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Abstract 

With the exponential growth of digital information in general, and on the Inter­

net in particular, there is great demand for developing efficient and effective methods for 

organizing and retrieving available information. Examples include image segmentation 

and scientific data sets such as genomics and climate data sets. With the rapid expan­

sion of the Internet, web document clustering plays an increasingly important role in 

information retrieval and taxonomy management for the World Wide Web and remains 

an interesting and challenging problem in the field of web computing. 

In the past decade, one of the most active research areas of data clustering meth­

ods has been spectral graph partition. My thesis focuses on developing the new spectral 

graph partitioning methods to discover new patterns and knowledge of large data sets, 

especially the data set of web documents and pure text data. The Min-Max (Mcut) 

criterion is proposed following the experiments and theoretical analysis of its better per­

formance over other popular methods such as the normalized cut (Ncut) and K-means 

methods. The application of the normalized cut and Min-max cut on the bipartite graph 

is developed theoretically. The close relations between the spectral method and other 

information retrieval methods such as Principle Direction Divisive Partitioning (PDDP) 

and the K-means method are discussed. Correspondence analysis is investigated in great 

detail from the point of view of the spectral hi-clustering method. 
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Chapter 1 

Introduction 

1.1 Research motivation 

The development of modern digital technology makes the availability of the in­

formation much more accessible to the general public. For example, users of the World 

Wide Web can readily access vast amount of information with a simple click of the mouse 

button. Currently, one dilemma facing people is the ability to distinguish relevant infor­

mation from the great amount of information that exists, much of which is not organized. 

Similar questions arise in scientific and commercial areas. In these areas, large quantities 

of data need to be processed in order to reveal the underlying relation among seemingly 

irrelevant data objects. One research field, data analysis, is aimed at accomplishing this 

task. 

Data analysis seeks to organize the data objects into groups based on either the 

hypothetical model or natural clustering of the data objects through analysis. Each data 

object assigned to a group is given a corresponding label. The method of grouping the 

unlabeled data objects based on some labeled data objects is called data classification, 

which is different from data clustering, which groups the data objects into meaningful 

clusters in which all the data objects are unlabeled. In many applications, there is no 

prior knowledge about the label information of any data object (the extreme case is not 
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knowing how many groups there should be), thus the clustering method is important for 

the data analysis. 

With the advanced information technology, the size of data set becomes larger 

and larger. The definition of a large data set has evolved from several thousand data 

objects [69] to millions. It is impossible to manually cluster such a large data set, hence 

the challenge to researchers in data clustering is to develop more efficient and effective 

methods to retrieve information hidden in large data sets from disparate sources. 

One important category of the clustering methods is the spectral graph parti­

tioning method using a graph model. The spectral graph partitioning method takes an 

algebraic approach and has become popular since the early 1990s. In this thesis, we 

propose some novel spectral graph partitioning approaches for data clustering. 

The following two sections discuss some background about the data clustering 

and spectral graph partitioning. Section 1.4 outlines the rest of the thesis. 

1.2 Data clustering 

Data clustering has been used extensively to explore the data patterns in the field 

such as information retrieval, data mining, image segmentation, handwriting recognition, 

and pattern classification. The purpose of data clustering is to discover the structure 

hidden in a data set. It is an unsupervised classification of the data objects into mean­

ingful groups {or clusters) so that the data objects in the same group are more closely 

related to each other than those in different group. Data clustering is also used to dis­

cover whether there are distinct subgroups within the data set. That is equivalent to 

finding the dissimilarity among different data subgroups. 
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Naturally, to find the similarity /dissimilarity between data objects, the first im­

portant issue is how to measure the degree of similarity/dissimilarity between two data 

objects. This measure is subject to the real world applications and the viewpoints of 

individuals regarding the data set. The computation of similarity/ dissimilarity can be 

based on the features (or attributes, variables) of the data objects or based on a single 

similarity/ dissimilarity measure formed by combining individual features. The features 

are classified into three types: quantitative, ordinal, and categorical [27]. Different types 

of features should be combined in different ways. According to the different approaches 

of measuring the degree of similarity/ dissimilarity, data clustering methods can be de­

scribed as feature based or similarity based of the data objects. 

Feature-based clustering methods group data objects with similar features or at­

tributes. The data objects are expressed as the vectors of features. For example, in the 

problem of document clustering, the data object is a document with each word in the 

document as a feature of the document. Feature selection should be performed to elimi­

nate from consideration those features that are irrelevant for the purpose of clustering. It 

is essential when the number of features are very large. The selection of the appropriate 

features is application dependent. Careful feature selection can improve the clustering 

result significantly, while poorly selected features can burden the task of interpretation of 

the clustering result. Feature selection is well established in statistical pattern recogni­

tion [26] but needs a trial-and-error process in the clustering context. Feature extraction, 

which extracts new features from the original data set, is also necessary. One of the most 

popular feature extraction techniques is Principle Component Analysis [51]. 
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Similarity-based clustering methods group together data objects with high simi-

larities. Careful selection of the similarity measurement is crucial to the success of the 

clustering methods. Similarity can be computed from the feature space. The most pop~ 

ular similarity measure is the Euclidean distance d(xi, Xj) = II xi- Xj ll2 where xi and xj 

represent two data objects in the feature space. To eliminate the problem of the feature 

vectors with large magnitude dominating the ones with small magnitude, the normalized 

form of the feature vectors should be used. One normalized form of similarity measure-

mentis the cosine of two data objects that we used to compute the document similarity 

in our experiments. The cosine of two data objects xi, Xj is defined as 

(1.1) 

where llxll2 = VLi x;. 
Based on the structures of the partition, there are two main techniques in cluster 

analysis: hierarchical clustering method and partitional clustering method. Hierarchical 

clustering method produces nested hierarchical structure of clusters. A tree diagram, or 

dendrogram, is used to represent the hierarchically nested set of partitions. Agglomera-

tive algorithm and divisive algorithm are two main approaches of hierarchical method. 

Partitional clustering method produces a partition of only one level structure. It 

partitions the entire data set into a pre-defined number of disjoint groups which optimize 

a specified criterion. 

If we allow the partitions to be overlapped, namely, the partitions that have 

elements in common, then this clustering method is called the clumping method. 
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Hierarchical method, partitional method, and clumping method together are re­

ferred to as cluster analysis. In the real application, these three techniques can be nested 

to apply to the data set according to the practical problem. There exists a large amount 

of literature on clustering methods and algorithms (27, 29, 37]. For a complete survey 

of data clustering, see (50]. 

1.3 Spectral graph partition 

Spectral graph partition is a very important research field dedicated to solving 

data clustering problems. In spectral graph partition, the original clustering problem is 

first transformed to a graph model; then, the graph is partitioned into subgraphs using 

a linear algebraic approach. 

1.3.1 Graph model for data clustering 

Graph partition has a very broad range of applications. At one end are the near­

regular graphs, such as the mesh of a 2D surface of an airfoil or a 3D engine cylinder. 

Partitioning such a mesh into sub domains for distributed memory processors is a common 

task. Several popular software packages for this partitioning task have been developed 

[53, 44]. More applications of graph partition on parallel computing can be found in 

[45, 48, 61, 64]. At another end are the highly irregular or random graphs, such as the 

link graphs of the World Wide Web. The degrees of the vertices (web documents) in these 

graphs vary dramatically. Partitioning the graph is useful in automatically identifying 

topics from the retrieved web pages for a user query. 
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In the graph partitioning method, the partitioning problem is modeled as an 

undirected graph. For a feature-based clustering problem, the data objects and features 

are treated as the vertices of the graph. The edge exists only between two vertices 

representing the data object and feature, respectively. There is no edge linking two 

vertices with the same type, for example, two vertices representing two features. The 

weight of the edge is normally taken to be the number of occurrences of the feature in 

the data object. The graph formed this way is a bipartite graph G(X, Y,E) where X, 

Yare the sets of data objects and features, respectively, and E is the edge set. Usually, 

the weight matrix W of the bipartite graph is a rectangular one with the rows denoting 

the features and columns denoting the data objects. This graph partitioning problem is 

called bipartite graph partition. Figure 1.1 illustrates a bipartite graph. In this figure, 

there are two types of data objects, r-type and c-type. After partitioning, r-type data set 

R is partitioned into R1 and R2, while c-type data set Cis partitioned into c1 and c2, 

represented by the vertical dashed line. Clearly, R1 is grouped with C1 because of their 

large connection; the same is true for R2 with C2. Many data types arising from data 

mining applications can be modeled as bipartite graphs. Examples include terms and 

documents in a text corpus, customers and purchasing items in market basket analysis, 

and reviewers and movies in a movie recommender system. 

For similarity-based clustering problems, the data objects consist of the vertex 

set V of the graph model G(V, E) with the similarity of the data objects as the weight of 

the edge between corresponding vertices. In other words, the vertices of the graph are of 

the same type. The edge weight is taken to be the similarity between two data objects. 
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Fig. 1.1. Bipartite graph: There are two types of data objects, Rand C. 

The weight matrix W formed is therefore a symmetric square matrix. One important 

example is the load balance among parallel processors. 

1.3.2 Spectral graph partitioning methods 

The optimal solution to the graph partitioning problem is N P-hard because of 

the combinatoric nature of the problem. To reduce the N P-hard problem to a solvable 

one, an effective approach is to give a linear order to the data objects and then find an 

optimal cut point based on this linear order. One example is to compute a principal 

direction/component (principal eigenvector of the weight matrix) and find a cut point 

along this direction so that all points on one side belong to one subgraph and all points 

on the other side belong to another subgraph. This establishes a linear search order 

that effectively reduces the original N P hard problem to a linear solution. This exam­

ple belongs to a large range of partitioning methods called spectral graph partitioning 
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methods. Spectral methods relax the discrete optimization problem into a continuous 

one which makes the partitioning problem tractable. It is an active research area of clus-

tering methods. Spectral methods are based on the early work of Donath and Hoffman 

[22, 23], Fiedler [31, 32], and many other researchers (see a review by Mohar [65]). It was 

popularized by the work of Pothen, Simon, Liou (68], and many other follow-up studies 

[46, 74, 77] on graph bisection (IAI = IBI) cases where A and B are the sets of vertices 

for two respective subgraphs. Using indicator variables xw 

1 if u E S 

-1 if u E S, 

the cut size can be conveniently written as 

'"' 1 2 1 T cut(A, B) = L....J 4(xu - xv) Wuv = 2 x (D - W)x. 
euvEE 

(1.2} 

From (1.2}, we see that to minimize the cut size, xu and xv should be close to each 

other if the value of Wuv is large. This implies that the minimization methods should 

assign these two vertices near each other when they have a large connection. Relaxing 

xu from { 1, -1} to the continuous value in [ -1, 1] and assuming x is normalized, that 

is, llxll2 = 1, the minimization problem (1.2} is equivalent to minimizing 
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which is a Rayleigh quotient. Hence minimizing (1.2) is reduced to solve the following 

eigensystem 

(D- W)x= AX. (1.3) 

where W = ( wij) is the weight matrix of the graph, D = diag(W e) and e is the vector 

of all 1 's with appropriate dimension. L = D - W is called the Laplacian matrix. Since 

the trivial eigenvector xi= ej..jii, where n is the number of vertices, is associated with 

AI = 0 which is the smallest eigenvalue of {1.3), the second smallest eigenvector x2 is 

the solution to the partitioning problem. 

Spectral partitioning methods use eigenvectors of the Laplacian matrix L = D-W 

to partition the graph. In particular, the eigenvector corresponding to the second smallest 

eigenvalue is most useful to partition the graph. This eigenvector is called the Fiedler 

vector in recognition of Fiedler's pioneering work. 

The Fiedler vector provides a good linear order for searching for an optimal cut 

point. Naturally, the criteria used to find the cut point will largely determine the final 

quality of the partition results. In graph theory, a set of edges that separate the graph 

into two disconnected parts is called an edge-cut (edge separator) of the graph. The 

simplest objective function measuring the quality of the partition result is defined to 

be the cut size alone. This definition gives rise to standard minimum cut algorithm 

(Mincut). The expression of the Mincut criterion is given below: 

Mincut(A, B)= cut( A, B). (1.4) 
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The Mincut often causes an unbalanced partition; it may cut a portion of a graph with 

a small number of vertices [13, 14]. In the context of graph clustering, this is, in general, 

not desirable. To avoid partitioning out a small part of a graph by using edge-cut alone, 

many criteria utilize various normalized forms of edge-cut, which are generally obtahied 

by dividing the edge-cut by some measure of the size of the partitions. 

One normalized form of the edge-cut is called the ratio cut (Rcut). The Rcut 

partitioning criterion is first used in the area ofVLSI design [14, 78]. It is defined below. 

R (A B) 
= cut(A, B) cut(A, B) 

cut ' - JAJ + JBJ . (1.5) 

Hagen and Kahng [41] remove the requirement JAI = JBI imposed by Pothen, et al[68] in 

the bisection case. They show that the Fiedler vector obtained by solving (1.3) provides 

a good linear search order to the Rcut partitioning criterion. A K-way partitioning 

algorithm based on the Rcut criterion is proposed in [11]. 

The normalized cut (Ncut) is another such normalized measure that tends to 

minimize the objective function 

N (A B) = cut(A, B) cut(A, B) 
cut ' - W(A, V) + W(B, V) ' (1.6) 

where W(A, V) = L:iEA,jEV wij· The normalized cut criterion was first proposed by 

Shi and Malik and has been successfully used in image segmentation [71]. The theoretical 

attraction of the normalized cut lies in its analytical solution. The near-optimal solution 
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of the normalized cut can be obtained by solving the relaxed generalized eigensystem 

(D - W}x = >..Dx. (1.7} 

The second smallest eigenvector of this eigensystem is used to provide a linear search 

order for the optimal cut point. The normalized cut criterion can be applied to the 

symmetric similarity matrix representing a graph whose vertices are of the same type, 

as well as the rectangular matrix associated with a bipartite graph of different types of 

vertices. We apply the normalized cut method to the web graph partitioning problem, 

which is a very important data clustering task due to its large amount of information 

but unorganized structure. The clustering results are promising. We effectively locate 

all the topics in one large web graph, not just those dominant topics. 

Although there was success in image segmentation and web graph partitioning, we 

found the normalized cut performed relatively poor in data clustering problems when the 

overlap between two clusters was large; it tended to cut off a small portion of the graph. 

This result prompted a search for better partition criteria which can effectively avoid 

this situation from happening. In the normalized cut form (1.6}, the cut size cut( A, B) 

is weighed against the association between the subgraph and the entire graph. It is more 

meaningful to weigh the cut size against the self-association of the individual subgraph. 

This naturally leads to the following objective function: 

M (A B) = cut(A, B) cut(A, B) 
cut ' - W(A, A) + W(B, B) {1.8) 
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where W(A, A) is the self-association of the subgraph. This effort leads to the discov­

ery of the spectral min-max cut (Mcut) criterion. The Mcut criterion is based on a 

min-max clustering principle: the similarity or association between two subgraphs (cut 

set) is minimized, while the similarity or association within each subgraph (summation 

of similarity between all pairs of nodes within a subgraph} is maximized. These two 

requirements can be satisfied simultaneously with a simple min-max cost function. The 

optimal solution of the min-max cut criterion can be approximated by solving the same 

generalized eigensystem as that for the normalized cut. The min-max cut criterion is 

proven to be less likely to cut off a small part of a graph than the normalized cut does 

and produces a more balanced partition. 

Besides the spectral partitioning methods, other partitioning methods seek to 

minimize the sum of subgraph diameters [21) or k-center problem [1). There are other 

clustering methods that use singular value decompositions [25). For another view on 

segmentation problems, see [58). 

1.4 Thesis outline 

The remainder of the thesis is organized as follows. In §2, we discuss the popular 

spectral method, the normalized cut, and its application on web document clustering. 

We also give an insight into the relation between the normalized cut and the Cheeger 

constant and investigate the connection between the normalized cut and the K-means 

method. 
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In §3, we introduce the min-max cut criterion and provide the experimental results 

on the newsgroup data sets. Some refinement heuristics is also investigated in order to 

improve the initial partitioning results. 

Many data mining applications can be modeled as bipartite graph partitioning 

problems. By minimizing either the normalized cut or min-max cut in the bipartite graph 

partitioning problems, the solution can be obtained by computing the singular vectors 

of the weight matrix associated with the bipartite graph. Taking this approach, we can 

cluster the data objects of the same type into groups while associating the group of one 

data type with one of the different data types. In §4, We apply both the normalized 

cut and the min-ma.X C"';lt criteria to a bipartite graph partitioning problem, attempting 

to group a set of news messages addressing the similar topics with corresponding words 

mostly used in these messages. The experimental results are presented to prove the 

effectiveness of this approach. 

Based on the bipartite graph partition using the Mcut criterion, we investigate a 

new point of view on CA. 

Correspondence analysis (CA) is a method in multivariate statistics to analyze 

contingency tables using a technique similar to principal component analysis (PCA). 

For most cases, CA projects the data into a 2 - dim space; the 2 - dim plot gives a 

clear graphical view of the data so that associations between different variables can be 

recognized easily. 

Although CA can be derived from canonical correlations between two types of 

variables, the ordination point of view emphasized by Hill [47] based on gradient analysis 
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in ecology is interesting. But what is exactly the nature of the ordination on the same­

type and different-type variables or objects? 

In §5, we provide a new view of CA based on the cluster analysis of two-way 

contingency table data It is shown that CA is the direct results of clustering row and 

column objects simultaneously using a hi-clustering method based on the min-max cut 

graph partitioning algorithm. 

Finally, we conclude the thesis and discuss the future research directions in §6. 
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Chapter 2 

Normalized cut and web graph partition 

Currently, the World Wide Web contains a huge number of documents and it is 

still growing rapidly. Finding the relevant documents to satisfy a user's information need 

is a very important and challenging task. Many commercial search engines have been 

developed and are used by millions of people all over the world. However, the relevancy 

of documents returned in search engine result sets is still lacking. Further research and 

development is needed to really make search engines an accurate information-seeking 

tool. The World Wide Web has a rich structure: it contains both textual web documents 

and the hyperlinks that connect them. The web documents and hyperlinks between them 

form a directed graph in which the web documents can be viewed as vertices and the 

hyperlinks as directed edges. Algorithms have been developed utilizing this directed 

graph to extract information contained in a collection of hyperlinked web documents. 

Kleinberg proposed the HITS algorithm based purely on hyper link information to retrieve 

the most relevant information: authority and hub documents for a user query [56). If the 

hypertext collection consists of several topics, however, authority and hub documents 

may only cover the most popular topics and leave out the less popular ones. One way 

to remedy this situation is to first partition the hypertext collection into topical groups, 

then present the search results as a list of topics to the user. This leads to the need to 

cluster the web documents based on both the textual and hyperlink information. 
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In this chapter, we apply a similarity-based clustering method to the problem of 

clustering web documents. It utilizes a graph-theoretic criterion called normalized cut 

which has its root in the study of graph isoperimetric problems (12, 15]. This method 

was proposed by Shi and Malik and has been successfully used in image segmentation 

[71]. 

