
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Fundamental Limits of Private Information Retrieval

Permalink
https://escholarship.org/uc/item/8qw074wk

Author
Sun, Hua

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8qw074wk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Fundamental Limits of Private Information Retrieval

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical Engineering

by

Hua Sun

Dissertation Committee:
Professor Syed Jafar, Chair
Professor Hamid Jafarkhani

Professor Ender Ayanoglu

2017

c© 2017 Hua Sun

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

LIST OF ALGORITHMS vi

ACKNOWLEDGMENTS vii

CURRICULUM VITAE viii

ABSTRACT OF THE DISSERTATION ix

1 Introduction 1
1.1 Background . 2
1.2 Overview of the Dissertation . 3
1.3 Notation . 7

2 Capacity of PIR 8
2.1 Problem Statement . 9
2.2 Main Result: Capacity of PIR . 11
2.3 Theorem 2.1: Achievability . 12

2.3.1 Two Examples to Illustrate the Key Ideas 13
2.3.2 Formal Description of Achievable Scheme 18
2.3.3 The Two Examples Revisited . 23
2.3.4 Proof of Correctness, Privacy and Achieving Capacity 25

2.4 Theorem 2.1: Converse . 31
2.5 Discussion . 34

3 Capacity of Robust PIR with Colluding Servers 40
3.1 Problem Statement . 41

3.1.1 TPIR . 41
3.1.2 Robust TPIR . 43

3.2 Main Result: Capacity of Robust TPIR . 43
3.3 Proof of Theorem 3.1: Achievability . 44

3.3.1 Example: K = 2, N = 3, T = 2 . 46
3.3.2 Example: K = 3, N = 3, T = 2 . 49

ii

3.3.3 Arbitrary K, Arbitrary N , Arbitrary T 53
3.4 Proof of Theorem 3.1: Converse . 56
3.5 Proof of Theorem 3.2 . 58

3.5.1 Example: K = 2, M = 3, N = 2, T = 1 59
3.5.2 Arbitrary K,N,M, T . 61

3.6 Discussion . 63

4 PIR from MDS Coded Data with Colluding Servers 66
4.1 Problem Statement . 68
4.2 Settling the Conjecture . 70

4.2.1 Storage Code . 71
4.2.2 Construction of Queries . 72
4.2.3 Combining Answers for Efficient Download 75
4.2.4 The Scheme is Correct (Retrieves Desired Message) 77
4.2.5 The Scheme is Private (to Any T = 2 Colluding Servers) 78
4.2.6 Rate Achieved is 3/5 . 79

4.3 Optimality of Rate 3/5 . 80
4.4 Discussion . 84

5 Capacity of Symmetric PIR 86
5.1 Problem Statement . 87
5.2 Main Result: Capacity of Symmetric PIR . 90
5.3 Theorem 5.1: Achievability . 92
5.4 Theorem 5.1: Converse . 94

6 Multiround PIR: Capacity and Storage Overhead 98
6.1 Problem Statement . 100
6.2 Results . 103

6.2.1 Capacity Perspective . 104
6.2.2 Storage Overhead Perspective . 105

6.3 Proof of Theorem 6.1 . 112
6.4 Proof of Theorem 6.2 – Statement 2. 115

6.4.1 Symmetrization . 119
6.5 Discussion . 122

7 Conclusion 123

Bibliography 128

iii

LIST OF FIGURES

Page

2.1 Structure of Block k of Q(DB, θ). 19

5.1 SPIR Capacity. 91

iv

LIST OF TABLES

Page

2.1 PIR and BIA . 39

v

LIST OF ALGORITHMS

Page
1 Input: θ. Output: Query sets Q(DB, θ), ∀DB ∈ [1 : N] 21

vi

ACKNOWLEDGMENTS

I have been truly lucky to be advised by Professor Syed Jafar, from whom I learned everything
about information theory. I have benefited tremendously from numerous discussions during
the past 6 years. I would always remember and learn from his insight, vision, commitment
to excellence in my career.

I would like to thank Professor Hamid Jafarkhani, Ender Ayanoglu for serving on my dis-
sertation committee, and Professor A. Lee Swindlehurst, Yaming Yu for serving on my
qualifying examination committee.

It has been a great pleasure to have coauthored with Tiangao Gou, Chunhua Geng, Chenwei
Wang, Xinping Yi, David Gesbert, Bofeng Yuan, Zhen Chen and Zhuqing Jia. My thanks
extend to former and current colleagues including Hamed Maleki, Xiaoshi Song, Sundar
Krishnamurthy, Yingyuan Gao, Arash Gholami and Yao-Chia Chan. I would also like to
thank Croucher Summer Course in Information Theory 2015, where I first heard and started
to learn about the topic of this dissertation.

My friends make my life easy and happy at Irvine. I would mention Jiang, Feng, Hanzi and
Haoyu in particular. Finally, I would like to thank my family.

vii

CURRICULUM VITAE

Hua Sun

EDUCATION

Doctor of Philosophy in Electrical Engineering 2017
University of California, Irvine Irvine, California

Master of Science in Electrical and Computer Engineering 2013
University of California, Irvine Irvine, California

Bachelor of Engineering in Communication Engineering 2011
Beijing University of Posts and Telecommunications Beijing, China

viii

ABSTRACT OF THE DISSERTATION

Fundamental Limits of Private Information Retrieval

By

Hua Sun

Doctor of Philosophy in Electrical Engineering

University of California, Irvine, 2017

Professor Syed Jafar, Chair

The modern information age is heralded by exciting paradigms ranging from big data, cloud

computing to internet of things. As information becomes increasingly available, privacy

concerns are starting to take center-stage, especially in the communication networks that

are used for information storage, repair, retrieval or transfer. The focus of this dissertation is

on the private information retrieval (PIR) problem. PIR originated in theoretical computer

science and cryptography, and has only recently started receiving attention in information

and coding theory. PIR seeks the most efficient way for a user to retrieve a desired message

from a set of N distributed servers, each of which stores all K messages, without revealing

any information about which message is being retrieved to any individual server. It is a

canonical problem with deep connections to a number of other prominent problems such as

oblivious transfer, multiparty computation, locally decodable codes, batch codes and blind

interference alignment.

We will first identify the capacity of PIR, i.e., the maximum number of bits of desired

information that can be privately retrieved per bit of downloaded information. This result

is inspired by the discovery of an intriguing connection between PIR and blind interference

alignment in wireless networks. Then we will discuss four extensions of PIR. The first

extension is the TPIR problem, where we increase the privacy level, i.e., instead of requiring

ix

privacy to each individual server, we require privacy to any colluding set of up to T servers.

We will characterize the capacity of TPIR and generalize the result to include robustness

constraints, where we have M databases, out of which any M − N may fail to respond.

The second extension is the MDS-TPIR problem, where we further generalize the storage

constraint, i.e., instead of data replication, an MDS storage code is used to store the messages.

In particular, we will disprove a recent conjecture on the capacity of MDS-TPIR. The third

extension is the SPIR problem, a form of oblivious transfer where the privacy constraint

is extended symmetrically to protect both the user and the servers. We will identify the

capacity of SPIR. The final extension is MPIR, where the user and the servers communicate

in multiple rounds. We will show that multiple rounds do not increase the capacity of PIR,

but reduce the storage overhead. The results will shed light into the necessity for non-linear

schemes and non-Shannon information inequalities.

x

Chapter 1

Introduction

Information and communication technology forms the backbone of the modern society. The

rapid increase in the amount of information or data motivates revolutionary applications

ranging from big data, large scale learning, internet of things to cloud computing. The

development of new technologies and applications continues to benefit a wide array of fields

including advertising, healthcare, manufacturing, retail, transportation and education. As

the amount of available data grows, the risk of information leakage increases, which brings

information privacy to the center of current research challenges.

The focus of this dissertation is on the private information retrieval (PIR) problem, a canon-

ical problem in information privacy. PIR originated in theoretical computer science and

cryptography, and has received much recent attention in information and coding theory. Let

us start with a brief background on PIR.

1

1.1 Background

Introduced in 1995 by Chor, Kushilevitz, Goldreich and Sudan [23, 24], the private infor-

mation retrieval (PIR) problem seeks the most efficient way for a user to retrieve a desired

message from a set of distributed servers, each of which stores all the messages, without

revealing any information about which message is being retrieved to any individual server.

The user can hide his interests trivially by requesting all the information, but that could

be very inefficient (expensive). The goal of the PIR problem is to find the most efficient

solution.

Besides its direct applications, PIR is of broad interest because it shares intimate connec-

tions to many other prominent problems. PIR protocols are the essential ingredients of

oblivious transfer [36], instance hiding [32, 1, 9], multiparty computation [10] and secret

sharing schemes [60, 13], which are important information theoretic cryptography primitives

(enabling premises and building blocks for much more sophisticated tasks). Beyond security

and privacy, PIR is further related to locally decodable codes [72] and batch codes [40], which

are used in distributed storage and repair. Through the connection between locally decod-

able and locally recoverable codes [37], PIR also connects to distributed data storage repair

[26], index coding [18] and the entire umbrella of network coding [2] in general. As such PIR

holds tremendous promise as a point of convergence of complementary perspectives.

The PIR problem is comprised of N servers, each stores K messages and each message is of

size L bits. A user wants one of the messages, but requires each server to learn absolutely

nothing (in the information theoretic sense)1 about the retrieved message index. To do

so, the user generates N queries, one for each server. After receiving the query, each server

returns an answering string to the user. The user must be able to obtain the desired message

1There is another line of research, where privacy needs to be satisfied only for computationally bounded
servers [34, 73, 54].

2

from all N answers. To be private, each query and each answer must be independent of the

desired message index.

The PIR problem was initially studied among the theoretical computer science community

in the setting where we have a large number of messages (typically K → ∞), and each

message is one bit long (L = 1) [23, 24]. The cost of a PIR scheme is measured by the total

amount of communication (communication complexity) between the user and the servers,

i.e., the sum of lengths of each query string (upload) and each answering string (download),

in order functions of the number of messages, K. The pursuit of communication complexity

of PIR has attracted extensive attention for the past two decades [4, 12, 14, 72, 28].

The focus of this dissertation is on the Shannon theoretic formulation in information theory,

where we have a few messages (K is a constant) and message size is allowed to be arbitrarily

large (L→∞). When the message size becomes large, the upload cost is negligible compared

to the download cost [22]2, so that we only need to consider the download cost, measured

relative to the message size. The reciprocal of download cost is the rate, i.e., the number of

bits of desired information that is privately retrieved per downloaded information bit. The

maximum rate possible for the PIR problem is its information theoretic capacity, C. The

goal of this dissertation is to characterize the fundamental capacity limits of PIR and its

variants. The main contributions of this dissertation are summarized in the next section.

1.2 Overview of the Dissertation

We start with Chapter 2, which considers the basic model of PIR. The main result of

Chapter 2 is the complete characterization of the capacity of PIR for all choices of pa-

rameters. For K messages and N servers, we show that the PIR capacity is CPIR =

2The justification argument (traces back to Proposition 4.1.1 of [24]) is that the upload cost does not
scale with the message size. This is because we can reuse the original query functions for each part of the
message.

3

(
1 + 1/N + 1/N2 + · · ·+ 1/NK−1

)−1
. The capacity achieving coding scheme is constructed

based on a recursive algorithm, which iteratively retrieves sums of randomly permuted bits

from each subset of all messages. A key feature of the scheme is that from each server,

the interference (bits from undesired messages) remains the same, while desired signals are

distinct. The information theoretic converse that establishes the optimality of the coding

scheme also has a recursive nature. We boil down the PIR problem with K messages gradu-

ally to that with a smaller number of message, using the property of entropy functions and

the privacy and decoding constraints. From that, we obtain a tight (thus precious) converse

for PIR, a rare situation in network information theory.

We then proceed to consider a natural extension of PIR - PIR with colluding servers in

Chapter 3. The motivation is to increase the privacy level, such that instead of requir-

ing privacy to each individual server, we require privacy to any colluding set of up to T

servers (the problem is therefore called TPIR). We characterize the capacity of TPIR to

be CTPIR =
(
1 + T/N + T 2/N2 + · · ·+ TK−1/NK−1

)−1
. The novel aspect of the capacity

achieving scheme for TPIR is that instead of using message bits over the binary field, we need

to code the message symbols over a large field size. Although the query structure is similar

to that of PIR (sums of symbols from each subset of all messages), a further layer of random

mixing is required. In PIR, the randomness comes solely from permutations, while in TPIR,

randomness comes in the form of random linear combinations (random matrices). Combin-

ing random matrices with generic mixing (MDS codes), we have the required elements to

build the optimal scheme. The converse for TPIR is a fairly straightforward extension of

that for PIR, where in order to deal with the constraint that any T servers might collude,

we need an averaging argument that corresponds to Han’s inequality on the dependency of

average entropy on subset cardinality. We emphasize that when T divides N , the capacity

of TPIR is the same as the capacity of PIR with N/T servers. The converse is immediate,

while the achievability is highly non-trivial and surprising. The reason is that in PIR with

N/T servers, in essence the N servers are divided into N/T disjoint colluding sets, with

4

T servers in each set while in TPIR, we allow arbitrary T servers to collude. However, no

restriction on colluding servers does not hurt the rate. We also extend the TPIR problem

to include unresponsive servers (called robust PIR). We show that not knowing in advance

which N servers will respond out of M ≥ N servers does not hurt the rate. The coding

scheme is similarly based on MDS codes.

Traditional PIR formulation assumes that each server stores all the messages, i.e., replication

is used to store the messages. It is natural to explore the setting where the underlying storage

is given by a distributed storage code. In Chapter 4, we consider the TPIR problem with

MDS coded messages, where each message is separately coded using an MDS code. Recall

that the TPIR problem requires MDS codes to construct the queries and here the messages

are coded using MDS codes (hence the name MDS-PIR). When the two MDS codes are

incompatible, the joint MDS-TPIR problem might be non-trivial. The focus of Chapter 4

is on a recent conjecture [33] on the capacity of MDS-TPIR, which generalizes the capacity

of TPIR and the capacity of MDS-PIR [6] in a natural simple combination form. The main

result of Chapter 4 is that we disprove the conjecture, showing that the capacity of MDS-

TPIR is not a trivial combination of the capacity of two extreme cases that we have fully

understood. The disproof is based on a novel PIR scheme, where we need richer structures

in the queries. In particular, simple sums of message symbols (even combined with generic

mixing) are not enough. We need to design the linear combination coefficients in a highly

non-trivial way to simultaneously satisfy the privacy constraint and the correctness constraint

in a download efficient manner. Although we have disproved the conjecture, the capacity of

MDS-TPIR remains wide open in general. We expect novel techniques to be needed in the

pursuit of the general answer.

We turn our attention to server privacy in Chapter 5. The topic of Chapter 5 is a form

of oblivious transfer, where beyond user privacy, we further require server privacy, i.e., the

server does not want to leak any information about the undesired messages. In other words,

5

we extend the privacy constraint symmetrically to include that of the servers’ (hence the

name symmetric PIR, or SPIR in short), so that the user only obtains his desired message

and learns nothing about all other messages. We are able to find the exact capacity of SPIR,

i.e., CSPIR = 1 − 1/N , when the servers share a common random variable that is at least

as long as 1/(N − 1) of each message, and otherwise SPIR is not feasible and the capacity

is zero. Interestingly, the capacity achieving scheme builds upon the optimal scheme for

PIR when the number of messages approaches infinity (where the downloads are made up of

linear combinations of all K messages and there is no exposed space for any single message).

The converse of SPIR is another innovation, where due to the additional server privacy

constraint, the derivations deviate tremendously from that of regular PIR.

Chapter 6 concentrates on the role of multiple rounds of communication. In Chapter 2 to

Chapter 5, we assume the communication between the user and the server happens in one

round. Naturally, the user could talk to the servers in multiple rounds and this could bring

feedback and interaction, which are potentially useful. The problem is thus referred to as

multiround PIR (MPIR in short). The benefits of MPIR over PIR are missing for a long

time in the literature and no evidence exists that shows multiple rounds strictly help. Along

the same line, we show that the capacity of MPIR is indeed the same as that of PIR, i.e.,

CMPIR = CPIR. To prove this result, we need a converse that holds under multiple rounds

of communication. On a contrasting thought, we show that if we switch the metric from rate

to storage overhead, then surprisingly and perhaps more interestingly, we show that multiple

rounds strictly help (when combined with non-linear codes and ε-error PIR schemes). The

question we ask is that in order to achieve the capacity of PIR, how much storage is required

at the servers (so that each server no longer stores everything). The study of this question

not only reveals the benefits of multiple rounds, but also sheds light on a number of topics

that are center-stage in information theory, e.g., non-linear codes, non-Shannon inequalities,

and zero-error versus ε-error schemes.

6

1.3 Notation

For n1, n2 ∈ Z, n1 ≤ n2, we use the notation [n1 : n2] = {n1, n1 + 1, · · · , n2}. The notation

X ∼ Y is used to indicate that X and Y are identically distributed. For an index vector

I = (i1, i2, · · · , in), the notation AI represents the vector (Ai1 , Ai2 , · · · , Ain). Similarly, the

notation A(I) represents the vector (A(i1), A(i2), · · · , A(in)). For a matrix S, the notation

S[I, :] represents the submatrix of S formed by retaining only the rows corresponding to the

elements of the vector I. For an element jθ in the set J = {j1, j2, · · · , jn}, i.e., jθ ∈ J ,

the notation jθ represents the complement of {jθ}, i.e., jθ
4
= {j1, · · · , jθ−1, jθ+1, · · · , jn}.

(V1;V2; · · · ;Vn) refers to a matrix whose i-th row vector is Vi, i ∈ [1 : n].

7

Chapter 2

Capacity of PIR

There is much recent interest in exploring the fundamental limits of PIR protocols. A

PIR scheme is any mechanism by which a user may retrieve one desired message among

K messages from N distributed servers (each stores all K messages) without revealing any

information about which message is being retrieved to any individual server. The reason that

the user could retrieve the desired information privately is that the user has multiple views,

i.e., the user can download information from multiple servers, while each individual server

only has a single view. In other words, we are using the distributed nature of the information

retrieval system as the relative strength to protect the privacy of the user. Furthermore, we

are interested in the strongest guarantee of privacy, called information theoretic privacy, i.e.,

even if the servers are computationally unbounded, they still obtain absolutely no information

about the user’s preference. The fundamental capacity limit of PIR (CPIR) is the maximum

number of bits of desired information that can be privately retrieved per bit of downloaded

information (i.e., maximum rate).

In general, for arbitrary N and K, the best previously known achievable rate for PIR,

reported in [59], is 1 − 1
N

. Since 1 is a trivial upper bound on capacity, we know that

8

1 ≥ CPIR ≥ 1 − 1
N

. The bounds present a reasonable approximation of capacity for large

number of servers. However, in this chapter, we seek the exact information theoretic capacity

CPIR of the PIR problem, for arbitrary number of messages K and arbitrary number of

servers N . Our interest in this topic started with the discovery of an intriguing connection

[65] between PIR and Blind Interference Alignment [43], a problem previously studied in

wireless communications. Inspired by this connection, we characterize the capacity of PIR,

when we have K = 2 messages and the number of servers, N , is arbitrary. Building upon this

preliminary success, we finally characterize the capacity of PIR, for all choices of parameters,

to be

CPIR =
(
1 + 1/N + 1/N2 + · · ·+ 1/NK−1

)−1
(2.1)

This chapter is devoted to prove (2.1). The organization of this chapter is as follows. Section

2.1 presents the problem statement. The exact capacity of PIR is characterized in Section

2.2. Section 2.3 presents a novel PIR scheme, and Section 2.4 provides the information

theoretic converse (i.e., a tight upper bound) to establish its optimality. Section 2.5 contains

a discussion of the results.

2.1 Problem Statement

Consider K independent messages W1, · · · ,WK of size L bits each.

H(W1, · · · ,WK) = H(W1) + · · ·+H(WK), (2.2)

H(W1) = · · · = H(WK) = L. (2.3)

There are N servers (databases) and each server stores all the messages W1, · · · ,WK . In

PIR a user privately generates θ ∈ [1 : K] and wishes to retrieve Wθ while keeping θ a secret

from each server. Depending on θ, there are K strategies that the user could employ to

9

privately retrieve his desired message. For example, if θ = k, then in order to retrieve Wk,

the user employs N queries Q
[k]
1 , · · · , Q

[k]
N . Since the queries are determined by the user with

no knowledge of the realizations of the messages, the queries must be independent of the

messages,

∀k ∈ [1 : K], I(W1, · · · ,WK ;Q
[k]
1 , · · · , Q

[k]
N) = 0. (2.4)

The user sends query Q
[k]
n to the n-th server. Upon receiving Q

[k]
n , the n-th server generates

an answering string A
[k]
n , which is a function of Q

[k]
n and the data stored (i.e., all messages

W1, · · · ,WK).

∀k ∈ [1 : K],∀n ∈ [1 : N], H(A[k]
n |Q[k]

n ,W1, · · · ,WK) = 0. (2.5)

Each server returns to the user its answer A
[k]
n . From all the information that is now available

to the user, he must be able to decode the desired message Wk, with probability of error

Pe. The probability of error must approach zero as the size of each message L approaches

infinity1. From Fano’s inequality, we have

[Correctness]
1

L
H(Wk|A[k]

1 , · · · , A
[k]
N , Q

[k]
1 , · · · , Q

[k]
N) = o(L) (2.6)

where o(L) represents any term whose value approaches zero as L approaches infinity.

To protect the user’s privacy, the K strategies must be indistinguishable (identically dis-

tributed) from the perspective of each server, i.e., the following privacy constraint must be

satisfied2 ∀n ∈ [1 : N],∀k ∈ [1 : K]:

[Privacy] (Q[1]
n , A

[1]
n ,W1, · · · ,WK) ∼ (Q[k]

n , A
[k]
n ,W1, · · · ,WK) (2.7)

1If Pe is required to be exactly zero, then the o(L) terms can be replaced with 0.
2The privacy constraint is equivalently expressed as I(θ;Q

[θ]
n , A

[θ]
n ,W1,W2, · · · ,WK) = 0.

10

The PIR rate characterizes how many bits of desired information are retrieved per down-

loaded bit, and is defined as follows.

R , L/D (2.8)

where D is the expected value (over random queries) of the total number of bits downloaded

by the user from all the servers. Note that because of the privacy constraint (2.7), the

expected number of downloaded bits for each message must be the same.

A rate R is said to be ε-error achievable if there exists a sequence of PIR schemes, each of

rate greater than or equal to R, for which Pe → 0 as L → ∞.3 The supremum of ε-error

achievable rates is called the ε-error capacity Cε. A stronger (more constrained) notion of

capacity is the zero-error capacity Co, which is the supremum of zero-error achievable rates.

A rate R is said to be zero-error achievable if there exists a PIR scheme of rate greater than

or equal to R for which Pe = 0. From the definitions, it is evident that Co ≤ Cε. While in

noise-less settings, the two are often the same, in general the inequality can be strict. Our

goal is to characterize both the zero-error capacity, Co, and the ε-error capacity, Cε, of PIR.

2.2 Main Result: Capacity of PIR

Theorem 2.1 states the main result.

Theorem 2.1. For the PIR problem with K messages and N servers, the capacity is

Co = Cε =
(
1 + 1/N + 1/N2 + · · ·+ 1/NK−1

)−1
. (2.9)

The following observations are in order.

1. For N > 1 servers, the capacity expression can be equivalently expressed as (1 −
1
N

)/(1−
(

1
N

)K
).

3Equivalently, for any ε > 0, there exists a finite Lε such that Pe < ε for all L > Lε.

11

2. The capacity is strictly higher than the previously best known achievable rate of 1 −

1/N .

3. The capacity is a strictly decreasing function of the number of messages, K, and when

the number of messages approaches infinity, the capacity approaches 1− 1/N .

4. The capacity is strictly increasing in the number of servers, N . As the number of

servers approaches infinity, the capacity approaches 1.

5. Since the download cost is the reciprocal of the rate, Theorem 2.1 equivalently charac-

terizes the optimal download cost per message bit as
(
1 + 1/N + 1/N2 + · · ·+ 1/NK−1

)
bits.

6. The achievability proof for Theorem 2.1 to be presented in the next section, shows

that message size approaching infinity is not necessary to approach capacity. In fact,

it suffices to have messages of size equal to any positive integer multiple of NK bits (or

NK symbols in any finite field) each to achieve a rate exactly equal to capacity, and

with zero-error. A further reduction of the message size to NK−1 bits each for capacity

achieving schemes is discussed in Section 2.5.

7. The upper bound proof will show that no PIR scheme can achieve a rate higher than

capacity with Pe → 0 as message size L → ∞. Unbounded message size is essential

to the information theoretic formulation of capacity. However, from a practical stand-

point, it is natural to ask what this means if the message size is limited. The optimal

rate for limited message size is found in Section 2.5. We note that regardless of message

size, Co (and therefore also Cε) is always an upper bound on zero-error rate.

2.3 Theorem 2.1: Achievability

We present a zero-error PIR scheme for L = NK bits per message in this section, whose rate

is equal to capacity. Note that a zero-error scheme with finite message length can always be

12

repeatedly applied to create a sequence of schemes with message-lengths approaching infinity

for which the probability of error approaches (is) zero. Thus, the same scheme will suffice

as the proof of achievability for both zero-error and ε-error capacity.

Let us illustrate the intuition behind the achievable scheme with a few simple examples.

Then, based on the examples, we will present an algorithmic description of the achievable

scheme for arbitrary number of messages, K and arbitrary number of servers, N . We will

then revisit the examples in light of the algorithmic formulation. Finally, we will prove that

the scheme is both correct and private, and that its rate is equal to the capacity.

2.3.1 Two Examples to Illustrate the Key Ideas

The capacity achieving PIR scheme has a myopic or greedy character, in that it starts with

a narrow focus on the retrieval of the desired message bits from the first server, but grows

into a full fledged scheme based on iterative application of three principles:

(1) Enforcing Symmetry Across Servers

(2) Enforcing Message Symmetry within the Query to Each Server

(3) Exploiting Side Information of Undesired Messages to Retrieve New Desired Informa-

tion

2.3.1.1 Example 1: N = 2, K = 2

Consider the simplest PIR setting, with N = 2 servers, and K = 2 messages with L = NK =

4 bits per message. Let [a1, a2, a3, a4] represent a random permutation of L = 4 bits from

W1. Similarly, let [b1, b2, b3, b4] represent an independent random permutation of L = 4 bits

from W2. These permutations are generated privately and uniformly by the user.

Suppose the desired message is W1, i.e., θ = 1. We start with a query that requests the first

bit a1 from the first server (Server 1). Applying server symmetry, we simultaneously request

a2 from the second server (Server 2). Next, we enforce message symmetry, by including

13

queries for b1 and b2 as the counterparts for a1 and a2. Now we have side information

of b2 from Server 2 to be exploited in an additional query to Server 1, which requests a

new desired information bit a3 mixed with b2. Finally, applying server symmetry we have

the corresponding query a4 + b1 for Server 2. At this point the queries satisfy symmetry

across servers, message symmetry within the query to each server, and all undesired side

information is exploited, so the construction is complete. The process is explained below,

where the number above an arrow indicates which of the three principles highlighted above

is used in each step.

Server 1 Server 2

a1

(1)−→ Server 1 Server 2

a1 a2

(2)−→ Server 1 Server 2

a1, b1 a2, b2

(3)−→
Server 1 Server 2

a1, b1 a2, b2

a3 + b2

· · ·

· · · (1)−→
Server 1 Server 2

a1, b1 a2, b2

a3 + b2 a4 + b1

Similarly, the queries for θ = 2 are constructed as follows.

Server 1 Server 2

b1

(1)−→ Server 1 Server 2

b1 b2

(2)−→ Server 1 Server 2

a1, b1 a2, b2

(3)−→
Server 1 Server 2

a1, b1 a2, b2

a2 + b3

· · ·

· · · (1)−→
Server 1 Server 2

a1, b1 a2, b2

a2 + b3 a1 + b4

Privacy is ensured by noting that [a1, a2, a3, a4] is a random permutation ofW1 and [b1, b2, b3, b4]

is an independent random permutation of W2. These permutations are only known to the

user and not to the servers. Therefore, regardless of the desired message, each server is

asked for one randomly chosen bit of each message and a sum of a different pair of randomly

chosen bits from each message. Since the permutations are uniform, all possible realizations

are equally likely, and privacy is guaranteed.

14

To verify correctness, note that every desired bit is either downloaded directly or added with

known side information which can be subtracted to retrieve the desired bit value. Thus, the

desired message bits are successfully recoverable from the downloaded information.

Now, consider the rate of this scheme. The total number of downloaded bits is 6 and the

number of desired bits is 4. Thus, the rate of this scheme is 4/6 = 2/3 which matches the

capacity for this case.

Finally, let us represent the structure of the queries (to any server) in the matrix shown

below.

a
b

a+ b

a (b) represents a place-holder for a distinct element of ai (bj). The key to the structure

is that it is made up of sums (a single variable is also named a (trivial) sum) of message

bits, no message bit appears more than once, and all possible assignments of message bits to

these place-holders are equally likely. The structure matrix will be useful for the algorithmic

description later.

2.3.1.2 Example 2: N = 3, K = 3

The second example is when N = 3, K = 3. In this case, all messages have L = NK = 27

bits. The construction of the optimal PIR scheme for N = 3, K = 3 is illustrated below,

where [a1, · · · , a27], [b1, · · · , b27], [c1, · · · , c27] are three i.i.d. uniform permutations of bits

from W1,W2,W3, respectively. The construction of the queries from each server when θ = 1

may be visualized as follows.

Server 1 Server 2 Server 3

a1

(1)−→ Server 1 Server 2 Server 3

a1 a2 a3

(2)−→ Server 1 Server 2 Server 3

a1, b1, c1 a2, b2, c2 a3, b3, c3
· · ·

15

· · · (3)−→

Server 1 Server 2 Server 3

a1, b1, c1 a2, b2, c2 a3, b3, c3

a4 + b2

a5 + c2

a6 + b3

a7 + c3

(1)−→

Server 1 Server 2 Server 3

a1, b1, c1 a2, b2, c2 a3, b3, c3

a4 + b2 a8 + b1 a12 + b1

a5 + c2 a9 + c1 a13 + c1

a6 + b3 a10 + b3 a14 + b2

a7 + c3 a11 + c3 a15 + c2

· · ·

· · · (2)−→

Server 1 Server 2 Server 3

a1, b1, c1 a2, b2, c2 a3, b3, c3

a4 + b2 a8 + b1 a12 + b1

a5 + c2 a9 + c1 a13 + c1

a6 + b3 a10 + b3 a14 + b2

a7 + c3 a11 + c3 a15 + c2

b4 + c4 b6 + c6 b8 + c8

b5 + c5 b7 + c7 b9 + c9

(3)−→

Server 1 Server 2 Server 3

a1, b1, c1 a2, b2, c2 a3, b3, c3

a4 + b2 a8 + b1 a12 + b1

a5 + c2 a9 + c1 a13 + c1

a6 + b3 a10 + b3 a14 + b2

a7 + c3 a11 + c3 a15 + c2

b4 + c4 b6 + c6 b8 + c8

b5 + c5 b7 + c7 b9 + c9

a16 + b6 + c6

a17 + b7 + c7

a18 + b8 + c8

a19 + b9 + c9

· · ·

· · · (1)−→

Server 1 Server 2 Server 3

a1, b1, c1 a2, b2, c2 a3, b3, c3

a4 + b2 a8 + b1 a12 + b1

a5 + c2 a9 + c1 a13 + c1

a6 + b3 a10 + b3 a14 + b2

a7 + c3 a11 + c3 a15 + c2

b4 + c4 b6 + c6 b8 + c8

b5 + c5 b7 + c7 b9 + c9

a16 + b6 + c6 a20 + b4 + c4 a24 + b4 + c4

a17 + b7 + c7 a21 + b5 + c5 a25 + b5 + c5

a18 + b8 + c8 a22 + b8 + c8 a26 + b6 + c6

a19 + b9 + c9 a23 + b9 + c9 a27 + b7 + c7

Similarly, the queries when θ = 2, 3 are as follows.

