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ABSTRACT 

 
Direct solid sampling by Laser Ablation into an Inductively Coupled Plasma Synchronous 

Vertical Dual View Optical Emission Spectroscope (LA-SVDV-ICP OES) was used for the 

elemental analysis of nutrient elements Ca, B, Mn, Mg, K and Zn and essential (non-metallic) 

elements P and S in plant materials. The samples were mixed with paraffin as a binder, an 

approach that provides better cohesion of the particles in the pellets in addition to supplying 

carbon to serve as an internal standard (atomic line C I 193.027 nm) as a way to compensate for 

matrix effects, and/or variations in the ablation process.  Precision ranged from 1 to 8 % relative 

standard deviation (RSD) with limit of detection ranging from 0.4 to 1 and 25 to 640 mg kg-1 for 

metallic and non-metallic elements, respectively.  

 

Keywords:  laser ablation, inductively coupled plasma optical emission spectrometry, plant 

samples.  
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INTRODUCTION 

The essential nutrient elements in plants can be classified into two groups: macronutrients at 

percentage concentrations such as N, P, K, Mg, Ca, S, and micronutrients, at mg kg-1 levels such 

as Fe, Mn, Zn, Cu, Ni, B, Mo, and Cl. The determination of these elements is important as 

changes in concentration could compromise essential functions in plant metabolism. For 

example, deficiency of N, P and S could affect the protein synthesis and energy transport in 

plants1. Other examples where essential elements play key roles are: i) Mg in the photosynthesis 

process, ii) K, Fe, Mn, Zn, Cu, Mo and Ni in the activation of enzymes, and iii) Ca and B in cell 

wall synthesis and/or stabilization.1, 2 

Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma Optical Emission 

Spectroscopy (ICP-OES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) play a 

vital role in the elemental analysis of plants samples. Typically, solid plant materials are digested 

with strong acids and/or high temperature ashing procedures3-9. Even though the implementation 

of solid sample digestion is common and in many cases routine, the process is time-consuming, 

increases the risk of contamination, and generates chemical waste. Quantitative analysis protocols 

that reduce the complexity of sample preparation are therefore critical for environmental and 

ecological applications.  

Solid in liquids dispersions or slurries,10 as well as direct electrothermal vaporization11 

and laser ablation12-13 have been used in both ICP-OES and ICP-MS to avoid the tedious wet 

digestions methods. These solid sampling techniques have practical benefits such as minimum 

sample pretreatment, small risk of contamination and reduced chemical waste generation, all 

leading to rapid multielement analysis directly from the solid.  
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Laser ablation for direct solid sampling is a compelling approach for rapid chemical 

analysis. Sampling involves a high-power pulsed laser beam that is directed and focused onto a 

sample to instantaneously convert a finite volume of the sample into vapor and aerosol 

constituents for analysis. Laser ablation of solid samples is commonly used in combination with 

two detection modalities: Laser Induced Breakdown Spectroscopy (LIBS) and Laser Ablation-

Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) or Laser Ablation- Inductively 

Coupled Plasma Optical Emission Spectrometry (LA-ICP-OES).14-16 Successful applications 

have been recently demonstrated in metallomic studies of plant materials using laser ablation-

based techniques, namely LIBS and LA-ICP- MS or LA-ICP-OES.17-25 A brief description of 

these techniques will help understand the selection of LA-ICP-OES for the analysis of plant 

materials as the focal point of this study. LIBS offer direct and in-situ analysis of potentially the 

entire periodic table of elements. It is important to further emphasize that LIBS could be use to 

analyze elements likes hydrogen, oxygen, nitrogen, fluorine and halogens that are difficult or 

impossible to analyze by other techniques. LIBS also posses some key features such as low cost 

of operation (no gas requirements), portability, stand-off detection, etc. However limits of 

detection (which are in the high ppm range for most elements) still one of the major limitations of 

this technique. In contrast LA-ICP-MS main attributes are high sensitivity (in the low ppm to ppb 

level for most elements) plus isotopic information. However, quantification of some of the 

essential elements in plants using low resolution ICP-MS is challenging due to interferences in 

the mass range between 30-80 amu, for example interferences of 38Ar1H on 39K, 40Ar on 40Ca, and 

40Ar16O on 56Fe are particularly critical. In the particular case of these interferences the use of 

higher resolution ICP-MS or ICPMS equipped with collision/reaction cell technology is 

recommended, however it is also important to highlight that in those cases sensitivity will be 
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sacrifice in order to reduce/eliminate or resolve these interferences.  