Document clustering has been studied by many people [79]. Clustering retrieval 

results have been examined by Hearst and Paderson [42] based on textual information 

only, with emphasis on summarization. More recently, this approach is taken in the 

Grouper web interface [80]. In the context of clustering web documents, in addition to 

the textual contents of documents, many other sources of information can be effectively 

used to enhance clustering effectiveness, such as hyperlinks between documents, and 

co-citation (co-reference) patterns among documents. In our web document clustering 

approach, we incorporate information from hyperlink structure, co-citation patterns and 

textual contents of documents to construct a new similarity metric for measuring the 

topical homogeneity of web documents. Specifically, the hyperlink structure is used 

as the dominant factor in the similarity metric, and the textual contents are used to 

modulate the strength of each hyperlink. The similarity metric is used to construct 

a weighted graph which is then fed to the clustering method based on the normalized 

cut. This combination gives rise to a powerful method which effectively organizes the 

retrieved information against a user query and presents the organized information in a 

more accessible form for the user. 
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2.1 Organizing query result sets for search engines 

The World Wide Web has grown to more than one billion unique web documents 

and continues to grow roughly at a rate of one million documents per day [6]. While 

the users are enjoying the large amount of information available on the World Wide 

Web, the sheer quantity of Web documents poses a problem to both the users and the 

search engines. When users submit a query, the search engine returns the retrieved web 

documents as the search result set. A typical query has 1-3 words with little query for­

mulation [2, 16]. Sometimes the users are uncertain about their information needed when 

submitting the query [28], and for ordinary users, it is difficult to come up with query 

terms that accurately specify their information needs. These situations often result in 

broad-topic queries. Since many search engines retrieve the web documents based on 

the text similarity and link structures, after a broad-topic query, it.is likely to produce a 

search result set with thousands, even up to millions of web documents. It is difficult to 

organize such a large number of documents in a manner that provides the information the 

user wants. It is often the case that for some broad-topic queries, the documents for the 

popular topic tend to dominate the result set. Under this circumstance, web document 

ranking algorithms such as HITS are unable to solve this problem. The authoritative 

documents returned to users by HITS may represent only the most popular topic. Doc­

uments related to under-represented topics have less chance to be returned to the users 

while perhaps they are what the users are expecting. To overcome this problem, before 

ranking the web documents and presenting them to users, it is necessary to group the 
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retrieved web documents into distinct topic areas, then return the ranked documents for 

each group according to their relevance. 

The hyperlink structure of the World Wide Web provides us with rich information 

on web communities. It contains a lot of latent human annotation of the web society. 

This motivates us to cluster the web documents by partitioning the web link graph. If 

two web documents have very small text similarity, it is unlikely that they belong to the 

same topic, even if they are connected by a hyperlink. Therefore, to improve the quality 

of the graph representation, the text information can be incorporated into the link graph 

as a factor of edge weight. The co-citation is another relevance measure between two web 

documents based on how many other web documents create hyperlinks to both of them. 

For further improving the quality of the clustering results, combining the co-citation 

information into the link graph is also desirable. 

For a clustering algorithm to be useful for the Web, it needs to be both effective 

and efficient. However, it is not necessary that the result sets be processed and the 

clusters be generated in real-time. Here, we are dealing with popular broad-topic queries, 

search engines can cache the result sets for those popular queries so that the ·processing 

can be done offline if necessary. We are currently investigating fast methods for spectral 

decomposition along the lines proposed in (34] to make our approach more suitable for 

real-time processing. 

2.2 Similarity metric 

One popular way for clustering data objects into subgroups is based on a similarity 

metric between objects, with the goal that objects within a subgroup are very similar, 
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and objects between different subgroups are less similar. In clustering a graph, similarity 

between nodes is represented by edge weight. 

In the web documents clustering problem, we take a new approach in defining 

the similarity between two web documents. We incorporate link structure, textual in-

formation, and co-citation information into a similarity metric which gives rise to the 

weight matrix W. The link structure is the dominant factor, and the textual similarity is 

used to modulate the strength of each hyperlink. To further enhance the link structure, 

co-citation is also incorporated. 

2.2.1 Hyperlink structure 

The link information is obtained directly from the link graph. The method to 

form the link graph is introduced in section 2.6.1. Given a link graph G = (V, E), which 

is directed, we define the matrix A = ( aij) to be: 

aij = { 

1 

0 

if (i,j) E E or (j,i) E E 

otherwise. 

A is the adjacency matrix of the link graph where directionality of the hyperlinks is 

ignored. Link structure alone provides us with rich information on the topics of the 

document collection. By exploring the link structure, we are able to extract useful 

information from the web [9, 35, 10, 33, 59, 66, 60]. One of the most popular algorithms 

to extract document ranking information from the link structure is the HITS algorithm 

developed by Jon Kleinberg which will be briefly discussed in Appendix A. 
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2.2.2 Textual information 

The textual information can be included to better cluster the web documents. 

Moreover, compared to printed literature, web documents reference each other more 

randomly. This is another reason that the text information is incorporated in order 

to regulate the influence of the document. One approach to incorporating the textual 

information is to measure the similarity between a user query and the anchor text (text 

between (A HREF= ... ) and (/A)) as in (62, 10]. We experimented with this approach 

and found it did not work as effectively in our data sets as we had expected. 

Here we use a new approach that (a) utilizes the entire text of a web document, not 

just the anchor text; (b) measures the textual similarity sij between two web documents 

i,j, instead of between the user query and the web document; (c) uses sij as the strength 

of the hyperlink between web documents i,j. The key observation here is that if two 

web documents have very little text similarity, it is unlikely that they belong to the same 

topic, even though they are connected by a hyperlink. Therefore sij properly gauges the 

extent or the importance of an individual hyperlink. 

We represent each web document as a vector in the vector space model of IR 

(Information Retrieval) (76], then compute the similarity between them. The higher the 

similarity, the more likely the two documents deal with the same topic. For each element 

of the vector we use the standard tf · idf weighting: tf(i,j) · idf(i). tf(i,j) is the Term 

Frequency of word i in document j, representing the number of occurrences of word i in 



21 

document j. idf is the Inverse Document Frequency corresponding to word i, defined as 

'df( ') 1 ( no. of total docs ) 
1 z = og . . . . 

no. of docs contammg word z 

Some words appear too frequently in many documents. We assume these words are 

not very useful to identify tl:le documents. Inverse Document Frequency can effectively 

decrease the influence of these words. 

Since the term vector lengths of the documents vary, we use cosine normalization 

defined in (1.1) to compute similarity. 

The similarities between documents form the similarity matrix S. 

2.2.3 Co-citation patterns 

Co-citation is another metric to measure the relevance of two web documents. 

If there are many documents pointing to both of them, then these two documents are 

likely to address a similar issue. The co-citation pattern is used by H. Small and others 

to trace and map scientific literatures [73]. The co-citation Cij of documents i and j is 

the number of web documents pointing to both i and j. 

Incorporating the above information into the similarity metric, we form the weight 

matrix of the graph: 

(2.1) 

where A is the adjacency matrix of the link graph. S is the similarity matrix. C is the 

co-citation matrix and (A® S)ij = aijsij· The meaning of notation ® applies to the 
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rest of this chapter. a is a real value between 0 and 1. The algorithms we introduce will 

be applied to matrix W. 

The link and text information is retrieved a priori. The adjacency matrix A is 

formed by sweeping all the link graph edges once, requiring O(jEI) time. Since each web 

document has an average out-degree (the number of links originated from it) around 

8 [57, 59), on average there are 28 pairs of documents pointed to by a web document. 

It takes about 28jVj operations to compute the co-citation matrix C, requiring O(jVI) 

time. Note that we only need the similarity of two documents which have a link between 

them. Suppose the average number of words in each document is N w, then the running 

time to compute the similarity matrix Sis O(NwiEI). Thus the total running time for 

computing the weight matrix W is O(NwiEI + jVI). 

2.3 Partitioning method based on normalized cut 

After forming the weight matrix W representing the web graph as in section 2.2, 

we can cluster the web documents into distinct topic areas by applying some existing 

graph partitioning methods on W. The criteria used to measure the goodness of the 

partition will largely determine the final quality of the partition results. In graph theory, 

a set of edges that separates the graph into two disconnected parts is called an edge-cut 

(edge separator) of the graph. The standard minimum cut algorithms minimize the size 

. of edge-cut alone. This often causes an unbalanced partition: it may cut a portion of 

a graph with a small number of vertices. In the context of graph clustering, this is in 

general not desirable. To avoid partitioning out a small part of a graph G by using edge­

cut alone, many criteria utilize various normalized forms of edge-cut which are generally 
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obtained by dividing the edge-cut by some measure of the size of the partitions. The 

normalized cut is one such measure. 

2.3.1 Normalized cut 

Given an undirected graph G = (V, E) with edge weight matrix W, let S be a 

subset of V and S = V- S, the complement of Sin V. The normalized cut (1.6) can 

be rewritten as: 

N (S S-) = cut(S, S) cut(S, S) 
cut ' VV(S,V) + VV(S,V) 

(2.2) 

where cut(S, S) = ~iES,jES Wij' VV(S, V) = ~iES,jEV wij· The partitioning problem 

here is to find the partitions that minimize the normalized cut Ncut(S, S). If we let D 

be the diagonal matrix with dii = ~k=l wik> i = 1, · · · , n, the minimization problem 

associated with normalized cut has been shown to be equivalent to the following discrete 

minimization problem (71]: 

N ( ) 
_ xT(D- W)x 

cut x - T , 
x Dx 

(2.3) 

subject to the constraint that xi E {1, -b} and xTDe = 0 where e is a vector with 

all elements equal to 1, and b is positive. It is the Rayleigh quotient associated with 

the generalized eigensystem (1.7). Relaxing the condition xi E {1, -b} and allowing the 

elements of x to take any real values, we can easily see that (2.3) can be minimized by 

the second smallest eigenvector of (1.7). 
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With the introduction of the normalized-cut criterion, we can easily apply it to 

measure web graph partitioning problems. It effectively avoids the problem of cutting a 

small part of the graph. Notice that letting y = n 112x, (1.7) can be transformed to 

(2.4) 

Therefore, we just need to compute the second largest eigenvector of D-112w D-112. 

The normalized cut method is a further development in the class of spectral graph 

partitioning methods. 

We use the second smallest eigenvector of the generalized eigensystem (1. 7) to 

partition the graph. Clearly the normalized cut method is a spectral graph partitioning 

method with the removal of the constraint I Sl = I Sl. Here we call the second smallest 

eigenvector of (1.7) the scaled Fiedler vector. One interesting property of the scaled 

Fiedler vector is its relation to algebraic connectivity: 1 

THEOREM 2.1. Given connected graph G(V, E). Let f be the eigenvector associated with 

the second smallest eigenvalue of (1. 7). Define V1 = {v E V: fv ~ 0}, then the subgraph 

induced by V1 is connected. Similarly, define V2 = {v E V: fv ~ 0}, then the subgraph 

induced by V2 is also connected. 

REMARK. The above theorem implies that if the original graph is connected, after 

partitioning using the scaled Fiedler vector, the subgraphs obtained are also connected 

if the scaled Fiedler vector has no zero entries. But in general this conclusion is not true 

for the K-means method which we will discuss later. 

1The proof of the theorem follows similar arguments as in Theorem 2.1 in (68]. 
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Now we give an illustrative example of using the scaled Fiedler vector to partition 

the graph. Figure 2.1(a) is a weight (adjacency) matrix generated by Matlab. The 

first diagonal block is 100-by-100, and the second diagonal block is 200-by-200. These 

two blocks represent two highly connected subgraphs. The off-diagonal blocks represent 

sparse connectivity between the two subgraphs. The adjacency matrix is symmetric with 

diagonal elements set to zero. Figure 2.1 (b) shows the plot of the scaled Fiedler vector of 

the generalized eigensystem corresponding to this matrix. From the plot, we can easily 

see that the scaled Fiedler vector cuts the nodes of the matrix into two distinct parts, if 

we choose zero as the cutting point. 

0.1 

0.05 

-0.05 L----~--~--__.1 
0 100 200 300 

(a) (b) 

Fig. 2.1. (a) The weight matrix of a graph. (b) The scaled Fiedler vector values on 
each node. 
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2.3.2 Hierarchical divisive clustering 

In this algorithm, we partition the weighted graph with the scaled Fiedler vector 

and normalized cut. After the scaled Fiedler vector f of the generalized eigensystem 

(1.7) is available, we sort the vertices of G based on their corresponding values in f and 

check all possible cutting points for the best partitioning which we define as the one with 

the smallest normalized cut. We then decide whether to accept or reject the partitioning 

based on the smallest normalized cut and pre-defined threshold. If the smallest normal­

ized cut computed is below the threshold, we accept the partitioning. If the smallest 

normalized cut is above the threshold, which means there are more connections between 

these two subgraphs, then we reject the partitioning and consider them as one cluster. 

This algorithm is shown below: 

Given a weighted graph G = (V, E), its weight matrix is W. 

1. d =We, where e = (1, 1, · · · , 1)T. D = Diag(d) . 

2. Solve the generalized eigensystem (1. 7) for the scaled Fiedler vector f. 

3. Sort the vertices of G based on their corresponding values in f. 

4. Check every possible cutting point in the order of the sorted vertices, find the one 

with the smallest normalized cut. 

5. If the normalized cut is below a certain threshold, accept the partition and recur­

sively partition the subgraphs. Otherwise, stop. 

Computational complexity. The running time for this algorithm depends on 

the number of iterations. Here we analyze the running time for one iteration only. To 

I 
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simplify the notation, we still use E and V to represent the edge set and node set of the 

graph to be partitioned in each recursion step. Because the running time is dominated 

by the eigensolver and the sorting procedure, here we consider the running time of steps 

2 and 3 only. Using Lanczos method to compute the scaled Fiedler vector f of (1. 7) 

has complexity roughly proportional to nnz(D- W), the number of non-zero elements 

of D- W, which is O(IEI). If the number of Lanczos iteration steps is Nr, then the 

running time for step 2 is O(NriEI). In step 3, the sorting off takes O(IVIlog(IVI)). 

Thus the running time for one recursion is O(NriEI + IVIlog(IVI)). Note that lVI and 

lEI become smaller in each subgraph, so the running time is smaller for each recursion 

as the recursion level goes deeper. 

The number of recursion is bounded by the number of clusters we finally obtained, 

which is very small comparing with lEI and lVI, hence the total time for the partition is 
I 

O(NriEI + IVIlog(IVI)). 

2.4 Connection with the Cheeger constant 

Rewrite (2.2) as 

Ncut(S,S) 
cut(S, S) cut(S, S) 

- min(W(S, V), W(S, V)) + max(W(S, V), W(S, V)) 

_ h (S) + cut(S, S) 
G max(W(S, V), W(S, V)) 

where 

h (S) = cut(S, S) 
G min(W(S, V), W(S, V)). 



The Cheeger constant he of graph G is defined as: 

he= minhe(S). s 
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The Cheeger constant is one of the earliest normalized forms of edge-cut measuring the 

quality of the graph partition. It was studied by J. Cheeger in early 1970s (12]. The 

normalized cut can be regarded as a slight variation of the Cheeger constant. 

Defining a constant hncut for the normalized cut cost function (2.2) as hncut = 

mins Ncut(S, S), we show that the upper and lower bounds for the Cheeger constant he 

can be expressed in terms of hncut= 

(2.5) 

Clearly we have hncut 2:: he. On the other hand, 

he(S) > ~(cut(S,S) cut(S,S)) = N (S S-)/ 
2 W(S, V) + W(S, V) . cut ' 2' 

which implies he 2:: ¥. The inequality (2.5) shows the close relationship between 

the Cheeger constant and the normalized cut. 

2.5 Connection with the K-means method 

In this section, we explore the connection of the normalized-cut based clustering 

method and the popular K-means clustering method. For ease of discussion, we will only 
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consider the case where the weight matrix W satisfies wij E {0, 1 }. Similar conclusions 

can be drawn for the more general cases. 

2.5.1 K-means method 

The general idea of the K-means method is the following: 1) partition the nodes 

into two arbitrary clusters; 2) for each node re-assign it to the cluster that the node is 

in some sense closest to; repeat the above two steps until convergence, i.e., until when 

the cluster membership of no node will change by running through the two steps. One 

natural and reasonable heuristics for measuring the closeness of a node to a cluster is the 

following: for a node k, we examine all the nodes that are adjacent to k, if there are more 

neighbors of k belonging to cluster one, we then re-assign i to cluster one, otherwise we 

re-assign k to cluster two. It is easy to see that this approach can be generalized to the 

multiple cluster case: we re-assign i to the cluster in which i has the biggest number of 

neighbors. If we denote the cluster assignment of k as x k E { -1, 1}, then 

is the difference in the numbers of neighbors of k belonging to the two clusters. Therefore, 

the re-assignment of k can be computed as 
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where i denotes the iteration step. Rewriting in matrix-vector format, we have 

x(i) = sign(Wx(i-1)). 

As will be discussed in more detail later, the above iteration can be considered as a 

variation of the power method for computing the largest eigenpair of a symmetric matrix 

(36], the difference being that a different normalization process is used here. Restricting 

x k E { -1, 1} corresponds to hard-clustering: a node either belongs to cluster one or 

cluster two. For soft-clustering, i.e., we can consider xk E (0, 1] as the probability of 

node k belonging to cluster one, and use normaliz
1
ation 

This corresponds exactly to the power method for W. In the above discussion we only 

considered the neighbors of a node k. We can also turn the heuristic argument around: 

for a node k, we examine all the nodes that are not adjacent to k, ifthere are more of 

these belonging to cluster one, we then re-assign i to cluster two, otherwise we re-assign 

k to cluster one. These two arguments can certainly be combined, and we obtain the 

following re-assignment rule 

n n 
(i) . ("' (i-1) "' (i-1) 

X k = Sign ~ X j - a ~ X j ) (2.6) 
j--vk j!----k 

where a :> 0 is a balancing factor. Here we also use j rv k to denote that node j is 

adjacent to node k and j! rv k to denote that node j is not adjacent to node k. 
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2.5.2 Connection between normalized cut and K-means method 

The scaled Fiedler vector f of (1.7) can be obtained by first computing the second 

largest eigenvector Y2 of (2.4). We know that n 1f2e is the eigenvector of D-1f2w D-1/ 2 

corresponding to its largest eigenvalue .X1 = 1. 2 The second largest eigenvector Y2 can 

be obtained by computing the largest eigenpair of 

(2.7) 

One approach for computing the largest eigenpair of a symmetric matrix W is the power 

method [36]: 

Start with a unit vector x(O). Fori= 1, 2, ... , until the result converges 

y(i) = wx(i-1) 

x(i) = y(i) /IIY(i) li2 

At the end of convergence, an approximate eigenvalue can be 

Applying the power method on W, we get the largest eigenvector y2 of W which 

is the second largest eigenvector of n-112wn-112. Then the scaled Fiedler vector f of 

(1.7) is obtained by f = D-1/ 2Y2· 

2It can be readily proved that all the eigenvalues of v-1/ 2wv-1/ 2 are at most 1. For the 
proof, see Appendix C.(1) 
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Apply the power method to the matrix in (2.7), and let the k-th entry of x(i) be 

x1i). We have 

where d8 = eT d, the sum of the diagonal elements of D. We can rewrite the above 

equation as 

Now comparing the above with the K-means iteration in (2.6), we notice the following: 

for the neighbors of node k, the normalized-cut method uses the modified weight 

and for those nodes not adjacent to k, normalized-cut uses 

as the weight. Therefore, the normalized-cut method can be considered as a variation of 

the K-means method. 
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2.6 Experiments 

We test the algorithm on the link graphs of queries amazon, star and apple. We 

choose these three query terms because they all have multiple distinct meanings. Amazon 

has at least three meanings. One is related to amazon.com, one of the largest on-line 

shopping web sites. Another is the famous rain forest in South America. The third is the 

name of ancient female warriors from Alecto, a female ruled monarchy. For the query 

star, we can think about a natural luminous body visible in the sky, a movie star, a , . 

famous athlete and the movie Star Wars. Mentioned apple, we will associate it with a 

kind of fruit or the apple computer. 

