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ABSTRACT OF THE DISSERTATION
Mean curvature flows with forcing and degenerate nonlinear parabolic equations
by

Dohyun Kwon
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2020

Professor Christina Kim, Chair

Degenerate diffusion equations and their interface dynamics have received a lot of attention in
the past couple of decades. In particular, surfaces moving with curvature dependent velocities
and discontinuous diffusion intensities naturally appear in physical and biological models.
In this dissertation, we study global well-posedness and geometry of two equations: mean
curvature flows with forcing and degenerate nonlinear parabolic equations with discontinuous
diffusion coefficients. Both problems have gradient flow structures in the space of sets and

the Wasserstein space, respectively, which are useful to study the global-time behavior.

In Chapter 1, we develop a parabolic version of the Aleksandrov and Serrin’s moving
plane methods for mean curvature flow with forcing. With the class of forcing which bounds
the volume of evolving sets away from zero and infinity, we show that a strong version of
star-shapedness is preserved over time. Based on this geometric property, we prove that

volume preserving mean curvature flow starting from a star-shaped set converges to a ball.

Chapter 2 is devoted to the study of degenerate parabolic equations with discontinuous
diffusion intensities. We show the existence and uniqueness of the solutions in the sense of
distributions. Our notion of solutions allows us to give a fine characterization of the emerging

critical regions, observed previously in numerical experiments.

This dissertation has been resulted in the publications [KK20a], [KK20b] and [KM19].
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CHAPTER 1

Mean curvature flows with forcing

1.1 Introduction

Consider an evolving set (£2;);~0 in R™ moving by the motion law
V=—-H+X ondQ. (1.1.1)

Here, V = V(z,t) and H = H(z,t) respectively denote the outward normal velocity and the

mean curvature of 00, at x € 0€);, where H is set to be positive if (), is convex at the point.

We are interested in the global-time description of the flow, including its well-posedness.
In general, due to the low-dimensional nature of the interface, finite-time topological singu-
larities are expected even for interfaces starting out with smooth shapes. On the other hand,
(1.1.1) is a parabolic flow, and thus parabolic regularity theory applies once we know that
the evolving boundary 0€); is locally a graph. Thus our first goal is to establish an a priori

graph property of 9€); by studying the geometry of the evolution.

1.1.1 Volume-dependent forcing

The volume-dependent forcing A = A(|€)|) we consider keeps the volume of 2; bounded away
from zero and infinity. With such choices of forcing we will show that a strong version of
star-shapedness property holds for €2; at all ¢ > 0 if initially true. To state the main results,

let us begin with discussing the assumptions on the forcing.

Assumption A. ) : RT™ — R is locally Lipschitz continuous and satisfies lim sup @ <

R—o0

oo. In addition, there exists p > 0 such that A(|$2|) > ”—;1 for all Q C Bs,.



The first part of the assumption is necessary to show that the evolution is unique and
the set does not spread to R"™ in finite time. The second part puts a sufficient penalty on
shrinkage of the evolution, and is used in showing that the evolution always contains a small
ball B,(0) if initially so (Lemma 1.3.9). With the parameter p given from above assumption,
we assume that € has p-reflection (see Definition 1.3.3). The p-reflection property should be
interpreted as a quantitative smallness requirement on the Lipschitz norm distance between
Qp and the nearest ball (see Lemma 1.3.4). We adopt Definition 1.2.6 as the notion of
solutions for (1.1.1). Our first result states the preservation of the p-reflection property in
Theorem 1.3.8. The proof is based on the reflection maximum principle as well as various

barrier arguments based on Assumption A.

Theorem 1. Suppose that Qy has p-reflection and ($2)i>0 is a solution of (1.1.1). Then,
Oy has p-reflection at all times t > 0. In particular there exists r1 = r1(p) > 0 such that Q,
is star-shaped with respect to a ball B, (0) for all t > 0.

Let us remark that this geometric result does not extend to the classical mean curvature
flow where A = 0. With zero forcing and with star-shaped initial set, solutions of (1.1.1) have
been shown to hold certain semi-convexity estimates by Smoczyk [Smo98| and Lin [Lin15].
While these estimates allow classification of possible singularities for the flow in terms of
blow-up limits, it remains open whether the initially star-shaped flow stays star-shaped

beyond the initial time even with zero forcing.

With the a priori geometric property of the flow, we next discuss existence and uniqueness
of the flow (1.1.1) based on its variational structure. A formal calculation yields the energy
inequality
iJ(t) = —/ V2ds, (1.1.2)
dt a0
where J(t) = Per(§2;)—A(|€2|) with A the anti-derivative of A and V as given in (1.1.1). From
(1.1.2) one expects €2 to flow toward a stationary point of the energy as time grows. We will
make this observation rigorous by generating a discrete-time approximation (or “minimizing

movement”) that satisfies the energy dissipation. The aforementioned a priori geometric

2



property enables the uniform convergence of its discrete time approximations, to guarantee

that in the continuum limit we recover a smooth solution.

While the variational approach yields the minimizing movements approximation as well
as the asymptotic analysis of the flow, viscosity solutions are more suited for geometric ar-
guments. To take advantage of both approaches we will show that the variational flow is,
in a sense, a viscosity solution of (1.1.1). This idea of combining the two approaches were
previously used for the mean curvature flow in [Cha04], but in our problem the standard
maximum principle does not apply for (1.1.1), and thus the notion of viscosity solutions
needs to be modified from the standard one. Indeed our main novelty in the analysis is to
combine these two approaches to address geometric motions which do not satisfy a compar-
ison principle but still is of parabolic nature. For free boundary problems this combination
has been introduced in [FK14], where the presence of bulk pressure plays a crucial role in

the analysis.

From Theorem 1 and the volume bound it follows that €2; has locally Lipschitz bound-
ary which is uniform in time. This fact endows sufficient compactness for the evolution
that makes it possible for the discrete-time variational scheme to approximate the flow, in

particular establishing the global existence results in Theorem 1.4.21.

Theorem 2. Suppose that Qy has p-reflection. Then, there exists a unique solution (S4)i>o of
(1.1.1) that is bounded and has smooth boundary for everyt > 0. (4)i>0 can be approximated

locally uniformly by minimizing movements with constraints.

1.1.2 Volume preserving flow

Next, we consider
V=—H+At)on Ty :=00, | =|Q]=1. (1.1.3)

In smooth setting, A : [0,+00) — R satisfies th VdS = 0 so that the evolution satisfies
12| =[], i.e.
1

M) = —— Hdo = Hdo. 1.14
Q Per(€2;) o 7 o0 7 ( )

3



There are two main difficulties to study the global behavior of the flow (1.1.3) in general
settings. First the evolution may go through topological changes, and secondly the formula
(1.1.4) does not hold for A in less than C1* settings. The first difficulty motivates us to
study geometric properties that are preserved by the flow, and the second requires new ideas

to obtain sufficient compactness to establish convergence to equilibrium.

In variational setting, (1.1.3) can be formulated based on its energy dissipation structure
for the perimeter energy with volume preserving constraint. Using this structure [MSS16]
and [Tak17] showed the existence of general distribution solution of (1.1.3). For our interest
in geometric properties of solutions, we instead work with a modified version of viscosity
solutions, where we consider an implicit choice of A so that the volume of the evolving set is

preserved over time.

Motivated by recent results [MSS16], our strategy is to approximate (1.1.3) by the fol-

lowing flow as 0 — 0:

Vo = —H4+Xs(t), Ns(t) :=s(|]) on T,
(1.1.5)
Qg == QO
where 75 : R™ — R for § > 0 is defined by
1
v5(s) = 5(1 —3). (1.1.6)

Let us mention that the comparison principle does not hold for both (1.1.3) and (1.1.5),
so the notion of solutions should be understood as viscosity solutions with a priori given As(t)
(see Definition 1.2.6 and Definition 1). Compared to the original flow (1.1.3), (1.1.5) holds
an advantage that \s(t) only depends on [€)], thus it can be handled with little information
on the regularity of I';, which makes it easier to handle with viscosity solutions theory. The

existence and uniqueness for viscosity solutions of (1.1.5) were proved in Theorem 2.

Below we summarize the main results in Theorems 1.5.1 & 1.5.6, Corollary 1.5.7 and

Theorem 1.5.16. We assume the following geometric condition on the initial data:

Qo has p-reflection for some p € [0, (5¢,)7Y), ¢, = |By|Y™ and |Qq| = 1. (1.1.7)
4



Theorem 3. Under the assumption (1.1.7), there exists a viscosity solution ((€2°)1>0, Aoo) Of

(1.1.3) approzimated by solutions {((2)i>0, As) ts=0 of (1.1.5) with the following properties:

(a) For any finite time T > 0, we have

max dy(Q2, Q) = 0 and \s — Ay in L*([0,T]) as 6 — 0

0<t<T

along a subsequence.

(b) There exists r,50 > 0 such that for allt > 0 and § € (0,8) both QX and Q2 contain

the ball B,(0) and stay star-shaped with respect to it.
(¢) (Q°)i>0 uniformly converges to a ball of volume 1, modulo translation, i.e.,

inf dy(Q°,B(xo)) — 0 ast — oo
zgER™

where B(xg) is the ball of unit volume centered at x.

The upper bound of p in (1.1.7) follows from the condition || > |Bs,| in Proposi-

tion 1.5.2 and p can be chosen large if the initial volume is large.

Let us briefly discuss our assumption (1.1.7), the main ingredients and challenges in
the context of literature. It is well known ([Hui87]) that convexity is preserved in the flow
(1.1.3), and the global-time behavior of convex evolution, as well as exponential conver-
gence to the unit ball, has been studied in the smooth case [Hui87] and for anisotropic flow
[And01] and [BCCO09]. Our goal is understanding the evolution of star-shaped sets. While it
is suspected that star-shapedness is preserved in the evolution, it remains open to be proved.
In Theorem 1, we show that this property is preserved in the flow with volume-dependent
forcing, which includes (1.1.5). In particular this property implies (b) for Q9 as well as
an equi-continuity over time, yielding the first part of (a). It should be pointed out that
our geometric arguments should be incorporated with the variational methods, since the
underlying gradient flow structure of (1.1.3) and (1.1.5) provides both existence and asymp-
totic convergence results for both problems. For this reason our construction of solutions
for (1.1.3)-(1.1.5) employs constrained minimizing movements with admissible sets only for

star-shaped sets, which differs from the standard constructions.
5



To yield the second part of (a), we obtain uniform L? bound for \s, largely following
the variational arguments in [MSS16], adapted to our constrained minimizing movements
described above. The main difficulty is the lack of the uniform L° bound on A.. The
bounds for As correlates to that of the total curvature |, og, HdS. An L* bound for Aw along
with the geometric property of €2, would invoke parabolic regularity theory for curvature
flows to yield smoothness of the flow, which in turn yields sufficient compactness to discuss

the asymptotic behavior of the flow.

For us there is only L? estimates are available on A\, which is inherited from As’s (see
Section 1.5.2). For this reason, we fall short of obtaining regularity of 92° that goes beyond
Lipschitz. In particular this necessitates a notion of viscosity solutions of V"= —H + X for a
priori given A € L, ([0,00)) (Definition 1.2.12). Moreover, to assert that the limit (£25°, As)
solves (1.1.3), our notion needs to stay stable under weak convergence of A in L2. Once such
notion is established for prescribed A, we can introduce a notion of viscosity solutions of

(1.1.3).

Definition 1. The pair ((Q:):>0, A) is a viscosity solution of (1.1.3) if || = Q| and (€2):>0
is a viscosity solution (See Definition 1.2.13) of V' = —H + \(t).

The extended notion for prescribed A, Definition 1.2.12, enables us to analyze geomet-
ric properties of ((€);>0,A) for A € L}, ([0,00)). Notions of viscosity solutions for time-
integrable operator are previously introduced in [Ish85], [Bou08a] and [Bou0O8b]. These
previous notions however do not allow stability under weak convergence of operators, and

thus in this aspect our notion is new. Our notions however coincide with the previous ones

as a consequence of its stability properties, see Remark 1.2.21.

Higher regularity of volume preserving mean curvature flows remains open. Note that
gradient and curvature estimates of volume preserving mean curvature flows were proven in
[Ath97] for the rotationally symmetric case and [Hui87] for the convex case. However, in
both cases the uniform boundedness of A was essential. As we obtain the Lipschitz graph
property of 22°, we may apply interior estimates for classical mean curvature flows from

[EH91] and [Eck04], but similar obstacles on the estimates for A are expected. With higher
6



regularity, uniqueness of the solution for (1.1.3) may be shown by dilation arguments as in
[Gig06] and [BCC09].

We are short of proving smoothness of 27° beyond its Lipschitz graph property, though
we expect it to be true. Note that in non-smooth or non-convex setting, perimeter difference
may not converge into zero as Hausdorff distance converges to zero. This poses a chal-
lenge for proving asymptotic convergence of {22°. Our proof of perimeter convergence in the
asymptotic limit uses both the uniform L? estimates of mean curvature and star-shapedness
(See Lemma 1.5.18). [ES98] and [AKS10] show global well-posedness and exponential con-
vergence if the initial condition is sufficiently close to a round sphere in Holder norm and
Sobolev norm, respectively. Similar results were proven for sufficiently small traceless sec-
ond fundamental form of the initial condition in [Li09]. We mention that our result is not a
perturbative one but most of existing results on asymptotic convergence require regularity

of the interface to be smoother than C'%.

1.1.3 Outline

In section 1.2, we give a definition on the notion of “viscosity solutions” for (1.1.1) in terms
of its level-set formulation. To do so we first discuss the mean curvature flows with a priori

fixed forcing,
V =—H+n(t). (1.1.8)

Our solution €, of (1.1.1) is then defined as the viscosity solution of (1.1.8) where 7(¢)
coincides with A\(|€|). In section 1.2.2, we extend the notion ton € L;, ([0, 00)) and establish

its well-posedness by comparison principle. Then we are able to define the notion of solutions

for our original flow (1.1.3).

In section 1.3 we show that (1.1.1) preserves the p-reflection property. As in [FK14] our
arguments are based on reflection comparisons. More precisely, for given v, o € R™ define

Ir . ={x+xo: 2 -v >0} and II, := OIL}

v,xo v,xo "

Since the normal velocity law (1.1.1)

is preserved with respect to spatial reflections, comparison principle applies in the region



T x [0,00) to £ and ;"™ the reflected version of €, with respect to II,. It follows that if
Q™ Q in I (1.1.9)

then such property is preserved for later times. We will show that this property and the
p-reflection property imply that 0€, is locally Lipschitz, as long as €2; contains a small
neighborhood of the origin. Recall that (1.1.1) does not satisfy classical comparison principle.

This is why we resort exclusively to this particular type of comparison arguments.

Section 1.4.1 yields uniqueness of solutions for (1.1.1). The proof is based on small-
time uniqueness for star-shaped solutions of (1.1.8), and the Lipschitz continuity of A\ given
by Assumption A. In section 1.4.2, based on the discrete-time minimizing movement, we
generate a flat flow of (1.1.1) characterized as the continuum gradient flow of the energy
functional J(FE) given in (1.1.2). Let us mention that, due to the lack of comparison principle,
we need strong convergence of the discrete flow to characterize the continuum limit. To this
end we impose geometric constraints to the minimizing movement to generate sufficient
compactness on the discrete flow: see Definition 1.4.13. Section 1.4.3 discusses coincidence
of the two notions of solutions. Based on Proposition 1.4.17, we show in Theorem 1.4.21

that the flat flow is the unique viscosity solution of (1.1.8) with n(t) = A(|€]).

In section 1.5.1 we introduce the approximation by (1.1.5) constructed by a constrained
minimizing movement. Based on their geometric properties, we establish the first part of
Theorem 3 (a) for the limiting set 2. Section 1.5.2 completes the statement of Theorem 3(a)
and (b) by establishing a uniform L? bound of As, using the variational construction of
solutions for (1.1.5). This leads to the weak convergence of \s to A, While following the
outline given by [MSS16], our construction of local variation is more delicate (Lemma 1.5.12
and Lemma 1.5.13), since the perturbed set needs to stay within our geometric constraints.
Finally in section 1.5.3 we prove Theorem 3(c), by establishing the perimeter convergence of

QO as t — oo, using the L? bound on A\, obtained in section 1.5.2.



1.2 Viscosity solutions

Equation (1.1.1) can be formulated in terms of level sets, which allows us to introduce the
notion of viscosity solutions for the flow. More precisely, for @ := R"x (0,00) and u : Q — R,

let us define
Q= U(u) :={z € R" | u(x,t) >0} for t >0

and consider the following corresponding PDE of mean curvature flows with forcing:

Uy

Du
m(z,t) =V- <m> (x,t) + N[|Q(u)|] for (z,t) € Q. (1.2.1)

In this section, we introduce a weak notion of solutions for (1.2.1). To this end we first

introduce 7n(-) : [0,+00) — R as an a priori known continuous function of time ¢, and

consider
Ut Du
)=V | —— t t 1.2.2
Pl =V (15 ) G 4000 (122)
with initial data
u(z,0) = uo(x) := X0, — Xq¢ for z € R™ (1.2.3)

We begin by a list of definitions.

e ) :=R"x[0,00), Qr:=R"x (0,T]. For an open set U C R", we define the parabolic
cylinder Ur := U x (0,T] and the parabolic boundary of Ur, 0,Ur = Ur — Ur.

o D, (z0,t0) := By (x0) x (to — 2. to], 0,0, := (B, (x0) x {to}) U (0B (o) X [to — 12 to]).

o Conle) = o+ [=hh] x Br(0), Ci(e) = o + [0,0] x By=(0), Br'(0) = {o e
R |z <1}

e We denote S™*™ as the space of n x n real symmetric matrices.

e For u: L C R? = R we denote its semicontinuous envelopes u,,u* : L — R by

us(z) == 161%1 |z32\£<e, u(y) and u*(z) = 161%1 |$S—1;\?e, u(y). (1.2.4)
Y ye



e For a sequence of functions {uy }ren on Q,

1 1
lim Sup*uk(‘rat> = hm sup {uk<y78) kZ.]? |y—l’| < -, |S_t| < _-}7 (125)
k—o00 J—o0 J J
o o . 1 1
lim inf , ug(x,t) ;= lim inf {uk(y, s):k>j, |ly—z| <=, |s—t < —.} . (1.2.6)
k—o00 )= J J

e For a function h : @ — R we denote its positive set by Q;(h) := {x € R" : h(x,t) > 0} for
t>0.

e For a set U in R? and d € N, we denote the signed distance function by
sd(z,U) := §(z,U) — §(z,U°). (1.2.7)

We use the convention that sd(x,U) := oo if U is empty and sd(z,U) := —oo if U° is empty.

1.2.1 Viscosity Solutions for continuous forcing

Now we recall the definition viscosity solutions for equations (1.2.2). Let us denote A :=

(R"\ {0}) x 8™ x [0,00) and define F': A — R by

F(p, X, ) := trace <(1 - % ® %) X) +(t)|p)-

Then, the equation (1.2.2) can be rewritten in the form of

uy = F(Du, D*u,t).
Since the set A is dense in R™ x 8"*" x [0, 00), the envelopes F, and F* are well-defined in
R"™ x 8™ x [0, 00) with value in R U {£o00}.

Recall a test function from [IS13, Definition 3.2]. We say that a function ¢ : Q@ — R is a

test function on Q is if ¢ is C? with respect to  and C* with respect to t.

Definition 1.2.1. [CGGI1, Definition 2.1], [Bar13, Definition 6.1]

e A function u: Q — R is a viscosity subsolution of (1.2.2) if u* < +o0 and for any test

function ¢ on @ that touches u* from above at (xg,ty) we have

¢t(l’0, to) S F* (D¢(I0, t0)7 D2¢(I0, to), to)
10



e A function u : Q — R is a viscosity supersolution of (1.2.2) if u, > —oo and for any

test function ¢ on @ that touches wu, from below at (xq,ty) we have
¢t<x07 tO) 2 F*(D¢<:U07 tO)? D2¢<.’L’0, tO)a tO)

e A function u : QQ — R is a viscosity solution of (1.2.2) with initial data uy : R™ — R if

u* is a viscosity subsolution and w, is a viscosity supersolution, and if u* = (ug)" and

us = (up), at t = 0.

e For any n € C([0,+00)), ()0 is a viscosity solution (subsolution or supersolution,

respectively) of
V= —H+(t), (1.2.8)

if u = xq, — Xa.c I a viscosity solution (subsolution or supersolution, respectively) of

(1.2.2)-(1.2.3).

Theorem 1.2.2.

1. [GGI91, Theorem 2.1] Let T > 0 and U be a bounded domain in R™. Let u and v be
a bounded subsolution and supersolution, respectively, of (1.2.2). If u* < wv, on 0,Ur,

then we have u* < v, on Urp.

2. [BSS93, Theorem 1.1] For a given bounded domain Qo C R™ and uniformly continuous
initial data ug : R — R such that Qy = {z € R" : ug(x) = 0}, there exists a unique

viscosity solution u of (1.2.2), which is uniformly continuous in Q.

3. [BSS93, Theorems 1.1] Let u and v be a uniformly continuous subsolution and super-
solution, respectively, of (1.2.2) in Q. If u(-,0) < wv(-,0) in R", then we have u < v in
Q.

The following lemma is a consequence of the stability properties of viscosity solutions:

see for instance Lemma 6.1 in [CIL92].
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Lemma 1.2.3. For n € N, let u, := xar — X(qn)c be a viscosity solution of (1.2.2) in Q.
If 02} converges to 0% as n — oo in Hausdorff distance, uniformly for all t > 0, then

U= X, — Xof is a viscosity solution of (1.2.2).

Note that (1.2.2) is geometric, that is F' satisfies the scaling invariance
F(ap,aX +bp @ p,t) = aF(p, X, 1) (1.2.9)

fora>0,0€eR, peR" X € 8" and t > 0. Thus, (1.2.2) has the following invariance of

geometric equations.

Theorem 1.2.4. [Gig06, Theorem 4.2.1] Let u and v be a subsolution and supersolution,
respectively, of (1.2.2). If ¢ : R — R is upper semicontinous and nondecreasing, then the
composite function ¢ou is also a subsolution. Similarly, if ¢ : R — R is lower semicontinous

and nondecreasing, then ¢ owv is also a supersolution.

Let v be a continuous viscosity solution of (1.2.2) with uniformly continuous initial data
up : R™ — R such that Q5 = {z € R" : yp(z) = 0}. Based on the invariance in Theorem
1.2.4 and the stability of viscosity solutions in [CIL92, Lemma 6.1], we obtain a discontinuous

viscosity solution u of (1.2.2) and (1.2.3) given by
u(z,t) = Xa,) — X w)c and Q(u) = Q(v) for all t >0 (1.2.10)

(See [BSS93, Theorem 2.1]). Note that §2;(u) satisfies (1.1.8) if 9 is C?. We will thus
consider the set €); obtained from the above viscosity solutions formulation as a weak notion

of sets evolving by (1.1.8).

Remark 1.2.5. Note that in Theorem 1.2.2(1), we need u* < v, at the initial time, so this
theorem does not yield the uniqueness for discontinuous solutions. Indeed solutions of the
form (1.2.10) may be non-unique due to the “fattening” of the zero level set, see the discussion
in [BSS93], [ESS92], [Gig06] and [SS93]. We will show in section 1.4.1 that our solutions

are unique under the geometric constraint on the initial data.
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Definition 1.2.6.

e A function u : Q — R is a viscosity subsolution (supersolution) of (1.2.1) and (1.2.3) if
u is a viscosity subsolution (supersolution) of (1.2.2) and (1.2.3) with continuous and
bounded 7(t) = A\(|Q:(u)|). A function w is a viscosity solution of (1.2.1) and (1.2.3) if

u is a viscosity solution of (1.2.2) and (1.2.3).
e For n € C([0,+00)), ((€)>0, A) be a viscosity solution of
V =—H+ M) (1.2.11)
if (Q¢)¢>0 is a viscosity solution of (1.2.8) with A(|€2%]) = n(t).

Remark 1.2.7. For (1.2.1) and (1.2.3), the comparison principle fails, and thus viscosity
solutions theory cannot be directly applied. Indeed the well-posedness of (1.2.1) and (1.2.3)

will be established later in section 1.4.2.

Next we introduce a regularization that is often used in free boundary problems (see e.g.
[CS05] and Lemma 3.1 in [Kim03]). This is useful in our geometric analysis in sections 1.4.1

and 1.4.3.

Lemma 1.2.8. Consider a continuous function [ : [0,00) — R with L(t) := fotl(s)ds <A

in [0,T). Let u be a viscosity supersolution of (1.2.2). Then, the function

a(z,t) == inf  w(y,t),
YEBA_L(1)(T)

1S a viscosity supersolution of
iy = F(Da, D*u,t) + 1(t)|Da|  in Q. (1.2.12)
Similarly, let u be a viscosity subsolution of (1.2.2). Then, the function

a(z,t) = sup  u(y,t)
yeEA—L(t)(z)

18 a viscosity subsolution of

iy = F(Da, D*u,t) — 1(t)|Da|  in Qr. (1.2.13)
13



Proof. Let us show that the function @ is a viscosity supersolution of (1.2.12), the subsolution
part can be proved with parallel arguments. For simplicity we will only present the proof

for the case [(t) = ¢ > 0, in which case T'= A/c.

Suppose a test function ¢ touches @, from below at (zg,ty) € Q7. It holds that

a*(mo,to) — qb(xo,to) =0 and @*(x,t) — qb(l‘,t) > 0 in Ng(ﬂ?o,to) = Bg(&?o) X (to — (5, to]

(1.2.14)
for some 0 > 0. From the construction of ., there exists 1 € R™ such that
|z1 — x| < A — cty and U, (0, o) = u«(x1,t0). (1.2.15)
If Dé(zo,to) = 0, then it suffices to show that
Gi(z0,t0) > Fu(Do(x0,t0), D*¢(x0,t0), to)- (1.2.16)

We choose the shifted test function ¢ (z,t) := ¢(x — x1 + o, t) and claim that ¢ touches w,
from below at (z1,tp). As ¢ > 0, (1.2.15) yields that

‘1‘1 — .T0| S A —ct for all ¢ < (to - 5, to]. (1217)

From (1.2.14), we have wu.(x1,to) — ¥(z1,t) = 0. From we have u,(xy,ty) — ¥ (x1,t9) = 0
again and (1.2.17), it holds that

Us(7,1) — P(2,1) > Uu(T — 71 + 20,1) — ST — 21 + 70, 1) for any (x,t) € Ns(w1,t0)
(1.2.18)

which yields the claim. Since u, is a viscosity supersolution of (1.2.2) we have the corre-

sponding PDE inequality for ¢ at (xy,t,), which translates to (1.2.16).

Next, we suppose that D¢(xg,tg) # 0. If |1 — z9] < A — cty, then u(-,tg) is constant
in a small neighborhood of zy in R™ and it holds that D¢(zg,%) = 0. Thus, we have
|z1 — xo| = A — ctg. We claim that the shifted test function ¢(x,t) := ¢(z — (A — ct)i, t)
touches u, from below at (x1,%y) where

N 1 — Zo

= —’IL’1 =zl
14



First, note that xy, — (A — cto)il = xp and thus u.(z1,ty) — ¥(x1,ty) = 0. Furthermore, if we

choose € = $ min {4, %y}, then

(x — (A—ct)ii,t) = (x — x1 + 20 + c(t — to)ni, t) € Ns(xg,to) for all (x,t) € No(x1,1p).
(1.2.19)

(1.2.14) and (1.2.19) imply that
us(2,t) — Y(x,t) > u(z — (A — ct)n,t) — ¢(x — (A —ct)ii,t) >0 for all (x,t) € No(xq,tp),

which yields the claim.

As described in the first case, since u, is a viscosity supersolution of (1.2.2) we have the

corresponding PDE inequality for ¢ at (z1, 1), which translates to
gbt(l'o, to) + CD¢(ZE‘0, to) -1 > F*(D¢(ZL’0, to), D2¢(I07 to), to) (1220)

Since D¢(xg,ty) # 0 and the level set {x € R" : ¢(z,t9) = ¢(xo,t0)} touches 0, () from
inside at xg, —D¢(xg,to) is parallel to the outward normal 77 of 9, (%) at zy. Therefore,

(1.2.20) yields

¢t(:€0, tO) Z F*(D(b<x07 tO)? D2¢<.’L’0, tO)? tO) + C’D(b(x()? t0>|
Now we can conclude that the function 4 is viscosity supersolution of (1.2.12).

In general, we choose the shifted test function ¢ (z,t) := ¢(z—x1+x0,t) or ¢(x— L(t)7i, t)

and apply the parallel arguments to conclude. O

The following lemma will be used in section 3 to ensure uniform continuity of €;(u) over

time in Hausdorff distance.

Lemma 1.2.9. Let u be a bounded viscosity solution of (1.2.2) given by the form (1.2.10).
Then the following holds for 0 < & < ——: If Bas(zo) C () (or Qu(u)), then

lInlloo
Bs(x0) C (Qu(w))C (or Qu(w)) forty <t <t + 2.

Proof. We will verify the case when Bas(xp) lies outside of €, (u), since the rest follows from

a parallel barrier argument. Let us compare u with a radial barrier ¢ defined by

¢ = T XBy(#(0) + XBr(t)(Io)c’
15



where 7 : [to,t(ﬁ—%) — R solves r(ty) := 26,7'(t) := =2+ — |[n]lw. By assumption
U*(xa to) < ¢*($, to)-
Let us show that ¢ is a viscosity supersolution for ¢ty <t <ty + %. Since ¢ is a radial

function, the normal velocity on 0€2;(¢) is equal to —r/(t), and the mean curvature on 9 (9)

_n—1

is Ok Moreover, we have

n—1 n
5 Il 2 =5 (1.2.21)

r'(t) = — 5

Since r(tg) = 20, it follows that r(t) > § if to <t < tp + %. Therefore, it holds that for

to <t <to+2

, n—1 n—1
—r'(t) = + o> —
(1 Inlle > "

. +(t) (1.2.22)
and we conclude. Now by Theorem 1.2.2(1), u* < ¢, for tg < t < t0+§ and thus Bs(zo+v)

lies outside of ;(u) for tog <t < ty+ %. O

1.2.2 Viscosity Solutions for L}  forcing

loc

In the level set formulation, €, is given by Q;(u) := {z € R" : u(z,t) > 0} where u : Q@ — R

solves the following equation:
uy = F(Du, D*u) + \(t)|Dul (1.2.23)
where F': (R"\ {0}) x §™"™ — R is given by

F(p, X) := trace <(I - “% ® “%) X) (1.2.24)

with initial data

u(z,0) = ug(z) := xa, — Xq¢ for z € R". (1.2.25)

We recall definitions of classical solutions and equivalent definitions of viscosity solutions

of (1.2.23) with fixed A € C([0, +00)).

Definition 1.2.10. Consider a cylinder D, C @ and F given in (1.2.24).

16



e A function ¢ € C*'(D,) is a classical subsolution in D, of (1.2.23) if it holds that

¢y < F.(Dé, D*¢) + A\|D¢| in D,. (1.2.26)

e A function ¢ € C*'(D,) is a classical supersolution in D, of (1.2.23) if it holds that

¢y > F*(D¢, D*¢) + A\ Dg| in D,. (1.2.27)

e We say that ¢ € C*'(D,) is a classical strict subsolution (supersolution, respectively)

on D, of (1.2.23) if the strict inequality of (1.2.26) ((1.2.27), respectively) holds in D,

Definition 1.2.11. [CS05, Definition 7.2]

e A function u : Q — R is a viscosity subsolution of (1.2.23) if u* < oo and for D, C @
and for every classical strict supersolution ¢ € C*!(D,.), u* < ¢ on 8,D, implies u* < ¢

in D,.

e A function u : QQ — R is a viscosity supersolution of (1.2.23) if u, > —oo and D, C Q
and for every classical strict subsolution ¢ € C*'(D,), u, > ¢ on 9,D, implies u, > ¢
in D,.

In this section, we develop a notion of viscosity solutions for (1.2.23) for a fixed A in
L} .([0,00)). Some notations are in order. For a continuous function 7 : [0, +00) — [0, +00),

the sup convolution @(+;+y) and inf convolution u(-; ) is given by

u(z,t;y) == sup u(y,t), (1.2.28)
YEB (1) (2)

w(z,t;y) == inf  wu(y,t). (1.2.29)
yEB'y(t)(x)

Note that u* = (@)* and @, = (), (See Lemma A.3.8).

Definition 1.2.12. For A € L},.([0,00)), A(t) := [y A(s)ds and F given in (1.2.24),

loc

e A function u : @ — R is a wiscosity subsolution of (1.2.23) if u* < oo and for any
0 <t <tyand © € C((t1,2)) N C([t1,ts]) such that © > A in [t1,ts], a function
u=1u(;© — A) given in (1.2.28) is a viscosity subsolution of

uy = F(Du, D*u) + 6’| Du (1.2.30)

17



in R™ x (t1,%3) in the sense of Definition 1.2.1.

e A function u : Q — R is a viscosity supersolution of (1.2.23) if u, > —oo and for any
0 <t <tyand © € CY((t1,t2)) N C([t1,ts]) such that © < A in [t1,t5), a function
u=1u(;—O+A) given in (1.2.29) is a viscosity supersolution of (1.2.30) in R™ x (¢, t5)

in the sense of Definition 1.2.1.

e A function u : Q) — R is a viscosity solution of (1.2.23)-(1.2.25) (or (1.2.70)) if u* is a
viscosity subsolution of (1.2.23) and w, is a viscosity supersolution of (1.2.23), and if

u* = (up)" and u, = (ug), at t = 0.

We also define the corresponding notion of viscosity solutions for sets.

Definition 1.2.13. For A € L}, ([0, 00)), (Q¢):>0 is a viscosity solution (subsolution or super-
solution, respectively) of V.= —H + \(t) if u := xq, — xq,c 18 a viscosity solution (subsolution

or supersolution, respectively) of (1.2.23)-(1.2.25) in the sense of Definition 1.2.12.

Remark 1.2.14. Note that for A € C(]0,400)), Definition 1.2.12 coincides with Defini-
tion 1.2.1. First of all, Lemma 1.2.8 implies that a viscosity subsolution (supersolution,
respectively) in the sense of Definition 1.2.1 is that in the sense of Definition 1.2.12. On the
other hand, if A\ € C([0,+c0)), then A € C'([0,+00)). Thus, we can choose © = A. As
u(+;0) = u(-;0) = w in @, we conclude that a viscosity subsolution (supersolution, respec-

tively) in the sense of Definition 1.2.12 is that in the sense of Definition 1.2.1.