16

θ = 2 θ = 3
Server 1 Server 2 Server 3

a1, b1, c1 a2, b2, c2 a3, b3, c3

a2 + b4 a1 + b8 a1 + b12

b5 + c2 b9 + c1 b13 + c1

a3 + b6 a3 + b10 a2 + b14

b7 + c3 c3 + b11 b15 + c2

a4 + c4 a6 + c6 a8 + c8

a5 + c5 a7 + c7 a9 + c9

a6 + b16 + c6 a4 + b20 + c4 a4 + b24 + c4

a7 + b17 + c7 a5 + b21 + c5 a5 + b25 + c5

a8 + b18 + c8 a8 + b22 + c8 a6 + b26 + c6

a9 + b19 + c9 a9 + b23 + c9 a7 + b27 + c7

Server 1 Server 2 Server 3

a1, b1, c1 a2, b2, c2 a3, b3, c3

a2 + c4 a1 + c8 a1 + c12

b2 + c5 b1 + c9 b1 + c13

a3 + c6 a3 + c10 a2 + c14

b3 + c7 b3 + c11 b2 + c15

a4 + b4 a6 + b6 a8 + b8

a5 + b5 a7 + b7 a9 + b9

a6 + b6 + c16 a4 + b4 + c20 a4 + b4 + c24

a7 + b7 + c17 a5 + b5 + c21 a5 + b5 + c25

a8 + b8 + c18 a8 + b8 + c22 a6 + b6 + c26

a9 + b9 + c19 a9 + b9 + c23 a7 + b7 + c27

The structure of the queries is summarized in the structure matrix presented below. Note

again that the structure matrix is made up of sums of place-holders of message bits, no

message bit appears more than once, and the assignment of all messages bits to these place-

holders is equally likely.

a
b
c

a+ b
a+ b
a+ c
a+ c
b+ c
b+ c

a+ b+ c
a+ b+ c
a+ b+ c
a+ b+ c

The examples illustrated above generalize naturally to arbitrary N and K. As we proceed to

proofs of privacy and correctness and to calculate the rate for arbitrary parameters, a more

formal algorithmic description will be useful.

17

2.3.2 Formal Description of Achievable Scheme

For all k ∈ [1 : K], define4 vectors Uk = [uk(1), uk(2), · · · , uk(NK)]. We will use the

terminology k-sum to denote an expression representing the sum of k distinct variables, each

drawn from a different Uj vector, i.e., uj1(i1) + uj2(i2) + · · ·+ ujk(ik), where j1, j2, · · · , jk ∈

[1 : K] are all distinct indices. Furthermore, we will define such a k-sum to be of type

{j1, j2, · · · , jk}.

The achievable scheme is comprised of the following elements: 1) a fixed query set structure,

2) an algorithm to generate the query set as a deterministic function of θ, and 3) a random

mapping from Uk variables to message bits, which will produce the actual queries to be sent

to the servers. The random mapping will be privately generated by the user, unknown to

the servers. These elements are described next.

2.3.2.1 A Fixed Query Set Structure

For all DB ∈ [1 : N], θ ∈ [1 : K], let us define ‘query sets’: Q(DB, θ), which must satisfy

the following structural properties. Each Q(DB, θ) must be the union of K disjoint subsets

called “blocks”, that are indexed by k ∈ [1 : K]. Block k must contain only k-sums. Note

that there are only
(
K
k

)
possible “types” of k-sums. Block k must contain all of them. We

require that block k contains exactly (N − 1)k−1 distinct instances of each type of k-sum.

This requirement is chosen following the intuition from the three principles, and as we will

prove shortly, it ensures that the resulting scheme is capacity achieving. Thus, the total

number of elements contained in block k must be
(
K
k

)
(N − 1)k−1, and the total number of

elements in each query set must be |Q(DB, θ)| =
∑K

k=1

(
K
k

)
(N − 1)k−1. For example, for

N = 3, K = 3, as illustrated previously, there are
(

3
1

)
= 3 types of 1-sums (a, b, c) and we

have (3− 1)1−1 = 1 instances of each; there are
(

3
2

)
= 3 types of 2-sums (a+ b, b+ c, c+ a)

and we have (3− 1)2−1 = 2 instances of each; and there is
(

3
3

)
= 1 type of 3-sum (a+ b+ c)

4Since the number of messages, K, can be arbitrary, and we have only 26 letters in the English alphabet,
instead of ai, bj , ck, etc., we now use u1(i), u2(j), u3(k), etc., to represent random permutations of bits from
different messages.

18

and we have (3 − 1)3−1 = 4 instances of it. The query to each server has this structure.

Furthermore, no message symbol can appear more than once in a query set for any given

server.

The structure of Block k of the query Q(DB, θ), enforced by the constraints described above,

is illustrated in Figure 2.1 through an enumeration of all its elements. In the figure, each Uj

represents a place-holder for a distinct element of Uj. Note that the structure as represented

in Figure 2.1 is fixed regardless of θ and DB. All query sets must have the same fixed

structure.

Type No. Type of k-sum Instance No. Enumerated elements of Block k

1. {1, 2, · · · , k − 2, k − 1, k} 1. U1 + U2 + · · ·+ Uk−2 + Uk−1 + Uk
2. U1 + U2 + · · ·+ Uk−2 + Uk−1 + Uk
...

...
(N − 1)k−1. U1 + U2 + · · ·+ Uk−2 + Uk−1 + Uk

2. {1, 2, · · · , k − 2, k − 1, k + 1} 1. U1 + U2 + · · ·+ Uk−2 + Uk−1 + Uk+1

2. U1 + U2 + · · ·+ Uk−2 + Uk−1 + Uk+1

...
...

(N − 1)k−1. U1 + U2 + · · ·+ Uk−2 + Uk−1 + Uk+1

...
...

...

i. {i1, i2, · · · , ik} 1. Ui1 + Ui2 + · · ·+ Uik
2. Ui1 + Ui2 + · · ·+ Uik
...

...
(N − 1)k−1. Ui1 + Ui2 + · · ·+ Uik

...
...

...(
K
k

)
. {K − k + 1,K − k + 2, · · · ,K} 1. UK−k+1 + UK−k+2 + · · ·+ UK

2. UK−k+1 + UK−k+2 + · · ·+ UK
...

...
(N − 1)k−1. UK−k+1 + UK−k+2 + · · ·+ UK

Figure 2.1: Structure of Block k of Q(DB, θ).

19

2.3.2.2 A Deterministic Algorithm

Next we present the algorithm which will produce Q(DB, θ) for all DB ∈ [1 : N] as function

of θ alone. In particular, this algorithm will determine which Uj variable is assigned to each

place-holder value in the query structure described earlier. To present the algorithm we need

these definitions.

For each k ∈ [1 : K], let new(Uk) be a function that, starting with uk(1), returns the “next”

variable in Uk each time it is called with Uk as its argument. So, for example, the following

sequence of calls to this function: new(U2), new(U1), new(U1), new(U1) +new(U2) will produce

u2(1), u1(1), u1(2), u1(3) + u2(2) as the output.

Let us partition each block k into two subsets — a subsetM that contains the k-sums which

include a variable from Uθ, and a subset I which contains all the remaining k-sums which

contain no symbols from Uθ.
5

Using these definitions the algorithm is presented next. Algorithm 1 appears in the next

page.

Algorithm 1 realizes the 3 principles as follows. The for-loop in steps 5 to 14 ensures server

symmetry (principle (1)). The for-loop in steps 10 to 13 ensures message symmetry within

one server (principle (2)). Steps 7 to 8 retrieve new desired information using existing side

information (principle (3)).

The proof that the Q(DB, θ) produced by this algorithm indeed satisfy the query structure

described before, is presented in Lemma 2.1.

2.3.2.3 Ordered Representation and Mapping to Message Bits to Produce Q
[θ]
DB

It is useful at this point to have an ordered vector representation of the query structure,

as well as the query set Q(DB, θ). For the query structure, let us first order the blocks in

5The nomenclature M and I corresponds to ‘message’ and ‘interference’, respectively.
6For any set Q, when accessing its elements in an algorithm (e.g., for all q ∈ Q, do . . .), the output of

the algorithm will in general depend on the order in which the elements are accessed. However, for our
algorithmic descriptions the order is not important, i.e., any form of ordered access produces an optimal PIR
scheme. By default, a natural lexicographic ordering may be assumed.

20

Algorithm 1 Input: θ. Output: Query sets Q(DB, θ), ∀DB ∈ [1 : N]

1: Initialize: All query sets are initialized as null sets. Also initialize Block← 1;
2: for DB = 1 : N do

Q(DB, θ,Block,M) ← {new(Uθ)} (2.10)

Q(DB, θ,Block, I) ←
⋃

k∈[1:K],k 6=θ

{new(Uk)} (2.11)

3: end for
4: for Block = 2 : K do {Generate each block...}
5: for DB = 1 : N do {for each server...}
6: for each DB′ = 1 : N and DB′ 6= DB do {by looking at all ‘other’ servers, and...}
7: for each6 q ∈ Q(DB′, θ,Block− 1, I) do {use the ‘I’ terms from their previous

block...}

Q(DB, θ,Block,M)← Q(DB, θ,Block,M) ∪ {new(Uθ) + q} (2.12)

{...to create new M terms for this block by adding a new Uθ variable to each term.}
8: end for (q)

9: end for (DB′)

10: for all distinct {i1, i2, · · · , iBlock} ⊂ [K]/{θ} do {For all “types” that do not include
θ...}

11: for i = 1 : (N − 1)Block−1 do {generate exactly (N − 1)Block−1 new instances of
each.}

Q(DB, θ,Block, I)← Q(DB, θ,Block, I) ∪ {new(Ui1) + new(Ui2) + · · ·+ new(UiBlock
)}

12: end for (i)

13: end for ({i1, i2, · · · , iBlock})
14: end for (DB)

15: end for (Block)

16: for DB = 1 : N do
17: Q(DB, θ)←

⋃
Block∈[K]

(
Q(DB, θ,Block, I) ∪Q(DB, θ,Block,M)

)
18: end for

21

increasing order of block index. Then within the k-th block, k ∈ [1 : K], arrange the “types”

of k-sums by first sorting the indices into (i1, i2, · · · , ik) such that i1 < i2 < · · · < ik, and

then arranging the k-tuples (i1, i2, · · · , ik) in increasing lexicographic order. For the query

set, we have the same arrangement for blocks and types, but then for each given type, we

further sort the multiple instances of that type by the i index of the uk(i) term with the

smallest k value in that type. Let ~Q(DB, θ) denote the ordered representation of Q(DB, θ).

Next we will map the uk(i) variables to message bits to produce a query vector.

Suppose each message Wk, k ∈ [1 : K], is represented by the vector Wk = [wk(1), wk(2), · · · ,

wk(N
K)], where wk(i) is the binary random variable representing the i-th bit of Wk. The user

privately chooses permutations γ1, γ2, · · · , γK , uniformly randomly from all possible (NK)!

permutations over the index set [1 : NK], so that the permutations are independent of each

other and of θ. The Uk variables are mapped to the messages Wk through the random

permutation γk, ∀k ∈ [1 : K]. Let Γ denote an operator that replaces every instance of

uk(i) with wk(γk(i)), ∀k ∈ [1 : K], i ∈ [1 : NK]. For example, Γ({u1(2), u3(4) + u5(6)}) =

{w1(γ1(2)), w3(γ3(4))+w5(γ5(6))}. This random mapping, applied to ~Q(DB, θ) produces the

actual query vector Q
[θ]
DB that is sent to server DB as

Q
[θ]
DB = “Γ

(
~Q(DB, θ)

)
” (2.13)

We use the double-quotes notation around a random variable to represent the query about its

realization. For example, while w1(1) is a random variable, which may take the value 0 or 1,

in our notation “w1(1)” is not random, because it only represents the question: “what is the

value of w1(1)?” This is an important distinction, in light of constraints such as (2.4) which

require that queries must be independent of messages, i.e., message realizations. Note that

our queries are indeed independent of message realizations because the queries are generated

by the user with no knowledge of message realizations. Also note that the only randomness

in Q
[θ]
DB is because of the θ and the random permutation Γ.

22

2.3.3 The Two Examples Revisited

To illustrate the algorithmic formulation, let us revisit the two examples that were presented

previously from an intuitive standpoint.

2.3.3.1 Example 1. N = 2, K = 2

Consider the simplest PIR setting, with N = 2 servers, and K = 2 messages with L = NK =

4 bits per message. Instead of our usual notation, i.e., U1 = [u1(1), u1(2), u1(3), u1(4)], for

this example it will be less cumbersome to use the notation U1 = [a1, a2, a3, a4]. Similarly,

U2 = [b1, b2, b3, b4]. The query structure and the outputs produced by the algorithm for θ = 1

as well as for θ = 2 are shown below. The blocks are separated by horizontal lines. Within

each block the I terms are highlighted in red and theM terms are in black. Note that there

are no terms in I for the last block (Block K), because there are no K-sums that do not

include the Uθ variables.

Query Structure Ordered Output of Algorithm 1 for θ = 1 Ordered Output of Algorithm 1 for θ = 2

~Q(DB, θ)
Block 1 U1

U2

Block 2 U1 + U2

~Q(DB1, θ = 1) ~Q(DB2, θ = 1)
a1 a2
b1 b2

a3 + b2 a4 + b1

~Q(DB1, θ = 2) ~Q(DB2, θ = 2)
a1 a2
b1 b2

a2 + b3 a1 + b4

To verify that the scheme is correct, note that whether θ = 1 or θ = 2, every desired

bit is either downloaded directly (block 1) or appears with known side information that

is available from the other server. To see why privacy holds, recall that the queries are

ultimately presented to the server in terms of the message variables and the mapping from

Uk to Wk is uniformly random and independent of θ. So, consider an arbitrary realization

of the query with (distinct) message bits w1(i1), w2(i2) from W1 and w2(j1), w2(j2) from W2.

23

Γ(~Q(DB, θ))
w1(i1)
w2(j1)

w1(i2) + w2(j2)

Given this query, the probability that it was generated for θ = 1 is ((1
4
)(1

3
))2 = 1

144
, which

is the same as the probability that it was generated for θ = 2. Thus, the query provides

the server no information about θ, and the scheme is private. This argument is presented

in detail and generalized to arbitrary K and N in Lemma 2.3. Finally, consider the rate

of this scheme. The total number of downloaded bits is 6, and the number of desired bits

downloaded is 4, so the rate of this scheme is 4/6 = 2/3 which matches the capacity for this

case.

2.3.3.2 Example 2. N = 3, K = 3

The second example is when K = 3, N = 3. In this case, both messages have L = NK = 27

bits. U1 = [a1, a2, · · · , a27], U2 = [b1, b2, · · · , , b27], U3 = [c1, c2, · · · , c27]. The query structure

and the output of the algorithm for θ = 1 are shown below.

Query Strucure Ordered Output of Algorithm 1 for θ = 1

~Q(DB, θ)
Block 1 U1

U2

U3

Block 2 U1 + U2

U1 + U2

U1 + U3

U1 + U3

U2 + U3

U2 + U3

Block 3 U1 + U2 + U3

U1 + U2 + U3

U1 + U2 + U3

U1 + U2 + U3

~Q(DB1, θ = 1) ~Q(DB2, θ = 1) ~Q(DB3, θ = 1)
a1 a2 a3

b1 b2 b3

c1 c2 c3

a4 + b2 a8 + b1 a12 + b1

a6 + b3 a10 + b3 a14 + b2

a5 + c2 a9 + c1 a13 + c1

a7 + c3 a11 + c3 a15 + c2

b4 + c4 b6 + c6 b8 + c8

b5 + c5 b7 + c7 b9 + c9

a16 + b6 + c6 a20 + b4 + c4 a24 + b4 + c4

a17 + b7 + c7 a21 + b5 + c5 a25 + b5 + c5

a18 + b8 + c8 a22 + b8 + c8 a26 + b6 + c6

a19 + b9 + c9 a23 + b9 + c9 a27 + b7 + c7

24

The output of Algorithm 1, for θ = 2, is shown next.

~Q(DB1, θ = 2) ~Q(DB2, θ = 2) ~Q(DB3, θ = 2)
a1 a2 a3

b1 b2 b3
c1 c2 c3

a2 + b4 a1 + b8 a1 + b12

a3 + b6 a3 + b10 a3 + b14

a4 + c4 a6 + c6 a8 + c8

a5 + c5 a7 + c7 a9 + c9

b5 + c2 b9 + c1 b13 + c1

b7 + c3 b11 + c3 b15 + c3

a6 + b16 + c6 a4 + b20 + c4 a4 + b24 + c4

a7 + b17 + c7 a5 + b21 + c5 a5 + b25 + c5

a8 + b18 + c8 a8 + b22 + c8 a6 + b26 + c6

a9 + b19 + c9 a9 + b23 + c9 a7 + b27 + c7

The output of Algorithm 1, for θ = 3, is shown next.

~Q(DB1, θ = 3) ~Q(DB2, θ = 3) ~Q(DB3, θ = 3)
a1 a2 a3

b1 b2 b3
c1 c2 c3

a4 + b4 a6 + b6 a8 + b8
a5 + b5 a7 + b7 a9 + b9
a2 + c4 a1 + c8 a1 + c12

a3 + c6 a3 + c10 a2 + c14

b2 + c5 b1 + c9 b1 + c13

b3 + c7 b3 + c11 b2 + c15

a6 + b6 + c16 a4 + b4 + c20 a4 + b4 + c24

a7 + b7 + c17 a5 + b5 + c21 a5 + b5 + c25

a8 + b8 + c18 a8 + b8 + c22 a6 + b6 + c26

a9 + b9 + c19 a9 + b9 + c23 a7 + b7 + c27

Note that this construction retrieves 27 desired message bits out of a total of 39 downloaded

bits, so its rate is 27/39 = 9/13, which matches the capacity for this case.

2.3.4 Proof of Correctness, Privacy and Achieving Capacity

The following lemma confirms that the query set produced by the algorithm satisfies the

required structural properties.

25

Lemma 2.1. (Structure of Q(DB, θ)) For any θ ∈ [1 : K] and for any DB ∈ [1 : N], the

Q(DB, θ) produced by Algorithm 1 satisfies the following properties.

1. For all k ∈ [1 : K], block k contains exactly (N − 1)k−1 instances of k-sums of each

possible type.

2. No uk(i), i ∈ [1 : NK] variable appears more than once within Q(DB, θ) for any given

DB.

3. Exactly NK−1 variables for each Uk, k ∈ [1 : K], appear in the query set Q(DB, θ).

4. The size of Q(DB, θ) is NK−1 + 1
N−1

(NK−1 − 1).

Proof. 1. Fix any arbitrary N . The proof is based on induction on the claim S(k), defined

as follows.

S(k) : “Block k contains exactly (N − 1)k−1 instances of k-sums of all possible types.”

The basis step is when k = 1. This step is easily verified, because a 1-sum is simply one

variable, of which there are K possible types, and from (2.10), (2.11) in Algorithm 1,

we note that the first block always consists of one variable of each vector Uk, k ∈ [1 : K].

We next proceed to the inductive step. Suppose S(k) is true. Then we wish to prove

that S(k + 1) must be true as well. Here we have Block = k + 1. First, consider

(k + 1)-sums of type {i1, i2, · · · , ik+1} ⊂ [1 : K]/{θ} where none of the indices is θ.

These belong in Q(DB, θ, k+ 1, I), and from line 11 of the algorithm it is verified that

exactly (N − 1)Block−1 = (N − 1)k instances are generated of this type. Next, consider

the (k + 1)-sums of type {i1, i2, · · · , ik, θ} where one of the indices is θ. These belong

to Q(DB, θ, k + 1,M) and are obtained by adding new(Uθ) to each of the k-sums of

type {i1, i2, · · · , ik} that belong to Q(DB′, θ, k, I) for all DB′ 6= DB. Therefore, the

number of instances of (k + 1)-sums of type {i1, i2, · · · , ik, θ} in Q(DB, θ, k + 1,M)

must be equal to the product of the number of ‘other’ servers DB′, which is equal to

N − 1, and the number of instances of type {i1, i2, · · · , ik} in each server DB′, which is

26

equal to (N − 1)k−1 because S(k) is assumed to be true as the induction hypothesis.

(N − 1) × (N − 1)k−1 = (N − 1)k, and thus, we have shown that S(k + 1) is true,

completing the proof by induction.

2. From (2.10),(2.12), we see that for each block, the desired variables, i.e., the Uθ vari-

ables appear only through the new(Uθ) function so that each of them only appears

once. For the non-desired variables Uk, k 6= θ, we see that the only time that they

do not appear through the new(Uk) function is when they enter through q in (2.12).

However, from (2.12) we see that these variables come from the I part of the previous

block of other servers, where each of them was only introduced once through a new(Uk)

function. Moreover, each term from the I part of the previous block of other servers

is used exactly once. Therefore, these Uk variables also appear no more than once in

the query set of a given server.

3. Since we have shown that no variable appears more than once, we only need to count

the number of times each vector Uk, k ∈ [1 : K] is invoked within Q(DB, θ). Consider

any particular vector, say Uj. The number of possible types of k-sums that include

index j is
(
K−1
k−1

)
. As we have also shown, the k-th block contains (N − 1)k−1 instances

of k-sums of each type. Therefore, the number of instances of vector Uj in block k is

(N − 1)k−1
(
K−1
k−1

)
. Summing over all K blocks within Q(DB, θ) we find

K∑
k=1

(N − 1)k−1

(
K − 1

k − 1

)
= (N − 1 + 1)K−1 (Binomial Identity) (2.14)

= NK−1 (2.15)

4. The k-th block of Q(DB, θ) contains (N − 1)k−1 instances of k-sums of each possible

type, and there are
(
K
k

)
possible types of k-sums. Therefore, the cardinality of Q(DB, θ)

is

27

|Q(DB, θ)|

=
K∑
k=1

(N − 1)k−1

(
K

k

)
=

K∑
k=1

(N − 1)k−1

[(
K − 1

k

)
+

(
K − 1

k − 1

)]
(2.16)

(2.17)

(2.15)
= NK−1 +

K−1∑
k=1

(N − 1)k−1

(
K − 1

k

)
(2.18)

= NK−1 +
1

N − 1
(NK−1 − 1) (2.19)

We are now ready to prove that the achievable scheme is correct, private and achieves the

capacity, in the following two lemmas.

Lemma 2.2. The scheme described in Algorithm 1 is correct and the rate achieved is (1 +

1/N + · · ·+ 1/NK−1)−1, which matches the capacity.

Proof. The scheme is correct, i.e., all desired variables, Uθ, are decodable (with zero error

probability), because either they appear with no interference (the first block) or they appear

with interference q that is also downloaded separately from another server DB′ so it can be

subtracted. From Lemma 2.1 we know that there are NK−1 desired bit-variables in each

Q(DB, θ). Note that desired variables always appear through new(Uθ), so they do not repeat

across servers. Thus, the total number of desired bits that are retrieved is N ×NK−1 = NK .

We next compute the rate. The total number of desired bits retrieved is NK , and the total

number of downloaded bits from all servers is N × |Q(DB, θ)| in every case. Therefore, the

rate,

R =
NK

N × |Q(DB, θ)|
(2.20)

=
NK

N [NK−1 + 1
N−1

(NK−1 − 1)]
=

(
NK−1 + 1

N−1
(NK−1 − 1)

NK−1

)−1

(2.21)

28

=

(
1 +

1
N−1

(NK−1 − 1)

NK−1

)−1

=

(
1 +

1
N

(1− 1
NK−1)

1− 1
N

)−1

(2.22)

=

(
1 +

1

N
+ · · ·+ 1

NK−1

)−1

(2.23)

Lemma 2.3. The scheme described in Algorithm 1 is private.

Proof. The intuition is quite straightforward. Regardless of θ, every realization of the query

vector that fits the query structure is equally likely because of the uniformly random permu-

tation Γ. To formalize this intuition, let us calculate the probability of an arbitrary query

realization.

For any DB ∈ [1 : N], θ ∈ [1 : K], consider the ordered query vector representation

~Q(DB, θ). For each Uk, k ∈ [1 : K], denote the order in which these symbols appear in

~Q(DB, θ), as ~uk(DB, θ) = [uk(ik,DB,θ,1), uk(ik,DB,θ,2), · · · , uk(ik,DB,θ,NK−1)]. Since the ordered

query structure is already fixed regardless of θ and DB, and no variable occurs more than

once, ~Q(DB, θ) is completely determined by (~u1(DB, θ), ~u2(DB, θ), · · · , ~uK(DB, θ)). Simi-

larly, for each k ∈ [1 : K], denote an arbitrary NK−1-tuple of bits from message Wk by ~wk =

[wk(i
′
k1

), wk(i
′
k2

), · · · , wk(i′k
NK−1

)]. Recall that uk(i) = wk(γk(i)), ∀k ∈ [1 : K], i ∈ [1 : NK],

and γ1, γ2, · · · , γK are uniform permutations chosen independently of each other and also

independently of θ. Therefore, for all (~w1, ~w2, · · · , ~wK), we have

Prob
(

Γ (~u1(DB, θ), ~u2(DB, θ), · · · , ~uK(DB, θ)) (~w1, ~w2, · · · , ~wK)
)

=
K∏
k=1

Prob
(

Γ(~uk(DB, θ)) = ~wk

)
(2.24)

=

((
1

NK

)(
1

NK − 1

)
· · ·
(

1

NK −NK−1 + 1

))K
(2.25)

which does not depend on θ. Thus, the distribution of ~Q(DB, θ) does not depend on θ. Since

Q
[θ]
DB is a function of ~Q(DB, θ), Q

[θ]
DB must be independent of θ as well. Next, we show that

privacy requirement (2.7) must be satisfied.

29

I(θ;Q
[θ]
DB, A

[θ]
DB,W1:K)

= I(θ;Q
[θ]
DB) + I(θ;W1:K |Q[θ]

DB) + I(θ;A
[θ]
DB|W1:K , Q

[θ]
DB) (2.26)

= 0 + 0 + 0 = 0 (2.27)

where I(θ;Q
[θ]
DB) = 0 because we have already proved thatQ

[θ]
DB is independent of θ, I(θ;W1:K |Q[θ]

DB) =

0 because the desired message index and the query are generated privately by the user with

no knowledge of the messages, and I(θ;A
[θ]
DB|W1:K , Q

[θ]
DB) = 0 because the answer is determin-

istic function of the query and messages. Therefore, all information available to server DB

(Q
[θ]
DB, A

[θ]
DB,W1, · · · ,WK) is independent of θ and the scheme is private.

Remark: From the proofs of privacy and correctness, note that the key is the query structure

and the random mapping, Γ, of message bits to the query structure. In particular, no as-

sumption is required on the statistics of the messages themselves. So the scheme works and

a rate equal to Co remains achievable even if the messages are not independent, although it

may no longer be the capacity for this setting. For example, if N = K = 2 and the two mes-

sages are identical, W1 = W2, then clearly the capacity is 1, which is higher than Co = 2/3.

The independence of the messages is, however, needed for the converse.

We end this section with a lemma that highlights a curious property of our capacity achieving

PIR scheme – that if the scheme is projected onto any subset of messages by eliminating the

remaining messages, it also achieves the PIR capacity for that subset of messages.

Lemma 2.4. Given a capacity achieving scheme generated by Algorithm 1 for K messages,

if we set ∆, 1 ≤ ∆ ≤ K − 1 messages to be null, then the scheme achieves the capacity for

the remaining K −∆ messages.

Proof. We first prove that the scheme is correct after eliminating messages. This is easy to

see as eliminating messages does not hurt (influence) the decoding procedure. Note that the

eliminated messages can not include the desired one. We next prove that the scheme is also

private. This is also easy to see as the permutations of the messages are independent, so that

after eliminating messages, the bits of the remaining messages still distribute identically, no

30

matter which message is desired. We finally compute the rate and show that the scheme

achieves the capacity for the remaining messages. Note that the total number of desired bits

does not change, i.e., it is still NK . The total number of downloaded equations decreases,

as ∆ messages are set to 0. In particular, the following number of equations becomes 0.

N

∆∑
k=1

(
∆

k

)
(N − 1)k−1

= N
1

N − 1

[
∆∑
k=0

(
∆

k

)
(N − 1)k − 1

]
(2.28)

= N
1

N − 1
(N∆ − 1) (2.29)

Subtracting above from N |Q(DB, θ)|, we have the total number of downloaded equations.

Therefore, the rate achieved is

R =
NK

N |Q(DB, θ)| −N 1
N−1

(N∆ − 1)
(2.30)

=
NK

N [NK−1 + 1
N−1

(NK−1 − 1)− 1
N−1

(N∆ − 1)]
(2.31)

=

(
NK−1 + 1

N−1
(NK−1 −N∆)

NK−1

)−1

=

(
1 +

1
N−1

(NK−1 −N∆)

NK−1

)−1

(2.32)

=

(
1 +

1
N

(1− 1
NK−∆−1)

1− 1
N

)−1

=

(
1 +

1

N
+ · · ·+ 1

NK−∆−1

)−1

(2.33)

which matches the capacity.

2.4 Theorem 2.1: Converse

Note that the converse is proved for arbitrary L, i.e., we no longer assume that L = NK .

Let us start with two useful lemmas. Note that in the proofs, the relevant equations needed

31

to justify each step are specified by the equation numbers set on top of the (in)equality

symbols.

Lemma 2.5. I(W2:K ;Q
[1]
1:N , A

[1]
1:N |W1) ≤ L(1/R− 1 + o(L)).

Proof.

I(W2:K ;Q
[1]
1:N , A

[1]
1:N |W1)

(2.2)
= I(W2:K ;Q

[1]
1:N , A

[1]
1:N ,W1) (2.34)

= I(W2:K ;Q
[1]
1:N , A

[1]
1:N) + I(W2:K ;W1|Q[1]

1:N , A
[1]
1:N) (2.35)

(2.6)
= I(W2:K ;Q

[1]
1:N , A

[1]
1:N) + o(L)L (2.36)

(2.4)
= I(W2:K ;A

[1]
1:N |Q

[1]
1:N) + o(L)L (2.37)

= H(A
[1]
1:N |Q

[1]
1:N)−H(A

[1]
1:N |Q

[1]
1:N ,W2:K) + o(L)L (2.38)

≤ D −H(W1, A
[1]
1:N |Q

[1]
1:N ,W2:K) +H(W1|A[1]

1:N , Q
[1]
1:N ,W2:K) + o(L)L (2.39)

(2.8)(2.5)(2.6)
= L/R−H(W1|Q[1]

1:N ,W2:K) + o(L)L (2.40)
(2.4)(2.2)(2.3)

= L/R− L+ o(L)L = L(1/R− 1 + o(L)) (2.41)

Lemma 2.6. For all k ∈ [2 : K],

I(Wk:K ;Q
[k−1]
1:N , A

[k−1]
1:N |W1:k−1) ≥ 1

N
I(Wk+1:K ;Q

[k]
1:N , A

[k]
1:N |W1:k) +

L(1− o(L))

N
.