Laser Ablation Inductively Coupled Plasma Optical Emission Spectroscopy (LA-ICP-

OES) is an attractive approach and capitalizes on ICP-OES as one of the most commonly found 

and widely used instruments in analytical laboratories. The main reason for this is the ICP-OES 

robustness, ease of use, and relatively low operational cost.  Remarkably LA-ICP-OES is not as 

widely used for quantitative analyses of plant materials compared to LIBS and LA-ICP-MS, even 

though LA-ICP-OES offers simultaneous multi-element detection capability, with low limit of 

detection (in the single digit ppm range for most elements) and, in general, high spectral 

selectivity by using high-resolution spectrometers to avoid or minimize spectral interferences. In 

particular modern ICP-OES instruments with dual view technology offer an increased dynamic 

range of concentration (from low ppm level to major (%) elements present in samples) by 

combining the capability of collecting emission for elements emitting in the UV spectral region 

axially, and elements emitting in the visible region radially from the same ablation event.25   

The primarily goal of this study was to explore the benefits of the synchronous vertical 

dual view mode (SVDV) ICP-OES for determination of essential elements in plants using laser 

ablation as a sampling tool. In this study were also addressed two different matrix effects: a 

“natural matrix effect” which is related to the natural differences between the samples, and a 

“synthetic matrix effect” which is generated when a binder is added to the samples.   

 

 
EXPERIMENTAL 

Instrument 
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The ablation system was the J200 from Applied Spectra, Inc. using a Nd:YAG 

nanosecond laser at 213 nm wavelength. The ablation chamber could accommodate samples up to 

100 mm diameter with flexibility in volume and washout time. This system was interfaced to the 

5100 SVDV-ICP-OES (Agilent, Santa Clara, CA, USA). Table 1 shows a list of the optimized 

conditions used in all these experiments. Laser ablation was performed with helium as the carrier 

gas. Argon was used as a make-up gas before entering the ICP-OES plasma and to purge the 

spectrometer.   

 
Reagents and samples 
 

Four plant certified reference materials (powder form with 75 µm particle size) were used 

in this work; apple leaves (SRM 1515), peach leaves (SRM 1547), spinach leaves (SRM 1570a) 

and tomato leaves (1573a) from the National Institute of Standard and Technology (NIST, 

Gaithersburg, MD, USA) (Table 2). Study of natural matrix effect is based on the comparison 

among pure samples, and study of the synthetic matrix effect was based on a suite of samples 

prepared by mixing the pure standards with different amounts (mass fractions) of paraffin binder 

having particle size lower than 30 µm (3646 Spex, Metuchen, NJ, USA). Adding paraffin to the 

pure samples not only dilutes the elemental concentration but it also becomes the matrix after a 

sufficiently amount (concentration) has been added to the mixture. 

Each of the four SRM samples was mixed with paraffin at proportions from 10% to 90% 

in 10% increments. The mass fractions of the standard in the pellets were from 0-100 %, with 0% 

meaning pure paraffin and 100% pure standard. The samples were weighed and mixed for five 

minutes to ensure homogenization. Following homogenization, the powders including pure 

paraffin were pelletized (Spex model 3630) with about 7 tons of pressure. Paraffin only contains 
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hydrogen and carbon (CnH2n+2). This was verified by analysis of the pure paraffin pellet under the 

same experimental conditions and none of the elements of interest in the plants were detected. 

 
Methods 
 
Ablation sampling method 
 

The samples were ablated with a laser repetition rate of 10 Hz while moving the sample at 

a speed 0.025 mm.s-1. Using the Agilent ICP-OES software ICP-Expert®, signals were acquired 

in the time resolved analysis mode (TRA). The transient signals were integrated using the 

Applied Spectra, Inc. Data Analysis software. Analytical figures of merit such as limit of 

detection, precision within one location (temporal relative standard deviation (TRSD)), and the 

precision between ablation locations (relative standard deviation (RSD)) of three raster lines on 

the samples were determined. The standard deviation of the background was obtained from the 

pure paraffin pellet (labeled as 0% mass fraction of the standard).  The LODs were calculated as 

3.3 s/b, where s is the standard deviation of the signal obtained from the blank pellet, and b is the 

slope of the calibration curve.26 The apple standard that has the lowest concentration of the 

analytes was used in this study.  

