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Apprenticeship or Tutorial:
Models for Interaction with an Intelligent
Instructional System

Denis Newman
BBN Systems and Technologies Corp.

ABSTRACT

Conventional intelligent tutoring systems are based on the individual tutorial as a
model of instructor-student interaction and use a model of the student's understanding
as a principal component guiding instruction. Apprenticeship provides quite a
different model of interaction in which a model of the student is not essential.
Instead, the instructor, interested in making use of the student's work, provides
demonstrations and feedback in terms of the product toward which they are both
working. Recent advances in the cognitive science of instruction provide insights
into the interactive processes by which instructors appropriate the work of
apprentices. An intelligent instructional system that instantiates apprenticeship
interaction illustrates an alternative to tutorial-based systems that make use of a
student model.

Conventional intelligent tutoring systems are built around a model of the student's partial
understanding of the expert knowledge which is used to direct instruction (Sleeman & Brown,
1982; Wenger, 1987). The model of instructional interaction on which this approach is based is
the individual tutorial in which knowledge or skills are transmitted from the tutor to the student.
There are many other ways of organizing instruction, for example, collaborative learning or
apprenticeships, which could provide models for intelligent instructional systems with
characteristics very different from student model-based systems. In addition, the use of these
systems in the context of human instructor-student interaction releases extensive human resources
(instructor and students) for monitoring progress and directing next steps making some tutoring
system features unnecessary. Tracking an individual student's cognitive change may be one of the
features which can be dispensed with when advanced technologies are put into use in actual
instructional contexts.

This paper examines the properties of intelligent instructional systems developed recently at BBN
for use in training contexts. The goal of these projects was to apply known artificial intelligence
techniques to training. The results of the work, however, provide cases that illustrate a different
theoretical approach to instructional interactions. The instructional format supported by the
systems more closely resembles an apprenticeship than an individual tutorial. That is, students
work at simulated problems resembling those they will confront in the field while the system gives
them feedback and expert demonstrations. The systems do not create a model of the student. They
present a model of expert performance through direct modeling as well as by showing how the
student actions fit into a framework that the expert uses to evaluate them. It is assumed that
students, supported by human instructors, can carry out the interpretive work required to form the
expert concept based on the information provided by the system.
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A THEORY OF APPRENTICESHIP LEARNING

Cognitive science has traditionally taken the view that the mind of the individual is the appropriate
unit of analysis (Gardner, 1985). The individual tutorial is a natural extension of this view of
human cognition since the tutor is in the role of the cognitive scientist, diagnosing the individual
misconceptions and presenting just the right stimuli to move the individual to a new understanding.
Work on intelligent tutoring systems has shared this traditional view in its attempt to simulate the
individual's tutor as well as the tutor's model of the individual. A less traditional approach to
human cognition, however, may lead to new ways of using artificial intelligence in instructional
interactions.

Recent work in the cognitive science of instruction has suggested that a unit of analysis larger than
the individual person may be of value in understanding how cognitive change occurs (Hutchins, in
press; Lave, 1988; Newman, Griffin & Cole, 1989; Resnick, 1987). The cognitive processes are
seen as entirely intertwined with the social organization of instruction. Recent interest in
apprenticeship learning (Lave, in preparation; Collins, Brown & Newman, in press) follows from
this reformulation since apprenticeships are a part of the organization of work. This fact leads to
important constraints (e.g., the sequence of apprentice tasks has to allow for useful work to get
done) and provides essential motivations (e.g., the apprentice sees the components of the task in
the context of creating a product) which makes apprenticeship a potentially powerful method of
instruction. The student-instructor interactions in this context do not resemble Socratic dialogues.
The instructor, wanting to be able to make use of what the student is doing, provides
demonstrations and feedback in terms of the product toward which they are both working.