We then apply our clustering algorithm on the data sets. Since each cluster often 

has a large number of web documents, we choose only the most important web documents 

among a cluster. The most important or authoritative web documents in each cluster 

are determined using the HITS algorithm introduced in Appendix A. 

We also compare the results obtained from our algorithm to the results by re-

cursively applying simple K-means based algorithm. As our results will show, the 

normalized-cut based technique performs better that the K-means based algorithm. The 

stop criteria for the K-means algorithm can be either the maximal iteration number 

reached, the result is stable, or the cluster size is below a certain threshold. In our im-

plementation, we choose a threshold on maximal iteration number to be our stop criteria. 

The K-means method is applied recursively to each subgraph obtained until the size of 

the subgraph is below certain threshold. 
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2.6.1 Data preparation 

To obtain the link graphs, we first provide a text-based search engine hotbot with 

query terms. Hotbot returns as the query result a list of URLs with highest ranked web 

documents. We limit the number of returned URLs to be 120 which form the root set. 

By limiting the number of returned URLs to be 120, we can keep the overall data set 

within a reasonable size. Then we expand the root set by including all web documents 

that point to a web document in the root set and those pointed to by a web document in 

the root set. This is a level one expansion. The link graph can be viewed as a directed 

graph. It's easy to convert it to the adjacency matrix of an undirected graph. 

After the full list of URLs is available, we run a web crawler to get the text 

information of these web documents. The text of a document is obtained using a web 

crawler that we write in Perl. To accommodate the vast differences in web document 

lengths, we limit the length of each document to be 500 words. The rest of the document 

is discarded if it has more than 500 words. Stopwords (such as I, is, a, etc.) are discarded 

using a standard list. Words are stemmed using Porter stemming [67], so the words 

linking and linked are both stemmed to the same root link. Once the text information 

of all documents is available, we compute the document similarity as in section 2.2.2. 

At this point, we have the necessary data for the experiment. In our experiment, 

we set a in expression (2.1) to be 0.5. 

2.6.2 Clustering results 

We apply our algorithm on the data sets of three query terms with the threshold 

of normalized cut set to 0.06, then run the HITS algorithm on each cluster obtained. 
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The top authorities of each significant clusters are listed. By significant we mean the 

size of the cluster is not too small. 

The order of the clusters has no special meanings. It is merely the sequence by 

which we process the clusters. 

2.6.2.1 Query term: amazon 

There are a total of 2294 URLs in this data set. Applying our algorithm, we 

obtain the following significant clusters. The clusters with small size are not counted. 

Some small clusters exist as the result of the algorithm because they form the connected 

components of the link graph. It shows that our algorithm has the capability to find the 

cluster of small size but tightly connected. 

Cluster 1: 

• www.amazon.com/ 

• www. amazon. co. uk/ 

• www. amazon. de 

These three web documents are the home pages of amazon.com, one of the most 

famous shopping companies in the world. The first website is located in the USA, the 

second in the UK and the third in Germany. It makes sense to cluster them together. 

We list only three authorities here because the rest of the documents ranked among the 

top 10 have very very low authority weights compared with the first three, so we don't 

list them here. 

Cluster 2: 



• www.amazoncity.com/ 

• www. amazoncityradio. com/ 

• www. amazoncity. com/spiderwoman/ 

• radio. amazoncity. com/ 

• www. wired.com/newsjnewsjculturejstory/6751.html 

This cluster is about the women warriors. 

Cluster 3: 

• www.amazon.org/ 

• www.amazonfembks.com/ 

• www. igc. ape. orgjwomen/bookstores/ 

• www. teleport. com/- rocky/ queer.shtml 

• www. advocate. com/html/ gaylinks/resources.html 

The topic of this cluster is on women's issues: bi-sexuality and lesbian books. 

Cluster 4: 

• sothebys. amazon. com/ execjvarzea/tgjspecial-sales/. .. 

• sothebys. amazon. com/ execjvarzea/subst/home/sothebys.htmlj. .. 

• sothebys. amazon. com/ execjvarzeajtgjspecial-sales/. .. 

• sl.amazon.com/execjvarzeajsubst/home/home.htmlj. .. 

36 
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• sothebys. amazon. com/ exec/varzea/substjhome/sothebys. htmlj. .. 

All five authorities listed here are web documents of a large on-line auction com­

pany formed by Sothebys and amazon.com. It's not clustered in to Cluster 1 because 

there are relatively few links between them. 

Cluster 5: 

• www.swalliance.com/ 

• timeline. echostation. com 

• www.echostation.com:8080/-1 

• downtime. echostation. com 

• rpg. echostation. com/ 

The topic of this cluster is about Star Wars, surprisingly. But there are a total of 

68 documents on this topic, most created by Star Wars fans. Some are on-line shopping 

companies selling goods related to the movie Star Wars. 

There are two clusters, but for each of them, the web documents are from the same 

site: www.langenberg.com and www.latingrocer.com, respectively. These two clusters are: 

Cluster 6: 

• misc.langenberg.com/ 

• cooking.langenberg.comj 

• shipping.langenberg. com/ 

• money.langenberg.comj 



• weather.langenberg. com/ 

and 

Cluster 7: 

• www.latingrocer2. com 

• www.latingrocer.com 

• www.latingrocer. com/Pages/ customer.html 

• www.latingrocer.com/Pagesjprivacy.html 

• www.latingrocer. com/Pages/ contact. html 

Cluster 8: 

• www. internext. com. br / ariau 
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This cluster has only one authority. Other web documents in this cluster all point 

to it. It's a website of a hotel in the Amazon River valley. 

After applying the K-means based algorithm on the data, we also get several 

clusters. Cluster 1 is separated into three clusters, that is, the websites in the three 

different countries form three clusters under this algorithm. Second, there are more 

clusters with small size than the result from our algorithm. Many of them should belong 

to larger clusters, but were partitioned incorrectly. 

By adjusting the threshold, the algorithm can group or separate the following web 

documents: 

• www.amazon.com/ 
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• www. amazon. co. uk/ and 

• www. amazon. de 

while the K-means based algorithm can only partition them into different clusters. This 

verifies that our algorithm is not only more flexible than the other, but also clusters 

more reasonably. 

From the clusters we obtained, we found that, unlike what we had expected, no 

cluster has a focused topic on the rain forest while Cluster 8 does have something to do 

with the rain forest in Brazil. Checking the entire data set, we only found a couple of 

web documents that mention the rain forest. They don't form a cluster with significant 

size. If we return to hotbot and enter the query amazon, the web sites presented are 

dominantly related to amazon.com. The documents about the rain forest are not among 

the highest-ranked list returned by hotbot. It means the number of web documents on 

amazon the rain forest is small, which makes the web documents about this topic have 

low rank weight. That's the reason that we can't have a cluster on this topic. 

As for the third meaning of amazon, although female warrior dose not directly 

appear as a distinct topic in any cluster, Cluster 3 focused on women's issues, or even 

the bi-sexual issue. By examining the content of these documents, we are sure that these 

issues are the extent of the original meaning of amazon as female warriors. 

There are clusters with small size that apparently have nothing to do with ama­

zon, such as the clusters about websites langenberg.com and latingrocer.com. They are 

explored as separate clusters because the web documents on the same site point to each 

other, raising the importance themselves. To avoid such situations, before applying any 
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clustering algorithm, we can coarsen the link graph first, so that the web documents 

from the same site collapse to one node in the graph. 

2.6.2.2 Query term: star 

We have 3504 URLs for this query. Setting the threshold to be 0.06, we run our 

algorithm on the data set of query term star. The authorities of each cluster are listed 

below: 

Cluster 1: 

• www.starwars.com/ 

• www.lucasarts.com/ 

•' www.sirstevesguide. com/ 

• www.jediknight. net/ 

• www.surfthe.net/swma/ 

This cluster is focused on star wars. 

Cluster 2: 

• www.kcstar.com/ 

• www.dailystarnews.com/ 

• www.kansascity.com/ 

• www.starbulletin.com/ 

• www. trib. com/ 
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This cluster includes the web documents of some news media with the word star 

as part of their names. 

Cluster 3: 

• www. weatherpoint. comjstarnews 

• www.starnews. com/ digest/sports. html 

• www:starnews. com/ digest/ citystate.html 

• www. indy. com 

• speednet.starnews.com/ 

The top authorities are all web documents of starnews.com in this cluster. 

Cluster 4: 

• www.state. mn. usjmainmenu.html 

• www.mda.state.mn.us/ 

• www.doli.state.mn.us/ 

• www.legalethics. comjpajstates/state/mn.htm 

• www. exploreminnesota. com 

This cluster's topic is the state of Minnesota. The reason that Minnesota is a 

topic of the cluster under query star is because the official State of Minnesota web site 

is called North Star, which is named second among all government web sites. 

Cluster 5: 



• www.star-telegram.com/ 

• www.djw.com/ 

• www. virtualtexan. com/ 

• marketplace.dfw.com 

• www.star-telegram. com/ advertise/vshops/ 

A cluster of star-telegram.com located in Texas. 

Cluster 6: 

• www.starpages.net/ 
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There is only one authority in this cluster. This authority is a web site introducing 

preeminent persons in various fields, such as movie star, sport stars, etc. This cluster is 

what we have expected to be obtained after partitioning. 

Cluster 7: 

• www.aavso.org/ 

• www. astra. wise. edu/ dolan/ constellations/ 

• ourworld. compuserve. com/homepages/rawhide_home_page 

• adc.gsfc. nasa.govjadc/ adc_amateurs.html 

• heasarc. gsfc. nasa. gov /docs/ www_ info/ webstars. html 

This cluster talks about space and astronomy. It's also what we have expected. 

Now all three meanings of star are found to be topics of separate clusters. 
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Clusters 2, 3, 5 are all web documents of news media. They are partitioned to be 

different clusters since there is no link among the three clusters. 

Using the K-means based algorithm, we obtained many more clusters than ob-

tained by our algorithm. The same as the result of the query amazon under the K-means 

based algorithm, many of them are not really clusters with focused topics. On the other 

hand, Clusters 2 and 4 are grouped together, although there is no link between them. 

This is because the K-means based algorithm is not global. It's easy to be trapped to a 

local minimum while the first algorithm avoids this situation by using the scaled Fiedler 

vector to partition. 
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Fig. 2.2. Clustering result of query star: (a) weighted link graph of star; (b) clustering 
result using our algorithm, with threshold 0.06; (c) clustering result using K-means based 
algorithm. 

In Figure 2.2, graph (a) is the original weighted link graph of data for the query 

star. (b) is the re-ordered graph after clustering using our algorithm. (c) is the re-ordered 
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graph after clustering using the K-means based algorithm. In graph (b) and (c), each 

diagonal block corresponds to a resulting cluster. Comparing graphs (b) and (c), we can 

see that, in graph (b), the off-diagonal blocks are much sparser than off-diagonal blocks 

in graph (c). This means our algorithm creates clusters with much fewer connections 

between them than the K-means based algorithm does. 

In Figure 2.3, graph (a) is the original weighted link graph of data for the query 

star. (b) is the re-ordered graph after clustering using our algorithm with the threshold 

equal to 0.06. (c) is the re-ordered graph after clustering using our algorithm with the 

threshold equal to 0.1. (d) is the re-ordered graph after clustering using our algorithm 

with the threshold equal to 0.2. The graph clearly shows that by increasing the threshold, 

we can obtain more clusters with the size of each cluster smaller. In this way, we can 

control the clustering result by changing the value of the threshold in the algorithm. It 

makes this algorithm more flexible than the K-means based one. 

2.6.2.3 Query term: apple 

In this data set, there are 2757 URLs returned by the search engine. The threshold 

is still 0.06. The ~uthorities of each cluster are listed below after running the algorithm 

on the data of the query term apple: 

Cluster 1: 

• www. apple. com/ 

• wiuw. apple. com/support/ 

• www. apple. com/ education/ 
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Fig. 2.3. Clustering result of query star using our algorithm: (a) weighted link graph 
of star; (b) clustering result with threshold 0.06; (c) clustering result with threshold 0.1; 
(d) clustering result with threshold 0.2. 
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• www. apple. com/ quicktime/ 

• www. apple. com/hotnews/ 

Here all top authorities are from the same web site: www.apple.com. This cluster 

is dominant in this query. Most URLs belong to it. After running the HITS algorithm 

with the site information considered, that is, the URLs from the same web site are 

collapsed to one node, we obtain different top authorities: 

• www. apple. comjpowermacjserver / 

• www.claris.com/ 

• www. apple. rujhardware/ displays 

• www. cs. brandeis. edu/-xray/ oldmac.html 

• www. next. com/ 

The second URL in this cluster is the website of a computer software company. It 

produces software used for the Macintosh. The other four URLs are all about the apple 

computer. This list of authorities provides more useful information than the previous 

one does. 

Cluster 2: 

• www.yabloko.ru/ 

• www. cityline. rujpolitika/ 

• www. russ. ru/ 
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• www.forum. msk. ru/ 

• www. novayagazeta. ru 

All web documents in this cluster are written in Russian. 

Cluster 3: 

• www. michiganapples. com/ 

This cluster has only one authority. It's related to apple, the fruit. 

The following cluster is formed in this query simply because its name happens to 

contain the query term apple: 

Cluster 4: 

• www.ci.apple-valley.mn.us/ 

which is the website of the city of Apple Valley, MN. 

Cluster 5: 

• www. valleyweb. com/ 

This is the website of Annapolis Valley in Canada where there is the Apple Blos­

som Festival in the spring celebrating the traditions and agricultural heritage. 

There are not many clusters formed by the algorithm, nor do we find very inter­

esting topics which are beyond our expectation. 

The performance of the K-means algorithm is mixed. On one hand it doesn't 

form a cluster as large as Cluster 1. For example, it forms a new cluster around 

www.france. euro. apple. com/ 

which belongs to Cluster 1 obtained with our algorithm. On the other hand, it groups 



48 

totally different web documents together. For instance, the top authorities of one cluster 

are: 

• www.jokewallpaper. com/ 

• the-tech. mit. edu/M acmade/ 

• www.geocities. com/Silicon Valley/Vista/7184/ guitool.html 

But www.jokewallpaper.com/ and the-tech.mit.edujMacmade/ mention totally different 

things. 

2. 7 Further discussion 

2. 7.1 Importance of text information 

Intuitively, the links in the webgraph can not be regarded as equally important, 

specifically many web links are created much less carefully than the references in scientific 

literature. The text similarity between two web documents provide us with a useful 

metric to address this issue. Without the similarity as the measure of the link strength, 

that is, if we form the weight matrix as: 

A C 
W = aiiAII

2 
+ (1 - a) IICII

2
' 

then we unduly raise the strength of some links which connect two web documents with 

little in common. When applied to the data set amazon, our algorithm groups Clusters 

1, 3 and 4 into one single cluster, using the same threshold a8 the stopping criterion, 

namely 0.06 in our previous experiments. Cluster 3 addresses the female issues and 
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Clusters 1 and 4 are related to amazon. com. Apparently this clustering result is not a 

good one. This result justifies our choice of incorporating the text information into the 

weight metric. 

Recall that our weight matrix is formed as: 

If the value of a changes, the weight matrix will change accordingly. Then we can 

set different thresholds in the algorithm to have three authoritative web documents in 

Cluster 1 of the data set amazon separated into different clusters. Table 2.1 lists the 

a value and the corresponding threshold T such that these three web documents are 

separated by the algorithm. From the (a, T) pairs in the table, we see clearly that when 

the value of a increases, to partition these three web documents into different clusters, 

the threshold decreases monotonically. 

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

T 1.1 1.0 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.3 

Table 2.1. 
(a, T) pairs that separate three authoritative web documents in Cluster 1 of query ama­
zon. 
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2. 7.2 Scaled Fiedler vector 

Now we use a concrete example to show that partitioning a graph with the scaled 

Fiedler vector and normalized cut is feasible. Here we use the subgraph which includes 

URLs in Clusters 1, 3 and 4 of the data set amazon. There are a total of 1839 web 

documents in this subgraph. From the discussion above, we know that this subgraph 

contains multiple topics and can be produced by using the weight matrix without the 

text information. Figure 2.4(top) is the sorted scaled Fiedler vector of the subg raph. 

The horizontal axis is the node index and the vertical axis is the corresponding entry 

of the scaled Fiedler vector. Figure 2.4(bottom) is the node index and corresponding 

normalized cut value. We see that the sorted scaled Fiedler vector behaves like step 

function. Each segment takes nearly constant value. The jumping points can be used as 

the cutting points because they correspond to small normalized cut values. See Figure 

2.4(bottom) for their values. After we have determined the threshold, we can obtain the 

cutting points, and partition the graph into clusters. If we set the threshold to be 0.06, 

we obtain the following cutting points: 

(57 58) 

(106 107 108 109 110 111 112 113 121 124 125 127 128 129 130 131) 

(1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1731 1732 1733 

1734 1735 1739 1740 1741 1742) 

(1820 1823) 

The numbers in the same pair of () are almost consecutive, we can choose any one of 

them as the cutting point. This won't affect the resulting clusters significantly since 
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these nodes correspond to URLs which are not important, i.e., not good authorities nor 

good hubs. 

If we enlarge Figure 2.4 to include only the first 200 nodes, we can see the result 

more clearly in Figure 2.5. 

For convenience, we choose the cutting points which correspond to the smallest 

normalized cut in each group: 58 110 1721 1820. This gives us 5 groups: 

1. 1 - 57: with top authority amazon.org 

2. 58- 109: with top authority Jembks.com 

3. 110 - 1720: corresponds to Cluster 1 of amazon 

4. 1721 - 1819: corresponds to Cluster 4 of amazon 

5. 1820 - 1839: with top authority ethnobotany.org 

Groups 1 and 2 correspond to Cluster 3. They are separated here because we compute 

the normalized cut value at point 58 with respect to the whole subgraph of 1839 nodes. 