Proof.

NI(Wk:K ;Q
[k−1]
1:N , A

[k−1]
1:N |W1:k−1)

≥
N∑
n=1

I(Wk:K ;Q[k−1]
n , A[k−1]

n |W1:k−1) (2.42)

(2.7)
=

N∑
n=1

I(Wk:K ;Q[k]
n , A

[k]
n |W1:k−1) (2.43)

≥
N∑
n=1

I(Wk:K ;A[k]
n |W1:k−1, Q

[k]
n) (2.44)

(2.5)
=

N∑
n=1

H(A[k]
n |W1:k−1, Q

[k]
n) (2.45)

32

≥
N∑
n=1

H(A[k]
n |W1:k−1, Q

[k]
1:N , A

[k]
1:n−1) (2.46)

(2.5)
=

N∑
n=1

I(Wk:K ;A[k]
n |W1:k−1, Q

[k]
1:N , A

[k]
1:n−1) (2.47)

= I(Wk:K ;A
[k]
1:N |W1:k−1, Q

[k]
1:N) (2.48)

(2.4)(2.2)
= I(Wk:K ;Q

[k]
1:N , A

[k]
1:N |W1:k−1) (2.49)

(2.6)
= I(Wk:K ;Wk, Q

[k]
1:N , A

[k]
1:N |W1:k−1)− o(L)L (2.50)

= I(Wk:K ;Wk|W1:k−1) + I(Wk:K ;Q
[k]
1:N , A

[k]
1:N |W1:k)− o(L)L (2.51)

(2.2)(2.3)
= L+ I(Wk:K ;Q

[k]
1:N , A

[k]
1:N |W1:k)− o(L)L (2.52)

= I(Wk+1:K ;Q
[k]
1:N , A

[k]
1:N |W1:k) + L(1− o(L)) (2.53)

With these lemmas we are ready to prove the converse.

Proof of Converse of Theorem 2.1

Starting from k = 2 and applying Lemma 2.6 repeatedly for k = 3 to K,

I(W2:K ;Q
[1]
1:N , A

[1]
1:N |W1)

≥ L

N
(1− o(L)) +

1

N
I(W3:K ;Q

[2]
1:N , A

[2]
1:N |W1,W2) (2.54)

≥ L

N
(1− o(L)) +

1

N

[L
N

(1− o(L)) +
1

N
I(W4:K ;Q

[3]
1:N , A

[3]
1:N |W1:3)

]
(2.55)

= L(1− o(L))(
1

N
+

1

N2
) +

1

N2
I(W4:K ;Q

[3]
1:N , A

[3]
1:N |W1:3) (2.56)

≥ · · · (2.57)

≥ L(1− o(L))(
1

N
+ · · ·+ 1

NK−2
) +

1

NK−2
I(WK ;Q

[K−1]
1:N , A

[K−1]
1:N |W1:K−1) (2.58)

≥ L(1− o(L))(
1

N
+ · · ·+ 1

NK−1
) (2.59)

Combining Lemma 2.5 and (2.59), we have

L(
1

R
− 1 + o(L)) ≥ L(1− o(L))(

1

N
+ · · ·+ 1

NK−1
) (2.60)

Dividing both sides by L and letting L go to infinity gives us

33

Prob. 1/2 Prob. 1/2
Want W1 Want W2 Want W1 Want W2

Server 1 u1, v1, u2 + v2 u1, v1, u2 + v2 u3, v3, u4 + v4 u3, v3, u4 + v4

Server 2 u4, v2, u3 + v1 u2, v4, u1 + v3 u2, v4, u1 + v3 u4, v2, u3 + v1

1

R
− 1 ≥

(
1

N
+ · · ·+ 1

NK−1

)
⇒ R ≤

(
1 +

1

N
+ · · ·+ 1

NK−1

)−1

(2.61)

thus, completing the proof.

2.5 Discussion

In this section we share some interesting insights beyond the capacity characterization.

Upload Cost

To ensure privacy, we appealed to randomization arguments. To specify the randomly chosen

query to the servers incurs an upload cost. For large messages the upload cost is negligible

relative to the download cost, so it was ignored in this work. However, if the upload cost

is a concern then it could be optimized as well. Random permutations of message bits are

sufficient for privacy, but it is easy to see that the upload cost can be reduced by reducing

the number of possibilities to be considered. For example, consider the K = 2 messages,

N = 2 servers setting. We can group the bits, i.e., we can divide the 4 bits of each message

into 2 groups, so that when we choose 2 bits, we only choose 2 bits from the same group.

This reduces the choice to 1 out of 2 groups (rather than 2 out of 4 bits). Further, it may

be possible to avoid random permutations among the chosen bits (group). For the same

K = 2 messages and N = 2 servers example, we can fix the order within each group and the

scheme becomes the following, shown at the top of this page. We denote the messages bits

as W1 = {u1, u2, u3, u4},W2 = {v1, v2, v3, v4}.

34

Note that regardless of which message is desired, the user is equally likely to request either

u1, v1, u2 + v2 or u3, v3, u4 + v4 from Server 1, and either u2, v4, u1 + v3 or u4, v2, u3 + v1 from

Server 2, so the scheme is private. However, each query is now limited to only 2 possibilities,

thereby significantly reducing the upload cost. Also note that instead of storing all 8 bits that

constitute the two messages, each server only needs to store 6 bits in this case, corresponding

to the two possible queries that it may face.

Another interesting question in this context is to determine the upload constrained capacity.

An information theoretic perspective is still useful. For example, since we are able to reduce

the upload cost for K = 2, N = 2 to two possibilities, one might wonder if it is possible to

reduce the upload cost of the K = 3, N = 2 setting to 3 possibilities without loss of capacity.

Let us label the three possible downloads from Server 1 as f1, f2, f3 and the three possible

downloads from Server 2 as g1, g2, g3. We wish to find out if the original PIR capacity of

4/7 is still achievable under these upload constraints. As we show next, the capacity is

strictly reduced. With uploads limited to choosing one out of only 3 possibilities, the upload

constrained capacity of the K = 3, N = 2 setting is 1/2 instead of 4/7. Eliminating trivial

degenerate cases, in this case there is no loss of generality in assuming that we can recover

W1 from any one of these three possibilities: (f1, g1), (f2, g2), (f3, g3); we can recover W2 from

any one of these three possibilities: (f1, g2), (f2, g3), (f3, g1); and we can recover W3 from any

one of these three possibilities: (f1, g3), (f2, g1), (f3, g2). Then, for the optimal scheme we

have

H(W1) = I(W1; f1, g1) (2.62)

≤ 2H(A)−H(f1, g1|W1) (2.63)

Similarly, H(W1) ≤ 2H(A)−H(f2, g2|W1) (2.64)

Adding the two, 2H(W1) ≤ 4H(A)−H(f1, g1, f2, g2|W1) (2.65)

≤ 4H(A)−H(W1,W2,W3|W1) (2.66)

≤ 4H(A)−H(W2,W3) (2.67)

⇒ C = H(W1)/2H(A) ≤ 1/2 (2.68)

35

Here, 2H(A) is the total download. (2.66) follows because from f1, g1, f2, g2 we can recover

all three messages. Thus, if the upload can only resolve one out of three possibilities for

the query to each server, then the capacity of such a PIR scheme cannot be more than 1/2,

which is strictly smaller than the PIR capacity without upload constraints, 4/7. In fact, the

upload constrained capacity in this case is exactly 1/2, as shown by the following achievable

scheme which is interesting in its own right for how it fully exploits interference alignment.

Suppose W1,W2,W3 are symbols from a sufficiently large finite field (e.g., F5). Then the

following construction works.

f1 = W1 + 2W2 +W3 (2.69)

f2 = W1 + 4W2 + 3W3 (2.70)

f3 = 3W1 + 4W2 + 6W3 (2.71)

g1 = W1 + 4W2 + 2W3 (2.72)

g2 = 3W1 + 4W2 + 3W3 (2.73)

g3 = 2W1 + 4W2 + 6W3 (2.74)

It is easy to verify that W1 can be recovered from any one of (f1, g1), (f2, g2), (f3, g3); W2

can be recovered from any one of (f1, g2), (f2, g3), (f3, g1); and W3 can be recovered from any

one of (f1, g3), (f2, g1), (f3, g2). The reason we can recover the desired message symbol from

two equations, even though all three message symbols are involved in those two equations,

is because of this special construction, which forces the undesired symbols to align into one

dimension in every case. Thus, the upload constrained capacity for K = 3, N = 2 when the

randomness is limited to choosing one out of 3 possibilities, is 1/2. Answering this question

for arbitrary K,N and arbitrary upload constraints is an interesting direction for future

work.

Message Size

The information theoretic formulation of the PIR problem allows the sizes of messages to

grow arbitrarily large. A natural question is this – how large do we need each message to be

36

for the optimal scheme. In our scheme, each message consists of NK bits. However, even for

our capacity achieving PIR scheme, the size of a message may be reduced. As an example,

for the same K = 2 messages and N = 2 servers setting, the following PIR scheme works

just as well (still achieves the same capacity) when each message is only made up of 2 bits:

W1 = (u1, u2), W2 = (v1, v2).

Prob. 1/2 Prob. 1/2
Want W1 Want W2 Want W1 Want W2

Server 1 u1, v2 u1, v2 u2, v1 u2, v1

Server 2 u2 + v2 u1 + v1 u1 + v1 u2 + v2

In general, the smallest message size needed to achieve the PIR capacity is characterized in

[66] to be NK−1 bits per message. Further, building upon the capacity achieving scheme

with smallest message size, the message size constrained PIR capacity is found in [66] to be

CLPIR = L
dL/CPIRe

.

Similarities between PIR and Blind Interference Alignment:

The idea of blind interference alignment was introduced in [43] to take advantage of the

diversity of coherence intervals that may arise in a wireless network. For instance, different

channels may experience different coherence times and coherence bandwidths. A diversity

of coherence patterns can also be artificially induced by the switching of reconfigurable

antennas in pre-determined patterns. As one of the simplest examples of BIA, consider a

K user interference channel, where the desired channels have coherence time 1, i.e., they

change after every channel use, while the cross channels (which carry interference) have

coherence time 2, i.e., they remain unchanged over two channel uses. The transmitters are

aware of the coherence times but otherwise have no knowledge of the channel coefficients.

The BIA scheme operates over two consecutive channel uses. Over these two channel uses,

each transmitter repeats its information symbol, and each receiver simply calculates the

difference of its received signals. Since the transmitted symbols remain the same and the

37

cross channels do not change, the difference of received signals from the two channel uses

eliminates all interference terms. However, because the desired channels change, the desired

information symbols survive the difference at each receiver. Thus, one desired information

symbol is successfully sent for each message over 2 channel uses, free from interference,

achieving 1
2

DoF per message. Remarkably, this is essentially identical to the first non-trivial

scheme of PIR (see Section 3.1 of [24]).

The number of users in the BIA problem translates into the number of messages in the PIR

problem. The received signals for user θ in BIA, translate into the answering strings when

message Wθ is the desired message in the PIR problem. The channel vectors associated with

user θ in the BIA problem translate into the query vectors for desired message Wθ in the PIR

problem. The privacy requirement of the PIR scheme takes advantage of the observation that

in BIA, over each channel use, the received signal at each receiver is statistically equivalent,

because the transmitter does not know the channel values and the channel to each receiver

has the same distribution. The most involved aspect of translating from BIA to PIR is that

in BIA, the knowledge of the channel realizations across channel uses reveals the switching

pattern, which in turn reveals the identity of the receiver. To remove this identifying feature

of the BIA scheme, the channel uses are divided into subgroups such that the knowledge of

the switching pattern within each group reveals nothing about the identity of the receiver.

Each sub-group of channel uses is then associated with a different server. Since the servers

are not allowed to communicate with each other, and each sub-group of queries (channel

uses) reveals nothing about the message (user), the resulting scheme guarantees privacy.

Finally, the symmetric degrees of freedom (DoF) value per user in BIA is the ratio between

the number of desired message symbols and the number of channel uses (received signal

equations), and the rate R in PIR is the ratio between the number of symbols of the desired

message and the total number of equations in all answering strings. In this way, the DoF

value achieved with BIA translates into the rate of the corresponding PIR protocol, i.e.,

R = DoF. We summarize these connections in the following table.

38

Table 2.1: PIR and BIA

PIR BIA
Message Receiver
Queries Channel Coefficients
Answers Received Signals

Rate DoF

Recognizing this connection between PIR and BIA directly leads to capacity achieving PIR

schemes for K = 2 messages, and arbitrary number of servers N , as in [65], by translating

from known optimal BIA schemes. However, for K > 2, the PIR framework generalizes the

BIA framework. This is because the coherence patterns that are assumed to exist in BIA

are typically motivated by the distinct coherence times, coherence bandwidths, or antenna

switching patterns that are feasible in wireless settings. However, since PIR is not bound by

wireless phenomena, it allows for arbitrary coherence patterns, including many possibilities

that would be considered infeasible in wireless settings. Even the simple scheme of BIA for

the K user interference channel presented earlier, was originally noted in BIA [43] merely

as a matter of curiosity rather than having any physical significance. As such, while our

initial insights into PIR came by viewing it as a special case of existing BIA schemes, the

new capacity achieving PIR schemes introduced in this work go well beyond existing results

in BIA, by allowing arbitrary coherence patterns.

39

Chapter 3

Capacity of Robust PIR with

Colluding Servers

In the previous chapter we considered the basic model of PIR, where a user wants to retrieve

a desired message from a set of N distributed servers, each of which stores all K messages,

without revealing anything (in the information theoretic sense) about which message is

being retrieved to any individual server. There are several interesting extensions of PIR

that explore its limitations under additional constraints. These include extensions where up

to T of the N servers may collude [12, 8] (T -private PIR, or TPIR in short); where some

of the servers may not respond [16] (Robust PIR); where both the privacy of the user and

the servers must be protected [36] (Symmetric PIR); where only one server holds all the

messages and all other servers hold independent information [35]; where retrieval operations

are unsynchronized [30]; and where beyond communications, computation is also a concern

[15]. There is also much recent work in the distributed storage setting [59, 22, 31, 69] (the

servers form a distributed storage system) where the main focus is on how the coding of the

storage system works jointly with PIR.

In this chapter, we mainly consider TPIR in the Shannon theoretic setting, where we have

an arbitrary number of messages (K), arbitrary number of servers (N), each server stores

40

all the messages, the messages are allowed to be arbitrarily large, and the privacy of the

desired message index must be guaranteed even if any T of the N servers collude. The main

contribution of this chapter is to show that the information theoretic capacity of TPIR is

CTPIR =
(
1 + T/N + T 2/N2 + · · ·+ TK−1/NK−1

)−1
(3.1)

We further consider the extension to robust TPIR, where we have M ≥ N servers, out of

which any M − N servers may not respond, so that with answers from any N servers, we

need to ensure both privacy and correctness. In this context, the contribution of this chapter

is to show that the information theoretic capacity of robust TPIR remains the same as that

of TPIR, i.e., there is no capacity cost from not knowing in advance which N servers will

respond.

3.1 Problem Statement

3.1.1 TPIR

Consider K independent messages W1, · · · ,WK of size L bits each.

H(W1, · · · ,WK) = H(W1) + · · ·+H(WK), (3.2)

H(W1) = · · · = H(WK) = L. (3.3)

There are N servers. Each server stores all the messages W1, · · · ,WK . A user wants to

retrieve Wθ, θ ∈ [1 : K] subject to T -privacy, i.e., without revealing anything about the

message identity, θ, to any colluding susbset of up to T out of the N servers. θ is uniformly

distributed over [1 : K].

Suppose θ = k. To retrieve Wk privately, the user generates N queries Q
[k]
1 , · · · , Q

[k]
N , where

the superscript denotes the desired message index. Since the queries are generated with

41

no knowledge of the realizations of the messages, the queries must be independent of the

messages,

I(W1, · · · ,WK ;Q
[k]
1 , · · · , Q

[k]
N) = 0. (3.4)

The user sends query Q
[k]
n to the n-th server, ∀n ∈ [1 : N]. Upon receiving Q

[k]
n , the n-th

server generates an answering string A
[k]
n , which is a deterministic function of Q

[k]
n and the

data stored (i.e., all messages W1, · · · ,WK),

H(A[k]
n |Q[k]

n ,W1, · · · ,WK) = 0. (3.5)

Each server returns to the user its answer A
[k]
n . From all answers A

[k]
1 , · · · , A

[k]
N , the user can

decode the desired message Wk,

[Correctness] H(Wk|A[k]
1 , · · · , A

[k]
N , Q

[k]
1 , · · · , Q

[k]
N) = 0. (3.6)

To satisfy the privacy constraint that any T colluding servers learn nothing about the desired

message index θ information theoretically, information available to any T servers (queries,

answers and the stored messages) must be independent of θ. Let T be a subset of [1 : N] and

its cardinality be denoted by |T |. Q[θ]
T represents the subset {Q[θ]

n , n ∈ T }. A[θ]
T is defined

similarly. To satisfy the T -privacy requirement we must have

[Privacy] I(Q
[θ]
T , A

[θ]
T ,W1, · · · ,WK ; θ) = 0, ∀T ⊂ [1 : N], |T | = T. (3.7)

To underscore that any set of T or fewer answering strings is independent of the desired

message index, we may suppress the superscript and write AT directly instead of A
[k]
T , and

express the elements of such a set as An instead of A
[k]
n .

42

The metric that we study in this chapter is the PIR rate1, which characterizes how many

bits of desired information are retrieved per downloaded bit. Note that the PIR rate is the

reciprocal of download cost. The rate R of a PIR scheme is defined as follows.

R
4
= L/D (3.8)

where D is the expected value of the total number of bits downloaded by the user from all

the servers. The capacity, CTPIR, is the supremum of R over all PIR schemes.

3.1.2 Robust TPIR

The robust TPIR problem is defined similar to the TPIR problem. The only difference is

that instead of N servers, we have M ≥ N servers, and the correctness condition needs to

be satisfied when the user collects any N out of the M answering strings.

3.2 Main Result: Capacity of Robust TPIR

The following theorem states the main result.

Theorem 3.1. For TPIR with K messages and N servers, the capacity is

CTPIR =
(
1 + T/N + T 2/N2 + · · ·+ TK−1/NK−1

)−1
. (3.9)

The capacity of PIR with T colluding servers generalizes the case without T -privacy con-

straints, where T = 1 (refer to Chapter 2). The capacity is a strictly decreasing function of T .

When T = N , the capacity is 1/K, meaning that the user has to download all K messages to

be private, as in this case, the colluding servers are as strong as the user. Similar to the T = 1

case, the capacity is strictly deceasing in the number of messages, K, and strictly increasing

1In the Shannon theoretic formulation where the message size is allowed to grow, the upload cost (the
length of the query strings) is negligible in the capacity formulation because when we double the message
size, we can reuse the same query functions for both parts of the messages such that the upload cost does
not scale with the message size. A more detailed treatment may be found in Proposition 4.1.1 of [24].

43

in the number of servers, N . When the number of messages approaches infinity, the capacity

approaches 1 − T/N , and when the number of servers approaches infinity (T remains con-

stant), the capacity approaches 1. Finally, note that since the download cost is the reciprocal

of the rate, the capacity characterization in Theorem 3.1 equivalently characterizes the op-

timal download cost per message bit for TPIR as
(
1 + T/N + T 2/N2 + · · ·+ TK−1/NK−1

)
bits. Note that when N 6= T , the capacity expression can be equivalently expressed as

(1− T
N

)/(1− (T
N

)K).

The capacity-achieving scheme that we construct for TPIR, generalizes easily to incorporate

robustness constraints. As a consequence, we are also able to characterize the capacity of

robust TPIR (RTPIR). This result is stated in the following theorem.

Theorem 3.2. The capacity of RTPIR is

CRTPIR =
(
1 + T/N + T 2/N2 + · · ·+ TK−1/NK−1

)−1
. (3.10)

Since the capacity expressions are the same, we note that there is no capacity penalty from

not knowing in advance which N servers will respond. Even though this uncertainty increases

as M increases, capacity is not a function of M . However, we note that the communication

complexity of our capacity achieving scheme does increase with M .

3.3 Proof of Theorem 3.1: Achievability

There are two key aspects of the achievable scheme – 1) the query structure, and 2) the

specialization of the query structure to ensure T -privacy and correctness. While the query

structure is different from the T = 1 setting in Chapter 2, it draws upon the iterative

application of the same three principles that were identified in Chapter 2. These principles

are listed below.

(1) Enforcing Symmetry Across Servers

44

(2) Enforcing Message Symmetry within the Query to Each Server

(3) Exploiting Previously Acquired Side Information of Undesired Messages to Retrieve

New Desired Information

The specialization of the structure to ensure T -privacy and correctness is another novel

element of the achievable scheme. To illustrate how these ideas work together in an iterative

fashion, we will present a few simple examples corresponding to small values of K,N and T ,

and then generalize it to arbitrary K,N and T . Let us begin with a lemma.

Lemma 3.1. Let S1, S2, · · · , SK ∈ Fα×αq be K random matrices, drawn independently and

uniformly from all α × α full-rank matrices over Fq. Let G1, G2, · · · , GK ∈ Fβ×βq be K

invertible square matrices of dimension β×β over Fq. Let I1, I2, · · · , IK ∈ Nβ×1 be K index

vectors, each containing β distinct indices from [1 : α]. Then

(G1S1[I1, :], G2S2[I2, :], · · · , GKSK [IK , :]) ∼ (S1[(1 : β), :], S2[(1 : β), :], · · · , SK [(1 : β), :])

(3.11)

where Si[Ii, :], i ∈ [1 : K] are β × α matrices comprised of the rows of Si with indices in Ii.

Proof: We wish to prove that the left hand side of (3.11) is identically distributed (recall

that the notation X ∼ Y means that X and Y are identically distributed) to the right hand

side of (3.11). Because the rank of a matrix does not depend on the ordering of the rows,

we have

(S1[I1, :], S2[I2, :], · · · , SK [IK , :]) ∼ (S1[(1 : β), :], S2[(1 : β), :], · · · , SK [(1 : β), :])

Since Si are picked uniformly from all full-rank matrices, conditioned on any feasible value of

the remaining rows Si[(β+1 : α), :], the first β rows Si[(1 : β), :] are uniformly distributed over

all possibilities that preserve full-rank for Si. Now note that the mapping from Si[(1 : β), :]

to GiSi[(1 : β), :] is bijective, and Si[(1 : β), :] spans the same row space as GiSi[(1 : β), :],

45

i.e., replacing Si[(1 : β), :] with GiSi[(1 : β), :], preserves Si as a full-rank matrix. Therefore,

conditioned on any feasible Si[(β + 1 : α), :], the set of feasible values of Si[(1 : β), :] is the

same as the set of feasible GiSi[(1 : β), :] values. Therefore, GiSi[(1 : β), :] is also uniformly

distributed over the same set. Finally, since the Si are chosen independently, the statement

of Lemma 3.1 follows.

3.3.1 Example: K = 2, N = 3, T = 2

The capacity for this setting, is C =
(
1 + 2

3

)−1
= 3

5
.

3.3.1.1 Query Structure

We begin by constructing a query structure, which will then be specialized to achieve cor-

rectness and privacy. Without loss of generality, let [ak] denote the symbols of the desired

message, and [bk] the symbols of the undesired message.

Server 1 Server 2 Server 3

a1, a2 a3, a4

(1)−→ Server 1 Server 2 Server 3

a1, a2 a3, a4 a5, a6

(2)−→
Server 1 Server 2 Server 3

a1, a2 a3, a4 a5, a6

b1, b2 b3, b4 b5, b6

· · ·

· · · (3)−→

Server 1 Server 2 Server 3

a1, a2 a3, a4 a5, a6

b1, b2 b3, b4 b5, b6

a7 + b7 a8 + b8

(1)−→

Server 1 Server 2 Server 3

a1, a2 a3, a4 a5, a6

b1, b2 b3, b4 b5, b6

a7 + b7 a8 + b8 a9 + b9

We start by requesting the first TK−1 = 2 symbols from each of the first T = 2 servers:

a1, a2 from Server 1, and a3, a4 from Server 2. Applying server symmetry, we simultaneously

request a5, a6 from Server 3. Next, we enforce message symmetry, by including queries for

b1, · · · , b6 as the counterparts for a1, · · · , a6. Now consider the first T = 2 servers, i.e.,

Server 1 and Server 2, which can potentially collude with each other. Unknown to these

servers the user has acquired two symbols of external side information, b5, b6, comprised of

undesired message symbols received from Server 3. Splitting the two symbols of external

side information among Server 1 and Server 2 allows the user one symbol of side information

46

for each of Server 1 and Server 2 that it can exploit to retrieve new desired information

symbols. In our construction of the query structure, we will assign new labels (subscripts)

to the external side-information exploited within each server, e.g., b7 for Server 1 and b8 for

Server 2, with the understanding that eventually when the dependencies within the structure

are specialized, b7, b8 will turn out to be functions of previously acquired side-information.

Using its assigned side information, each Server acquires a new symbol of desired message,

so that Server 1 requests a7 + b7 and Server 2 requests a8 + b8. Finally, enforcing symmetry

across servers, Server 3 requests a9 + b9. At this point, the construction is symmetric across

servers, the query to any server is symmetric in itself across messages, and the amount of side

information exploited within any T colluding servers equals the amount of side information

available external to those T servers. So the skeleton of the query structure is complete.

Note that if Server 1 and Server 2 collude, then the external side information is b5, b6, so we

would like the side-information that is exploited by Server 1 and Server 2, i.e., b7, b8 to be

functions of the external side information that is available, i.e., b5, b6. However, since any

T = 2 servers can collude, it is also possible that Server 1 and Server 3 collude instead, in

which case we would like b7, b9 to be functions of side information that is external to Server

1 and Server 3, i.e., b3, b4. Similarly, if Server 2 and Server 3 collude, then we would like

b8, b9 to be functions of b1, b2. How to achieve such dependencies in a manner that preserves

privacy and ensures correctness is the remaining challenge. Intuitively, the key is to make

b7, b8, b9 depend on all side-information b1, b2, · · · , b6 in a generic sense. In other words, we

will achieve the desired functional dependencies by viewing b1, b2, · · · , b9 as the outputs of a

(9, 6) MDS code, so that any 3 of these bk are functions of the remaining 6. The details of

this specialization are described next.

47

3.3.1.2 Specialization to Ensure Correctness and Privacy

Let each message consist of NK = 9 symbols from a sufficiently large2 finite field Fq. The

messages W1, W2 ∈ F9×1
q are then represented as 9 × 1 vectors over Fq. Let S1, S2 ∈ F9×9

q

represent random matrices chosen privately by the user, independently and uniformly from

all 9× 9 full-rank matrices over Fq. Without loss of generality, let us assume that W1 is the

desired message. Define the 9× 1 vectors a[1:9] ∈ F9×1
q and b[1:9] ∈ F9×1

q , as follows

a[1:9] = S1W1 (3.12)

b[1:9] = MDS9×6S2[(1 : 6), :]W2 (3.13)

where S2[(1 : 6), :] is a 6 × 9 matrix comprised of the first 6 rows of S2. MDS9×6 is the

generator matrix of a (9, 6) MDS code (e.g., a Reed Solomon code). The generator matrix

does not need to be random, i.e., it may be globally known. Note that because of the MDS

property, any 6 rows of MDS9×6 form a 6 × 6 invertible matrix. Therefore, from any 6

elements of b[1:9], all 9 elements of b[1:9] can be recovered. For example, from b1, b2, · · · , b6,

one can recover b7, b8, b9. The queries from each server are constructed according to the

structure described earlier.

Server 1 Server 2 Server 3

a1, a2 a3, a4 a5, a6

b1, b2 b3, b4 b5, b6

a7 + b7 a8 + b8 a9 + b9

(3.14)

Correctness is easy to see, because the user recovers b[1:6] explicitly, from which it can recover

all b[1:9], thereby allowing it to recover all of a[1:9]. Let us see why privacy holds. The queries

for any T = 2 colluding servers are comprised of 6 variables from a[1:9] and 6 variables from

b[1:9]. Let the indices of these variables be denoted by the 6 × 1 vectors Ia, Ib ∈ N6×1,

respectively, so that,

2The requirements on the size of the field have to do with the existence of MDS codes that are used in
the construction. In this case q ≥ NK is sufficient.

48

(aIa , bIb) = (S1[Ia, :]W1,MDS9×6[Ib, :]S2[(1 : 6), :]W2) (3.15)

∼ (S1[(1 : 6), :]W1, S2[(1 : 6), :]W2) (3.16)

where (3.16) follows from Lemma 3.1 because MDS9×6[Ib, :] is an invertible 6 × 6 matrix.

Therefore, the random map from W1 to aIa variables is i.i.d. as the random map from W2 to

bIb , and privacy is guaranteed. Note that since 9 desired symbols are recovered from a total

of 15 downloaded symbols, the rate achieved by this scheme is 9/15 = 3/5, which matches

the capacity for this setting. While this specialization suffices for our purpose (it achieves

capacity), we note that further simplifications of the scheme are possible, which allow it to

operate over smaller fields and with lower upload cost. Such an example is provided in the

discussion section of this chapter.

3.3.2 Example: K = 3, N = 3, T = 2

The capacity for this setting, is C =
(
1 + 2

3
+ (2

3
)2
)−1

= 9
19

.

3.3.2.1 Query Structure

The query structure is constructed as follows.