 
Use of Carbon to compensate matrix effects 
 

Matrix effects can lead to poor accuracy during quantification analysis in most analytical 

techniques, and in particular for laser ablation-based quantitative analysis; these effects are 

triggered in general by different ablation behavior between samples and standards used for 

quantification.27-29 Differences in ablation behavior are manifested as changes in amount of 

ablated mass, particle size distribution, etc. The most effective strategy to minimize matrix effects 
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is the use matrix-match standards. However, fulfilling this requirement is challenging with plant 

analysis due to significant differences between these samples. Among these differences from 

unprocessed samples are; water, lignin and cellulose content, and porosity of the surface. In 

processed samples, for example samples that have undergone drying and grinding, the particle 

size distribution is an important contributor to natural matrix effects that may lead to poor 

accuracy and precision in the analysis. Some of these effects could be compensated by 

lyophilization or cryo-desiccation, optimizing the milling time (to achieve sample homogeneity), 

the use of a binder (to get better cohesion and flat surfaces of the pellets), and the use of an 

internal standard (element contained in the sample or by addition to the samples).17-25  

Internal standard normalization is a powerful alternative successfully used to compensate 

for matrix effects, and/or improve accuracy and precision in laser ablation-based methods.  In the 

case of optical emission spectrometry (ICP-OES), this approach involves selection of one or more 

emission lines from an element that is not initially present but added to the sample or a major 

steady component in the sample (matrix element).30,31 The selection of a suitable emission line to 

improve precision relies on the requirement that the behavior of the line(s) will not be affected by 

slight changes in the matrix, and that the line(s) used for internal standardization is/are 

simultaneously measured with the lines from the analyte.32 

In the case of carbon rich samples, selection of carbon as an internal standard seems 

obvious. This element has been successfully used to compensate for matrix effects and improve 

accuracy in samples such as rice, milk and coal using LIBS, ICP-OES, and ICP-MS, 

respectively.21,33,34 However, in some cases the use of carbon was not satisfactory, for example, 

no signal correlation was found between analytes of interest and carbon in the study by Todolí et 

al.35 These findings were attributed to the generation of two phases during ablation, carbon-
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containing gaseous species (CCGS) and a carbon-containing particle (CCP) phase generated 

during the pyrolysis of the sample. The generation of CCGs and CCP is complex and depends on 

the composition of the matrix.36 Finally, normalization with carbon showed improvement for only 

a few elements in the determination of micronutrients in plants samples using LIBS; this behavior 

was attributed to differences in ionization and excitation between the elements of interest and 

carbon.22 

Another reason for the use of LA-ICP-OES instead of LA-ICP-MS in this particular case 

is related to the formation of carbon deposits. An incomplete combustion of carbon in the plasma 

may cause soot deposits thus affecting the plasma stability, and clogging of the sampling cone, 

which in the case of ICP-MS these problems are more severe than for ICP-OES. 

In this study, the efficacy of normalization with carbon (C 193.027nm) added to the 

sample as a binder in order to improve precision and to compensate matrix effects was evaluated 

for LA-ICP-OES analysis of plant materials. One approach to expand the concentration range is 

by diluting these pure samples with a binder, as was described previously, therefore adding 

binder helps to generate robust pellets, dilute the elemental concentration, and adds the internal 

standard (in this case carbon).  

After the pellets were prepared the first step was to test if the carbon response could be 

used to improve short-term precision.  Second step was to determine if carbon could compensate 

for changes in the plant matrix due to the addition of binder (synthetic matrix effect).  Finally, we 

tested the possibility of increasing calibration curves dynamic range of concentration by 

increasing the number of standards within a calibration curve after combining (into one 

calibration curve) the different plant standard samples. 
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Results and Discussion 

Table 3 presents some figures of merits. Fourteen elements were investigated, and the 

limits of detection for most of these elements are close to 1 mg.kg-1 with the exception of the 

non-metals S and P. Signal intensity fluctuations (measured as %TRSD) varied in the range 3-

44%. However, the reproducibility measured as the difference between three replicates 

(locations) in the samples was in the range from 3-8 %, even for elements like B, S and Zn that 

display the highest % TRSD. The reported RSD’s in this study are similar to previously reported 

values using LA-ICP-OES and LIBS19, 22, 25 In the case of LOD’s, it is noticeable that some 

matrix elements such as Ca, Cu, K, and Mg were significantly better than previously report in the 

literature.18,19,21,22,25 

 
The first step was to test if the carbon response could be used to improve short-term 

precision. Data in Figure 1 show the transient ablation response for C, S, Ca and Mg from two 

tomato leaf samples with 80 % mass fraction of the standard, respectively. Figure 1 e-g show the 

transient ratios of S/C, Ca/C and Mg/C. In every case, the use of carbon as an internal standard 

slightly improves the short-term precision (%TRSD from 1-5% depending on the element) and is 

independent of the binder concentration. Similar tendency was obtained with the others mass 

fractions. 