In the rest of this section, we develop existence and uniqueness results for (1.2.23). We
first show the comparison principle in Theorem 1.2.15, which yields uniqueness (Corol-
lary 1.2.16). Moreover, we show the stability of viscosity solutions of V' = —H + A\(¢)
for { M\ }ren C L} ([0,00)) when a sequence of time integrals of )\, converges. This yields

loc

existence (Corollary 1.2.20).

Theorem 1.2.15. For A € L, ([0,400)), let u : Q@ — R and v : Q — R be a viscosity

subsolution and supersolution of (1.2.23), respectively, in the sense of Definition 1.2.12. If

for some r > 0 and (zo,ty) € Q such that D,(zo,ty) C Q we have u* < v, on 9,D,(xg, 1),

18



then
u* < w, on D,(xg,1p). (1.2.31)

Proof. For simplicity, consider (xg,ty) = (0,72) and denote D, := D,.(0,r*) = B,(0) x (0, r?].

Note that we may assume the following, by adding a small constant to v:

u* < v, on 0,D,. (1.2.32)

1. Let us show that there exists €; > 0 such that
u(;e1) < 0.(5€1) on G,D;. (1.2.33)

Suppose that (1.2.33) does not hold for all £; > 0. Then, there exists a sequence {{{ =

u* (5,1; %) > 7, (5,1; %) . (1.2.34)

By the semicontinuity of u* and v,, there exists {(£7,£3) hren C @ x Q such that

(xk, t) tren C 0, D, such that

1 1
GGl <o lG-al< (1.2.35)

and
u*(67) = v.(&)). (1.2.36)

By compactness of D, 1, there exists a subsequence {k;};en and (€2.,62) € Q x Q such
that {(&7 .80 )} ien converges to (£2,€3,). From (1.2.35) and the closedness of 9,D,, we
conclude that &2, = &2 € 9,D,. From (1.2.36) and the semicontinuity of u* and wv,, it holds
that

w*(€2) > lim supu*(67) > lim infv,(&) > v.(£2) = v.(€2). (1.2.37)
1—00 t =00 i
This contradicts to (1.2.32).

2. Note that C'([0,7?%]) is dense in C([0,r?]). There exists © € C'([0,7?]) such that

sup [A() —O(1)] < 2 (1.2.38)

te[0,r2] 2
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where £; > 0 is given in Step 1. Then, u*(-; & +O(t) — A(t)) and v.(-; F — O(t) + A(t)) are
well-defined in D,. Note that u* and v, given above are respectively viscosity subsolution

and supersolutions of (1.2.30).
From (1.2.38) and (1.2.33), it holds that

W (55 0 - AW) ST () <Tlie) <5 (55 - OW+A®)  (12:39)

on 0,D,. From comparison principle for (1.2.30) in [CGGI1, Theorem 4.1], we conclude that

o~ €1 ~ &1
a1 _ < = 2.
@ ( LS +6() A(t)) <7, ( S -6 + A(t)) (1.2.40)
on D,, which implies (1.2.31). O

Corollary 1.2.16. For A € L, ([0, +0)), let u: Q — R be a viscosity solution of (1.2.23)

in the sense of Definition 1.2.12. If u* = u, = g on 0,D, for g € C(0,D,), then u is uniquely

determined in D, by g.

Next we develop stability results for {\g}ren such that {Ay}reny uniformly converges to
Ao where
t
D breroiay C L ([0, 400)) and Ay(t) = /0 Me(s)ds for k € NU {400} (1.2.41)
Note that for T > 0, the weak convergence of {A;}ren in LP([0,7]) for any p € (1,00
implies the uniform convergence of {Ag}reny in C([0,77]). Thus, we obtain stability results
for a weakly converging sequence in LP([0,T7]) for any p € (1, oo from Theorem 1.2.17 below.

This results will be used Corollary 1.5.7.

Theorem 1.2.17. For {A\;}renuf+oc} 0nd {Ap}renufrooy given in (1.2.41), assume that

{Ar}ren locally uniformly converges to Ao. Let {uy}ren be a sequence of viscosity sub-

solutions (supersolutions, respectively) of (1.2.23) with A = A\ for all k € N in the sense of

Definition 1.2.12. If u := lirrli sup*uy < 0o (u = lirzl inf , up > —o0, respectively), then u
—00 —00

is a viscosity subsolution (supersolution, respectively) of (1.2.23) with A = Ay in the sense

of Definition 1.2.12.
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Proof. We only show the subsolution part, since the rest can be shown with parallel argu-

ments. Let {ug}ren be a sequence of viscosity subsolutions.

1. Choose any 0 < t; < ty and © € C*((t1,t2)) N C([t1,ts]) such that © > A, in [ty, ).
Let us show that u(-;© — Ay) given in (1.2.28) is a viscosity subsolution of (1.2.30). From
the equivalent definition of viscosity solutions in Definition 1.2.11, it is enough to show that
for any D, C R™ x (11, 15)

u(;0—-Ay) <¢in D, (1.2.42)
where ¢ € C*!(D,) is a classical strict supersolution of (1.2.30) given in Definition 1.2.10
such that

u(;0 —Ax) < ¢ on 0,D,. (1.2.43)

First, as u < 400 and wu is upper semicontinuous, we get u* < oo. Next, by the upper

semicontinuity of u*, there exists €5 > 0 such that
U (30 —Ay) <p—3e2 on0,D,. (1.2.44)
From the upper semicontinuity again, there exists €; > 0 such that
u (61 +0 —Ay) <¢p—2e9 on0,D,. (1.2.45)

By uniform convergence of Ay, there exists k1 € N such that for all & > £y, it holds that

€1
HAOO — AkHLoo([thtﬂ) < 5 (1‘2.46)

By definition, @, = ug(-;e1 + © — Ag) is a viscosity subsolutions of (1.2.30) in (¢4, ) for all
k> k.

2. Let us show that there exists ky € N such that ky > k; and
up(61+0© —Ap) < ¢p—ey0n0,D, for all k> ky (1.2.47)

where ki is given in Step 1. Suppose that such ks does not exist. Then, there exists a
sequence {k;}ien converging to infinity and {f,i = (:16;.3,1%)}Z oy C 0pD; such that k; > ki
and

Uy (Ghie1+O© —Ay,) > (&) — e forall i € N. (1.2.48)
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By the upper semicontinuity of u*, there exists {&; }ien C @ such that
& =&l <er+ O —A,,  and  uj (&) > (&) — e (1.2.49)

Furthermore, there exists {g}ji}ieN C @ such that

1 *
€ -Gl < - and (&) o0 > up (&)- (1.2.50)
From (1.2.49) and (1.2.50), we get
. 1
& — & <er+0 — Ay, + = and w, (&) = o(&) — 26 (1.2.51)

As {& }ien C 0pDy, (1.2.46) and (1.2.51) imply that

{fgi}ieN C E? where r=r + 281 + H@ — AOOHLOO([tl,tQD + 1. (1252)

From compactness of Dz, there exists a subsequence {ki, }jen and (€1,,63)) € Q x Q such

that {(&;, ,&) )}jen converges to (£1,€5,). (1.2.51) implies that

€3, -l <1+ 0 - Ay (1.2.53)
and
u(&2,) > lim supuy, (& ) > lim sup ¢(&), ) — 260 = d(£L) — 2e0. (1.2.54)
j—o0 7 j—o00 K

This contradicts to (1.2.45) and we conclude (1.2.47).

3. From Step 1 and (1.2.47), comparison principle in Theorem 1.2.15 implies that
Up(e1+0O —Ag) <p—eyin D, for all k > ko (1.2.55)

where €, and ey are given in (1.2.45), and ks is given in (1.2.47). The above and (1.2.46)

imply that
up(y,t) < d(w,t) — ez for all (z,t) € D, and y € Bey  g(4)-a (@) for all k >k (1.2.56)
and we conclude (1.2.42). O

Let us construct radial barriers of (1.2.23).
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Lemma 1.2.18. Let A € L'([0,+00)) and A : [0,+00) — R defined by

A(t) == /Ot A(s)ds. (1.2.57)

For a constant ¢ > || A oo (o,400)), define (- :Q = R and ¢t : Q = R by

(2t A, ) = —X{wermija|<c—a@} (@) and (T (z,t; A, €) := X{permijoj<cra@} (). (1.2.58)

Then, ¢~ and (T are respectively a wviscosity subsolution and a wviscosity supersolution of

(1.2.23) in the sense of Definition 1.2.12.

Proof. Let us show that (~ is a viscosity subsolution of (1.2.23) only. The respective one
can be shown by parallel arguments.

Choose any 0 < t; < ty and © € C*((t1,t2)) N C([t1,ts]) such that © > A in [t1,t5]. Let
us show that E:(, © — A) given in (1.2.28) is a viscosity subsolution of (1.2.30). Note that

we have

—

C(z,t;0 — A) = —xn, (z) where Ny :={x e R" : |z| < ¢ — O(t)} (1.2.59)

in Q.

Suppose that ¢ € C*1(Q) touches Zj from above at (xg,t). First, consider the case

|zo] # ¢ — O(ty). In this case, as N, given in (1.2.59) moves continuously in time, ¢~ is

constant near (xzg,%p). Thus, it holds that
di(z0,t0) <0, Do(x0,t0) =0, and D?*¢(zg, ) > 0. (1.2.60)
The ellipticity of F' given in (1.2.24) and (1.2.60) implies

¢t($0, to) < F*(D(b(ilj'o, to), DQ(b(l'o, to)) + @l(t0>|D¢<ZIZ’0, to)’ (1261)

Let us consider the case |zg| = ¢ —O(tp). If 2 is a local minimum point of ¢(-, %) in R",
then by the parallel arguments above, we get (1.2.60) and (1.2.61). More precisely, in this
case, we have ¢(xg, to) = 0, Do(zg,t9) = 0 and D?*¢(xg, to) > 0. We claim that ¢;(zg,t5) < 0.
As © € C'((t1,12)) and ¢ € C*1(Q), we have for ¢ € [0, +00)

c—O(t) = |zg| + O'(t)(to — t) + o[t — to]) as t — 1o (1.2.62)
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and

Bz, 1) = (o, to)(t — to) + (x — o) D*¢(w0, t0) (2 — 20) + o(|t — to]) + o]z — x0|?)
(1.2.63)

as (z,t) = (xo,to) for (z,t) € Q. As ¢ touches ¢~ from above at (2o, o), there exists € > 0

such that

—~

P(x,t) > (~(z,t) for (x,t) such that |x — zo| < 2|0'(to)|e and ¢ € (tg — €,tp).  (1.2.64)
For t € (ty — €,t9) we define

— Ot if 2 £ 0
y=y(t) = o= Ol o0 #0, (1.2.65)

lc—0O(t)|ey ifxg=0.

Note that E:(y(t),t) =0 for tg —e < t < ty, and from (1.2.62) we have |y(t) — zo| =
|©'(to)(to — t)| + o(|t — to|). Thus (1.2.63) and (1.2.64) yield that for a sufficiently small

€1 > 0 we have
¢<y(t),t) = (bt(l'o,to)(t — to) + O(|t — to‘) > ?(y(t),t) =0ast—t for tg—e1 <t <t
(1.2.66)

We conclude that ¢;(xg,ty) < 0 and therefore (1.2.61) has been verified.

Now, suppose that xg is not a local minimum point of ¢(+,%y). Then, both N; given in

(1.2.59) and a sublevel set O; of ¢ defined by
O :={x € R": ¢(x,t) < d(xo,t0)} (1.2.67)

are nonempty near (zo,%p). By comparing the normal velocity and mean curvature of the

level sets N, and O;, we conclude that

th ’ ( D¢ > n — 1
———(xg,tg) < O'(tg) and V - | —— | (xo, o) > >0 1.2.68
g (" to) = O1t0) Do) 01 2 Ty (1.2.68)
which implies (1.2.61). O
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Let us recall C, from [CGG91] for N C R*, k € N and a € R,
Co(N) :={g € C(N) : g — a has compact support in N'} (1.2.69)
and consider continuous initial data g € C,(R"),
u(z,0) = ug(x) := g(z) for z € R". (1.2.70)

such that {z € R" : g(z) > 0} = Qp and {x € R" : g(z) < 0} = (Q)°.
From Theorem 1.2.15 and Theorem 1.2.17 combining with radial barriers in Lemma 1.2.18,

we get existence and uniqueness of (1.2.23) with continuous initial data.

Theorem 1.2.19. For A € L'([0,T]) and T > 0, there is a unique viscosity solution u in
Co(Qr) of (1.2.23)-(1.2.70) in the sense of Definition 1.2.12.

Proof. As C*([0,T]) is dense in C([0,T]), there exists {Op}ren C C([0,T]) such that
{Ok }ren uniformly converges to A in C([0,7]). From the existence of viscosity solutions

in [CGGI1, Theorem 6.8] of
u; = F(Du, D*u) + (©)'|Dul in Q (1.2.71)
with initial data (1.2.70), there exists a sequence of viscosity solutions {uy}ren C Cy(Q7) of

(1.2.71)-(1.2.70). Here, F' and C, are given in (1.2.24) and (1.2.69), respectively.

Define u* := lim sup *uy and v~ := lim inf , ux. As g € C,(R"), from Theorem 1.2.15

k—o0 k—o0
we have ||ug ||~ < ||g]|z~ and thus ||u®| =~ < +00. We claim furthermore that the supports

of {uy — a}ren are uniformly bounded in Q7 for all k& € N and thus that u* — a is compactly

supported in Q7. To check this claim, one can compare {u; — a}ren with radial barriers

(lgllz= + lal) ¢*(s O, co)

with (* given in Lemma 1.2.18 and with sufficiently large cq > 0.

Let us show that

vt =u"  in Q7. (1.2.72)
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First, by definition of lim sup* and lim inf, in (1.2.5), it holds that

ut >uT in Qr. (1.2.73)

On the other hand, from the uniform convergence of {Oy}reny to A in C(]0,7]) and
Theorem 1.2.17, w* and u~ are a viscosity subsolution and supersolution of (1.2.23)-(1.2.70),
respectively. Recall that g is continuous in R” and u = g at t = 0 for all £ € N. Indeed, by
comparing solutions of (1.2.23) with radial barriers, we can check that (u*)* = (u7). = g at
t = 0. In the following argument we assume that g > 0 since otherwise we can always add a
constant. To check this, suppose that g(z) > ¢ for some constant ¢. Due to the continuity

of g there is a small ball B,(x¢) which lies in the set {g > ¢}. Now consider the radial barrier

2(n— 1)t

. + O4(t) — ©4(0).

O (@, 1) 1= CXB,( (x0), Where ry(t) ;=1 —

Using the fact that ©, uniformly converges to A in C([0, T]) as k — oo, one can choose a small
d > 0 independent of k and kg € N such that 7(t) > 5 forall 0 <t < 0 and k > kg. Thus ¢y
is a well-defined subsolution of (1.2.71) for 0 <t < § and k > kq. Since ¢x(+,0) < g = ug(+,0),
it follows from the comparison principle of (1.2.71) that ¢k (-,t) < ug(+,t) for all k > ko and

for 0 <t < 4. Thus we can conclude that
¢ <ug(y,t) forall k> ko, |y—zo|< g and 0 <t <.

This yields that g(zg) < (u%).(20,0). Since xy was arbitrary it follows from that g <
(u®).(-,0). A parallel argument replacing ¢ by another radial barrier of the form maxg —

(max g — b)XB, (o) 10 the set {g < b} for some b, we can conclude that (u*)*(-,0) < g.
Thus, (u™)* = (u™). = g at t = 0 and Theorem 1.2.15 implies
ut <u”  in Qr. (1.2.74)
Therefore, we get (1.2.72) from (1.2.73) and (1.2.74). From Corollary 1.2.16, we conclude

that u™ (= u~) is a unique viscosity solution in C,(R™) of (1.2.23)-(1.2.70). O

From parallel arguments in the proof of [BSS93, Theorem 2.1], we conclude existence of

(1.2.23)-(1.2.25).
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Corollary 1.2.20. For A\ € L ([0,+00)), there exists a wviscosity solution of (1.2.23)-
(1.2.25) in the sense of Definition 1.2.12.

Remark 1.2.21. Note that for continuous A in (1.2.23), our notion coincides in Defini-
tion 1.2.12 with that of [Ish85], [Bou0O8b] and [Bou08b]. While the settings in these papers
are different than ours, both our and their notions are shown to be stable under strong
L'-convergence of operators. Thus we expect that our notion coincides with an appropriate

extension of [Ish85] for (1.2.23) with A € L}, ([0, +00)).

loc

1.3 Geometry of the flow

In this section we study geometric properties of evolution of (1.2.2), following a strong notion
of star-shapedness, p-reflection. This property, introduced in [FK14], is useful for problems

which satisfy the reflection comparison principle (See Theorem 1.3.5 below).

1.3.1 Geometric properties

Definition 1.3.1. A bounded set €2 in R" is star-shaped with respect to a ball B,(0) if for

any point y € B,(0), € is star-shaped with respect to y. Let

Sy = {8 : star-shaped with respect to B,(0)} and S, g := S, N{Q:Q C B(0)}.
The following lemma is immediate from the interior and exterior cone properties of sets
in S,.

Lemma 1.3.2. For a continuously differentiable and bounded function ¢ : R® — R, let us
denote the positive set of ¢ by Q(¢p). Let us assume that Q(¢) contains B.(0) and D¢ # 0
on 0Qp). Then the set Q@) is in S, if and only if
D¢ >
x-My=x-———==(x) | >r forall x € 0¢),
(-4 @

where 1, denotes the outward normal of 0Q(¢) at x.
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\I/H(Qt)

(a) Star-shapedness (b) p-reflection

Figure 1.1: Geometric properties

Next we proceed to define the reflection property. For a hyperplane II = II,(s) := {x :

x-v = s}, let ¥y denote the corresponding reflection, i.e.,
Upi(e)(2) == 2 — 2(x — sy, v)v. (1.3.1)
For II that doesn’t contain the origin, we denote the half-spaces divided by II by IT*T and
I1T~, where II™ contains the origin.

Definition 1.3.3. [FK14, Definition 10] bounded, open set 2 has p-reflection if

(i) € contains B,(0) and

(i) Q satisfies, for all v € S"! and all s > p,

Wi, (2N T (5)) € QAT (s).

The p-reflection property can be viewed as a smallness condition on the Lipschitz norm
distance between 02 and the nearest ball (see the Appendix in [FK14]). The following
lemma states several properties and the relationship between the two concepts introduced

above, p-reflection and S, (See Figures 1.1, 1.2 and [FK14, Figure 2]).

Lemma 1.3.4. [FK14, Lemma 3, 9, 10, 24/

1. For a bounded domain ) containing B,(0), the followings are equivalent:
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(i) Q € S,.

(i) There exists g = €o(r) > 0 such that
Qcc ﬂ (1+e)Q+ 2] forall0 <e <epand 0 < <, (1.3.2)
|z|<de

(iii) For all x € ), there is an interior cone to ):
10(z,7) = ((x +C(=x,0,.,)) N C(a, g - em)) UBL(0) CQ for o] >r (1.3.3)

where C(x,0) is a cone in the direction x with opening angle 6 for x € R™ and § € [0, 7],

C(z,0) :={y | (x,y) > cosb|x||y|} and 0, = arcsiné € [O, g} : (1.3.4)

(a) A cone in the direc- (b) An interior cone to 2

tion x with opening an-

gle 0

Figure 1.2: The cone property
(iv) For all x € QF, there is an exterior cone to Q:

EC(x,7) :=x + C(x,0,,) C Q° where 0,, = arcsin |T—| € [0, g] : (1.3.5)
T

2. Suppose that ) has p-reflection. Then €2 € S, with

_ (s 2 2\1/2
r (xle%{;zlx‘ p)E (1.3.6)
Moreover
— inf < p. 1.3.
feua%\fd inf |z < 4p (1.3.7)

29



3. Suppose that Q is in S, g. If there exists p > 0 such that B,(0) C Q and p* > 5(R*—r?),

then €2 has p-reflection.

Theorem 1.3.5. (Reflection Comparison) Suppose that Qo has p-reflection. Let u be a
bounded viscosity solution of (1.2.2) given by the form (1.2.10). Let II be a hyperplane in R™
such that IIN B,(0) = 0. Then the reflected function u(Vn(x),t) is also a bounded viscosity

solution in I1~ x (0, 00). Moreover

U (Q NI C QNI for all t > 0 if true at t = 0. (1.3.8)

Proof. Tt is easy to see that u(Wp(x),t) is also a viscosity solution of (1.2.2) since F' is

independent of x.

To show (1.3.8), we will use the comparison principle in IT~ x [0, 00). To do so it is easier
for us to consider a continuous version of u, i.e. let @ be the unique viscosity solution of (1.2.2)
with uniformly continuous initial data @(z,0) defined by a(z,0) := — min{sd(z, o), 2R},
where R is chosen large enough that 0y CC Bg. As w is given by the form (1.2.10), Theorem

1.2.4 combined with the uniqueness implies that Q;(@) is equal to € (u) for all ¢ > 0.

Note that Theorem 1.2.2(2) implies that @ is uniformly continuous. As (-, 0) is bounded
in R", we apply Theorem 1.2.2(3) to conclude that @ is bounded in Q. Since (¥ (z),0) <
@(z,0) in 117 and a(¥y(z),0) = @(z,0) on II, Theorem 1.2.2(1) applies to @(z,t) and
(U (x),t) to yield

(U (z),t) < u(x,t)
for all x € II” and ¢ > 0. Therefore (1.3.8) follows. O

Theorem 1.3.6. Suppose that g has p-reflection. Let u be a bounded viscosity solution
of (1.2.2) given by the form (1.2.10). Let I = [0,T) be the mazximal interval satisfying
B, C Q4(u). Then, Q4(u) has p-reflection for t € I.

Proof. From the definition of p-reflection, it is enough show that, for any unit vector v in

R",

U, () (Qe(w) NI (p) C Qu(u) NI (p) for t € 1. (1.3.9)

30



Since Q(u) has p-reflection, (1.3.9) holds at t = 0, and we can conclude by Theorem 1.3.5.
[

In the next section, we will show that ;(u) € S, g in [0, 7] if it starts with some geometric

restriction for the initial data. This leads to the following regularity of €,(u) over time.

Corollary 1.3.7. Let u be a bounded viscosity solution of (1.2.2) given by the form (1.2.10).
Assume that Qo € S, g and |n(t)| < K in [0,T]. Then, there exists My = My(r,R, K, T)
such that
sup d(z,00) < Mtz fort € [0,T). (1.3.10)
€0 (u)

In particular, if Q(u) € S, g , then there exists C = C(r, R, K,T) such that we have
A (0% (1), 09,(u)) < C(s —1)2 for all0<t < s<T. (1.3.11)
Proof. Choose § € (0,min {£%,%}) and ¢ € [0,7]. We claim that

2
sup d(x,00(u)) < 219 forall s € [ := {t,min {t—i— 5—,T}] . (1.3.12)
n

€0 (u) r
As Qi (u) € S, g, there exists x; = z1(s) € 9 (u) such that

sup d(z,00(u)) = d(z1,005(u)) for s € 1. (1.3.13)

€00 (u)

Let y = (1 — 276) r and z = (1 + 276) x. From the interior and exterior cone properties in

Lemma 1.3.4, it holds that
Bas(y) € Qu(u) and Bas(z) C Q4(u)C.

As the assumption in Lemma 1.2.9 is satisfied, we conclude that y € Q,(u) and z € Q,(u)“

for all s € I. As Q4(u) € S, g in I, there exists x5 € 0€Q,(u) such that

2R0
|z — 29| < max{|z; —y|, |r1 — 2|} < - (1.3.14)

(1.3.13) and (1.3.14) imply (1.3.12). Thus, we get (1.3.10). As Qg (u), Q2 (u) € S, g, we apply

Lemma A.3.6 to conclude (1.3.11). O
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1.3.2 Preservation of the p-reflection property

In this subsection, we suppose that there exists a viscosity solution u of our original equation
(1.2.1) in the sense of Definition 1.2.6, and show the preservation of the p-reflection property.
As a consequence, star-shapedness of ;(u) is preserved for all time. Existence of this solution

will be given later in section 1.4.2 and 1.4.3.

Theorem 1.3.8. Suppose that €y has p-reflection. Assume that there exists a bounded
viscosity solution w given by the form (1.2.10) of (1.2.1) and (1.2.3). Then Q(u) has
p-reflection for all t > 0. In particular there exists r1 > 0 such that €, is star-shaped
with respect to a ball By, (0) for all t > 0.

The proof of above theorem consists of Theorem 1.3.6 and Lemma 1.3.9. In Lemma 1.3.9,

we show that the maximal interval I in Theorem 1.3.6 is [0, 00).

Lemma 1.3.9. Let u and )y be as given in above theorem. Then, there exists a > 0

depending on Sy such that Bi4.q), C Q(u) for allt > 0.

Proof. Since €y has p-reflection, B(i1q), C 2o for some a > 0. Due to Assumption A and

the continuity of A\, one can choose a small a > 0 such that

n—1

A[Q]] > for sets contained in B(s.4),- (1.3.15)

Suppose that Bq), is not contained in €, (u) at some ¢, > 0. Then, there exists
to € (0,t.) such that 0 (u) touches from outside 0B4q), at (zo,ty) for the first time.
Then, by (1.3.7) in Lemma 1.3.4, we have

sup |z| <dp+ _inf |z = (5+a)p,
€I, (u) €04, (u)

and thus €, (u) is contained in B(5;q),. Hence it follows from (1.3.15) that

n—1

Al ()] >

> H[B(1+a)p]. (1.3.16)

where H[B(144),] is the mean curvature of 0B14.4),-
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Consider ¢(x) := — ((1 —|f|a)p) . Note that (1.3.16) and |zo| = (1 + a)p yield
V- (1D o)+ A 0] = ~H{Bissay) + 92,0 > 0 (1.317)

Hence ¢(z,t) := ¢(x) is a strict subsolution of (1.2.2) with n(t) = A[|%(u)]] in a small

neighborhood of (zg, o).

On the other hand, we have 1) < 0 in @) and ¢ < —1 outside of B(14),. Recall that u is
given by the form (1.2.10). As €, (u) touches B(i44), at (2o, o) for the first time, ¢ touches

u, from below at (z¢,%y) and we have

D
and this contradicts to (1.3.17). O

Proof of Theorem 1.3.8. First note that €;(u) has p-reflection thanks to Lemma 1.3.9
and Theorem 1.3.6 applied to u(z,t) and n(t) = A[|%(u)]]. Moreover from (1.3.6) in Lemma
1.3.4, Q(u) € S, for

1/2
_ . 2 2 > — 2 1/2' 3.
r (mlel%fQ lz|* —p ) > ry = p(a” + 2a) (1.3.19)
Hence Q(u) is star-shaped with respect to a ball B, for all t > 0. O

A particular consequence of Theorem 1.3.8 is that 0€;(u) is a locally Lipschitz graph.

This, in combination with Lemma A.2.1, yields that the evolution is indeed C'!:

Corollary 1.3.10. Let u and S be as in Theorem 1.3.8. Then Qy(u) has CYt-boundary for

all t > 0. In particular its principal curvatures are bounded by O(1 + 1/\/E)

Next we note that, with the sublinear growth condition imposed on A, ;(u) is uniformly

bounded in finite time.

Lemma 1.3.11. Let u and €y be as given in Theorem 1.3.8. Then, there exists Ry =
Ry(T) > 0 such that Q4(u) C Bg, in [0,T].
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Proof. By Assumption A, there exists a constant C; > 0 such that A[|Bg|] < C1R for all
R > p. Since € is bounded, there exists R > p such that Qy CC Bp. Let us compare u
with a radial barrier ¢ : ) — R defined by

¢(33,t) = XBr(t) (,CL’) - XBfEt) (ZL’) for (Z’,t) € Q>
where 7 : [0,7] — R is defined by r(t) := Re(@+D!. Note that Q(u) cC Qo(¢), and
r'(t) = (Cy + D)r(t).
Choose ¢ € (0, RCT') and let us show that (u) C By. for all time. Suppose it is
false, then we have
to := sup{t : Qs(u) C By(s)4 for 0 < s <t} < Fo0. (1.3.20)
By Corollary 1.3.7, 0Q;(u) evolves continuously in time and thus

09, (u) N OB,(sy e 7 0. (1.3.21)

Combining (1.3.20) with Lemma 1.3.9, we have |B,| < |€(u)| < |By)+e| in [0,to]. Further-

more, as 7(t) > R > p, it holds that

n—1

r(t)

Therefore, ¢ is a viscosity supersolution of (1.2.2) with n(¢) = A[|Q:(u)|] in [0, %y]. Note that

M| ()] < CLlr(t) +€) < r'(t) + (1.3.22)

u* < ¢, at t = 0. From Theorem 1.2.2(1) we have u* < ¢, in [0,ty) and thus
Q(u) C Bygy in [0, o). (1.3.23)

By Corollary 1.3.7 again, 0€;(u) evolves continuously in time and thus we have Q;(u) C By,)

in [0, to], which contradicts (1.3.21).

As a consequence, we conclude that
Q.(u) C By, where Ry(T) := Re“* T 4 ¢ (1.3.24)
in [0, 7. O
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We finish this section with some properties of our solutions that will be used later. The
following corollary holds due to the fact that {2y has p-reflection and therefore for small ¢ > 0
the sets Q5" 1= (1+¢)Q and Q5™ := (1 + &)1y satisfy p(1 4+ O(e))-reflection.

Corollary 1.3.12. Let u, €y and r, be as given in Theorem 1.3.8 and Ry as given in
Lemma 1.8.11. Then for sufficiently small ¢ > 0 wiscosity solutions u* of (1.2.1) starting

from Qg’i have their positive sets Qy(u™) in S,,_o@),ri+0(@) i [0,T).

Lemma 1.3.13. Letu, Qy and rq be as given in Theorem 1.3.8 and Ry as given in Lemma 1.5.11.
Then, there exists positive constants K., = f(oo(rl, Ry, T) and f(l/g = f(l/g(rl, Ry, T) such
that the following holds for all t,s in [0,T] :

I = NIl < Kyjalt = s (1.3.25)
and
AIu(]] < R

Proof. From Lemma 1.3.9 and 1.3.11, |€] is bounded away from zero and infinity, and thus
A is bounded. Next, by the Lipschitz continuity of A and the last inequality of (A.3.1) in
Lemma A.3.1, there exists C(ry, Ry, T) such that

N2 ()] — Mu(w)])] < Cudag (€4 (), () for 1,5 € 0,7,
From the above inequality and Hélder continuity in Corollary 1.3.7, we conclude (1.3.25). O

Finally, let us show Lipschitz continuity of [€2;] in time for the later purpose in Lemma 1.4.12.

Lemma 1.3.14. Letu, Qy and ry be as given in Theorem 1.3.8, Ry as given in Lemma 1.3.11,

and Ko as given in Lemma 1.3.13. Then there exists C = C(ry, Ry, K+) such that we have

1
1% (u)| — |Qs(u)|| < C (1 + %> |s —t] for0 <t <s<T. (1.3.26)

Proof. First, by Corollary 1.3.10, all principal curvatures are bounded by M (t) := C;(1 +
1/4/t) for some constant C; = Cy(ry, Ry, f(oo). Thus, there exist interior and exterior balls
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of radius M(t)™! on each point of 9 (u) for all ¢ > 0. As described in Corollary 1.3.7, we

apply Lemma 1.2.9 in these balls to conclude that

iy (0 (w), 0 (u)) < Cs (1 + %) s—tfor0<t<s<T

for some Cy = Cy(ry, Ry, Ks). Recall from the first and last inequalities of (A.3.1) in
Lemma A.3.1 that the volume difference is bounded by the Hausdorff distance. Thus, we

conclude that there exists C' = C(ry, Ry, K) satisfying (1.3.26). O

1.4 Mean curvature flow with volume dependent forcing

1.4.1 Uniqueness of the flow

In this section, we show the uniqueness for solutions of (1.2.1) and (1.2.2) with given initial
data (1.2.3). As pointed out in Remark 1.2.5, the comparison principle (Theorem 2.2) does
not deliver the uniqueness for a discontinuous viscosity solution, due to the possible fattening
phenomena of level sets. We show that our flow (1.1.1) can be uniquely determined when
the initial data has p-reflection. We follow the argument of [BCCO09], where the uniqueness

result is shown for convex evolution of volume-preserving flow.

In section 1.4.1.1, we show the short-time uniqueness result for (1.2.2) in Theorem 1.4.3
for a star-shaped initial data 25. We define appropriate convolutions to perturb solutions
(see Definition 1.4.4) and show that our perturbation preserves sub- and supersolution prop-
erties for (1.2.2). These perturbations are more delicate than those used in [Gig06] due to
the presence of the time-dependent forcing n. We use these perturbations to obtain the
uniqueness results. At this point, it is crucial to find a uniform interval [0, ¢;] where these
convolutions are well defined in this interval (see Lemma 1.4.6). It remains open whether

the flow (1.2.2) stays unique beyond the interval.

In section 1.4.1.2, we show the global-time uniqueness for (1.2.1) when its initial data
has p-reflection (see Theorem 1.4.9). Here we know that any evolution, if exists, preserves
the p-reflection property, which we use to iterate the short-time uniqueness result from

the previous subsection. The key step is to estimate the difference between A[|2(u)|] and
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A[|Q4(v)]] for two possible solutions (see Lemma 1.4.12).

1.4.1.1 Short-time uniqueness

Definition 1.4.1. [BSS93, Definition 2.1] For a function u : Q@ — R and ¢ > 0, we say that
Qy(u) = {u(-,t) > 0} is reqular if the closure of Qu(u) is {x € R™ : u(z,t) > 0}, and the
interior of {x € R™ : u(x,t) > 0} is Q(u).

Note that for ¢ > 0, if Q;(u) is regular, then the interface {x € R™ : u(z,t) = 0} has an
empty interior.

Lemma 1.4.2. [BSS93, Theorem 2.1] Let u : Q — R be a viscosity solution of (1.2.2) and
(1.2.3). Then, 4 (u) is reqular for all t > 0 if and only if there exists a unique solution in Q)
of (1.2.2) with initial data u(z,0) = uo(z) := Xa, — Xag-

Recall from section 1.2 that

Koo = ||77||Loo([0,oo)). (1.4.1)
We define t; = t1(r, K« ) by
r
t; = 1.4.2
YT 10K, (142)

and we will show the following theorem in this section.