Vygotsky's (1978, 1986) developmental psychology provides important insights into instructional
interactions relevant to this approach. Vygotsky introduced the concept of a zone of proximal
development in which children can work at problems that are beyond their competence as
individuals. With "scaffolding" provided by others, children can solve problems interactively
while they are in the process of learning how to solve them themselves. Observations of
instructional interactions in which a teacher is helping a student or group of students indicate that
teachers often do not have, or apparently need, an understanding of exactly how the students are
approaching the task. Newman et al. (1989) describe teaching and tutorial sessions in which the
teacher appropriates the students' actions into her own way of understanding the task. The teacher
has to find some way for the students to play at least a minimal role in the accomplishment of the
task and give feedback in terms of the expert understanding of the task: what the goal is, what is
relevant, why his move was not optimal and so on. In instructional interactions, both the student
and teacher are necessarily somewhat ignorant of each other's mental state. All the student has to
do is produce some move that in some way contributes (or can be understood as an attempt to
contribute) to the task. The teacher does not have to know exactly what the student thinks he or
she is doing as long as she can appropriate what the student does into the joint accomplishment of
the task. Seeing how his or her action is appropriated provides the student with an analysis of task
as the teacher understands it. Thus the basis for appropriation is the notion that the meaning of an
action can be changed retrospectively by the actions of others that follow it (Fox, 1987; Newman
& Bruce, 1986).

The concept of appropriation provides a model for a range of interactions between two parties that
have different interpretations of the initial situation. An apprenticeship, for example, involves a
novice and expert where the expert makes use of the novice's work even at the earliest stages of
training when the novice has little understanding of the overall process. An "intelligent" tool can
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also appropriate the actions of an inexperienced student. For example, a system that provides a
trace of the student's algebra problem-solving activities in effect takes the students actions and
displays them in a framework that the student may not initially understand (Collins & Brown,
1987). By seeing how his or her actions are displayed, the student can come to understand, for
example, that problem-solving is a process of successive attempts and backtracking.

Our design for intelligent instructional systems is based on the notion that students can come to
understand the expert approach to the problem by observing examples of expert problem-solving
and by seeing how their actions are interpreted within the framework of the expert understanding.
This instructional format, which resembles an apprenticeship, depends on the interpretive work of
the student in seeing what the system made of his or her actions and on the supportive role of the
human instructor (Newman, in press). A theoretical approach focusing on the characteristics of
instructional interactions among the student, instructor and computer points to practical uses for
relatively simple artificial intelligence.

APPLICATION OF APPRENTICESHIP TO INSTRUCTIONAL SYSTEMS

Three instructional systems implemented on Symbolics Al workstations illustrate these properties.
TRIO (Ritter & Feurzeig, 1988) trains F-14 navigators to carry out air intercepts. MACH-III
(Kurland & Tenney, 1988; Kurland, 1989) trains mechanics to troubleshoot a complex radar
system. INCOFT (Intelligent Conduct of Fire Trainer) trains surface-to-air missile operators in the
identification of aircraft (Newman, Grignetti, Gross & Massey, in press). A description of
INCOFT illustrates how features of apprenticeships are instantiated in intelligent feedback and
articulate expertise of the knowledge-based simulation.

The Misslle Operator's Task

INCOFT is designed to train soldiers to perform a complex real-time task of monitoring the
operation of an automated missile system in which errors can have tragic consequences. In
modern air defense surface-to-air missile systems, radar information is processed and presented to
the operators in highly abstract form. The system itself can assign identities to aircraft as friendly
or hostile based on flight patterns and transmitted signals. The operator must understand what is
happening during the few minutes that a track takes to traverse the radar's area of coverage and be
prepared to override the system in cases where local exceptions to the tactics built into the system
are required and where a higher echelon calls in information not available to the local computer.

The missile system for which INCOFT trains operators uses a point system for determining
identities of aircraft picked up on its radar. The airspace surrounding the missile site and any
assets it is defending is divided into volumes. Aircraft lose a certain number of points for each
volume they penetrate. Friendly aircraft presumably know the exact location of these volumes as
well as of safe passage corridors which cut through them. Flying so that they are aligned with the
corridor, for example, is worth positive points as a friendly indicator. Depending on the specific
tactical situation, there are also speed and altitude limits which cause points to be added or
subtracted. Finally, there are codes which friendly aircraft can transmit that supply additional
evidence of friendly status. For each of hundreds of tracks that the radar can follow, the missile
system computer can assign an identity as a friend, assumed friend, unknown, or hostile
depending on the predefined thresholds.