The second step was to determine if carbon could compensate for changes in the plant 

matrix due to the addition of binder (synthetic matrix effect). Figure 2a shows the emission 

intensity of Ca 317.933 nm as a function of the mass fraction of the apple leaf standards. The 

emission signal increased with mass fraction of the sample but not linearly, which is an indication 

of the existence of matrix effects. Figure 2b shows the emission intensity for C 193.027 nm from 

these same pellets. In the case of carbon two clear inflection points in the signal versus mass 
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fraction of the sample are noticeable. The first inflection point illustrates the change in matrix 

composition between pure paraffin and paraffin plus 10% plant sample. The second point clearly 

shows the difference between the combination of paraffin with plant materials and pure plant 

samples. Figure 2c shows the Ca 317.933 nm signal intensity normalized to the C 193.027 nm 

signal intensity. The intensity ratio exhibits linearity in the analytical range of 10% to 80% of 

plant content in the pellets. This range contains samples where the physical characteristics of the 

pellet were similar, such as pellet cohesion and mechanical strength, making the ablation events 

more reproducible. As shown in Figure 2c, carbon normalization can compensate for the 

synthetic matrix effect created by the addition of binder and can be used as internal standard to 

improve the calibration curves to sample maximum concentration of 80%. The same behavior 

was observed for the other NIST plant samples used in this study.  

The third step was to increase the number of standards within a calibration curve and to 

increase the dynamic range of elemental concentration by combining the different plant SRM’s. 

However, only the samples with mass fraction in the range from 10% to 80% were used; the 

range where the paraffin controls the matrix.  Two calibration models were studied. The first 

calibration model was built with the purpose of studying matrix effects within a set of samples 

prepared with different mass fractions of a single NIST standard. The second calibration model 

was obtained combining all NIST standards considered in this study (hybrid approach). In this 

case, the samples were selected to cover the wider possible range of concentrations.   

Figure 3 shows the calibration curves obtained with the NIST spinach samples for P, Mg. 

Mn, B, Ca, S, Cu and Zn normalized to C. The normalized intensity for all these elements shows 

linear correlation with the sample mass fractions. Similar results were obtained for the peach, 

apple and tomato leaf samples (not presented here for brevity). 
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The final step was to test the combination of these different matrices into one calibration 

curve per element (hybrid approach). Figure 4a-c shows the calibration curves obtained using a 

combination of the different matrices without normalization, and in Figure 4d-f after 

normalization using the carbon line as an internal standard. These results demonstrate that 

reduction of matrix effects was achieved within each set of samples (based on the same standard 

reference material) by using carbon as an internal standard, and between different materials by 

effectively making the matrix the binder.  

A selection of a smaller set of these samples (calibration set) was made and used to build 

the hybrid calibration curve approach. The criteria used for the selection of the calibration set 

were: a) samples representing all the matrices, and b) covering the widest concentration range 

possible. These calibration curves are presented in Figure 5. Some of the samples not selected 

where used as validation samples. The quality of the hybrid calibration models was assessed by 

calculating the elemental concentration from the validation samples (Table 4).  Good agreement 

between the calculated values and known values (% bias) was observed. These results were 

similar for most elements with a few exceptions of B and Zn in the peach standards. These 

elements are present in low concentrations in contrast to matrix elements such as Ca, Mg and P 

that exhibited better accuracy of less than 5% bias (combined). Moreover, it was found that in 

general, lower % bias was observed in samples with higher elemental concentration such as 

spinach and tomato samples. 