Server 1 Server 2 Server 3

a1, a2, a3, a4 a5, a6, a7, a8

(1)−→ Server 1 Server 2 Server 3

a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12

(2)−→

Server 1 Server 2 Server 3

a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12
b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12
c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12

(3)−→

Server 1 Server 2 Server 3

a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12
b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12
c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12
a13 + b13 a15 + b15
a14 + b14 a16 + b16
a17 + c13 a19 + c15
a18 + c14 a20 + c16

49

(1)−→

Server 1 Server 2 Server 3
a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12
b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12
c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12
a13 + b13 a15 + b15 a21 + b17
a14 + b14 a16 + b16 a22 + b18
a17 + c13 a19 + c15 a23 + c17
a18 + c14 a20 + c16 a24 + c18

(2)−→

Server 1 Server 2 Server 3

a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12
b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12
c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12
a13 + b13 a15 + b15 a21 + b17
a14 + b14 a16 + b16 a22 + b18
a17 + c13 a19 + c15 a23 + c17
a18 + c14 a20 + c16 a24 + c18
b19 + c19 b21 + c21 b23 + c23
b20 + c20 b22 + c22 b24 + c24

(3)−→

Server 1 Server 2 Server 3
a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12
b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12
c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12
a13 + b13 a15 + b15 a21 + b17
a14 + b14 a16 + b16 a22 + b18
a17 + c13 a19 + c15 a23 + c17
a18 + c14 a20 + c16 a24 + c18
b19 + c19 b21 + c21 b23 + c23
b20 + c20 b22 + c22 b24 + c24

a25 + b25 + c25 a26 + b26 + c26

(1)−→

Server 1 Server 2 Server 3

a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12
b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12
c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12
a13 + b13 a15 + b15 a21 + b17
a14 + b14 a16 + b16 a22 + b18
a17 + c13 a19 + c15 a23 + c17
a18 + c14 a20 + c16 a24 + c18
b19 + c19 b21 + c21 b23 + c23
b20 + c20 b22 + c22 b24 + c24

a25 + b25 + c25 a26 + b26 + c26 a27 + b27 + c27

Starting with TK−1 = 4 symbols each requested from the first T = 2 servers, we proceed

through iterative steps (1) and (2) to enforce symmetries across servers and messages. In

step (3) we consider the first T = 2 servers together (Server 1 and Server 2) and account for

the external side information, which in this case contains 4 symbols from [bk] and 4 symbols

from [ck]. Distributed evenly among Server 1 and Server 2, this allows a budget of 2 symbols

of side information from [bk] and 2 symbols from [ck] per server to be exploited to recover

new symbols of desired information. Proceeding again through steps (1) and (2) to enforce

symmetries across servers and messages, we end up with new downloads that contain only

undesired information symbols, which can now be used to download new desired information

symbols. Once again, we consider Server 1 and Server 2 together, and account for the new

external side information, b23 +c23, b24 +c24. Thus the external side information is comprised

of two symbols, each of which is a sum of the form bk + ck. Dividing the side information

evenly among servers Server 1 and Server 2, each is assigned one side-information symbol of

the form bk + ck with new labels. Thus, a25 + b25 + c25 is added to the query from Server 1,

and a26 + b26 + c26 is added to the query from Server 2. Finally, applying symmetry across

servers, we include a27 +b27 +c27 to the query from Server 3. At this point, all symmetries are

50

satisfied, all external and exploited side-information amounts are balanced, and therefore,

the query structure is complete.

3.3.2.2 Specialization

Let each message consist of NK = 27 symbols from a sufficiently large finite field Fq. The

messages W1,W2,W3 ∈ F27×1
q are then represented as 27×1 vectors over Fq. Let S1, S2, S3 ∈

F27×27
q represent random matrices chosen privately by the user, independently and uniformly

from all 27 × 27 full-rank matrices over Fq. Without loss of generality, let us assume that

W1 is the desired message. Define 27× 1 vectors a[1:27], b[1:27], c[1:27] ∈ F27×1
q , as follows

a[1:27] = S1W1 (3.17)

b[1:18] = MDS18×12S2[(1 : 12), :]W2 (3.18)

c[1:18] = MDS18×12S3[(1 : 12), :]W3 (3.19)

b[19:27] = MDS9×6S2[(13 : 18), :]W2 (3.20)

c[19:27] = MDS9×6S3[(13 : 18), :]W3 (3.21)

where S2[(1 : 18), :] is a 18 × 27 matrix comprised of the first 18 rows of S2. MDS18×12 is

the generator matrix of a (18, 12) MDS code, and MDS9×6 is the generator matrix of a (9, 6)

MDS code. In particular, note that the same generator matrix is used in (3.18) and (3.19).

Similarly, the same generator matrix is used in (3.20) and (3.21). This is important because

it allows us to write

b[19:27] + c[19:27] = MDS9×6 (S2[(13 : 18), :]W2 + S3[(13 : 18), :]W3) (3.22)

so that all 9 elements of the vector b[19:27] +c[19:27] can be recovered from any 6 of its elements,

e.g., from b[19:24] + c[19:24] one can also recover b25 + c25, b26 + c26, b27 + c27. This observation

is the key to understanding the role of interference alignment in this construction. The

effective number of resolvable undesired symbols is minimized due to interference alignment.

For example, b19 and c19 are always aligned together into one symbol b19 + c19 in all the

51

downloaded equations. The two are unresolvable from each other and act as effectively

one undesired symbol in the downloaded equations, thus reducing the effective number of

undesired symbols, so that the same number of downloaded equations can be used to retrieve

a greater number of desired symbols. Note also that desired symbols are always resolvable.

These values are plugged into the query structure derived previously.

Server 1 Server 2 Server 3

a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12

b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12

c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12

a13 + b13 a15 + b15 a21 + b17

a14 + b14 a16 + b16 a22 + b18

a17 + c13 a19 + c15 a23 + c17

a18 + c14 a20 + c16 a24 + c18

b19 + c19 b21 + c21 b23 + c23

b20 + c20 b22 + c22 b24 + c24

a25 + b25 + c25 a26 + b26 + c26 a27 + b27 + c27

Correctness is straightforward. Let us see why T -privacy holds. The queries for any T = 2

colluding servers are comprised of 18 variables from a[1:27], 12 variables from b[1:18], 6 variables

from b[19:27], 12 variables from c[1:18] and 6 variables from c[19:27]. Let the indices of these

variables be denoted by the vectors Ia ∈ N18×1, Ib,12 ∈ N12×1, Ib,6 ∈ N6×1, Ic,12 ∈ N12×1 and

Ic,6 ∈ N6×1, respectively, so that,

aIa = S1[Ia, :]W1 (3.23)

bIb,12
= MDS18×12[Ib,12, :]S2[(1 : 12), :]W2 (3.24)

bIb,6 = MDS9×6[Ib,6, :]S2[(13 : 18), :]W2 (3.25)

cIc,12 = MDS18×12[Ic,12, :]S3[(1 : 12), :]W3 (3.26)

cIc,6 = MDS9×6[Ic,6, :]S3[(13 : 18), :]W3 (3.27)

From Lemma 3.1, we have

(aIa , (bIb,12
; bIb,6), (cIc,12 ; cIc,6)) ∼ (S1[(1 : 18), :]W1, S2[(1 : 18), :]W2, S3[(1 : 18), :]W3)

(3.28)

52

Thus privacy is guaranteed. Finally, note that since 27 desired symbols are recovered from

a total of 57 downloaded symbols, the rate achieved by this scheme is 27/57 = 9/19, which

matches the capacity for this setting.

3.3.3 Arbitrary K, Arbitrary N , Arbitrary T

3.3.3.1 Query Structure

For arbitrary K,N, T , we follow the same iterative procedure, briefly summarized below3.

• Step 1: Initialization. Download TK−1 desired symbols each from the first T servers.

• Step 2: Invoke symmetry across servers to determine corresponding downloads from

Server T + 1 to Server N .

• Step 3: Invoke symmetry of messages to determine additional downloaded equations

(comprised only of undesired symbols) from each server.

• Step 4: Consider the first T servers together. Divide the new external side information

generated in the previous step evenly among the first T servers to determine the side-

information budget per server. For each side information symbol allocated to a server

create an additional query of the same form as the assigned side information (with new

labels) combined with a new desired symbol.

• Step 5: Go back to Step 2 and run Step 2 to Step 4 a total of (K − 1) times.

3.3.3.2 Specialization

We now map the message symbols to the symbols in the query structure. Let each message

consist of NK symbols from a sufficiently large finite field Fq. The messages W1, · · · ,WK ∈
3To be more specific, server symmetry refers to the property that each server downloads a equal number

of instances for each type of sums, and message symmetry refers to the property that within each server,
the symbols from each message are equivalent up to permutations. A more detailed treatment can be found
in [66]. We initialize by downloading TK−1 symbols such that in Step 4 when we divide side information
symbols, each server always obtains an integer number of side information symbols.

53

FNK×1
q are represented as NK × 1 vectors over Fq. Let S1, · · · , SK ∈ FNK×NK

q represent

random matrices chosen privately by the user, independently and uniformly from allNK×NK

full-rank matrices over Fq. Suppose Wl, l ∈ [1 : K], is the desired message.

Consider any undesired message index k ∈ [1 : K]/{l}, and all distinct ∆ = 2K−2 subsets

of [1 : K] that contain k and do not contain l. Assign distinct labels to each subset, e.g.,

K1,K2, · · · K∆. For each k ∈ [1 : K]/{l}, define the vector



x
[k]
K1

x
[k]
K1∪{l}

x
[k]
K2

x
[k]
K2∪{l}

...

x
[k]
K∆

x
[k]
K∆∪{l}


=


MDSN

T
α1×α1

0 0 0

0 MDSN
T
α2×α2

0 0

0 · · · . . . 0
0 0 0 MDSN

T
α∆×α∆

Sk[(1 : TNK−1), :]Wk

where αi, i ∈ [1 : ∆] is defined as4 N(N − T)|Ki|−1TK−|Ki|, each x
[k]
Ki is an αi × 1 vector, and

each x
[k]
Ki∪{l} is an (N−T

T
)αi × 1 vector over Fq.

Now consider the desired message index l, and all distinct δ = 2K−1 subsets of [1 : K] that

contain l. Assign distinct labels to each subset, e.g., L1,L2, · · · Lδ. Define the vector


x

[l]
L1

x
[l]
L2

...

x
[l]
Lδ

 = SlWl

where the length of x
[l]
Li , i ∈ [1 : δ] is N(N − T)|Li|−1TK−|Li|.

For each non-empty subset K ⊂ [1 : K] generate the query vector

4The choice of αi is to ensure both correctness and privacy. More specifically, it guarantees that over
each layer, exposed undesired symbols suffice to decode the undesired symbols that interfere the desired
symbols and the number of symbols seen by any colluding set matches the MDS code dimension such that
they appear uniformly random. The proof appears later. For example, consider the setting in Section 3.3.2,
where the desired message index l = 1. Consider the undesired message index k = 2. Here ∆ = 2, i.e.,
K1 = {2},K2 = {2, 3}, α1 = 12 and α2 = 6.

54

∑
k∈K

x
[k]
K (3.29)

Distribute the elements of the query vector evenly among the N servers. This completes the

specialized construction of the queries.

The construction has K layers. Over the j-th layer, from each server, we download (N −

T)j−1TK−j
(
K
j

)
equations5 that are comprised of sums of j symbols, out of which (N −

T)j−1TK−j
(
K−1
j−1

)
involve desired data symbols. Our construction ensures that the inter-

ference x
[k]
Ki∪{l}, k 6= l, i ∈ [1 : ∆] in the (|Ki| + 1)-th layer can be recovered from the

corresponding symbols x
[k]
Ki in the |Ki|-th layer. Therefore correctness is guaranteed.

Let us see why privacy holds. The queries for any T colluding servers are comprised of

TNK−1 variables from each x[k], k ∈ [1 : K]. In particular, ∀k 6= l, the variables from x[k]

consist of αi variables out of N
T
αi variables x

[k]
Ki , x

[k]
Ki∪{l}, for each set Ki, i ∈ [1 : ∆]. Note

that these αi variables are generated by the generator matrix of an (N
T
αi, αi) MDS code, so

that they have full rank. Let the indices of the appeared variables be denoted by the vectors

Ix[k] ∈ NTNK−1×1,∀k ∈ [1 : K]. From Lemma 3.1, we have

x
[k]
I
x[k]

∼ Sk[(1 : TNK−1), :]Wk (3.30)

which in turn implies that Sk[(1 : TNK−1), :] are independent and identically distributed.

Thus privacy is guaranteed.

Finally, we compute the ratio of the number of desired symbols to the number of total

downloaded symbols,

R =
TK−1

(
K−1

0

)
+ (N − T)TK−2

(
K−1

1

)
+ (N − T)2TK−3

(
K−1

2

)
+ · · ·+ (N − T)K−1

(
K−1
K−1

)
TK−1

(
K
1

)
+ (N − T)TK−2

(
K
2

)
+ (N − T)2TK−3

(
K
3

)
+ · · ·+ (N − T)K−1

(
K
K

)
(3.31)

5Over the j-th layer, the downloads are in the form of sums of j symbols, each from one distinct message.
The term (N − T)j−1TK−j comes from the side information exploitation step (Step 4) and can be verified
recursively. A more detailed analysis in similar flavor can be found in [66].

55

=
N

N

NK−1

1
N−T

[
(N − T)TK−1

(
K
1

)
+ (N − T)2TK−2

(
K
2

)
+ · · ·+ (N − T)K

(
K
K

)] (3.32)

=
1
N
NK

1
N−T (NK − TK)

=
1− T

N

1− TK

NK

(3.33)

=

(
1 +

T

N
+
T 2

N2
+ · · ·+ TK−1

NK−1

)−1

(3.34)

Thus, the PIR rate achieved by the scheme always matches the capacity.

Remark: When we set T = 1, Theorem 3.1 recovers the PIR capacity result in Chapter

2. The two schemes achieve the same rate (capacity achieving), but the two differ in that

although the query structures are the same, the specialization here uses MDS codes over a

large field while the specialization in Chapter 2 uses permutations over message bits.

3.4 Proof of Theorem 3.1: Converse

For compact notation, let us define

Q 4
= {Q[k]

n : k ∈ [1 : K], n ∈ [1 : N]} (3.35)

A
[k]
I

4
= {A[k]

n : n ∈ I} (3.36)

HT
4
=

1(
N
T

) ∑
T :|T |=T

H(AT |Q)

T
, T ⊂ [1 : N] (3.37)

We first state Han’s inequality (Theorem 17.6.1 in [25]), which will be used later and is

described here for the sake of completeness.

Theorem 3.3. (Han’s inequality, Theorem 17.6.1 in [25])

HT ≥
H(A

[k]
1 , A

[k]
2 , · · · , A

[k]
N |Q)

N
(3.38)

We next proceed to the converse proof. The proof of outer bound for Theorem 3.1 is based

on an induction argument. To set up the induction, we will prove the outer bound for K = 1

(the trivial case) for arbitrary N, T , and then proceed to the case of arbitrary K.

56

K = 1 Message, N Servers

L = H(W1) = H(W1|Q) (3.39)

= I(A
[1]
1 , A

[1]
2 , · · · , A

[1]
N ;W1|Q) (3.40)

= H(A
[1]
1 , A

[1]
2 , · · · , A

[1]
N |Q) (3.41)

≤ NHT (3.42)

≤
N∑
n=1

H(An|Q) (3.43)

⇒ R =
L

D
≤ L∑N

n=1 H(An|Q)
≤ 1 (3.44)

where (3.42) follows from Han’s inequality, and (3.43) is due to the property that dropping

conditioning does not reduce entropy.

K ≥ 2 Messages, N Servers

Consider T ⊂ [1 : N] with cardinality |T | = T . From AT , A
[1]

T , · · · , A
[K]

T ,Q, we can decode

all K messages W1, · · · ,WK .

KL = H(W1, · · · ,WK |Q) (3.45)

= I(AT , A
[1]

T , · · · , A
[K]

T ;W1, · · · ,WK |Q) (3.46)

= H(AT , A
[1]

T , · · · , A
[K]

T |Q) (3.47)

= H(AT , A
[1]

T |Q) +H(A
[2]

T , · · · , A
[K]

T |AT , A
[1]

T ,Q) (3.48)

≤ NHT +H(A
[2]

T , · · · , A
[K]

T |AT , A
[1]

T ,W1,Q) (3.49)

≤ NHT +H(A
[2]

T , · · · , A
[K]

T |AT ,W1,Q) (3.50)

= NHT +H(AT , A
[2]

T , · · · , A
[K]

T |W1,Q)−H(AT |W1,Q) (3.51)

= NHT +H(AT , A
[2]

T , · · · , A
[K]

T ,W2, · · · ,WK |W1,Q)−H(AT |W1,Q) (3.52)

= NHT + (K − 1)L−H(AT |W1,Q) (3.53)

where (3.49) is due to the fact that W1 is a function of (AT , A
[1]

T ,Q). (3.52) follows from the

fact that W2, · · · ,WK is a function of (AT , A
[2]

T , · · · , A
[K]

T ,Q). In (3.53), the second term is

due to the fact that the answers are deterministic functions of the messages and queries, and

the messages are independent.

57

Consider (3.53) for all subsets of [1 : N] that have exactly T elements and average over all

such subsets. We have

NHT ≥ L+
1(
N
T

) ∑
T :|T |=T

H(AT |W1,Q) (3.54)

To proceed, we note that for the last term of (3.54), conditioning on W1, the setting reduces

to a PIR problem with K − 1 messages and N servers. Thus, (3.54) sets up an induction

argument, which claims that for the K messages setting,

NHT ≥ L

(
1 +

T

N
+ · · ·+ TK−1

NK−1

)
(3.55)

We have proved the basis cases of K = 1 in (3.42). Suppose now the bound (3.55) holds

for K − 1. Then plugging in (3.54), we have that the bound (3.55) holds for K. Since both

the basis and the inductive step have been performed, by mathematical induction, we have

proved that (3.55) holds for all K. The desired outer bound follows as

R =
L

D
≤ L∑N

n=1H(An|Q)
≤ L

NHT

≤
(

1 +
T

N
+ · · ·+ TK−1

NK−1

)−1

(3.56)

Thus, the proof of the outer bound is complete.

Remark: For the converse proof, we could follow from similar lines as in Chapter 2. Here we

adopt a slightly different approach to give more insights. From a high level view, the proof

in Chapter 2 is an interference channel based approach, while the proof here is a multiple

access channel based appraoch.

3.5 Proof of Theorem 3.2

Clearly the capacity of robust TPIR cannot be larger than the capacity of TPIR. Therefore,

we only need to prove that the capacity of TPIR can be achieved in the robust PIR setting.

58

To this end, we build upon the scheme presented in Section 3.3. Before proceeding to the

general proof, we first give an example to illustrate the key idea in a simpler setting.

3.5.1 Example: K = 2, M = 3, N = 2, T = 1

The capacity for this setting, is C =
(
1 + 1

2

)−1
= 2

3
.

3.5.1.1 Query Structure

We first construct the query structure, following the same 3 iterative principles for TPIR.

Without loss of generality, let [ak] denote the symbols of the desired message, and [bk] the

symbols of the undesired message.

Server 1 Server 2 Server 3

a1

(1)−→ Server 1 Server 2 Server 3

a1 a2 a3

(2)−→
Server 1 Server 2 Server 3

a1 a2 a3

b1 b2 b3

· · ·

· · · (3)−→

Server 1 Server 2 Server 3

a1 a2 a3

b1 b2 b3

a4 + b4

(1)−→

Server 1 Server 2 Server 3

a1 a2 a3

b1 b2 b3

a4 + b4 a5 + b5 a6 + b6

We start by requesting the first TK−1 = 1 symbol from the first T = 1 server, i.e., a1 from

Server 1. Applying server symmetry, we simultaneously request a2 from Server 2 and a3

from Server 3. Next, we enforce message symmetry, by including queries for b1, b2, b3 as the

counterparts for a1, a2, a3. Note that only N = 2 servers may respond. As a result, from the

perspective of any individual server, we have only one symbol of external side information

(from the other surviving server). We then exploit this side information symbol to retrieve

a new desired symbol, i.e., we download a4 + b4 from Server 1, a5 + b5 from Server 2 and

a6 + b6 from Server 3. The construction is complete.

We want to ensure that no matter which 2 servers respond, we can gather enough desired

symbols to decode the desired message and privacy is preserved to each individual server.

These are guaranteed by the following specialization.

59

3.5.1.2 Specialization to Ensure Correctness and Privacy

Let each message consist of NK = 4 symbols from a sufficiently large field. The messages

W1, W2 ∈ F4×1
q are then represented as 4 × 1 vectors over Fq. Let S1, S2 ∈ F4×4

q represent

random matrices chosen privately by the user, independently and uniformly from all 4 × 4

full-rank matrices over Fq. Without loss of generality, let us assume that W1 is the desired

message. Define the 6× 1 vectors a[1:6] ∈ F6×1
q and b[1:6] ∈ F6×1

q , as follows

a[1:6] = MDS6×4S1W1 (3.57)

b[1:6] = MDS6×2S2[(1 : 2), :]W2 (3.58)

where S2[(1 : 2), :] is a 2× 4 matrix comprised of the first 2 rows of S2. MDS6×4/MDS6×2 is

the generator matrix of a (6, 4)/(6, 2) MDS code.

Server 1 Server 3 Server 3

a1 a2 a3

b1 b2 b3

a4 + b4 a5 + b5 a6 + b6

(3.59)

Correctness is easy to see, because after receiving answers from any N = 2 servers, the

user recovers all b[1:6] (refer to (3.58)). Then the user subtracts out b[1:6] and then recovers

4 symbols in a[1:6], from which all a[1:6] are recovered (refer to (3.57)). The query for any

individual server is comprised of 2 variables from a[1:6] and 2 variables from b[1:6]. Let the

indices of these variables be denoted by the 2× 1 vectors Ia, Ib ∈ N2×1, respectively, so that,

(aIa , bIb) = (MDS6×4[Ia, :]S1W1,MDS6×2[Ib, :]S2[(1 : 2), :]W2) (3.60)

∼ (S1[(1 : 2), :]W1, S2[(1 : 2), :]W2) (3.61)

where (3.61) follows from Lemma 3.1. Therefore, the random map from W1 to aIa variables

is i.i.d. as the random map from W2 to bIb , and privacy is guaranteed. Note that since 4

desired symbols are recovered from a total of 6 downloaded symbols (from N = 2 responding

60

servers), the rate achieved by this scheme is 4/6 = 2/3, which matches the capacity for this

setting.

3.5.2 Arbitrary K,N,M, T

As before, let each message consist of NK symbols from a sufficiently large finite field

Fq. The messages W1, · · · ,WK ∈ FNK×1
q are represented as NK × 1 vectors over Fq. Let

S1, · · · , SK ∈ FNK×NK

q represent random matrices chosen privately by the user, indepen-

dently and uniformly from all NK ×NK full-rank matrices over Fq. Suppose Wl, l ∈ [1 : K],

is the desired message.

Consider any undesired message index k ∈ [1 : K]/{l}, and all distinct ∆ = 2K−2 subsets

of [1 : K] that contain k and do not contain l. Assign distinct labels to each subset, e.g.,

K1,K2, · · · K∆. For each k ∈ [1 : K]/{l}, define the vector



x
[k]
K1

x
[k]
K1∪{l}

x
[k]
K2

x
[k]
K2∪{l}

...

x
[k]
K∆

x
[k]
K∆∪{l}


=


MDSM

T
α1×α1

0 0 0

0 MDSM
T
α2×α2

0 0

0 · · · . . . 0
0 0 0 MDSM

T
α∆×α∆

Sk[(1 : TNK−1), :]Wk

where αi, i ∈ [1 : ∆] is defined as N(N − T)|Ki|−1TK−|Ki|, each x
[k]
Ki is an M

N
αi × 1 vector,

and each x
[k]
Ki∪{l} is an M

N
(N−T

T
)αi × 1 vector over Fq.

Now consider the desired message index l, and all distinct δ = 2K−1 subsets of [1 : K] that

contain l. Assign distinct labels to each subset, e.g., L1,L2, · · · Lδ. Define the vector


x

[l]
L1

x
[l]
L2

...

x
[l]
Lδ

 = MDSM
N
NK×NKSlWl

where the length of x
[l]
Li , i ∈ [1 : δ] is M(N − T)|Li|−1TK−|Li|.

61

For each non-empty subset K ⊂ [1 : K] generate the query vector

∑
k∈K

x
[k]
K (3.62)

Distribute the elements of the query vector evenly among the M servers. This completes the

construction of the queries.

Suppose the user collects answering strings from any N servers. For each set Ki, from N

servers, we download αi symbols from x
[k]
Ki , k 6= l, i ∈ [1 : ∆], from which we can recover

the interference x
[k]
Ki∪{l}, as they are generated by the generator matrix of an (M

T
αi, αi) MDS

code. After subtracting out all the interference, we are left with NK desired symbols, from

which we can recover the desired message, as the symbols are generated by the generator

matrix of an (M
N
NK , NK) MDS code. Therefore correctness is guaranteed.

Let us see why privacy holds. The queries for any T colluding servers are comprised of

TNK−1 variables from each x[k], k ∈ [1 : K]. When k = l, the TNK−1 desired symbols are

generated by the generator matrix of an (M
N
NK , NK) MDS code such that these symbols have

full rank. For each k 6= l, the TNK−1variables from x[k] consist of αi variables out of M
T
αi

variables x
[k]
Ki , x

[k]
Ki∪{l}, for each set Ki, i ∈ [1 : ∆]. Note that these αi variables are generated

by the generator matrix of an (M
T
αi, αi) MDS code, so that they have full rank. Let the

indices of the appeared variables be denoted by the vectors Ix[k] ∈ NTNK−1×1,∀k ∈ [1 : K].

From Lemma 3.1, we have

x
[k]
I
x[k]

∼ Sk[(1 : TNK−1), :]Wk (3.63)

which in turn implies that Sk[(1 : TNK−1), :] are independent and identically distributed.

Thus privacy is guaranteed. Finally, the rate achieved is the same as that achieved in the

setting without the robustness constraint. This completes the proof.

62

3.6 Discussion

We characterize the capacity of robust TPIR with arbitrary number of messages, arbitrary

number of (responding) servers, and arbitrary privacy level. Let us summarize with a few

observations. First, while in this chapter we adopt the zero error framework, we note that

our converse extends in a straightforward manner to the ε-error framework as well, where

the probability of error is only required to approach zero as the message size approaches

infinity. Therefore, for robust TPIR, the ε-error capacity is the same as the zero error

capacity. Second, recall that the capacity achieving scheme for PIR in Chapter 2 had a

remarkable feature that if some of the messages were eliminated and the scheme projected

onto a subset of messages, it remained capacity optimal for that subset of messages. The

same phenomenon is observed for our achievable scheme for robust TPIR. On the other

hand, an important point of distinction of the previous achievable scheme in Chapter 2 from

the achievable scheme in this chapter is that the former directly uses each available side

information symbol individually, whereas here we need MDS coded side information (uncoded

side information symbols do not suffice). This is because of the T -privacy constraint which

simultaneously creates multiple perspectives of external side-information depending upon

which subset of servers decides to collude. Third, we note that in this chapter we require

perfect privacy (refer to (3.7), I(Q
[θ]
T , A

[θ]
T ,W1, · · · ,WK ; θ) = 0), and similar to the ε-error

correctness constraint, we may require δ-privacy, where the leakage on the desired message

index vanishes as the message size grows. That is, we replace the privacy constraint (3.7)

by I(Q
[θ]
T , A

[θ]
T ,W1, · · · ,WK ; θ) = δ, where δ approaches zero as the message size approaches

infinity. It turns out that the capacity under δ-privacy is the same as the capacity under

perfect privacy. The converse proof extends by noting that the δ-privacy constraint implies

H(Q
[k1]
T , A

[k1]
T ,W1, · · · ,WK) − H(Q

[k2]
T , A

[k2]
T ,W1, · · · ,WK) = δ′ for any two message indices

k1, k2 ∈ [1 : K], where δ′ vanishes with the message size and all other steps follow in the

same manner.

63

Finally, we note that since we focus only on download cost, upload cost is not optimized in

this work. However, even with T -privacy, significant optimizations of upload cost are possible

through refinements of our achievable scheme. For example, the symbols may be grouped in

a manner that randomizations are needed only within smaller groups, which may reduce the

number of possible queries, and the size of the field of operations significantly. For example,

consider the achievable scheme for K = 2, N = 3, T = 2 that was presented in Section 3.3.1,

where each message is comprised of 9 symbols. We will operate over F2. Suppose we divide

the 9 bits into 3 groups of 3 bits each, and label the groups so that A1 represents the first

three bits of W1, A2 the next three and A3 represents the last three bits from W1. Similarly,

let B1, B2, B3 represent three groups of three bits each from W2. Now, for any group of

3 bits, say X = (x1, x2, x3), let X(1), X(2), X(3) represent three randomly chosen linearly

independent elements from the set {x1, x2, x3, x1 + x2, x1 + x3, x2 + x3, x1 + x2 + x3}, i.e.,

selected uniformly from among the choices that do not sum to zero in F2. This essentially

means that X(1), X(2) may be freely chosen as any two distinct elements of the set and then

X(3) is chosen uniformly from the 4 elements that are not X(1), X(2) or X(1) +X(2). The

queries are constructed as follows.

Server 2 Server 2 Server 3

A1(1), A2(1) A2(2), A3(2) A3(3), A1(3)
B1(1), B2(1) B2(2), B3(2) B3(1 + 2), B1(1 + 2)
A3(1) +B3(1) A1(2) +B1(2) A2(3) +B2(1 + 2)

where we use the notation X(1 + 2) = X(1) +X(2) for brevity. Note that for the undesired

symbols B, we used the (2, 3) MDS code (B(1), B(2)) −→ (B(1), B(2), B(1+2)) within each

group. Due to the grouping of symbols the upload cost is significantly reduced. Moreover,

because of the grouping we are able to operate over a smaller field. Whereas the original

scheme presented in Section 3.3.1 uses (6, 9) MDS codes which do not exist over F2, the

refined example presented above uses only a (2, 3) MDS code which does exist over F2. As

64

illustrated by this example, optimizations of upload costs as well as symbol size remain

interesting avenues for future work.

65

Chapter 4

PIR from MDS Coded Data with

Colluding Servers

The focus of this chapter is on a recent conjecture by Freij-Hollanti, Gnilke, Hollanti and

Karpuk (FGHK conjecture, in short) in [33] which offers a capacity expression for a gener-

alized form of PIR, called MDS-TPIR. Beyond the number of databases, N and the number

of messages, K, MDS-TPIR involves two additional parameters: Kc and T , which generalize

the storage and privacy constraints, respectively. Instead of replication, each message is

encoded through an (N,Kc) MDS storage code, so that the information stored at any Kc

servers is exactly enough to recover all K messages. Privacy must be preserved not just

from each individual server, but from any colluding set of up to T servers. MDS-TPIR is a

generalization of PIR, because setting both T = 1 and Kc = 1 reduces MDS-TPIR to the

original PIR problem for which the capacity is already known (see Chapter 2).

The capacity of MDS-TPIR is known only at the degenerate extremes – when either T or Kc

takes the value 1 or N . If either T or Kc is equal to N then by analogy to the single server

setting it follows immediately that the user must download all messages, i.e., the capacity is

1/K. If Kc = 1 or T = 1, then the problem specializes to TPIR, and MDS-PIR, respectively.

The capacity of TPIR (Kc = 1) was shown in Chapter 3 to be

66

CTPIR =

(
1 +

T

N
+
T 2

N2
+ · · ·+ TK−1

NK−1

)−1

(4.1)

The capacity of MDS-PIR (T = 1) was characterized by Banawan and Ulukus in [6], as

CMDS-PIR =

(
1 +

Kc

N
+
K2
c

N2
+ · · ·+ KK−1

c

NK−1

)−1

(4.2)

It is notable that Kc and T play similar roles in the two capacity expressions.