The task of manual identification is used in training operators. The assumption is that if an

operator can do what the computer does, then he or she must understand how the computer works
and be able to monitor its operation. The task is to learn the algorithm used by the computer and be
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able to reproduce it. Given the complex set of criteria and the mental arithmetic this learning task is
not trivial. Interviews with students after several hours of conventional instruction indicated that
they often did not understand the criteria or utilize the algorithm (Newman, 1989). Tracks which
had a positive indicator were declared friendly before sufficient points were accumulated, and
tracks with a single negative indicator were declared hostile while the PATRIOT computer would
have still considered them unknown according to the given point values and thresholds. Students
do not see the task as understanding an algorithm but rather as determining the identity of the
aircraft picked up on their radar. An initial step in training, therefore, is to communicate the expert
view that there is an algorithm on which these decisions must be based. INCOFT simulates the
operator's console, presents scenarios, and provides speech synthesized feedback on the student's
actions as well as demonstrations of how the automatic system would have handled the situation.
The feedback and demonstrations appropriate and reflect back the student's actions within a
framework represented both graphically and in the form of tables that displays the expert's
perspective.

Replay of the Exercise

As in conventional intelligent tutoring systems, INCOFT compares the student performance to an
expert performance, in this case the missile system's computer. The student is presented with a
scenario of between 2 and 13 minutes in which he or she must manually identify a number of
tracks. When the exercise is complete, the scenario, exactly as carried out by the student, is
replayed in "fast forward", pausing for each student action. Each action is compared to the expert
action and commented upon, right or wrong. Where possible, INCOFT provides an analysis of
incorrect actions, and of actions that happened to be correct but for which the operator made a
procedural error or failed to gather all the necessary data. For example, if the difference between
the expert identification and the student identification can be accounted for by one feature or by a
piece of information the student failed to gather, then that is pointed out. In all cases, the verbal
feedback is accompanied by a graphic representation of the point values and thresholds involved in
the arithmetic calculation.

Summary Table

When the replay is complete, a table is displayed listing the actions the missile system would have
taken for each track and comparing the student actions. In addition to summarizing the replay
feedback, the table displays the time lag between the missile system identification action and the
student's action and relates this to the time available for making an identification action before some
disaster occurs. The table also provides a summary score of percentage of correct identifications
and average time to make the identification.

Expert Demonstrations

The table also serves as a menu for selecting demonstrations of the identification process for any
target on which an error was made or for which the process was not understood. Unlike the
replay, the expert demonstration shows the scenario as the missile system would process it in
automatic mode. The action is shown in "fast forward" up to the time that there is a change in the
point total for the track being demonstrated. INCOFT explains each change in terms of volume
penetration, corridor alignment, exceeding speed thresholds and so on. A scale indicating the
accumulated points and the thresholds for the identifications is also displayed.

FORMATIVE RESEARCH RESULTS
Formative research with students and instructors in the current program of instruction guided the

design of scenarios and feedback. It also provided initial information on the potential effectiveness
of INCOFT in contrast to conventional simulator-based training. This research was not intended
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as a summative evaluation of the effectiveness of the system but does point to areas of strength.
Students who had completed the relevant portion of the course were interviewed during and after
operating a scenario. We also observed two instructors use INCOFT in actual instruction with
students who were learning the material for the first time.

INCOFT's Representation of the Task

Students found the replay to be a great improvement over the conventional simulator and over-the-
shoulder instruction since the usual student-instructor ratio makes it impossible to obtain feedback
on most actions. But beyond simply providing detailed feedback and analysis, a powerful feature
of INCOFT's articulate expert became evident in the students' responses to the single track expert
demos of the identification process. Students had never before seen a scenario decomposed into
separate tracks. Many students remarked on being able to see the precise point at which, for
example, a track dealigned with a corridor and was declared hostile. While following any single
track is just a matter of straightforward adding and subtracting, the missile system is able to do that
for hundreds of tracks simultaneously. A novice human operator faced with, for example, 15
tracks, will have to look at each track, one time, in some sequence and make identifications. This
snapshot approach does not take in the continuous history of a single track, yet it is the patterns of
motion and activity that reveal a track’s identity and intention. Interestingly, interviews with
experienced air defense operators who were being reassigned from different systems, indicated that
it is the perception of these patterns for particular tracks that seems to mark expertise in air defense
operation. By decomposing what the missile system's computer does simultaneously, INCOFT
demonstrates part of human expertise in this task.

By presenting the student's task in terms of its own framework, INCOFT utilizes features of
apprenticeship in its style of student-machine interaction. The system essentially shows the student
how the missile system would deal with the same cases and what aspects of the simulated situation
are relevant to it.  Operating a simulation is not productive work so, unlike an apprentice's master,
the system does not literally make use of the student's work. The feedback, however, shares
features with an apprenticeship in that it relates the student's output to the expert performance
rather than to the student's internal states. For example, the replay feedback presents the aircraft
identifications in terms of a graphically represented arithmetic calculation and the summary table
presents the student's decision-making time in relation to the urgency of the situation as an expert
would understand it. In this sense, the output is appropriated by the system's interpretive
framework providing a reflection for the student in the expert's terms.