 
CONCLUSION 
 

 

Direct solid sampling by Laser Ablation into an Inductively Coupled Plasma Synchronous 

Vertical Dual View Optical Emission Spectroscope (LA-SVDV-ICP-OES) was, for the first time, 
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used as for the determination of elemental concentration in plant materials with limit of detection 

in the single digit mg kg-1 levels for most elements. The use of a SVDV-ICP-OES system allows 

analysis of UV spectral region elements such as P and S axially, with limits of detection as low as 

25 mg k-1 for S, and elements emitting in the visible region radially, with limits of detection as 

low as 0.1 mg kg-1. 

 Carbon was added to the sample as a binder, and was used as an internal standard. The 

carbon signal was used to normalize the signal of the elements of interest and calibration curves 

with excellent linear correlations coefficients (better than 0.99 in every case). The use of carbon 

as internal standard allows for the correction of two types of matrix effects: “natural matrix 

effect” which is related to the natural differences between the samples, and a “synthetic matrix 

effect” which is caused by the addition of paraffin to the samples. The impact of the matrix effect 

correction approach presented in this study allows for the combination of different standard 

reference materials into a hybrid calibration curve. This was demonstrated by combining samples 

from each set into a (hybrid) calibration curve, and these new curves were subsequently used to 

predict the concentration of the samples left out of the model. The results show excellent 

correlation (low bias percentage) between the calculated concentrations and the known 

concentration from the validation samples. This strategy can be used to expand the standard 

materials that can be used in one calibration curve and increase the concentration dynamic range 

in the quantification models. Although some sample preparation is involved, namely grinding of 

the samples to equal or less than 75um (size tested in this study), binder addition and mixing with 

the pure samples followed by pellet pressing, this approach for direct solid analysis is less time-

consuming and more efficient than wet sample digestion methods. 
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Figure Captions: 
 
Figure 1: (a-d) Transient response for C, S, Ca and Mg from the tomato leaf sample with 80% 
mass fraction of the standard. (e-g) Transient ratios S/C, Ca/C and Mg/C.  
 
Figure 2: Emission intensity of a) Ca 317.933 nm, b) C 193.027nm and c) Ca/C ratio as a 
function of the mass fraction of the apple leaf standards. 
 
Figure 3: Calibration curves from the NIST spinach samples for P, Mg. Mn, B, Ca, S, Cu and Zn 
normalized to C  
 
Figure 4: (a-c) Calibration curves using a combination of the different matrices without 
normalization, and (d-f) after normalization using the carbon line as internal standard.  
 
Figure 5: Hybrid calibration approach for P, Mg, Mn, B, Ca, S, Cu and Zn normalized to C. 
 
 
Table Captions: 
 
Table1: Experimental conditions of the LA-ICP-OES system. 
 
Table 2. NIST Standard Reference Materials concentrations. 
 
Table 3. Analytical figure of merits achieved for the apple SRM 1515. 
 
Table 4: Prediction using NIST plant samples at different dilution factors. 



ICP OES Agilent 5100
Power, W 1200
Plasma Ar gas flow rate, L min-1 8.00
Auxiliary Ar gas flow rate, Lmin-1 0.80
Make-up He gas flow rate, L min-1 0.70
Viewing mode: SVDV
Read  time, s 1
Total acquisition time, s 25 
Working wavelengths, nm B I 249.772, C I 193.027, Ca II 396,847, Ca II 

317.993, K I 769.897, Cu II 324.754, Mg II 
280.270, Fe II 259.940, Mn II 257.610, Na I  
589.592, P I 213.618, S I 181.972, Sr II 407.771, 
Zn I  213.857

Laser Ablation System J-200 Applied  Spectra
Wavelength, nm 213
Pulse energy, mJ 4
Fluence, J cm-2 17
Repetition rate, Hz 10 
Pre-ablation time, s 15
Scan speed, mm s-1 0.025
Carrier He gas flow rate, L min-1 0.70

Table1: Experimental conditions of the  LA-ICP OES
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Element Wavelength, nm LOD, mg*Kg-1 TRSD % RSD, %

S 181.972 50 31 8
P 213.618 25 19 2

Zn 213.857 0.4 44 4
B 249.772 0.4 30 5

Mn 257.610 0.1 11 3
Fe 259.940 1 14 5
Mg 280.270 0.2 9 1
Cu 324.754 0.2 20 5
Al 396.152 3 13 5
Sr 407.771 0.1 10 5
Ca 317.933 4 12 3
Ba 455.403 3 10 1
Na 589.592 0.8 16 6
K 769.897 22 3 2