Theorem 1.4.3. Suppose that the initial set Qg is in S,. Then, there is exactly one bounded
viscosity solution w of (1.2.2) and (1.2.3) in [0,t1] where ty is given in (1.4.2). Moreover,
Qy(u) is regular in [0,t;].

We begin the proof with some definitions.

Definition 1.4.4. For ¢, > 0 and L : [0,+00) — R, let us define a maximal time T} =

Tl <E7 T, L) by

Ty :=sup{s > 0: L(t) <re/2 for all t € |0, s|}; (1.4.3)
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. t —
u(z,t;e,r, L) = inf {u (1 i oy 8)2> ‘ y € Brs/Z—L(t)(x)} ;

and

t —
E(%t;gﬂ”y L) ‘= Sup {u <1 g g’ (1 _ €)2> ‘ ye Bra/2—L(t)(x)}

Lemma 1.4.5. Let u be a bounded viscosity solution of (1.2.2) and (1.2.3) with forcing n
and Qo € S,, and let n.(t) := (1 +¢&)"'n(t/(1 + €)?). Let w and u be as given above with
L € C'([0,00)). Then the following holds in (0,T}) in the sense of viscosity solutions:

U, Du /
Dyl (z,t) > V- (|D—Q’> (z,t) +n(t) + L'(t) (1.4.4)

and
)<V (ﬂ> (. 8) +1-(t) = L'(¢) (1.4.5)
|Du| ™~ \Da| )T ' o
Moreover, if ¢ < eo(r) for eo(r) given in (1.3.2), we have
Qo(u) CC Qo(u) CC Qo(u). (1.4.6)

Proof. First, let us denote v(x,t) := u <1i+6, ﬁ) Then, v is a viscosity solution of

v

: v (2
M(‘rvt)_v (lel)( 7t)+77€(t)'

and thus Lemma 1.2.8 implies (1.4.4). Parallel arguments holds for .

On the other hand, if Qy(u) is in S, then Lemma 1.3.4 yields, for all € < egy(r),

)cC () [(L+2)(u) + 2] = Q(uw), (1.4.7)
lel<re/2
and
Qo(u) = | ly/z[u — &)Qo(u) + 2] CC Qo(u). (1.4.8)
_ O
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Lemma 1.4.6. Let n and n. be as given in Lemma 1.4.5, and let t, = r/lOK be as given
n (1.4.2). Then for the choice of L(t) = [} —n.(s) + n(s)ds or L(t) = [, n- n(s)ds

and for 0 < e < 1/4, we have
Ty =Ti(e,r, L) >ty for 0 <e < 1/4.

Proof. 1. First, let us choose L(t) = fot —1:(s) + n(s)ds and estimate the function L by the

change of variables.

“”:A%@‘liﬂ(ajy)“
- /Otn(s)ds —(1+¢) /0” n(s)ds,

t ﬁ
:/ n(s)ds —S/UH n(s)ds.
—t 0
(

Therefore, we conclude that for e € (0,1/4)

2
IL(1)] < Koot (%) + Koet < 5Kocct. (1.4.9)

2. Similarly, let us choose L(t) = [, n- n(s)ds, then for e € (0,1/4)

(1;)2 (1j5>2
L(t)| = | n(s)ds —e | 1(s)ds|.
t

e — g2 1
<Kot ——— Kot
= (u—ev>+ SEpSE

3. By definition of T} we have L(T7) = re/2. Thus 5K ety = re/2 = L(T}) < 5K 1.
O

< 5K et.

Lemma 1.4.5 and Lemma 1.4.6 imply the following.

Lemma 1.4.7. Let u and Qg be as given in Lemma 1.4.5 and let 0 < € < go(r). Forty given
n (1.4.2), u with the choice of L(t) = f(f —1n. +n is a viscosity supersolution of (1.2.2) in
(0,t1]. Similarly, u with L(t fo N—e — 1 is a subsolution of (1.2.2) in (0,t;]. Moreover it

holds that @ < u < u in |0, tl].
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Proof. By Lemma 1.4.6, u and @ are well-defined in [0, #;]. So, we could apply Lemma 1.4.5
and comparison principle in Theorem 1.2.2(1) for (1.2.2) in [0, ¢;] to conclude. O

Proof of Theorem 1.4.3: Suppose that v and v are two bounded solutions of (1.2.2)
and u(-,0) = v(-,0) in R™. Let us construct u and @ as in Lemma 1.4.7. As Qq(u) CC
Qo(v) = Qo(u) CC Qo(u) from (1.4.6), we have u*(-,0) < wv(-,0) and v*(-,0) < wu,(-,0)
in R". By Lemma 1.4.7 and the comparison principle in Theorem 1.2.2(1), it holds that

u <v <win [0,%]. Sending ¢ to zero, we conclude that v = v in [0, #;]. O

Lastly, for the next subsection let us state the following lemma.

Lemma 1.4.8. Let u and g be as given in Lemma 1.4.5. Then for 0 < & < go(r) and

0<t<t; we have
(1 — 6)Qt/(1_6)2(u) C Qt(u) C (1 + 6)Qt/(1+5)2 (u)
where tq is given (1.4.2).

Proof. Lemma 1.4.7 implies that Q;(uw) C Q(u) C Q(u) in [0,%1]. Moreover we have, by

definition,

(1 — 6)9,5/(1_5)2(11,) C Qt(ﬂ), and Qt(’(_t) C (1 + 5)Qt/(1+5)2(u).

1.4.1.2 Uniqueness of mean curvature flows with forcing

In this subsection, we show the uniqueness of our original equation (1.2.1). Here is the main

theorem of this subsection.

Theorem 1.4.9. Suppose that )y has p-reflection. Then, there exists at most one bounded
viscosity solution of (1.2.1) and (1.2.3).

Let u and v be two bounded viscosity solutions of (1.2.1) and (1.2.3), and let n(t;u) :=
Al|Q:(uw)|] and n(t;v) = A[|Q(v)|]. Fix T' > 0. Recall from Theorem 1.3.8 and Lemma 1.3.11
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that both Q,(u) and Q:(v) are in S,, g, in [0,7] where r, and R; are given in (1.3.19) and
(1.3.24), respectively. From Lemma 1.3.13 that there exists a uniform bound of 7(¢; u) and
n(t;v) in [0, 77,

Roe 1= (e 0)] + (85 )l o1y < 0. (1.4.10)
Recall n.(t) := (1 +¢)"'n(t/(1 +€)?) and define
t t
Ly(t) = / —ne(s;u) + n(s;v)ds and La(t) := / N_e(s;u) —n(s;v)ds (1.4.11)
0 0
Definition 1.4.10. For ¢ € (0, 1), let us define
Tl = T1(€,T1,L1, LQ) .= sup {S S (O,T] : Ll(t)7L2(t) < % for all t € [0, S]} (1412)

where r; is given in (1.3.19). Remind that 7 is chosen so that €, (u) and Q;(v) are in S, g,

for all t € [0, 7.

Let u = u(+;e,7r1, L1) and @ = @(-; e, 71, Lo) be as given in Definition 1.4.4. The construc-

tion of Ly and Ly and Lemma 1.4.5 readily yields the following lemma.

Lemma 1.4.11. u and uw are a wviscosity supersolution, and subsolution, respectively, of
(1.2.2) with n = n(;v) in (0,T1). Moreover, it holds that @ < v < w in [0,T1]. Here, T} is
given in (1.4.12).

Lemma 1.4.12. There exists ty > 0 such that for any € € (0, %),
Tl :T1(5,T1,L1,L2) > 1y (1413)
where Ty is given in (1.4.12).

Proof. Let t1(r1, Ko) = 7= be as given in (1.4.2). If Ty > t, for all £ € (0,1), we take

ty =ty. If Ty < t; for some ¢ € (0, i), Lemma 1.4.8 implies that in [0, Tl)

(1 — €>Qt/(1_€)2(u) C Qt(u) C (1 + €)Qt/(1+5)2 (u) (1414)
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Lemma 1.4.11 implies that Q, (@) C Q(v) € Q(u) in [0, T}). Thus as shown in Lemma 1.4.8,
the following holds for 0 < ¢ < T 1

(1 — 5)9,5/(1_5)2(16) C Qt(ﬂ) C Qt(v) C Qt(g) C (1 + €>Qt/(1+€)2(u). (1415)

By subtracting n(s; u) and adding the same term,

Ly(t) = /0 n(s;v) —n.(s;u)ds = /0 n(s;v) —n(s;u)ds —I—/O n(s;u) — ne(s;u)ds. (1.4.16)

As Lemma 1.4.6, the second term is bounded by 5K..et. As for the first term, from Lipschitz

continuity of A for some C > 0,

</
0

By (1.4.14)-(1.4.15) and Lemma 1.3.11,

¢
LSCl/
0

¢
Scl/
0

for some constant Cy = Cy(R;,T). By Lemma 1.3.14, we conclude that Z; is bounded by

I, = /0 n(s;v) — n(s;u)ds A[|Q2s(v)]] — )\[\Qs(u)ﬂ)ds < Cl/o ()] = [Qs(w)]|ds

ds

(1= &)Qu/a-c2(w)| = [(1+ &) Q1092 (w)]

}Qs/(l_a)2 (u)‘ - |Qs/(l+5)2<u>‘ ’ds + CgEt

Cset for some constant Cy = Cs(ry, Ry, T, Ks). Therefore, we have Li(t) < (Cs + 5Ky )et
in [0, 7}]. By similar arguments, the bound holds for Ly as well in [0, 7}].
Finally, by continuity of Ly and Ly, we have Li(T}) = r1e/2 or Ly(T}) = r1¢/2. In both

cases, it holds that
re/2 = Ly(Ty)( or Ly(T1)) < (Cs + 5K.)The,

so we conclude with

~ ~ T
Ty >ty = to(r, R, T, Koo) i ——— . 1.4.17
1 = L2 2(1 1 ) 203+10Koo ( )

]

Proof of Theorem 1.4.9: The first part is parallel to the proof of Theorem 1.4.3. Let u

and v be two viscosity solutions of (1.2.1) and (1.2.3). By Lemma 1.4.11 and Lemma 1.4.12,
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it holds that @ < v < w in [0, to] where ¢, is given in (1.4.13). We can now send ¢ to zero to

conclude that u = v in [0, ¢5).

Next let us consider the corresponding convolutions of v and w in the time interval
to + [0,t2] € [0,T] for ty > 0 and ¢, given in (1.4.13). Note that 5 given in (1.4.13) does
not depend on ty because both ;(u) and ;(v) are in S, g, for all ¢ € [0, T]. Thus, we can
iterate the step 1 for tg = kty on kto + [0,t5], k € N and, conclude that w =v in [0,7]. O

1.4.2 Construction of flat flows

In this section, we construct a flat flow for (1.2.1), which coincides our notion of viscosity

solutions. Our approach is based on minimizing movements first introduced by Almgren-

Taylor-Wang [ATW93] (see also [L.S95], [Cha04], [BCCO09]).

As in [FK14], we introduce a gradient flow with geometric constraint, corresponding to
the preservation of star-shapedness obtained in Theorem 1.3.8. Our constraint is crucial to
ensure the strong (in Hausdorff distance) convergence of the minimizing movements, which
enables geometric analysis of the limiting flow. On the other hand the constraint also poses
technical challenges when we show the coincidence of flat flows with viscosity solutions (See

Proposition 1.4.17 and Corollary 1.4.18).

1.4.2.1 Constrained Minimizing Movements
Recall the following energy functional associated with (1.2.1),
J(E) = Per(E) — A[|E|]. (1.4.18)

where the function A(s) is an anti-derivative of A(s), and Per(E) denotes the perimeter of

E. For the sets F and F' in R", we use the pseudo-distance defined by

1
z
d(F.E) = (/ d(z, 8E)dm> . EAF:=(E\F)U(F\ E).
EAF
We consider minimizing movements for (1.2.2) in a finite time interval [0, 7] with initial
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data (1.2.3) with the admissible sets S,, g, with
ro <11 =71(p,a) = p(a* 4+ 2a)"? and Ry > R, (1.4.19)

where 7 is given in (1.3.19) and Ry = Ry(T") in (1.3.24). Recall that p is given in Defini-
tion 1.3.3 and a is given in Lemma 1.3.9. The dependence of Ry on T is the reason why we
restrict the discussion in this and next section to the finite time interval. For simplicity we

will omit the time dependence in R; and thus in Rj.

Definition 1.4.13. For h > 0, T}, is defined by

Tw(E) € arg min I,(F; E), I,(F;E) := J(F) + chQ(F, E),

FGSTO’RO h

The existence of a minimizer, T (E) follows from Lemma A.3.1, A.3.2 and A.3.3.

The constrained minimizing movement E of J for t € [0,T] with initial set Ey can be

defined by
El =T (Ey).
Here, T for m € N is the m-th functional power.

Definition 1.4.14. A function w := xp, —Xpe is a flat flow of (1.2.2) and (1.2.3) if Ey = Qo

and there exists a sequence h; — 0 such that
dy(E, Ef*) =0
locally uniformly in time as k£ goes to infinity.

To show the existence of a flat flow, let us show compactness property of the constrained

minimizing movements.

Lemma 1.4.15. The constrained minimizing movement EP in Definition 1.4.13 satisfies the

following inequality for 0 <t < s < T and for some Koy = Ks(ro, Ro):
d*(B", B < Ko(s — t)(J(E!) — J(ED)) (1.4.20)
and, as a consequence,

d(E", EM™ < Ki1KCy(s — t). (1.4.21)
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Proof. We will use the triangle-like inequality (see e.g. Lemma 17, [FK14]):

d2(Fk+17F1>

k
. Ser Y d(Fj, Fy) for Fy, .., Feyy € Spg. (1.4.22)

j=1
Suppose that t € [Kh, (K +1)h) and s € [(K+L)h, (K+ L+1)h) for some K and L > 0.
By the construction of EP in Definition 1.4.13 for k € N,

1 .
T(Blyn) = J(Bly) = 2 (Bl Bl_y)

By summing both sides from k= K +1to k= K + L,

K+L
1.
J(Ey) — J(E?K+L)h) 2 Z EdQ(Elgh’E(hk—l)h)a
k=K+1
1 -
ZT,R Edz(E(hK+L)h7 E;L{h)u
where the last inequality follows from (1.4.22). (1.4.21) follows from Lemma A.3.2. O

One can apply Lemma 1.4.15 and compactness of star-shaped sets (Lemma A.3.1, A.3.2
and A.3.3) to obtain the following:

Theorem 1.4.16. There ezists at least one flat flow w of (1.2.2) and (1.2.3) in the sense
of Definition 1.4.14.

1.4.2.2 Barrier property under star-shapedness

Next we establish a “restricted barrier property” for a flat flow with respect to a classical
subsolution and supersolution of (1.2.2) with n(t) = A[|€2(w)|]. The proof of this proposition
is rather technical and follows that of [GK11]: see Appendix A.1l. In a different setting,
similar results are shown in [CMN19] and [CMP15].

Proposition 1.4.17. (Restricted barrier property) Let w be a flat flow of (1.2.2) with the
admissible set constraint parameters ro and Ry satisfying (1.4.19). For any r > ro and
R < Ry, suppose that there exists a test function ¢ on Qr such that ¢ is a classical subsolution
in Qr of (1.2.2) with n(t) = A[|Qu(w)]|], |Dé| # 0 on 0(¢) and Qi(¢) € Syr in [0,T]. If
Qo(¢) CC Qo(w), then

Qi (o) cC Q(w)  for allt € [0,T).
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Stmilarly, suppose that there exists a test function v on Qr such that i is a classical
supersolution in Qr of (1.2.2) with n(t) = A[|Q:(w)|], |DY] # 0 on 0% (¢) and Qi (V) € S.r
in [0,T]. If Qo(w) CC Qo(v), then

Q(w) cC N(Y)  forallt €[0,T].

In the proof of Proposition 1.4.17, we only use the properties of the classical solution ¢
in small neighborhood of (zy, o), thus we can deduce the following localized barrier property

of the flat flow.

Corollary 1.4.18. Let w be a flat flow of (1.2.2) with the admissible set constraint parameter
ro and Ry satisfying (1.4.19). If there exists a test function ¢ on Qr such that ¢ touches w

from below at (xg,to), |zo| < Ro, |D|(x0,t0) # 0 and —zq - D—¢(x0,to) > rg. then

|Dg|

Stmilarly, if there exists a test function ¥ on Qr such that ¢ touches w from above at

(Zl’o,to), |ZEO| < Ro, |D1/)|($0,t0) 7é 0 and —X - ﬂ((L’O,to) > Ty then

[ D]
b Dy
| Dy

(0. t0) < V- (w

) Gorte) + o).

1.4.3 Existence of the flow

Our goal in this section is to show the existence of a viscosity solution for (1.2.1). Let us give
a brief summary of this section. We will show that a flat flow coincides with the correspond-
ing viscosity solution as long as the viscosity solution is star-shaped (Proposition 1.4.19).
Ensuring this star-shaped property for the viscosity solution (Proposition 1.4.20) is the last

step leading to the coincidence result (Theorem 1.4.21).

We first show a comparison result between a flat flow and the corresponding viscosity
solution of (1.2.2). We use the doubling argument in [CIL92] and [Kim05] which preserves

the star-shaped geometry of the level sets of the solutions.

Proposition 1.4.19. Let w be a flat flow of (1.2.2) with the admissible set constraint

parameter ro and Ry satisfying (1.4.19). Suppose that there exists a viscosity subsolution
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u: Qr — R of (1.2.2) with n(t) = N|Q:(w)]|] such that Qi(u) is in S, for all t € [0,T] for

some r > 19 and R < Ry. If Qy(u) CC Qo(w), then

Qu(u) CC Q(w) for all t € 10,T7.

Similarly, suppose that there exists a viscosity supersolution u : Qr — R of (1.2.2) with
n(t) = A[|Q(w)]] such that Qi(u) is in S, g for all t € [0,T] for some r > ry and R < Ry. If
Qo(w) CC Qo(u), then

Q(w) cC Q(u)  forallt €1]0,T).

Proof. The proof follows the outline of [Kim05], where the comparison principle is shown for

a nonlocal mean-curvature flow.

For ¢,d > 0, let us consider

Z(xz,t) ;= sup u(x+z,t)and 0 <t < E,
|z|<c—dt 0

where ¢ is chosen sufficiently small so that Q¢(Z) CC Q¢(w). Due to Lemma 1.2.8, the

function 7 is a viscosity subsolution of
uy = F(Du, D*u,t) — 6| Dul.
We will show Proposition 6.2 by showing that for any 6 > 0 and 0 <t < ¢/§ we have

0(Z) cC Q(w). (1.4.23)

Note that for any z € R"™ such that |z| < ¢, the interior cone IC(z,r) given in (1.3.3)
satisfies IC(z+z,7—c) C IC(x,7)+ 2 (See Lemma A.3.5). Thus, by the equivalence relation
in Lemma 1.3.4, Q;(u) € S, g implies that Q;(u) + z € S,_. gre for all |z] < ¢ and thus

W(2)= J [uu)+2] € Srcnie
|z|<c—dt

Thus, Qt<Z) € SroJrc,Rofc for 0 <c < min {%’ - Z_R}

Suppose (1.4.23) is false, then we have

to :=sup{t: Qs(2) CC Q4(u) for 0 < s <t} € (0,¢/0).
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Due to Lemma 1.3.13 and Lemma 1.4.15, both sets 0€,(Z) and 09 (w) evolve continuously

in time. Hence, 92(Z) touches 9Q2(w) from inside for the first time at ¢ = t, € (0, §).
For € € (0, %), let us define Z := Xbarq(z) and W= Xo(w) and

Cr—ylt e
4e 2(tg —t)

O (z,y,t) == Z(x,t) — W(y,1)

Let dy be distance between 9y(Z) and 9Qq(w). Since Z — W is bounded, we can choose a

sufficiently small e << dj such that ®(z,,0) < 0 for all z and y.

Since the function Z — W is upper semicontinuous and bounded above by zero for all
t < to, the function ®.(z,y,t) has a local maximum at (x.,y.,t.) in R" x [0, ¢y) for any ¢. By
Holder continuity of 02(Z) and 02(w) from Lemma 1.3.13 and Lemma 1.4.15, there exists
T € 89,50_6(2) and y; € 3Qt0_5(V~V) such that |x; —y| < K& where K depends on Holder
constants of 9Q(Z) and 0Q(w). For e << K~ it holds that ®(z.,y.,t.) > ®(z1,y1,to—¢) >
%, and thus t. € (0,tg). Also, ®(x.,y., t.) is uniformly bounded from below in €, and thus it
holds that |z, — y.| = O(e%).

Moreover, since Z — W > & > % at (xe,ye,t:), we conclude that x. € Q. (2), y- €
Qts(W)C. As tg is the first touching point and t. < t, it holds that |z. — y.| > 0. On the
other hand, Z(x,t.) — W (y,t.) = 1 for all (z,y) € Q. (Z) x Q. (W)C, and thus (z.,.) is a
maximizer of the third term —% in Q,_(Z) x Q. (W)°. We conclude that z. and y. are
on 99_(Z) and 99, (W), respectively.

Then, as equation (2.9) in [Kim05], there exist quadratic test functions ¢°(x,t) and

¥ (z,t) such that

¢ (x,1) = [ac(t — to) + pe - (z — @) + %(:p — o) Xe(@ — 22)]4 > Z(m,t) in NY,
W(@/J) = [be(t - ts) + qe * (y - ye) + %(y - y€>T}/;(y - ye)]Jr S W(y7t> in N2€7
(1.4.24)

where constants a.,b. € R, p.,¢. = == + 0(¢?) e R" \ {0}, X., Y. € ™", neighborhoods
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Ni of (z.,t.) and N5 of (y.,t.) satisfying the inequalities:

,

aa_ba 207

XE - YE S €|p€|17
(1.4.25)

Hp6| - ’QEH § 52 min{L ’p€’2}7

Ipe — | < e?min{1, |p.|*}.
\

Since Z is a viscosity solution and ¢° touches Z from above at (z.,t.), it holds that

ae o ( D¢* ) 1 ( pZXsps)
— = ——(x,t.) < V| —=—— | (-, t.)+n(t.)—0 = — | trace(X.) — +n(t.)—0.
o ~ D] 1) = Vi [pge] ) (e ettt =0 = 1] )= T )

By inequalities (1.4.25) and the ellipticity of the operator, trace(X) — 2 XP it can be seen

Ip[?
that
b. | : Xepe
< e < (trace(XE) _ P 2p ) +n(t:) — 9,
| | | | [P | |p-|
T
ps }/;ps> 6
< trace(Y,) — +n(t:) — =.
o (frace() = 2728 ) e =
Thus, by (1.4.25), for sufficiently small € > 0, it holds that
b ( qTYaqa) 5
< trace(Yz) — = +n(t:) — -. (1.4.26)
A |G| |ge|? 4

Moreover, as :(Z) € Syy+e.Rrg—cs |T<| < Ro — ¢ and Lemma 1.3.2 implies that

Te - (— Pe ) >7ry+c.
P |

There exists sufficiently small gy such that for any ¢ € (0, g),

lye| < Ryo, and . - (—i) > 7. (1.4.27)

This contradicts Corollary 1.4.18. since 1¢ touches W from below at (Ye, t.), but satisfies
(1.4.26) and (1.4.27). 0

Next we will show that viscosity solutions u of (1.2.2) has a short time star-shapedness

property.
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Proposition 1.4.20. (Short-time star-shapedness) Suppose that Qg has p-reflection. Let rq
and Ry satisfy (1.4.19), and Ko = Kuo(ro, Ry, T) be as in Lemma 1.3.13. For r > ry > 0
and 0 < R < Ry, suppose that E(H—ﬁ)p C Qo and Qg € S, forr = p(p*+2B). Then, for all
t € [0,t4], it holds that for some # > ry and R < Ry

QO €8, 4 (1.4.28)

where

2
. 1 2 2 _ /2 2 _
b= ti(r R Koo, T) = 5 (min{\/r +pM Vrite ,ROM R}) (1.4.29)
1 1

Here, My s given in Corollary 1.5.7.

Now we are ready to prove our main theorem.

Theorem 1.4.21. Suppose that Qg has p-reflection. Let w be a flat flow of (1.2.1) and
(1.2.3) and let u be the unique viscosity solution of (1.2.2) and (1.2.3) with n(t) = \[|Q2:(w)]].

Then w = w in Q. In other words, w is the unique viscosity solution of (1.2.1) and (1.2.3).

Proof. The existence and short time uniqueness of u for the above choice of 7(t) follows by
Theorem 1.2.2 and Theorem 1.4.3. Let o and Ry satisfy (1.4.19), and K, = f(oo(ro, Ry, T)
be as in Lemma 1.3.13.

Recall that Qg € S,, g, where 1 and R; are given in (1.3.19) and (1.3.24). Let us first
show that u = w in the small time interval I = [0,#] for t; = t,(r, R, Ko, T) given in
(1.4.29). As Corollary 1.3.12, we can make g strictly smaller Q5™ or bigger Q5" by dilation
and can still make it stay in S, g, with r. =7 —O(e) > rg and R. = R1+O(e) > Ry, where
€ can be chosen arbitrarily small such that r. —ro > =5 and Ry — R. > @. Let us
choose to make the domain strictly bigger, Q5™ we can apply Proposition 1.4.20 to ensure

that the corresponding viscosity solution u® of (1.2.2) satisfies, for some r > ry and R < Ry,
Q(u®) € S,pfortel.
We can then apply Proposition 1.4.19 to v and w to yield that

Q(w) C Qu(uf) for t € 1. (1.4.30)
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Now to send ¢ — 0, note that 2;(u®) satisfies Hélder continuity, Corollary 1.3.7. Thus along
a sequence £ = &, — 0, Q(u®) converges to a domain Q; € S, g uniformly with respect to
dg in the time interval I. Lemma 1.2.3 then yields that the corresponding level set function
u for € is the unique viscosity solution of (1.2.2) with the initial data ug. From (1.4.30) we

have

Qt(/(U) C Qt = Qt<u) fort € I.

Similarly, using Q5 instead of Q5" we can conclude that €, (u) C Q;(w) and thus it follows

that they are equal sets for the time interval I.

3. Once we know that v = w in I, we know that 7(t) equals A[|Q:(u)|] in I, and thus
Theorem 1.3.8 and Lemma 1.3.11 applies and now we know that Q(u) € S,, g, for t € I.
Now we can repeat the argument at t = ¢; over the time interval ¢; + I, using the fact that

Q4 (u) € Sy r,- Now we can repeat above arguments to obtain that w = u for all times. [

1.5 Volume preserving mean curvature flow

1.5.1 Approximation

In this section a solution of (1.1.3) will be constructed. We first show that a family of
viscosity solutions (€9);50 of (1.1.5) for small § > 0 is equicontinuous in the Hausdorff
distance, based on the geometric properties of (£22);¢. This yields the uniform convergence
of (€22)¢>0 along a subsequence. We will conclude in Section 1.5.2 that their limit is a viscosity
solution of (1.1.3). Our focus here is to obtain the uniform estimates that stay independent

of 0 < << 1.

Below is the main theorem of this section. As before, we assume the geometric condition

on the initial data (1.1.7).

Theorem 1.5.1. Let (0);50 be a viscosity solution of (1.1.5). Then, there exists (Q22°);>0 C

Syy Ry Jor some 0 <1y < Ry such that

dg(922,0%°) =0 as 6 — 0 (1.5.1)
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locally uniformly in time along a subsequence. As a consequence, |Q2°| =1 for all t > 0.

Let us briefly explain the outline of proof. We first show that for a small § (1.1.5) is well-
posed and € is star-shaped with respect to a ball (See Definition 1.3.1) in Proposition 1.5.2.
In Proposition 1.5.5, based on geometric properties in Lemma A.3.2, we show that Q9 is
Hoélder continuous with respect to time. Then, we apply the compactness of (95, r,dn) in

Lemma A.3.3 to find a converging subsequence.

Proposition 1.5.2. Let

5y i 2L 1Bsol) (1.5.2)

n—1

Then the following statements hold for 0 < § < dq.

1. There is a unique viscosity solution ((22)i>0,As) of (1.1.5) such that 2 is bounded

with CY boundary for all t > 0.

2. Q9 has p-reflection at all times t > 0. Moreover Q2 € S, r, where r1, Ry only depends

on .

Proof. Note that 1 — |Bs,| > 0 from (1.1.7), and thus we get dp > 0. We check that 75 in
(1.1.6) satisfies Assumption A for all § € (0,0p). Since 75 is decreasing and dy is given in
(1.5.2), we have

1 _
%(1Q0) > 75(1Bs,|) > —— for all Q € Bs, and all § € (0,5) . (1.5.3)
On the other hand, ~s satisfies
B
lim sup 75(Brl) = —00 < 00 (1.5.4)
R—o R

and we conclude.

From Theorems 1 and 2, the problem (1.1.5) is well-posed and (€?);> has p-reflection
for all 6 € (0,d0). Furthermore, (1.3.19) implies that (Q9);50 C S, where r; = r1(Qy) is

given by

= p(B + 2Bz (1.5.5)
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for some 3; > 0 such that §(1+ﬁ1)p C Q. On the other hand due to Lemma 1.3.4, Qy CC Bpg,

and As(t) < 0 if sup,eqs [#| > Ry, where
1
Ry :=5p+wy,™ and w, := |B1(0)]. (1.5.6)
A barrier argument with Bpg, yields that Q¢ C Bg, for all t > 0 and all § € (0, ). O

Definition 1.5.3.

e The one-step discrete gradient flow with a time step h > 0, T' = T(-;h,§) C R™, is
defined by

T(E:h, 8) € arg min J(F) + %JQ(F, E), J5(Q) = Per() + 2—15<1 —1QD?, (15.7)

FESTOvRO

where the pseudo-distance d is given by

3 3
d(F,E) = (/ d(x,@E)dm) : (1.5.8)
EAF
Here, ry and Ry are constants such that
To € (0,7“1) and Ry > R (159)
for r; and R; given in Proposition 1.5.2

e The discrete gradient flow with a time step h > 0 and the initial set Ey, By = Ey(h,0) C
R™, can be defined by for ¢ € [0, +00)

E, = Ey(h,8) .= TY"(Ey; h, ). (1.5.10)
Here, T™ for m € N is the mth functional power.

Recall from Theorem 2 that (£22);50 can be approximated locally uniformly by the above

discrete flow.

Proposition 1.5.4. Let &y be given in (1.5.2). Then for 0 < 6 < dy and for 0 < t; <ty we

have

lim sup dg(E,(h,6),Q0) =0. (1.5.11)

h=0¢elty to)
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Next, we show the Hdélder continuity in time in Proposition 1.5.5. Lemma A.3.2 and

Lemma 1.4.15 imply uniform Hoélder continuity in time with respect to 9.

Proposition 1.5.5. There exists K3 = K3(ro, Ro), which is independent on § > 0 such that
for all 0 < ty < tq, it holds that

dp(Q°

19

O ) < Ky(ty — t1) 77 Per () w1 (1.5.12)

Proof. Note that J5(F;) is nonnegative and decreases in time from the construction of E; in

Definition 1.5.3. Thus, Lemma 1.4.15 implies that

d*(Ery, Br,) < Kalta — t1)(T5(Er,) — T5(Br)) < Kalta — 1) T5(Q) (1.5.13)
for all 0 < t; <ty and Ko = Ky(rg, Ro) given in Lemma 1.4.15. Note that || = 1 implies
1

jg(Qo) = Per(Qo) + 2—5(1 - ‘90’)2 = Per(Qo) (1514)

for all 6 > 0. From Lemma A.3.2 and (1.5.14), there exists K3 = KC3(ro, Ro) such that for all

0<ty <ty

dy(E,,, Ey,) < Ks(tsy — t1) 77 Per(Qq) 71 (1.5.15)

From Proposition 1.5.4 it follows that E; = E;(h,§) converges to Q¢ locally uniformly as
h — 0. Therefore

di(Ey,, Ey) — dg($2,,Q0) as h — 0. (1.5.16)

Thus, from (1.5.15) and (1.5.16), we conclude (1.5.12). O

Proof of Theorem 1.5.1.

Recall from Proposition 1.5.2 that (Q2);>9 C S,,.g, for allt > 0 and 6 € (0,6,). Here, ry,
Ry, o are given in (1.5.5), (1.5.6) and (1.5.2), respectively. Moreover, Lemma A.3.1 and the
Holder continuity from Proposition 1.5.5 yield that a family of evolving sets, t — 92, for
d € (0,dp) is equicontinuous in (0S;, r,,dr). Lemma A.3.3 applies to obtain a subsequential

convergence of ();>o: there exists a sequence {d; }sen such that

d (0, Q) =0 (1.5.17)
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locally uniformly in time as ¢ goes to infinity for some (£2¢°);>0 C S,, r,- By Lemma A.3.1,

we conclude that |Q°| =1 for all ¢ > 0. O

1.5.2 Uniform L? estimates of the Lagrange multiplier and existence

In this section we establish uniform L? estimates of \; which yields the weak L? limit of
As in Theorem 1.5.6. Combining with the stability of viscosity solutions in Theorem 1.2.17,
we show the existence of solution of (1.1.3) in Corollary 1.5.7. Following the outline given
in [MSS16], we obtain the estimates for our constrained discrete gradient flow defined in
(1.5.10). Our new challenge lies in constructing local variations given in Definition 1.5.11

which stays in our admissible set S, g, (See Lemma 1.5.12 and Lemma 1.5.13).

Theorem 1.5.6. Let 6 € (0,9q) for oy given in (1.5.2) and As be given in (1.1.5). There

exists o1 = o1(ro, Ro) > 0 such that
H)‘CSH%?([O,T}) < o1(Per(f) +1). (1.5.18)

Here, 1o and Ry are given in (1.5.9). As a consequence, {\s}sc(0,50) weakly converges to some

Ao 1 L2([0,T]) as § — 0 along a subsequence satisfying (1.5.1).

Before proving the above theorem, let us show the existence of a viscosity solution of

(1.1.3).

Corollary 1.5.7. ((2°)1>0, Aeo) 1S a viscosity solution (See Definition 1) of (1.1.3). Here,

(Q2°)i>0 and Ao are given in Theorem 1.5.1 and Theorem 1.5.6, respectively.

