463

and normalized D(s) to unity at s = m2, it would have been possible to impose
complete crossing symmetry for any value of g which is not so great as to
produce a zero of D . This introduction of a "CDD" poleh corresponds to
treating the meson as an elementary particle, énd gives the solution corresponding
to the A¢3 field theory. Our solution of the N/D equations gives a bound-
state pole which lies on a Regge trajectory, and is the'solution corresponding
to maximgl analyticity of the second kind.

Implicit iﬁ the calculation is the assﬁmption that this tr=ajectory,
Fig. 5, is the le‘ading' trajectory. Tt is the fact that o(t) <0 for b <o
which assures the_requifed asymptotic behavior of the kernel in (12), and enables

us to avoid a cut-off parameter.5 Through croséing symmetry the'total cross

section goes to zero at high energy as sa(o) - 1 and the low-energy elastic

S-wave dominates the dynamics. However, it could be that the meson is not on the
leading trajectory, but that the high~energy behavior is controlled by one or
more higher trajectories. For example, we show in Fig. 6 a Pomeranchuk trajectory
(which would give a constant totél cross-section at high energy), the scalar
meson being associated with a secondary trajectory. Such a solution, if it is
possible,would probably contain a spin 2 (D-wave) resonance, and high-energy
effects would be crucial. But if our neglect of this possibility is justified
we have shown that a scalar meson can ﬁot "bootstrap" itself.

A final point which may be remarked is that we are unable to obtain a
self-consistent solution because the force from the crossed channels is too
great (g <g'). However, if instead of a single particle we had a set forming’
a representation of some symmetry group, the crossed and direct channels wouid
be related by a crossing matrix, and only sonme fr;ction of the strong s-wave

force would be available to any given two-particle channel. Thus for SU

3

2

the isotopic spin crossing matrix is
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f—_l; 1 _5_
3 - 3

s
s =11 1 _5

I’ 2 6 ’ v
iy -1 L
3 ' 2 6

and so, for our problem with I = 0 , the contribution from I' = 0 would be

only one-third as great° Higher symmetries give smaller fractions
(1/(n®-1) for SUn),6 and our results perhaps indicate the need for there to

be such symmetries if "bootstrap" solutions are to be obtained.
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FIGURE CAPTIONS
The unitarity diagrams,
Singularities of the scattering amplitude in the
Singularities of Ao(s).

The solution for D(s).

" The Regge trajectory.

Pomeranchuk and meson trajectories.
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Fig. 1. The unitarity diagrams.
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Singularities of the scattering amplitude in the s channel.
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MUB-3043

Fig. 4. The solution for D (s).
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A
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F'ig. 5. The Regge trajectory.
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Fig. 6. Pomeranchuk and meson trajectories.
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