Table 3. Some analytical figure of merits achieved with Apple SRM 1515
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Figure 1a-d: show transient response for C, S, Ca and Mg 
from the tomato leave sample with 80% mass fraction of the 
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Figure 3: Calibration curves from NIST spinach samples for P, Mg. Mn, B, Ca, S, Cu and Zn normalized to C 
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Figure 4: a-c) shows the calibration curves using a combination of the different matrices without 
normalization, and figure d-f) after normalization using carbon line as internal standard 
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Figure 5: Hybrid calibration approach for P, Mg, Mn, B, Ca, S, Cu and Zn normalized to C
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Elem ent/w avelength Certified   V alue

(m g Kg-1)

D ilution

factor

O btained

(m g Kg-1)

B ias    

(% )

D ilution

factor

O btained     

(m g Kg-1)

B ias     

(% )

Spinach
B 249.772  nm 37.6 5.00 36 ± 2 -4 3.33 33 ± 2 -14

Ca 317.933 nm 15270 5.00 15094 ± 2970 -1 3.33 15070 ± 2943 -1

Cu 324.754 nm 12.2 5.00 10  ± 1 -16 3.33 9.2 ± 0.9 -25
Mg 280.270 nm 8900 5.00 9412 ± 671 6 3.33 9626 ± 660 9
Mn 257.610 nm 75.9 5.00 74 ± 12 -3 3.33 75 ± 12 -0.7
P 213.618 nm 5180 5.00 5600 ± 221 8 3.33 5499 ± 220 6
S 181.972 nm 4600 5.00 3617 ± 986 - 18 3.33 4595 ± 971 - 0.1
Zn 213.857 nm 82 5.00 75 ± 9 -9 3.33 84  ± 9 2

Tom ato
B 249.772  nm 33.3 2.5 30  ± 1 - 9 2.00 30  ± 1 - 9
Ca 317.933 nm 50500 2.5 49807 ± 2883 -1 2.00 51795± 2962 2.6
Cu 324.754 nm 4.7 2.5 4.4 ± 0.9 -6 2.00 5.5 ± 0.9 17
Mg 280.270 nm 12000 2.5 12390 ± 657 3 2.00 12440 ± 670 3.7
Mn 257.610 nm 246 2.5 251 ± 12 2 2.00 251 ± 12 2.0
P 213.618 nm 2160 2.5 2189 ± 223 1 2.00 2135 ± 222 -1.2
S 181.972 nm 9600 2.5 8595 ± 960 -10 2.00 8663 ± 975 -9.8
Zn 213.857 nm 30.9 2.5 20 ± 9 -35 2.00 26 ± 9 -16

Peach
B 249.772  nm 29 1.67 23 ± 1 - 20 1.43 75  ± 1 159

Ca 317.933 nm 15600 1.67 13364 ± 2895
-

14.3
1.43 14053 ± 2879 -9.9

Cu 324.754 nm 3.7 1.67 4.3 ± 0.9
16.
2

1.43 5.1 ± 0.9 38

Mg 280.270 nm 4320 1.67 3935 ± 665 -9 1.43 4120 ± 659 -5
Mn 257.610 nm 98 1.67 83 ± 12 -15 1.43 87± 12 -11
P 213.618 nm 1370 1.67 1405 ± 224 2.6 1.43 1438 ± 222 5
S 181.972 nm 2000 1.67 1923 ± 976 -3.9 1.43 1985 ± 970 -0.8

Zn 213.857 nm 17.9 1.67 23 ± 9 
17.3

1.43 27± 9 45

A pple
B 249.772  nm 27 1.43 18 ± 2 -17 1.25 32 ± 2 4
Ca 317.933 nm 15260 1.43 12229 ± 2890 -20 1.25 14524 ± 2867 -4.8
Cu 324.754 nm 5.64 1.43 4.2 ± 0.9 - 26 1.25 7.7± 0.9 37
Mg 280.270 nm 2710 1.43 2304 ± 675 -15 1.25 2768 ± 666 2
Mn 257.610 nm 54 1.43 41± 12 -24 1.25 51 ± 12 -6
P 213.618 nm 1590 1.43 1427 ± 222 -10 1.25 1640 ± 220 3
S 181.972 nm 1800 1.43 1288 ± 979 -39 1.25 2035 ± 970 2.3
Zn 213.857 nm 12.5 1.43 20 ± 9 3.2 1.25 26 ± 9 -108

Table 4: Prediction using NIST Plant Samples having different dilution factors