Proof. Recall from Theorem 1.5.1 and Theorem 1.5.6 that for any 7' > 0 we have, along a

subsequence,

max dy(Q2,Q°) = 0 and \; — Ay in L2([0,T]) as § — 0.

0<t<T
Thus, {As(t)}se(0,60) locally uniformly converges to A (t) := fot Ao (8)ds along a subsequence
as 0 — 0 where As(t) := fot As(s)ds for t € [0, +00).

Note that (£9);50 given in Proposition 1.5.2 is a viscosity solution of V = —H + X°(¢) in

the sense of Definition 1.2.13 (See Remark 1.2.14). From Theorem 1.2.17 and Lemma A.3.7,
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we conclude that (€2:°);>¢ is a viscosity solution of V= —H + A (t). On the other hand,
from Theorem 1.5.1, [Q29°| = |Qp| for all £ > 0. Thus, we conclude that ((£2°);>0, Aso) is a

viscosity solution of (1.1.3). O

Let us briefly explain the outline of proof of Theorem 1.5.6. First, in Proposition 1.5.10,
we show that [|d(-,0F)||12ar) is bounded by J(F, FE) given in (1.5.8) up to a constant for
any sets E/, ' € S, g. The proof of Proposition 1.5.10 is based on the density estimates and

the Besicovitch’s Covering Theorem.

On the other hand, we recall the discrete scheme E; = E;(h,d) in (1.5.10) and define
the corresponding Lagrange multiplier A2(¢) in (1.5.35). In Proposition 1.5.14, we show
that the A}(¢) is bounded by +||d(-, 0E;_4)|| 1205, up to a constant. By combining Propo-
sitions 1.5.10 and 1.5.14 with the inequality from Lemma 1.4.15, we conclude that L? norm
of A is uniformly bounded with respect to h > 0. Here, we construct a local variation (See

Lemma 1.5.12 and Lemma 1.5.13) in order to find the Euler-Lagrange equation.

Here is density estimates for sets in S, . We postpone the proof into the Appendix A.3

as the proof is classical.

Lemma 1.5.8. For E € S, and 0 < r < R, the following holds: there exists g = eo(r, R),
n; = ni(r, R) fori=1,2 and 3 such that for all € € [0,&0] and z € OF

me” < min{|B.(z) \ E|, |E N B.(z)[} (1.5.19)
and
nse" " < Per(E; B(x)) < mpe”! (1.5.20)

where

Per(F; F') := sup {/ divl'(x)dz : T € CH{F;R"),sup|T| < 1} :
E F
Note that for any ' C R" and £ C R", which has a Lipschitz boundary, it holds that
P(E;F)=H""Y(FNOE) (1.5.21)

(See Remark 9.5 and Example 12.6 in [Magl2]).
56



Lemma 1.5.9. [EG92, Theorem 1.27][Mag12, Theorem 5.1] (Besicovitch’s Covering Theo-
rem) There exists a positive constant & = £(n) with the following property: if F is a family
of closed balls of R™ with positive radii, and the set N of the centers of the balls in F is
bounded, then there exists at most countable Fi,...,Fe subfamilies of disjoint balls in F

such that

NCOUB.

j=1BeF;
The density estimates in Lemma 1.5.8 and the Besicovitch’s Covering Theorem in Lemma 1.5.9

imply the following proposition. A similar inequality was proven for the discrete gradient

flow in the proof of [MSS16, Lemma 3.6]. We extend this results for sets in S, g.

Proposition 1.5.10. For E.F € S, r and 0 < r < R, the following holds: for some

o9 = 03(r, R)

/ d*(z,0F)do < 02d*(F, E). (1.5.22)
oF
Here, d is given in (1.5.8).
Proof. 1. For all ¢ € Z, define
: n . oi i+1 . . JEo
D; = {x € R": 2 < d(z,0F) < 2°*'} and &y := min {E’ 1} (1.5.23)

where ¢q is given in Lemma 1.5.8. Let us show that there exists ¢; = ¢;(r, R) such that for

all z; € D, NOF

T <cal, I, ::/ d*(x,0F)do and T, ::/ d(xz,0F)dz.
8FﬂBQi,160 (z4) (EAF)QBW‘,LSO (z4)
(1.5.24)
As E,F C Bpg, it holds that for 2° > 2R,
D;NOF = 0. (1.5.25)
Thus, it is enough to consider 7 < log, R + 1. Then, it holds that
27160 < Rdy < &p. (1.5.26)
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For any « € Bgi-15,(x;) and x; € D;, it hold that
27t < d(x,0F) < 212, (1.5.27)
Therefore, Z; and Z, are bounded as follows;

Il < Per(F, Bgifl(go ($i))22i+4 and IQ > |(EAF) N Bgifltgo (131)‘217150 (1528)

By (1.5.20) in Lemma 1.5.8, (1.5.26) and (1.5.28), it holds that
Il < ,r]2(2(2 1)50)n—122i+4 — ,’7227:(71-"-1)—714-5561—1‘ (1529)
On the other hand, as Byi-15,(z;) C E or Byi-15,(z;) C E, it holds that

|B i-1g (xl) \ F| if Boi-15 ($Z) C FE,
(EAF) O Byioag, ()] = 4 L (1.5.30)
|BQ¢7150 (.Iz) N F| if 3217150 (l‘z) C E°.

From (1.5.19) in Lemma 1.5.8 and (1.5.26), in both cases, we have
IQ > n12(z 1)(TL+1)5 = 21(n+1) n— 1(5” (1531)

From (1.5.29) and (1.5.31), (1.5.24) holds for ¢; := 20

1190

2. Let F := {Bgi-15,(x;) : @ € D;}. Then, by Lemma 1.5.9, there exists Fi,...,F¢

subfamilies of disjoint balls in F such that each family F; is at most countable and

OF N D; C O U B (1.5.32)
j=1BEF;
From (1.5.32) and (1.5.24) in Step 1, it holds that
¢
Ty = /aFmD (z,0E)do < jleer de (z,0E)do < ¢ ; Zf /EAF)HB z,0F)dx.
(1.5.33)
As (1.5.27) implies B C D;_1 UD; UD;, for all B € F and F; is a family of disjoint balls,

we conclude that

3
I3 < ¢ Z/ d(z,0E)dx = 1€ d(z,0F)dx

j=1 (EAF)H(DiflLJDiUDH,l) (EAF)I'\(Di,lU’DiU’DiJrl)
(1.5.34)
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3. From |J,., D; = R™, (1.5.25) and (1.5.34), it holds that

> / d*(x,0F)do,
OFND;

1€EZL

i€Z
/ d*(z,0F)do =
oF

<egy / d(z,0E)dx = 3¢,6d2(F, E).

icZ (EAF)Q('Di_lLJ'DiU’DHJ)

Thus, (1.5.22) holds for o9 := 3¢1€. O

Now, let us find the Euler-Lagrange equation as [MSS16, Lemma 3.7] and [Magl2, Theo-
rem 17.20]. Consider the discrete flow E; = Fy(h, ) given in (1.5.10) and define the Lagrange

multiplier at each time step,
X5 (t) == 7s(|E(h, )]). (1.5.35)

Definition 1.5.11. [Magl2, Chapter 17.3] We say that { fs} ., <s<<, is a local variation in A
for an open set A if for a fixed —e; < s < g5 and €1,e5 > 0, f, : R — R" is a diffeomorphism

of R™ such that

fo(z) = x for all x € R", (1.5.36)

{r eR": fy(x) #x} CC Aforall —e; <s <e. (1.5.37)

Let us denote the initial velocity of {fs}—c,<s<e, DY

_ 9

0s ls=0

U(z) : (1.5.38)

Recall the first variation of perimeter and volume from Theorem 17.5 and Proposition

17.8 in [Magl2]. For E € S, g, it holds that

Per(f,(E)) = Per(E) + s / divopUdH™ ! 4 O(s*) and (1.5.39)
OF
LE) =Bl +s [ weadn 4 0 (1.5.40)
OFE

where divyg is the boundary divergence on OF defined by
divop¥(z) := div¥(z) — (7 - VUi)(x) (1.5.41)
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for x € OE. On the other hand, the first variation of d is as follows,
P(f(E), F) = d*(E, F) + 5 / sd(z, OF)W - idH" ' + O(s?) (1.5.42)
OF

from (3.1) in [MSS16] and Proposition 17.8 in [Mag12].

In our case, the constraints S, r, gives some difficulties when we choose the local varia-
tion. The following two lemmas construct the local variations within the constraint. Here we
use interior and exterior cone properties of S, g, (1.3.3) and (1.3.5), from Lemma 1.3.4. The
first lemma discusses creating a larger perturbed set by dilation. For a > 0, let us denote

aF :={z:a 'z € E}.

Lemma 1.5.12. Let E;(h, ) be given in (1.5.10), &y in (1.5.2), and ro, Ry in (1.5.9). Then
for 0 < 6 < dy there exist h* = h*(0) and a constant sy > 0 such that for all h € (0,h*) and

s € [0,s1) we have
(14 s)Ei(h,0) € Syy.r, forte[0,T]. (1.5.43)

Proof. From Proposition 1.5.2, B,,(0) C Q2 C Bg,(0) for all t > 0. Let us first show that
there exists h* = h*(d) > 0 such that for all h € (0, h*), t € [0,T] we have

B.,(0) C Ey(h,8) C Bi,(0) where Ry := @ and ry = 2 g L (15.44)

By the uniform convergence of E;(h, d) in [0, T'| from Proposition 1.5.4, there exists h* = h*(J)
such that

(1.5.45)

dy(E,(h,8), Q) < min{Ro ; Rl, o ; “}

for all h € (0,h*) and ¢ € [0,77]. This implies (1.5.44). From (1.5.44), we conclude that for

all s € [0, s1)

(14 s)E¢(h,0) € Bg, where sy := % -1 (1.5.46)
2

As Ei(h,d) € Sy, (1.3.3) imply that for all = € JE;(h, )

IC(r,z) C Ei(h,9). (1.5.47)
60



Since (14)IC(r,x) = IC((14s)r, (1+s)x)), we conclude that for all z € 9 ((1 + s)E;(h,9))
IC((1+ s)r,z) C (1 + s)E(h,9). (1.5.48)

As IC(r,xz) C IC((1 + s)r,x), (1.5.43) holds for s € [0, s1). O
Generating a smaller set that stays in S, g, turns out to be more delicate. For this
we need perturbations that preserve 0B,,(0) and shrinks outside of B,,(0). To stay within
Sre.r, We must ensure that the angles of interior cone and exterior cone given in (1.3.3) and

(1.3.5) do not decrease for the perturbed set. This is what we prove with a specific choice

of the perturbation G, below.

Lemma 1.5.13. Let Ey(h,d) with h € (0,h*) and 0 < 6 < &y, where o, 19, Ry and h* are

gien in the previous lemma. Define the following functions in Q:
U(@,t) = XE0,0) (%) = XBnaye (2) and Gs[¥](2,t) = (1 + s(|z* = 15))z, t).
Then there exists s; > 0 such that

{z e R": Gi[Y](x,t) > 0} € Syy.r, for s €|0,s2) and t € [0,T]. (1.5.49)

Proof. Let us fix t € [0,7]. We may assume that E; has a C! boundary. Then, there is a
C! function ¢ : R®™ — R such that

(6>0Y=E, {$p=0}=0E, {¢<0}=E., and Dp#0 on OE,. (1.5.50)

First note that as E; € S,,r, we have B,, C {Gs[¢] > 0} C Bg,. To show that
{Gs[¢] > 0} is in S,, from Lemma 1.3.2 it is enough to show that

DG4l

For the rest of the proof we assume that = € {G;[¢] = 0}.

DG [é](x) #0 and — (x) - x> 1o for all z € {G;[¢p] = 0}. (1.5.51)

Denote Py(x) := 1+ s(|z|> — r3) so that we can write G,[¢](z) = ¢(Ps(z)z), and thus
P(z)x € {¢p = 0} with Do(Ps(z)x) # 0. Observe that

3 1
1<P(z)<-for0<s<sy:= 75— (1.5.52)
2(R§ —r5)

~2
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Since
DG [¢)(x) = 25(D¢(Ps(2)z) - x)x + Py(x) Do(Ps(z)x), (1.5.53)
we have
|DGi[0)(2)]* = Py(2)*|Do(Ps(w)2)|* + 4s(|x|*s + Py(2))(Dd(Py()x) - 2)*.  (1.5.54)
(1.5.52) yields
|DG,[¢)(x)* = [D(Ps(x)2)|* > 0 for all s € [0, s2),
and thus the first condition of (1.5.51) is satisfied.

Let us now show the second condition of (1.5.51). As {¢ > 0} € S,, g, and Ps(z)z €
{¢ =0}, Lemma 1.3.2 implies
D¢
————(P(x)x) - (Py(x)x) > 100 1.5.55
|D¢|(()>(()) 0 ( )
From (1.5.53), we have
—DG,[¢)(x) - & = —(2]z|*s + Py(x))Dp(Py(x)x) - 2. (1.5.56)

Then, (1.5.52), (1.5.55) and (1.5.56) imply that —DG;[¢|(z) - x is positive. Thus, it is enough

to show that

Ti == (= DG,[¢](x) - 2)* — 13| DG[¢](x)* = 0 for all s € [0,52) and x € {G[¢] = 0}.
(1.5.57)

From (1.5.54) and (1.5.55), it holds that
ro|DGs[0](z) | < (Po(z)* + 4rgs(|z)*s + Ps(z))) (Do(Ps(z)z) - z)*. (1.5.58)

From (1.5.56) and (1.5.58) it follows that
7

(Do(Pu(x)7) - 2)° > (Ps(w) + 4|z|"s(|x|*s + Ps(x))) - (Ps(x) + 4ris(|z| s—i—PS(x))).

(1.5.59)
Using s(|x[*> — 72) = Ps(z) — 1 and factorizing the above, we conclude
D5 (P(a) ~ 1)(-Py2)® — P(2)? + AP(2) + 4zf’s). (15.60)
(De(Py(x)z) - )
From (1.5.52), we conclude that Z; > 0 for all s € [0, s2) and = € {G,[¢] = 0}. O
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From Lemma 1.5.12 and 1.5.13, we get the following estimates. In the proof of Proposi-
tion 1.5.14, we use two initial velocities of local variations introduced in Lemma 1.5.12 and

Lemma 1.5.13.

Proposition 1.5.14. There exists 03 = 03(rg, Ro) and o4 = 04(rg, Ro) such that for all

t €1[0,7] and h € (0,Rh*),

INI(H)2 < oy + % &(z,0F,_,)do. (1.5.61)
8B, (h,)

Here, h* is given in Lemma 1.5.12 and Ey(h,d) is given in Proposition 1.5.4. Also, ry and
Ry are given in (1.5.9).

Proof. 1. First, show that if fs(E;) € Sy, g, for all s € [0, sp), then it holds that
1
AR (t) / i - Wdo < / divop, ¥ + —sd(x, 0E;_,)7 - Vdo. (1.5.62)
3Et aEt h

As E; is a minimizer of J5(-) + %CZZ’(-, Ei_p) on Sy rys (1.5.39), (1.5.40), and (1.5.41) imply
that

s)\g(t)/ n-Vdo < 3/ divog, Ydo + i/ sd(x,0F; ;)i - Wdo + O(s*)  (1.5.63)
OE, OE, h Joe,

for all s € [0, s9). Dividing both sides by s > 0 and sending s to zero, we conclude (1.5.62).

2. Let us find the upper bound of A:(¢). Recall f,(x):=z + sz in Lemma 1.5.12. Then,
fs(Ey) € Syy.R, for s € [0,51) and ¥(x) = x. From (1.5.62) in Step 1 and o <17 -2 < Rj on
OF;, it holds that

f divyp ¥ + lSd(ZE, 8Et_h)ﬁ - Wdo n—1 R 1
(1) < =25 S < 0 —/daE_d.
OB faEtﬁ-\I/do ~ 1 + roPer(Ey) h aEtS (7,0 —n)do
(1.5.64)
3. Let us construct the lower bound. Define g, f : R™ x [0, s9) — R"™ by
0u(2) = gz, 5) = (1+ s(lof? — 2)a and fu(2) = f(z,8) = (92) () (15.65)

where s; is given in (1.5.52) in Lemma 1.5.13. As g(f(z,s),s) =  and Dgs|s—o = I, it holds
that

afs (ng_a%
s ls=0""7  0Os ls=
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From the above and (1.5.38), the initial velocity is
U(x) = —(|z]* — r))x. (1.5.67)

From Lemma 1.5.13, fs(E;) € Sy.r, for s € [0,s2). By (1.5.62) and ¥ -7 < 0 on OF, it
holds that

faEt divog, U + +sd(z, 0E,_)it - Ydo

No(t) >
HOR Jom, - Vdo

(1.5.68)
Note that from (1.5.44)

—Ro(Rg — rg) <VU.p< —7“0(7"5 — 7"8) and — (n+ 1)(R3 — rg) < divpg, ¥V < —(n — 1)(7"% — 7"8).

(1.5.69)
From (1.5.68) and (1.5.69), we conclude that
—1)(r2 —12) 1
i) > 20 / d(x,0F,_»)do. 1.5.70
5( ) — RO(Rg _7,(2]) hPer(Et) o, (x7 t h) g ( )

4. From (1.5.64) and (1.5.70), there exists ¢; = ¢;1(ro, Ro) and ca = ¢a(rg, Ry) such that

Ar(1)] < L/d E,_,)do. 1.5.71
|6< >|_Cl+hPer(Et) om, (l’,a t h) o ( 57)

From (1.5.71), (a+b)* < 2(a*+?) for a,b € R and the Holder’s inequality, it holds that

IAE#)]2 < 202+2—c§ / d(z,0E,_1,)d 2 < 202+2—c%/ d(x,0F,_,)*d
s = <4 h2Per(E})? oF, y OL—p)A0 | = 26y h2Per(E,) oF, y OLy—p) Q0.
(1.5.72)

By the isoperimetric inequality and B,, C F;, we have Per(E};) > ¢ for some c3 = c3(rg), we

conclude that (1.5.61) holds for
o3 :=2c? and 04 1= —2. (1.5.73)
[

Proof of Theorem 1.5.6.

Let us show that ||)\§LH%Q([07T]) is uniformly bounded for all » € (0,h*) and all § € (0, dy).

Here, h* = h*(J) is given in Lemma 1.5.12.
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By Proposition 1.5.14 and Proposition 1.5.10, it holds that

%]

0204 ¥

; d*(Exny Ege—1yn)- (1.5.74)

k=1

>N

T
090, ~
||)‘g||%2([0,T}) <o3T + 224 /0 d&*(Ey, By_p)dt < 03T +

Note that Lemma 1.4.15 implies

ﬁ
>N
s}
—
=
2

1 .
7 d*(Exny Eg—1yn) < Ko Y (Ts(Eg—1yn) — Ts(Ern)) = Kao(T () — j(E[%]h)) < KoPer ().
k=1 k=1
(1.5.75)
Thus, (1.5.74) and (1.5.75) imply that
IN 172007y < 03T + 0204 o Per () (1.5.76)

for all h € (0, h*).

By the uniform continuity of E;(h,d) in [0, T] from Proposition 1.5.4, A¥ given in (1.5.35)
uniformly converges to As given in (1.1.5) in [0, 7] along a subsequence. Thus, we conclude

that (1.5.18) holds for
o1 := max{os, 0904z }. (1.5.77)

Here, o5 is given in Proposition 1.5.14, o3 and o4 are given in Proposition 1.5.10 and K is
given in Lemma 1.4.15. For ¢; € (0, dy) given in Theorem 1.5.1, A, is uniformly bounded in
L*([0,T]) for all i € N. Thus, by the Banach-Alaoglu Theorem, there exists a subsequence
d;; of ¢; in Theorem 1.5.1 such that >\5ij weakly converges to Ao, in L2[0,T]. O

For the later purpose in Section 1.5.3, let us also construct L? estimates in [tg, to + T for

all t() 2 0.

Corollary 1.5.15. Let § € (0,6¢) for dg given in (1.5.2) and s be given in (1.1.5).
||)‘5||%2([t0,t0+T]) < o1(Per($20) + 1) (1.5.78)

where oy is given in (1.5.77).
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Proof. As J5(9) given in (1.5.7) decreases in time, J5(€2?) is bounded by J5(2) = Per(£)
for all > 0 and ¢t > 0. From (1.5.74) and (1.5.75) in the proof of Theorem 1.5.6, we have

N Z2 (to.10477) < 01 (Per(Qo) + ) (1.5.79)

where oy is given in (1.5.77). As the proof of Theorem 1.5.6, we conclude (1.5.78). O

1.5.3 Convergence

In this section, we discuss the large-time behavior of (€25°);>¢ given in Theorem 1.5.1. Here

is the main theorem in this section.

Theorem 1.5.16. (2:°);>0 given in Theorem 1.5.1 uniformly converges to a ball of volume

1, modulo translation. More precisely
inf {dp (°, B, (z)) : 2 € B,,(0)} = 0 as t — o0, (1.5.80)

where r1 1s given in Proposition 1.5.2, ry, = (wn)_% and w, s a volume of an unit ball in

R"™.

Intuitively this convergence is due to the flow’s formal gradient flow structure with respect
to the perimeter energy. Unfortunately, due to the lack of uniform regularity for Q2 with
respect to 6 > 0, we are not able to directly show that 29° is the gradient flow of the
perimeter energy in the space of sets with unit volume. Hence we instead utilize the gradient

flow structure for the d-flow, as given in section 4, to show this convergence.

The main estimate in the analysis is Lemma 1.5.18, where we bound the difference of
total perimeter with respect to their differences in Hausdorff distance, in the class of star-
shaped sets with their total curvature in L2. Based on this estimate, we can proceed to show
in (1.5.110) that the time integral of J-energy converges to the time integral of the perimeter
energy. This now establishes the link between the gradient flow structure of J-flow and the

limit flow, and the asymptotic convergence follows.
For k € N we consider ((Uf)io,n") defined by
Uf = Q3% and n¥(t) = Ao (t + k). (1.5.81)
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Here, (£20°);>0 and A are given in Theorem 1.5.1 and Theorem 1.5.6, respectively.

Proposition 1.5.17. There exists a subsequence {k; }ien such that {(UF")o}ien locally uni-
formly converges to (Up®)i>0 C Sy r, and {n"}ien weakly converges to n> in L*([0,T1]) for
all T > 0. As a consequence, (U)o is a viscosity solution (See Definition 1.2.13) of

V =—H +n>(t). Here, r1 and Ry are given in Proposition 1.5.2.
Proof. Theorem 1.5.1 and Proposition 1.5.5 imply that for all 0 < ky < ks
dy(UF, U) < K3(ky — ky) w7 Per(Qo) 71 (1.5.82)

where K3 is given in Proposition 1.5.5. Since UF C S,, r, by Theorem 1.5.1, we can apply

Lemma A.3.3 to obtain a subsequential limit of {(UF)s>0}xen-

On the other hand the Banach-Anaoglu theorem can be applied to {n*}ren due to the
uniform L? estimates obtained in Corollary 1.5.15. Thus, for any 7" > 0 there exists a
subsequence {k; };en such that {(Utki)tzo}ieN locally uniformly converges to (US°)i>0 C Siy 1y
and {n*};cn weakly converges to n> in L2([0,T]). Note that T*: converges locally uniformly
to T, where T*(t) := fot n*(s)ds for k € NU {+o0}.

Recall that (U)o is a viscosity solution of V = —H +n*(t). From Theorem 1.2.17 and
Lemma A.3.7, (U)o is a viscosity solution of V' = —H + n>(t). O

Now, in Lemma 1.5.18, we estimates the time integral of the perimeter difference for two

evolving sets (€)i>0 C S,.g and j € {1,2}.

Lemma 1.5.18. For j € {1,2}, consider ()0 C Sy.r for R > 1 > 0 such that (092 )0
are smooth. Suppose that there exists a constant W < +oo such that for T > 0 and j € {1,2}

T
/ H(z,t)*dodt < W (1.5.83)
o Joo!

where H(x,t) is the mean curvature at @ € OSY. Then, there ewists a constant m =
m(r, R,T,W) > 0 such that

2

T
(/ Per(€)}) — Per(Qf)dt) <m sup dy(Q},Q7). (1.5.84)
0

t€[0,T]
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Proof. As {Qg}je{m} C S, g are smooth for ¢t > 0, there exist two smooth functions u, us :

B 1(0) x [0,T] — R such that for j = 1,2
901 1 Coa(0) = {(uy (. 0).4/) o' € B (0)) (1585

where C7;(0) := [0, R] x B}~(0). Furthermore, from Q,Q, € S, again, there exists a

constant ¢; = ¢;(r, R) such that

Jur — u2||L°°(BZf’1(O)><[O,T]) < Clts[%lf}] d (€, Q7) and ||vuj||L°°(Bf’1(0)><[0,T]) <cforj=12
S I

(1.5.86)

1. Let us first show that there exists m; = my(r, R, T, W) for W given in (1.5.83)

- = 12 — 1 2 - (1, Vuy) .
n — N ne <my sup dg(£2,Q;) where n; .= ———=— for j =1, 2.
|| 1 2||L2(BT L0)x[0,11) 1te[07T] ( t t) J At Va2 |VUj|2
(1.5.87)

As 177 and 7i5 are unit vectors, we get the following by the direct computation,

|71 — i1a)? = 2(1 — 71y - 7iy), (1.5.88)
< (V14 |Vur |24+ /14 [Vug|?)(1 — ity - 1), (1.5.89)
= (V14 [VuP)ii — (V14 [Vua?)itz) - (7 — ia) = V(ug — ug) - (1) — 1i5)

(1.5.90)

where 77 is the last n — 1 components of 7i; given by

i = Vi _ for j € {1,2}. (1.5.91)

T VL V()]

Note that the mean curvature at (uj(z,t),z) € 99 for x € B*~1(0) is given by

H((uj(x,t),2),t) =V - iz, 1). (1.5.92)
From (1.5.83), there exists ¢y = co(r, R, W) such that for j € {1,2}

IV - 105\ L2 gr10yx o, < Co- (1.5.93)
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From integration by parts, we have
7, = / V(ug — ug) - (7] — 1y)dxdt, (1.5.94)
B 1(0)x[0,T7

-/ sy ™ 1) 7)ot — / 1) (7, = )
X i %[0,

(1.5.95)

where v is the outward normal vector on 9B”~!(0). By applying the Holder inequality at
each terms and using (1.5.86) and (1.5.93), we have

n— —) — n—111m1
7, < (2Pex(B} T + ||V - (7] — ”/2)HLZ(B;Lfl(o)x[o,T])‘Br 1\2T2)HU1 - U2||Loo(B;H(o)x[o,T])a

(1.5.96)
< (2Per(BY )T + 2¢5| BP 12T 2)¢; sup dp(Q),02). (1.5.97)
tel0,7
From (1.5.90) and (1.5.97), we conclude (1.5.87) with
= 21 (Per(Bf—l)T + c2|B:f—1|%T%) . (1.5.98)

2. Let us show that there exists my = ma(r, R, T, W) for W given in (1.5.83)

T
(I)? <y sup dy(Q), Q%) where T, := / Per(Qy; C75(0)) — Per(Qg; C1(0))dt.
0

te[0,7)

(1.5.99)

Recall from (1.5.21) and Theorem 9.1 in [Magl2], we have

T
/ Per(Q/; C11(0))dt = / \/ 1+ |Vu,|2dedt = / (1,Vu;) - 1dxdt
0 ’ B 1(0)x[0,T] X[OT]
(1.5.100)

where {u;};cq1,2y and {n;};eq1,2) are given in (1.5.85) and (1.5.87), respectively. By adding

and subtracting the same term in Zy, we have the identity
Iy=Is+1, (1.5.101)
where
T, = / (1, V) - (1 — ) dadt (1.5.102)
B H0)x[0,T]
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7= [ ((1,Vur) = (1, V) - adadt = | V(s — ) - Ty
Br1(0)%[0,1] B 1(0)x[0,77
(1.5.103)
Here, {n;}je(1,2) and {n/;}je(1.2) are given in (1.5.87) and (1.5.91), respectively.
By applying (1.5.86) and (1.5.87) and the Holder inequality, we get
;< (1+ )| B HTmy sup du(Q,07). (1.5.104)

t€[0,T]
where ¢; and m; are given in (1.5.86) and (1.5.98). On the other hand, by the similar

arguments in (1.5.95)

T, <y sup dy(Q},QF) (1.5.105)
te[0,T

where 77 is given in (1.5.98). As (Q);>0 C Sy.r for j € {1,2}, we have

sup dy(QF,Q7) < 2R. (1.5.106)

te[0,T

Thus, (1.5.105) and (1.5.106) imply that

77 < 2miR sup dy(Q,02). (1.5.107)
te[0,7

From (1.5.101) combining with (1.5.104) and (1.5.107), we have

T < 2T +17) < 2((1+ &) B Tmy + 2miR) sup dg(Q, Q7). (1.5.108)
te[0,T

Thus, we conclude (1.5.99) for
my :=2my (14 ¢})| BT + 2miR) . (1.5.109)

Here, ¢; and m; are given in (1.5.86) and (1.5.98).

3. As every sets in S, g can be covered by a finite number of cylinders C’r": (0) after some

rotations, (1.5.99) implies (1.5.84). O

From the estimates in Lemma 1.5.18 and our approximation from (£9);>o in Theo-

rem 1.5.1, we conclude that the limit flow (U7°);>¢ is stationary.
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Proposition 1.5.19. (U?°):>o given in Proposition 1.5.17 is stationary.

Proof. 1. Let us show that there exists £ : RT™ — R* such that

T
(k) := lim £°(k) where £°(k) ;:/ T5(Q2,,.)dt. (1.5.110)
0

6—0
It is enough to show that {€2(k)}s-0 is a Cauchy sequence as § — 0 for all k € [0, +00). As

Q0 is smooth for ¢ > 0 from Proposition 1.5.2 and Q¢ is a gradient flow of J5, we have

to+T
/ / Vidodt = J5(92) — T5(2) 1) < Per(€) (1.5.111)
to OQ?
where V is the normal velocity at € Q. As H = XA — V, Corollary 1.5.15 and (1.5.111)
implies the uniform bound on || H|| 2 1017522 (509))-
As J5(99) = Per(2) + 267s(t)%, Lemma 1.5.18 and Corollary 1.5.15 imply that for

0y >0, >0

£ (k) — E%(k)| <

T
/O Per(Qf—l&—k) - Per(ﬂfik)dt‘ + 261 As, H%Q([k,k-f—T]) + 252|’)‘52H%2([k,k+T})7

(1.5.112)
SC( sup dH(Qfl,QfQ)%—l—él—l—éQ) (15113)
t€[0,T]
where a constant c is given by
¢ := max {m%, 201 (Per(Qy) + T)} . (1.5.114)

Here, 01 and m are given in (1.5.77) and (1.5.84), respectively. From Theorem 1.5.1, we
conclude (1.5.110).

2. Lemma 1.4.15 and the smoothness of Q? for ¢t > 0 from Proposition 1.5.2 imply that
for s,k € [0, 400)

T ~.
| B 2t < SR~ (k) (1.5.115)
0

where K5 is given in Lemma 1.4.15. Taking ¢ into zero, (1.5.110) and Theorem 1.5.1 imply
that for s, k € [0, +00)

/OTCP(UtﬁS,Uf)dt < sKo(E%(k) — E°(k + 5)) (1.5.116)
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where UF is given in (1.5.81).

Note that as £(k) is monotone decreasing for all § > 0, £%°(k) is also monotone decreasing

in k. Taking k into oo, we get for s € [0, +00)

k>s

T o~
/ P(UFE,, Up)dt < sKo(inf £%(K) — inf £(k)) = 0 (1.5.117)
0
and we conclude. O

Proof of Theorem 1.5.16.

1. Let n* and Ug° be as given in Proposition 1.5.17. We denote U® by U* since we
know that it is stationary from the last proposition. We will show that °° is independent of
time as well. Let us argue by contradiction, and suppose n(t;) # n°(t3) for two Lebesgue
points t; < t3 in [0, +00). We may assume that n°°(t1) < n°°(t2). As t; and ty are Lebesgue

points of 7°°, there exists 1 > 0 and d; > 0 such that for any § € (0, ;], we have

T(t +6) — T(t) - n>(t1) + n>(t2) < T(ty +6) — Y(ts)
) 2 )

¢
— &1 where Y(¢) := / n>(s)ds.
0

Therefore, for § € [0, d1], we have

Y(t1+9) < O1(t; +0) and Y(ta + ) > Oa(ta +6) + 16 (1.5.118)

where
() = %(no"(tl) ()t — ) + Y(t:) for i € {1,2}. (1.5.119)
From Proposition 1.5.17, u(x) := xye=(x) — X(@w=)c(r) is a viscosity solution of V' =

—H +n™(t). Let us define v; : R™ x [0,d;] — R for ¢ € {1,2} by

X

vi(z,t) = u(z; (=Y + O1)(t + 1)) and va(x,t) =1 ( (T — O9)(t+ tg)) , (1.5.120)

where u and w are as defined in (1.2.28) and (1.2.29) and &5 is a constant satisfying

5
= (O,min {21—]; 1}) . (1.5.121)

Note that by (1.5.118) and (1.5.119) v; and v are each a viscosity supersolution and subso-

lution of V = —H + $(n®(t1) + n>°(t2)) in [0, ;).
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As v1 + 1 and vy + 1 have compact support in R™ x [0, d;], there exists Ry > 0 such that
v1(z,t) = va(z,t) = —1 for all x € Bg,»(0)° and t € [0,5,]. (1.5.122)

We claim that
(v1)s > (v9)™ in Bg,(0) x [0, 41]. (1.5.123)

As T —0Oy(t1) = (T — O2)(t2) = 0, we have v1(z,0) := xp=(7) — X(@e)c(r) and vy(x,0) =
X(1-e2)U> (T) = X((1=e5)uyc (7). From the fact that U € S,, g, and &5 > 0, we observe that
(v1)« > (v9)* at t = 0. Combining this with (1.5.122), we have

(Ul)* > (UQ)* in 6p(BRQ(0) X [0,51]) (15124)
and thus Theorem 1.2.15 yields (1.5.123).
Next, we claim that
01 01
vi|e g <y | x, B for all z € R™. (1.5.125)

As U™ € Sy, g, we have U C |, <., ((1 —€2)U> + z). From this and (1.5.121), it holds
that

5
w(@) <[ —2— ) for all 2 € R™ (1.5.126)
1— E9 2

As vy and vy are inf and sup convolutions of u, respectively, and Y (to +t) — Oy(ty + 1) > &1t

for all ¢t € [0, 9] from (1.5.118), we have

v1 (z,t) <wu(z) and u (1 °

;5115) < wy(z,t) forall z € R" and t € [0,d;].  (1.5.127)

From (1.5.126) and (1.5.127), we get (1.5.125).