The value is below the threshold 0.06. While in our algorithm we first partition this 

subgraph and obtain a smaller subgraph with nodes from 1 to 109, then continue to 

partition this subgraph. At this point, the smallest normalized cut value is still obtained 

at node 58, but with the value of 0.0715 which is above the threshold. The partition is 

rejected. So groups 1 and 2 form one cluster in our algorithm. The result here indicates 

that our algorithm may be improved by checking the points with the normalized cut 

values below the threshold and partition the graph into several subgraphs at the same 

time. 
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Fig. 2.5. The Sorted scaled Fiedler vector value (top) and corresponding normalized 
cut (bottom) for the first 200 nodes. 
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Our algorithm does find the cluster corresponding to group 5. Since its size is too small, 

we didn't list it in our results. 

2. 7.3 Robustness 

Figure 2.6 is the plot of the a value in (2.1) and the corresponding average normal­

ized cut value. The graph shows that for the query term amazon(top), the smallest aver­

age normalized cut value corresponds to a= 0.7 while for the query term star(bottom), 

a = 0.1 leads to the smallest average normalized cut value. From this figure, we know 

that we cannot choose an a value or a range of a values that can minimize the average 

normalized cut in all cases. 

For the query amazon, a= 0.7 gives the best average normalized cut. We choose 

this a value to test the average normalized cut under different threshold. In case of the 

query star, it is a= 0.1 that gives the best average normalized cut. But we can't make 

a too small, since doing so will lower the importance of text similarity. So we choose 

a = 0.4 to test because it is a local minimum. From Figure 2. 7 we see that, as the 

threshold increases, the average normalized cut value increases, too. The relationship 

between them are almost linear. 

2.7.4 Multi-level partitioning method 

We also applied multi-level K-way partitioning method METIS [52]. The result 

is not quite as good. (In fact, we use normalized cut method after working with METIS 

for a while.) METIS tends to produce subgraphs with nearly equal sizes, while sizes 

of different clusters are generally different in clustering, especially for web graph. More 
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fundamentally, it appears that the node contraction procedure in METIS is not suitable 

for highly random graphs like webgraphs. 

2.8 Concluding remarks 

In this chapter, we present an algorithm to solve the web document clustering 

problem. We treat the problem as a graph partitioning problem, measure the parti­

tioning result using the normalized cut criterion which was first proposed in the field of 

image segmentation. Combining normalized cut and the scaled Fiedler vector together, 

this approach forms a global, unbiased algorithm which can effectively extract differ­

ent topics contained in the webgraph. Compared with the K-means based algorithm, it 

avoids creating clusters with small size by controlling the threshold on the value of the 

normalized cut. The clusters obtained have high similarity within clusters and dissimi­

larity between clusters. In our experiment, after choosing suitable threshold, we obtain 

the clusters, each with distinct topics. 
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Chapter 3 

Min-max cut 

In §2, the experimental results show that the normalized cut method (Ncut) 

works well for the web graph partitioning problem. When we apply this method to the 

similarity matrix formed from the newsgroup data sets, however, the clustering results 

are not as good as we had expected. After thorough investigation, we find that the 

problem is caused by the relatively larger overlap between two newsgroups. 

Under the condition that two clusters have a small overlap, i.e., when the cut size 

is small compared to the association within each cluster, the Ncut can effectively avoid 

cutting off a small set of data objects. Whereas if the overlap is large, the chances that 

a small set of data objects is cut are increasing. Following we show that the Ncut tends 

to cut a small part of a graph if the overlap is large. Assuming the sum of weights in 

cluster A is roughly equal to that in cluster B. Let 

1 1 
cut(A,B) ~ -W(A,A) ~ -W(B,B) 

n n 
(3.1) 

where n is a positive value larger than 1 and W(A, A) = L· . A a ... The overlap is 
Z,JE ZJ 

larger when n is smaller. 
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In the case when the partition is optimal, A and B are the exact partitioning 

results. The corresponding optimal Ncut value is 

cut(A, B) · cut(A, B) 
W(.A, A) + cut(A, B) + W(B, B)+ cut(A, B) 

1 1 
_ii_+ _ii_ 
1+1 1+1 n n 

2 

1+n 

For a skewed partition A
1 

and B
1

, assume W(A
1
,A

1
) « W(B1,B1), then 

cut(A
1

, B
1

) « W(B
1

, B
1

). The corresponding Ncut value is 

cut(A
1
,B

1
) cut(A1,B1) 

--~--~~~~----~+--~--~~~~~~7 
W(A

1
,A

1
) +cut(A

1
,B

1
) W(B1,B

1
) +cut(A1,B1) 

cut(A1,B1) 

For a skewed cut to happen, the condition Ncut1 < Ncut0 must hold, which leads to 

(3.2) 

This condition is easy to satisfy if n is small, i.e., when the overlap is large. Note that 

the above'derivation does not eliminate the possibility that no small set is cut in some 

large overlap cases, or the small set is still created in some small overlap cases. 

In this chapter, we propose a new graph partitioning method based on a min-max 

clustering principle: the similarity or association between two subgraphs (cut size) is min-

imized, while the similarity or association within each subgraph (summation of similarity 
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between all pairs of nodes within a subgraph) is maximized. These two requirements 

can be satisfied simultaneously with a simple min-max cut function. Compared with the 

normalized cut, this method can produce less skewed cut. 

The relaxed version of the min-max cut function optimization leads to a gener­

alized eigensystem problem. The second lowest eigenvector, the scaled Fiedler vector, 

provides a linear search order. Thus the min-max cut algorithm provides both a well­

defined objective and a clear procedure for searching for the optimal solution. We tested 

the algorithm on a number of newsgroup text data sets and compared it with some 

current methods. The min-max cut algorithm always outperformed them. 

In spectral graph partition, it is generally believed that the search order provided 

by the (scaled) Fiedler vector gives the best linear search order for the optimal cut point 

(53, 44, 71], but it may not be the perfect one. As a partitioning result, we hope the node 

(we use node here to denote each data object) will have higher linkage with the cluster it 

belongs to. The experimental results show, however, this is not always the case. We find 

many nodes have higher linkage with another cluster than the one they are currently 

assigned to. This observation inspires us to investigate some refinement heuristic to 

improve the initial partitioning results. In this chapter, we introduce a linkage difference 

metric (called linkage differential order) that effectively identifies the nodes needed to 

be re-assigned. In our experiments, swapping them to the cluster with higher linkage, 

the objective function is reduced and the clustering accuracy is improved substantially. 

We should point out that the linkage differential ordering can start from any existing 

clustering results and improve the ordering and therefore the clustering results. 
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3.1 Min-max cut (Mcut) 

Given a weighted graph G = G(V, E) with weight matrix W, we wish to partition 

G into two subgraphs A and B using the min-max clustering principle: minimize similar-

ity between clusters and maximize similarity within a cluster. This is a sound principle 

well established in the areas of statistics, data mining and machine learning. The min-

max clustering principle requires we minimize cut(A, B) while maximizing W(A, A) and 

W(B, B) at the same time. Both requirements can be simultaneously satisfied by the 

objective function (1.8). We call (1.8) the min-max cut function, or Mcut for short. The 

Mcut is inspired by the previous work on spectral graph partition [41, 68, 71]. 

Without loss of generality, let 

Assume x and y are the vectors conformably partitioned with A and B, i.e., x 

T T 
(1· · ·1, 0 · · · 0) , y = (0 · · · 0, 1 · · ·1) , then 

cut(A,B) = xT(D- W)x = yT(D- W)y, 

W(A,A) T T 
x Wx, W(B, B)= y Wy. 

Hence the objective function (1.8) can be rewritten as 

T T 
Mcut(A, B) = x (D - W)x + y (D - W)y 

xTWx yTWy 
(3.3) 
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Observe that in (3.3), the Mcut is invariant under the change of llxll2 and IIYII
2

, and 

T T T x Dy = 0 and x W x > 0, y Wy > 0. 

The problem (3.3) can be relaxed into the following optimization problem 

mm (3.4) 

subject to llxll2 = IIYII2 = 1, XT y = 0, xTWx > 0, yTWy > 0, where X = n112x, y = 

n 112y and W = D-112wn-112. The conditions that xTWx,> o and yTWy > 0 are 
'' 

necessary since W in general is an indefinite matrix. Let the largest 2 eigenvalues of W 

be >:
1

, >:
2

. >:
1 

= 1 by construction. We have the following theorem. 

THEOREM 3.1. Assume that ~1 + >:
2 

> 0. Let vectors x and y solve problem (3.4}. 

Choose fJ to be any column orthogonal matrix such that Q = ( x, y, fJ) is an n x n 

orthogonal matrix. Then 

-T--
Q WQ= (: :) 0 

0 w 

See Appendix B for the proof. 
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It follows from Theorem 3.1 that both ratios in (3.4) are equal at the optimal 

solution: 

yT(I- W)y 
yTWy 

and the optimal value is Mcut = 4/ (~1 + ~2 ) - 2, which is equivalent to 

T 
1M ( ) x (D- W)x 
2 cut x = T 

x Wx 

T y (D- W)y 

yTWy 
(3.5) 

at the optimal solution. Equality (3.5) suggests that the resulting clusters tend to have 

similar weights and are thus well balanced. This fact makes the Mcut a much desired 

objective function for data clustering. 

Let 

T 
J (x) = x (D- W)x 

M xTWx ' 

It is easy to show that 

xT(D- W)x 
J N(x) = Ncut(x) = --'-r=------"­

x Dx 

which means x0 = argminxJ N(x) = argminxJ M(x). 

(3.5) also implies x0 = argminxJ M(x) = argminxMcut(x). 
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The above derivation leads to 

Note that in the relaxed form, the solution to J N(x) is exactly the solution to the 

normalized cut problem introduced in §2. Therefore, we have 

argmin Ncut(x) = argmin Mcut(x), 
X X 

(3.6) 

and solving the min-max problem is similar to solving the normalized cut problem. The 

only difference is the different criteria used to find the optimal cut point. 

3.1.1 Mcut algorithm 

The algorithm for partitioning a graph into two subgraphs using the Mcut crite-

rion is the following. 

1. Compute the scaled Fiedler vector f of (1.7). 

2. Sort f to obtain the Fiedler order. 

3. Search for the opth~al cut point corresponding to the lowest Mcut value based on 

the Fiedler order. 

The running time for this algorithm is similar to that for the normalized cut 

algorithm discussed in section 2.3.2. 
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3.1.2 Experiments 

3.1.2.1 Newsgroup article clustering 

Now we apply the Mcut method to the newsgroup article data set. 
1 

This data 

set contains about 20,000 articles (email messages) evenly divided among 20 newsgroups. 

We list the names of the newsgroups together with the associated group labels. 

NG1: alt.atheism NG2: comp.graphics 

NG3: comp.os.ms-windows.misc NG4: comp.sys.ibm.pc.hardware 

NG5: comp.sys.mac.hardware NG6: comp.windows.x 

NG7: misc.forsale NG8: rec.autos 

NG9: rec.motorcycles NG10: rec.sport.baseball 

NG11: rec.sport.hockey NG12: sci. crypt 

NG13: sci.electronics NG14: sci.med 

NG15: sci.space NG16: soc.religion.christian 

NG17: talk.politics.guns NG18: talk.politics.mideast 

NG19: talk.politics.misc NG20: talk.religion.misc 

We use the bow toolkit to construct the term-document matrix for this data set. Specif-

ically we use the tokenization option so that the UseNet headers are stripped, and we 

also apply stemming [63]. Some of the newsgroups have large overlaps, such as the five 

newsgroups comp. * about computers. In fact several articles are posted to multiple 

newsgroups. 

1The newsgroup data set together with the bow toolkit for processing it can be downloaded 
from http://www. cs. emu. edu/afs/cs/project/theo-11/www/naive-bayes.html. 
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We focus on 3 two-cluster cases. These three data sets are 

(1) NG1: alt.atheism + NG2: comp.graphics 

(2) NG10: rec.sport.baseball + NG11: rec.sport.hockey 

(3) NG18: talk.politics.mideast + NG19: talk.politics.misc 

First, the term-document matrix M is constructed as follows. 2000 terms (words) are 

selected according to the mutual information between the terms and documents: 

I(t) = LP(t, d) log2(p{t, d)jp(t)p(d)], 

d 

(3.7) 

where t represents a term and d represents a document. p(t, d) is the joint probability 

oft and d. The standard tf · idf scheme is used to calculate the term weighting, and 

each document is normalized to form the column of M. This is the vector space model 

of information retrieval [70]. Then the document-document similarities are calculated 

as W = MT M. W is the weight/affinity matrix of the undirected graph and the Mcut 

algorithm is applied to this similarity matrix. 

For comparison purpose, we consider two other clustering methods: the normal-

ized cut and principle direction divisive partitioning {PDDP) [7]. PDDP is based on 

the idea of principle component analysis (PCA) applied to the vector space model, and 

has been shown to outperform several standard clustering methods such as hierarchical 

agglomerative algorithm [7]. In PDDP, each document is considered as a multivariate 

data point. The set of documents is normalized to have unit Euclidean length and then 

centered, i,e., the term-document matrix M is normalized first, then the average of each 

row (a term) is subtracted, and the first principle component is computed. The loadings 
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of each document (the projection of each document on the principle axis) form a 1-dim 

linear search order. This provides a heuristic similar to the linear search order provided 

by the Fiedler vector. Instead of searching through to find a minimum based on some 

objective functions, PDDP simply cuts data into two parts at the center of mass. 

To increase statistics, we perform these two-cluster experiments in a way similar 

to cross-validation. We divide one newsgroup A randomly into K 1 subgroups and the 

other newsgroup B into K2 subgroups. Then one subgroup of A is mixed with one 

subgroup of B to produce a data set S. The graph partitioning methods are run on S 

to produce two clusters. Since the true label of each news article is known, we use the 

accuracy, percentage of the news articles correctly clustered, as a measure of success. 

This is repeated for all K
1 

· K 2 pairs between A and B, and the mean and standard 

deviation of the accuracy are calculated. 

NG1 NG2 
NG10/NG11 
NG18/NG19 

Mcut 
97.2 ± 1.1 0 

79.5 ± 11.0% 
83.6 ± 2.5% 

Ncut 
97.2 ± 0.8 0 

74.4 ± 20.4% 
57.5 ± 0.9% 

Table 3.1. 

PDDP 
96.4 ± 1.2 0 

89.1 ± 4.7% 
71.9 ± 5.4% 

Accuracy of clustering experiments using Mcut, Ncut and PDDP. Each test set is a 
mixture of 400 news articles, 200 from each newsgroup. 

The clustering results are listed in Table 3.1 for balanced cases, i.e., both sub-

groups contain about 200 news articles. The Mcut performs about the same as the Ncut 
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for the mixture NG1/NG2, where the cluster overlap is small. The Mcut performs sub-

stantially better than the Ncut for the mixtures NGlO/NGll and NG18/NG19, where 

the cluster overlaps are large. Generally, the Mcut performs slightly better than PDDP. 

NGl NG2 
NGlO/NGll 
NG18/NG19 

Mcut 
97.6 ± 0.8 0 

85.7 ± 8.3% 
78.8 ± 4.5% 

Ncut 
97.2 ± 0.8 0 

73.8 ± 16.6% 
65.7 ± 0.5% 

Table 3.2. 

PDDP 
90.6 ± 2.1 0 

87.4 ± 2.6% 
59.6 ± 2.4% 

Accuracy of clustering experiments using Mcut, Ncut and PDDP. Each test set is a 
mixture of 500 news articles, 200 from one newsgroup and 300 from the other newsgroup. 

The results are listed in Table 3.2 for unbalanced cases, i.e., one subgroup contains 

about 300 news articles and another contains about 200. This is generally a harder 

problem due to the unbalanced prior distributions. In this case, both the Mcut and 

Ncut perform reasonably well. No clear deterioration is seen, while the performance of 

PDDP clearly drops. This indicates the strength of the Mcut method using the graph 

model. The Mcut consistently outperforms the Ncut for cases where the overlaps are 

large. 

3.1.2.2 Web document clustering 

We test our Mcut algorithm on the web documents, trying to partition the web 

link graph in order to create clusters with distinct topics. We use the same data sets as 
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in §2. The threshold on the Mcut value is 0.06, the same as in the Ncut case, though this 

threshold can be set to different values. The only difference froni the Ncut algorithm is 

the objective function used. 

Query term: amazon 

Applying the Mcut algorithm, we obtain the significant clusters similar to the 

ones presented in §2 with the following exceptions. 

Cluster 2 of the Ncut results is further separated into following two clusters: 

www. amazoncity. com/ 

www. amazoncityradio. com/ 

www.etsu.edujcasjhistoryjwomen.htm 

www.sfweekly. com/ extra/femizines. html 

roterommet. orgjlinker jkvinnelinker. htm 

which is related to the women's issues, and 

radio. amazoncity. com/ 

www. amazoncity. com/ central/ cityhalljpress.html 

www. trabanino.com/ dothatjradio.htm 

www. amazoncityradio. comjbodypeace 

www. theonestopwebshop. co.za/info. html 

which concentrates on the radio about the women's issues. 

Cluster 3 of the Ncut results is separated into 

www. amazon. org/ 

www. dartmouth. edu/-glbprogjlinks.html 

www. teleport. com;- rocky/ queer. shtml 



www.fc. net/- zarathus/links.html 

www. advocate. com/html/ gaylinks /resources. html 

and 

www. amazonfembks. com/ 

www. igc. ape. orgjwomen/bookstores/ 

www. wrc. be. ca/femlinks.htm 

www. press gang. be. ca/links. htm 

search.jassan. com/H obbies_and_Lifestyle/Women 
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The former talks about the bi-sexual issues and the latter mentions the books about the 

women's issues. 

Query terms: star and apple 

For these two data sets, the Mcut method generates the same clusters as the Ncut 

does. 

From the clustering results, we see that these two methods, the Ncut and Mcut, 

produce the results not differing too much from each other. There are two possible 

reasons for that: 1) the linkage between the web communities discovered by these two 

methods is relatively small; 2) by adjusting the threshold, the cluster already formed 

can be further partitioned by either method. 

3.2 Skewed cut 

Now we study the reasons that the Mcut consistently outperforms the Ncut in 

large overlap cases. The most important reason is that the Ncut often cuts out a very 

small set, i.e., a skewed cut.' Two specific cases are shown in Figure 3.1. The cut points 
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for the Mcut and Ncut and the relevant quantities are listed in Table 3.3. We see that 

the Ncut has two pronounced valleys, and produces a skewed cut in both cases, while the 

Mcut has a very flat valley and gives balanced cuts. Further examination shows that in 

both cases, the cut sizes in the Ncut are equal or bigger than the smaller self-similarities, 

as listed in Table 3.3. Taking the left panels in Figure 3.1 as example, the Ncut produces 

a cut size of262.7, much larger than the self-similarity W(B, B)= 169. Clearly, the Ncut 

graph partitioning method is not appropriate for these cases. For the Mcut method, the 

cut size is absent in the denominators; this provides a balanced cut. These case studies 

provide some insights to the graph partitioning methods. 

i 
cut 

cut{ A, B) W{A,A) W{B,B) 
Ncut 364 262.7 5312.6 169.0 
Mcut 141 1026.6 1488.9 2464.7 
Ncut 31 213.5 172.4 5167.9 
Mcut 202 1082.1 1670.0 1933.0 

Table 3.3. 
cut point icut' cut size cut( A, B), and self-similarities W(A, A) and W(B, B) for the two 
cases in Figure 3.1: top two lines for the left three panels, and bottom two lines for the 
right three panels. 