The Instructors' Role in the Apprenticeship

It is assumed that human instructors are part of the training context and assist the student in
interpreting the feedback and in suggesting additional practice. For example, the instructor can
suggest to the student that he or she see a particular expert demonstration. A field test of INCOFT
in actual instruction--supervised by instructors rather than researchers--demonstrates the
reasonableness of putting this power at the disposal of real instructors and the students rather than
attempting to build the entire presentation into an automatic tutor. The summary table provides an
opportunity for students to ask questions of the instructors and for instructors to give meta-
analyses to the students. INCOFT does not process the data further or make decisions about what
the student ought to do next. These decisions are handed over to the people involved.

The following example is taken from a session in which INCOFT was being used in instruction
with students who were learning the task for the first time. The instructor is a highly experienced
teacher but working with INCOFT for the first time. In this segment, the student has finished a
relatively complex scenario and is looking at the summary table.
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What's the 84 mean? [referring to the summary score at the bottom of the table]
That's your average time, average time that you did things, 84 seconds. A minute and a half almost.

And it should have all been done in 30 seconds?

Well, remember now, 30 seconds is operator override time, and that's maximum operator override time and
what we're saying there is that you have that little time to make a decision on critical things that need to be
done. If you've got a target, that is if you'd put into- which tab do you have override time?

S: Uh, tab, I got it wrote down in my notes.

T:  Tab zero one. And what ever you have down in your operator override time that's the amount of time you
have to do something before the system automatically engages the target. Now what this says, what this says
to me is that you definitely need to improve and work on your decision making ability and capability, cause
84 seconds average time in order to make a decision is a long time. If you get an aircraft going 800 meters a
second,

S:  Uh huh.
T:  he can go a loong way in a minute and a half, a long way.
S:  Okay, I want to try this one again.

This is a complex interaction in which the student displays a misconception about a 30 second time
limit introduced in another context and the instructor uses the student question as an occasion to
review the concept and the location in the database of the relevant parameter. The instructor returns
to the initial topic and presents a graphic case for the need for the student to act more quickly.

Two kinds of instructor-student interaction are evident in this transcript. The instructor conducted
a brief utorial on operator override time after having recognized that the student mistook the
"average time you did things" for this feature of the system which has to do specifically with time
available to override the computer in automatic engagement. Clearly, the instructor recognized the
misconception and engaged in an aside to try to clarify the distinction before returning to his main
topic.

The other kind of instructor-student interaction evident in the transcript is an amplification of the
system's appropriation of the student's actions. The system reflected back to the student the
number 84 which is a way of seeing the student's actions peculiar to the expert system which is
capable of comparing each student action with the "expert" treatment of the track and coming up
with an average time lag. The instructor reformulated the 84 seconds as "a minute and a half
almost" and later made his evaluation explicit in terms of a real world concern for PATRIOT
operators. This interaction is very different from the tutorial in that it is not based on an
understanding of the student in his own right but on an evaluation of the students actions in terms
of how it fits into an expert performance. This is more than just feedback on the "correctness” of
the performance because it is introducing and motivating considerations that become evident to the
student only after he sees how the system (including the instructor) appropriates his actions. The
instructor and machine work together in the appropriation: INCOFT provides the student and
instructor with detailed feedback on which to base this interaction but it is the instructor, not the
machine, who handles the more complex misconceptions and places the task in a motivational
context.
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CONCLUSION

Instructional interactions in which a tutor is attentive to the student's understanding of the task can
be a valuable form of instruction but is only one of many forms in which intelligent technology can
be employed. While perhaps an interesting theoretical problem, creating a machine to model
human tutoring is very difficult as a practical concern. Our work on INCOFT demonstrates some
simplifications of the conventional tutoring system model that make the concept practically useful
in instruction. Apprenticeship provides a model of instructor-student interaction that guides our
design of feedback. In an apprenticeship, the instructor is interested in appropriating the student
actions into productive work. Feedback shows the student whether his or her actions are
productive in the framework of the task as understood by the instructor. INCOFT does not attempt
to mimic a tutorial interaction. It also does not attempt to carry the entire weight of instruction. By
putting various decompositions or representations of the processes in the hands of students and
human instructors, we might expect useful instructional interactions to ensue between the people
involved.
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