Then, (1.5.123) and (1.5.125) yield that

U1 (:c, %) < vy (:r;, %) < (v9)* (:L‘, %) < (v1)« (x, %) for any x € Bg,(0).

Combining the above with (1.5.122), we have

(v1)* (%) = (v), (%) and (vy)* (%) = (1), (%) in R". (1.5.128)
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Since U™ € S, g,, it follows that v, (-, %) and vy (~, %1) are characteristic functions and they

are discontinuous. This contradicts to (1.5.128).
2. As (U°)i>0 and 7™ are stationary from Proposition 1.5.19 and Step 1, we conclude

that Uy is a viscosity solution of the elliptic problem,
H =n>™. (1.5.129)

As (U®)i>0 C Spy R, from Proposition 1.5.17, (U°);>( can be locally represented by graphs.
Then, the regularity of (1.5.129) in [GT15, Corollary 16.7] implies that U2° is smooth. As

(U)i>0 C Spy.ry» We conclude that U = B, () in [0, +00) for some = € B,,(0) where 7

Too

given in Theorem 1.5.16. Therefore, every sequence of (€22°);>¢ has a subsequence converging

to B, (v) for some z € B,,(0), we conclude (1.5.80). O
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CHAPTER 2

Degenerate parabolic equations with discontinuous

diffusion intensities

2.1 Introduction

Consider a degenerate parabolic equation with a discontinuous diffusion coefficient: for a
density function p: [0,T] x Q — [0, +00)

(

Op — Ap(p) =V - (Vep) =0 in (0,T) x Q,

(V(p) + V®p) -7 =0 on (0,7) x 0%, (2.1.1)

p(0,-) = po in €.

\
Here, T > 0 is a given time horizon,  C R? is the closure of a bounded convex open set
with smooth boundary, ® : 2 — R is a given Lipschitz continuous potential function and
po € Z(Q) is a nonnegative Borel probability measure. The diffusion intensity function ¢ :
[0, +00) — [0, +00) is supposed to be monotone and to have a discontinuity at p = 1. There
are many studies devoted to theories and applications of the diffusion intensity including
self-organized criticality in physics (See [BJ92]). However, its continuous-time model as in

(2.1.1) has not been well understood.

We rely on the gradient flow structure of (2.1.1) in the space of probability measures,
when equipped with the distance W5 arising in the Monge-Kantorovich optimal transport

problem. To (2.1.1), we associate an entropy functional £ : Z(Q2) — R U {+o0}, defined as

) /Q S(p(x))da + /Q B(z)dp(z), if S(p) € L), 1o,
+00,

otherwise,
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where S : [0,400) — R is a given function. At the formal level, the relationship between ¢

and S can be written as

o(p) = pS'(p) — S(p) +S(1) and ¢'(p) = pS"(p), if p# 1.

We observe that the discontinuity of ¢ at p = 1 corresponds to the non-differentiability of
S. Furthermore, as ¢ is monotone, we impose that S is convex and the multiple values of
@ can be represented by the subdifferential of S. In this sense, we consider S to be given

which satisfies the following assumption.

Assumption A. S : [0, +00) — R is superlinear, continuous and strictly convex. Further-

more, S is twice continuously differentiable in Rt \ {1}.

In our analysis, we rely on the classical minimizing movements scheme of De Giorgi (see
also [JKO98] and [Sanl7]). This, for a given py € () (and for a small parameter 7 > 0

and N € N such that N7 = T) iteratively constructs (pk)szo as
i 1
Pr41 = argmin {E(p) + EWg(pk,p) D pE @(Q)} , ke{0,...,N —1}. (2.1.3)

In order to give a precise description of the optimality conditions associated to (2.1.3),
we introduce a function p; which encodes the ‘transition” between the phases {p; < 1} and
{pr > 1} through the critical region {pr, = 1}. This is very much inspired by the derivation of
the pressure variable in recent models studying crowd movements under density constraints
(see in [MRS10], [DMS16], [MS16]). Because of this similarity, we sometimes use the abused

terminology of pressure to refer to the variable p.

After obtaining the necessary compactness results, we pass to the limit with the time
discretization parameter 7 | 0 and we recover a PDE (which precisely describes the weak
distributional solutions of (2.1.1)) satisfied by the limit quantities (p, p). This formally reads

as
Op — A(Ls(p,p)) =V - (VOp) =0, in (0,T) x €,

p(0-) = po, in €, (2.1.4)
(V(Ls(p,p)) +Vp) -7 =0, in [0, 7] x 0%2.
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Here, the operator Lg is defined pointwisely for functions (p,p) : [0,7] x 2 — R by

Ls(p.p)(t,) = [plt. )8 (plt,2)) — S(p(t, 7)) + )] Loy (£,2) + plt,2) Ly (1,2)

(2.1.5)
and the pressure variable p : [0, 7] x 2 — R satisfies
p(t,r) =S'(1-) if 0<p(t,z) <1,
p(t,z) € [S'(1-),8'(1+)] if p(t,z) =1, (2.1.6)
p(t,x) = S'(1+) if p(t,z) > 1.

\

Starting with Section 2.4, we consider general entropies. Assumptions are made on the

growth of S in the two different phases {p < 1} and {p > 1}. First, we impose

Assumption B.

m—2

S : [0,400) — R satisfies rF < S"(p) if p € (0,1) for some m > 1 and o9 > 0. (2.1.7)

02

The imposed summability assumption on the initial data py € () plays also a crucial
role in our analysis. If py € L>(2), it turns out that the entire iterated sequence (pj)i_,
obtained in the scheme (2.1.3) remains essentially uniformly bounded, provided the potential
® is regular enough. This fact does not depend on the differentiability of S and it is well-
known in the literature (see [Sanl5]). In this case, imposing only the assumption (2.1.7) on

S is enough to obtain the well-posedness of (2.1.4)-(2.1.6).

Theorem 1 (Theorems 2.3.1, 2.4.2, 2.5.1, 2.5.5 and Theorem 2.6.1). Suppose that (2.1.7)
holds and ® satisfies (2.2.4). For py € L>*(Q), there exists p € L*(]0,T] x ), p™ €
L3([0,T]; HY(2)) and p € L*([0,T); HY(Q)) N L*°([0,T] x Q) such that (p,p) is a unique
solution of (2.1.4)-(2.1.6) in the sense of distributions.

The other case is when we only impose that py has finite energy, i.e. E(py) < +o00. We
show that the iterated sequence will have improved summability estimates for k € {1,..., N}
(see in Lemma 2.2.11), provided S satisfies the additional growth condition (2.1.8b)-(2.1.8a)

below. These summability estimates on the iterated sequence will be enough to obtain the
7



necessary a priori estimates and pass to the limit as 7 | 0 to obtain a weak solution to

(2.1.4)-(2.1.6).

For general initial data such that £(py) < +oo we shall impose the following additional

growth condition on S.

Assumption C.

r—2

S : [0, +00) — R satisfies F_ < S"(p) if p € (1,400) and (2.1.8a)
01

S"(p) < o1p"? if p € (1, +00) for some r,0q > 1. (2.1.8b)

Notice that under (2.1.8) and r > 1, £(py) < 400 is equivalent to py € L"(€2). Similarly

to Theorem 1, we can formulate the corresponding well-posedness result.

Theorem 2 (Theorems 2.3.1, 2.4.2, 2.5.1, 2.5.5 and Theorem 2.6.1). Suppose that (2.1.7)
and (2.1.8) are fulfilled and

m<T+§ (2.1.9)

hold true for > 1 (its precise value is given in (2.2.29)). For py € Z(2) such that
E(po) < 400, there exists p € LP([0,T] x Q) and p € L*([0,T); H*(2)) N L>([0,T] x Q) such

that (p,p) is a solution of (2.1.4)-(2.1.6) in the sense of distributions. Furthermore, we have

o7k € (0. T H'(Q)), if m < v and g5 € L0, T W 9(Q)) if r < m < v+

for some q € (1,2). If in addition 8 > 2r, then the pair (p,p) is unique.

2.2 The minimizing movement scheme and optimality conditions

Q) C R?is given, as the closure of a bounded, convex open set with smooth boundary. £2()
denotes the space of Borel probability measures on 2 and .#? stands the Lebesgue measure
on R?. We also use the notation 2*°(Q) := {p € 2(Q): p< LLQ}. T > 0is a fixed

time horizon and we often use the notation @) := [0, 7] x €.
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As &' is strictly increasing in RT \ {1} from Assumption A, §'(04) and S'(1+4) are well-
defined in RU {—o0} and R, respectively, as follows.

§'(04) := lim S'(e), S'(1-):= lim S'(¢) and S'(1+) := lim S'(e). (2.2.1)

e—0+ e—1— e—1+
In particular, we have that S’(1—) < S'(1+).

We define the corresponding internal energy J : () — RU {400} by

/8@@»@> if p ¢ P(Q),
J(p) =< /@ (2.2.2)

400 otherwise

Furthermore, we suppose that there is given ® : Q — R a potential function in W1 (Q)

and the associated potential energy F : Z(£2) — R given by
Fip) = [ a@dpta)

Let pg € Z(Q2) be given and consider a time discretization parameter 7 > 0 and N € N
such that N7 = T. We define the minimizing movements (pi)~_, of J + F as follows: for
ke{l,...,N} set,

: |
pi = arg min ¢ J(p) + F(p) + - W3 (p, o) (2:2.3)
peZ(Q) T
Note that the existence and uniqueness of the solutions in the minimization problems (2.2.3)

follow from standard compactness, lower semicontinuity and convexity arguments.

In what follows, in our analysis we differentiate two cases with respect to the summability
assumption on pg. Since these need slightly different arguments, we separate them in two
different subsections. In particular, if one assumes L summability on pg, the presented
results will hold true under no additional assumptions on S (other than in Assumption A).
However, in (2.2.3) we can allow general measure initial data, in which case an additional
growth condition (see (2.1.8)) has to be imposed on S in order to obtain the same optimality

conditions.
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2.2.1 Optimality conditions for p, € L>(Q)

Lemma 2.2.1. If ® is non-constant, let us assume that ® € C*(Q) and
Vo(xp) -7i(20) >0, Yag € 0 and VO € BV (LR with [AD], € L>®(Q)  (2.2.4)

where 1 stands for the outward normal vector to 02 and [A®], denotes the positive part of

the measure A®. Let (pp)N_, be constructed via the scheme (2.2.3). Then we have
lorllze < llpillze (147 AD] ) < flpollzee (1 + T[AR]|lz)™ < lpoll e NATE>,
Vke{l,...,N}.

Remark 2.2.2. Let us notice that the second part of assumption (2.2.4) is sharp and it is very
much related to the ones imposed in the work of Ambrosio (see [Amb04]), as an improvement

of the classical DiPerna-Lions theory ([DL89]), on transport equations with BV vector fields.

Proof of Lemma 2.2.1. The proof of this result in the case when ® = 0 is essentially the same
as the proof of [San15, Proposition 7.32] (since that proof is not assuming any differentiability

on S).

For general ®, we use some ideas from the proof of [CS17, Theorem 1]. Let us approximate
S with a sequence (S.).>¢ of smooth convex functions such that S” > ¢. > 0 for any € > 0
with SL(0+) = —oo. Let ®. be a smooth approximation of ® which satisfies (2.2.4) and such
that &. — &, V&, — V&, uniformly as ¢ | 0 and ||[AD.]4 | pe < [[[AP]4 |1, for € > 0. Let
p% be the unique solution of (2.2.3), when we replace S with S; and ® by ®.. Writing down

the optimality conditions we obtain

(4
Sl(ps) + @+ £ =C ae,
T
where ¢ € K(p%, pr_1). Let us suppose that ¢ € C?(Q), otherwise we approximate pj_;
by strictly positive C%® measures (and pf is Lipschitz continuous and strictly positive), and

we use Caffareli’s regularity theory to deduce the desired regularity for the potential.

Now, let zy a maximum point of p;. From the previous equality, since S. is strictly

€
increasing, we certainly have that xg is a minimum point of &, + %
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We claim that o ¢ 0. Indeed, if zy would belong to 02, we would have that

(Vi (x0) + 7V (20)) - 7i(20) <0

However, by the convexity of €, we have that (zg — V5 (xg)) - i(zo) < 0, from where
Vi (xo) - fi(xg) > 0. This fact together with the assumption (2.2.4) yields a contradiction.

Indeed, from the uniform convergence of V&, — V&, we have that
Vo, (xg) -1 >VP(xg)-11—e >0,
for sufficiently small € > 0.
Therefore, the maximum point xy of p; belongs to the interior of €2. This implies that

AL (zg) + TAP (z9) > 0. Using the Monge-Ampere equation we find
1Pkl = pi(x0) = pr-1(z0 — Vi (x0))det (I — D*¢i(0)) < [l (1 — A (0))*

< lpr-tllzee (1 + 7AR(20))" < [l pri = (1 + TI[AD] 4 [ 1<)

< pcrllem (1 4+ TIAD =) < e (1 -+ 7IAP] 1) < [|pof e Tl
where in the first inequality we have used the inequality between the arithmetic and geometric
means. Since the last three bounds depend only on the data, these will also remain valid also

in the limit € | 0 (since the minimizers of both the approximated and the original problems

are unique). Therefore the thesis of the lemma follows. ]

Now, we state the main result of this subsection on the first order necessary optimality

conditions for the problems in (2.2.3).

Theorem 2.2.3. Suppose that pg € L>®(Q). For allk € {1,..., N}, there exists C = C(k) €
R and ¢, € K(px, pr—1) such that

(

C — %—’“ —® < S'(0+4) in {pr = 0},
(C—2_de[s(1-),8(1+)] in{m=1}, (2.2.5)
C— i—’“ —d=8op otherwise.

Here, K(py, pr—1) is given in Definition A.4.1. Also, §'(0+) and S'(1%) are given in (2.2.1).
Note that pr, > 0 a.e. (See Lemma A.4.5) if S'(0+) = —oo, and in this case the first

inequality in (2.2.5) is not present.
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The proof of the previous results relies on the precise derivation of the subdifferential of
the corresponding objective functional in (2.2.3). Let us point out that the subdifferential
of sum is not always the sum of subdifferentials (see for instance [Sanl5, Example 7.22]).
Therefore, we need to carefully choose the domain of definition of 7. In the spirit of Lemma
2.2.1, we consider it as a functional on L*(f2) instead of Z2(Q2). The additive property of
subdifferentials on L>°(€2) holds under suitable conditions (cf. [ET76]).

Proposition 2.2.4. For all k € {1,..., N} we have

1

1
o =0J (o) + @+ ga(WQQ(P’ Pr-1))lo=pi  (2:2.6)

p=pk

9 (J(/)) +F(p) + 5-W5 (p, pkl))

Proof. To simplify the writing, we consider only the case k = 1. Let us check that J and
W3 (-, po) satisfy the assumptions in Lemma A.5.4. The convexity of S implies that of 7.
Also, the continuity of J in L>*(2) follows from the continuity of S. From Lemma A.5.3,
we conclude J € I'(L*(£2)). We have the same conclusion for the functional F (which is

actually linear in p).

Let us show that WZ(-, po) € T'(L>(Q)). Define H : L'(2) — R U {+o00} by

H($) = — /Q ¢°dpo. (2.2.7)

Proposition A.4.4 implies that H* : L>*(Q2) — R U {+o0} is given (in the sense of (A.5.1))
by

1
H* = 5Wg(-,po) on L*®(Q). (2.2.8)

We conclude W3 (-, pg) € T(L>®(9)).

Lastly, choose A C Q a Borel set such that £?%(A) # 1 and define
= —— 1, (2.2.9)

J(@), F(ii) and W3(ji, po) are finite. Furthermore, by the continuity of & in R*, J is
continuous at . In the same way F is also continuous at fi. Thus, we conclude (2.2.6) from

Lemma A.5.4. N
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Next, let us find the subdifferential of W (-, px_1). While this subdifferential is expected
to be the set of Kantarovich potentials IC(pg, px—1), it is not straight forward to conclude
about this as we consider the subdifferential for the functional on L>(€2). We rely on the

ideas from [Sanl5, Proposition 7.17], tailored to our setting.

Lemma 2.2.5. [San15, Lemma 7.15] Let X be a Banach space and H : X — R U {400} be

convex and lower semicontinuous. Set H*(y) = sup{(z,y)xx- — H(z)}. Then, we have
zeX

OH (y) = argmax {(z, y)xx- — H(w)} . (2.2.10)

Lemma 2.2.6. H : L'(Q) — RU {+oc} given in (2.2.7) is convex and l.s.c.

Proof. The proof of convexity of H is the same as in [Sanl5, Proposition 7.17], where one

needs to change only the definition of ¢¢ using essential infima.

Let us show now that H is l.s.c. For this, let ¢ € L'(Q) and (¢, )nen a sequence in L'(Q)

such that ¢, — ¢ strongly in L'(Q) as n — +oo.

Notice first that by definition,

—¢°(y) > p(y), ae. in Q,

from where we have that H(p) > —oo. Because of the strong L' convergence, we know that
there exists a subsequence of (¢, )nen (that we do not relabel), which is converging pointwise

a.e. in §2 to . We shall work with this sequence from now on.

Writing the previous inequality for ¢f and ¢,,, we have that

lim inf —¢¢ (y) > lim inf ¢, (y) = ¢(y), a.e. in Q,

n—-+4o0o n—-+4o00

where we used the fact that ¢, (y) — ¢(y) a.e. in Q, as n — +o0.

Let us define g : Q@ — RU{+o00} as ¢g(y) := lim inf —¢¢(y). Notice that this is measurable
n—-+o00

function. Indeed, (—¢%)nen is a sequence of measurable functions (infima of measurable

functions), and using Fatou’s lemma for the non-negative sequence of measurable functions

(=% — @n)nen, one concludes that ¢ is measurable and

/ ©(y)po(y)dy < / g(y)po(y)dyﬁlggjgof H(pn).
Q Q
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Claim. ¢(y) < —¢(y) < g(y) for a.e. y € .

Proof of the claim. Actually the first inequality was shown before, thus we show only
the second one. Thus, by Egorov’s theorem, we have that for any 6 > 0 there exists a
measurable set Bs C  such that Z%4(B;) < 6 and (p,)nen converges uniformly to ¢ as
n — +oo on Q\ Bs. Let us fix a small § > 0. We have furthermore that for any € > 0 there
exists V. € N such that

p(x) —e < pplx) < pz) +¢
for a.e. x € Q\ Bs and n > N.. Because of this, we have the following chain of inequalities
for all n > N,
—on(y) =sup {ea(z) — o =y} = sup {pa(z) =z —yl’} = sup {p(z) —e— |z -y}
zeQ 2€0\B; 29\ B

Taking lim +inf of both sides, one obtains
n—-—+0oo

g(y) > sup {p(x) —e—|z -y}
z€Q\ By

for a.e. y € Q. By the arbitrariness of € and ¢ (in this order), one gets that

g(y) > sup {o(x) — |z —y|*} = —¢°(y),

as we claimed.

Notice that we have proved the following: if (o, )nen is converging to ¢ in LY(), then

there exists a subsequence (¢, );en of the original sequence such that

H(yp) < lim inf H(py,).

Jj—+oo
This statement actually implies the 1.s.c. of H on the full sequence. Indeed, observe that by
the definition of lim inf, there exists a subsequence (p,, Jken of the original sequence such
that
lim inf H(p,) = lUm H(p,,).

n——+00 k—+o00
We have shown previously that there exists a subsequence (@5, )jen Of (¢n, Jken such that
J

H(p) < lim inf H(cpnkj).

j—+oo
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On the other hand

lim inf H(p,, )= lm H(p,, )= klirf H(py,) = lim inf H(p,),
J J ——4o0

Jj——+o0o Jj—+oo n——+00

thus the l.s.c. of H follows. O

Proposition 2.2.7. For all k € {1,..., N} we have

=Pk

1
Ea(WQQ(p7 pk—l))|
Proof. To simplify the notation, we set k = 1. Recall from Proposition A.4.4 that

SO0V3(0,0))lp=ps = OH" () (22.12)

for H given in (2.2.7). From Lemma 2.2.5 and Lemma 2.2.6, it holds that

OH"(p1) :argmaX¢eL1(Q){ /Q ¢dpr + /Q ¢CdP0}- (2.2.13)

From Definition A.4.1, we conclude. [

Lastly, let us compute the subdifferential of J based on [Roc71]. Before, we need the

following preparatory result.

Lemma 2.2.8. [Roc71, Corollary 1B] Let 1) and ¥ be given as in (A.5.2). Assume that
Y(p(x)) is majorized by a summable function of x for at least one p € L*>(Q2) and that
¥*({(x)) is majorized by a summable function of x for at least one ( € L*(Q). Then, an
element & € L*(Q)* belongs to OV () given in (A.5.3) if and only if £*(x) € OY(u(x)) for
a.e. x €  where £°° is the absolutely continuous component of &, and the singular component

& of € attains its mazimum at |1 over
{v e L™(Q) : ¥(v) < +o00}.

Proposition 2.2.9. For py is given in (2.2.3), if £ € 0T (pr) N LY(Y), then it holds that

(

[—00,S'(04)] a.e. in {pr =0},
EESIS'(1-),8(1+)] a.e in{p, =1}, (2.2.14)

S’ o py, a.e. in {py # 1}.
85

\



Proof. Let us show that & and §* satisfies assumptions on Lemma 2.2.8. Let u = ( =
%19, then S(u) is finite, and thus in L'(€2). On the other hand, as S is superlinear,
S* < 400 in [0, +00). Therefore, for any constant ¢ € R, S*(¢) € L*(9).

By Lemma 2.2.8, £*°(x) € 0S(pr(x)) a.e., where £ is the absolutely continuous part of
€. From the direct computation of dS(pr(x)), we conclude that £ satisfies the right hand
side of (2.2.14). As & € LY(Q), the singular part of £ is zero, £* = ¢ and we conclude

(2.2.14). 0

Proof of Theorem 2.2.3. We only consider the case that k = 1. By the optimality of p; in
(2.2.3), it holds that

1

0€8<j(p1)+F(p)+ o

W§<m,po>) (2.2.15)

From Proposition 2.2.4 and Proposition 2.2.7, there exists £ € 07 (p1), ¢, € K(p1, po) and
C € R such that

g—l—ﬁ—l—@—C:Oa.e. on €. (2.2.16)
~

As ¢, ® € LY(R), € € 0T (p1) N LY(K2), Proposition 2.2.9 implies (2.2.5). O

2.2.2 Optimality conditions for p, € Z({2) having finite energy

In this subsection we are imposing (2.1.8). Let us show first that J satisfying the additional
assumption in (2.1.8) defines a continuous functional on L"(2). In the previous subsection,

the continuity of J in L*°(Q2) directly follows from the continuity of S.

Lemma 2.2.10. Let J be given in (2.2.2) satisfying (2.1.8b). Then J is continuous in
L*(Q) for all

s>rifr=1, and s >rifr> 1. (2.2.17)

Proof. From (2.1.8b), there exists ¢ > 0 such that for all p € [0,+00) (since S is also
continuous, hence uniformly bounded on [0, 1])
1S(p)| < c(p®+1). (2.2.18)
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for all s satisfying (2.2.17).

Consider a sequence {;}ieny C L*(€2) such that
i — pin L°(2) as i — oo (2.2.19)
These exists a subsequence {1, }jen C {ii}ien such that

fi; = jL a.e. as j — 0o. (2.2.20)

From (2.2.18), it holds that for all j € N
0 < elliy | +1) = 1S(us)| < ell, "+ 1) & S(pa). (2221)

Let us apply Fatou’s lemma into c(|u,|* + 1) 4+ S(ps;). From (2.2.19), (2.2.20) and the
continuity of S, it holds that

[ ellu@+ 1)+ S(u(e)de < tim inf [ el (@) + 1)+ Sl (o)de, (2222
Q Q

J]—00

S/c(m(:v)]s—i—l)dx—i—lim inf/S(uij)da:. (2.2.23)
Q I Ja

and we have

J(n) < lim inf J (p;; ).

j—00
Similarly to the argument at the end of the proof of Lemma 2.2.6, we conclude the lower

semicontinuity along the full sequence, therefore

J () < lim inf J (1;). (2.2.24)

1—00
Applying Fatou’s lemma again into c(|ps,|* +1) — S(p;), we get

J () > lim sup J (pas,), (2.2.25)

j—00
and as before, we deduce the upper semicontinuity along the full sequence. Therefore (2.2.24)

and (2.2.25) imply that J(u) = lim J(u;;) and J is continuous in L*(€2). O
j—o0
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In what follows, we show that the minimizers of the of the minimizing movements scheme
(2.2.3) enjoy higher order summability estimates (which are independent of pg, but depend

on 7). These will play a crucial role later when deriving the optimality conditions.

Lemma 2.2.11. Suppose that S satisfies Assumption A and (2.1.8a). Let p, € P(Q) be
the minimizer in (2.2.3). Then p, € LP(Q), where B := (2r —1)d/(d —2), ifd > 3. If d = 2
then the statement is true for any f < 400 and f = +oo if d = 1.

Remark 2.2.12. Let us notice that the previous lemma gives an improvement on the summa-
bility of p,. Indeed, in case when the internal energy is of logarithmic entropy type, we
know a priori that p, € L'(€2), while in the case of power like entropies, we have a priori
pr € L"(Q). In contrast to these, we clearly improve the summability exponents in both

cases.

Proof of Lemma 2.2.11. For € > 0 let S; : [0, +00) — R smooth, strictly convex such that
S” > ¢. > 0 (for some ¢, > 0), SL(0+) = —oo and S. — S uniformly as ¢ — 0. Let p§ be

the unique minimizer of the problem

. o i 9
Lt {sg<p> = [ sio)as+ F o)+ W, pko} | (2.2.26)

By the assumptions on S, classical results imply that pj is Lipschitz continuous.

Without loss of generality, we can assume that S. satisfies the growth (2.1.8a) if p > 2.

We can write the optimality condition

Vg,

S ) Vi + VO + =0 ae, (2.2.27)

where ¢}, is a Kantorovich potential in the transport of pj onto py_;. From here, there exists

a constant C' > 0 (depending only on 7 and ;) such that

1
[18:0vaitian < ¢ (190l + ZWH6h o).
And in particular, for any ¢ > 2, we have by setting Q := {p§ > (},

_ 1 -
[ V(< (uvcbn%w ; ;Wﬁpk,pk_l)) | (2.2.28)
¥4
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We know that the optimizers pj, are Lipschitz continuous on their supports, therefore the

super-level sets ), are open.
Moreover, once again using the fact that pj is Lipschitz, we have that there exists § > 0

such that
diSt(an,ﬁy) Z 20.

Indeed, otherwise if one supposes the contrary, then for any n € N, there exist x,, € 0§
and y, € €y such that dist(z,,y,) < <, then one would have that |pf(z,) — pi(yn)| <
Vil Lo, — 0, as n — +oo. However, this would be a contradiction since pf(z,) = ¢
and pf(y,) > 2¢.

Now, by defining Qs := {xq,, * 75 > s} for some s € (0,1/2) to be set later (where
ns © R4 — R is a mollifier obtained from a smooth even kernel  : R? — R — such that
Jgamdz =1, 7 > 0 and spt(n) C B1(0) — by s := n(-/§)), we have that Qs C Q5 C Q,
Q5 is an open set, and by Sard’s theorem it has smooth boundary for Z'-a.e. s € (0,1/2).

We choose such an s.

We have in particular from (2.2.28) that

ENT— 1 (4
| v pas < (IVal + 5w ) -
0,5

and so the Sobolev embedding theorem implies (since pf, is only uniformly bounded in L"(£2))
that (p5)"~1/2 € L?"(Qy5) from where pi € LP(Qy5), where 8 := 2*(r — 1/2), if d > 3 and
B < 400 arbitrary if d = 2 and 8 can be taken 4oc0 if d = 1. He we use the notation
2" =2d/(d—2).

From the above construction we can claim that p5 € L?(Q2). Indeed, we have

/(pi)ﬁdx=/ (pi)ﬁd:wr/ (pi)ﬂdawr/ (p7)" da
Q {p5. <t} Qs Q\ Q5

1
<@+ 002 + 0 (IV0l + ZWEh i) )

Let us underline that this bound only depends on WZ(p5, pr_1).

Now, it is easy to see that because S. — S uniformly, we have that the objective functional

in (2.2.26) ['-convergences to the objective functional in the original problem as € | 0, w.r.t.
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the weak-* convergence of probability measures. Indeed, take a sequence (pf).s¢ and p in
P(Q) such that p° = p as ¢ | 0. Notice that by the construction of the approximation
Se, if E.(p7) < C (for a constant independent of ¢), then we have that (p).~o is uniformly
bounded in L"(€2). By the uniform convergence S. — S, we have that for any § > 0 there
exists g such that

S(p°) < S.(p°) + 6, Ve < ey.

Therefore
E(p) < limu%nfé’(pe) < lim inf E(p°) +6L4Q),

so the I'-liminf inequality follows by the lower semicontinuity of the energy £ and the ar-
bitrariness of § > 0. For the I'-limsup inequality, we use a constant sequence p° = p as a

recovery sequence such that & (p) is finite for all € > 0. Clearly lim. o E-(p) = E(p).

Finally, since both pj;, and py, the solutions of the original and the approximated problems,
respectively are unique, when € | 0 we find that pj, also has the L#(2) bound. The thesis of

the lemma follows. O

Let us notice that in Lemma 2.2.11 the L” bounds on p;, depends only on T—12W22(pk, Pk—1)
and the data. Therefore, when considering the piecewise constant interpolated curves (p7),~o
(see their precise definition in (2.3.9) below), and integrating them in time and space, we

find the following very important lemma.

Lemma 2.2.13. Suppose that py € P (L) with T (po) < +0o and (2.1.8) hold. The curves

(p7)rs0 are uniformly bounded in LP(Q) for 3 given in

;

(2r—1)7%  ifd>3,
B =1 (0, 00) if d=2 (2.2.29)
\—i—oo if d = 1.

Proof. Let ( as in the statement of the lemma and let (p7),~o stand for the piecewise constant

interpolations as defined in (2.3.9). Then, Lemma 2.2.11 implies that

T N N
1
/ /(pT)dedt =T Z / (p")Pde <TNC +C Z ;Wg(pk, Pk—1),
0 JQ k=17 k=1
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where C' > 0 depends only on the data and 2. Since 7N = T and Z]kV:1 %W;(pk,pk_l) is

uniformly bounded (see Lemma 2.3.6), we conclude. O

Under the above assumption, we show a result parallel to Theorem 2.2.3.

Theorem 2.2.14. Suppose that py € P () such that E(py) < +oo and (2.1.8) hold. Then,
for all k € {1,...,N} there exists C = C(k) € R and ¢;, € K(pk, pr_1) satisfying (2.2.5).

Here, K(pg, px—1) and pg are given in Definition A.4.1 and (2.2.3), respectively.

We recall the following lemma from [Roc68] and [Roc71] and compute the subdifferential
of J explicitly. In comparison to the previous subsection, it holds that (L"(2))* = L™ ()

for r € (1, 4+00) where 7" := -5 and thus the argument below is simpler than Lemma 2.2.8.

Lemma 2.2.15. [Roc68, Theorem 2], [Roc71, Equations (1.11) € (1.12)] Let 1) and ¥ be
given as in (A.5.2). Assume that ¥ (u(x)) is majorized by a summable function of x for at
least one p € L®(Q) and that 1*({(z)) is majorized by a summable function of x for at least
one ¢ € L*(Q). Then, an element & € L7 (Q2)* belongs to OV (u) given in (A.5.3) if and only

if €(z) € OY(u(x)) for a.e. x €.

Proof of Theorem 2.2.14. Let us set k = 1. The first part of the proof is parallel to Propo-
sition 2.2.4 and Proposition 2.2.7. Let us show

1
=0T (p1) + @+ —K(p1. po) (2.2.30)

p=p1

0 (70)+ Flo)+ 5 W20 m)

where I is given in Definition A.4.1 and the subdifferential is defined in Definition A.5.1.
Recall T'(+) from Definition A.5.2 and its equivalent property in Lemma A.5.3. Note that
J € I'(L7(Q2)) follows from the convexity of S and Lemma 2.2.10. The same is true for F.

Let us underline that it is crucial that we have a priori bounds on the optimizers of
(2.2.3) in LA(Q) for some 8 > 1. Indeed, Lemma 2.2.11 yields that even if 7 = 1 (which
corresponds to the logarithmic entropy type interaction energy), we have that the optimizers
satisfy pp € LP(Q). In this case, without loss of generality, one considers the continuity of J
and F in LP(Q). Otherwise, we gain L"(Q) bounds simply from the growth condition on S

at 400, hence we can also refer to the continuity of J in this space.
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Furthermore, from Proposition A.4.4, we have
1
H* = §W22(~,p0) on L (Q) (2.2.31)

for H : L7 (Q) — RU{+oo} given in (2.2.7) and ' := % Thus we get W3 (-, po) €
['(L?(2)). Lastly, by the parallel argument in Lemma 2.2.6, H is also in I'(L?(2)). From

Lemma A.5.4 and Lemma 2.2.5, we conclude (2.2.30).

The rest of the proof is parallel to that of Theorem 2.2.3. From (2.2.30) and Lemma 2.2.15,
there exists & € 0J (p1) satisfying (2.2.14), ¢, € K(p1, po) and C € R such that

£+ ﬁ +®—-C=0a.e. onf. (2.2.32)

T

and we conclude (2.2.5). O

2.3 Linear diffusion with discontinuities

In this section we show the well-posedness of (2.1.4) in the most simple case considered,
i.e. when the associated internal energy is an entropy of logarithmic type. We give a fine
characterization of the ‘critical phase’ {p = 1} via a scalar pressure field, inspired from recent
works on crowd motion models with hard congestion effects (see for instance [MRS10,MS16]).
In the next sections we shall see how the results and ideas from this sections will be important

to build solutions for problems with more general nonlinearities.

