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Abstract (150/150 words)	

Over the last decade, genome-wide association studies (GWAS) of psychiatric disorders have 

identified numerous significant loci. Whereas these studies initially depended on cohorts 

ascertained for specific disorders, there has been a gradual shift in the ascertainment strategy 

towards population-based cohorts (PBCs) for which both genotype and heterogeneous 

phenotypic information are available. One of the advantages of PBCs is that, in addition to 

clinical diagnoses and various proxies for diagnoses (“minimal phenotyping”), many of them 

also provide non-clinical phenotypes, including putative endophenotypes, that can be used to 

study domains of normal function in addition to, or instead of, clinical diagnoses. By studying 

endophenotypes it is possible to both dissect psychiatric disorders (“splitting”) and to combine 

multiple phenotypes (“clumping”), which can either reinforce or challenge traditional diagnostic 

categories. Such endophenotypes may also permit a deeper exploration of the neurobiology of 

psychiatric disorders. A coordinated effort to fully exploit the potential of endophenotypes is 

overdue.



For decades, the field of psychiatric genetics largely failed to identify replicable associations. 

A watershed moment occurred several years ago, with the first successful genome-wide 

association study (GWAS) for schizophrenia1. Since then, numerous GWAS for other psychiatric 

disorders have enjoyed similar success2. It has now become clear that very large sample sizes are 

needed because common psychiatric diseases are highly polygenic, perhaps even omnigenic3. 

Whereas the initial focus was on identifying individual genes and loci4, larger samples and 

polygenic methodologies have emphasized the importance and utility of sub-genomewide 

significant signals. In addition, recent evidence has confirmed an important role for rare and even 

de novo variants5–8. Well-powered case control studies have been essential to understand the 

genetics of psychiatric disorders, and ascertaining more cases and controls will certainly yield more 

genome-wide significant associations. But is that all that we should be doing?	

In recent psychiatric genetics studies, the largest and most rapid growth in sample size has 

not come from ramping up ascertainment of cases, but rather from utilizing increasingly abundant 

population-based cohorts (PBCs), such as UK Biobank (UKB), Million Veterans Project (MVP), and 

cohorts from genetics-focused companies such as deCode Genetics and 23andMe (Box 1). In 

some cases, PBCs have simply provided additional cases and controls. For example, the first 

successful GWAS for schizophrenia included cases and controls from deCode Genetics1. Much 

more recently, MVP has provided by far the largest cohorts for diseases such as alcohol use 

disorder (AUD)9, opiate use disorder (OUD)10, and post-traumatic stress disorder (PTSD)11 by using 

electronic health records as a source of phenotypic information12,13. Moreover, self-reported clinical 

diagnosis collected by 23andMe (e.g. “Have you ever been diagnosed with clinical depression?”) 

provided the majority of the data for a recent GWAS for MDD14. Self-reported case status was also 

used for replication in a recent GWAS of ADHD15. Finally, both UKB and 23andMe have been rich 

sources of non-disease phenotypes, such as neuroticism16, insomnia17 and risk tolerance18, which 

are continuously distributed and can therefore be measured in the general population but are still 



relevant to multiple psychiatric disorders (Figure 1). In this perspective, we will explore how PBCs 

are changing ascertainment and phenotyping strategies in ways that create new challenges but 

may also provide opportunities for a deeper understanding of psychiatric disorders.	

Advantages and caveats of population-based cohorts 	

Whereas genetic studies have traditionally ascertained cases for a particular disorder, PBCs 

may contain individuals who can serve as cases (and controls) for numerous different disorders. 

However, several limitations need to be considered. The ascertainment of PBCs, while not focused 

on a specific diagnosis, is never random and therefore does not represent the general population19. 

For example, 23andMe and UKB20 research participants are more highly educated and have higher 

SES than the general population. In addition, similar to traditionally ascertained genetic cohorts, 

current PBCs are overwhelmingly made up of individuals of European ancestry; although MVP is a 

notable exception21. Another limitation of PBCs is that certain disorders are underrepresented; for 

example, in UKB, the frequency of schizophrenia (524 research participants with ICD codes for 

schizophrenia out of 410,293) is lower than the general population22, perhaps reflecting the lower 

rate at which schizophrenia patients volunteered to participate in such a rigorous study. The age of 

subjects in PBCs is another potential limitation. For example, the use of diagnoses for childhood 

onset disorders like ADHD and autism have changed dramatically over the past few decades, 

meaning that older subjects will have a lower than expected prevalence of these diagnoses. In 

addition, the prevalence of environmental exposures (e.g. smoking), which modulate the prevalence 

of many traits and diseases, have changed over time, which may confound various genetic studies. 

Lastly, privacy and intellectual property concerns restrict the sharing of raw data and even the 

results obtained from some PBCs, these restrictions impede data sharing. Despite these limitations, 

PBCs are attractive because they are economical, offer the potential to dramatically increase 

sample size, provide a much greater diversity of phenotypes, and lend themselves to innovative 

study designs. 	



In some PBCs, clinical diagnoses are not available. However, self-reported clinical 

diagnoses may be available. For obvious reasons, these self-reported diagnoses must be 

interpreted with caution; however, the strength of the genetic correlation between gold-standard 

diagnoses and self-reported diagnoses helps to address this concern. For example, self-reported 

MDD and clinician assigned MDD showed a robust genetic correlation (rg = 0.86)14. In other cases, 

self-reported diagnoses are unavailable, but screening tools can be used to approximate 

diagnoses. For example, scores from the Alcohol Use Disorder Identification Test (AUDIT23), which 

is as a screening tool for AUD, were available in research participants from 23andMe and UKB. 