Prompted by these case studies, we now analyze the situation under which a 

skewed cut will occur. Consider the balanced cases in which W(A, A) ~ W(B, B) and 
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cut(A, B) satisfies (3.1). When the partition is optimal, A and B are the exact parti-

tioning results. The corresponding Mcut value is 

cut(A, Ii) cut(A, B) 
W(A, A) + W(B, B) 

W(B
1
, B

1
). The corresponding Mcut value is 

A skewed cut occurs if Mcut
1 

< Mcut0, which means 

2 
n 

(3.8) 

When the overlap is small, i.e., n is large, (3.2) and (3.8) are not much different, as we 

have expected from the definition of the objective functions. When n is small, condition 

(3.8) is less possible to be satisfied, hence the Mcut tends to create less skewed cut than 

the Ncut. 

3.2.1 Random graph model 

Perhaps the most important feature of the Mcut method is that it tends to pro-

duce balanced cut, i.e., the resulting clusters have similar sizes. In this section, we use 

the random graph model [8, 14] to illustrate this point. We consider four partitioning 

methods: the Mincut, Rcut, Ncut and Mcut. 
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THEOREM 3.2. For random graphs, the Mincut favors highly skewed cuts, i.e., very un-

even sizes. The Mcut favors balanced cut, i.e., both subgraphs have the same sizes. The 

Rcut and Ncut show no preferences. 

Proof. We partition graph G into two subgraphs A and B. Assume two nodes are 

connected by an edge with probability p, and n = JGJ, the number of nodes in G. Note 

that the average number of edges between A and B is pJAIIBJ. 

From {1.4), we have 

Mincut(A,B) = pjAJJBJ. 

For the Rcut {1.5), we have 

For the Ncut {1.6), since all nodes have the same degree (n- 1)p, 

pjAJIBI pjAJIBI 
Ncut(A, B)= pjAJ(n _ 1) + pjBJ(n _ 1) = n/(n- 1). 

For the Mcut {1.8), we have 

Mcut(A,B) pJAIIBJ pJAIIBI 
= pJAI(IAJ-1) + pJBI{IBI- 1) 

IBI !AI 
IAI - 1 + IBI - 1. 

Now we minimize these objectives. Clearly, the Mincut favors JAJ = n- 1 and JBJ = 1, 

or JBI = n- 1 and JAI = 1, both of which are skewed cuts. Minimizing Mcut(A, B), we 
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obtain a balanced cut: IAI = IBI, a highly desirable property for clustering. The Rcut 

and Ncut objectives have no size dependency and no size preference, which also implies 

possible unstable results. 

3.3 Linkage-based refinements 

The linear search order provided by the scaled Fiedler vector is generally a good 

heuristic, as the results shown above. Nevertheless, it may not necessarily be the perfect 

one. Here we explore this subtle point and investigate some effective refinement methods 

which can improve the quality of graph partition substantially. 

The linear search order provided by sorting the scaled Fiedler vector f implies 

that the nodes on one side of the cut point must belong to the same cluster. In other 

words, if f u 2': f v 2': f w, the linear search will not allow the situation to happen that 

u, w belong to one cluster and v belongs to the other cluster. Such a strict order is not 

necessarily followed by the nodes near the cut point. In fact, in large overlap cases, we 

may expect that some nodes could be moved to the other side of the cut point while 

lowering the overall objective function value. 

How to identify those nodes near the cut point? To answer this question, we 

define the linkage £, a closeness or similarity measure between a node and a cluster: 

f(u,A) = W(u,A)/W(A,A). 
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Here W(A, A) is for the normalization purpose so that a large subgraph will not neces­

sarily has a large similarity with a node. The linkage between two groups, such as the 

single linkage, double linkage, are often used in hierarchical agglomerative clustering. 

With the definition of linkage, we can identify the nodes near the cut point. If 

a node u is well inside a cluster, u will have a large linkage with the cluster, and small 

linkage with the other cluster. One the other hand, if u is near the cut point, it will have 

similar linkage values with both clusters. Therefore, we define the linkage difference 

~£(u) = £(u, A)- £(u, B). 

A node with small ~£ should be close to the cut point and is a possible candidate to be 

moved to the other cluster. 

Figure 3.2 shows the linkage difference ~£ for all nodes. The vertical line repre­

sents the cut point. It is interesting to observe that, not only many nodes have small ~£, 

but quite a few nodes have wrong signs of~£ (i.e., ~£(u) < 0 while u E A, or ~£(v) > 0 

while v E B). For example, node #62 has a relatively large negative~£, which implies 

node #62 has a larger linkage with cluster B even though it is located to the left of the 

cut point. Indeed, if we move node #62 to cluster B, the objective function value (1.8) 

is reduced. This way, wefind a better solution to the graph partitioning problem (based 

on the Mcut criterion) than the one obtained by the Fiedler order. 

In practice, we can try to move to cluster B all the nodes in A with negative 

~£, by testing if the objective function values are lowered. Similarly, we can try to 

move to A all the nodes in B with positive ~£. This procedure of swapping the nodes 
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with wrong D..e signs to the opposite cluster is called the "linkage-based swap". This 

swap reduces the objective fimction value and increases,the partitioning quality. The 

effect on the clustering accuracy due to the swap is listed in Table 3.4. In all cases, the 

accuracy increases. Note that in the large overlap cases, NG9/NG10 and NG18/NG19, 

the accuracy increases by nearly 10% over the Mcut alone. This is our first refinement 

over the initial Mcut results. 

NGl NG2 
NGlO/NGll 
NG18/NG19 

Mcut 
97.2 ± 1.1 0 

79.5 ±11.0% 
83.6 ± 2.5% 

Mcut+Swap 
97.5 ± 0.8 0 

85.0 ± 8.9% 
87.8 ± 2.0% 

Table 3.4. 

Mcut+Swap+ Move 
97.8 ±0.7 0 

92.8 ±6.3% 
89.5 ±2.2% 

Accuracy improvement due to linkage-based refinement for Mcut, Mcut + swap, and 
Mcut + swap + move over 5% smallest D..e on both sides of the cut point. 

Next, we sort the remaining nodes in a cluster according to D..e .and select the 

lowest 5% of them as the candidates, then move those which reduce the Mcut objective 

to the other cluster. This is done for both A and B. This procedure is called "linkage-

based move". Again, these moves reduce the Mcut objective and therefore improve 

clustering results. Their effect on improving clustering accuracy is shown in Table 3.4. 

Adding together, the linkage based refinements improve the accuracy by 20%. The final 

Mcut results are about 30-50% better than the Ncut and about 6-25% better than PDDP. 

Note that our refinement is similar to the Fiduccia and Mattheyses {FM) heuristic 

algorithm (30] which is a modification of Kernighan-Lin algorithm [55]. The priority list 
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based on the linkage difference is similar to the list based on the gain in the FM algorithm. 

We do greedy movement in one pass, whereas the FM algorithm allows non-greedy moves. 

3.4 Linkage differential linear order 

It is generally believed that the Fiedler order given by the (scaled) Fiedler vector 

provides the best known linearized order for searching for the optimal cut, although 

counter examples with high symmetry exist [40, 74]. Is there a linear search order better 

than the Fiedler order? 

Our analysis in the previous sections suggests a new linear search order. Given 

the linkage difference in Figure 3.2, we see that quite a few nodes far away from the cut 

point have wrong b..£ signs, which means they should belong to the other cluster. This 

strongly suggests that the Fiedler order is not necessarily the best linear search order. 

In fact, we can sort the linkage difference /:1£ to obtain a new linear order, referred to as 

the linkage differential (LD) order. The search for finding the best cut point based on 

this new LD order represents another improvement over the original Mcut method. 

NG1 NG2 
NGlO/NGll 
NG18/NG19 

97.2 ± 1.1 0 

79.5 ±11.0% 
83.6 ± 2.5% 

Table 3.5. 
Accuracy improvement based on the linkage differential (LD) order: clustering accuracy 
obtained on the Fiedler order (2nd column) and LD order (3rd column), minimum Mcut 
values obtained on the Fiedler order (4th column) and LD order (5th column). 
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The refinement results are given in Table 3.5. The Mcut values dbtained on this 

new order are generally lower than those based on the Fiedler order. Compared to 

that based on the Fiedler order, the clustering accuracy increases substantially, and the 

clustering results based on the LD order is slightly better than those obtained by using 

Mcut+Swap in Table 3.4. Therefore, we find a new linear or~er that leads to better 

graph partitioning results. 

Note that the LD order does not depend on the Fiedler order. Given any initial 

clustering results of two clusters, we can always calculate b..£ and sort it to obtain the LD 

order. For instance, we can obtain LD order based on the PDDP results. Furthermore, 

the LD order can be applied recursively to the clustering results obtained from previous 

LD order to further improve the results. 

So far in this chapter, we have focused on bisectioning a graph into two subgraphs. 

If more subgraphs or clusters are expected, the Mcut and related refinement can be 

applied recursively to each subgraph, until certain stopping criteria is met, either the 

desired number of clusters is reached or the minimum Mcut value is above a certain 

pre-defined value. 

Once the recursive division is stopped, some refinements discussed in section 3.3 
' 

should be applied. This is because even if all the nodes are optimally partitioned during 

each bisection step, the final partition is not necessarily the optimal, since they are not 

directly obtained from the k-way Mcut objective 

(3.9) 
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assuming G is partitioned into K subgraphs G1, · · · , G K' cuti = cut(Gi, Gi)' and 

W(G.) = W(G.,G.), i = 1,··· ,K. Suppose node u currently belongs to cluster G .. 
z z z z 

The linkage difference /:::;.£ . . ( u) = £( u, G . ) - £( u, G.) for all other K - 1 clusters should 
. D J z 

be computed, and u is moved to the cluster with the smallest/:::;.£. .(u), provided that the 
ZJ 

the overall objective Mcut K is reduced. 

Define the k-way Ncut objective as 

ForK> 2, the average ratio cut(G
1
,G1)/W(G1) = 2::

2 
cut(G1,Gi)/W(G1) will be 

larger than that when K = 2. Then the McutK will differ from the NcutK much more 

than in the K = 2 case [cf. (2.2)]. From the previous analysis, the Ncut is more likely 

to produce a skewed cut. Therefore, the Mcut is essential inK -way partitions. 

3.5 Concluding remarks 

In this chapter, following the clustering principle, we introduce a new partitioning 

criterion, the min-max (Mcut) criterion, for graph partition. Compared to the Ncut 

algorithm which produces many skewed cuts in cases of large cluster overlap, the Mcut 

method produces more balanced partition. This result is preferable in many applications. 

We also propose a heuristic, the linkage difference metric, which effectively identifies those 

nodes near the cut point as the possible candidates to be moved to the other cluster; 

this leads to some effective refinement procedures. The new linkage differential order is 

shown to provide a better linear search order than the best known Fiedler order. 
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Chapter 4 

Bipartite graph partition using Ncut and Mcut 

Many clustering algorithms are based on the assumptions that the given data 

set consists of covariate information (or attributes) for each individual data object, and 

cluster analysis can be cast as a problem of grouping a set of n - dim vectors, each 

representing a data object in the data set. Such a data clustering problem can be 

modeled as the bipartite graph partition. Examples include terms and documents in a 

text corpus, customers and purchasing items in the market basket analysis, and reviewers 

and movies in a movie recommending system. Take the document clustering using the 

vector space model (3] as an example. Here each document is represented by an n- dim 

vector, and each coordinate of the vector corresponds to a term in a vocabulary of size 

n. This formulation leads to the so-called term-document matrix M = ( m .. ) for the 
ZJ 

representation of the collection of documents, where m .. is the so-called term frequency, 
ZJ 

i.e., the number of times term i occurs in document j. In this vector space model, 

the terms and documents are treated asymmetrically with the terms considered as the 

covariates or attributes of the documents. It is also possible to treat both the terms 

and documents as the first-class citizens in a symmetric fashion, and consider m . . as 
ZJ 

the frequency of co-occurrence of term i and document j, as is done, for example, in 

probabilistic latent semantic indexing (49]. In this chapter, we follow this basic principle 

and propose a new approach to model the term and document as vertices in a bipartite 
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graph with the edge of the graph indicating the co-occurrence of the term and document. 

In addition, we can optionally use the edge weight to indicate the frequency of this co-

occurrence. Cluster analysis for document collections in this context is based on a very 

intuitive notion: documents are grouped by topics. On one hand, the documents in 

a topic tend to use more heavily the same subset of terms which form a term cluster, 

and on the other hand, a topic is usually characterized by a subset of terms and the 

documents heavily using those terms tend to address that particular topic. It is this 

interplay of the terms and documents that gives rise to what we call hi-clustering by 

which the terms and documents are simultaneously grouped into semantically coherent 

clusters. 

Many criteria have been proposed to measure the quality of graph partition result 

of an undirected graph. We will show, in this chapter, how to adapt the normalized cut 

(Ncut) criterion introduced in §2 and the min-max cut (Mcut) criterion in §3 to the 

hi-clustering problems which lead to a minimization problem by computing the partial 

singular value decomposition (SVD) of the associated edge weight matrix of the bipartite 

graph. 

4.1 Bipartite graph partitioning 

Denote a graph by G (V, E), where V is the vertex set and E is the edge set of the 

graph. A graph G(V, E) is bipartite with two vertex classes X andY if V =XU Y with 

X n Y = 0, and each edge in E has one endpoint in X and the other in Y. We consider 

the weighted bipartite graph G(X, Y, W) with W = (w . . ) where w .. > 0 denotes the 
ZJ ZJ 

weight of the edge between vertex i and j. w. . = 0 if there is no edge between i and j. 
ZJ 
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In the context of document clustering, X represents the set of terms and Y represents 

the set of documents, and w . . can be used to denote the number of times term i occurs 
%] 

in document j. A vertex partition of G(X, Y, W) denoted by IT(A,B) is defined by a 

partition of the vertex sets X and Y, respectively: X = AU A e, and Y = B U Be, whete 

for setS,~ denotes its compliment. By convention, we pair A with B, and Ae with Be. 

We say that a pair of vertices x E X and y E Y are matched with respect to a partition 

IT( A, B) if there is an edge between x and y, and either x E A andy E B or x E Ae 

and y E Be. In the context of cluster analysis, the edge weight measures the similarity 

between two data objects. To partition the data objects into clusters, we seek a partition 

of G(X, Y, W) such that the association (similarity) between unmatched vertices is as 

small as possible. One possibility is to consider the following quantity 

cut( A, B) = W(A, Be)+ W(Ac, B) 
(4.1) 

= L·EA "EBC w. 0 + L·EAC 0 B w . .. 
t ,J t) t ,JE t) 

Intuitively, choosing II( A, B) to minimize cut(A, B) will give rise to a partition that 

minimizes the sum of all the edge weights between unmatched vertices. In the context 

of document clustering, we try to find two document clusters B and Be which have few 

terms in common, and the documents in B mostly use the terms in A and those in Be 

use the terms in A e. Unfortunately, choosing a partition based entirely on cut( A, B) 

tends to produce unbalanced clusters, i.e., the sizes of A and/or B or their compliments 

tend to be small. Inspired by the work in [15, 24, 71] and the work in §3, we propose 
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I 

the following two normalized variants of the edge cut in ( 4.1) 

and 

_ cut(A, B) cut(Ae, Be) 
Ncut(A, B)= W(A, Y) + W(X, B) + W(Ae, Y) + W(X, Be)' 

_ cut(A,B) cut(Ae,Be) 
Mcut(A, B)= W(A, B) + W(Ae, Be) . 
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Above are the normalized cut and min-max cut criteria we discussed in the previous two 

chapters. The intuition behind these two criteria is that, we want not only a partition 

with a small edge cut, but also wthe two subgraphs formed by the matched vertices 

to be as dense as possible. The latter requirement is partially satisfied by introducing 

the normalizing denominators in the above equations. Our hi-clustering problem is now 

equivalent to the following optimization problem 

min Ncut(A, B) 
IT(A,B) 

or min Mcut(A, B), 
IT(A,B) 

i.e., finding a partition of the vertex sets X and Y so as to minimize Ncut(A, B) or 

Mcut(A, B) of the bipartite graph G(X, Y, W). 

4.2 Approximate solutions using singular vectors 

Given a bipartite graph G(X, Y, W) and the associated partition II( A, B), reorder 

the vertices of X and Y so that the vertices in A and B are ordered before those in A e 
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and Be, respectively. The weight matrix W can be written as 

(4.2) 

i.e., the rows of w
11 

correspond to the vertices in A and the columns of W11 correspond to 

those in B. Therefore G(A, B, W
11

) denotes the weighted bipartite graph corresponding 

to the vertex sets A and B. For any m-by-n matrix H =(h .. ), define 
2J 

m n 

s(H) = L L hi.' 
. . 1 J 2=1J= 

i.e., s(H) is the sum of all the elements of H. 

Now we begin with the solution to the Ncut problem. · 

4.2.1 Bipartite clustering using Ncut 

It is easy to see that 

Ncut(A,B) 
s(W12) + s(W21) s(W12) + s(W21) 

- 2s(W
11

) + s(W12) + s(W21) + 2s(W22) + s(W12) + s(W21) · 

1 
In order to make connections to SVD problems, we first consider the case when W is 

symmetric.1 It is easy to see that with W symmetric (denoting Ncut(A,A) by Ncut(A)), 

1 A different proof for the symmetric case was first derived in [71]. Our derivation, however, 
is simpler and more transparent, and leads naturally to the SVD problems for the rectangular 
case. 
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we have 

(4.3) 

Let e be the vector of alll's, and D = diag(We), then (D- W)e = 0. Let x = (x.) be z 

the vector with 

1, i E A, 

It is easy to verify that 

Define 

then 

T 
s(W12) = x (D- W)xj4. 

p = s(W11) + s(W12) _ s(W11) + s(W12) 

- s(W11) + 2s(W12) + s(W22) eT De 

T s(W11) + s(W12) = pe De, 

T s(W22) + s(W12) = (1- p)e De, 
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and 

T 
N (A) 

_ x ( D - W)x 
cut - T . 

4p(1- p)e De 
- {4.4) 

Note that (D - W)e = 0, then for any scalar s, we have 

T T 
(se+x) (D-W)(se+x)=x (D-W)x. 

To cast {4.4) into the form of a Rayleigh quotient, we need to finds such that 

T T 
(se + x) D(se + x) = 4p(1- p)e De. 