In this section, we assume that S : [0, 4+00) — R is defined by

plogp,  for p€0,1],
S(p) := (2.3.1)

2plogp, for p € (1,400).
Let us notice that S defines a continuous superlinear function on R* with S’(1—) = 1 and

S'(1+) = 2.

Our main theorem from this section can be formulated as follows.

Theorem 2.3.1. For py € Z(2) such that J(py) < +00 and S given in (2.3.1), there exists

p € LYQ)NAC*([0,T]; 2(Q)) andp € L*([0,T]; H'(Q))NL>(Q) with \/p € L*([0,T]; H'(Q))
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such that (p,p) is a weak solution of

Op — Alpp) =V - (Vep) =0, in (0,T) x Q,
(V(pp) + V®) - 11 =0, in [0,T] x 09,

in the sense of distribution. Furthermore, (p,p) satisfies

(p(t,x) =1 a.e. in {0 < p(t,x) <1},
p(t,z) € [1,2] a.e in{p(t,z) =1}, (2.3.3)
\p(t,x) =2 a.e. in{p(t,x) > 1}.

If in addition py € L=(Q) and ® satisfies (2.2.4), then p € L*([0,T]; H'(2)) N L>=(Q).

In the proof of the previous theorem we rely on the minimizing movements scheme as-
sociated to the gradient flow of J, defined in (2.2.3). As technical tools, we define different
interpolations between the discrete in time densities (pg)i_, and obtain a weak solution of
(2.3.2) by sending 7 | 0. The new pressure term p arrises from the Wasserstein subdifferen-
tial of J and its ‘nontrivial’ value on the set {p = 1} is due to the non-differentiability of S

at so = 1.

Definition 2.3.2. Let (p;)_; be given by the minimizing movement scheme (2.2.3) and let

&y, € K(pi, pe—1). For k€ {1,..., N}, let us define p; : @ =+ R and p” : Q — R by

.

max{C — ET—’“ - 3,8(1-)} i pg'([0,1)),
pr=pi(57) = qC— % — @ in prt({1}), and p'(t,z) = py(z;7)

| min{C — % @, S'(14)}  in ppt((1,+00)).

(2.3.4)

for (t,z) € ((k — 1)7, k7] x €, where the constant C' € R might be different at each step.

Remark 2.3.3. Let us notice that Lemma A.4.5 yields p, > 0 a.e., therefore (py)N_, is well-
defined also on the sets p;*([0,1)). From the above definition, the optimality condition in

Theorem 2.2.3 can be simplified as follows.
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Lemma 2.3.4. For all k € {1,..., N}, there ezists C € R such that

pr(1 4+ log pi) + % +®=C a.e (2.3.5)

Proof. Note that a subdifferential 0S(p) of S : [0,4+00) — R is given by

(

1+ logp for 0 < p < 1,

9S(p) = 41,2 for p =1, (2.3.6)

2(1+1logp) forp>1.
\

Thus, Theorem 2.2.3 and (2.3.4) imply

;

1 in g ((0,1)),
PE=4C—-% —de,2] inpt({1}), a.c. (2.3.7)
\2 in p;*((1, +00)).
Thus, we simplify (2.2.5) into (2.3.5). O

An easy consequence of the above constructions is the following result.

Lemma 2.3.5. For k€ {1,..., N}, pr,pr and ¢;, € K(py, pr—1) are Lipschitz continuous in
Q. Here, pr and py are given in (2.2.3) and (2.3.4), respectively.

Proof. 1. Let us show that ¢,, is Lipschitz continuous in €. From [San15, Theorem 1.17] we
have that ¢, shares the modulus of continuity of the cost (z,y) — |z —y|?>. On the one hand,
as Q is compact, we conclude that ¢, is Lipschitz continuous. On the other hand, (2.3.7)

together with (2.2.5) imply that pj is Lipschitz continuous.

2. From (2.3.5) in Lemma 2.3.4, we have that

() = exp{ ! (c _Oela) cp) - 1} ae. (2.3.8)

pr(x) T

As py, ¢, and ® are Lipschitz continuous and p; has a lower bound +1 from (2.3.7), (2.3.8)

implies that py is Lipschitz continuous. O
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As technical tools, similarly as it is done in the framework of models developed for
instance in [MRS10,MS16,San15], we introduce two different kinds of interpolations between

the objects in the title of the subsection.

Piecewise constant interpolations. Let us define p™,p” : Q — R and v7,£7 : Q — R? as

follows

pT(t,x) = pr(z;7),
Vit z) = %V%(:c), for (t,2) € (k— D7 kr] x Qand k € {1,..., N}, (2.3.9)

E™(t,x) := p"(t,x)v" (¢, x)

for (pi)_, obtained in (2.2.3) and ¢, € K(px, pr_1) given in Theorem 2.2.3 and let p™ defined
as in (2.3.4).

By standard arguments on gradient flows (see for instance [Sanl5, Proposition 8.8],

[MS16, Lemma 3.5]), we have the following.

Lemma 2.3.6. It holds that

—ZW Pk Pt Z/ Vo |? dpe(z) < T(po) — inf J. (2.3.10)

Furthermore, there exists a constant C' > 0 such that for any 0 < s <t <T

l\J\»—l

Wa(p™(t),p"(s)) < C(t —s+71)2. (2.3.11)

Proposition 2.3.7. Let (p™);~0 and (p7)r>o given (2.3.9) and (2.3.4), respectively. We have

the followings.
(1) (p7)rs0 is uniformly bounded in L*([0,T]; H(2)) N L*>(Q);
(2) (\/P7)rs0 is uniformly bounded in L*([0,T]; H'(Q));

(3) if in addition py € L*(2) and © satisfies (2.2.4), then (p7)r=o is uniformly bounded
in ([0, T}, H'(9)) 1 L(Q).

Proof. 1. Clearly, by construction, (p”),~o is uniformly bounded. Furthermore, if py €
L>(£2), then Lemma 2.2.1 implies that (p”),~ is uniformly bounded by a constant depending

only on the data for all ¢ € [0, 7.
95



2. Now, let us show that (V/p7),0 and (Vp™),~o are uniformly bounded in L?(Q). Let
5,6 € K(pk, pr—1). Lemma 2.3.5 implies that 51@7 pr and py, are Lipschitz continuous functions,
and therefore by Rademacher’s theorem one can differentiate these function a.e. in 2. Note

that {px # 1} is an open by by the continuity of p; in Lemma 2.3.5 and thus (2.3.7) implies

Vpr =0 a.e. in {px # 1}. (2.3.12)
Therefore, we get
log pxVpr =0 and (pr — 1)Vpr, =0  ae. (2.3.13)
Next, we claim that
Vpr-Vpr, =0 ae. in Q. (2.3.14)

From (2.3.7), the above holds in the open set {p; # 1} and in the interior of {p;, = 1},
but we point out that 0{pr = 1} may have positive measure even though py is Lipschitz
continuous. In order to show (2.3.14) in ), we apply the coarea formula and (2.3.12). As pg
is Lipschitz and Vpy, is in L'(Q), we could use the coarea formula in [KP08, Corollary 5.2.6]

and conclude that

/ Ve[V ] dir = / / Vpeldt-1ds. (2.3.15)
Q R J (pr)71(s

where 741 stands for the (d — 1)-dimensional Hausdorff measure. From (2.3.12), we con-
clude (2.3.14).

Differentiating (2.3.5) and applying (2.3.13) and (2.3.14), we have
3
VO Vo =V (pr(1l+logpk)) + VO = Vpi + %Vpk a.e. (2.3.16)
k

-
From (2.3.16) and (2.3.14) again, we have
\V4 2
20k (l 0l + yvq>|2> > |Vpel* + pk|Vpk|2 a.e., (2.3.17)
from where we can write
Vol 2 2, 2 2
24, - + |VO|° | > |Vpi|* + 0| VP ae.
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As pi, € [1,2] (from (2.3.7)), we have

prdz +2.2°(Q) | VO|[7.

12
/ (IVpel> + V) <2 / Vo]
Q

Q T°
From Lemma 2.3.6, we conclude that (y/p7),>o and (p7),~o are uniformly bounded in
L2([0,T]; HY(£2)) for all 7 > 0.

ATIA®) o0 (

Moreover, if py € L>*(£2), we have |px| < [[pollL=(0) from Lemma 2.2.1),

and therefore from (2.3.17) we get

1
2 2
/Q [ Vpi|*dz + /Q Trolim AT T Vpr?dz < C, (2.3.18)
from where we have (p7),~ is uniformly bounded in L*([0,T]; H'(Q)). O

Corollary 2.3.8. Let (p™),~0 and (p”).=0 be as in the previous proposition. There exists

p € L2([0,T]; HY(Q)) and p € LY(Q) such that
p"— pin LNQ), as T 0, (2.3.19)
and
p” —pin L*([0,T); H(Q)), as 7 ] 0. (2.3.20)

along a subsequence. If in addition py € L>(Q) and ® satisfies (2.2.4), then we also have
pe L2([O7T]7H1(Q)) and pT —p mn LQ(Q>’ as T \L 0.

Proof. The weak sequential compactness of (p7),~o follows from the uniform boundedness
in L?([0,T]; H'(Q)) in the previous proposition. Also, as (p7),-¢ has the ‘quasi-Holder’
type estimates in Lemma 2.3.6 and (y/p7),~0 is uniformly bounded in L*([0,T]; H*(%)), we
conclude the strong compactness of (p7),-o in L'(Q) by a consequence of a modified version
of the classical Aubin-Lions lemma in Lemma A.6.2, ofter used in similar context (see for
instance [DM14, Proposition 4.8] and [Labl7, Proposition 5.2]). If py € L>*(Q2), the last

statement simply follows from the similar arguments. n

As a consequence of the above results, we have the following.

Lemma 2.3.9. (p,p) given in Proposition 2.3.7 satisfies (2.3.3).
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Proof. 1. Let (p7,p7) be defined in (2.3.9) and (2.3.4). First, from (2.3.7), we have

0" —2)(p" = 1)y = (0" = 1)(p" —1)- = 0in Q. (2.3.21)

As it holds that

(" =1 = (p=D4| < |p" = pland [(p)" = 1)- = (p=1)-| < [p" = pl, (2.3.22)

Proposition 2.3.7 implies that both (p” —1); — (p—1); and (p" —1)_ — (p—1)_ in L'(Q)

as 7} 0 (up to passing to a subsequence).

2. Let us show that for a.e. ¢t € [0, 7]

/Q(p(t, z) —2)(p(t,z) — 1) dx =0 and /(p(t,x) —1)(p(t,x) —1)_dz=0.  (2.3.23)

Q

We only show the first one as the parallel arguments work for the second one. From (2.3.21),

we have

0= / (p™(t,z) —2)(p"(t,z) — 1) dadt. (2.3.24)
Q

Recall that up to passing to a subsequence, (p”),~o convergences weakly—x in L>®(Q) (see
Proposition 2.3.7) and ((p"(t,z) — 1)+ ),>0 converges strongly (from Step 1) in L*([0,T x ])
as 7 | 0. Combining these with (2.3.24), we conclude the first equation of (2.3.23).

As p™ € [1,2] for p” given in (2.3.4), we have p € [1,2] a.e. in Q. Thus, (2.3.23) implies
that

pP=2)p—1)s=pE-1D(p-1)-=0 ae (2.3.25)
and we conclude (2.3.3). O

Proposition 2.3.10. Let £ be given in (2.3.9). Then up to passing to a subsequence,

(E7)rs0 weakly-x converges to
£ :=—V(pp) = Vp, in 7'(Q;R),

as T 0 where and (p,p) is given in Proposition 2.3.7.

98



Proof. For any test function ¢ € C®(Q;R%), we claim that up to passing to a subsequence,
7:= /QC- d(ET =) =0, as 70 (2.3.26)
From (2.3.13), we have log p”Vp”™ = 0 in a.e. in ) and thus it holds that
& =pVp  +p (1 +1logp" )\Vp" +VOp" =V (pp")+ VPp'. (2.3.27)
By the weak convergence of (p7),s¢ to p, we already have that
/QC -Vodp™dt — /QC-V(I)dpdt, 710,

we only focus on the other term. By integration by parts and and from the fact that

¢ € C>*(Q;R?), we study thus
7, = /Q(prT —pp)V - (dxdt (2.3.28)
By subtracting and adding the same term in the above equation, we get
T, = Iy + I3 where 7 = /Q(,oT —p)p"V - (dzdt and Z3 = /Qp(pT —p)V - (dxdt (2.3.29)

From the Holder inequality, we have

Lol < o™ = pllr@llp" @ IV - Cllz()- (2.3.30)

Asp” — pin L}(Q) as 7 | 0 and ||p™|| p(g) is uniformly bounded (Proposition 2.3.7), we con-
clude Z, — 0 as 7 | 0. On the other hand, as p™ = p in L=(Q) as 7 | 0 (Proposition 2.3.7),
and p € L'(Q) we have Z3 — 0 as 7 | 0 as well, and thus we conclude (2.3.26). O

To arrive to the continuous in time in the time continuous PDE satisfied by (p,p) from
Proposition 2.3.7, as technical tools (inspired from [MRS10, MS16, Sanl5]), we introduce
a geodesic interpolation between (p)Y_, and we consider the corresponding velocities and

momenta as well.
More precisely, we define p™ : [0,T] — Z(Q), v.E €. (Q;RY) as follows: for t €
(k=171 kr]and k € {1,...,N}

pr(t,x) = (Bt (t,2) + id)# pT(t,x)),
VI (t,x) = v (t,z) o (E=vT(t, ) + id)_l , (2.3.31)
(




where p™ and v” are given in (2.3.9).

Following the very same steps as in From [Sanl5, Lemma 8.9] and [MS16, Step 2 in

Theorem 3.1], we have the following.

Lemma 2.3.11. We have that

(1) (p7)r>0 is uniformly bounded in AC([0,T]; 2());
T

(i1) there exists C' > 0 such that / / o7 |2 dpy dt < C;
o Jo

(iii) (E )rso is uniformly bounded in .4 (Q;R%).
As a consequence, we have that along a subsequence

(iv) sup Wa(p,pr) = 0, as 710,
te[0,7)

() E &, in #M(Q;RY), asT]0,
where p 1s given in Proposition 2.3.7 and & is given in Proposition 2.3.10.
Now, we are ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. Let us underline that the main reason for introducing the interpo-

lations (p7, ET) is that by construction, they satisfy the PDE

0" +V-E =0, in (0,T) x €,
p7(0,-) = po, in €, (2.3.32)

E -7i=0, on [0,77] x 012,

in the distributional sense. Then, Lemma 2.3.11 and Proposition 2.3.10 allow us to conclude
that (p, p) satisfies (2.3.2) in the distributional sense. Last, from Lemma 2.3.9, we conclude

that (p, p) satisfies (2.3.3). The thesis of the theorem follows. O
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2.4 Linear diffusion on {p < 1} and porous medium type diffusion

on {p>1}

As we will see below, in this section the diffusion coefficients and the diffusion rates are
not necessarily supposed to be the same in the regions {p < 1} and {p > 1}. Therefore,
a technical difficulty arrises, because of the lack of a simple way (as in (2.3.5)) to derive
the first order necessary optimality conditions for the minimizing movement scheme. To
overcome this issue, instead, we use a particular decomposition for &, which allows us to use

the construction from Section 2.3.

In this section too, we impose Assumption A. If py ¢ L>°(2), we impose additionally
(2.1.8). Furthermore, throughout this section we suppose also the following: S : [0, +00) —

R satisfies

’;—_1 < 8"(p) in (0,1) (2.4.1)

for some constant oy > oy for oy given in (2.1.8a). This corresponds to (2.1.7) with m = 1.

A direct consequence of the above assumption is the following result.

Lemma 2.4.1. §: [0, +00) — R satisfies
S'(0+4) = —o00 (2.4.2)

Proof. Integrating (2.4.1) from 3 to p, it holds that

s (%) _S(p) > 0i2 (log% " log p) (2.4.3)

As 09 > 0, we conclude that

1 1 1 1
S'(p) <S8 (5) — g—log§ - U—logp — —oo asp— 0T (2.4.4)
2 2

]

Our main theorem from this section reads as:
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Theorem 2.4.2. Suppose that (2.1.8) and (2.4.1) hold true. For py € P(2) such that
J(po) < +oo, there exists p € LP(Q) N AC([0,T]; 2(Q)) for B given in (2.2.29) and
pe L*([0,T); HY(Q))NL>(Q) with \/p € L*([0,T]; H*()) such that (p, p) is a weak solution

of
Owp — A(Ls(p,p)) -V (V(I)p) =0, n (O7T) x €1,

p(0,-) = po, in €, (2.4.5)
(V(Ls(p,p)) + V@p) - 1i =0, in [0,T] x 09,

in the sense of distribution. Furthermore, (p,p) satisfies for a.e. (t,z) € Q

(p(t,x) =S'(1-) if 0 < p(t,z) < 1,
p(t,z) € [S'(1-),8'(1+)]  if pt,z) =1, (2.4.6)
| p(t,x) = S'(1+) if p(t,z) > 1.

If in addition py € L>(2) and ® satisfies (2.2.4), we can drop (2.1.8) from the statement
and we obtain that p € L*([0,T]; H'(Q)) N L>(Q).

Let us briefly explain the outline of the proof. First, we define S, and Sy : [0, +00) — R
by

S'(1-)plogp, for p € [0,1],
Sa(p) = (2.4.7)

S'(1+)plogp, for p € (1, +00),

and

Se(p) = S(p) — Salp). (2.4.8)

We show the convexity of S, and twice differentiability of S, in Lemma 2.4.4. This par-
ticular decomposition will be useful when deriving optimality conditions in our minimizing
movement scheme. Under (2.4.1), we are able to apply similar arguments as the ones in

Section 2.3.

We point out that Lemma 2.4.1 implies the positivity of p, a.e. (See Lemma A.4.5).

From Theorem 2.2.3 and (2.4.1), pj. satisfies the following lemma.
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Lemma 2.4.3. Let (pp)y_, be obtained via the minimizing movement scheme (2.2.3). For

ke{l,...,N} and ¢, € K(pg, pr_1) given in Theorem 2.2.3, we have that

1, in fi, ([S'(1-), 8'(14)]),

Ok (2.4.9)

(8o fr, otherwise,
where f, = C — %—k — ®, and §'(0+) and S'(1%) are given in (2.2.1). In particular, py is

Lipschitz continuous in €2 and its Lipschitz constant might degenerate when 1 | 0.

Proof. 1. As &' is strictly increasing function in R* \ {1} from Assumption A, (2.2.5) implies
that p(z) = 1 for z € £,/ '([S'(1-),S'(1+)]). Also, as &' is invertible in RT \ {1}, therefore
(2.2.5) implies

pr(z) = (8) o fi(x) for z € £, ((—00,8'(1-)) U (S'(1+), +0)) (2.4.10)

and we conclude (2.4.9).

2. Let us show that pj is continuous in 2. Define (S//)\*l R — R by

(5//)\—1 _ 1, in [S§'(1-),S8'(1+)], (2.4.11)

(8)71, otherwise.

Note that from (2.4.9), we have

L —

o= (810 fi. (2.4.12)

—

From the continuity and invertibility of " in R \ {1}, we conclude that (S")~! is continuous
in R. Furthermore, from Lemma 2.3.5 we know that ¢, is Lipschitz continuous (and P is
Lipschitz contonuous by assumption), therefore fy is Lipschitz continuous. From (2.4.12),

we conclude that p; is continuous.

Lastly, as S is strictly convex and twice differentiable in R* \ {1} from Assumption A,
(8")~! is differentiable in (—oo,S’(1—)) U (S'(14), +00) and on this set we have

1

(S)) = 5o (&)1 (2.4.13)
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Thus, from (2.4.1) and (2.4.13), we conclude that a.e. in p; '(R* \ {1}) we can compute

[V fi
Vpr| = < ool prl| Lo @) |V fi 2.4.14
As f}. is Lipschitz continuous and py, is continuous, we conclude that pj, is Lipschitz continuous
in Q. O

The following properties hold for S, and .S.

Lemma 2.4.4. S, is convex and continuous in R™. Also, Sy is continuously differentiable

and Sy is locally Lipschitz continuous in R*. In particular, we have
Sp(1) = 8(1) and Sp(1) = 0. (2.4.15)

Proof. From convexity of S, it holds that §’'(1—) < S'(1+) and thus S, is convex. It is

obviously also continuous by construction.

On the other hand, by the construction in (2.4.7), Sy(p) is differentiable on R* \ {1}.
Let us show that Sy(p) is differentiable at p = 1. By differentiating (2.4.7) on R \ {1}, we
have that

5(p) = S'(1-)(1 +logp), for pe (0,1), (2.4.16)

S'(1+)(1 +1logp), for p € (1, +00),

Therefore, we conclude that
S;(1-)=8"(1-) = S/ (1-) =0 and S;(1+) = S'(1+) = S, (14) =0 (2.4.17)

and Sy is continuously differentiable in RT. As both &’ and S’ are locally Lipschitz in
R\ {1}, S} is also locally Lipschitz continuous in R* \ {1}. As 5] is continuous, we conclude

that S; is locally Lipschitz continuous in R*. Lastly, S;(1) = S(1) follows from S,(1) = 0. O

Lemma 2.4.5. Let (p)Y_, be obtained via the minimizing movement scheme (2.2.3) and let

(pr)A_, be constructed in (2.3.4). For k € {1,..., N}, we have that

pe(1 +log pr) + Sy (pr) + % +®=C, a.e. in. (2.4.18)
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Proof. We first note that Lemma 2.4.1 implies that p; > 0 a.e. in € (see also Lemma A.4.5).

From Theorem 2.2.3, we have

S,(l_)v n P;Zl(((% 1))7
Pr=.C—%—a inp ({1}), (2.4.19)
S'(1+), in p, t((1, +00)).

As Sj(1) =0, (2.4.18) holds in p;*({1}) by (2.4.19).

Lastly, from (2.4.19), in p,'(R* \ {1}) we have that
Sa(pr) = pi(1 + log py). (2.4.20)

As &' =S/ + S in p; (R \ {1}), we conclude (2.4.18) from Proposition 2.2.9. O

Remark 2.4.6. As Sy, is differentiable, in the previous proof we also used the fact
08 =9S, + S, (2.4.21)

the proof of which can be found for instance in [Kru03, Corollary 1.12.2].

Similarly as in Section 2.3, we construct piecewise constant and continuous in time inter-
polations (p”,v",E7) and (p", V", ET) Similarly to Proposition 2.3.7, we can formulate the

following result.

Proposition 2.4.7. (p7),~0 and (p7).~o satisfy the exact same bounds as in Proposition 2.3.7.

Proof. Let us notice first that the uniform boundedness of (p™),~¢ in L>(Q) follows from

the construction in (2.4.19).

Let us show the other estimates from Proposition 2.3.7. Note that both S; and pj, are
locally Lipschitz continuous (as we have shown in Lemma 2.4.4 and Lemma 2.4.3). Thus,
Lemma 2.4.5 implies that

3
_Von _ Vo = Vp, + (% + S,’)’(pk)) Vi, a.e. in Q. (2.4.22)
k

T
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By the parallel computation as in (2.3.17), we conclude that
v ¢k|2

2
20, + 20 VO* > [Vii|* + i (% + Sz’;’(ﬂk)) Vi |? (2.4.23)

From Lemma 2.4.10 below, we have

2
1 :
Pk (IE + S{)'(pk)) IVpi|* > ——|Vpi|* ae. in Q. (2.4.24)
Pk 03Pk

2
The rest of arguments is parallel to Step 3 in Proposition 2.3.7, thus we conclude the

thesis of the proposition. O

Corollary 2.4.8. Up to passing to subsequences, the sequences (p™)r~o and (p™),;~o converge

in the same sense as in Corollary 2.5.8.

Remark 2.4.9. From (2.4.22), we have

N ¢k|2 IV (F(pr, pr))|?
Pk

20k + 20| VO|* > , where F(p,p) := pp + pSy(p) — Sp(p). (2.4.25)

Then, if py € L*°(Q2), this observation together with the uniform L* bounds on p” imply
uniform L?([0,T]; H'(©2)) bounds on F(p,p7).

As the proof of Proposition 2.3.7, we rely on the coarea formula when proving the fol-

lowing result.
Lemma 2.4.10. For (p)Y_, and (py)i_, given in (2.2.3) and (2.3.4), it holds that

1 :
ok + piSy (pi) [V pr| > 0_2|ka| a.e. in €. (2.4.26)

Proof. 1f x € {py # 1}, then (2.4.20) implies that

PR 1 Sy pula)) = Stle) + SYona) = ') (2420

From (2.4.1), we conclude
Pk + prSy (px)| > Uig a.e. in {p; # 1}. (2.4.28)
Recall that as py is Lipschitz continuous from Lemma 2.5.6 and thus
Vor =0 ae. in {p, =1}

(see for instance [EG92, Theorem 4.(iv), Section 4.2.2]). Therefore, we conclude (2.4.26). O
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Proof of Theorem 2.4.2. As and initial observation, let us remark that by similar arguments
as in Lemma 2.3.11, one obtains the same estimates for the continuous in time interpolations

(pm, V", ET), and by passing to the limit as 7 | 0, we obtain a continuity equation of the form
op+V-E=N0.
Since the limits of (57, E) and (o™, £7) are the same, it remains to identify the limit of the
latter one to get the precise form of our limit equation.
1. From direct computation as in (2.3.27), we obtain that
—&ET = p"V(Sy(p") +p (L +1og p")) + p" V@ = V(p"Sy(p") — Sp(p”) + Sp(1) +p"p") + p"VE
(2.4.29)
From Proposition 2.4.7 and Corollary 2.4.8 we can claim that

V(p"Sy(p7) = Sp(p7) + Sp(1) +p7p") = V(pSy(p) — Su(p) + Sp(1) + pp), (2.4.30)

as 7} 0 in the sense of distribution. Indeed, using the strong L'(Q) compactness of (p™),~¢
and the weak-x compactness of (p7),~¢ in L>(Q), we can pass to the limit p"p”. Recall that
(p7)r>0 in uniformly bounded in L#(Q) for 3 given in (2.2.29). As r < 3, Corollary 2.4.8
yields the convergence of (p7),~0 in L"(Q). As the growth rate of pSi(p) and Sy(p) is r, we
conclude that p7S;(p7) — Sy(p™) — pSi(p) — Sp(p) in LY(Q) as 7 | 0.

2. Let us show that

pSy(p) — Su(p) + Sp(1) + pp = Ls(p,p), (2.4.31)

By parallel arguments as in Lemma 2.3.9, we conclude that (p, p) satisfies (2.4.6). Thus, it
holds that

pSi(p) = Sa(p) = pp, ae. in p~H(RY\ {1}) (2.4.32)

and we conclude (2.4.31) a.e. in p~'(R*\ {1}). From (2.4.30) and (2.4.31), we conclude
(2.4.5).

Furthermore, from Lemma 2.4.4, we obtain that
pSi(p) — Sulp) + Sy(1) + pp = p in p~ ({1}), (2.4.33)

and we conclude (2.4.31) a.e. in p~1({1}). O
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2.5 Porous medium type diffusion on {y < 1} and general diffusion

on {p>1}

Similarly to the classical porous medium equation, in this section we do not expect solutions
to be fully supported. As in Section 2.3, let us first study an example with a particular

nonlinearity.

2.5.1 Same diffusion exponent

In this subsection, we suppose that S : [0,400) — R is defined by

m

P, for p € [0,1],

S(p) = ”;p_ml 1 (2.5.1)
- f 1, +00).
—— 7 forpe(l+o0)

where m > 1.

Our main theorem in this section can be formulated as follows.

Theorem 2.5.1. For py € Z() such that J(po) < 400 and S given in (2.5.1), there
ezists p € LP(Q) N ACE([0, T); (2(Q), Wa)) and p € L2([0, T]; HX(Q)) N L¥(Q) with p"~3 €
L3([0,T]; HY(2)) such that (p,p) is a weak solution of

;

Oip — A([(m —1)p" +1]2) =V - (Vdp) =0, in (0,T) x €,

(V([(m —=1)p" +1]2) +Vp) -7 =0, in [0,T] x 09,

\

in the sense of distribution. Furthermore, (p,p) satisfies

p(t,r) = - a.e. in {0 < p(t,x) <1},
1 p(t,z) €[22, 22]  ae in{p(t,x) =1}, (2.5.3)
p(t,z) = 22 a.e. in{p(t,z) > 1}.

\
In addition, if py € L>=(Q) and ® satisfies (2.2.4), then p € L=(Q) and p™ € L*([0,T]; H'(Q)).
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Let us recall the definition of (pg)y_; and (px)h_; from (2.2.3) and (2.3.4), respectively.
Let us underline that in the setting of this section due to the structure of the nonlinearity we
typically expect spt(px) to be a proper subset of €, unlike in the case of Lemma A.4.5 which
was used in Section 2.3 and Section 2.4. For this reason, we expect the Lipschitz continuity

of pi"~! instead of py.
Lemma 2.5.2. For all k € {1,..., N}, there ezists C € R such that

Pl o = <C - = — <I>> a.e. (2.5.4)
Jr

1

In particular, py, and p),'~" are Lipschitz continuous. Here, ¢y, is given in Theorem 2.2.3.

Proof. Note that

I pm=t for 0 < p <1, m_ in pr'([0,1)),
9S(p) = [z, 2] forp=1, and pr=4C— % —® in pt({1}), a.e.
\%pm—l for p> 1. \% in p;'((1, +00)).
(2.5.5)
for py, given in (2.3.4). Then, Theorem 2.2.14 implies that
Pl oy + % + ® =C a.e. on spt(p) (2.5.6)

for some constant C € R.

Moreover, if p, = 0 a.e. on some set A C €, then Theorem 2.2.14 and §'(0+) = 0 from
(2.5.5) imply that

C— Pk _ ® <0 ae. in A, (2.5.7)

T

and we conclude (2.5.4).

Next, recall that ¢, is Lipschitz continuous (as shown in Lemma 2.3.5). From this and

(2.5.5), we conclude that p;, and (C — % - <I>> are Lipschitz continuous as well. As py
+

is Lipschitz continuous and has a positive lower bound —- (from (2.5.5) and (2.2.5)), we

conclude that p;*~! is also Lipschitz continuous. O
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Lemma 2.5.3. Let (p7)r~0, (p7)r>0 stand for the piecewise constant interpolations given in
(2.3.9) and (2.3.4), respectively. Then ((p7)™""2)rs0 and (p7)rso are uniformly bounded in
12((0, T} H'(9).
Proof. From Lemma 2.5.2, it holds that
1 1Vo 1 B
Ty :=—ptVod — p,ﬁ% = piV(p o) ae. (2.5.8)
As p; and pzn_l are Lipschitz continuous from Lemma 2.5.2, we have

1 mel
T =p2peV(p™") + p. 2Vpi a.e. on spt(py). (2.5.9)

Furthermore, since we have the Lipschitz continuity of p;"~' and (2.5.5), we apply the parallel

argument in the proof of Proposition 2.3.7 and conclude that

D=

(pp > = 1)Vpr =0and V(p]" ') - Vp, =0 ae.onQ (2.5.10)
From (2.5.9) and (2.5.10), we have that
TP = pilpi V(PRI + [Vpel* ace. on spt(pr). (2.5.11)

As pp > "7 a.e. in  as in (2.5.5), we conclude that
m \? 1
ﬁz(gfa|@wwAW+meaemwww. (25.12)

From (2.5.10) it holds also that Vp, = 0 a.e. on spt(px)¢ = {px = 0}. Furthermore, as

pi~ ! is Lipschitz continuous (see Lemma 2.5.2), we have
1
piV(p~ 1) =0 a.e. on spt(p)-. (2.5.13)

Therefore, (2.5.12) holds a.e. on €.

On the other hand, applying Lemma 2.3.6, it holds that

T
/ /Ifda;dt < 2(J(po) —inf J) + TLUQ)||VP| 1~ (2.5.14)
0 Q

As p,fV(le_l) = m*V(pZT) and (p7),~¢ is uniformly bounded in L?(Q) (with 8 > m —

1
m—3
1/2, see Lemma 2.2.11) we conclude that ((p7)™ %), and (p7),so are uniformly bounded

in L2([0,T]; H*(2)) (since (p™),=0 is also uniformly bounded) and therefore we conclude. [J
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As a consequence of Lemma 2.5.3 and Lemma A.6.2, we have the following convergence.

Corollary 2.5.4. Let (p7)r~0 and (p7).>o be as in the previous lemma. Then, there ezists

p € L™Q) and p € L2([0,T); H(Q)) with p™2 € L2([0,T]; H'(?)), such that
pT = pin L™(Q), as T |0, (2.5.15)
and
p” —pin L*([0,T); H(Q)), as 7 ] 0. (2.5.16)
along a subsequence.

Proof of Theorem 2.5.1. Note that (2.5.5) implies (2.5.3) for (p™,p"). Then, a similar argu-
ment as the one in Lemma 2.3.9 together with the convergence results from Corollary 2.5.4

reveals that (p,p) satisfies (2.5.3).
Furthermore, from Lemma 2.5.2, we can write that
ET=p'vT =—pV((p")"pT) = VOpT = —{(m —1)p"(p")" V" + (p")"VpT} = VpT
(2.5.17)

Note that (2.5.5) implies
()™ = 1)Vp" =0 ae. (2.5.18)
From (2.5.18), we conclude that

(m = 1)p"(p")" ' Vp" + (p7)"Vp" = (m = 1)p"(p")" V" + % {(m—=1)(p")" + 1} V',
(2.5.19)

= Y ([m ~ ()" + 1) (2.5.20)

As described in Proposition 2.3.10, up to passing to a subsequence and using the weak-
x convergence of (p7),~¢ in L>®(Q) and strong convergence of ((p7)™),;so in L'(Q) from

Corollary 2.5.4, we conclude that (£7),~¢ converges to

& = —%V ([(m—=1)p™ + 1]p) — V®p (2.5.21)
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in 2'(Q;R%), as 7 | 0 where (p, p) is given in Corollary 2.5.4. The rest of argument is parallel
to the proof of Theorem 2.3.1.

A last remark is that if py € L>°(Q), then clearly p € L>(Q) and thus p™ € L*([0,T]; H*()).
O]

2.5.2 (General cases

In this subsection, we suppose that Assumption A and (2.1.7) hold for some r > 1 and
S : [0,4+00) — R satisfies (2.1.8) for some m > 1 and a constant oo > 0,
pm72
02

< 8"(p) for all p € (0,1). (2.5.22)

Note that S can be any function satisfying the assumptions, and in particular in the case of

r =1, S behaves as the logarithmic entropy when p > 1.