The capacity achieving scheme of Banawan and Ulukus [6] improved upon a scheme proposed

earlier by Tajeddine and Rouayheb in [69]. Tajeddine and Rouayheb also proposed an

achievable scheme for MDS-TPIR for the T = 2 setting. The scheme was generalized by

Freij-Hollanti et al. [33] to the (K,N, T,Kc) setting, T +Kc ≤ N , where it achieves the rate

1− T+Kc−1
N

. Remarkably, the rate achieved by this scheme does not depend on the number of

messages, K. In support of the plausible asymptotic (K → ∞) optimality of their scheme,

and based on the intuition from existing capacity expressions for PIR, MDS-PIR and TPIR,

Freij-Hollanti et al. conjecture that if T +Kc ≤ N , then the capacity of MDS-TPIR is given

by the following expression.

FGHK Conjecture [33]:

Cconj
MDS-TPIR =

(
1 +

T +Kc − 1

N
+ · · ·+ (T +Kc − 1)K−1

NK−1

)−1

(4.3)

The conjecture is appealing for its generality and elegance as it captures all four parameters,

K,N, T,Kc in a compact form. T and Kc appear as interchangeable terms, and the capacity

expression appears to be a natural extension of the capacity expressions for TPIR and

MDS-PIR. Indeed, the conjectured capacity recovers the known capacity of TPIR if we set

Kc = 1 and that of MDS-PIR if we set T = 1. However, in all non-degenerate cases where

T,Kc /∈ {1, N}, the capacity of MDS-TPIR, and therefore the validity of the conjecture is

unknown. In fact, in all these cases the problem is open on both sides, i.e., the conjectured

67

capacity expression is neither known to be achievable, nor known to be an outer bound. The

lack of any non-trivial outer bounds for MDS-TPIR is also recently highlighted in [49]. This

intriguing combination of plausibility, uncertainty and generality of the FGHK conjecture

motivates our work.

As the main outcome of this chapter, we disprove the FGHK conjecture. For our counterex-

ample, we consider the setting (K,N, T,Kc) = (2, 4, 2, 2) where the data is stored using the

(2, 4) MDS code (x, y) → (x, y, x + y, x + 2y). The conjectured capacity for this setting is

4/7. We show that the rate 3/5 > 4/7 is achievable, thus disproving the conjecture. As a

converse argument, we show that no (scalar or vector) linear PIR scheme can achieve a rate

higher than 3/5 for this MDS storage code subject to T = 2 privacy.

4.1 Problem Statement

Consider1 K independent messages W1, · · · ,WK ∈ FL×1
p , each represented as an L×1 vector

comprised of L i.i.d. uniform symbols from a finite field Fp for a prime p. In p-ary units,

H(W1) = · · · = H(WK) = L (4.4)

H(W1, · · · ,WK) = H(W1) + · · ·+H(WK) (4.5)

There are N servers. The n-th server stores (W1n,W2n, · · · ,WKn), where Wkn ∈ F
L
Kc
×1

represents L/Kc symbols from Wk, k ∈ [1 : K].

H(Wkn|Wk) = 0, H(Wkn) = L/Kc (4.6)

We require the storage system to satisfy the MDS property, i.e., from the information stored

in any Kc servers, we can recover each message, i.e.,

[MDS] H(Wk|WkKc) = 0,∀Kc ⊂ [1 : N], |Kc| = Kc (4.7)

1While the problem statement is presented in its general form, we will primarily consider cases with
K = 2 messages in this chapter.

68

In this chapter, we generalize the system model by incorporating further randomness in the

strategies taken by the servers. Previous results also hold under this generalized model. Let

us use F to denote a random variable privately generated by the user, whose realization is

not available to the servers. F represents the randomness in the strategies followed by the

user. Similarly, G is a random variable that determines the random strategies followed by

the servers, and whose realizations are assumed to be known to all the servers and to the

user. The user privately generates θ uniformly from [1 : K] and wishes to retrieve Wθ while

keeping θ a secret from each server. F and G are generated independently and before the

realizations of the messages or the desired message index are known, so that

H(θ,F ,G,W1, · · · ,WK) = H(θ) +H(F) +H(G) +H(W1) + · · ·+H(WK) (4.8)

Suppose θ = k. In order to retrieve Wk, k ∈ [1 : K] privately, the user privately generates N

random queries, Q
[k]
1 , · · · , Q

[k]
N .

H(Q
[k]
1 , · · · , Q

[k]
N |F) = 0,∀k ∈ [1 : K] (4.9)

The user sends query Q
[k]
n to the n-th server, n ∈ [1 : N]. Upon receiving Q

[k]
n , the n-th

server generates an answering string A
[k]
n , which is a function of the received query Q

[k]
n , the

stored information W1n, · · · ,WKn and G,

H(A[k]
n |Q[k]

n ,W1n, · · · ,WKn,G) = 0 (4.10)

Each server returns to the user its answer A
[k]
n .2

From all the information that is now available at the user (A
[k]
1:N , Q

[k]
1:N ,F ,G), the user decodes

the desired message Wk according to a decoding rule that is specified by the PIR scheme.

Let Pe denote the probability of error achieved with the specified decoding rule.

2If the A
[k]
n are obtained as inner products of query vectors and stored message vectors, then such a PIR

scheme is called a linear PIR scheme.

69

To protect the user’s privacy, the K strategies must be indistinguishable (identically dis-

tributed) from the perspective of any subset T ⊂ [1 : N] of at most T colluding servers, i.e.,

the following privacy constraint must be satisfied.

[T -Privacy] (Q
[k]
T , A

[k]
T ,G,W1T , · · · ,WKT) ∼ (Q

[k′]
T , A

[k′]
T ,G,W1T , · · · ,WKT),

∀k, k′ ∈ [1 : K], ∀T ⊂ [1 : N], |T | = T (4.11)

The PIR rate characterizes how many bits of desired information are retrieved per down-

loaded bit and is defined as follows.

R = L/D (4.12)

where D is the expected value of the total number of bits downloaded by the user from all

the servers.

A rate R is said to be ε-error achievable if there exists a sequence of PIR schemes, indexed

by L, each of rate greater than or equal to R, for which Pe → 0 as L → ∞. Note that for

such a sequence of PIR schemes, from Fano’s inequality, we must have

[Correctness] o(L) =
1

L
H(Wk|A[k]

1:N , Q
[k]
1:N ,F ,G) (4.13)

(4.9)
=

1

L
H(Wk|A[k]

1:N ,F ,G) (4.14)

where o(L) represents a term whose value approaches zero as L approaches infinity. The

supremum of ε-error achievable rates is called the capacity C.3

4.2 Settling the Conjecture

Our main result, which settles the FGHK conjecture, is stated in the following theorem.

3Alternatively, the capacity may be defined with respect to zero error criterion, i.e., the supreme of zero
error achievable rates where a rate R is said to be zero error achievable if there exists (for some L) a PIR
scheme of rate greater than or equal to R for which Pe = 0.

70

Theorem 4.1. For the MDS-TPIR problem with K = 2 messages, N = 4 servers, T = 2

privacy and the (N,Kc) = (4, 2) MDS storage code (x, y) → (x, y, x + y, x + 2y), a rate of

3/5 is achievable. Since the achievable rate exceeds the conjectured capacity of 4/7 for this

setting, the FGHK conjecture is false.

Proof: We present a scheme that achieves rate 3/5. We assume that each message is com-

prised of L = 12 symbols from Fp for a sufficiently4 large prime p. Define a ∈ F6×1
p as the

6× 1 vector (a1; a2; · · · ; a6) comprised of i.i.d. uniform symbols ai ∈ Fp. Vectors b, c,d are

defined similarly. Messages W1,W2 are defined in terms of these vectors as follows.

W1 = (a; b) W2 = (c; d) (4.15)

4.2.1 Storage Code

The storage is specified as

(W11,W12,W13,W14) = (a,b, a + b, a + 2b) (4.16)

(W21,W22,W23,W24) = (c,d, c + d, c + 2d) (4.17)

Recall that Wkn is the information about message Wk that is stored at Server n. Thus,

Server 1 stores (a, c), Server 2 stores (b,d), Server 3 stores (a + b, c + d), and Server 4

stores (a + 2b, c + 2d). In particular, each server stores 6 symbols for each message, for a

total of 12 symbols per server. Any two servers store just enough information to recover

both messages, thus the MDS storage criterion is satisfied.

4It suffices to choose p = 349 for Theorem 4.1. In general, the appeal to large field size, analogous to
the random coding argument in information theory, is made to prove the existence of a scheme, but may
not be essential to the construction of the PIR scheme. [67] includes some examples of MDS-TPIR capacity
achieving schemes over small fields.

71

4.2.2 Construction of Queries

The query to each server Q
[k]
n is comprised of two parts, denoted as Q

[k]
n (W1), Q

[k]
n (W2). Each

part contains 3 row vectors, also called query vectors, along which the server should project

its corresponding stored message symbols.

Q[k]
n = (Q[k]

n (W1), Q[k]
n (W2)) (4.18)

In preparation for the construction of the queries, let us denote the set of all full rank 6× 6

matrices over Fp as S. The user privately chooses two matrices, S and S ′, independently

and uniformly from S. Label the rows of S as V1, V2, V3, V4, V5, V6, and the rows of S ′ as

U0, U1, U2, U3, U4, U5. Define

V1 = {V1, V2, V3}, U1 = {U0, U6, U8} (4.19)

V2 = {V1, V4, V5}, U2 = {U0, U7, U9} (4.20)

V3 = {V2, V4, V6}, U3 = {U0, U1, U3} (4.21)

V4 = {V3, V5, V6}, U4 = {U0, U2, U4} (4.22)

U6, U7, U8, U9 are obtained as follows.

U6 = U1 + U2, U7 = U1 + 2U2 (4.23)

U8 = U3 + U4, U9 = U3 + 2U4 (4.24)

As a preview of what we are trying to accomplish, we note that for Server n ∈ [1 : 4], Vn will

be used as the query vectors for desired message symbols, while Un will be used as query

vectors for undesired message symbols. Since Kc = 2, the same query vector Vi sent to two

different servers will recover 2 independent desired symbols. Each Vi, i ∈ [1 : 6], is used

exactly twice, so all queries for desired symbols will return independent information for a

total of 12 independent desired symbols. On the other hand, for undesired symbols note that

U0 is used as the query vector to all 4 servers, but because Kc = 2, it can only produce 2

independent symbols, i.e., 2 of the 4 symbols are redundant. The dependencies introduced via

72

(4.23),(4.24) are carefully chosen to ensure that the queries along U1, U2, U6, U7 will produce

only 3 independent symbols. Similarly, the queries along U3, U4, U8, U9 will produce only 3

independent symbols. Thus, all the queries for the undesired message will produce a total

of only 8 independent symbols. The 12 independent desired symbols and 8 independent

undesired symbols will be resolved from a total of 12 + 8 = 20 downloaded symbols, to

achieve the rate 12/20 = 3/5. To ensure T = 2 privacy, the Ui and Vi queries will be made

indistinguishable from the perspective of any 2 colluding servers. The key to the T = 2

privacy is that any Vn,Vn′ , n 6= n′ have one element in common. Similarly, any Un,Un′ ,

n 6= n′ also have one element in common. This is a critical aspect of the construction.

Next we provide a detailed description of the queries and downloads for message Wk, k ∈

[1 : 2], both when Wk is desired and when it is not desired. To simplify the notation, we will

denote Wk = (x; y). Note that when k = 1, (x; y) = (a; b) and when k = 2, (x; y) = (c; d).

4.2.2.1 Case 1. Wk is Desired

The query sent to Server n is a 3×6 matrix whose rows are the 3 vectors in Vn. The ordering

of the rows is uniformly random, i.e.,

Server n : Q[k]
n (Wk) = πn(Vn), n ∈ [1 : 4] (4.25)

For a set V = {Vi1 , Vi2 , Vi3}, πn(V) is equally likely to return any one of the 6 possibilities:

(Vi1 ;Vi2 ;Vi3), (Vi1 ;Vi3 ;Vi2), (Vi2 ;Vi1 ;Vi3), (Vi2 ;Vi3 ;Vi1), (Vi3 ;Vi1 ;Vi2) and (Vi3 ;Vi2 ;Vi1). The

πn are independently chosen for each n ∈ [1 : 4].

After receiving the 3 query vectors Q
[k]
n (Wk), Server n projects its stored Wkn symbols along

these vectors. This creates three linear combinations of Wkn symbols (denoted as A
[k]
n (Wk)).

A[k]
n (Wk) = Q[k]

n (Wk)Wkn (4.26)

73

Define kc = 3−k as the complement of k, i.e., kc = 1 if k = 2 and vice versa. The answers A
[k]
n

to be sent to the user will be constructed eventually by combining A
[k]
n (Wk) and A

[k]
n (Wkc),

since separately sending these answers will be too inefficient. The details of this combining

process will be specified later. Next we note an important property of the construction.

Desired Symbols Are Independent: We show that if the user can recover A
[k]
1:4(Wk) from the

downloads, then he can recover all 12 symbols of Wk. From A
[k]
1:4(Wk) the user recovers

the 12 symbols V1x, V2x, V3x, V1y, V4y, V5y, V2(x + y), V4(x + y), V6(x + y), V3(x + 2y),

V5(x + 2y), V6(x + 2y). From these 12 symbols, he recovers Vix and Viy for all i ∈ [1 : 6].

Since S = (V1;V2;V3;V4;V5;V6) has full rank (invertible) and the user knows V1:6, he recovers

all symbols in x and y (thus Wk).

4.2.2.2 Case 2. Wk is Undesired

Similarly, the query sent to Server n is a 3×6 matrix whose rows are the 3 vectors in Un. The

ordering of the rows is uniformly random for each n, and independent across all n ∈ [1 : 4].

Server n : Q[kc]
n (Wk) = π′n(Un), n ∈ [1 : 4] (4.27)

Each server projects its stored Wkn symbols along the 3 query vectors to obtain,

A[kc]
n (Wk) = Q[kc]

n (Wk)Wkn (4.28)

Interfering Symbols Have Dimension 8: A
[kc]
1:4 (Wk) is comprised of U0x, U6x, U8x, U0y, U7y,

U9y, U0(x + y), U1(x + y), U3(x + y), U0(x + 2y), U2(x + 2y), U4(x + 2y). We now show

that these 12 symbols are dependent and have dimension only 8.5 Because of (4.23) and

(4.24), we have

U0x + U0y = U0(x + y)

U0x + 2U0y = U0(x + 2y)

5Equivalently, the joint entropy of these 12 variables, conditioned on U0:9 is only 8 p-ary units.

74

U6x + U7y − U1(x + y) = U2(x + 2y)

U8x + U9y − U3(x + y) = U4(x + 2y) (4.29)

Thus, of the 12 symbols recovered from A
[kc]
1:4 (Wk), at least 4 are linear combinations of the

remaining 8. It follows that A
[kc]
1:4 (Wk) contains no more than 8 dimensions. The number of

dimensions is also not less than 8 because, the following 8 undesired symbols (two symbols

from each server) are independent,

Server 1 : U0x, U6x = (U1 + U2)x

Server 2 : U0y, U9y = (U3 + 2U4)y

Server 3 : U1(x + y), U3(x + y)

Server 4 : U2(x + 2y), U4(x + 2y) (4.30)

To see that the 8 symbols are independent, we add 4 new symbols (U1x, U3y, U5x, U5y)

such that from the 12 symbols, we can recover all 12 undesired symbols (S ′x, S ′y). Since

the 4 new symbols cannot contribute more than 4 dimensions, the original 8 symbols must

occupy at least 8 dimensions.

4.2.3 Combining Answers for Efficient Download

Based on the queries, each server has 3 linear combinations of symbols of W1 in A
[k]
n (W1) and

3 linear combinations of symbols of W2 in A
[k]
n (W2) for a total of 12 linear combinations of

desired symbols and 12 linear combinations of undesired symbols across all servers. However,

recall that there are only 8 independent linear combinations of undesired symbols. This is a

fact that can be exploited to improve the efficiency of download. Specifically, we will combine

the 6 queried symbols (i.e., the 6 linear combinations) from each server into 5 symbols to be

downloaded by the user. Intuitively, 5 symbols from each server will give the user a total of

20 symbols, from which he can resolve the 12 desired and 8 undesired symbols.

The following function maps 6 queried symbols to 5 downloaded symbols.

75

L(X1, X2, X3, Y1, Y2, Y3) = (X1, X2, Y1, Y2, X3 + Y3) (4.31)

Note that the first four symbols are directly downloaded and only the last symbol is mixed.

The desired and undesired symbols are combined to produce the answers as follows.

A[k]
n = L(CnA

[k]
n (W1), CnA

[k]
n (W2)) (4.32)

where Cn are deterministic 3 × 3 matrices, that are required to satisfy the following two

properties. Denote the first 2 rows of Cn as Cn.

P1. All Cn must have full rank.

P2. For all (3!)4 distinct realizations of π′n, n ∈ [1 : 4], the 8 linear combinations of the unde-

sired message symbols that are directly downloaded (2 from each server), C1A
[k]
1 (Wkc),

C2A
[k]
2 (Wkc), C3A

[k]
3 (Wkc), C4A

[k]
4 (Wkc) are independent.

It is not difficult to find matrices that satisfy these properties. In fact, these properties

are ‘generic’, i.e., uniformly random choices of Cn matrices will satisfy these properties

with probability approaching 1 as the field size approaches infinity. The appeal to generic

property will be particularly useful as we consider larger classes of MDS-TPIR settings.

Those (weaker) proofs apply here as well. However, for the particular setting of Theorem

4.1, based on a brute force search we are able to strengthen the proof by presenting the

following explicit choice of Cn, n ∈ [1 : 4] which satisfies both properties over F349.

C1 =

 1 2 3
6 5 4
0 0 1

 , C2 =

 1 7 3
11 9 8
0 0 1

 , C3 =

 1 10 8
7 5 4
0 0 1

 , C4 =

 1 3 5
12 9 3
0 0 1


(4.33)

Property P1 is trivially verified. Property P2 is verified by considering one by one, all of

the 64 distinct realizations of π′n, n ∈ [1 : 4]. To show how this is done, let us consider one

case here. Suppose the realization of the permutations is such that

76

π′1(U1) = (U0, U6, U8) (4.34)

π′2(U2) = (U0, U9, U7) (4.35)

π′3(U3) = (U1, U3, U0) (4.36)

π′4(U4) = (U2, U4, U0) (4.37)

then we have

(C1A
[k]
1 (Wkc); · · · ;C4A

[k]
4 (Wkc)) =



1 2 0 −3 0 3 0 3
6 5 0 −4 0 4 0 4
0 −3 1 7 3 0 3 0
0 −8 11 9 8 0 8 0
8 0 8 0 1 10 0 0
4 0 4 0 7 5 0 0
5 0 10 0 0 0 1 3
3 0 6 0 0 0 12 9


︸ ︷︷ ︸

,C



U0x
U6x
U0y
U9y

U1(x + y)
U3(x + y)
U2(x + 2y)
U4(x + 2y)


(4.38)

The determinant of C over F349 is 321. Since the determinant is non-zero, all of its 8 rows are

linearly independent. Note that the test for property P2 does not depend on the realizations

of Ui vectors. To see why this is true, note that the 8 linear combinations of (x,y) in the

rightmost column vector of (4.38) are linearly independent. Therefore, if C is an invertible

matrix then the 8 directly downloaded linear combinations on the LHS of (4.38) are also

independent (have joint entropy 8 p-ary units, conditioned on U0:9).

At this point the construction of the scheme is complete. All that remains now is to prove

that the scheme is correct, i.e., it retrieves the desired message, and that it is T = 2 private.

4.2.4 The Scheme is Correct (Retrieves Desired Message)

As noted previously, the first 4 variables in the output of the L function are obtained di-

rectly, i.e., C1A
[k]
1 (W1), C2A

[k]
2 (W1), C3A

[k]
3 (W1), C4A

[k]
4 (W1) and C1A

[k]
1 (W2), C2A

[k]
2 (W2),

C3A
[k]
3 (W2), C4A

[k]
4 (W2) are all directly recovered. By property P2 of Cn, C1A

[k]
1 (Wkc),

77

C2A
[k]
2 (Wkc), C3A

[k]
3 (Wkc), C4A

[k]
4 (Wkc) are linearly independent. Since the user has recov-

ered 8 independent dimensions of interference, and interference only spans 8 dimensions,

all interference is recovered and eliminated. Once the interference is eliminated, since Cn

matrices have full rank, the user is left with 12 independent linear combinations of desired

symbols, from which he is able to recover the 12 desired message symbols. Therefore the

scheme is correct.

4.2.5 The Scheme is Private (to Any T = 2 Colluding Servers)

To prove that the scheme is T = 2 private (refer to (4.11)), it suffices to show that the

queries for any 2 servers are identically distributed, regardless of which message is desired.

Since each query is made up of two independently generated parts, one for each message, it

suffices to prove that the query vectors for a message (say Wk) are identically distributed,

regardless of whether the message is desired or undesired,

(
Q[k]
n1

(Wk), Q
[k]
n2

(Wk)
)
∼
(
Q[kc]
n1

(Wk), Q
[kc]
n2

(Wk)
)
, ∀n1, n2 ∈ [1 : 4], n1 < n2 (4.39)

Note that

(
Q[k]
n1

(Wk), Q
[k]
n2

(Wk)
)

= (πn1(Vn1), πn2(Vn2)) (4.40)(
Q[kc]
n1

(Wk), Q
[kc]
n2

(Wk)
)

=
(
π′n1

(Un1), π′n2
(Un2)

)
(4.41)

Therefore, to prove (4.39) it suffices to show the following.

(
Vi1 , Vi2 , Vi3 , Vi4 , Vi5

)
∼
(
U0, Uj1 , Uj2 , Uj3 , Uj4

)
(4.42)

where Vn1 = {Vi1 , Vi2 , Vi3}, Vn2 = {Vi1 , Vi4 , Vi5}, Un1 = {U0, Uj1 , Uj2}, Un2 = {U0, Uj3 , Uj4}.

Because S is uniformly chosen from the set of all full rank matrices, we have

(Vi1 , Vi2 , Vi3 , Vi4 , Vi5) ∼ (V1, V2, V3, V4, V5) (4.43)

78

Next we note that there is a bijection between

(U0, Uj1 , Uj2 , Uj3 , Uj4) ↔ (U0, U1, U2, U3, U4) (4.44)

This is because (U0, Uj1 , Uj2 , Uj3 , Uj4) always includes U0, two terms out of U1, U2, U6, U7 and

two terms out of U3, U4, U8, U9. But from any two terms of U1, U2, U6, U7 there is a bijection

to U1, U2, and from any two terms of U3, U4, U8, U9 there is a bijection to U3, U4. Now

since S ′ = (U0;U1;U2;U3;U4;U5) is picked uniformly from S, conditioned on any feasible

value of U5, (U0, U1, U2, U3, U4) is uniformly distributed over all possible values that preserve

full rank for S ′. Since (U0, Uj1 , Uj2 , Uj3 , Uj4) spans the same space as (U0, U1, U2, U3, U4),

they have the same set of feasible values. The bijection between them then means that

(U0, Uj1 , Uj2 , Uj3 , Uj4) is also uniformly distributed over all possibilities that preserve full

rank for S ′, conditioned on any feasible U5. That means

(U0, Uj1 , Uj2 , Uj3 , Uj4) ∼ (U0, U1, U2, U3, U4) (4.45)

Finally, we note that S and S ′ are identically distributed, so we have

(V1, V2, V3, V4, V5) ∼ (U0, U1, U2, U3, U4) (4.46)

Combining (4.43), (4.45) and (4.46), we arrive at (4.42) and (4.39).

4.2.6 Rate Achieved is 3/5

The rate achieved is 12/20 = 3/5, because we download 20 symbols in total (5 from each

server) and the desired message size is 12 symbols.

79

4.3 Optimality of Rate 3/5

We presented a scheme that achieves the rate 3/5 for the setting (K,N, T,Kc) = (2, 4, 2, 2)

with the MDS storage code (x, y) → (x, y, x + y, x + 2y). But is the scheme optimal?

i.e., is the rate 3/5 the highest rate possible for this setting? To settle this question we

need an upper bound. So far the best information theoretic upper bound that we are able

to prove is 8/136 (see [67]), which leaves the information theoretic capacity open for this

setting. However, let us define the notion of “linear capacity” as the highest rate that can

be achieved by any (scalar or vector) linear PIR scheme. It turns out that we are able to

settle the linear capacity.

Theorem 4.2. For the MDS-TPIR problem with (K,N, T,Kc) = (2, 4, 2, 2) and the MDS

storage code (x, y)→ (x, y, x+ y, x+ 2y), the linear capacity is 3/5.

Proof: Since the achievability of 3/5 has already been shown, we are left to prove the converse,

i.e., the upper bound.

Let a,b, c,d ∈ FL/2×1
p be i.i.d. uniform L/2× 1 vectors over Fp. Without loss of generality,

the MDS storage code for message Wk is represented as follows.

W1 = (a; b) W2 = (c; d) (4.47)

and the storage is specified as

(W11,W12,W13,W14) = (a,b, a + b, a + 2b)

(W21,W22,W23,W24) = (c,d, c + d, c + 2d) (4.48)

The scheme is linear so that the download from each server consists of linear combinations

of the stored symbols of both messages. Furthermore, without loss of generality, we assume

6Remarkably, 8/13 can be shown to be the capacity if the colluding sets of servers are restricted to servers
{1, 2}, {2, 3}, {3, 4}, {4, 1} (see [67]).

80

that the scheme is symmetric7 and the download from each server is comprised of d ≤ L/2

independent symbols from each message. Therefore, the downloads can be expressed as

A[k]
n = V

[k]
1nW1n + V

[k]
2nW2n,∀n ∈ [1 : 4], k ∈ [1 : 2] (4.49)

rank(V
[k]

1n) = rank(V
[k]

2n) = d (4.50)

where V
[k]
in are D/4× L/2 matrices that may be chosen randomly by the user (functions of

F). Clearly we must have 4d ≥ L otherwise the L symbols of the desired message cannot

be recovered. Define ε ≥ 0 such that

4d = L(1 + ε) (4.51)

Without loss of generality, let us assume henceforth that W2 is the desired message. For the

next set of arguments, we focus only on the downloads corresponding to W2, i.e., set all W1

symbols to 0. Further, let us use the notation V to represent the row span of the matrix

V . The symbols downloaded from Server n along V ⊂ V
[2]
2n, are called redundant if they

can be expressed as linear combinations of symbols downloaded from other servers, i.e., they

contribute no new information.

H(VW2n|V [2]
2n1
W2n1 , V

[2]
2n2
W2n2 , V

[2]
2n3
W2n3 ,F , V) = 0 (4.52)

where n, n1, n2, n3 are distinct indices in [1 : 4]. Note that we download no more than a total

of L(1 + ε) (possibly dependent) symbols of W2 from all 4 servers, from which we must be

able to decode all L independent symbols of W2. Therefore, we cannot have more than εL

redundant symbols. Therefore, for any V that satisfies (4.52) we must have

dim(V) ≤ εL (4.53)

7Any scheme can be made symmetric, e.g., by repeating the original scheme for each of the N ! permuta-
tions of the servers to retrieve a correspondingly expanded message of length L′ = N !L.

81

Next, let us consider the pairwise overlap between V
[2]
2i and V

[2]
2j , i < j, i, j ∈ [1 : 4]. By the

symmetry of the scheme, there exist Vij, ∀i, j ∈ [1 : 4], i 6= j, and α ≥ 0 such that

Vij = V
[2]
2i ∩ V

[2]
2j , dim(Vij) = αd (4.54)

The following lemma formalizes the intuition that the overlaps α must be small enough to

ensure that we have enough independent symbols to recover W2.

Lemma 4.1.

3αd ≤ d+ 2εL (4.55)

Equivalently, α ≤ 1

3
+

8

3

(
ε

1 + ε

)
(4.56)

Proof: First, we show that

dim(V12 ∩ V13) ≤ εL (4.57)

For any vector v ∈ V12 ∩ V13 (note that v belongs simultaneously to V
[2]
21 ,V

[2]
22 ,V

[2]
23), the

symbol vW23 (downloaded from Server 3) is redundant because it is a linear combination of

downloads from servers 1 and 2,

v(c + d) = vc + vd (4.58)

∴ vW23 = vW21 + vW22 (4.59)

⇒ H(vW23|V [2]
21 W21, V

[2]
22 W22,F , v) = 0 (4.60)

From (4.60) and (4.53), we have (4.57).

Second, we show that

dim
(
(V12 ∪ V13

)
∩ V14) ≤ εL (4.61)

Consider any vector v ∈ V12. Because v belongs to both V
[2]
21 and V

[2]
22 , we have downloaded

vW21 = vc and vW22 = vd from servers 1 and 2. Similarly, for any vector v′ ∈ V13, we

82

have downloaded v′W21 = v′c and v′W23 = v′(c + d) = v′W21 + v′W22 (from servers 1 and

3), from which we can recover v′W21 = v′c and v′W22 = v′d. Consider now any vector

v∗ ∈ (V12 ∪ V13

)
∩ V14. Suppose v∗ = h1v + h2v

′, v ∈ V12, v
′ ∈ V13 for constants h1, h2. The

symbol v∗W24 = v∗(c + 2d) (downloaded from Server 4) is redundant because it is a linear

combination of downloads from servers 1, 2 and 3,

v∗W24 = (h1v + h2v
′)(c + 2d) (4.62)

= h1vc + 2h1vd + h2v
′c + 2h2v

′d (4.63)

= h1vW21 + 2h1vW22 + h2v
′W21 + 2h2v

′W22 (4.64)

⇒ H(v∗W24|V [2]
21 W21, V

[2]
22 W22, V

[2]
23 W23,F , v∗) = 0 (4.65)

From (4.65) and (4.53), we have (4.61). Next, consider dim(V12 ∪ V13).

dim(V12 ∪ V13) (4.66)

= dim(V12) + dim(V13)− dim(V12 ∩ V13) (4.67)

≥ 2αd− εL (from (4.54)(4.57)) (4.68)

Finally, consider dim(V12 ∪ V13 ∪ V14).

d = dim(V
[2]
21) ≥ dim(V12 ∪ V13 ∪ V14) (4.69)

= dim(V12 ∪ V13) + dim(V14)− dim
(
(V12 ∪ V13) ∩ V14

)
(4.70)

≥ 2αd− εL+ αd− εL (from (4.68)(4.54)(4.61)) (4.71)

⇒ 3αd ≤ d+ 2εL (4.72)

We now proceed to complete the converse.

D + o(L)L ≥ H(A
[1]
1:4|F ,G) + o(L)L (4.73)

(4.14)
= H(A

[1]
1:4,W1|F ,G) (4.74)

(4.8)
= H(W1) +H(A

[1]
1 |W1,F ,G) +H(A

[1]
2:4|W1, A

[1]
1 F ,G) (4.75)

≥ H(W1) +H(A
[1]
1 |W1,F ,G) +H(A

[1]
3:4|W1,W21, A

[1]
1 ,F ,G) (4.76)

(4.6)(4.9)(4.10)
= H(W1) +H(A

[1]
1 |W1,F ,G) +H(A

[1]
3:4|W1,W21,F ,G) (4.77)

83

(4.6)(??)
= H(W1) +H(A

[2]
1 |W1,F ,G) +H(A

[2]
3:4|W1,W21,F ,G) (4.78)

(4.47)(4.48)
= H(a,b) +H(V

[2]
21 c|F) +H(V

[2]
23 (c + d), V

[2]
24 (c + 2d)|c,F) (4.79)

= H(a,b) +H(V
[2]

21 c|F) +H(V
[2]

23 d, 2V
[2]

24 d|F) (4.80)
(4.4)
= L+ dim(V

[2]
21) + dim(V

[2]
23 ∪ V

[2]
24) (4.81)

(4.50)(4.54)
= L+ d+ 2d− αd (4.82)

(4.56)

≥ L+

(
3− 1

3
− 8

3

(
ε

1 + ε

))
(1 + ε)L

4
(4.83)

= 5L/3 (4.84)

Letting L→∞, we have R = L/D ≤ 3/5.