Since xT Dx = eT De, it follows from the above equation that s = 1 - 2p. Now let 

y = (1- 2p)e + x. It is easy to see that yT De= {{1- 2p)e + x)T De= 0, and 

2{1- p) > 0, i E A, 

-2p < 0, i E Ac. 

Thus 

minNcut(A) = min{yT(~- W)y I yEs}, 
A y Dy 

where 

T , 
S = {y I y De= O,y. E {2(1- p), -2p}}. 

z 
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If we drop the constraints y. E {2(1- p), -2p} and let the elements of y take arbitrary 
z 

continuous values, then the optimal y can be approximated by the following relaxed 

continuous minimization problem, 

. { yT (D - W)y T } 
mm T I y De=O . 

y Dy 
(4.5) 

Note that it follows from We = De that 

and therefore n112e is an eigenvector of D-
112w D-1/ 2 corresponding to the eigenvalue 

1. It is easy to show that all the eigenvalues of D-
112w D-112 have absolute value 

at most 1 (See Appendix C.(1)). Thus the optimal y in (4.5) can be computed as 

y = n112y-, where y is the second largest eigenvector of D-112wn-112. 

Now we return to the rectangular case for the weight matrix W, and let D X and 

Dy be diagonal matrices such that 

We=Dxe, (4.6) 

Consider a partition II( A, B), and define 

1, i E A 
•• = { 

1, i E B 

-1, i E Ac -1, i E Be 
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Let W have the block form as in {4.2), and consider the augmented symmetric matrix
2 

0 0 wn w12 

[ :T :] 
~ 0 0 w21 w22 

W= 
WT WT 0 0 

11 21 

WT WT 0 0 
12 22 

Interchanging the second and third block rows and columns of the above matrix, we 

obtain 

0 wn 0 w12 

WT 0 WT 0 
[ W11 ~12]' - AT 

0 w21 0 w22 w w22 
12 

WT 0 wr 0 
12 22 

and the normalized cut can be written as 

{4.7) 

a form that resembles the symmetric case ( 4.3). Define 

2In [43], the Laplacian of W is used for partitioning a rectangular matrix in the context of 
designing load-balanced matrix-vector multiplication algorithms for parallel computation. How­
ever, the eigenvalue problem of the Laplacian of W does not lead to a simpler singular value 
problem. 



then we have 

Ncut(A,B) 

where x = (1- 2p)e + u, y = (1- 2p)e + v. It is also easy to see that 

Therefore, 

min Ncut(A, B) 
IT(A,B) 

X., y. E {2(1- q), -2q}. 
~ ~ 

{ 

2xTWy . } 
- 1- max T T I x, y satisfy (4.8) . 

x=/=0 X Dxx + y DyY 
y=/=0 

91 

(4.8) 

Ignoring the discrete constraints on the elements of x and y, we have the following 

continuous maximization problem, 

{ 

T 2x Wy 
max 
x=/=0 XT D x + yT D y 
y=/=0 X Y 

(4.9) 

~ithout the constraints xT D Xe + yT Dye = 0, the above problem is equivalent to 

computing the largest singular triplet of D-112w D-112 (Appendix C.(2)). From (4.6), 
X y 
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we have 

n-1/2wn-1/2(n1/2e) = n1/2e 
X Y Y X 

(n-1f2w n-1/2)T (n1/2e) = n1/2e. 
X Y X Y 

Similarly to the symmetric case, it is easy to show that all the singular values of 

D - 112 W D - 112 are at most 1. Therefore, an optimal pair { x, y} for ( 4. 9) can be com-
X y 

puted as x = D.:... 1f2x and y = D-112-y, where x and y are the second largest left 
X y 

and right singular vectors of D-112w D-112, respectively (Appendix C.(3)). With the 
X y 

above discussion, we now summarize our basic approach for bipartite graph clustering 

incorporating a recursive procedure. 

ALGORITHM. Spectral Recursive Embedding (SRE) 

Given a weighted bipartite graph G =(X, Y, E) with edge weight matrix W: 

1. Compute D X and Dy and form the scaled weight matrix W 

n-1f2w D-112. 
X y 

2. Compute the second largest left and right singular vectors x andy of W. 

3. Find cut points c and c for X= n-112x andy= D- 112-y, respectively. 
X y X y 

4. Form partitions A= {i I xi;::: ex} and Ac = {i x. < c } for vertex set 
Z X 

X, and B = {j J y. ;::: c } and Be = {j I y . < c } for vertex set Y. 
J y J y 

5. Recursively partition the subgraphs G(A, B) and G(Ac, Be) if necessary. 
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Two basic strategies can be used for selecting the cut points c and c . The 
X y 

simplest strategy is to set c = 0 and c = 0. A more computing-intensive approach is 
X , y 

to base the selection on the Ncut: check N equally spaced splitting points of x and y, 

respectively; find the cut points c and c with the smallest Ncut. 
X y 

Computational complexity. The major computational cost of SRE is in step 

2 for computing the left and right singular vectors, which can be obtained either by 

·power method or more robustly by the Lanczos bidiagonalization process [36, Chapter 

9]. The Lanczos method is an iterative process for computing partial SVDs in which each 

iterative step involves the computation of two matrix-vector multiplications Wu and 

WT v for some vectors u and v. The computational cost of these is roughly proportional 

to nnz(W), the number of non-zero elements of W. The total computational cost of SRE 

is O(c k dnnz(W)), where c the the level of recursion and k d is the number of sre sv sre · sv 

Lanczos iteration steps. In general, k d depends on the singular value gaps of W. Also sv 

notice that nnz(W) = n n, where n is the average number of terms per document and 
w w 

n is the total number of documents. Therefore, the total cost of SRE is in general linear 

in the number of documents to be clustered. 

4.2.2 Bipartite clustering using Mcut 

Note that in (4.7), the expression for the Ncut is indeed derived from the square 

weight matrix case. We have proven that, in the square weight matrix case, the same 

eigenvector used to minimize the Ncut value is exactly the same eigenvector that mini-

mizes the Mcut value (cf. (3.6)). Therefore if the singular vectors x andy minimize the 
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Ncut value in (4.7), they can equivalently be used to minimize the following Mcut value 

s(W ) s(W ) 
Mcut(A,B) = A 12 + A 12 . 

s(W11) s(W
22

) 

Then the SRE algorithm and other analyses are still valid for the Mcut. 

For a more detailed proof, see section 5.2. 

4.3 Connections to correspondence analysis 

In its basic form, correspondence analysis is applied to an m-by-n two-way table 

of counts W [38, 75, 4]. Let w = s(W), the sum of all the elements of W. Correspondence 

analysis seeks to compute the largest singular triplets of the matrix Z = (z . . ) E nmxn 
ZJ 

with 

wij/w- (DX(i,i)/w)(Dy(j,j)jw) 

zij = .j(DX(i,i)fw)(Dy(j,j)jw) . 

The matrix Z can be considered as the correlation matrix of two group indicator matrices 

for the original W [75]. Now we show that the SVD of Z is closely related to the SVD 

of W = D-112w D-
1
/

2
. In fact, in section 4.2, we showed that n 112e and n 112e are 

X Y X Y 

the left and right singular vectors of W corresponding to the singular value one, and it 

is also easy to show that all the singular values of W are at most 1. Therefore, the rest 

of the singular values and singular vectprs of W can be found by computing the SVD of 
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the following rank-one modification of W 

which has the (i,j)th element 

and is a constant multiple of the the (i,j)th element of Z. Therefore, the NcutjMcut 

based cluster analysis and correspondence analysis arrive at the same SVD problems 

even though they start with completely different principles. It is worthwhile to explore 

more deeply the interplay between these two different points of views and approaches, 

for example, using the statistical analysis of correspondence analysis to provide better 

strategy for selecting cut points and estimating the number of clusters. 

4.4 Partitions with overlaps 

So far in our discussion, we have only looked at hard clustering, i.e., a data object 

belongs to one and only one cluster. In many situations, especially when there is a large 

overlap between the clusters, it is more advantageous to allow data objects to belong 

to different clusters. For example, in document clustering, certain groups of words can 

be shared by two clusters. Is it possible to model this overlap using our bipartite graph 

model and yet find efficient approximate solutions? The answer seems to be yes, but our 

results at this point are rather preliminary and we will only illustrate the possibilities. 
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Our basic idea is that when computing Ncut(A, B), we should disregard the contributions 

of the set of vertices that is in the overlap. More specifically, let X = AU 0 X U A and 

Y = BUOy U B, where 0 X denotes the overlap between the vertex subsets AU 0 X 

and AU OX, and Oy the overlap between BUOy and BUOy. Compute 

- - cut(A, B) cut(A, B) 
Ncut(A, B, A, B)= W(A, Y) + W(X, B) + W(A, Y) + W(X, B). 

However, we can make Ncut(A, B, A, B) smaller simply by putting more vertices in the 

overlap. Therefore, we need to balance these two competing quantities: the size of the 

overlap and the modified normalized cut Ncut(A, B, A, B) by minimizing 

Ncut(A,B,A,B) +a(IOxl +IDyl), 

where a is a regularization parameter. The Mcut case can be treated in the same way. 

How to find an efficient method for computing the (approximate) optimal solution to 

the above minimization problem still needs to be investigated. We close this section 

by presenting an illustrative example showing that, in some situations, the singular 

vectors already automatically separating the overlap sets while giving the coordinates 

for carrying out clustering. 

EXAMPLE 1. We construct a sparse m-by-n rectangular matrix 
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nz = 5636 

Fig. 4.1. Sparsity patterns of a test matrix before clustering (left) and after clustering 
(right). 

so that W
11 

and W
22 

are relatively denser than W12 and W21 . We also add some dense 

rows and columns to the matrix W to represent row and column overlaps. The left panel 

of Figure 4.1 shows the sparsity pattern of W, a matrix obtained by randomly permuting 

the rows and columns of W. We then compute the second largest left and right singular 

vectors of D-112w D-112, say x andy, and sort the rows' and columns of W according 
X y 

to the values of the entries in D-112x and D-112y, respectively. The sparsity pattern 
X y 

of this permuted W is shown on the right panel of Figure 4.1. As can be seen that the 

singular vectors not only do the job of clustering, but also concentrate the dense rows 

and columns at the boundary of the two clusters simultaneously. 

4.5 Experiments 

In this section we present our experimental results on clustering a data set of 

newsgroup articles also used in chapter §3. Before applying the clustering algorithms to 
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the data set, several preprocessing steps need to be considered. Two standard steps are 

weighting and feature selection. For weighting, we consider a variant of tj · idf weighting 

scheme, tf · log
2

(n/df), and several other variations listed in [3]. For feature selection, 

we look at three approaches 1) deleting the terms that occur less than a certain number 

of times in the data set; 2) deleting the terms that occur in less than a certain number of 

documents in the data set; 3) selecting the terms according to mutual information of the 

terms and documents defined in (3. 7). In general, we find that the traditional tj ·idf based 

weighting schemes do not improve the performance for SRE. One possible explanation 

comes from the connection with correspondence analysis. The raw frequencies are the 

samples of co-occurrence probabilities, and the pre- and post-multiplication by D-
112 

X 

and D-l/2 in D-112(D- W)D- 112 automatically take into account of weighting. We 
y X y 

do, however, find that trimming the raw frequencies can sometimes improve performance 

for SRE, especially for the anomalous cases where some words occur in certain documents 

an unusual number of times, skewing the clustering process. 

We test three variations of SRE methods: 1) SRE(CutO), which chooses c = 0 
X 

and c = 0 as the cut points; 2) SRE(Ncut), which computes the cut points using 
y 

the Ncut method; and 3) SRE(Mcut), which computes the cut points using the Mcut 

method. 

For the purpose of comparison, we consider two other clustering methods: 1) the 

K-means method [37]; 2) principal direction divisive partition (PDDP) method [7]. The 

K-means method is a widely used cluster analysis tool. The variant we used employs the 

Euclidean distance when comparing the similarity between two documents, as is done 

in (1.1). We also tried the K-means without document length normalization, and the 
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results are far worse. Therefore we will not report the corresponding results. Since the 

K-means method is an iterative method, we need to specify a stopping criterion. For the 

variant we use, we compare the centroids between two consecutive iterations, and stop 

when the difference is smaller than a pre-defined tolerance. 

PDDP is another clustering method that utilizes the singular vectors. In PDDP, 

the set of documents is normalized and centered first, i.e., let W be the term-document 

matrix, and w be the average of the columns of W, then compute the largest singular 

value triplet { u, a, v} of W - weT. The set of documents are partitioned based on the 

corresponding values of v = ( v.): one simple scheme is to let those with positive v. 
z z 

go into one cluster and the rest into another cluster. The whole process is repeated 

on the term-document matrices of the two sub-clusters, respectively. Although both 

SRE and PDDP make use of the singular vectors of some versions of the term-document 

matrices, they are derived from fundamentally different principles: PDDP is a feature-

based clustering method, projecting all the data points to a one-dimensional subspace 

spanned by the first principal axis; SRE is a similarity-based clustering method with 

two co-occurring variables (terms and documents in the context of document clustering) 

clustered simultaneously. Unlike SRE, PDDP does not have a well-defined objective 

function for minimization. It only partitions the columns of the term-document matrices 

while SRE partitions both of its rows and columns. This will have significant impact on 

the computational costs. PDDP, however, has an advantage that it can be applied to a 

data set with both positive and negative values while SRE can only be applied to that 

with non-negative data values. 
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Mixture SRE(CutO) SRE(Ncut) SRE(Mcut) PDDP K-means 
50750 92.12 ± 3.52 93.92 ± 4.94 94.85 ± 2.37 91.90 ± 3.19 76.93 ± 14.42 

507100 90.57 ± 3.11 95.86 ± 2.07 95.28 ± 2.51 86.11 ± 3.94 76.74 ± 14.01 
507150 88.04 ± 3.90 96.18 ± 2.98 95.15 ± 3.24 78.60 ± 5.03 68.80 ± 13.55 
507200 82.77 ± 5.24 96.53 ± 2.42 94.14 ± 5.84 70.43 ± 6.04 69.22 ± 12.34 

Table 4.1. 
Comparison of SRE, PDDP, and K-means (NG1/NG2). Accuracy is in percentage(%). 

Mixture SRE(CutO) SRE(Ncut) SRE(Mcut) PDDP K-means 
50750 74.56 ± 8.93 71.36 ± 11.68 73.14 ± 12.11 73.40 ± 10.07 61.61 ± 8.77 

507100 67.13 ± 7.17 66.61 ± 10.25 69.04 ± 10.47 67.10 ± 10.20 64.40 ± 9.37 
507150 58.30 ± 5.99 69.69 ± 6.82 68.68 ± 7.10 58.72 ± 7.48 62.53 ± 8.20 
507200 57.55 ± 5.69 74.26 ± 5.16 71.12 ± 8.29 56.63 ± 4.84 60.82 ± 7.54 

Table 4.2. 
Comparison ofSRE, PDDP, and K-means (NG10/NG11). Accuracy is in percentage(%). 

Mixture SRE(CutO) SRE(Ncut) SRE(Mcut) PDDP K-means 
50750 73.66 ± 10.53 61.94 ± 6.89 66.92 ± 8.60 69.52 ± 12.83 62.25 ± 9.94 

507100 67.23 ± 7.84 64.48 ± 9.88 71.44 ± 11.53 67.84 ± 7.30 60.91 ± 7.92 
507150 65.83 ± 12.79 70.34 ± 8.74 74.39 ± 9.39 60.37. ± 9.85 63.32 ± 8.26 
507200 61.23 ± 9.88 72.27 ± 7.53 73.50 ± 8.09 60.76 ± 5.55 64.50 ± 7.58 

Table 4.3. 
Comparison ofSRE, PDDP, and K-means (NG18/NG19). Accuracy is in percentage(%). 
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II mideast I graphics I space I baseball I motorcycles I 
cluster 1 87 0 0 2 0 
cluster 2 7 90 7 6 7 
cluster 3 3 9 84 1 1 
cluster 4 0 0 1 88 0 
cluster 5 3 1 8 3 92 

Table 4.4. 
·Confusion matrix for newsgroups {NG2, NG9, NG10, NG15, NG18}. 

EXAMPLE 2. In this example, we examine binary clustering with both even and 

uneven clusters. We consider three pairs of newsgroups: NG1 and NG2 which are well-

separated; NG10 and NGll; and NG18 and NG19. The latter two have a large overlap. 

We use document frequency as the feature selection criterion and delete the words that 

occur in less than 5 documents in each data sets we use. For both the K-means and 

PDDP, we apply tj · idf weighting scheme together with document length normalization 

so that each document vector will have Euclidean norm one. For SRE we trim the raw 

frequency so that the maximum is 10. For each newsgroup pair, we select four types 

of mixture of articles: mjn indicates that m articles are from the first group and n 

from the second group. The results are listed in Tables 4.1, 4.2, and 4.3. We randomly 

sample 100 times and list the means and standard deviations. We should emphasize 

that the K-means method can only find local minimum, and the results highly depend 

on the initial values and stopping criteria. This is also reflected by the large standard 

deviations associated with the K-means method. From the three tests we conclude that . 
both SRE and PDDP outperform the K-means method. The performance of SRE and 

' ' 
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PDDP are similar in the balanced mixtures, but SRE is superior to PDDP in the skewed 

mixtures, especially for SRE(Ncut) and SRE(Mcut) where the results are much better 

at the expense of higher running time. 

EXAMPLE 3. In this example, we consider an easy multi-cluster case. We examine 

five newsgroups NG2, NG9, NGlO, NG15, NG18 which were also considered in [72]. 

We sample 100 articles from each newsgroups and use mutual information for feature 

selection. We use the minimum normalized cut to search for the cut points in each 

recursion. Table 4.4 gives the confusion matrix for one sample. The accuracy for this 

sample is 88.2%. We also test two other samples with accuracy 85.4% and 81.2%, which 

compare favorably with those obtained for three samples with accuracy 59%, 58% and 

53% reported in (72]. In the following, we list the top few words for each clusters 

computed by mutual information. 

Cluster 1: 

armenian israel arab palestinian peopl jev isra 

iran muslim kill turkis var greek iraqi adl call 

Cluster 2: 

imag file bit green gif mail graphic colour 

group version comput jpeg blue xv ftp ac uk list 

Cluster 3: 

univers space nasa theori system mission henri 

moon cost sky launch orbit shuttl physic vork 

Cluster 4: 



clutch year game gant player team hirschbeck 

basebal won hi lost ball defens base run win 

Cluster 5: 

bike dog lock ride don wave drive black 

articl write apr motorcycl ca turn dod insur 

4.6 Concluding remarks 
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In this chapter, we formulate a class of clustering problems as bipartite graph 

partitioning problems, and we show that efficient optimal solutions can be found by 

computing the partial singular value decomposition of some scaled edge weight matri­

ces. We have also shown, however, that there still remain many challenging problems. 