Our main theorem from this section reads as:

Theorem 2.5.5. Suppose that (2.1.8), (2.5.22) and

m<r+ g (2.5.23)

hold true for 8 given in (2.2.29). For py € P(Q2) such that J(po) < 400, there exists
p € LA(Q) and p € L*([0,T); HX(Q)) N L>(Q) such that (p,p) is a weak solution of

Op = A(Ls(p,p)) =V - (VEp) =0, in (0,T) x €,
p(0,-) = po, in €, (2.5.24)
(V(Ls(p,p)) + V®p) -7 = 0, in [0,T] x 9%,

in the sense of distribution. Furthermore, (p,p) satisfies

(p(t.2) = 80-) FO< plt o) < 1,
p(t,z) € [S8'(1-),8'(1+)]  if p(t,x) =1, (2.5.25)
p(t,x) = 8'(1+) if p(t,z) > 1.

\
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Here, Lg is given in (2.1.5). In particular,

P € LA(0,T); HY(Q) if m <7 and p™"% € LI([0, T); WH9(Q)) if r < m <+ §

(2.5.26)

for q € (1,2) given in (2.5.55). If in addition py € L>®(Q2) and & satisfies (2.2.4), we
can drop (2.1.8) and (2.5.23) from the statement and we obtain p € L*(Q) and p™ €
12((0, T); H' ().

First, using similar ideas as in Section 2.4, we choose a constant [ such that
Il<l<p (2.5.27)
for B given in (2.2.29) and split the function S into S, and S, : [0, +00) — R defined by

1(1_ l_
M) for P S ]-7

Sa(p) = (2.5.28)

S'(1+)(p'-1)

. , forp>1,

and

Se(p) == S(p) = Sa(p)- (2.5.29)

Note that §’(1+) > S’(1—). Then, as shown in Lemma 2.4.4, we conclude that S, is convex
and continuous in [0, +00). Also, S, is continuously differentiable and S is locally Lipschitz

continuous in [0, +00).

Let us recall the definition of (pg)N_, and (p;)A_, from (2.2.3) and (2.3.4). Also, recall
the definition of ¢, given in Theorem 2.2.3.
Lemma 2.5.6. For all k € {1,..., N}, there ezists C € R such that

+

T

In particular, p, and pznfl are Lipschitz continuous in . Also, py is locally Lipschitz

continuous in spt(py).
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Proof. First we notice that ¢, is Lipschitz continuous (cf. Lemma 2.3.5), pp and f, :=
C— @ — & are Lipschitz continuous. Furthermore, (2.5.30) follows from the parallel argument

in the proof of Lemma 2.5.2.

Next, let us show that p}*~' is Lipschitz continuous. From (2.5.30), it holds that for

1 in f,'[S"(1-), S'(1
= L (2.5.31)
(S")"Y(fx) otherwise.

As fr are continuous, py is continuous on each regions,
f 18" (1), 8" (1)), £ ' (=00, §'(1-)) and fi7'(S"(1+), +00). (2.5.32)

Let us show that p is continuous on the boundary between two regions. By the continuity

of fr, it holds that

5 S'(1=)  in 9f; (=00, 8'(1-)) NS, H[S'(1=), S'(1+)), (25,39
S'(14)  in Of; N (S(14), +o0) N Af, S (1), S'(1+)].
As (8)7HS'(1-)) = (8) (S (14)) = 1, (2.5.31) and (2.5.33) show the continuity of pj on

the boundary between two regions in (2.5.32). Thus, we conclude that py is continuous in

Furthermore, as S is strictly convex, S’ is invertible in (1, 4+00). From (2.4.14), it holds

that
m—1| __ m—2 _ m—2 |ka| :
V(i)™ | = (m =)oV | = (m = 1)py (o) O spt(p)- (2.5.34)
From (2.5.22), we have
IV(pr)™ | < oo(m —1)|Vfi| ae in{zeQ:0<p, <1} (2.5.35)
and from the assumption (2.1.8a)
V(o)™ | < o1 (m = DIV Flpp™ < or(m — DIV fil max{lpg| Pt 1} (2:5.36)

a.e. in {x € Q: py > 1}. Therefore, we conclude that p;"~' is Lipschitz continuous in Q.

Lastly, the following identity

1 .
Vol = ————=V(pe)" '] ae. in spt(px) (2.5.37)
(m —1)py,
shows that py is locally Lipschitz continuous in spt(pg). O
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Proposition 2.5.7. Let (p7)r>0, (p7)r>0 stand for the piecewise constant interpolations given
in (2.3.9) and (2.3.4), respectively. Then, (p™)r>o is uniformly bounded in L*([0,T]; H*(S2)).
(1) Ifr > m, then ((p7)""2)rs0 is uniformly bounded in L2([0,T]; HX(Q)).
(2) Ifr <m <71 +52, then ((p7)™"2) 10 is uniformly bounded in L4([0,T]; W4(S2)) for
some q € (1,2).
(3) If in addition py € L>®(Q) and ® satisfies (2.2.4), then ((p7)™)r=0 s also uniformly

bounded in L*([0,T); H(Q)) for anym > 1 and r > 1.

Proof. From Lemma 2.5.6, it holds that
1Vé 1 1 B
T = —p,ﬁTk — VO = p V(i ok + Sp(pr)) ace. (2.5.38)

We follow the very same steps and in the proof of Lemma 2.5.2 (where we also use (2.5.9)

and (2.5.10)). Therefore, we have

I-1 l=m+3 m— -5 3
I, = — oV (P + pp 2V + pEV(Sy(pr)) a.e. on spt(p). (2.5.39)
Note that
1 1 5_m m—
eV (Solpr)) = ——pi Sy (oe) V(4 ') a.e. on spt(px) (2.5.40)

From (2.5.39) and (2.5.40), it holds that

1 B 1 — 1
T = s (L= Do e + Sy (1) 0V (03 ™1) + py > Vi ace. on spt(py).
(m —1)p
(2.5.41)
We can apply (2.5.10) and conclude (since Vpy = 0 a.e. in {px # 1}) that
1 _ 2 —
17 = st (L= D %pe + Sy (pi)) ™ okl V(o)1 + [ Vpil* - ace. on spt(px)
(m —1)p;
(2.5.42)
(1) If » > m, then Lemma 2.5.8 below implies
2 o3 m=3y2 2
i > W\V(pk )2+ |Vpe|® a.e. on spt(pg). (2.5.43)
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for o3 given in (2.5.47). By the parallel argument in Lemma 2.5.3, we conclude the uniform

bound in L*([0,T]; H'(2)).

2)Ifr<m<r+ g, then Lemma 2.5.9 below yields the uniform bound of (V (o7 )™ 2 )=
in L9(Q) for g given in (2.5.55). On the other hand, as 2r — 1 < 3, it holds that

1 m — % 2m — 1
Z — = < 2.5.44
(m 2) 1= 52m—27’+5 g ( )

As p™ is uniformly bounded in L?(Q) from Lemma 2.2.13, (p™)™ 2 is uniformly bounded in
19(Q).

(3) From Lemma 2.5.10, we conclude that

2

I} > SV (0P + [Vpel* a.e. on spt(py). (2.5.45)

T4
(m—1)

The same argument as before yields that ((p7)™),~¢ is uniformly bounded in L*([0, T]; H(£2)).
[

Lemma 2.5.8. Let us suppose that we are in the setting of Proposition 2.5.7. If r > m, it
holds that

1 ) TN _
= (1= D)o 2pi + Sy (o)) | 21V ()] = sV (o)), (2.5.46)
k
where
-1 1 1
o3 1= ik - min {—, —} . (2.5.47)
m — 5 g1 02
Proof. We claim that
1 -2 " . 1 1 .
m—2 (<l — 1)py “pr + 5y (Pk)) > min{ —, — o in {py # 1} (2.5.48)
Py 01 02

Recall that

) (1 =1)S8'"(1=)pi 2 if py < 1, 2519
"(px) = 5.
(1= 1)S'(14)p} 2 if pp > 1,

and thus by the definition of py (see (2.3.4)) we have

(L= 1)py *pi + Sy (o) = S (px) + Sy (px) = S"(p) ae.in {py, # 1} (2.5.50)
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Thus, (2.5.22) implies that

S"(pk) 1

-2 > — ae in {0 <p, <1} (2.5.51)
k

02

Furthermore, as r > m, (2.1.8a) implies

S// T—m 1
(f”;> >P > Z e in {p > 1) (2.5.52)
le 01 01

and we conclude (2.5.48).

Recall that p}:”_l is Lipschitz continuous from Lemma 2.5.6. Thus, we have

VpP ) =0 ae. in {p, =1} (2.5.53)

1 m—l
(see for instance [EG92, Theorem 4(iv), Section 4.2.2]). As pZV(p"™') = 22V (p, 2),

m=3

(2.5.46) follows from (2.5.48) and (2.5.53). O

Lemma 2.5.9. Let us suppose that we are in the setting of Proposition 2.5.7. If r < m <

r+ g, then

r

for some q € (1,2) and a constant C > 0.

1 m_l
s (=)o pe + 83 (o)) IV (0 2)
k

m—1
> OV ey (2554)
L2(Q)

Proof. From the relation between r and m, the constant ¢ defined by

1
q-= m—r 1
5 T2

(2.5.55)

is in the interval (1,2). As shown in (2.5.50), it holds that

_ 1 I -2 % m—g\; S"(pr) m—% .
Ty t= oy (= D e+ 50000)) 1903 )] = 209 )] e (e # 1)
k k
(2.5.56)
In {0 < py < 1}, (2.5.51) implies that
1 m—1
IZ2]| 2 o< pyety) = U—QHV(pk ) ttoemet) (2.5.57)
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for o9 given in (2.5.22). As ¢ € (1,2) and the domain is compact, the Holder inequality
yields that

Q7 mey
1Zollz2q0<pcry = == IV ok llzacocp<ap (2.5.58)
Next, we claim that
m-}
‘|:Z’-2||L2({pk>1}) > OV (py, )HL‘I({ppl)} (2.5.59)
for some constant C' > 0.
From (2.1.8a) and (2.5.56), it holds that
m—1L 1 m—1
T — ez 8" o)V (5 > — [V 2.5.60
I 2||L2({pk>1}) Pk (Pe)V(py ?) L2({p>1)) — o1 P (pr ?) L2({pe>1)) ( )
On the other hand, as
1 n m—r 1
2 B q’
the Holder inequality yields that
V(o2 V(e 2.5.61
r—m 2 m-—r > 2 q .5.
oo I 2 IV ey (2560

As py is uniformly bounded in L#(Q) from Lemma 2.2.11, p}*~" is uniformly bounded in
L%(Q) From (2.5.60) and (2.5.61), we conclude (2.5.59).
Lastly, as (2.5.53) holds true, (2.5.54) follows from (2.5.58) and (2.5.59).
O
Lemma 2.5.10. Let us suppose that we are in the setting of Proposition 2.5.7. If py € L*(Q)
and ® satisfies (2.2.4), then it holds that

]. — L m— m
= (1 =105 2 + S (o)) | P2 IV (1) > 0|V ()], (2.5.62)
k
where
m _1 ) 1 1 ) - _1 oo r—m—2
Oy = T min {U—, a_} min { (HpoHLwedTl'Aq)HL ) *, (HpOHLO"edT“A@HL ) 2} ’
1 02
(2.5.63)
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Proof. Recall from Lemma 2.2.1 that if pg € L>°(Q2), then we have
gl < llpol|pee™ 1A= = C. (2.5.64)

On the other hand, from (2.5.50) and V(p]'~') = -1V (p"), it holds that

1 _ 1 m—15"(p m .
T = —p (1= Do+ S5(00) £E V(o) = PG () e o £ 11,
Pr "o
(2.5.65)
Then, (2.5.51) and (2.5.64) yield that
m—1 -1 m m—1__1 m :
52 S ) 2 e )] e m 0 << 1) (25660

Furthermore, (2.1.8b) and (2.5.64) imply that

m—1 r—m-1 m m—1__1 . r—m m .
|Z5| = p— V(| = o C min{C"™", 1}V (p’)| a.e. in {px > 1}.
(2.5.67)
Lastly, as (2.5.53) holds, (2.5.62) follows from (2.5.66) and (2.5.67). O

Corollary 2.5.11. Let (p7);>0 and (p™)r>0 be as in the previous proposition and (2.5.23)
hold. There exists p € LP(Q) and p € L*([0,T]; H'(Q)) such that

p" — pin L*(Q), as 710, (2.5.68)
and
p” —pin L*([0,T); H'(Q)), as T 0. (2.5.69)
along a subsequence for any s € (0,3) and 5 given in (2.2.29).

Proof. Recall that Lemma 2.2.13 yields that (p7),s¢ is uniformly bounded in L?(Q). In
both cases r > mand r < m < r + g, Lemma A.6.2 and Proposition 2.5.7 yield (p7),>¢ is

precompact in L*(Q) for any s € (0, 3).

Indeed, first, we consider the case r < m < r + g We apply Proposition 2.5.7(2) and

Lemma A.6.2(1) to conclude that (p7),~o converges to p in L(m_%)q*(Q) along a subse-

qd

i, and ¢ € (1,2) is given in Proposition 2.5.7(2). Note that a direct
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computation shows that

2% —1 2d 3
‘ _ , 2.5.
T = om—1d—2 m—1/2 (2.5.70)

By a similar argument, we conclude the strong convergence of (p7),~o in L*(Q) along a

subsequence, also in the case when r > m. O

Proof of Theorem 2.5.5. Note that by the direct computation as in (2.5.20) and (2.4.29), we

have
—E = —p™v" = p"V((p")pT + Si(p7) + PV, (2.5.71)

=V (%((l - 1)(P7)l + 1)])7' + PTS{)(pT) _ Sb(pf) + Sb(l)) LTV (2'5'72)

Then, we have —E7 = VLg(p™,p") + p"V® for Lg given in (2.1.5). Since I,r < ( from
(2.5.23), Corollary 2.5.11 yields that (p7)!, p™S;(p") and Sy(p") converge in L'(Q) as 7} 0.

As p” is uniformly bounded, we conclude that

& =V (%((l —D)p 4+ 1)p™ + pSi(p) — Se(p) + Sb(l)) +pVo, as 7 —0  (2.5.73)

along a subsequence in 2'(Q; R?). Note that we have p € L from the uniform boundedness

in Lemma 2.2.13 and p € L*([0, T); H'(2)) N L>=(Q) from Proposition 2.5.7. As

Ls(p.p) = (L= 1) + 197+ pS3(p) — Si(p) + Su(1) (2.5.74)

for Lg given in (2.1.5), we conclude that (p,p) satisfies (2.5.24). The rest of argument is
parallel to Theorem 2.4.2. O

2.6 Uniqueness via an L'-contraction

We construct an L! contraction result, inspired by [DM16, Section 3] and [Vaz07, Theorem
6.5]. In particular, this will imply the uniqueness of the solution of (2.4.5)-(2.4.6) and
(2.5.24)-(2.5.25). Let us underline the fact that because of the generality of the previous two
problems, on the one hand, the techniques from [DM16, Section 3] do not apply directly.

On the other hand, because of the presence of the critical regimes {p’ = 1}, i = 1,2, the
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construction from [Vaz07, Theorem 6.5] does not apply directly either. Therefore, we develop
a careful combination of these two approaches to be able to provide an L'-contraction for

all the systems considered previously, with general initial data.

Theorem 2.6.1. Let (p',p'), (p?, p?) be solutions to (2.1.4)-(2.1.6) with initial conditions
po, Pe € P(Q) such that J(ph) < +oo, i = 1,2. Suppose that Ls(p',p’) € L*(Q), i = 1,2
(or equivalently p* € L*"(Q), i = 1,2). Then we have

ot — pillere) < oo — Pilliry, £ — ace. t €10,T).

Remark 2.6.2. Tt worth noticing that the assumption Lg(p%,p’) € L*(Q), i = 1,2 in the
statement of the previous theorem seems quite natural in the setting of L!-type contractions
for porous medium equations (see [Vaz07]). In our setting, because of the L?(Q) estimates
on p' (where 3 is defined in (2.2.29)) and because of the L"-type growth condition on Lg
at +oo, this assumption is fulfilled already if 5 > 2r. In the same time, no assumption is
needed if the initial data is in L>(Q), since in that case L> estimates hold true for p! for

a.e. t € [0,T] (see Lemma 2.2.1).

Proof. Let (p*, p*) and (p?, p*) be two solutions to (2.1.4)-(2.1.6) with initial data pj and p?

respectively. Let p € C?((0,7] x Q) and using the notation
I(p,t) = /th (pr — p}) da
we compute
%I(so,t) = /Qf?tso(pl —p") + 0i(p" — p*)da

Now, using the equation (2.4.5) and by integrating the above expression on (0,t), we get

t
T(e) =Ze.0)+ | [ 065" = )+ AelLalph. 1) - Le(i.5%)) — Tip- Ta(p' = P)dads
0 Q

(2.6.1)

t
— T(p,0) + / / (Ls(p',p") — Ls(p%. 1)) [Ad,p + A — AV® - Vig] dads,
0 Q
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where we use the notation

1 2
A= 1 f - 2 . 2Y°
Ls(p', p') — Ls(p?,p?)

with the convention A = 0, when Ls(p*,p') = Ls(p?,p?). Note that Lemma 2.6.3 below

(2.6.2)

implies that if Ls(p',p') = Ls(p? p?) a.e., then p' = p? and p' = p? a.e. Furthermore, on
this very particular set actually there is no contribution in the integral on the right hand
side of (2.6.1), so it is meaningful to set A = 0 there. Also, because of the monotonicity

property of the operator Lg (see Lemma 2.6.3), we have that A > 0 a.e. in Q.

Similarly to the arguments from [DM16, Section 3], for ¢ : Q@ — R smooth with |¢| < 1,

we consider the dual backward equation as
Adyp+ Ap — AVP -V =0, in (0,T) x Q,
Ve -1i=0, on (0,T) x 99, (2.6.3)
o(T,-) =(, in Q.
Let us notice that if we are able to construct a suitable (weak) solution ¢ to (2.6.3), for
which the computations in (2.6.1) remain valid, we can deduce the L!-contraction result,
after optimizing w.r.t. ¢. In general one cannot hope for smoothness of A, and so (2.6.3) is

degenerate. Therefore, we introduce suitable approximations which will allow to construct

smooth test function.

Let us define two Borel sets
By = {p > 1/2} U{p? > 1/2}

and Fy := Q\ E;. We suppose that both sets F; and E, have positive measures w.r.t. £
otherwise we simply do not consider the negligible one in the consideration below. First, by

Lemma 2.6.4, we have that AL E; is bounded. Second we have the following
Claim. A™'L B, € L*(E»).
Proof of the claim. Let us notice that we can write

By=({p' <1/2}n{p* > 1/2}) U ({p' 2 1/2} n{p* <1/2}) U ({p" <1/2} N {p* <1/2})
= E,UFE;UE;.
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We further decompose Ej = ({p* < 1/2}n{1/2<p <1} U {p' <1/2}n{p* > 1}) =
E{'U E{2. For a.e. ¢ € E}' we have

1oy Ls(p'(9),p'(@) — Ls(p*(9), p*(0))
A7) = p*(q) — p*(q)

= p(a)5"(A(9)

where p(q) is between p'(q) and p*(g). Since restricted to E{! both p' and p* are bounded
by 1, we have that A~'L E* € L>*(E[).

For a.e. ¢ € E}? we have

1, Ls(p*(q),p'(q)) = Ls
AT = pH(q) — p*(

since restricted to this set |p'(q) — p*(q)| > 1/2 a.e. Therefore, by our assumption on

Ls(p',p') we have that A~' L E}? € L*(FEj3?). Therefore, A~'L E} € L*(E})

([; @210 < 114004 0), () — Ls(P (@), 77(@)],

Similarly, we can draw the same conclusion in the case of £, and so A™'L_ E? € L*(E2).

For a.e. ¢ € E3, we conclude similarly as in the case of E}!, i.e. we have that

Al(g) = Ls(p*(q),p'(9)) — Ls(p*(a). P*(2))
pH(a) = r*(q)
where p(q) is between p'(¢) and p?(q). Since restricted to E3 both p' and p? are bounded
by 1/2, we have that A™'L E3 € L>(FE3).

= p(0)S"(p(q)),

Therefore, combining all the previous arguments, one obtains that A™' L Ey € L%*(E,),

and the claim follows.

Let ¢ > 0 and let Ky := ||Alg,||1~(g). Let A] := max{e, Alg,}. Then, we have
e < A7 < K, and ||A] — Alg,||z~(q) < €. In the same time, for 0 < 0 < K given, let

A5 = A5(0, K) be smooth such that § < (A45)~! < K and
(A5~ — [(A]lEQ)_l](;,K strongly in LI(FE5), ase |0, (2.6.4)

for any ¢ € [1,+00) and in particular, AZ! 2 [(Alg,) sk weakly-x in L=(E,) as ¢ | 0.

Here, for a nonnegative function f : Q) — [0, +00) we use the notation f5 i := min{max{f,d}, K}.
Now, let us define A, : Q@ — [0,400) as

- .
Aj, aein B,
A, =
. .
A5, ace. in Ej.
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By construction min{e; 1/K} < A, < max{K;,1/6}. For 8 > 0 let Ay (which depends also

on g,6 and K) be a smooth approximation of A, such that

min{e; 1/K} < Ap < max{K;,1/6}, in Q; (2.6.5)
e < Ag < Kl, a.e. in El,

1/K < Ag <1/, ae. in Ey;
and Ay — A. strongly in L9(Q) for any ¢ € [1,+00) and in particular

Ag = A, weakly — x in L®(Q), as 6 | 0. (2.6.6)

Moreover, we have

Agl — [(AILEZ)_I](;,K in LY(Es), Y q € [1,400) and A;l N [(AILEQ)_I](;,K in L*(E,), as max{f,e} | 0.
(2.6.7)

To check this last claim, we argue as follows:

145" = (A1) sl Loy < 145" = (AD) ™ lnaee + (A9 ™" = [(Alp,) "ok | pace)
= (Ao — A3)/(AgAD) | o) + 1(A3) ™ = [(ALp,) ol o)
< K2 Ag — A5l pacm + 1(43) 7" = [(ALp,) o llzagm) — 0,

as max{6,e} | 0, by the construction of Ay and A5. We conclude similarly about the weak-x

convergence as well.

Since ® € W*°(), we consider a smooth approximation of it, (®g)s~o such that Vs —

V®, as 0 | 0, strongly in L* ().

Let us consider the regularized dual equation which reads as

Orpo + (1/Ag) Apg — V Oy - Vg =0, in (0,7) x €,
Vg -1 =0, on (0,T) x O, (2.6.8)
909(T7 ) = C? in 2.

Let g be the smooth solution of (2.6.8), when the coefficient function is Ay and we use
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this in (2.6.1) as

Z(0, T) — Z(9,0) = /OT /Q Aspo(p' — p°) + Apg(Ls(p',p") — Ls(p*,p)) — Vipg - VO(p' — p?)dzds
= /E Bso(p" — p°) + Apg(Ls(p',p') — Ls(p®,p*)) — Vg - VO(p' — p*)d.L™H
+ /E Ospo(p" — p7) + Do(Ls(p*, ') — Ls(p*,p%)) — Vg - VO(p' — p*)d.LH
= [ (slr 1) = Lol 1) (A0 + Ao = ATD - Ti] d

+ / (pl - P2) [88()09 + A_lASOQ - V(I) . VQPQ} dgd+1 = Il +IQ
Eo

It remains to show that both |Z;| and |Z;| can be made arbitrary small. Because ¢y solves

(2.6.8) with the coefficient function Ay, we have
1, = /E (Ls(p",p") — Ls(p?, p*)) [ADsi09 + Apg — AVE - Vigg] 4.2
- [E (Ls(p',p") = Ls(p*, ) A [Osp0 + Ay ' Apg — Vg - Vipy] 4L
= [ (sl ) = Ls( ) (Ao = A, 4, A

+ / (Ls(p*,p") — Ls(p?, p*)) AV pg - (VOy — VI)d.L*,
Ex

From here, by (2.6.5) we have

1
2

1
|Z:| < 5_%||A9 > Aol r2(q) </ ‘LS(Pl,pl) _ LS(p2,p2)|2’A9 — A|2d$d+1>
Eq

T
+/ /|P1—OQHV%HV(%—V@]dxdt.
0 Q

By Lemma 2.6.5(1), the summability assumption on p* € L*(Q) and the approximation
Vdy — Vo, in L¥'(Q) as 6 | 0, we conclude that the second term in the previous inequality
tends to 0 as 6 | 0. By Lemma 2.6.5(2), we have that HA;%AQOQHLZ(Q) < C for some
constant independent of  and . Furthermore, by (2.6.6), by the summability assumption

on Lg(p’, p’) and by the construction of A, for  small enough we have

|Ls(p', p') — Ls(p?,p*)*|Ag — AP dL*

Eq

<2 / Ls(p',p") — Ls(p?, )P Ag — AT AL 12 / Ls(p',p") — Ls(0?. )P A5 — APd.gt+!
E1 El

<24 Ce?,
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for some constant independent of €, 6, K and therefore by the arbitrariness of €, we conclude

that Il =0.
In the case of Z, we argue as follows.
I, = / (p" = p°) [Osip0 + A7 Ay — VO - Vigg| 2!
Es

(p' = p?) [Osp9 + Ay Ay — Vg - Vipg] 2!

[

(0 — ) (A = A7) AF Ay * Agyd 2

2

(p* — p*) Vg - (VOy — VO)d.2!

+

—r

[N

(0 = AT = AAFA a0z [ (61 = )AGK — 4454, Do

2 Es

+ [ (p* = p* )V - (Vg — VI)dL

T

E>

=:To1 + Lo + Los

In the case of Z,3, we argue exactly as in the case of the second term of Z; to conclude that
this term tends to 0 as € | 0. As for the other terms, let us notice that by the definition of

Ag}( (on Es), we have that

J a.e. in {0 <A™ < 6} N Ey,

‘A_l - Ag}(‘ =40 a.e. in {0 <AV < K} N By, (2.6.9)

A1 — K ae in {K <A '}NE,,

and thus
AT — A | <0+ (A = K)y, ae in B (2.6.10)
Therefore, since Aé < 6_%, we obtain
Zor] < 14 2 Aol @82 (Bllo" — Plliamn + (0" = PNA™ = ) z2qrea-ynmm) — O,

as K — +oo and ¢ | 0 (in this order). This is true indeed, by Lemma 2.6.5(2) and by the
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fact that

/{K<A }nE (P =PV - K2 < / (0" — (A1) 2d. g™
<A-1}NE,

{K<A-1}NE,

< / (Ls(p,p') = Ls(p?, p2))?d.g "
{K<A-1}NE,

Since A~! € L?(E,), by Chebyshev’s inequality 4T ({K < A7'} N Ey) — 0, as K — 400,
so by the summability of L%(p’, p’) we deduce that for K large enough last term in the last
inequality is smaller than §2. Therefore, by the arbitrariness of §, we conclude that Ty, has

to be zero.

1
To show that |Zy;| can be made arbitrary small, using again A; < 572 a.e. on By and

Lemma 2.6.5(2), we have

’1-22|2 < 5710 (pl _ p2>2(Ag}( _ A;l)ngdJrl'

E>
By the fact that Ay, A;' € L®(E,), p', p* € L*(E,) and by the weak-x convergence of A"
to Ag}{ in L>(E,), we conclude that for # small enough, the r.h.s. of the previous inequality

is smaller than ¢, therefore by the arbitrariness of o we conclude that Zs, = 0. O

Lemma 2.6.3. Let (p',pt), (0%, p?) satisfy (2.4.6). Then Lg (defined in (2.1.5)) defines a

monotone operator in the sense that
if p'(z) < p*(x), then Ls(p',p')(x) < Ls(p?,p*)(2). (2.6.11)
In particular, for x € €, if
Ls(p',p")(x) = Ls(p*, p*) (), (2.6.12)
then p'(x) = p*(z) and p'(x) = p*(x).

Proof. First of all, if we have (2.6.12) and p'(z) = p?(x), then (2.1.5) and (2.4.6) imply
p'(z) = p*(z). Thus, it is enough to show that p'(z) = p*(z). We claim that Lg is a
monotone operator in the sense of (2.6.11). Note that p — pS’(p) —S(p) is strictly increasing
in R*\ {1} because it holds that

9,(pS'(p) — S(p)) = pS"(p) > 0 in RT \ {1} (2.6.13)
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from the strict convexity of S in Assumption A. Therefore, (2.6.11) holds if p'(z), p*(z) €
(0,1) or p'(x), p*(x) € (1, +00).

Consider the case that p'(z) = 1 < p?(z). Recall from Assumption A that S and S’ are
continuous in R™ and R* \ {1}, respectively. As p — pS'(p) — S(p) is strictly increasing in
(1, +00), it holds that

Ls(p*,p*) = p*(2)S'(0*(x)) = S(p*(x)) + S(1) > lim pS'(p) — S(p) +S(1) = S'(1+)

p—14

(2.6.14)
> p'(z) = Ls(p'", p')(x).

From (2.6.14) and (2.4.6), we conclude (2.6.11) if p'(z) = 1 < p?*(z). Similar arguments
hold for p'(x) < p?(x) = 1. Lastly, by combining the inequalities in (2.6.11) for two cases,
pH(xr) =1 < p*(x) or p(z) < 1 = p?(x), we conclude (2.6.11) for p!(z) < 1 < p?(x). O

Lemma 2.6.4. We differentiate two cases.

1) Assume m =1 for m given in (2.1.7). Let (p*,p') and (p*, p?) satisfy (2.4.6), then we
p

have
0 < A <max{oy,02}, a.e. in@ (2.6.15)

for A= A(p', p', p%, p?) given in (2.6.2) and o1, 09 are from Assumption (2.1.7)-(2.1.8).

(2) Let m > 1. If there exist co > 0 and a Borel set E C Q such that p*, p*> > ¢y a.e. on
02

E, then AL E € L>*(E) and A < max {01, ﬁ} a.e. inE.
)
Proof. Let us recall that Ls(p,p)(t, z) := [p(t, 2)S'(p(t, x)) — S(p(t, ) + S(1)] Lippay(t, 2)+
p(t, x)1(,=13(t, x) from (2.1.5). The non-negativity of A follows from the monotonicity of Ls
shown in Lemma 2.6.3. We fix ¢ = (t,7) € Q a Lebesgue for p', p, p*, p* and assume that
p(t,x) > p*(t,x). If ¢ € {p' = 1} N {p* = 1} there is nothing to check, since A(g) = 0 in

both cases.

Let us show (1).
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Case 1. Tf g€ ({p* > 1} n{p? > 1}) U ({p' <1} N{p? < 1}) we have that

P (@) (p'(0) — S(p'(a)) = P*(0)S'(p*(a)) + S(p*(a)) = £S"(P)(p" (a) — P*(2)),

> min {i, i} (p'(q) — p*(q)),

01 02
where p is a constant between p!(q) and p?(q). Therefore, we get that A(q) < max {0y, 09} .

Case 2. It g € {p' > 1} N {p? = 1} we have from (2.4.6) that

P (@S (p'(a)) = S(p(q)) + S(1) = p*(a) > ' (9)S (' () — S(p'(a) — (S'(1+) = S(1)).
(2.6.16)

As p — pS'(p) — S(p) is continuous in [1, p'(¢)] and differentiable in (1, p'(q)), the mean
value theorem yields that

1
01

P (@)S' (p'(q)) — S(p'(q)) —p*(q) = pS"(P)(p'(q) — 1) = —(p'(q) — 1), (2.6.17)

where p is between 1 and p'(g). Parallel arguments show (2.6.15) on the region {p' =
1}n{p* <1}
Case 3. It g € {p' > 1} N {p? < 1} from similar arguments as in Case 2, we have that

1

P (@)S'(p'(0) — S(p'(q)) — (S'(1+) = S(1)) > p (p'(a) — 1) (2.6.18)
and
/ / 1
(§'(1-) = S(1) = [P*(@)S'(P* (@) = S(p' ()] = o= p(9)) (2.6.19)
As §'(1+) > §’(1—), we conclude that
) 1 1
Ls(p',p")(q) = Ls(p*,p*)(q) = 01(p*(q) — 1) + 02(1 = p*(¢)) = min {0—1, 0—2} (p'(a) = P*(a))-
(2.6.20)
The proof of (2) follows the very same steps as the one of (1). By the lower bound ¢y > 0
on the densities in F, we conclude that A < max {01, %} . O
)

Lemma 2.6.5. Let ¢ > 0 and let . be a smooth solution to (2.6.8). Then there exists a

constant C = C (T, ||V(||z2) > 0 such that
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(1) supieom) IVeeliz < C;

(2) [|Ac 2 A 2q) < C.

Proof. The proof of this results follows the same lines as the one of [DM16, Lemma 3.1],

therefore we omit it. O

Corollary 2.6.6. Let pg € Z(Q) satisfy J(po) < +oo. A solution pair to (2.1.4)-(2.1.6)

such that Ls(p,p) € L*(Q) is uniquely determined by po.

Proof. From the contraction result in Theorem 2.6.1 we deduce the uniqueness of p. Now
suppose that there exists to pressure fields p!, p? solving (2.4.5) with the same p. Taking the

difference of these two equations we get
A(‘LS(IOJPI) - LS(pJPQ)) = 07 in .@/((O,T> X Q)
For a.e. t € [0,T] and for any p € C%() we have that

0:/(Ls(pt,ptl) —Ls(pt,p?))Awdw:/{ }(ptl — p})Apdz,
Q Ptzl

where in the last equality we used the fact that p; = p? a.e. in {p; < 1} U {p; > 1}. By the
arbitrariness of ¢ we conclude that p} = p? a.e. on {p; = 1} and therefore the uniqueness of

p follows. O
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APPENDIX A

Appendix

A.1 Proof of Proposition 1.4.17

Proof of Proposition 1.4.17. 1. We will prove the case w < 1 at t = 0, parallel proof holds

for the other case.