4.4 Discussion

We settle a conjecture on the capacity of MDS-TPIR by Freij-Hollanti et al. [33] by construct-

ing a scheme that beats the conjectured capacity for one particular instance of MDS-TPIR.

The rate achieved by the new scheme is shown to be the best possible rate that can be

achieved by any linear scheme for the same MDS storage code.

[67] further contains the following generalizations of the results presented in this chapter.

The insights from the counterexample lead us to characterize the exact capacity of various

instances of MDS-TPIR. This includes all cases with (K,N, T,Kc) = (2, N, T,N − 1), where

N and T can be arbitrary. The capacity for these cases turns out to be

C =
N2 −N

2N2 − 3N + T
(4.85)

Note that this is the information theoretic capacity, i.e., for K = 2 messages, no (N − 1, N)

MDS storage code and no PIR scheme (linear or non-linear) can beat this rate, which is

achievable with the simple MDS storage code (x1, x2, · · · , xN−1)→ (x1, x2, · · · , xN−1,
∑N−1

i=1 xi)

and a linear PIR scheme.

84

The general capacity expression for MDS-TPIR remains unknown. However, we are able to

show that it cannot be symmetric in Kc and T , i.e., the two parameters are not interchange-

able in general. Also, between Kc and T the capacity expression does not consistently favor

one over the other.

Finally, taking an asymptotic view of capacity of MDS-TPIR, we show that if T +Kc > N ,

then the capacity collapses to 0 as the number of messages K →∞. This is consistent with

the restriction of T +Kc ≤ N that is required by the achievable scheme of Freij-Hollanti et

al. whose rate does not depend on K.

85

Chapter 5

Capacity of Symmetric PIR

The original formulation of PIR only considers the privacy of the user. The privacy of

the undesired messages is ignored. However, it is often desirable to restrict the user to

retrieve nothing beyond his chosen message. This new constraint is called server privacy, and

with this constraint, the problem is called symmetric1 PIR (SPIR) [36]. SPIR is especially

challenging because the servers must individually learn nothing about the identity of the

desired message, but must still collectively allow the user to retrieve his desired message in

such a way that the user learns nothing about any other message besides his desired message.

For example, the trivial solution of downloading everything, which works for PIR, is no longer

acceptable. The main result of this chapter is the characterization of the capacity of SPIR,

i.e., the maximum number of bits of desired message that can be privately retrieved by a

user per bit of downloaded information, without leaking any information about undesired

messages to the user. For K messages and N servers, we show that the capacity is 1−1/N , if

the servers have access to common randomness (not available to the user) that is independent

of the messages, in the amount that is at least 1/(N − 1) bits per desired message bit, and

zero otherwise.

1Symmetry means that the privacy of both the user and the server is considered.

86

CSPIR =

{
1− 1/N if ρ ≥ 1

N−1

0 otherwise
(5.1)

Besides its direct applications, PIR is especially significant as a fundamental problem that

lies at the intersection of several open problems in cryptography [34, 73], coding theory

[46, 72, 40] and complexity theory [39]. SPIR inherits many of these connections from PIR.

For example, SPIR is essentially a (distributed) form of oblivious transfer [55, 29], where the

typical objective is that the transmitter(s) should not know which message is received by the

receiver and the receiver should obtain nothing more than the desired message. Oblivious

transfer is an important building block (primitive) in cryptography, whose feasibility leads

to many other cryptographic protocols [47, 41]. Fundamental limits on the communication

efficiency of various forms of oblivious transfer therefore represent an important class of open

problems [3, 53]. The capacity characterization of SPIR is a promising step in this direction.

Let us start with the problem statement.

5.1 Problem Statement

Consider K independent messages W1, · · · ,WK , where Wk is represented as an L× 1 vector

comprised of L i.i.d. uniform bits from the finite field F2.

H(W1, · · · ,WK) = H(W1) + · · ·+H(WK), (5.2)

H(W1) = · · · = H(WK) = L. (5.3)

There are N servers. Each server stores all the messages W1, · · · ,WK .

Let us use F to denote a random variable privately generated by the user, whose realization

is not available to the servers. F represents the randomness in the strategies followed by

the user. Similarly, G is a random variable that determines the random strategies followed

by the servers, and whose realizations are assumed to be known to all the servers and to

the user. The user privately generates θ uniformly from [1 : K] and wishes to retrieve Wθ

87

privately. The servers do not want to give out any information beyond the one message of the

user’s choosing (Wθ). In order to achieve server-privacy, we assume that the servers share a

common random variable S that is not known to the user. This common randomness model

is canonical for SPIR in the sense that it is introduced in the first SPIR paper [36] and has

been adopted ever since, e.g., in [35]. The model is also minimal because it has been shown

that without such common randomness, SPIR is not feasible [36]. F and G are generated

independently and before the realizations of the messages, the common randomness or the

desired message index are known, so that

H(θ,F ,G,W1, · · · ,WK , S) = H(θ) +H(F) +H(G) +H(W1) + · · ·+H(WK) +H(S) (5.4)

Suppose θ = k. In order to retrieve message Wk, k ∈ [1 : K] privately, the user privately

generates N queries Q
[k]
1 , · · · , Q

[k]
N .

H(Q
[k]
1 , · · · , Q

[k]
N |F) = 0,∀k ∈ [1 : K]. (5.5)

The user sends query Q
[k]
n to the n-th server, n ∈ [1 : N]. Upon receiving Q

[k]
n , the n-th server

generates an answering string A
[k]
n , which is a function of Q

[k]
n , all messages W1, · · · ,WK , the

common randomness S and G,

H(A[k]
n |Q[k]

n ,W1, · · · ,WK , S,G) = 0. (5.6)

Each server returns to the user its answer A
[k]
n . From all the information that is now available

to the user (Q
[k]
1:N , A

[k]
1:N ,F ,G), the user decodes the desired message Wk according to a

decoding rule that is specified by the SPIR scheme. Let Pe denote the probability of error

achieved with the specified decoding rule.

88

To protect the user’s privacy, the K strategies must be indistinguishable (identically dis-

tributed) from the perspective of any individual server, i.e., the following user-privacy con-

straint must be satisfied2 ∀k, k′ ∈ [1 : K], ∀n ∈ [1 : N],

[User-Privacy] (Q[k]
n , A

[k]
n ,W1:K , S,G) ∼ (Q[k′]

n , A[k′]
n ,W1:K , S,G) (5.7)

Symmetric PIR also requires protecting the privacy of the server, i.e., it must be en-

sured that the user learns nothing more than the desired message Wk. So the vector

Wk = (W1, · · · ,Wk−1,Wk+1, · · · ,WK), must be independent of all the information available

to the user. Thus, the following server-privacy constraint must be satisfied:

[Server-Privacy] I(Wk ;Q
[k]
1:N , A

[k]
1:N ,F ,G) = 0,∀k ∈ [1 : K] (5.8)

The SPIR rate characterizes the amount of desired information retrieved per downloaded

bit, and is defined as follows.

R
4
= L/D (5.9)

where D is the expected value of the total number of bit downloaded by the user from all the

servers. The rate R is said to be ε-error achievable if there exists a sequence of PIR schemes,

indexed by L, where the PIR rate is greater than or equal to R and Pe → 0 as L→∞. Note

that for such a sequence of SPIR schemes, from Fano’s inequality, we must have

[Correctness] o(L) =
1

L
H(Wk|Q[k]

1:N , A
[k]
1:N ,F ,G) (5.10)

(5.5)
=

1

L
H(Wk|A[k]

1:N ,F ,G) (5.11)

where o(L) represents a term whose value approaches zero as L approaches infinity. The

supremum of ε-error achievable rates is called the capacity CSPIR.

2The User-Privacy constraint is equivalently expressed as I(θ;Q
[θ]
n , A

[θ]
n ,W1:K , S,G) = 0.

89

5.2 Main Result: Capacity of Symmetric PIR

When there is only K = 1 message, note that the server-privacy constraint is satisfied

trivially, so that SPIR reduces to the PIR setting and the capacity is 1. For K ≥ 2, it

is known that some common randomness S is necessary for the feasibility of SPIR. Let us

define ρ as the amount of common randomness relative to the message size

ρ =
H(S)

H(W)
=
H(S)

L
(5.12)

The capacity should depend on ρ, and because availability of common randomness at the

servers is a non-trivial requirement, this dependence is of some interest.

When there is only N = 1 server, it is easy to see that the server-privacy constraint, the

user-privacy constraint and correctness constraint conflict with each other such that SPIR

is not feasible and the capacity is zero. The reason is as follows. First, because of the

user-privacy constraint (5.7), the answer from the only server A
[k]
1 is identically distributed

for all k ∈ [1 : K]. Second, from the correctness constraint (5.11), from A
[k]
1 ,F,G, one can

decode Wk. Combining these two facts, we have that from A
[k]
1 , one can decode all messages

W1, · · · ,WK . This contradicts the server-privacy constraint (5.8). Therefore, when N = 1

and K ≥ 2, SPIR is not feasible.

The following theorem states the capacity of SPIR.

Theorem 5.1. For SPIR with K ≥ 2 messages and N ≥ 2 servers, the capacity is

CSPIR =

{
1− 1/N if ρ ≥ 1

N−1

0 otherwise
(5.13)

The achievability proof appears in Section 5.3. The converse proof appears in Section 5.4.

The following observations place Theorem 5.1 in perspective.

1. We notice a surprising threshold phenomenon in the dependence of SPIR capacity,

CSPIR, on the amount of common randomness ρ. When ρ < 1
N−1

, SPIR is not feasible

90

and CSPIR = 0. However, when ρ ≥ 1
N−1

, SPIR is not only possible, but the rate

can immediately be increased to the maximum possible, i.e., the capacity. Therefore,

the minimum common randomness required to achieve any positive rate is already

sufficient to achieve the capacity of SPIR. A pictorial illustration of the SPIR capacity

and its dependency on the amount of common randomness appears in Figure 5.1.

0

CSPIR

⇢

1` 1
N

1
N`1

Figure 5.1: SPIR Capacity.

2. The capacity of SPIR is independent of the number of messages, K.

3. When the capacity is non-zero, the capacity is strictly increasing in the number of

servers, N , and when N approaches infinity, the capacity approaches 1.

4. It is interesting to compare the capacity of SPIR and the capacity of PIR,

CPIR =
(
1 + 1/N + 1/N2 + · · ·+ 1/NK−1

)−1
. (5.14)

We see that the capacity of SPIR is strictly smaller than the capacity of PIR (the

additional requirement of preserving server-privacy strictly hurts) and the capacity of

PIR approaches the capacity of SPIR when the number of messages, K, approaches

infinity (in the large number of messages regime, the penalty vanishes), i.e., CPIR >

CSPIR for any finite K and CPIR → CSPIR when K →∞.

5. In the achievability proof for Theorem 5.1, the message size is N − 1 bits per message.

Therefore, to achieve capacity, message size is not required to approach infinity. By

employing the scheme multiple times, we know that when message size is equal to an

91

integer multiple of N − 1 bits, the capacity is achieved as well. When the message size

is not equal to an integer multiple of N − 1 bits, it turns out that capacity can not

be achieved and there is a penalty in the form of a ceiling operation. We note that

the converse (upper bound) holds for arbitrary message size L when we require exactly

zero error and the o(L) terms can be replaced with 0.

6. The achievable scheme presented in Section 5.3 has exactly zero error. Therefore, SPIR

capacity remains the same under both zero error and ε error criteria.

5.3 Theorem 5.1: Achievability

In this section, we present the scheme that achieves rate 1− 1/N , when ρ = 1/(N − 1). To

this end, we assume each message consists of N − 1 bits and each answering string is 1 bit.

Specifically, we assume Wk = (xk,1, · · · , xk,N−1),∀k ∈ [1 : K] where each xk,i, i ∈ [1 : N − 1]

is one bit. We further assume the entropy of the common random variable S is 1 bit, i.e., S

is uniformly distributed over {0, 1}. Note that S is independent of the messages.

Next we specify the queries. To retrieve Wk privately, the user first generates a random

vector of length (N − 1)K, [h1,1, · · · , h1,N−1, · · · , hk,1, · · · , hK,N−1], where each element is

uniformly distributed over {0, 1}. Then the queries are set as follows.

Q
[k]
1 = [h1,1, · · · , hk,1, · · · , hk,N−1, · · · , hK,N−1]

Q
[k]
2 = [h1,1, · · · , hk,1 + 1, · · · , hk,N−1, · · · , hK,N−1]

· · ·
Q

[k]
N = [h1,1, · · · , hk,1, · · · , hk,N−1 + 1, · · · , hK,N−1] (5.15)

The answering strings are generated by using the query vector as the combining coefficients

and producing the corresponding linear combination of message bits. We further add the

common random variable to each answer.

92

A
[k]
1 =

K∑
j=1

N−1∑
i=1

hj,ixj,i + S

A
[k]
2 =

K∑
j=1

N−1∑
i=1

hj,ixj,i + xk,1 + S

· · ·

A
[k]
N =

K∑
j=1

N−1∑
i=1

hj,ixj,i + xk,N−1 + S (5.16)

The user obtains xk,i, i ∈ [1 : N−1] by subtracting A
[k]
1 from A

[k]
i+1. Therefore, the correctness

condition is satisfied.

Privacy of the user is guaranteed because each query is independent of the desired message

index k. This is because regardless of the desired message index k, each of the query vectors

Q
[k]
n ,∀n is individually comprised of elements that are i.i.d. uniform over {0, 1}. Thus, each

server learns nothing about which message is requested.

We now show that server-privacy is preserved as well.

I(Wk ;A
[k]
1 , A

[k]
2 , · · · , A

[k]
N , Q

[k]
1:N ,F ,G) (5.17)

= I(Wk ;A
[k]
1 , A

[k]
1 + xk,1, · · · , A[k]

1 + xk,N−1, Q
[k]
1:N ,F ,G) (5.18)

= I(Wk ;A
[k]
1 , xk,1, · · · , xk,N−1, Q

[k]
1:N ,F ,G) (5.19)

= I(Wk ;A
[k]
1 ,Wk, Q

[k]
1:N ,F ,G) (5.20)

= I(Wk ;A
[k]
1 |Wk, Q

[k]
1:N ,F ,G) (5.21)

= 0 (5.22)

where in each step, the transformation on the variables is invertible such that mutual infor-

mation remains the same. The last step follows from the independence of the messages and

the common randomness (refer to (5.4)).

Note that because each answering string is 1 bit and the message is L = N − 1 bits, the

rate achieved is (N − 1)/N = 1− 1/N which matches the capacity. Also note that only the

minimum threshold amount of common randomness is utilized, i.e., ρ = 1/(N − 1).

93

5.4 Theorem 5.1: Converse

For the converse we allow any feasible SPIR scheme, and prove that its rate cannot be larger

than CSPIR. Let us start with two lemmas that will be used later in the proof.

Lemma 5.1.

H(A[k]
n |Wk, Q

[k]
n ,G) = H(A[k′]

n |Wk, Q
[k′]
n ,G) (5.23)

H(A[k]
n |Q[k]

n ,G) = H(A[k′]
n |Q[k′]

n ,G), ∀n ∈ [1 : N] (5.24)

Proof. Since the proofs of (5.23) and (5.24) follow from the same arguments, here we will

present only the proof of (5.23). From the User-Privacy constraint (5.7) we know that

∀k ∈ [1 : K], ∀n ∈ [1 : N], I(θ;A
[θ]
n ,Wk, Q

[θ]
n ,G) = 0. Therefore, we must have ∀k′ ∈ [1 : K],

H(A[k]
n ,Wk, Q

[k]
n ,G) = H(A[k′]

n ,Wk, Q
[k′]
n ,G) (5.25)

H(Wk, Q
[k]
n ,G) = H(Wk, Q

[k′]
n ,G) (5.26)

Combining (5.25) and (5.26), we obtain H(A
[k]
n |Wk, Q

[k]
n ,G) = H(A

[k′]
n |Wk, Q

[k′]
n ,G).

Lemma 5.2.

H(A[k]
n |Wk,F , Q[k]

n ,G) = H(A[k]
n |Wk, Q

[k]
n ,G), ∀n ∈ [1 : N] (5.27)

Proof. Since

H(A[k]
n |Wk, Q

[k]
n ,G)−H(A[k]

n |Wk,F , Q[k]
n ,G) = I(A[k]

n ;F|Wk, Q
[k]
n ,G) ≥ 0, (5.28)

we only need to prove I(A
[k]
n ;F|Wk, Q

[k]
n ,G) ≤ 0.

I(A[k]
n ;F|Wk, Q

[k]
n ,G) (5.29)

≤ I(A[k]
n ,W1, · · · ,WK , S;F|Wk, Q

[k]
n ,G) (5.30)

= I(W1, · · · ,WK , S;F|Wk, Q
[k]
n ,G) + I(A[k]

n ;F|W1, · · · ,WK , S,Wk, Q
[k]
n ,G)︸ ︷︷ ︸

=0

(5.31)

≤ I(W1, · · · ,WK , S;F ,G, Q[k]
n) (5.32)

94

= 0 (5.33)

where the second term in (5.31) is zero because of (5.6) and (5.33) follows from (5.4), (5.5).

The proof for R ≤ CSPIR

For every feasible SPIR scheme, we must satisfy the server-privacy constraint (5.8),

0 = I(Wk′ ;A
[k′]
1 , · · · , A[k′]

N ,F ,G) (5.34)

such that ∀n ∈ [1 : N],∀k ∈ [1 : K], k 6= k′,

0 = I(Wk;A
[k′]
n , Q[k′]

n ,G) = I(Wk;A
[k′]
n |Q[k′]

n ,G) (5.35)

= H(A[k′]
n |Q[k′]

n ,G)−H(A[k′]
n |Wk, Q

[k′]
n ,G) (5.36)

(5.23)
= H(A[k′]

n |Q[k′]
n ,G)−H(A[k]

n |Wk, Q
[k]
n ,G) (5.37)

Now, consider the answering strings A
[k]
1 , · · · , A

[k]
N , from which we can decode Wk.

L = H(Wk)
(5.4)
= H(Wk|F ,G) ≤ I(Wk;A

[k]
1 , · · · , A

[k]
N |F ,G) + o(L)L (5.38)

= H(A
[k]
1 , · · · , A

[k]
N |F ,G)−H(A

[k]
1 , · · · , A

[k]
N |Wk,F ,G) + o(L)L (5.39)

(5.5)

≤ H(A
[k]
1 , · · · , A

[k]
N |F ,G)−H(A[k]

n |Wk,F , Q[k]
n ,G) + o(L)L (5.40)

(5.27)
= H(A

[k]
1 , · · · , A

[k]
N |F ,G)−H(A[k]

n |Wk, Q
[k]
n ,G) + o(L)L (5.41)

(5.37)
= H(A

[k]
1 , · · · , A

[k]
N |F ,G)−H(A[k′]

n |Q[k′]
n ,G) + o(L)L (5.42)

(5.24)
= H(A

[k]
1 , · · · , A

[k]
N |F ,G)−H(A[k]

n |Q[k]
n ,G) + o(L)L (5.43)

(5.5)

≤ H(A
[k]
1 , · · · , A

[k]
N |F ,G)−H(A[k]

n |F ,G) + o(L)L (5.44)

Adding (5.44) for all n ∈ [1 : N], we have

NL ≤ NH(A
[k]
1 , · · · , A

[k]
N |F ,G)−

∑
n∈[1:N]

H(A[k]
n |F ,G) + o(L)L (5.45)

95

≤ N

(
1− 1

N

)
H(A

[k]
1 , · · · , A

[k]
N |F ,G) + o(L)L (5.46)

≤ N

(
1− 1

N

) N∑
n=1

H(A[k]
n) + o(L)L (5.47)

≤ N

(
1− 1

N

)
D + o(L)L (5.48)

Rk =
L

D
≤ 1− 1

N
(Letting L→∞) (5.49)

Thus, the rate of any feasible SPIR scheme cannot be more than CSPIR.

The proof for ρ ≥ 1/(N − 1)

Suppose a feasible SPIR scheme exists that achieves a non-zero SPIR rate. Then we will

show in this section that it must have ρ ≥ 1/(N − 1). Consider the answering strings

A
[k]
1 , · · · , A

[k]
N , from which we can decode Wk. From the server-privacy constraint, we have

0 = I(Wk ;A
[k]
1 , · · · , A

[k]
N ,F ,G)

(5.4)
= I(Wk ;A

[k]
1 , · · · , A

[k]
N |F ,G) (5.50)

(5.11)
= I(Wk ;A

[k]
1 , · · · , A

[k]
N ,Wk|F ,G) + o(L)L (5.51)

(5.4)
= I(Wk ;A

[k]
1 , · · · , A

[k]
N |Wk,F ,G) + o(L)L (5.52)

≥ I(Wk ;A[k]
n |Wk,F ,G) + o(L)L (5.53)

= H(A[k]
n |Wk,F ,G)−H(A[k]

n |W1, · · · ,WK ,F ,G) + o(L)L (5.54)
(5.6)
= H(A[k]

n |Wk,F ,G)−H(A[k]
n |W1, · · · ,WK ,F ,G)

+H(A[k]
n |W1, · · · ,WK ,F ,G, S) + o(L)L (5.55)

= H(A[k]
n |Wk,F ,G)− I(S;A[k]

n |W1, · · · ,WK ,F ,G) + o(L)L (5.56)

≥ H(A[k]
n |Wk,F ,G, Q[k]

n)−H(S) + o(L)L (5.57)
(5.27)
= H(A[k]

n |Wk, Q
[k]
n ,G)−H(S) + o(L)L (5.58)

(5.37)
= H(A[k′]

n |Q[k′]
n ,G)−H(S) + o(L)L (5.59)

(5.24)
= H(A[k]

n |Q[k]
n ,G)−H(S) + o(L)L (5.60)

Adding (5.60) for n ∈ [1 : N], we have

0 ≥
∑

n∈[1:N]

H(A[k]
n |Q[k]

n ,G)−NH(S) + o(L)L (5.61)

96

≥ N
1

N
H(A

[k]
1 , · · · , A

[k]
N |F ,G)−NH(S) + o(L)L (5.62)

(5.46)

≥ N
1

N − 1
L−NH(S) + o(L)L (5.63)

⇒ H(S) ≥ 1

N − 1
L+ o(L)L (5.64)

⇒ ρ =
H(S)

L
≥ 1

N − 1
(Letting L→∞) (5.65)

Thus, the amount of common randomness relative to the message size of any feasible SPIR

scheme cannot be less than 1/(N − 1).

97

Chapter 6

Multiround PIR: Capacity and

Storage Overhead

The capacity has recently been characterized for PIR as well as several of its variants such

as LPIR [66] – where message lengths can be arbitrary, TPIR (see Chapter 3) – where any

set of up to T servers may collude, RPIR (see Chapter 3) – where robustness is required

against unresponsive servers, SPIR (see Chapter 5) – which extends the privacy constraint

symmetrically to protect both the user and the servers, MDS-PIR [6] and MDS-SPIR [71] –

variants of PIR and SPIR, respectively, where each message is separately MDS coded.1

A common theme in these results is that there is no capacity advantage of non-linear schemes

over linear schemes, or of ε-error schemes over zero-error schemes. This is a matter of some

curiosity because the necessity of non-linear coding schemes has often been a key obstacle in

network coding capacity problems [27, 21, 58, 20], and the capacity benefit of ε-error schemes

over zero-error schemes for network coding problems in general [50] remains one of the key

unresolved mysteries — with direct connections to the edge-removal question [45] and the

1As a caveat, we note that separate MDS coding of each message is a restrictive assumption. Consider
the setting with K = 2 messages, N = 3 servers and the storage size of each server is equal to the size of
one message. If separate MDS codes are employed for each message, then the maximum rate (capacity) is
equal to 3/5 [6]. However, Example 2 in [22] shows that rate 2/3 (> 3/5) is achievable with a storage code
that jointly encodes both messages.

98

existence of strong converses [48] in network information theory. Motivated by this curiosity,

in this chapter we explore another important variant of PIR – multiround PIR (MPIR). Our

contributions are summarized next.

The classical PIR setting assumes that all the queries are simultaneously generated by the

user. This assumption is also made in all previous chapters. However, such a constraint is

not essential to PIR. What if this constraint is relaxed, i.e., multiple rounds of queries and

answers are allowed, such that the queries in each round of communication are generated by

the user with the knowledge of the answers from all previous rounds? The resulting variant

of the PIR problem is the multiround PIR (MPIR) problem (also known as interactive PIR

[11, 12]). Multiround PIR has been noted as an intriguing possibility in several prior works

[24, 11, 12]. However, it is not known whether there is any benefit of MPIR over single-

round PIR. Answering this question from a capacity perspective is the first contribution of

this chapter. Specifically, we show that the capacity of MPIR is the same as the capacity of

PIR, i.e.,

CMPIR = CPIR =
(
1 + 1/N + 1/N2 + · · ·+ 1/NK−1

)−1
. (6.1)

Combined with previous results, this shows that there is no capacity advantage from mul-

tiround over single-round schemes, non-linear over linear schemes or from ε-error over zero-

error schemes. Furthermore, we show that this is true even with T -privacy constraints.

To complement the capacity analysis, we consider another metric of interest – storage over-

head. Classical PIR assumes replicated servers, i.e., each server stores all the messages.

For larger datasets, replication schemes incur substantial storage costs. Coding has been

shown to be an effective way to reduce the storage costs in distributed data storage systems.

Applications of coding to reduce the storage overhead for PIR have attracted attention re-

cently [59, 22, 31, 69, 56, 19, 61, 6, 75, 71]. In this context, our main contribution is an

example (N = 2 servers, K = 2 messages) of a multiround, non-linear, ε-error PIR scheme

that achieves a strictly smaller storage overhead than the best possible with a single-round,

99

linear, zero-error scheme. The simplicity of the scheme and the N = K = 2 setting makes it

an attractive point of reference for future work toward understanding the role of linear versus

non-linear schemes, zero-error versus ε-error capacity, and single-round versus multiround

communications. Interestingly, the scheme reveals that coded storage is useful not only for

reducing the storage overhead, but also it has a surprising benefit of enhancing the privacy

of PIR.

6.1 Problem Statement

Let us start with a general problem statement that can then be specialized to various set-

tings of interest. Consider K independent messages W1, · · · ,WK , each comprised of L i.i.d.

uniform bits.

H(W1, · · · ,WK) = H(W1) + · · ·+H(WK), (6.2)

H(W1) = · · · = H(WK) = L. (6.3)

There are N servers. Let Sn denote the information that is stored at the n-th server.

H(Sn|W1,W2, · · · ,WK) = 0, ∀n ∈ [1 : N]. (6.4)

Define the storage overhead α as the ratio of the total amount of storage used by all servers

to the total amount of data.

α
4
=

∑N
n=1H(Sn)

KL
. (6.5)

For replication based schemes, each server stores all K messages, so Sn = (W1,W2, · · · ,WK),

H(Sn) = KL, and the storage overhead, α = N .

A user privately generates θ uniformly from [1 : K] and wishes to retrieve Wθ while keeping

θ a secret from each server.

100

Prior works on capacity of PIR and its variants make certain (implicitly justified) assump-

tions of deterministic behavior, e.g., that the answers provided by the servers are determin-

istic functions of queries and messages. Here we will follow, instead, an explicit formulation.

We allow randomness in the strategies followed by the user and the servers. This is ac-

complished by representing the actions of the user and the servers as functions of random

variables. Let us use F to denote a random variable privately generated by the user, whose

realization is not available to the servers. Similarly, G is a random variable that determines

the random strategies followed by the servers, and whose realizations are assumed to be

known to all the servers and the user without loss of generality. F and G take values over

the set of all deterministic strategies that the user or the servers can follow, respectively,

associating each strategy with a certain probability. F and G are generated offline, i.e.,

before the realizations of the messages or the desired message index are known. Since these

random variables are generated a-priori we must have

H(θ,F,G,W1, · · · ,WK)

= H(θ) +H(F) +H(G) +H(W1) + · · ·+H(WK) (6.6)

The multiround PIR scheme proceeds as follows. Suppose θ = k. In order to retrieve

Wk, k ∈ [1 : K] privately, the user communicates with the servers over Γ rounds. In the first

round, the user privately generates N random queries, Q
[k]
1 (1), Q

[k]
2 (1), · · · , Q[k]

N (1).

H(Q
[k]
1 (1), Q

[k]
2 (1), · · · , Q[k]

N (1)|F) = 0, ∀k ∈ [1 : K] (6.7)

The user sends query Q
[k]
n (1) to the n-th server, ∀n ∈ [1 : N]. Upon receiving Q

[k]
n (1), the

n-th server generates an answering string A
[k]
n (1). Without loss of generality, we assume that

the answering string is a function of Q
[k]
n (1), the stored information Sn, and the random

variable G.

H(A[k]
n (1)|Q[k]

n (1), Sn,G) = 0. (6.8)

101

Each server returns to the user its answer A
[k]
n (1).

Proceeding similarly2 , over the γ-th round, γ ∈ [2 : Γ], the user generates N queries

Q
[k]
1 (γ), · · · , Q[k]

N (γ), which are functions of previous queries and answers and F,

H(Q
[k]
1:N(γ)|Q[k]

1:N(1 : γ − 1), A
[k]
1:N(1 : γ − 1),F) = 0 (6.9)

The user sends query Q
[k]
n (γ) to the n-th server, which generates an answer A

[k]
n (γ) and

returns A
[k]
n (γ) to the user. The answer is a function of all queries received so far, the stored

information Sn, and G,

H(A[k]
n (γ)|Q[k]

n (1 : γ), Sn,G) = 0. (6.10)

At the end of Γ rounds, from all the information that is now available to the user (A
[k]
1:N(1 :

Γ), Q
[k]
1:N(1 : Γ),F), the user decodes the desired message Wk according to a decoding rule

that is specified by the PIR scheme. Let Pe denote the probability of error achieved with

the specified decoding rule.

To protect the user’s privacy, the K possible values of the desired message index should be

indistinguishable from the perspective of any subset T ⊂ [1 : N] of at most T colluding

servers, i.e., the following privacy constraint must be satisfied.

[T -Privacy] (Q
[k]
T (1 : Γ), A

[k]
T (1 : Γ),G, ST) ∼ (Q

[k′]
T (1 : Γ), A

[k′]
T (1 : Γ),G, ST) (6.11)

∀k, k′ ∈ [1 : K],∀T ⊂ [1 : N], |T | = T

The PIR rate characterizes how many bits of desired information are retrieved per down-

loaded bit and is defined as follows.