One area that needs further investigation is the selection of cut points and number of 

clusters using multiple left and right singular vectors and the possibility of adding local 

refinements to improve clustering quality. It will be difficult to use local refinement for 

PDDP because it does not have a global objective function for minimization. Another 

area is finding efficient algorithms for handling overlapping clusters. Finally, the treat­

ment of missing data under our bipartite graph model, especially when we apply our 

spectral clustering methods to the problem of data analysis of recommender systems, 

also deserves further investigation. 



Chapter 5 

Correspondence analysis as result of 

spectral cluster analysis 
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Correspondence analysis (CA) is a method in multivariate statistics to analyze 

the relationship between two different types of data objects. This technique applies 

the singular value decomposition (SVD) to the contingency table similar to principal 

component analysis (PCA). For most cases, CA projects the data objects into a 2- dim 

space. This plot in the reduced dimension space gives a clear graphical view of the data 

with higher dimensions so that the spatial relationship between different variables can 

be recognized much more easily than in the original space. 

Compared to PCA, however, CA has received much less attention. While PCA 

is a major topic in almost every book on multivariate statistics, CA is simply ignored 

in many books. It appears that the standard descriptions of CA emphasize the geomet­

ric interpretations whose statistical significances are not immediately clear, while the 

differences or the advantages of CA over PCA have not been effectively articulated. 

In this chapter, we provide a new view of CA based on the cluster analysis of 

two-way contingency table data. It is shown that CA is the direct results of clustering 

row and column objects simultaneously using a hi-clustering method (§4) based on the 

Mcut method (§3). 

This new hi-clustering point of view leads to the following important results. 

1) It emphasizes the "correspondence" nature of the two-way contingency data, the 
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relationship between row objects defined or characterized by their representations in 

column objects, and vice versa. This "duality" relationship between columns and rows 

(or those between words and documents) has been emphasized in information retrieval 

(70, 19]. 2) A similarity measure between the same-type objects is naturally defined 

based on probabilistic associations of the non-negative contingency table data. It is this 

similarity that defines the clusters that the clustering procedure is trying to discover. 3) 

It gives a precise explanation of the ordination between the same-type and between the 

different-type objects. 4) It provides a concrete and effective procedure for clustering. 

5.1 CA - a slight variation of PCA? 

Given a contingency table P with m rows and n columns, we can calculate the 

principal components, i.e., singular value decomposition, as 

where h is the rank of matrix P, h ::::; min{m, n). Note here, we did not center the 

data (i.e., subtract the mean) because typically the table entries are the counts of oc-

currences; u1, u2, · · · , uh are principal components for row objects, and v 
1

, v 
2

, · · · , v h 

are for column objects. 

Correspondence analysis of P proceeds considerably the same way, although typ-

ical descriptions of CA (38, 4] are somewhat complicated so that the main points are not 
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explained very clearly. Write 

where D = diag(r), r = (p ,p , · · · ,p )T, p. = 2:::-P· ., and D = diag(c), c = 
r .1 .2 .n .z z ZJ c 

(p ,p , .. · ,p )T, P. = I: .p . .. Then CA is the same as PCA, except inCA, the 
I. 2. m. z. J ZJ 

SVD is applied to the scaled contingency table 

h 
P~ _ D-I/2PD-I/2 _ """'~ \ ~T 

- - L.__; Uk/\k V ' 
r c k=1 k 

(5.I) 

instead on P directly. The largest singular value of P and its corresponding singular 

vectors are 

\ - I ~ - D1/2 I 1/2 ~ - D1/2 I 1/2 
/\1- ' u1- em P ' v1- en P 

r .. c .. 
(5.2) 

where p =I: . . p .. = IID1
/
2

11
2 = IID1

/
2

11
2

, and e is a vector of alii's with dimension 
•• ZJ ZJ r 2 c 2 m 

m. Now, we have the familiar form 

Note that, in standard CA, the contingency table is scaled such that p = I. Here we 

leave open the option that one directly works on the contingency table without such an 
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~ 

overall scaling. Everything works equally well. The key point here is that P is invariant 

with regard to this overall scaling. 

In CA, an important difference from PCA is that the "principal components" are 

D-112uk and D-112vk. In the 2-dim CA plot, column objects are represented by the 
r c 

principal coordinates (~2D-l/2v2 , ~3n- 112v3 ), and row objects are represented by 
c c 

the principal coordinates (~2D-l/2u2 , ~3n- 112u3). Here the scale of each dimension 
r r 

is set to be the corresponding singular value ~k' the same as in PCA. Note that we 

use k = 2, 3, · · · , h (instead of k = 1, 2, · · · , h - 1 in usual CA formulations) both to 

emphasize the connection to PCA and to be consistent with the clustering framework 

discussed later in this chapter. 

Two critical questions regarding CA are: 1) why use the scaled contingency table 

P, in stead of the original one? 2) why use D-112uk and D-112v k as the "principal 
r c 

components", instead of the seemingly more direct D
112uk and D 112v k? The main 
r c · 

contribution of this chapter is to show that: 1) P defines a more consistent similarity 

metric, and it arises naturally in the clustering procedure; 2) D - 112uk and D -l/2v k 
r c 

are the better components (indicator vectors) for the clustering. 

5.1.1 Scaled principal components 

The above scaled contingency table approach is in fact a generalization of a scaled 

principal components analysis (SPCA) approach. For a symmetric similarity matrix S 

with all non-negative elements, we perform the following expansion 
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where D = diag(d) and d = (s , s , · · · , s )T. In SPCA, the SVD is applied to the 
.1 .2 .m 

d . . s~ v-1/2sv-1/2 "'h ~ ~ ~T . d s d. l scale covanance matriX = = 6 Uk/\kU , tnstea on trect y. 
k=1 k 

The largest eigenvalue of S and its corresponding eigenvector are ~1 = 1 and ii1 = 

n 112e js112
, respectively, where s = L: .. s . .. Then we have the standard SPCA form 

m .. ·· ZJ ZJ 

h 
s =ddT /s .. + L D(D-lf2u.k)~k(D-lf2u.k)T D. 

k=2 

In SPCA, the "principal components" are D-112uk. Following we will see that D-112iik 

are actually the indicator vectors used to identify the clusters in a cluster method. 

5.1.2 Mcut and SPCA 

The Mcut method introduced in §3 is used to partition the weighted graph G (V, E) 

with weight matrix W, such that the Mcut value (1.8) is minimized. This minimization 

problem is equivalent to minimizing 

T 
J _ q (D- W)q 
M- qTWq ' 

(5.3) 

where D ~ diag(We). Relaxing the indicator vector q from two discrete values {a, -b} 

to the continuous values in [-1, 1], and maintaining the positivity of qT Wq, the solution 

to the minimization problem can be transformed to 

(D- W)q = (Wq. (5.4) 
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Clearly, the eigenvector q
1 

= e associated with (
1 

= 0 is a trivial solution and does 

not satisfy our requirement. The eigenvector q
2 

associated with the second smallest 

eigenvalue (
2 

satisfies the orthogonal condition qT We = qT De = 0, hence provides a 
2 2 

good linear search heuristic. 

or 

(5.4) can be rewritten as the generalized eigensystem 

( 
(D - W)q = --Dq 

1+( 

wz- = (D-112wD-112)z = .xz-, z = D 1/
2
q and .X= 1/(1 + (). 

(5.5) 

(5.6) 

This equation can be further written as (I- W)z = (1- .X)z, and I- W is called the 

normalized Laplacian matrix of a weighted graph. 

Now the connection to SPCA is clear. Replacing the weight matrix W by the 

similarity or covariance matrix S, z. = ii. are exactly the eigenvectors of S, and the 
z z 

indicator vectors for the clustering are q = D-112iii, the principal components in SPCA. 

Following we prove that CA is a natural generalization of the SPCA framework 

to asymmetric matrix, the two-way contingency table. We begin by introducing bi-

clustering using the Mcut method. 

5.2 Bi-clustering using Mcut 

An m x n contingency table can be represented by a weighted bipartite graph 

G(R, C, E) shown in Figure 1.1. Each row object denotes an r-type data object and 
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each column object denotes a c-type data object. (Usually a row stands for a sample, 

an event, and a column stands for a variable, an attribute.) A non-zero entry p .. in the 
ZJ 

contingency table records the count of co-occurrences of row object r. and column object 
z 

c., and is represented by a weighted edge between r. and c. in the bipartite graph. There 
J z J 

is no edge between the same-type data objects. Since the table entries are integers, An 

incidence matrix can be generated based on the bipartite graph, as is done in [54, 47]. 

Assume there are two types of data objects, Rand C. Hi-clustering (also called 

co-clustering [18]) on a bipartite graph G(R, C, E) is a method to cluster two types of 

data objects simultaneously, based on the relationship provided by the 2-way contingency 

table, such that the cluster of one data type has larger connection with the cluster of 

another data type. Here we apply the Mcut method to the bipartite graph and show 

that the solution to this graph partitioning problem is exactly those indicator vectors in 

CA. 

For this purpose, the indicator variables are represented by two sets: f and g. f 

determines the split of R into R1 and R
2

, and g determines the split of C into c
1 

and 

C2. Suppose we have found the optimal splits based on f and g, then we can write the 

contingency table as 

) (5.7) 
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The objective function (1.8) becomes 

(5.8) 

where W(PR. C ) = L:. R k C p.k is the cut size between R1 and C2, and W(PR C ) 
1, 2 zE b E 2 z 2, 1 

is the cut size between R2 and C1. W(P R C ), W(P R C ) are the similarities within 
' 1, 1 2, 2 

the two clusters (Figure 1.1). Note that the minimization of the Mcut value implies a 

smaller value for J M in (5.3), which in turn implies a smaller value for ( and a large 

value for A. 

Now we wish to solve the eigensystem (5.6). We need to construct a symmetric 

weight matrix W from the rectangle matrix P. The standard construction (36, 46, 82, 18] 

is 

( 

0 p) 
W= 

PT 0 

Then D = diag(D , D ). z can be represented by the indicator vectors f, gas r c 

Putting all these into (5.6), we have 

(5.9) 

(5.10) 

(5.11) 
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The solutions to (5.11) are the SVD of Pin (5.1), with 

~ ~ 

y=vk' k = 1,2, ... ,h. 

Another set of solutions is x = uk' ~ 

y = -vk' 

is negative, i.e., the minimum value of J M is negative. Therefore this set of solutions 

is not useful. It is easy to prove that the singular values >..k of D-
112pn-112 are less 

r c 

than or equal to 1. The largest singular triplet is given in (5.2). They are simply the 

centroids of row and column objects. From (5.10), the optimal indicator vectors for the 

cluster analysis are 

f = D-1/2~ 
k uk' 

r 
(5.12) 

which are the exact solutions to CA. 

Once fk, gk axe available, we form a single indicator vector qk ~ ( :: ) , then 

sort q2 to provide a linear order for both r-type and c-type objects. Using the Mcut 

algorithm, we choose as the cut point i cut the one at which the minimum Mcut value is 

obtained. The data objects on one side of the cut point belong to one cluster and those 

on the other side belong to another cluster. This automatically splits the c-type objects 

into two parts 
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and the r-type objects into two parts as well 

R1 = {r. I i < i t} R 2 = {r. I i > i t}. z - cu z cu 

This gives the optimal hi-clustering result of the contingency table data objects. 

5.3 Correspondence analysis 

Now we can answer the critical questions raised in section 5.1. First, P arises 

naturally from the clustering procedures (5.7, 5.9). Second, from (5.12), we see that 

it is fk = D-112uk and gk = D-112vk' not n
112

uk and n
112

vk that determine the 
r c r c 

optimal clustering of row and column objects. This is the main advantage of CA over 

PCA. 

It is important to note that, both the scales and signs of fk and gk are automati-

cally matched because they are the integral parts of the solution to one equation. That 

is the reason why we can combine fk and gk to form a single vector qk' and plot (q2, q3) 

in a 2 - dim space. 

Sorting f
2 

provides an optimal order for the r-type objects, and sorting g
2 

provides 

an optimal order for the c-type objects. The exact meaning of "optimal order" will be 

explored in section 5.4.1. With these optimal orders, the rows and columns of the 

contingency table are re-arranged, which essentially groups the data objects with high 

associations. 

Let U = (u2, u3, · · · , uh) and V = (v 2, v 
3

, · · · , v h). The orthonormal properties 

of SVD give UTU = Ih_1 and VTV = Ih_
1
. Now let A= D 112u and B = n 112v. 

r c 



We have 

T -1 
A. D A= Ih_ 1, 

r 

T -1 
B D B=lh_1, 

c 
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the same as (4.1.9) in [38]. Let F = (f
2

, f3, · · · , fh) = D-
112u and G = (g2, g3, · · · , gh) = 

r 

D- 112v. We have 
c 

the same as (4.1.18) in [38]. (Note that our FA and GA correspond to F and Gin [38], 

where A= diag(>.2, · · · , >.h)' the same as D JL in [38]). With these notations, we rewrite 

the CA in a simple form 

T ~ T T P-re fp =L....,DfkAkg D =DFAG D. 
.. r k c r c 

k=2 

{5.13) 

An interesting and useful known result in CA is Pearson's chi-square test, x = 

I: .. (p . . -e . . ) 2 f e . . , where e . . is the expected count assuming the rows and columns are 
ZJ ZJ ZJ ZJ ZJ 

independently distributed, i.e., e .. = P. p ./P = r.c.fp . Using {5.13), we have 
. ZJ z. ·J •• Z J •. 

= p Tr[(D1/ 2 F AGT D 1/ 2)T {D1/ 2 F AGT n112)] 
r c r c 
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For the contingency table, the number of degrees of freedom is ( m- 1) ( n- 1), which can 

be used to judge if the row and column distributions are independent. Since larger )..k 

implies smaller (k (cf. (5.6)), hence better clustering results, the good clustering results 

imply large deviation from the row-column independence. Random distributions have 

no interesting patterns and the good clustering results imply highly correlation patterns. 

These intuitions are made precise and quantitative in our cluster analysis. 

5.3.1 Reciprocal averaging 

Hill (47] emphasized the ordination (also called seriation) point of view of CA 

by using reciprocal averaging. The basic idea was first developed in plant ecology and 

archaeology, the so called "gradient analysis". that aimed at determining an order of 

plant preference to certain conditions. It is an iterative procedure: start with an initial 

order g(O), usually an "educated guess", for row objects, and calculate an order f(O) 

for column objects, which in turn generates a better order g(l) for row objects. This 

procedure can be expressed as 

g(t+l) =).. -1 "(p .. jp .)it)' 
j ~ ZJ •J i 

z 

where t is the iteration step. When the convergence is reached, we have 

f=A.-lD-1Pg, g=A.-lD-lPTf, 
r. c 
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which can be equivalently written as 

(Dl/2f) =A -1 P(Dl/2g), (D1/2g) =A -1 PT (D1/2f). (5.14) 
r c c r 

(5.14) is identical to (5.10, 5.11). Therefore the ordination or seriation scores computed 

in reciprocal averaging are precisely the "principal components" of CA. 

5.4 Ordination of objects 

5.4.1 Ordination of objects with different types 

But what is exactly the nature of the ordination behind the gradient analysis? 

Although full of ecologist intuitions, a precise definition or explanation is still lacking. 

Using the cluster analysis described here, we can give a concrete explanation of the nature 

of the ordination. As noted earlier, in CA, the principal components fk and gk have 

the same scales and signs, therefore can be mixed to determine· the ordination. Second, 

' 2 2 2 . 
note that E .. (q. -q.) w .. =E .. 2(q -q.q.)w .. = E- 2q E. w . . -E. E. 2q.q.w .. = 

ZJ Z J ZJ ZJ i Z J ZJ t i J ZJ Z J Z J ZJ 

2qT (D- W)q. The solution to {1.8) is equivalent to minimizing the following function 

qT(D- W)q E- .(q.- q .)2w .. 
J(q) = = ZJ Z J ZJ 

qTDq 2qTDq 
(5.15) 

For a large w . . , (q.- q .)
2 

should be small in order to minimize J(q). Hence the data 
· ZJ Z J 

objects q.,q. with large w .. will be close to each other in the sorted order. This is the 
Z J ZJ 

nature of the ordination. 



Now q has two types of variables, f and g, and 

2 
~-.(f.- 9 .) p .. 

J(q) = ZJ Z J ZJ' 
fTD f+gTD g 

r c 
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which means there exists an ordination between the r-type and c-type variables. When 

p . . is large, the corresponding r., c. values are close, i.e., they are close in the 2-dim CA 
ZJ Z J 

plot. It shows that correspondence analysis captures the essential correlations between 

r-type and c-type variables, reflecting and quantifying our intuition that a large p .. 
ZJ 

implies a large joint probability between r. and c .. 
z J 

5.4.2 Ordination of objects with the same type 

What is the ordination between the same type of objects, say two r-type objects? 

Their ordering is determined by their relative ordination with the c-type variables. Before 

proceeding, we define the similarity between two data objects of the same type. 

5.4.2.1 Similarity metrics 

The similarity or association between two row objects r ., r. is defined as the prob­
z J 

ability accumulation. We interpret pik as the probability of the association between row 

object ri and column object ck (joint probability of occurrence of ri and ck). The proba­

bility of the association between ck and rj is pjk" Thus, the probability of the association 

between r. and r. through ck is p.kp .k. The total probability of the association is the 
z J z J 



118 

sum over all column objects, 

. n -1 T 
s1m(r.,r.) = LP·kP·kfp = (PD P ) .. , 

Z J Z J .k C ZJ 
k=1 

(5.16) 

where each column is inversely weighted by its marginal probability p . If the entries 
.k 

of a particular column are very large, this column will unduly dominate the summa-

tion. The inverse p weight is introduced to prevent this situation from happening . 
. k 

Srr = P D - 1 PT is the row-row similarity matrix with each entry as the similarity of 
c 

corresponding row data objects. The similarity or association between two column ob-

jects ck, c
1 

can be similarly defined as 

(5.17) 

where each row is inversely weighted by its marginal probability P . . Sec = PT D-1 P 
z. r 

contains the similarities between all pairs of column objects. With this definition, the 

self-similarities sim(r ., r .) =/= 1. To properly judge the magnitude of the similarity, we z z 

sometimes use the similarity coefficients 

sim(r., r .) rr z J 
p - ----r===:===:=-r==== 
ij . lsim(r.,r.) fsim(r.,r.) v z z v J J 

(PD,--1 fiT)1f2(PD-1 fiT)1/2 
c ii c jj 

between two r-type objects, and 
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between two c-type objects. 

An important property of these similarity matrices is that, the sum of the ith row 

of srr is 

(Srr e ). 
m t 

which is ( D ) .. , and similarly for Sec. This property guarantees that the associations 
ru 

between the same-type objects inCA are correctly maintained, as if the data objects are 

clustered separately based on their own data types. 

5.4.2.2 Ordination 

Now we return to the ordination of the data objects with the same data type. 