2. First, let us assume that €2;(¢) touches ;(w) from inside for the first time at ¢ = ¢,
at xg € Q4 (w). Our goal is to make a perturbation of Q;(w) using Q:(¢), which leads to a
contradiction with the gradient flow property of w. To this end, let 95 be a parallel translation

of ¢ in the direction of normal vector at xg, 7,,, so that ;,(¢) has nonempty intersection

with the complement of €, (w):

B(x,t) 1= (x — 6 (e + (t — to)) Fimg, £) - (A.1.1)

Here, e > 0 will be chosen in next step. Then, U, := Q,(¢) \ Q(w) is nonempty at o and we

have

For any € € (0, 8+L40) where C' is defined in (A.1.8), there exists sufficiently small e €
(0, #57) such that (a) e < du(€(¢), u(w)) in [to —de, o — 2e], (b) [U] <& in [to — 4e, o],

and (c)

i3 (v,t) < V- (D—df il 9t
| Dg| | Dol | Dol D¢l

in NV, X [tg — 4e, to] where N := {x : d(x,Uy) < € for all t5 — 4e < s < tp}.

(2,8) — —2 (2, t0) <% (A.1.3)

> (x,t) +n(t) — g and

Note that (a) implies Q(¢) CC Q(w) in [tg — 4e,tog — 2¢]. By definition of w and

Lemma A.3.1, there exists sufficiently small h € (0, e) such that the constrained minimizing
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movements E! starting from Qg(w) satisfies the following relations: ;(¢) C EI in [ty —

de,ty — 2e] and
UP| < e, [MIE] = Ml|Qu(w)]]] <&, and du (U], Uy) < € in [to — 4e, to] (A.1.4)

Ul = Qu(¢) - .

Then, there exists k& € N such that Qy_pr(¢) C Ef._,, and U’ h(k_1) 18 nonempty. By
Qu(¢) C Bl in [ty — 4e,tg — 2¢], we have t; = tg — h(k — 1) > ty — 2e. Also, by (A.1.4),
U} C N: and thus (A.1.3) holds in U}

3. For simplicity let us denote sets

Fy:=E} ., F,:=E}'

t1?

U:=U} and Fy, := E UU. (A.1.5)

Let us show that £}, € Sy, g,. First, as e < 1570, Q4 (4) € S,,. Moreover, EI' € S,,, and

thus F}, € Sy,- On the other hand, since E, C F,

dy (9(F, N Fy), 0Fy) < dy(9(F, N Fy), 0Fy) < Mh, (A.1.6)

Next, let us show that Iy (Fj; Fy) > I,(Fy, Fy). Let us write out the difference of the

energies:

Ih(Fh;Fo) - [h(ﬁh;Fo)

_ (Per(Eh) - Per(Eh)) + (—A[[Fh\] + A[\FhH) + % (J?(Fh, Fy) — &(Fy, FO)) .

Let us estimate the first term

T, := Per(F),) — Per(F},) > / do —/ do
dF, |OF, OFy, /Oy,

Let 7 be the outward normal vector at each point of 8Fh/3}7~’h and 8}?~’h/8Fh. Note that,

( t1) -7 < 1on dF,/0F, and — ( t1) -7 =1 on dF,/0F}, and thus

\D¢>I |D¢|

Do Do D
zlz/ _ D% ot ﬁda—/ ——?(x,tl).ﬁda:/ D6 4 iido
oF,/oF, | D9l oF,/oF, | D9l o0 |Dg)|
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Note that outward normal of U is opposite to that of OF,/ OF,. Finally, by divergence

theorem, we conclude that

D¢

Next, since A(+) is C1', we have

T, := —A[|Fp|] + A[|[Fu] = M| EW|]|U] — C|UJ? where C:=  sup  |N(2)] (A.1.8)

|Bro|<z<|BRg]|

Lastly we have

1 - 1+, ~ 1
Ig = —d2<Fh,F0) - _d2<Fh7F0) = __/ Sd(l'? F(])dl' (Alg)
I I B o

where sd(z, §2) is the signed distance function given in (1.2.7). Since 4, _(¢) C Fp, it holds
that sd(z, Fy) < sd(z,Q,_n(¢)) for all z € R". Moreover, since (A.1.3) holds in U, we have

Zs > —%/Usd(x,Qtl_h(g%))dx > —/U’g—%‘(x,tl)—i-sdx, (A.1.10)

Putting all terms together, we have

Iy = In(Fy; Fo) = In(Fy; Fy) > /U <v : %(m) - %(m) + /\HFhH) dx —€|U| = C|UP,

Applying (A.1.3) and (A.1.4), it holds that

2> [ (=M@ + MIFD) do - 0] - P 2 101 (§ - 2 - C101) >0

where the last inequality follows from the fact that e < SJF% and |U| < e. O

A.2 Regularity

In this section, we use notation from [Hui84] and [Hui87]. Let 0y be represented locally by
some diffeomorphism, Fy : U C R"! — Fy(U) C 0. Then, (1.1.8) can be formulated into

El T _ _ T -nlx orr
ol (@, t) =) — H(z,1)) -7i(z,t), forzelt=>0 (A.2.1)

F(70> :FO
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The induced metric, its inverse matrix, and the second fundamental form are denoted by

{gi;}, {9”} and A = {h;;}. Note that g;; and h;; can be computed as follows:

OF OF . 0°F
9ij = (0_931’ 8_931) , hig == (n, m) , (A2.2)

We use the following notion for the trace of the second fundamental from,

H=g"hy, |AP = g7g"hixhy, and C = g7 g" g™ hiphimhn;.

The following lemma is parallel to Theorem 3.1 in [EH91] and Lemma 3.2 in [SW10].

Lemma A.2.1. Let u(x,t) be a solution of

_ T+ |DuPdiv <\/#D|2> (/1T | Dup (A.2.3)

in Qr = Br(0) x [0, R?]. Then for 0 <t < R?, we have the interior gradient estimate

11
|D*ul*(0,t) < K(1 4+ sup |Du|6)(R2 + ) (A.2.4)
Qr

where the constant K = K (||u||Le(qp), |7l (0,72)))-
Proof. First, by Corollary 1.2 in [Hui87], it holds that (& —A)(|A]?) = —2|VA|*+2|A[*—2nC.

Let us denote v = /1 + |Du|?. As Lemma 1.1 in [EH91] and Lemma 3.2 in [SW10], the

function v satisfies the equation
2 2 2
v = Av — |Al*v — =V~ (A.2.5)
v

Let us define ¢(r) :=
from of Lemma 3.2 in [SW10] and Theorem 3.1 in [EH91], we have

and g := |A|?@(v?). Then, by the direct computation motivated

1-0r

(0 , . ) ) 2 ) 20| AJ?
T, = (at A) — (—2|VAP? + 2|4 2n0)¢(v)+( [Alfv = —Vof” | % TEE

Note that 6¢(v?) = 1= — 1, it holds that

—4| APV
(1 —dv?)?
o5 209 —20|Vol'g | —2|AP[Vo]*\ | —2[A]|Vo[’
= —20g° — 2|VA|*¢(v°) + ( (1= o09) + (1= o0?) (1= 50)2
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Now, choose 6 := $infg, v Applying Young’s inequality and Vg = 2AVAp(v?) +
20| A]2¢' (v*) Vo,

APVl APVl

3 2,02
v (Vg, Vo) < |[VA|I*o(v*) + 502 (L= o)

Finally, from Young’s inequality and ¢(v?) > v?, the last term of Z; is bounded by

K2 2
| — mCH(v?)] < 2K1g* 0| < 6g® + —12°

(A.2.6)

for some constant K := K (|[n]|ze(j0,r2)))) > 0.
Putting all together, it holds that

) —26|Vul?g - K2 g2
_ < — 2 -z 3 2 1—
(825 A)g_ 20g° + =007 20v°(Vg,Vu) + 0g° + 5

The rest of proof is parallel to Theorem 3.1 in [EH91] and Lemma 3.2 in [SW10]. Taking a
cutoff function as in [EH91], ¢ = o (r) = (R* — r)? where r = r(X, t) satisfies r(X,0) < %2,

Gi-e)r

on X = F(z,t) for some constant Ky = Ky (||u||z@p)s [|7]|2(0,r2))) > 0. It holds that

< Ky and |Vr|* < Kyr

2 0,2

0 3 K
(E - A) tgv] < —0g"Yt —b- V(tgy) +c ((1 + 5—;) r+ RZ) tg + gu + 1(?” Pt

where b = b(v, ¥, ¢) and ¢ = ¢(K>) is a constant (See equations (21) and (23) in [EH91] for
).

details

Let ty be a maximizer of m(T) := sup sup tge. Then, by parallel computation in
0<t<T r(z,t)<R?

Theorem 3.1 in [EH91], we conclude that

K2gv?

1
§¢2ty <c| (14— ) r+R?*) toyg + gt + —=—t,.
ov? )
Note that %4 <Y< Rtatt=0, ¢p(v?) >0v? > 1, and v? < %. Thus, it holds that
2 1 R* K?R* 1 1 1
AP < — 224 = —+ L <K (1l+=])[=+—= A2
||_5R4(CR<+5)+T+52)_ (+53><T+R2) (A.2.7)
where K = K (K7, ¢), thus we conclude. O
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A.3 Geometric properties

Lemma A.3.1. [FK14, Lemma 23 and 24] Let us consider two sets 4,y € S, g for
R > 1> 0. Then the following holds:

di(1,Q2) < dp(0,08%), du(021,00) Spr du(21,Q),  [UAQ| Sor da (4, Q2),
(A.3.1)

d(E,) —d(E, Q)| Srr du(21,Qs) for any E € S, g,

~T,

d(S, E) - d(0. B)|

Lemma A.3.2. Let us consider two sets 21,8y € S, g for R > r > 0. Then the following
holds for Ky = K1(r, R) = w,* (ﬁ)nﬂ:

T

Ay (Q, Q)" < Kid?(Q4, Q) and dg (Qy, Q)" < Kid?(Qa, Q) (A.3.2)

Proof. Due to the first inequality of (A.3.1) in Lemma A.3.1, it is enough to show that

4 n+1 N n+1 N
dH(gﬁl, 892)n+1 S w;l (—R> dZ(Ql, Qg) and dH<th 892)n+1 S U);l (—R) d2(QQ, Ql)

r r
Without loss of generality, let us assume that dg (9§21, 0€2) = sup,epq, d(z, 08);). Since 08,
and 0, are compact, there exists x; € 9€2; and x; € 0€); such that sup,cyq, d(x, 0) =
d(x1,00) = |x1 — xo|. Since 2y € S, there exists y € J€ such that z; and y are parallel.
Note that we have d(x1,0¢s) < |x; — y.

We argue for the case |z1| < |y|. Since z; € 9Q; and y € 9y, there exists an exterior
cone EC(xy,r) and an interior cone IC(y, r) given in (1.3.3) and (1.3.5) such that EC'(z1,7)N
IC(y,r) C Q2 \ 4. Note that, for 6 € (0, 7) such that sin(f) = %, we have

(1 +C(21,0)) N (y + C(—y,0)) C EC(x1,7)NIC(y,r).
Note also that there is 6 = §(r, R) such that

Baspe,—y| (21 +9)/2) C (21 + C(1,0)) N (y + C(=y, 0)).

Specifically, as x; and y are parallel, the above inequality holds for

5(r,R) = Smf) - ﬁz' (A.3.3)
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Then, it holds that

d(z,00)dx > / 8|zy — yldr = w, 6"z — y["H.
Bé\xl—y|((xl+y)/2)

d*(, Q) 2/

Q1 AQ

The same inequality holds for d?(€, ;) and thus we can conclude. Lastly, if |z, < |y,
then we can apply the parallel arguments in (1 + C(—z1,0)) N (y+ C(y,0)) C Q2 \ Qo. O

Lemma A.3.3. [FK1/, Lemma 24] The metric space (0S, g,dy) is compact:

1. Suppose that I'; € (0S, r,dy) for some r,R > 0 and all j € N. Then {I';}en has a

subsequence that converges and any subsequential limit is also in OS; .

2. Let I be a compact interval in R and I'; : I — 0S, g for j € N is an equicontinuous
sequence of paths in (0S5, r,dn). Then, there is a subsequence of the I';(-) that converges

uniformly on I on a path I : I — (0S, g, dm).
Lemma A.3.4. Forr >0 and x € R" such that |x| > r, it holds that
IC(z,r)={ax+(1—a)y:a € (0,1),y € B.(0)}. (A.3.4)
Here, I1C(-,-) is given in (1.3.3).

Proof. The proof is based on the geometry of interior cones describe in Figure 1.2. Let us

show that
N ={ax+(1—-a)y:aec(0,1), ye B.(0)} C IC(z,7). (A.3.5)

For z € N, we fix a € (0,1) and y € B,(0) satisfying z := ax + (1 — a)y. If z € B,(0), then
it can be checked that z € IC(x,r). Let us assume that 2 € B,(0)¢ and show that

2 € (x+C(~2,0,,))NC (x g . 9) . (A.3.6)

Note that z + C(—z,6,,) is a convex set and y € B,(0) C « + C(—=x,0,,) (See Figure 1.2)
and thus z € v 4+ C(—=,60,,). It remains to show that
7r
zeC <x 2 - 9) . (A.3.7)
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As y € B,(0) and z € B,(0)¢, there two intersection points z; and 2z, between 9B, (0) and

the line passing through y and z such that
zii= x4+ (1 —ay)y € 0B.(0) for i = 1,2 and |z — 21| < |x — 23|

for some oy € (0,a] and ap < 0. As z; and 2z are intersection points between a circle and a

line, it holds that

‘SU|2 _7”2 = |(L‘— Z1||$ —22| and thus |$ _21’ < \/m

Asz e C(z,% —b,,) and d(z,0C (z, % — b,,)) = \/|z[> — r? (See Figure 1.2), we conclude
that z; € C (x, 5 — 9w)~ As C (:p, 5 — 01,7,") is a convex set, we conclude (A.3.7) and thus
(A.3.5) holds.

The opposite relation can be shown by similar geometric arguments. As B,.(0) C N, it

suffices to show that
z C N forall z € {(x +C(—x,0,,))NC (x, g — Qm)} \ B,(0).

Consider a line passing through z and z, we can find a point y € B,(0) such that z =

az + (1 — a)y for some a € (0,1). O

Lemma A.3.5. For z,z € R" and r > ¢ > 0, assume that |x| > r and |z| < ¢. Then, it

holds that
IC(x+z,r—c) CIC(z,7) + 2. (A.3.8)
Here, IC(-,-) is given in (1.3.3).
Proof. We claim that for o € (0,1) and y € B,_.(0), it holds that
alz+z2)+(1—a)y e IC(x,r)+ 2. (A.3.9)
Note that
alr+2)+(1—a)y—z=ar+ (1 —a)(y — 2).

Asy € B,_.(0) and z € B.(0), we have y — z € B,(0). From Lemma A.3.4, we have (A.3.9).

From Lemma A.3.4 again, we conclude (A.3.8). O
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Lemma A.3.6. Let us consider two sets 21,8y € S, g for R > r > 0. Then the following
holds:

sup d(z,08;) < R sup d(x,0s). (A.3.10)

€N T zeom

Proof. If sup,cgq, d(z,0€) = 0, then (A.3.10) holds. We suppose that sup,csq, d(z,0€) >
0. As Qy € S, g, there exists xo € 05 such that

sup d(x,00;) = d(x9,08) =: 1> 0. (A.3.11)

€N

As a consequence, we have
By(z5) € O and By(x3) C Q4. (A.3.12)

Let us assume the former one. As y € S, g, there exists 1 € 02 such that x; is in the
line segment between the origin and xo. From (A.3.12), |21 — x| > [. From the interior cone
property of S, g in Lemma 1.3.4, it holds that

lr

d(xl, 892) Z d(l‘l, 3[0(1;2,7‘)) Z E <A313)

and we conclude (A.3.10). The latter case in (A.3.12) can be shown by the parallel arguments.
[

Proof of Lemma 1.5.8.

From Lemma 1.3.4, it holds that for all x € OF,
IC(z,r) C E and EC(x,r) C E° (A.3.14)

where IC' is an interior cone given in (1.3.3), and EC is an exterior cone given in (1.3.5).
Note that as |z| < R, the angle of both the interior cone and exterior cone, 6,, is bounded
from below as follows,

6, 1= arcsin é > arcsin % (A.3.15)

Thus, for n,(r, R) := [IC(Rey, ) N B:(Rey)|, it holds that for € € (0,r)

me" < |[IC(x,r) N Bo(x)| < |EN B(x)]. (A.3.16)
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Here, e; is a unit vector in the positive x; direction. Similarly, it holds that
|Be(2) \ E| 2 |B:(x) N EC(x,7)| = me™. (A.3.17)
As E € S, g, there exists g = ¢(r, R) < r such that for all € € (0, )
B.(x)NoE = (U, f(U)) (A.3.18)
up to rotation for some Lipschitz function f = f,. : U C B '(z) — R. Note that as

E € S, g, the Lipschitz constant of f is uniformly bounded by some constant A = A(r, R).

From Theorem 9.1 in [Magl2],
H" Y (B.(x) NOE) = / V14|V de < UV + A2 < nw,e™ V1 + A2, (A.3.19)
U

Thus, (1.5.20) holds with ny(r, R) := nw,v1 + A%. Here, w, is a volume of a unit ball in
R™. On the other hand, from the isoperimetric inequality in [Magl2, Proposition 12.37] and
(1.5.19), we get the lower bound of (1.5.20). O

For £, F C R", define the Hausdorff distance by
dy(E, F) := max {sup d(z, F),sup d(z, E)} . (A.3.20)
zel zeF
We say that A <, g B if there exists a constant C' = C(r, R) > 0 depending on r, R such
that A < CB.

Lastly, let us show the following property of characteristic functions.

Lemma A.3.7. Let {(2F);>0}ren be a sequence of sets in S, g for 0 <r < R. Suppose that

QOF converges locally uniformly to Q% on [0, +0c). For a sequence of functions {uk Frenuftoo}

defined by

ug, == Xqr — X(ame for k € NU{+oo}, (A.3.21)
it holds that
us, = lim sup " uy and (us)s = lim inf , ug. (A.3.22)
k—o0 k—o0

Here, lim sup* and lim inf . are given in (1.2.5).
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Proof. Let us show the first equation in (A.3.22) only. The second one can be shown by the
parallel arguments.
By uniform convergence of QF in a finite interval, for any j € N, there exists k; > 0 such
that for all k& > &k
d(QF, Q) < % (A.3.23)
Thus, for any z € Q2 and k > ki, there exists y € QF such that |z — y| < % Thus, we

conclude that

1 1
lim sup *ug(x,t) = lim sup {uk(y, s):k>yg, |ly—z < -, |s—t| < —_} =1 (A.3.24)
k—o00 J—oo Vi J
and u’_(z) = lim sup * ug(x) for z € Qg°.
k—o00
Note that we have for any sets 1, € S,
du (05,05 < dy (094, 095). (A.3.25)

Combining this with Lemma A.3.1, we conclude that ()¢ converges locally uniformly to

(22°)¢. By parallel arguments, for any x € (22°)°, we conclude that lim sup * uy(z,t) = —1.
k—oo
As lim sup * uy is upper semicontinuous, we conclude (A.3.22). L]
k—o00

Lemma A.3.8. For any function u: Q — R and © € C([0,+00)), it holds that
u*(;0) =u(-;0)" (A.3.26)
and
U (5 ©) =u(; 0).. (A.3.27)
Proof. Let us only show (A.3.26). The parallel arguments imply (A.3.27).
Let us assume that both sides are finite at (zg,%y) € Q. We claim that
w* (20, to; ©) < U(wo, to; ©)*. (A.3.28)
By the upper semicontinuity of (u)*, for £ > 0 there exists 6 € (0,¢y) such that

ﬂ(-, ) @) < a(ﬂfg, to; @)* + ¢ in Bg(.%’g) X (to — (5, to -+ (5) (A329)
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From the definition of @ in (1.2.28), it holds that

u(-, ) <u(xg,tg;0) +ein Ny :={(x,t) € Q: |t —to] < d and |z — xo| < I+ O(t)}.
(A.3.30)

Furthermore, by the continuity of ©, for any y € Eg(to)(xo) there exists a small neigh-
borhood N3 of (y,tp) in @ such that Ny C N;. From (A.3.30), we have

u(y, to)* < u(wo,to; ©)* + ¢ for all y € Bey) (o). (A.3.31)

As ¢ is arbitrary, we conclude (A.3.28).

Next, let us show the opposite inequality,
wH (o, to; ©) > U, to; ©)*. (A.3.32)
For any € > 0, let us show that there exists 0 € (0,ty) such that
u* (20, 10;0) > u(-,+) — € in Bsio) (o) X (to — 6,0 + 6). (A.3.33)
If not, then there exists {(yg, sk) }ren C @ such that

1 1 ~
|sk — to] < o |y — 0| < z + O(to) and u*(xg,to) < u(yg, Sk) — €. (A.3.34)

Then, {si}ren converges to ty. Also, by compactness of E@(t0)+1<x0), there exists a sub-
sequence {k;}ien and y* € Fe(to)ﬂ(xo) such that {yg, }ien converges to y*. Thus, it holds
that

1;*('1'0’ tO) < lim Supu(yka Sk) —e< U*(y*,to) — & <A335)

k—o0

On the other hand, (A.3.34) implies y* € Bey) (o), which contradicts to (A.3.35). As a

consequence, we get (A.3.33).

By (A.3.33) and the continuity of ©, there exists d; € (0, d) such that
w* (20, t0;©) > u(-,-) —ein {(z,t) € Q : |t — to| < 01 and |z — 2o < 6, + O(t)}. (A.3.36)

As ¢ is arbitrary, we get (A.3.32) and conclude (A.3.26).
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Similar arguments can be applied if either the left hand side or right hand side in (A.3.26)
is infinity at (xg,t) € Q. In particular, for any € € (0, ty), there exists a sequence {xy, tx }ren
in (to — €,t0 + €) X Bo(g)+e(®o) such that u(xy,ty) converging to infinity. This implies that
the other side is infinity. O

A.4 Optimal transport toolbox

Let us recall now some basic definitions and results from the theory of optimal transport.

Let I1(u, v) be the set of all Borel probability measure 7 on € x € such that
T(Ax Q) =pu(A), =w(Qx B)=wv(B) for all measurable subsets A, B C {. (A.4.1)

For p,v € P25(Q) we define the 2-Wasserstein or Monge-Kantorovich distance as

1
2

Wy (p, v) := min {/ |z — yPdy iy € Ty, V)} (A.4.2)
19539
For ¢ : 2 — R measurable, we use the notations

% (0) = max(0(0).0), () i= max{~0(e).0) and ¢°(a) = ess nf { 51o ol ~ o(0)}
(A.4.3)

where x € €.

A.4.1 Basic facts from optimal transport

Let us recall the definition and properties of Kantorovich potentials and optimal transport
maps. There results are well-known in the literature, we refer for instance to [Sanl5] for the

proofs of the statements.

Definition A.4.1. Let p,v € 2() be given.

1. We say that ¢ : Q — R is a Kantorovich potential from p to v if (¢, EC) is a maximizer

of the Kantorovich problem:
1
sup {/qudu+ /Q?ﬂdv (9, 0) € Ly () x Ly (), ¢(x) + 1(y) < glz = >, pov—ae. (z,y) € 2 x Q} :

We denote the set of Kantorovich potential from u to v by K(u,v).
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2. We say that a Borel map T : {0 — €2 is a optimal transport map from p to v if T' is a

minimizer of the following problem:

inf {/ |z — T(x)]Pdu : Typ = 1/} : (A.4.4)
Q
Here, (Tyup)(A) := u(T1(A)) for any Borel set A C Q.
Lemma A.4.2 ([Sanl5]). For € 2%(Q) and v € P(), there exists a Lipschitz contin-

uous Kantorovich potential ¢ and an optimal transport map T from p to v. Also, it holds

that
x—T(x) =Vo(x) for a.e. x € spt(p) and Wa(p,v) = [Vl 2. (A.4.5)

Lemma A.4.3. [Vil03, Theorem 1.3],[San15, Proposition 1.11] Let p,v € Z(Q). Define
L:L(Q) x Ly(Q) =R as

L($,7) ::/Qqsdwr/ﬂq/]du (A.4.6)

Then, it holds that

2
3R = max { L(6,0): (6.0) € Cu(@) x G, o) +0(o) < "2 for attny e 2},

lz —y|

= sup {ﬁ(cb, V) (6,0) € L, (Q) x L(Q), é(x) +1(y) < for p®@v a.e. (z,y) € Qx Q}

Proposition A.4.4. Forr € [1,+o0], let p € L"(Q)NP(Q) and v € P(2). Then, it holds
that

1
sup £(6,6°) = Wi (n,) (A4.7)
peL" (Q)

where v’ := = (r' =1 if r = 400 and ' = +o0 if r = 1) and L is given in (A.4.6).

Proof. 1. Let us show that
1
§W22(/,L, v)=1, (A.4.8)

where 7; :=

|z —y|?
2

sup {£(¢,w) (p,0) € L7(Q) x LE(Q), é(z) +(y) < for p@ v a.e. (x,y) € Q x Q} :

(A.4.9)
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By Holder’s inequality, it holds that

[ollci) = /Q |o(2) () dz <@l oy el o) (A.4.10)
As pe L"(Q) N Z(Q2), we conclude that
L™ (Q) C L},() and thus Cy(Q) x Cy() C L™ (Q) x LL(Q) C LL(Q) x LL(Q). (A.4.11)
From Lemma A.4.3, we conclude (A.4.8).

2. It remains to show that

sup L(¢,9°) =1, (A.4.12)
peL" (Q)

for Z; given in (A.4.9). Indeed, let us notice that by density we have

sup  L(,¢°) = sup L(¢,¢°) = max)ﬁ(eﬁaqbc),

peL™ () HECH(Q) peCH(Q
and the latter two quantities are finite by [San15, Proposition 1.11]. Therefore the thesis of

the proposition follows. O

A.4.2 Some properties of minimizers in the minimizing movements scheme and

optimality conditions
Lemma A.4.5. For py given in (2.2.3) and S satisfying (2.4.2), it holds that py, > 0 a.e.

Proof. The proof is inspired by [Sanl15, Lemma 8.6]. The difference is that we consider the

sub-differential of S instead of its derivative.

1. For simplicity, let us use the notation p := p, and consider a competitor

1

[y = SZ(Dh (A.4.13)

Define p. := (1 — )+ epy for e € (0,1). From convexity of Wasserstein distance, we have

1 1
1, = j(,u) - j(,us) < ZWS(MS’ Pk—l) - ZW22(M,PI€—1)7
1 1
<e {ZW22(M1,P1<:—1) - ZWg(N’pk—l)}
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The compactness of €2 implies

I, < (e for some C; > 0. (A.4.14)

2. Set A:={z€Q:pu>0}and B:={z € Q:pu=0} Letusshow that £ B) = 0.

For sufficiently small € > 0, it holds that eu; < 1 and thus

T~ [ Sl0te) = S(ula) + (o) = ()] + (S00) = S L"(B) = e gy [
(A.4.15)

By convexity of S, it holds that

7, > ¢ /A 6.(2) + B (u(x) — ) dz + (S(0) — S(epun))LUB) Egd;@ /B Bdz, (A416)

where & (z) € 08 (pe(x)).

From (A.4.14), we conclude that for all & (x) € OS(u(x))
1
T, = /[55(:1:) + @) (u(x) — pp)da + E(S(O) —S(em)) LY B) < C, +C. (A.4.17)
A
Note that by the convexity of S, its subdifferential is monotone, therefore for all € € [0, 1],

(£€<ZE> - £1>(Ms(x) - /J/l) 2 07

and thus
E()(plx) — m) = & (p(x) — ). (A.4.18)
for a.e. & € Q where & € 8S(u). Therefore,
I > /A[& + ®)(p(z) — p)de + 5(8(0) — S(em))Z(B)

Since §'(0+) = —oo from (2.4.2), the right hand side blows up as ¢ goes to zero unless
Z4B) =0. As Z, is bounded by C; + C from (A.4.17), we conclude that £%(B) = 0, and
thus © > 0 a.e. O
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A.5 Some results from convex analysis

For a Banach space X and F : X — RU {£o0}, we say that F* : X* — RU{+oo} is a

Legendre transform of F if

F*(y) :==sup {(z,y)xx- — F(x)} for y € X". (A5.1)

TeX
Here, X* stands for the topological dual space of X. We will denote by C,(2) the space of
bounded continuous functions in §2. In the derivation of optimality conditions associated to
the minimizing movement schemes, in Section A.5, we use subdifferential calculus in L"(2)

(r € [1,+00]) spaces. Let us recall some basic results on this.

Let us recall the definition of subdifferentials on L"(2)* for r € [1, +o0].

Definition A.5.1. [Roc71, (1.9), (1.10) & (1.13)] For ¢ : R - R U {400}, r € [1, +0o0] and
U L7(Q2) = RU {400} defined by

W) = [ bt (A5.2)
we say that & € L"(Q2)* belongs to the subdifferential of U at p € L™(Q) if
W(v) > W(p) + (& v — w)rr - Lr@ (A.5.3)

for every v € L"(2). We denote by 0¥ (u) the set of subdifferentials of U at the point
we L (Q).

Definition A.5.2. [ET76, Definition 1.3.1] Let X be a Banach space. The set of functions
F :X — RU{zoo} which are pointwise supremum of a family of continuous affine function

is denoted by I'(X).

Lemma A.5.3. [ET76, Proposition 1.53.1] The following properties are equivalent to each

other:

1. Fel(X)

2. F is a convez lower semicontinuous function from X into RU{xoo} and if F takes

the value —oo, then F' is identically equal to —oo.
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Lemma A.5.4. [ET76, Proposition 1.5.6] If Fy, Fy € I'(X) and if there exists i € X such
that Fy (i), Fo(f1) < +o0 and either Fy or Fy is continuous at fi, then it holds that

OF (1) + OFy(p) = O(Fy + Fy) () for all p € X. (A.5.4)

A.6 An Aubin-Lions lemma and some of its consequences

In [RS03] the authors presented the following version of the classical Aubin-Lions lemma

(see [Aub63)):

Theorem A.6.1. [RS03, Theorem 2| Let B be a Banach space and U be a family of mea-
surable B-valued function. Let us suppose that there exist a normal coercive integrand

§:(0,T) x B — [0, +00|, meaning that

(1) § is B(0,T) ® B(B)-measurable, where B(0,T) and B(B) denote the o-algebgras of

the Lebesque measurable subsets of (0,T) and of the Borel subsets of B respectively;
(2) the maps v — Fi(v) = F(t,v) are l.s.c. for a.e. t € (0,T);
(3) {v e B:gFi(v) <c} are compact for any ¢ > 0 and for a.e. t € (0,7,
and a l.s.c. map g : B x B — [0, +o00| with the property
[u,v € D(F:), g(u,v) =0l = u=w, forae te(0,T).

If

T T—h
sup/ S(t,u(t))dt < +o0 and lim sup/ g(u(t+h),u(t))dt =0,
ueld Jo h0 weu Jo

then U is relatively compact in #(0,T; B).

Many recent papers (including [KM18,Lab17]) on gradient flows in the Wasserstein space
used the previous theorem to gain pre-compactness of interpolated curves. In our setting we

use the following result.

Lemma A.6.2. Let T > 0 and let ¢ € [1,400) and n > 0 be such that ng* > 1, where

*

q = dq—_dq (with the convention ¢* € (0,+00) is arbitrary if ¢ > d, and therefore, n > 0 and
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ng* > 1 can also be arbitrary). Suppose that (p™),;=0 is a sequence of curves on [0,T] with

values in P (Q) and suppose that there exists C > 0 such that
W3 (pf,p5) SClt—s+7[, VO<s<t<T (A.6.1)

and ((p7)")r>o 1s uniformly bounded in LI([0, T]; W4(Q)) by C. We suppose moreover that

there exists 8 > 1 such that ||p]|[1s) < C for a.e. t €[0,T].

(1) Then, (p™)r>o is pre-compact in L(Q), with 1 < ~v < B if § < ng* and 1 < v < ng*,

if 8> ng".

(2) If in addition, (p7),~o is uniformly bounded in L°(Q) for some By > 7 (where v is
giwen in (1)), then (p7)r=o is pre-compact in L7?(Q), for any 1 < vo < Bs.

Proof. Let us use the previously stated Aubin-Lions lemma, i.e. Theorem A.6.1. Let 1 <
a < ¢* be fixed (that we set up later) and let us set B := L"(Q), § : L"(2) — [0, 400]
defined as
o™ lwrag, if p" € WH(Q), p € 2(9),
00, otherwise
and g : L"*(Q) x L"*(Q2) — [0, +00] defined as
Wa(u,v), if u,v e P2(Q),

g(p,v) =
400, otherwise.

In this setting, (p7),~o and §F satisfy the assumptions of Theorem A.6.1. Indeed, from the
assumption, one has in particular that /T H(p[)””‘évhq(m dt < C. The injection WH(Q) —
L*(Q) is compact for any 1 < o < ¢, th(; injection ¢ : s > sw is continuous from L*(§2) to
L"(Q2) and the sub-level sets of p — ||p"||w1.4() are compact in L™*(€2).

Moreover, by the fact that g defines a distance on D(§F) and from (A.6.1), one has that
g also satisfies the assumptions from Theorem A.6.1, hence the implication of the theorem

holds and one has that (p7)_-, is pre-compact in .2 (0, T'; L"*(€2)). Let us notice that (A.6.1)

implies that there exists p € C([0,T]; Z(2)) such that up to passing to a subsequence (p;)->0
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converges uniformly (w.r.t. Ws) to p as 7 > 0. Up to passing to another subsequence, p is
the limit also in .Z (0,7 L™ (£2)).

From our assumption, we know that ||pf||1sq) < C for a.e. t € [0,7]. Now, if § < ng*,
then setting o such that na = [, Lebesgue’s dominated convergence theorem implies the
strong pre-compactness of (p”),~o in L?(Q). Otherwise, Lebesque’s dominated convergence
implies the strong pre-compactness in L7(Q) for any 1 < v < ng*. This concludes the proof
of (1).

To show (2), we notice that (1) already implies that p” — p, strongly in L7(Q) as 7, 0
and in particular a.e. in Q. Furthermore, by the by the uniform bounds in L%*(Q), with

Bg >, for any 1 < vy < B9 we have that

T 1_ﬁ T
/Q () dadt < (TLYQ) 5 |7 0,,

which implies that (p7)?? is uniformly integrable on (). Therefore, Vitali’s convergence

theorem yields the claim. O]
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