2One might wonder if the setting can be further generalized by allowing sequential queries, i.e., allowing
the query to each server to depend not only on the answers received from previous rounds, but also on
the answers received from other servers queried previously within the same round. We note that sequential
queries are already contained in our multiround framework, e.g., by querying only one server in each round
(sending null queries to the remaining servers).

102

R = L/D (6.12)

where D is the expected value3 of the total number of bits downloaded by the user from all

the servers over all Γ rounds.

A rate R is said to be ε-error achievable if there exists a sequence of PIR schemes, indexed

by L, each of rate greater than or equal to R, for which Pe → 0 as L → ∞. Note that for

such a sequence of PIR schemes, from Fano’s inequality we must have

[Correctness] o(L) =
1

L
H(Wk|A[k]

1:N(1 : Γ), Q
[k]
1:N(1 : Γ),F)

(6.7)(6.9)
=

1

L
H(Wk|A[k]

1:N(1 : Γ),F), ∀k ∈ [1 : K] (6.13)

where o(L) represents any term whose value approaches zero as L approaches infinity. The

supremum of ε-error achievable rates is called the ε-error capacity Cε.

A rate R is said to be zero-error achievable if there exists (for some L) a PIR scheme of rate

greater than or equal to R for which Pe = 0. The supremum of zero-error achievable rates

is called the zero-error capacity Co. From the definitions, it is evident that

Co ≤ Cε (6.14)

6.2 Results

There are two main contributions in this chapter, summarized in the following sections.

3Alternatively, D may be defined as the maximum download needed by the PIR scheme which (similar
to choosing zero-error instead of ε-error) weakens the converse and strengthens the achievability arguments
in general. The capacity characterizations in this chapter, as well as results in previous chapters hold under
either definition. This is because in every case, the upper bounds allow average download D, while the
achievability only requires maximum download D.

103

6.2.1 Capacity Perspective

We first consider the capacity benefits of multiple rounds of communication in the classical

setting where each server stores all messages, i.e., storage is unconstrained. We present

our result in the general context of multiround PIR with T -privacy constraints (MTPIR).

The MTPIR setting is obtained from the general problem statement by relaxing the storage

overhead constraints, i.e.,

Sn = (W1,W2, · · · ,WK),∀n ∈ [1 : N]

α = N

i.e., each server stores all the messages (replication). The following theorem presents the

main result.

Theorem 6.1. The capacity of MTPIR

Co = Cε =
(
1 + T/N + T 2/N2 + · · ·+ TK−1/NK−1

)−1
.

The converse proof of Theorem 6.1 is presented in Section 6.3. Achievability follows directly

from Chapter 3. The following observations place the result in perspective.

1. The capacity of MTPIR matches the capacity of TPIR found in Chapter 3, i.e., multiple

rounds do not increase capacity.

2. Setting T = 1 gives us the capacity of multiround PIR (MPIR) without T -privacy

constraints. The capacity of MPIR matches the capacity of PIR found in Chapter 2,

i.e., multiple rounds do not increase capacity.

3. Since the achievability proofs in Chapter 2 and Chapter 3 only require linear and

zero-error schemes, there is no capacity benefit of multiple rounds over single-round

schemes, non-linear over linear schemes, or ε-error over zero-error schemes.

104

4. For all N,K, T,Γ the converse proof of Theorem 6.1 generalizes the converse proofs in

Chapter 2 and Chapter 3. Remarkably, it requires only Shannon information inequal-

ities, i.e., sub-modularity of entropy.

6.2.2 Storage Overhead Perspective

As summarized above, our first result shows that in a broad sense – with or without colluding

servers – there is no capacity benefit of multiple rounds over single-round communication,

ε-error over zero-error schemes or non-linear over linear schemes for PIR. This pessimistic

finding may lead one to believe that there is little reason to further explore interactive

communication, non-linear schemes or ε-error schemes for PIR. As our main contribution

in this section, we offer an optimistic counterpoint by looking at the PIR problem from the

perspective of storage overhead instead of capacity. The counterpoint is made through a

counterexample. The counterexample is quite remarkable in itself as it shows from a storage

overhead perspective not only the advantage of a multiround PIR scheme over all single-

round PIR schemes, but also of a non-linear PIR scheme over all linear PIR schemes, and

an ε-error scheme over all zero-error schemes.

For a counterexample the simplest setting is typically the most interesting. Therefore, in

this section we will only consider the simplest non-trivial setting, with K = 2 messages,

N = 2 servers, and T = 1, i.e., no collusion among servers. Recall that for this setting the

capacity is C = 2/3. For our counterexample we explore the minimum storage overhead that

is needed to achieve the rate 2/3.

Theorem 6.2. For K = 2, N = 2, T = 1, and for rate 2/3,

1. there exists a multiround, non-linear and ε-error PIR scheme with storage overhead

α = 3/4 + 3/8 log2 3

which is less than 3/2.

105

2. the storage overhead of any single-round, linear and zero-error PIR scheme is

α ≥ 3/2

The achievability arguments, including the multiround, non-linear and ε-error PIR scheme

that proves the first part of Theorem 6.2 are presented in this section. The proof of the

second claim notably utilizes Ingleton’s inequality, which goes beyond submodularity, and is

presented in Section 6.4.

6.2.2.1 A multiround, non-linear and ε-error PIR scheme for K = 2, N = 2, T = 1

Define w1, w2 as two independent uniform binary random variables. Further, define

x1 = w1 ∧ w2 (6.15)

x2 = (∼ w1) ∧ (∼ w2) (6.16)

y1 = w1 ∧ (∼ w2) (6.17)

y2 = (∼ w1) ∧ w2 (6.18)

where ∧ and ∼ are the logical AND and NOT operators. Note the following,

x1 = 1 ⇒ (w1, w2) = (1, 1) (6.19)

x2 = 1 ⇒ (w1, w2) = (0, 0) (6.20)

x1 = 0 ⇒ (w1, w2) = (y1, y2) (6.21)

x2 = 0 ⇒ (w1, w2) = (∼ y2,∼ y1) (6.22)

For ease of exposition, consider first the case where each message is only one bit long. In

this case, the messages W1,W2, directly correspond to w1, w2, respectively. Denote the first

server as Server 1 and the second server as Server 2. Regardless of whether the user desires

W1 or W2, he flips a private fair coin, and requests the value of either x1 or x2 from Server

1. If the answer is 1, then according to (6.19) and (6.20) the user knows the values of both

106

w1, w2 and no further information is requested from Server 2. If the answer is 0, then the

user proceeds as follows.

• If x1 = 0 and W1 is desired, ask Server 2 for the value of y1. Retrieve w1 = y1.

• If x1 = 0 and W2 is desired, ask Server 2 for the value of y2. Retrieve w2 = y2.

• If x2 = 0 and W1 is desired, ask Server 2 for the value of y2. Retrieve w1 =∼ y2.

• If x2 = 0 and W2 is desired, ask Server 2 for the value of y1. Retrieve w2 =∼ y1.

Note that in order to answer the user’s queries, Server 1 only needs to store (x1, x2), and

Server 2 only needs to store (y1, y2). This observation is the key to not only the reduced

storage overhead, but also the enhanced privacy of this scheme.

Further, in preparation for the proofs that follow, let us define another binary random

variable u, which takes the value u = 0 if no response is needed from Server 2, and the value

u = 1 otherwise. Note that u = 0 implies that (y1, y2) = (0, 0). On the other hand, if u = 1,

then (y1, y2) takes the values (0, 0), (1, 0), (0, 1), each with probability 1/3. Therefore,

H(y1, y2|u) = 1/4×H(y1, y2|u = 0) + 3/4×H(y1, y2|u = 1) (6.23)

= 1/4× 0 + 3/4×H(1/3, 1/3, 1/3) = 3/4 log2 3 (6.24)

The correctness of the scheme is obvious from (6.19)-(6.22). Let us verify that the scheme

is private. Start with Server 1. The query to Server 1 is equally likely to be x1 or x2,

regardless of the desired message index and the message realizations. Therefore, Server 1

learns nothing about which message is retrieved. Next consider Server 2. Let us prove that

(Q
[1]
2 , y1, y2) ∼ (Q

[2]
2 , y1, y2).

(θ = 1) (θ = 2)

107

(Q
[1]
2 , y1, y2) Prob.
(∅, 0, 0) 1/4

(“y1”, 0, 0) 1/8
(“y2”, 0, 0) 1/8
(“y1”, 0, 1) 1/8
(“y2”, 0, 1) 1/8
(“y1”, 1, 0) 1/8
(“y2”, 1, 0) 1/8

∼

(Q
[2]
2 , y1, y2) Prob.
(∅, 0, 0) 1/4

(“y1”, 0, 0) 1/8
(“y2”, 0, 0) 1/8
(“y1”, 0, 1) 1/8
(“y2”, 0, 1) 1/8
(“y1”, 1, 0) 1/8
(“y2”, 1, 0) 1/8

where the double quote notation around a random variable represents the query about its

realization. The computation of the joint distribution values is straightforward. We present

the derivation here for one case. All other cases follow similarly. From the law of total

probability, we have

Pr
(

(Q
[1]
2 , y1, y2) = (“y1”, 0, 1)

)
= Pr

(
(Q

[1]
2 , y1, y2) = (“y1”, 0, 1)|(Q[1]

1 , w1, w2) = (“x1”, 0, 1)
)
× Pr

(
(Q

[1]
1 , w1, w2) = (“x1”, 0, 1)

)
+ Pr

(
(Q

[1]
2 , y1, y2) = (“y1”, 0, 1)|(Q[1]

1 , w1, w2) = (“x2”, 0, 1)
)
× Pr

(
(Q

[1]
1 , w1, w2) = (“x2”, 0, 1)

)
(6.25)

= 1× 1/8 + 0× 1/8 = 1/8 (6.26)

Similarly,

Pr
(

(Q
[2]
2 , y1, y2) = (“y1”, 0, 1)

)
= Pr

(
(Q

[2]
2 , y1, y2) = (“y1”, 0, 1)|(Q[2]

1 , w1, w2) = (“x1”, 0, 1)
)
× Pr

(
(Q

[2]
1 , w1, w2) = (“x1”, 0, 1)

)
+ Pr

(
(Q

[2]
2 , y1, y2) = (“y1”, 0, 1)|(Q[2]

1 , w1, w2) = (“x2”, 0, 1)
)
× Pr

(
(Q

[2]
1 , w1, w2) = (“x2”, 0, 1)

)
(6.27)

= 0× 1/8 + 1× 1/8 = 1/8 (6.28)

Thus, Pr
(

(Q
[1]
2 , y1, y2) = (“y1”, 0, 1)

)
= Pr

(
(Q

[1]
2 , y1, y2) = (“y1”, 0, 1)

)
. All other cases are

verified similarly. Then, since the distribution of (Q
[θ]
2 , y1, y2) does not depend on θ, and the

answers are only deterministic functions of the query and the stored information, it follows

that the scheme is private.

108

Next consider the L length extension of this PIR scheme, where each desired bit is retrieved

independently as described above. Under the L length extension, W1,W2, X1, X2, Y1, Y2, U

are sequences of length L, such that the sequence of tuples [(W1(l),W2(l), X1(l), X2(l),

Y1(l), Y2(l), U(l))]Ll=1 is i.i.d. ∼ (w1, w2, x1, x2, y1, y2, u). Since the extension is obtained by

repeated independent applications of the PIR scheme described above for retrieving each

message bit, it follows trivially that the extended PIR scheme is also correct and private.

The purpose for the L length extension, with L → ∞, is to invoke fundamental limits of

data compression which optimize both the data rates and the storage overhead as explained

next.

Let us show that the rate 2/3 is achieved asymptotically as L→∞. We take advantage of

the fact that the answers from the servers are not uniformly distributed, and therefore the

sequence of answers from each server is compressible. With optimal compression, the user

downloads H(1/4, 3/4) bits per desired message bit from Server 1. This is because, for each

retrieved bit, the answer from Server 1 takes the value 1 with probability 1/4 and 0 with

probability 3/4. From Server 2, we download 1/4× 0 + 3/4×H(1/3, 2/3) = 3/4H(1/3, 2/3)

bits per desired message bit, because with probability 1/4 (when the answer from Server 1

is 1), no response is requested from Server 2 and otherwise within the remaining space of

probability measure 3/4 (when the answer from Server 1 is 0), the answer from Server 2 is 1

with conditional probability 1/3 and 0 with conditional probability 2/3. Therefore the total

download is H(1/4, 3/4) + 3/4H(1/3, 2/3) = 3/2 bits per desired message bit and the rate

achieved is 2/3.

Next let us determine the storage requirements of this scheme. Server 1 needs (X1, X2)

to answer the user’s queries, so with optimal compression, it needs to store H(x1, x2) =

H(1/4, 1/4, 1/2) = 3/2 bits per desired message bit. One might naively imagine that the

same storage requirement also applies to Server 2, because Server 2 similarly needs the values

(Y1, Y2) to answer the user’s queries. However, this is not true, because the query sent to

109

Server 2 already contains some information about the message realizations,4 and this side-

information allows Server 2 to reduce its storage requirement by taking advantage of Slepian

Wolf coding [63, 25] (distributed compression with decoder side information).

The key is to realize that Server 2 does not need to know (Y1, Y2) until after it receives the

query from the user. The query from the user includes U as side information. Therefore,

using Slepian Wolf coding, Server 2 is able to optimally compress the i.i.d. sequence (Y1, Y2)

to the conditional entropy H(y1, y2|u) bits per desired message bit and still decode the

(Y1, Y2) sequence when it is needed, i.e., after the query is provided by the user. Thus, the

total storage required by this PIR scheme is 3/2 + 3/4 log2 3 bits per bit of desired message.

Since there are two messages, the storage overhead is 3/4 + 3/8 log2 3.

The following observations are useful to place the new PIR scheme in perspective.

1. The optimal compression guarantees are only available in the ε-error sense. Therefore,

this PIR scheme is essentially an ε-error scheme.

2. The multiround scheme is in fact a sequential PIR scheme that utilizes only one round

of queries for each server (two rounds total since there are two servers).

3. The scheme is essentially non-linear because, e.g., the logical AND operator is non-

linear.

4. Since the multiround, non-linear and ε-error aspects are all essential for this scheme to

create an advantage in terms of storage overhead, it is an intriguing question whether

all three aspects are necessary in general or if it is possible to achieve storage overhead

less than 3/2 through another scheme while sacrificing at least one of the three aspects.

5. A key insight from this PIR scheme is the surprising privacy benefit of storage overhead

optimization. By not storing all the information at each server, and by optimally

compressing the stored information, not only do we reduce the storage overhead, but

4Note that the query sent to Server 2 is independent of the desired message index but not the message
realizations.

110

also we enable stronger privacy guarantees than would hold otherwise. Note that if

each server stores all the information (both W1 and W2), then the scheme is not private.

To see this, suppose (w1, w2) = (1, 1). This would be known to Server 2 because it

stores both messages. Under this circumstance, Server 2 knows that if the user asks

for y2, then his desired message must be W1 and if the user asks for y1 then his desired

message must be W2. Thus, storing all the information at each server would result in

loss of privacy. As another example, we note that if the data is not in its optimally

compressed form, i.e., w1 and/or w2 are not uniformly distributed then again the PIR

scheme would lose privacy. To see this, suppose Pr(w1 = 1)=Pr(w2 = 1) > 1/2. Then

Server 2 is more likely to be asked for y1 if the desired message is W2 than if the

desired message is W1. On the other hand, note that optimal data compression is a

pre-requisite in any case for the optimization of rate and storage overhead.5

6. Let us consider momentarily the restricted message size setting, where each message

is only L = 1 bit long. Then it is easy to see that any single-round scheme (all queries

generated simultaneously) must download at least 2 bits on average, but our multiround

scheme requires an expected download of only 1 + 3/4 = 7/4 bits. Thus, even though

the download advantage of multiround PIR disappears under unconstrained message

lengths, for constrained message lengths there are benefits of multiround PIR.

6.2.2.2 A single-round, linear and zero-error scheme for K = 2, N = 2, T = 1

For comparison, the corresponding scheme from Chapter 2 which also achieves rate 2/3 is

reproduced below. This will be shown to be the optimal single-round, linear, zero-error

scheme for storage overhead in Section 6.4. Denote the messages, each comprised of 4 bits,

as W1 = (a1, a2, a3, a4),W2 = (b1, b2, b3, b4). The downloaded information from each server is

shown below.

5Since optimal compression limits are typically achieved asymptotically, if the data is not assumed to be
uniform a-priori, then as noted by [11, 12] the privacy guarantees would also be subject to ε-leakage that
approaches zero as message length approaches infinity.

111

Prob. 1/2 Prob. 1/2
Want W1 Want W2 Want W1 Want W2

Server 1 a1, b1, a2 + b2 a1, b1, a2 + b2 a3, b3, a4 + b4 a3, b3, a4 + b4

Server 2 a4, b2, a3 + b1 a2, b4, a1 + b3 a2, b4, a1 + b3 a4, b2, a3 + b1

The scheme achieves rate 2/3 and is linear, single-round, and zero-error. A total of 6 bits

are stored at each server

S1 = (a1, a3, b1, b3, a2 + b2, a4 + b4) (6.29)

S2 = (a2, a4, b2, b4, a3 + b1, a1 + b3) (6.30)

Thus, the storage overhead is 3/2.

6.3 Proof of Theorem 6.1

We first present two useful lemmas. Note that in the proofs, the relevant equations needed

to justify each step are specified by the equation numbers set on top of the (in)equality

symbols.

Lemma 6.1. For all k ∈ [2 : K],

I(Wk:K ;Q
[k−1]
1:N (1 : Γ), A

[k−1]
1:N (1 : Γ),F|W1:k−1,G)

≥ T

N
I(Wk+1:K ;Q

[k]
1:N(1 : Γ), A

[k]
1:N(1 : Γ),F|W1:k,G) +

LT

N
(1− o(L)). (6.31)

Proof:

NI(Wk:K ;Q
[k−1]
1:N (1 : Γ), A

[k−1]
1:N (1 : Γ),F|W1:k−1,G)

≥ N(
N
T

) ∑
T ⊂[1:N],|T |=T

I(Wk:K ;Q
[k−1]
T (1 : Γ), A

[k−1]
T (1 : Γ)|W1:k−1,G) (6.32)

(6.11)
=

N(
N
T

) ∑
T ⊂[1:N],|T |=T

I(Wk:K ;Q
[k]
T (1 : Γ), A

[k]
T (1 : Γ)|W1:k−1,G) (6.33)

112

=
N(
N
T

) ∑
T ⊂[1:N],|T |=T

Γ∑
γ=1

I(Wk:K ;Q
[k]
T (γ), A

[k]
T (γ)|Q[k]

T (1 : γ − 1), A
[k]
T (1 : γ − 1),W1:k−1,G)

≥ N(
N
T

) ∑
T ⊂[1:N],|T |=T

Γ∑
γ=1

I(Wk:K ;A
[k]
T (γ)|Q[k]

T (1 : γ), A
[k]
T (1 : γ − 1),W1:k−1,G) (6.34)

(6.8)(6.10)
=

N(
N
T

) ∑
T ⊂[1:N],|T |=T

Γ∑
γ=1

H(A
[k]
T (γ)|Q[k]

T (1 : γ), A
[k]
T (1 : γ − 1),W1:k−1,G) (6.35)

≥ N(
N
T

) ∑
T ⊂[1:N],|T |=T

Γ∑
γ=1

H(A
[k]
T (γ)|Q[k]

1:N (1 : γ), A
[k]
1:N (1 : γ − 1),W1:k−1,F,G) (6.36)

≥ T
Γ∑
γ=1

H(A
[k]
1:N (γ)|Q[k]

1:N (1 : γ), A
[k]
1:N (1 : γ − 1),W1:k−1,F,G) (Han’s inequality) (6.37)

(6.8)(6.10)
= T

Γ∑
γ=1

I(Wk:K ;A
[k]
1:N (γ)|Q[k]

1:N (1 : γ), A
[k]
1:N (1 : γ − 1),W1:k−1,F,G) (6.38)

(6.7)(6.9)
= T

Γ∑
γ=1

I(Wk:K ;Q
[k]
1:N (γ), A

[k]
1:N (γ)|Q[k]

1:N (1 : γ − 1), A
[k]
1:N (1 : γ − 1),W1:k−1,F,G) (6.39)

= TI(Wk:K ;Q
[k]
1:N (1 : Γ), A

[k]
1:N (1 : Γ)|W1:k−1,F,G) (6.40)

(6.13)
= TI(Wk:K ;Wk, Q

[k]
1:N (1 : Γ), A

[k]
1:N (1 : Γ)|W1:k−1,F,G)− o(L)LT (6.41)

= TI(Wk:K ;Wk|W1:k−1,F,G)− o(L)LT

+ TI(Wk+1:K ;Q
[k]
1:N (1 : Γ), A

[k]
1:N (1 : Γ)|W1:k,F,G) (6.42)

(6.6)
= LT (1− o(L)) + TI(Wk+1:K ;Q

[k]
1:N (1 : Γ), A

[k]
1:N (1 : Γ)|W1:k,F,G) (6.43)

(6.6)
= LT (1− o(L)) + TI(Wk+1:K ;Q

[k]
1:N (1 : Γ), A

[k]
1:N (1 : Γ),F|W1:k,G) (6.44)

Lemma 6.2.

I(W2:K ;Q
[1]
1:N(1 : Γ), A

[1]
1:N(1 : Γ),F|W1,G) ≤ L(1/R − 1 + o(L)). (6.45)

Proof:

I(W2:K ;Q
[1]
1:N(1 : Γ), A

[1]
1:N(1 : Γ),F|W1,G)

(6.6)
= I(W2:K ;Q

[1]
1:N(1 : Γ), A

[1]
1:N(1 : Γ),W1,F,G) (6.46)

(6.7)(6.9)
= I(W2:K ;A

[1]
1:N(1 : Γ),W1,F,G) (6.47)

= I(W2:K ;A
[1]
1:N(1 : Γ),F,G) + I(W2:K ;W1|A[1]

1:N(1 : Γ),F,G) (6.48)

113

(6.6)(6.13)
= I(W2:K ;A

[1]
1:N(1 : Γ)|F,G) + o(L)L (6.49)

= H(A
[1]
1:N(1 : Γ)|F,G)−H(A

[1]
1:N(1 : Γ)|F,G,W2:K) + o(L)L (6.50)

(6.12)

≤ L/R −H(A
[1]
1:N(1 : Γ)|F,G,W2:K) + o(L)L (6.51)

(6.13)
= L/R −H(W1, A

[1]
1:N(1 : Γ)|F,G,W2:K) + o(L)L (6.52)

≤ L/R −H(W1|F,G,W2:K) + o(L)L (6.53)
(6.6)
= L/R − L+ o(L)L = L(1/R − 1 + o(L)) (6.54)

With Lemma 6.1 and Lemma 6.2, we are ready to prove the converse.

Rate Outerbound

Starting from k = 2 and applying (6.31) repeatedly for k ∈ [3 : K],

I(W2:K ;Q
[1]
1:N(1 : Γ), A

[1]
1:N(1 : Γ),F|W1,G)

(6.31)

≥ T

N
I(W3:K ;Q

[2]
1:N(1 : Γ), A

[2]
1:N(1 : Γ),F|W1,W2,G) +

LT (1− o(L))

N
(6.31)

≥ · · · (6.55)
(6.31)

≥ TK−2

NK−2
I(WK ;Q

[K−1]
1:N (1 : Γ), A

[K−1]
1:N (1 : Γ),F|W1:K−1,G)

+
LT (1− o(L))

N
+ · · ·+ LTK−2(1− o(L))

NK−2

(6.31)

≥ TK−2

NK−2

LT (1− o(L))

N
+
LT (1− o(L))

N
+ · · ·+ LTK−2(1− o(L))

NK−2
(6.56)

= L(1− o(L))(T/N + · · ·+ TK−1/NK−1) (6.57)

Combining (6.57) and (6.45), we have

L(1/R − 1 + o(L)) ≥ L(1− o(L))(T/N + · · ·+ TK−1/NK−1) (6.58)

Normalizing by L and letting L go to infinity gives us

1/R − 1 ≥ T/N + · · ·+ TK−1/NK−1 (6.59)

⇒ R ≤ (1 + T/N + · · ·+ TK−1/NK−1)−1 (6.60)

114

thus, the proof is complete.

6.4 Proof of Theorem 6.2 – Statement 2.

We show that when K = 2, N = 2, T = 1,Γ = 1 and the rate equals 2/3, the storage

overhead of all zero-error, linear, and single-round PIR schemes is no less than 3/2. Since

we only consider single-round schemes in this section, we will simplify the notation, e.g.,

instead of Q
[1]
2 (1) we write simply Q

[1]
2 . In addition, without loss of generality, let us make

the following simplifying assumptions.

1. We assume that the PIR scheme is symmetric, in that

H(A
[1]
1 |F,G) = H(A

[1]
2 |F,G) = H(A

[2]
2 |F,G) (6.61)

H(S1) = H(S2) (6.62)

Given any (asymmetric) PIR scheme that retrieves messages of size L, a symmetric

PIR scheme with the same rate and storage overhead that retrieves messages of size

NL is obtained by repeating the original scheme N times, and in the n-th repetition

shifting the server indices cyclically by n. This symmetrization process is described in

Theorem 6.3 (see Section 6.4.1).

2. We assume that Q
[1]
1 = Q

[2]
1 , i.e., the query for the first server is chosen without

the knowledge of the desired message index. There is no loss of generality in this

assumption because of the privacy constraint, which requires that Q
[θ]
1 is independent

of θ.6 Note that this also means that A
[1]
1 = A

[2]
1 .

6Note that instead of Q
[1]
1 = Q

[2]
1 , we could equivalently assume that Q

[1]
2 = Q

[2]
2 without of loss of

generality (because privacy also requires that Q
[θ]
2 is independent of θ). However, if we simultaneously

assume both Q
[1]
1 = Q

[2]
1 and Q

[1]
2 = Q

[2]
2 , then there is a loss of generality because together (Q

[θ]
1 , Q

[θ]
2) is not

required to be independent of θ by the privacy constraint.

115

Our goal is to prove a lower bound on the storage overhead. Since the PIR scheme is symmet-

ric by assumption, the storage overhead is (H(S1) + H(S2))/2L = H(S2)/L. Furthermore,

H(S2) ≥ H(A
[1]
2 , A

[2]
2 |F,G), so we will prove a lower bound on H(A

[1]
2 , A

[2]
2 |F,G) instead.

Let us start with a useful lemma that holds for all linear and non-linear schemes.

Lemma 6.3.

H(A
[1]
1 |W1,F,G) = H(A

[2]
2 |W1,F,G) = H(A

[2]
2 |W2,F,G) = L/2 (6.63)

H(A
[2]
2 |W1, A

[1]
2 ,F,G) = H(A

[2]
2 |W2, A

[1]
2 ,F,G) = L/2 (6.64)

Proof: We prove (6.63) first. On the one hand, after substituting7 R = 2/3 in Lemma 6.2,

from (6.47) we have

L/2 ≥ I(W2;A
[1]
1 , A

[1]
2 ,W1,F,G) (6.65)

(6.6)
= I(W2;A

[1]
1 , A

[1]
2 |W1,F,G) (6.66)

(6.7)(6.8)(6.4)
= H(A

[1]
1 , A

[1]
2 |W1,F,G) (6.67)

⇒ L/2 ≥ H(A
[1]
1 |W1,F,G) (6.68)

and L/2 ≥ H(A
[1]
2 |W1,F,G) (6.69)

On the other hand, from (6.32) in Lemma 6.1, we have

L ≤ I(W2;Q
[1]
1 , A

[1]
1 |W1,G) + I(W2;Q

[1]
2 , A

[1]
2 |W1,G) (6.70)

≤ I(W2;Q
[1]
1 , A

[1]
1 ,F|W1,G) + I(W2;Q

[1]
2 , A

[1]
2 ,F|W1,G) (6.71)

(6.6)
= I(W2;Q

[1]
1 , A

[1]
1 |W1,F,G) + I(W2;Q

[1]
2 , A

[1]
2 |W1,F,G) (6.72)

(6.7)(6.8)(6.4)
= H(A

[1]
1 |W1,F,G) +H(A

[1]
2 |W1,F,G) (6.73)

Combining (6.68), (6.69) and (6.73), we have shown that

H(A
[1]
1 |W1,F,G) = H(A

[1]
2 |W1,F,G) = L/2 (6.74)

7Since we are considering only zero-error schemes, the o(L) term in Lemma 6.2 is exactly 0.

116

Symmetrically, it follows thatH(A
[2]
2 |W2,F,G) = L/2. We are left to proveH(A

[2]
2 |W1,F,G) =

L/2. On the one hand, from (6.68) and (6.69), we have

L/2 ≥ H(A
[1]
1 |W1,F,G) = H(A

[2]
1 |W1,F,G) (Using A

[1]
1 = A

[2]
1) (6.75)

L/2 ≥ H(A
[1]
2 |W1,F,G) (6.76)

(6.7)
= H(A

[1]
2 |W1, Q

[1]
2 ,F,G) (6.77)

= H(A
[1]
2 |W1, Q

[1]
2 ,G) (6.78)

= H(A
[2]
2 |W1, Q

[2]
2 ,G) (6.79)

= H(A
[2]
2 |W1, Q

[2]
2 ,F,G) (6.80)

(6.7)
= H(A

[2]
2 |W1,F,G) (6.81)

where (6.79) follows from the fact that for single-round PIR, the desired message index is

independent of the messages, queries and answers, i.e., from (6.6), we have

I(θ;W1,W2,F,G) = 0 (6.82)
(6.7)
=⇒ I(θ;W1,W2,F,G, Q[θ]

2) = 0 (6.83)
(6.8)(6.4)

=⇒ I(θ;W1,W2,F,G, Q[θ]
2 , A

[θ]
2) = 0 (6.84)

=⇒ A
[1]
2 ,W1, Q

[1]
2 ,G ∼ A

[2]
2 ,W1, Q

[2]
2 ,G (6.85)

(6.78) and (6.80) are due to the Markov chain F − (W1, Q
[k]
2 ,G) − A

[k]
2 , k = 1, 2, which is

proved as follows.

I(A
[k]
2 ;F|W1, Q

[k]
2 ,G) ≤ I(A

[k]
2 , S2;F|W1, Q

[k]
2 ,G) (6.86)

= I(S2;F|W1, Q
[k]
2 ,G) + I(A

[k]
2 ;F|W1, Q

[k]
2 ,G, S2) (6.87)

(6.8)
= I(S2;F|W1, Q

[k]
2 ,G) (6.88)

≤ I(S2,W2;F|W1, Q
[k]
2 ,G) (6.89)

= I(W2;F|W1, Q
[k]
2 ,G) + I(S2;F|Q[k]

2 ,G,W1,W2) (6.90)
(6.4)

≤ I(W2;F,W1, Q
[k]
2 ,G) (6.91)

(6.7)(6.6)
= 0 (6.92)

117

On the other hand, from (6.70), we have

L ≤ I(W2;Q
[1]
1 , A

[1]
1 |W1,G) + I(W2;Q

[1]
2 , A

[1]
2 |W1,G) (6.93)

(6.11)
= I(W2;Q

[2]
1 , A

[2]
1 |W1,G) + I(W2;Q

[2]
2 , A

[2]
2 |W1,G) (6.94)

≤ I(W2;Q
[2]
1 , A

[2]
1 ,F|W1,G) + I(W2;Q

[2]
2 , A

[2]
2 ,F|W1,G) (6.95)

(6.6)
= I(W2;Q

[2]
1 , A

[2]
1 |W1,F,G) + I(W2;Q

[2]
2 , A

[2]
2 |W1,F,G) (6.96)

(6.7)(6.8)(6.4)
= H(A

[2]
1 |W1,F,G) +H(A

[2]
2 |W1,F,G) (6.97)

Combining (6.75), (6.81) and (6.97), we have shown that H(A
[2]
2 |W1,F,G) = L/2. The proof

of (6.63) is complete.