Suppose two c-type data objects c. and c. are both close to some r-tpye data objects 
t J 

rk' then ci,cj should not be too far away. Sum over all possible "middle man" rk' the 

relationship between c. and c. is determined by their similarity defined in ( 5.17). Thus, 
z J 

the association between two variables or between two samples produced in correspon-

dence analysis is governed by their similarity. We call this ordination "duality induced" 

ordination, to differentiate it from the direct ordination for the symmetric graphs. 

More precisely, this duality induced ordination follows the similarity between two 

row objects defined in (5.16). To see this point more clearly, note that (5.14), which 

determines the indicator vector f, can be written as (D-lf2PD-IPTD-l/2)x = >.x, 
r c r 



the same as 

Srrf =AD f. 
r 
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(5.18} 

Using (5.18), the second largest eigenvector of (5.4} can be obtained by minimizing the 

following objective 

f. and f. with a large Srr are forced to be close in order to minimize the objective. 
~ J ij 

After sorting f, they will stay near each other. 

5.5 Examples 

5.5.1 Hair color and eye color 

The classic example analyzed by Fisher, the hair color - eye color example, is 

listed in Table 5.1. The similarity coefficients are listed in Table 5.2 and the CA plot 

is shown in Figure 5.1. In Figure 5.1, we see one clear cluster in the right upper part, 

roughly corresponding to the upper left part of the contingency table. Another cluster 

of three points is in the upper left part of Figure 5.1, roughly corresponding to the lower 

right part of the contingency table. The third cluster of two points, medium hair and 

medium eyes, is in the middle of the contingency table. The global structure of this 

example is in fact similar to the above analysis. 
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On associations between different-type objects, three high similarity pairs are 

seen: light eye, fair hair; medium eye, medium hair; and dark eye, dark hair. Each 

pair is both close in CA plot and also has large joint probability of occurrence in the 

contingency table. On associations between the same-type objects, "blue eye" is very 

close to "light eye" inCA plot. Their similarity coefficient (Table 5.2) is very high, 0.99. 

The ordination is also quite clear. The order of the data objects is determined in CA 

such that the farther away the objects are in that order, the less similar they are. This 

is clearly reflected in the similarity coefficient table: the farther away from the diagonal, 

the smaller the row-row and column-column similarities. 

Hair 
Eye J:t'atr .Ked Medmm Uark l:Hack 
Light 688 116 584 188 4 
Blue 326 38 241 110 3 
Medium 343 84 909 I 412 26 
Dark 98 48 403 I 681 85 

Table 5.1. 
Hair color and eye color 

5.5.2 Document clustering 

A simple Bell Labs tech memo [17] provides a more interesting situation. Here, we 

illustrate the difference between CA and PCA (more precisely, latent semantic indexing 
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Fair Red Medium Dark Black Hair 
1 0.95 0.83 0.52 0.26 Fair 

Light 1 1 0.94 0.71 0.48 Red 
Blue 0.99 1 1 0.80 0.57 Medium 
Medium 0.85 0.84 1 1 0.95 Dark 
Dark 0.52 0.55 0.78 1 1 Black 
Eye Light Blue Medium Dark 

Table 5.2. 
Similarity coefficients cross table. Lower left half for eye color and upper right half for 
hair color. 

[17]) as popularly done in the information retrieval community. (This example is also in 

[5]). The tech memo is listed in Table 5.3. 

Table 5.4 shows the contingency table with columns and rows ordered by CA. 

The similarity coefficients are listed in Table 5.5. 

Look at the global structure first. Columns c 4, c1, c
3 

appear to form a cluster, 

and m 1, m 2, m
3

, m4 appear to form another cluster; c2 must be in the middle of the 

columns because it has non-zero similarity with both ?lusters. Being most similar to c
2

, 

c5 must stay next to c2. 

On finer scale structures, note first that c
5 

has to be located left of c
2 

because 

c5 has a non-zero similarity with cluster {c
4
,c

3
,c

3
} and zero similarity with cluster 

larity with c2. Most intriguing is that c 4 is located left of c
1

, even though c 
4 

has a larger 

similarity (0.56) to c3 than c1 does (0.32). However, note that c
4 

has a smaller similarity 

(0.22) to c2 than c1 does (0.25) due to the normalization effects so that the word system 

has a smaller weight than computer, although it may seem that c 
4 

should have a larger 



Titles: 
cl: Human machine interface for Lab ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user inter face management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user-perceived response time to error measurement 

m1: The generation of random, binary, unordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

Table 5.3. 
Bell Labs tech memo 
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similarity with c
2 

since c4 contains a "2" instead ofthe corresponding "1" in c
3

. It seems 

the global consideration in minimizing (5.15) favors the difference in long-range correla-

we modify the data by replacing "2" with "3", then c 4 will be located right of c
1 

because 

both short~ and long-range correlations favor this order. In Figure 5.2, we show CA and 

PCA analysis of the tech memo example. In Figure 5.2(a), words are intermingled with 

documents. The words human, EP S, interface, and system are closely mingled with 

documents c 
4

, c
1

, c3. Indeed, they belong to the same cluster using the Mcut algorithm 

(see below). The word user is very close to document c
2 

and the words response and 

time (they completely overlap) are very close to document c
5

. The words survey, graph, 

and trees are very close to documents m 
4

, m
3

, m
2

, m
1
. 

In Figure 5.2(b), we plot documents only, in order to facilitate the comparison with 

PCA analysis in Figure 5.2(c) and 5.2(d); m 1, m
2

, m
3

, 1?1
4 

forms a cluster, and documents 



124 

c4 c, c~ c!l c2 m4 mii m? m, 
human 1 1 
EPS 1 1 
inter face 1 1 
system 2 1 1 
computer 1 1 
user 1 1 1 
response 1 1 
time 1 1 
survey 1 1 
minors 1 1 
graph 1 1 1 
trees 1 1 1 

Table 5.4. 
Contingency table 

c4,c
3
,c1 form another cluster. Documents c2,c

5 
form the third cluster. These trends 

are not as clear in the PCA plot. In Figure 5.2(c), using the first and second principal 

components, one might s,ay there are 2 clusters; one consists of m
1

, · · · , m 
4

, and another 

consists of c1, · · · , c5. It is not apparent that c2, c
5 

belong to the same cluster. In Figure 

5.2(d), we use the second and third principal components. The results are qualitatively 

similar to Figure 5.2(b ). The three-cluster structure is more visible, although m
1 

is a 

bit closer to c1 than to its own cluster. 

All these analyses can be performed automatically using the Mcut clustering 

algorithm described in section 5.2. First, the contingency table is divided into 2 blocks, 

one consisting of the lower-right block in Table 5.4, and the other consisting of the upper-

left block including c1, · · · ; c5, which is then further split into 2 clusters, leading to the 
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c4 1 

cl 0.28 1 

c3 0.56 0.32 1 

c5 0.22 1 

c2 0.22 0.25 0.28 0.71 1 

m4 0.26 1 

m3 0.66 1 

m2- 0.35 0.75 1 

m, 0.53 0.70 1 

c.i c, c::t c!'i c2 m.i m::t m2 m, 

Table 5.5. 
Similarity matrix 

three-cluster structure in Table 5.4. The essential feature is the clear correspondence 

between words and documents . 

. 5.6 Concluding remarks 

In this chapter, we provide a new interpretation of correspondence analysis from 

the point of view of data clustering using a bipartite graph to represent the two-way 

contingency table. The key result of this work is that the principal components in CA 

are the indicator variables used for clustering the row and column objects in the min-max 

cut hi-clustering algorithm. This clustering framework further provides an automatic and 

effective clustering procedure to analyze the two-way contingency table. 

We analyze the contingency table from a bipartite graph model and propose a 

similarity metric based on probabilistic accumulation of associations. This similarity 

defines the clusters that the clustering procedure is seeking. Furthermore, we give a 
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precise explanation of the ordination or seriation of CA as emphasized by Hill: In terms of 

similarity coefficient matrix, as we move away from the diagonal elements, the similarity 

steadily decreases. 
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Fig. 5.1. 2D CA plot of the hair color and eye color example. 
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Fig. 5.2. Display of tech memo. (a) Apply CA analysis to both words (circles) and 
documents (triangles). (b) Apply CA analysis to documents only. (c) Apply PCA to 
documents, first principal component vs second principal component. (d) Apply PCA 
to documents, second principal component vs third principal component. 
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Chapter 6 

Conclusions 

The ta.Sk of organizing the large amounts of data becomes increasingly important 

in the digital world in which Internet access is becoming available almost everywhere 

and the digital data is generated, in many cases, at an exponential rate. To make things 

worse, many data generated at such a high rate have no apparent order, making it 

difficult for the user to enjoy the abundance of information. 

Data clustering is a useful approach for analyzing the patterns of the observed 

data objects. Among different data clustering methods, the spectral graph partitioning 

methods are very effective tools used to reveal the relations hidden in the seemingly 

chaotic data objects and restore the order of the data. This naturally leads us to consider 
\ 

applying the spectral methods to organize the Internet world; §2 is an effort to carry out 

this ta.Sk. 

In §2, the idea of normalized cut criterion is borrowed from the image segmentation 

field to cluster the web documents of the World Wide Web. The normalized cut method 

utilizes the underlying latent human annotation of the WWW, the hyperlink structure, 

to group the web documents into meaningful topics. The normalized cut method gives 

good linear order to search for the approximate optimal cut point, which reduces the 

combinatoric nature of the problem to a liiiear one with good mathematical formulation. 
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The experiment shows that the normalized cut method is capable of addressing the 

problem raised in the first paragraph. 

Currently, the World Wide Web contains billions of documents and is still growing 

rapidly. This poses a serious problem to the normalized cut, or the spectral methods in 

. general. The spectral method has a notorious reputation of having long running time. 

This problem can be partially tackled in our algorithm. First, the number of web docu­

ments involved is only a very small ,subset of the entire web. We merely retrieve relevant 

documents and their neighbors. By neighbors, we mean those documents linking to or 

linked by them. This is a sound choice. Second, the link graph formed is sparse, which 

means the computation of the eigenvector can be fast. Third, with the improvement of 

hardware and software packages, the running time can be reduced significantly in the 

foreseeable future. Two problems with this method remain. One is how to evaluate 

the clustering results. The evaluation scheme under· the web circumstance seems hard 

to design, and the judgement of the clustering quality is more subjective; this problem 

exists for most web document clustering methods. The second is how to modify the 

clustering results incrementally, that is, omitting the need to re-compute the entire data 

set again. These two problems are the main focus of future research. 

There are many web communities that have very low connection or none at all, 

which form a disconnected, or nearly disconnected, web graph. This phenomenon is 

hard to detect by traditional algorithms in graph theory, but the spectral method can 

be applied successfully [20]. 

We have seen the success application of the normalized cut method to the web 

document clustering, but the new clustering criterion, the min-max cut criterion, proves 
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to be a better method, both experimentally and theoretically. When the overlap between 

two true clusters are relatively large, the min-max cut method often gives better results. 

This conclusion is supported in §3. The min-max cut tends to produce balanced clusters 

and is less prone to skewed cut, which is preferable in many applications, such as the 

load balance in multiprocessor environment. 

The Fiedler vector provides a good linear order for searching for an optimal cut 

point, but it may not be the best one. The Linkage Differential order proposed in §3 

seeks to find a better linear search order by reducing the min-max cut objective function. 

Searching for the new cut point based on the Linkage Differential order consistently 

outperforms those based on the order provided by the Fiedler vector. More important, 

this refinement procedure can start with any good initial partition. 

Now, the normalized cut and min-max cut methods are applied successfully to 

cases in which the matrix formed is symmetric. Intuitively, we wonder if these two 

methods can be extended to the application area of an asymmetric case. The results in §4 

provide a positive answer. The bipartite graph model has a wide variety of applications. 

Examples include the terms and documents analysis, as well as customers and purchased 

items in market basket analysis. The application of the normalized cut and min-max 

cut methods to the bipartite graph partition naturally leads to an SVD problem for the 

underlying asymmetric weight matrix, automatically associating two different types of 

clusters. 

Correspondence analysis (CA) is a well-known method in multivariate statistics 

used to analyze contingency tables formed by two types of data objects .. The bipartite 

graph partitioning methods introduced in §4 use the similar data objects. In §5, we reveal 
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that the spectral hi-clustering method using the min-max cut has an intrinsic relation 

to CA. CA is the direct result of clustering row and column data objects simultaneously 

using the hi-clustering method based on the min-max cut. CA captures the essential 

correlation between two types of data objects. Based on this result, we claim that CA 

is more advantageous than the popular Principle Component Analysis (PCA). 

The spectral methods provide a promising result on data clustering; however, 

there still remains interesting and challenging problems. One is the K-way partition 

using multiple eigenvectors (or singular vectors in the asymmetric case) to get the mul­

tiple clusters at the same time. The preliminary results in this direction are presented 

in [39, 81]. Another problem is how to deal with missing data in the spectral method. 

The missing data is common in many commercial data sets. Finally, current spectral 

me~hods lack the capability of dealing with cases in which the data objects belong to 

more than one cluster. These problems deserve further investigation. 
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Appendix A 

The HITS algorithm 

Here we briefly introduce Kleinberg's HITS algorithm to find the authorities and 

hubs of each cluster we obtained. Kleinberg (56] defines the authorities as the most 

relevant documents for the topic. The Hubs are defined as the web documents which 

link to many related authorities. They implicitly represent an "endorsement" of the 

authorities they point to. The authority and hub information can be retrieved based 

entirely on the link structure information. Since a good authority is pointed to by many 

good hubs and a good hub points to many good authorities, such mutually rein forcing 

relationship can be represented as: 

X 
p I: yq 

q:(q,p)EE 

y = ~ X 
p L.....J q 

q:(p,q)EE 

(A. I) 

(A.2) 

where xp is the authority weight of web document x and yp is the hub weight. E is 

the set of links( edges). Iteratively update the authority and hub weights of every web 

document, using Eqns.(A.l) and (A.2), and sort the web documents in decreasing order 

according to their authority and hub weights, respectively, we can obtain the authorities 
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and hubs of the topic. Many other issues need to be taken into consideration, such as 

the hyperlinks from the same web site, etc. 

Let A be the adjacency matrix of the link graph, x be the vector of authority 

weights andy be the vector of hub weights, then (A.l) and (A.2) can be transformed to 

which leads to 

T 
x=A y, 

T 
x=A Ax, 

y=Ax 

T 
y=AA y. 

Clearly, x andy are the principal eigenvectors of AT A and AAT, respectively. 

I 
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Appendix B 

Mcut produces balanced cut 

Theorem: Let 5:
1 
~ 5:2 ~ · · · ~ >:n be the eigenvalues of W and assume that 5:1 + >.2 + 

~ 

· · · + >.k > 0. Then 

(B.l) 

In addition, this minimum is achieved by any orthonormal basis {y 1, · · · , y k} of the 

---subspace spanned by the eigenvectors pertaining to the largest k eigenvalues of W which 

further satisfies . 

k ~ I: >.. 
T _..._ ·-1 z 

y Wy. = Z-
i z k 

proof. Let Y be the solution to the minimization problem (B.l). Then there exists an 

-c - ~c 
orthonormal matrix Y such that the matrix (Y Y ) is orthogonal. Define 

and (B.2) 
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with Yk = (y 1, · · · , y k) satisfying Y: Yk = I k. It is clear from the way W is defined 

that 

consists the optimal solution vectors that solve the minimization problem on the left 

hand side of (B.l) where the matrix W is replaced by W. For convenience, we assume 

that we have re-arranged all the ratios so that the sequence { eT We.} is in decreasing 
i z 

order. 

Let 8Y(2) E R(n-k)xk be any sufficiently small perturbation. It is easy to show 

that there exists a perturbation 

(B.3) 

such that the perturbation 

( 

8Y(1) ) 
b"Y = = ( b"y , ... , b"y ) 

8Y(2) 1 k 

exactly satisfies the equation 

(B.4) 
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In other words, y* + 8Y exactly satisfies the orthogonality constraint and hence is a 

feasible solution. Some algebra reveals that: 

r~ r~ r~ ( ( )-2) =-2trace 8Y W diag(e
1 

We1,···,ekWek) · (B.5) 

Due to {B.3), linear perturbation terms in (B.5) that involve 8Y(l) are the second order 

perturbation terms in 8Y(2). For .C(Y*) to be a local minimum, all the linear terms 

involving 8Y(2) on the right hand side of (B.5) must vanish. This can happen if and 

only if partition (B.2) satisfies W12 = 0 and W21 = 0. 

It follows that the eigenvalues of W11 must be those of W, and hence of W. Let 

- - ~ 

these eigenvalues be \' ... '>..k' and let the diagonal entries of wll be wl' ... 'wk. It 

is well known that 

k k 2 2 2 
.c ( y*) = L T 

1 
= L ~ ~ . kk = k = kk - ' 

.. _ 1 e We. .-_1 i 2:: w. trace (w
11

) 2:: >... 
·- i z ·- i=1 z i=1 z 

where the equality holds if and only if 

W.= 
J 

for all j = 1, · · · , k. 
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Combining these results, we now have 

Furthermore, there exists an orthogonal matrix Q such that (see [82]) 

-T---- ( W1 _o ) , Q WQ= ~-
0 w

2 

where W
1 

E Rkxk is such that every one of its main diagonal entries is equal to 

( 
k ~) -~ A. jk. Taking the first k columns of Q as they. vectors, we obtain 
i=l z z 

Since this upper bound is exactly equal to the earlier lower bound, the theorem must be 

true. 

/ 



139 

Appendix C 

Proof of three results used in §2 and §5 

In this appendix we prove three results: 

( ) A -1/2 -1/2 C. 1 . 11 the eigenvalues of D W D has absolute value at most 1. Equivalently, 

we need to prove that the eigenvalues of the generalized eigenvalue problem (1. 7) has 

absolute value at most 1. In fact let x = ( x.) n and let i be such that lx .j = max lx .I, 
z i=1 z J 

then it follows from 

that 

C.(2). We prove that 

n 

>..d.x. = '""'w .. x. 
Z Z ~ ZJ J 

j=1 

n 

i>..i:::; L wi/di = 1. 
j=1 



Let x = D 112x and y = D 112y, then 
X y 

T 2x Wy 

Let D-l/2wD-l/2 = UEVT be its SVD with 
X y 

and 

.E = diag(a1, ... , a . { })' mm m,n 

Then we can ~xpand x and y as 

A LA X= X.U., z z 
i 

and ( C .1) becomes 

y = "'fj.v., ~ z z 
i 

Taking x1 = 1 and y1 = 1 achieves the maximum. 

C.(3). Now we consider the constraint 
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(0.1) 

(0.2) 
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which is equivalent to x1 + y
1 

= 0 using the expansions in (C.2). We can always scale 

the vectors :X: andy without changing the maximum so that x1 2:: 0 and y
1 

2:: 0. Hence 

xl + yl = 0 implies that xl = yl = 0. It is then easy to see that 

{ 
T } 2x Wy T T 

cr2 =max T T I x D Xe + y Dye= 0 , 
x Dxx+y DyY 

and the maximum is achieved by the second largest left and right singular vectors of 
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