Next we prove (6.64). On the one hand,

H(A
[2]
2 |W1, A

[1]
2 ,F,G) ≤ H(A

[2]
2 |W1,F,G)

(6.63)
= L/2 (6.98)

On the other hand, from sub-modularity of entropy functions we have

H(A
[2]
2 , A

[1]
2 |W1,F,G)

≥ −H(A
[1]
2 , A

[1]
1 |W1,F,G) +H(A

[1]
1 , A

[2]
2 , A

[1]
2 |W1,F,G) +H(A

[1]
2 |W1,F,G) (6.99)

≥ −L/2 +H(A
[1]
1 , A

[2]
2 , A

[1]
2 ,W2|W1,F,G) + L/2 from (6.67)(6.13)(6.74) (6.100)

≥ H(W2|W1,F,G)
(6.6)
= L (6.101)

⇒ H(A
[2]
2 |W1, A

[1]
2 ,F,G) = H(A

[2]
2 , A

[1]
2 |W1,F,G)−H(A

[1]
2 |W1,F,G)

(6.74)

≥ L/2

(6.102)

Note that the second term of (6.100) follows from the assumption that A
[1]
1 = A

[2]
1 so that

from A
[1]
1 , A

[2]
2 , we can decode W2 just as from A

[2]
1 , A

[2]
2 , we can decode W2. Combining

(6.98), (6.102), we have proved H(A
[2]
2 |W1, A

[1]
2 ,F,G) = L/2. Symmetrically, it follows that

H(A
[2]
2 |W2, A

[1]
2 ,F,G) = L/2. Therefore, the desired inequality (6.64) is obtained.

From Lemma 6.3, we know that I(A
[1]
2 ;A

[2]
2 |W1,F,G) = I(A

[1]
2 ;A

[2]
2 |W2,F,G) = 0. Plugging

in Ingleton’s inequality [38] that holds for linear schemes but not for non-linear schemes, we

have

118

I(A
[1]
2 ;A

[2]
2 |F,G) ≤ I(A

[1]
2 ;A

[2]
2 |W1,F,G) + I(A

[1]
2 ;A

[2]
2 |W2,F,G) + I(W1;W2|F,G)︸ ︷︷ ︸

=0, from (6.6)

= 0 (6.103)

⇒ H(A
[1]
2 , A

[2]
2 |F,G) = H(A

[1]
2 |F,G) +H(A

[2]
2 |F,G) (6.104)

(6.61)
= H(A

[1]
2 |F,G) +H(A

[1]
1 |F,G) (6.105)

≥ H(A
[1]
1 , A

[1]
2 |F,G) (6.106)

(6.13)
= H(W1, A

[1]
1 , A

[1]
2 |F,G) (6.107)

= H(W1|F,G) +H(A
[1]
1 , A

[1]
2 |W1,F,G) (6.108)

(6.6)

≥ L+H(A
[1]
1 |W1,F,G)

(6.63)
= 3L/2 (6.109)

⇒ α = H(S2)/L ≥ H(A
[1]
2 , A

[2]
2 |F,G)/L ≥ 3/2 (6.110)

Remark: The above converse uses Ingleton’s inequality. It turns out that the best storage

overhead bound from Shannon inequalities is 5/4, which can be tightened to 4/3 with Zhang-

Yeung non-Shannon type inequality.

6.4.1 Symmetrization

Theorem 6.3. Consider the single-round PIR problem with K = 2 messages and N = 2

servers. Suppose we have a scheme described by L̄, W̄1, W̄2, S̄1, S̄2, Q̄
[1]
1:2, Q̄

[2]
1:2, Ā

[1]
1:2, Ā

[2]
1:2, F̄, Ḡ.

Then we can construct a symmetric PIR scheme, also for K = N = 2, described by

L,W1,W2, S1, S2, Q
[1]
1:2, Q

[2]
1:2, A

[1]
1:2, A

[2]
1:2,F,G such that

H(A
[1]
1 |F,G) = H(A

[1]
2 |F,G) = H(A

[2]
2 |F,G) (6.111)

H(S1) = H(S2) (6.112)

L = 2L̄ (6.113)

such that the symmetric PIR scheme has the same rate and storage overhead as the original

PIR scheme.

Proof: Consider two independent implementations of the asymmetric PIR scheme. Let us

use the ‘bar’ notation for the first implementation and the ‘tilde’ notation for the second

119

implementation. In the first implementation, there are two messages W̄1, W̄2, each of length

L̄, two servers Server 1̄ and Server 2̄ which store S̄1, S̄2, respectively. In the second imple-

mentation, there are two messages W̃1, W̃2, each of length L̃ = L̄, two servers Server 2̃ and

Server 1̃ which store S̃1, S̃2, respectively. Note the critical detail that the server indices are

switched in the second implementation. The asymmetric PIR scheme specifies the queries for

each implementation such that the user can privately retrieve an arbitrarily chosen message

from each implementation.

The symmetric PIR scheme is created by combining the two implementations. In the com-

bined scheme, there are two messages W1 = (W̄1, W̃1) and W2 = (W̄2, W̃2), each of length

L = 2L̄, two servers Server 1 and Server 2 which store (S̄1, S̃2) and (S̄2, S̃1), respectively.

Retrieval works exactly as before. For example, if the user wishes to privately retrieve

W1 = (W̄1, W̃1), then it retrieves W̄1 exactly as in the first implementation, and W̃1 exactly

as in the second implementation.

Since the symmetric scheme is comprised of two independent implementations of the original

PIR scheme, the message size, total download size, total storage size, are all doubled relative

to the original PIR scheme. As a result the rate and storage overhead, which are normalized

quantities, remain unchanged in the new scheme. Symmetry is achieved because each server

from the original PIR scheme is equally represented within each server in the new PIR

scheme.

Mathematically,

W1 = (W̄1, W̃1),W2 = (W̄2, W̃2) (6.114)

S1 = (S̄1, S̃2), S2 = (S̄2, S̃1) (6.115)

F = (F̄, F̃),G = (Ḡ, G̃) (6.116)

Q[k]
n = (Q̄[k]

n , Q̃
[k]
3−n), n = 1, 2, k = 1, 2 (6.117)

A[k]
n = (Ā[k]

n , Ã
[k]
3−n) (6.118)

120

where each random variable with a bar symbol is independent of and identically distributed

with the same random variable with a tilde symbol. We are now ready to prove the first

equality in (6.111).

H(A
[1]
1 |F,G) = H(Ā

[1]
1 , Ã

[1]
2 |F,G) (6.119)

= H(Ā
[1]
1 |F̄, Ḡ) +H(Ã

[1]
2 |F̃, G̃) (6.120)

= H(Ã
[1]
1 |F̃, G̃) +H(Ā

[1]
2 |F̄, Ḡ) (6.121)

= H(Ā
[1]
2 , Ã

[1]
1 |F,G) (6.122)

= H(A
[1]
2 |F,G) (6.123)

where (6.120) and (6.122) follow from the fact that the two copies of the given scheme are

independent and (6.121) is due to the property that the two copies are identically distributed.

Consider the second equality in (6.111).

H(A
[1]
2 |F,G)

(6.7)
= H(A

[1]
2 |Q

[1]
2 ,F,G) (6.124)

= H(A
[1]
2 |Q

[1]
2 ,G) (6.125)

(6.11)
= H(A

[2]
2 |Q

[2]
2 ,G) (6.126)

= H(A
[2]
2 |Q

[2]
2 ,F,G) (6.127)

(6.7)
= H(A

[2]
2 |F,G) (6.128)

where (6.125) and (6.127) are due to the Markov chain F − (Q
[k]
2 ,G) − A[k]

2 , k = 1, 2, which

is proved as follows.

I(A
[k]
2 ;F|Q[k]

2 ,G) ≤ I(A
[k]
2 , S2;F|Q[k]

2 ,G) (6.129)

= I(S2;F|Q[k]
2 ,G) + I(A

[k]
2 ;F|Q[k]

2 ,G, S2) (6.130)
(6.8)
= I(S2;F|Q[k]

2 ,G) (6.131)

≤ I(S2,W1,W2;F|Q[k]
2 ,G) (6.132)

= I(W1,W2;F|Q[k]
2 ,G) + I(S2;F|Q[k]

2 ,G,W1,W2) (6.133)
(6.4)

≤ I(W1,W2;F, Q[k]
2 ,G) (6.134)

(6.7)(6.6)
= 0 (6.135)

121

Finally, we prove (6.112).

H(S1) = H(S̄1, S̃2) (6.136)

= H(S̄1) +H(S̃2) (6.137)

= H(S̃1) +H(S̄2) (6.138)

= H(S̄2, S̃1) (6.139)

= H(S2) (6.140)

where (6.137) and (6.139) follow from the fact that the two copies of the given scheme are

independent and (6.138) is due to the property that the two copies are identically distributed.

6.5 Discussion

We showed that the capacity of MPIR is equal to the capacity of PIR, both with and without

T -privacy constraints. Our result implies that there is no advantage in terms of capacity from

multiround over single-round schemes, non-linear over linear schemes, or ε-error over zero-

error schemes. We also offered a counterpoint to this pessimistic result by exploring optimal

storage overhead instead of capacity. Specifically, we constructed a simple multiround, non-

linear, ε-error PIR scheme that achieves a strictly smaller storage overhead than the best

possible with any single-round, linear, zero-error PIR scheme. The simplicity of the scheme

makes it an attractive point of reference for future work toward understanding the role of

linear versus non-linear schemes, zero-error versus ε-error capacity, and single-round versus

multiple round communications. Another interesting insight revealed by the scheme is the

privacy benefit of reduced storage overhead. By not storing all the information at each

server, and by optimally compressing the stored information, not only do we reduce the

storage overhead, but also we enable privacy where it wouldn’t hold otherwise.

122

Chapter 7

Conclusion

In this dissertation, we have explored the fundamental capacity limits of PIR and some of

its variants. Starting from the basic model of PIR, we have characterized the exact capacity

of PIR (Chapter 2), TPIR and RTPIR (Chapter 3), SPIR (Chapter 5) and MPIR (Chapter

6), for all choices of parameters. These results produce a new class of random codes that

is marginally uniformly random if we view one part (i.e., from a local view), and is almost

deterministic conditioning on one part (i.e., from a global view). A full understanding

of this class of ‘private’ codes will benefit much beyond the field of information privacy,

e.g., immediate applications are found in distributed storage and computing, through the

connection between PIR and locally decodable codes. One remarkable feature of this class

of codes is that the code structure admits a recursive algorithmic description, leaving much

room for further optimization of computational complexity. Further, the random aspect of

the code is decomposable with the code structure; we could first construct the code and

then plug in the randomization. It remains interesting future work to discover new code

structures, as well as new randomization techniques. The information theoretic converse

involves a unusual type of constraint, i.e., same marginal distribution, which is not directly

applicable in entropy terms. The tight converse characterization reveals immense potential

of information theoretic reasoning. In the pursuit of optimal answers, new techniques from

123

both converse and achievability sides are of great interest. On the other hand, in spit of the

above exact characterizations, when the PIR problem becomes more complicated, e.g., when

more elements are involved, PIR becomes highly non-trivial as well. In Chapter 4, when

we combine the T -privacy constraint and MDS-storage codes, the MDS-TPIR problem goes

much beyond the two special cases. Although we have disproved a natural conjecture on

the capacity of MDS-TPIR, the capacity remains a mystery in general. The depth of the

problem requires a clean understanding of the interplay of multiple subspaces, which has

been a key challenge in the study of signal dimensions in wireless networks [42]. There

is some potential to develop the MDS-TPIR problem as a canonical setting for the study

of the interactions of linear spaces, similar to the degrees of freedom problem of Gaussian

multiple antenna interference channels [42]. Another intriguing element that we explore in

Chapter 6 is the metric storage overhead. The problem of how much storage is needed

to achieve a certain rate for the simplest setting turns out to be as profound as one would

imagine. We encounter the necessity of non-linear codes (AND and OR functions and Slepian

Wolf), non-Shannon information inequalities, ε-error schemes for a noiseless problem, and

feedback (multiple rounds of communication). Simple as the setting is, one could easily

connect to other fields with similar flavor, e.g., one could construct an equivalent network

coding instance that requires non-Shannon inequalities and the network instance appears

to the simplest available in the literature. We hope the PIR problem would serve as the

playground to advance our understanding of non-linear codes, non-Shannon inequalities,

ε-error schemes, and feedback and interaction. This prompts further generalizations and

analysis of the unusual storage code proposed in Chapter 6, both in the field of PIR and to

other topics, e.g., distributed storage and computing.

Chapter 2 characterizes the optimal communication rate of retrieving one message out of K

messages from N distributed replicated servers privately. Banawan and Ulukus consider the

setting [7] where the user wants to retrieve multiple (P > 1) messages simultaneously. A first

question is that is separation optimal, i.e., could we do better than retrieving one message

124

at a time? The answer turns out to be positive and [7] proposes interesting joint coding

schemes that combine answers from multiple messages. The exact capacity is characterized

when we want no less than half of the messages (P ≥ K/2) and when P divides K. Other

settings are open and an intriguing extension on the query structure (beyond sums of subsets

of message symbols) might be necessary.

The extension of PIR to include colluding servers and unresponsive servers is considered in

Chapter 3. It turns out that a further layer of MDS codes suffices to achieve the capacity for

both cases. One restriction on the problem statement is the underlying symmetry assump-

tion, where we assume any T databases might collude and any N databases might respond.

A recent work by Tajeddine et al. [68] initiates the topic of restricted colluding patterns. A

topological view of the PIR problem will shed light on applications in heterogeneous network

access structure.

The focus of Chapter 4 is on the MDS-TPIR problem. A disproof of the recent conjecture on

the capacity of MDS-TPIR [33] asks for further investigation on this problem, e.g., Zhang and

Ge [74] recently propose a new code for MDS-TPIR that works for all choices of parameters

and outperforms the code in [33] (where the main target is the regime with infinite number of

messages) for some range of parameters. It is intriguing that the combination of MDS storage

codes and colluding servers turns out to be non-trivial. This motivates a more detailed

classification of synergistic elements for PIR, i.e., when would we encounter problems that

require significant generalizations of known techniques and when do current codes suffice to

guarantee optimality? A list of candidates includes finite message length, unequal message

length, colluding servers, unresponsive servers, storage codes, database privacy, topology

considerations, multiple rounds of communication, etc.

The capacity of a form of oblivious transfer - SPIR is characterized in Chapter 5. The

problem of MDS-SPIR is considered and the capacity is characterized by Wang and Skoglund

in [71]. Oblivious transfer is a canonical problem in cryptography and its feasibility and

communication efficiency over a point to point channel has been a topic of central interest.

125

Obvious transfer generally needs further randomness in the channel or network in the form

of noise, common random variables, etc. SPIR represents an interesting class of extensions

of oblivious transfer to the network setting. Combing SPIR with network characteristic

remains an interesting future research topic.

The topic of Chapter 6 is multiple rounds of communication, i.e., MPIR. MPIR is particularly

interesting in the metric - storage overhead. Although we have found the capacity of MPIR,

the storage overhead of PIR stands out as an intriguing open problem. We mention that

there is a recent and independent research line [31, 56, 19, 75, 62, 5, 70, 52] that targets

the storage overhead problem. The focus there is on a class of codes with locality, where

the defining property is that for each message symbol, there exists a number of disjoint

recovering set. This property ensures that any linear PIR scheme can be simulated over

such a locally coded storage system. Therefore, this line is mainly a decomposition based

approach and focuses on the design of the local storage code, which can be combined with

known PIR protocols.

To conclude, this dissertation contains an information theoretic treatment of the PIR prob-

lem, which originated in theoretical computer science. Information theorists commonly study

the optimal coding rates of communication problems dealing with a few messages, each car-

rying an asymptotically large number of bits, while computer scientists often study the

computational complexity of problems dealing with an asymptotically large number of mes-

sages, each carrying only a few bits (e.g., 1 bit per message). The occasional crossover of

problems between the two fields opens up exciting opportunities for new insights. A promi-

nent example is the index coding problem [17, 18], originally posed by computer scientists

and recently studied from an information theoretic perspective. The information theoretic

capacity characterization for the index coding problem is now recognized as perhaps one of

the most important open problems in network information theory, because of its fundamental

connections to a broad range of questions that includes topological interference management

[44], network coding [58], distributed storage [51], hat guessing [57], and non-Shannon in-

126

formation inequalities [64]. Like index coding, the PIR problem also involves non-trivial

interference alignment principles and is related to problems like blind interference alignment

[43]. Further, PIR belongs to another rich class of problems studied in computer science,

with deep connections to oblivious transfer [36], instance hiding [32, 1, 9], multiparty com-

putation [10], secret sharing schemes [60, 13] and distributed computation with untrusted

servers [10]. Bringing this class of problems into the domain of information theoretic studies

holds much promise for new insights and fundamental progress. The results presented in

this dissertation represent a step in this direction.

127

Bibliography

[1] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from an oracle. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages
195–203. ACM, 1987.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information flow. IEEE
Trans. Inform. Theory, 46(4):1204–1216, Jul. 2000.

[3] R. Ahlswede and I. Csiszár. On oblivious transfer capacity. In Information Theory,
Combinatorics, and Search Theory, pages 145–166. Springer, 2013.

[4] A. Ambainis. Upper bound on the communication complexity of private information
retrieval. In Automata, Languages and Programming, pages 401–407. Springer, 1997.

[5] H. Asi and E. Yaakobi. Nearly Optimal Constructions of PIR and Batch Codes. arXiv
preprint arXiv:1701.07206, 2017.

[6] K. Banawan and S. Ulukus. The Capacity of Private Information Retrieval from Coded
Databases. arXiv preprint arXiv:1609.08138, 2016.

[7] K. Banawan and S. Ulukus. Multi-Message Private Information Retrieval: Capacity
Results and Near-Optimal Schemes. arXiv preprint arXiv:1702.01739, 2017.

[8] O. Barkol, Y. Ishai, and E. Weinreb. On locally decodable codes, self-correctable codes,
and t-private PIR. Algorithmica, 58(4):831–859, 2010.

[9] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In STACS 90,
pages 37–48. Springer, 1990.

[10] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Locally random reductions:
Improvements and applications. Journal of Cryptology, 10(1):17–36, 1997.

[11] A. Beimel and Y. Ishai. Information-theoretic private information retrieval: A unified
construction. In Automata, Languages and Programming, pages 912–926. Springer,
2001.

[12] A. Beimel, Y. Ishai, and E. Kushilevitz. General constructions for information-theoretic
private information retrieval. Journal of Computer and System Sciences, 71(2):213–247,
2005.

128

[13] A. Beimel, Y. Ishai, E. Kushilevitz, and I. Orlov. Share Conversion and Private In-
formation Retrieval. In Proceedings of the 27th Annual Conference on Computational
Complexity, pages 258–268. IEEE, 2012.

[14] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond. Breaking the O(n1/(2k−1))
barrier for information-theoretic Private Information Retrieval. In Proceedings of the
43rd Annual IEEE Symposium on Foundations of Computer Science., pages 261–270.
IEEE, 2002.

[15] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers computation in private
information retrieval: PIR with preprocessing. In Advances in CryptologyCRYPTO
2000, pages 55–73. Springer, 2000.

[16] A. Beimel and Y. Stahl. Robust information-theoretic private information retrieval.
Journal of Cryptology, 20(3):295–321, 2007.

[17] Y. Birk and T. Kol. Informed-source coding-on-demand (ISCOD) over broadcast chan-
nels. In Proceedings of the Seventeenth Annual Joint Conference of the IEEE Computer
and Communications Societies, IEEE INFOCOM’98, volume 3, pages 1257–1264, 1998.

[18] Y. Birk and T. Kol. Coding on demand by an informed source (ISCOD) for efficient
broadcast of different supplemental data to caching clients. IEEE Trans. on Information
Theory, 52(6):2825–2830, June 2006.

[19] S. Blackburn and T. Etzion. PIR Array Codes with Optimal PIR Rate. arXiv preprint
arXiv:1607.00235, 2016.

[20] A. Blasiak, R. Kleinberg, and E. Lubetzky. Lexicographic products and the power of
non-linear network coding. ArXiv:1108.2489, Aug. 2011.

[21] T. H. Chan and A. Grant. Dualities between entropy functions and network codes.
IEEE Trans. Inf. Theory, 54(10):4470 – 4487, Oct. 2008.

[22] T. H. Chan, S.-W. Ho, and H. Yamamoto. Private Information Retrieval for Coded
Storage. Proceedings of IEEE International Symposium on Information Theory (ISIT),
pages 2842–2846, 2015.

[23] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In
Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pages
41–50, 1995.

[24] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private Information Retrieval.
Journal of the ACM (JACM), 45(6):965–981, 1998.

[25] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 2006.

[26] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A survey on network codes for
distributed storage. Proceedings of the IEEE, 99:476–489, 2011.

129

[27] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency of linear coding in network
information flow. IEEE Transactions on Information Theory, 51(8):2745 – 2759, Aug.
2005.

[28] Z. Dvir and S. Gopi. 2-Server PIR with Sub-polynomial Communication. Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC’15,
pages 577–584, 2015.

[29] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Communications of the ACM, 28(6):637–647, 1985.

[30] G. Fanti and K. Ramchandran. Efficient private information retrieval over unsynchro-
nized databases. Selected Topics in Signal Processing, IEEE Journal of, 9(7):1229–1239,
2015.

[31] A. Fazeli, A. Vardy, and E. Yaakobi. Codes for distributed PIR with low storage
overhead. In Proceedings of IEEE International Symposium on Information Theory
(ISIT), pages 2852–2856, 2015.

[32] J. Feigenbaum. Encrypting problem instances. In Advances in Cryptology – CRYPTO85
Proceedings, pages 477–488. Springer, 1985.

[33] R. Freij-Hollanti, O. Gnilke, C. Hollanti, and D. Karpuk. Private Information Retrieval
from Coded Databases with Colluding Servers. arXiv preprint arXiv:1611.02062, 2016.

[34] W. Gasarch. A Survey on Private Information Retrieval. In Bulletin of the EATCS,
2004.

[35] Y. Gertner, S. Goldwasser, and T. Malkin. A random server model for private informa-
tion retrieval. In Randomization and Approximation Techniques in Computer Science,
pages 200–217. Springer, 1998.

[36] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private
information retrieval schemes. In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 151–160. ACM, 1998.

[37] P. Gopalan, C.Huang, H. Simitci, and S. Yekhanin. On the Locality of Codeword
Symbols. IEEE Transactions on Information Theory, 58(11):6925–6934, Nov. 2012.

[38] A. W. Ingleton. Representation of matroids in combinatorial mathematics and its ap-
plications. Combinatorial Mathematics and Its Applications, 44:149 – 167, Jul. 1971.

[39] Y. Ishai and E. Kushilevitz. On the hardness of information-theoretic multiparty com-
putation. In Advances in Cryptology-EUROCRYPT 2004, pages 439–455. Springer,
2004.

[40] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Batch codes and their applications.
In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages
262–271. ACM, 2004.

130

[41] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer–
efficiently. In Annual International Cryptology Conference, pages 572–591. Springer,
2008.

[42] S. Jafar. Interference Alignment: A New Look at Signal Dimensions in a Communication
Network. In Foundations and Trends in Communication and Information Theory, pages
1–136, 2011.

[43] S. A. Jafar. Blind Interference Alignment. IEEE Journal of Selected Topics in Signal
Processing, 6(3):216–227, June 2012.

[44] S. A. Jafar. Topological Interference Management through Index Coding. IEEE Trans.
on Inf. Theory, 60(1):”529–568”, Jan. 2014.

[45] S. Jalali, M. Effros, and T. Ho. On the impact of a single edge on the network coding
capacity. In Information Theory and Applications Workshop (ITA), 2011, pages 1–5.
IEEE, 2011.

[46] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of the thirty-second annual ACM symposium on Theory
of computing, pages 80–86. ACM, 2000.

[47] J. Kilian. Founding crytpography on oblivious transfer. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages 20–31. ACM, 1988.

[48] O. Kosut and J. Kliewer. On the relationship between edge removal and strong con-
verses. In Proceedings of International Symposium on Information Theory (ISIT), 2016.

[49] S. Kumar, E. Rosnes, and A. G. i Amat. Private Information Retrieval in Distributed
Storage Systems Using an Arbitrary Linear Code. arXiv preprint arXiv:1612.07084,
2016.

[50] M. Langberg and M. Effros. Network Coding: Is zero error always possible? In 49th
Allerton Conference on Communication, Control and Computing., pages 1478–1485,
2011.

[51] A. Mazumdar. Storage Capacity of Repairable Networks. IEEE Trans. on Inf. Theory,
61(11), Nov. 2015.

[52] P. V. K. Myna Vajha, Vinayak Ramkumar. Binary, Shortened Projective Reed Muller
Codes for Coded Private Information Retrieval. arXiv preprint arXiv:1702.05074, 2017.

[53] A. C. Nascimento and A. Winter. On the oblivious-transfer capacity of noisy resources.
IEEE Transactions on Information Theory, 54(6):2572–2581, 2008.

[54] R. Ostrovsky and W. E. Skeith III. A Survey of Single-database Private Information
Retrieval: Techniques and Applications. In Public Key Cryptography–PKC 2007, pages
393–411. Springer, 2007.

131

[55] M. O. Rabin. How to exchange secrets with oblivious transfer. 1981.

[56] S. Rao and A. Vardy. Lower Bound on the Redundancy of PIR Codes. arXiv preprint
arXiv:1605.01869, 2016.

[57] S. Riis. Information Flows, Graphs and their Guessing Numbers. The Electronic Journal
of Combinatorics, 14(1):R44, 2007.

[58] S. Rouayheb, A. Sprintson, and C. Georghiades. On the Index Coding Problem and
Its Relation to Network Coding and Matroid Theory. IEEE Trans. on Inf. Theory,
56(7):3187–3195, July 2010.

[59] N. Shah, K. Rashmi, and K. Ramchandran. One Extra Bit of Download Ensures Per-
fectly Private Information Retrieval. In Proceedings of IEEE International Symposium
on Information Theory (ISIT), pages 856–860, 2014.

[60] A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.

[61] T. E. Simon R. Blackburn and M. B. Paterson. PIR schemes with small download
complexity and low storage requirements. arXiv preprint arXiv:1609.07027, 2016.

[62] V. Skachek. Batch and PIR Codes and Their Connections to Locally Repairable Codes.
arXiv preprint arXiv:1611.09914, 2016.

[63] D. Slepian and J. Wolf. Noiseless coding of correlated information sources. IEEE
Transactions on information Theory, 19(4):471–480, 1973.

[64] H. Sun and S. A. Jafar. Index Coding Capacity: How far can one go with only Shannon
Inequalities? IEEE Trans. on Inf. Theory, 61(6):3041–3055, 2015.

[65] H. Sun and S. A. Jafar. Blind Interference Alignment for Private Information Retrieval.
arXiv preprint arXiv:1601.07885, 2016.

[66] H. Sun and S. A. Jafar. Optimal Download Cost of Private Information Retrieval for
Arbitrary Message Length. arXiv preprint arXiv:1610.03048, 2016.

[67] H. Sun and S. A. Jafar. Private Information Retrieval from MDS Coded Data with
Colluding Servers: Settling a Conjecture by Freij-Hollanti et al. arXiv preprint
arXiv:1701.07807, 2017.

[68] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, C. Hollanti, and S. E. Rouay-
heb. Private Information Retrieval Schemes for Coded Data with Arbitrary Collusion
Patterns. arXiv preprint arXiv:1701.07636, 2017.

[69] R. Tajeddine and S. E. Rouayheb. Private Information Retrieval from MDS Coded
Data in Distributed Storage Systems. arXiv preprint arXiv:1602.01458, 2016.

[70] E. K. Thomas and V. Skachek. Explicit Constructions and Bounds for Batch Codes
with Restricted Size of Reconstruction Sets. arXiv preprint arXiv:1701.07579, 2017.

132

[71] Q. Wang and M. Skoglund. Symmetric Private Information Retrieval For MDS Coded
Distributed Storage. arXiv preprint arXiv:1610.04530, 2016.

[72] S. Yekhanin. Locally Decodable Codes and Private Information Retrieval Schemes. PhD
thesis, Massachusetts Institute of Technology, 2007.

[73] S. Yekhanin. Private Information Retrieval. Communications of the ACM, 53(4):68–73,
2010.

[74] Y. Zhang and G. Ge. A general private information retrieval scheme for MDS coded
databases with colluding servers. arXiv preprint arXiv:1704.06785, 2017.

[75] Y. Zhang, X. Wang, H. Wei, and G. Ge. On private information retrieval array codes.
arXiv preprint arXiv:1609.09167, 2016.

133

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Background
	Overview of the Dissertation
	Notation

	Capacity of PIR
	Problem Statement
	Main Result: Capacity of PIR
	blackTheorem 2.1: Achievability
	Two Examples to Illustrate the Key Ideas
	Formal Description of Achievable Scheme
	The Two Examples Revisited
	Proof of Correctness, Privacy and Achieving Capacity

	Theorem 2.1: Converse
	Discussion

	Capacity of Robust PIR with Colluding Servers
	Problem Statement
	TPIR
	Robust TPIR

	Main Result: Capacity of Robust TPIR
	Proof of Theorem 3.1: Achievability
	Example: K = 2, N = 3, T = 2
	Example: K = 3, N = 3, T = 2
	Arbitrary K, Arbitrary N, Arbitrary T

	Proof of Theorem 3.1: Converse
	Proof of Theorem 3.2
	Example: K = 2, M = 3, N = 2, T = 1
	Arbitrary K, N, M, T

	Discussion

	PIR from MDS Coded Data with Colluding Servers
	Problem Statement
	Settling the Conjecture
	Storage Code
	Construction of Queries
	Combining Answers for Efficient Download
	The Scheme is Correct (Retrieves Desired Message)
	The Scheme is Private (to Any T=2 Colluding Servers)
	Rate Achieved is 3/5

	Optimality of Rate 3/5
	Discussion

	Capacity of Symmetric PIR
	Problem Statement
	Main Result: Capacity of Symmetric PIR
	Theorem 5.1: Achievability
	Theorem 5.1: Converse

	Multiround PIR: Capacity and Storage Overhead
	Problem Statement
	Results
	Capacity Perspective
	Storage Overhead Perspective

	Proof of Theorem 6.1
	Proof of Theorem 6.2 – Statement 2.
	Symmetrization

	Discussion

	Conclusion
	Bibliography