Sanchez-Roige et al24 found that when AUDIT scores were converted into a case control 

phenotype, they were highly genetically correlated with AUD (rg = 0.82)25. These examples 

demonstrate that, even when clinical diagnoses are not available, there is still significant value in 

using self-reported information from PBCs for genetic studies of psychiatric disorders.	

Minimal phenotyping and endophenotypes for refining psychiatric genetics 	

In general, there is a tradeoff between phenotyping depth and sample size (Figure 2). The 

quest for larger sample sizes has led to the adoption of “minimal phenotyping” where a complex 

disease or trait may be reduced to a single yes or no question. Minimal phenotyping is sometimes 

criticized because it implicitly assumes that minimal phenotypes are merely noisy measurements of 

a true underlying phenotype26. Cai et al26 sought to empirically examine this question by considering 

both self-reported diagnosis of MDD and clinician measurements of the cardinal symptoms of MDD 

and found that minimal phenotyping yielded a qualitatively different trait. Another empirical 

examination of minimal phenotyping used a multivariate framework (Genomic SEM27) to evaluate 

several psychiatric disorders and self-report measures of their cardinal symptoms28. That study 

identified large genetic correlations between some disorders and symptom pairs (e.g. MDD, 

depressive symptoms), but very modest genetic correlations between other pairs (e.g. bipolar 

disorder and manic symptoms; schizophrenia and psychotic symptoms). Despite these limitations, 



robust genetic signals -- of something -- can be obtained using minimal phenotyping; how useful 

these signals will be for understanding the pathophysiology of psychiatric disorders is a matter of 

ongoing debate, but when large, minimally phenotyped datasets exist, it seems natural that they 

should be analyzed. 	

Regardless of whether diagnoses are made by an expert clinician, a structured interview, or 

self-report, there is a broader question about whether or not the current diagnostic categories are 

optimal for genetic research, given that the DSM was never intended to be a research tool. A recent 

review summarized this issue with the memorable phrase “our genes don’t seem to have read the 

DSM”29. Initiatives such as the National Institute of Mental Health (NIMH) Research Domain Criteria 

(RDoC)30 and Hierarchical Taxonomy of Psychopathology (HiTOP31) provide new ways of 

classifying psychiatric disorders based on dimensions of observable behavioral and neurobiological 

measures, rather than diagnostic categories. These approaches have not been universally 

accepted32. Even before RDoC, there was widespread enthusiasm for genetic studies of 

endophenotypes (Box 2); however, studies of endophenotypes flourished in the era of candidate 

genes, when the necessity of large sample sizes was not generally understood. This may have 

fostered undue skepticism about the utility of endophenotypes for genetic research. 	

There are several recent examples of adequately powered genome-wide (rather than 

candidate gene) association studies of endophenotypes. For example, impulsivity, which has been 

defined as “actions which are poorly conceived, prematurely expressed, unduly risky or 

inappropriate to the situation, and that often result is undesirable consequences”33 appears to meet 

the criteria for an endophenotype for multiple psychiatric disorders, including attention-

deficit/hyperactivity disorder (ADHD) and several substance use disorders (SUD). Numerous 

genetic studies have now shown that various measures of impulsivity34–36 and sensation seeking39 

are heritable and that they are genetically correlated with both ADHD and various substance use 

related traits34,35. In addition, risk tolerance (“would you describe yourself as someone who takes 



risks?”), which has also been proposed as an endophenotype for both ADHD and substance use 

disorders, was recently measured in over one million individuals (primarily from UKB and 

23andMe18). Although risk tolerance was measured using a minimal phenotype (a single vaguely 

worded question), risk tolerance was clearly heritable and the large sample size allowed 

identification of 124 genome-wide significant loci18. Some of these loci have also been implicated in 

clinically defined traits25. Furthermore, risk tolerance was positively genetically correlated (rg > 0.3) 

with numerous clinically relevant traits (e.g. ADHD, SUD). This study illustrates the power of 

minimal phenotyping to capture an endophenotype that informs complex disorders and also 

conforms to the RDoC framework. In a third example, Ibrahim-Verbaas et al37 performed a GWAS 

for executive function, which can be considered an endophenotype for multiple psychiatric traits. 

Intriguingly, GWAS of sensation seeking35, risk tolerance18 and executive function37 all identified a 

locus that included the gene CAMD2, which was subsequently associated with AUD9. Whether all of 

these associations are due to a single locus or multiple loci is far from clear38, but the index SNPs 

for these studies are typically co-inherited (LD is ~0.9), consistent with a single causal locus. 	

Another example of an intriguing endophenotype is self-reported loneliness (e.g. “Do you 

often feel lonely?”), which is a strong predictor of mortality and life satisfaction and appears to 

precede the onset of MDD39. Several recent GWAS of loneliness40–42 have identified several 

significant loci and shown that a genetic predisposition to loneliness is genetically correlated with 

psychiatric, cardiovascular, and metabolic disorders. By assigning polygenic risk scores to 

individuals for whom electronic medical records were also available, Dennis et al43 showed that 

genetic liability for loneliness increased the risk to develop coronary artery disease more robustly 

than MDD. Thus, loneliness is an endophenotype that is relevant to both MDD and a variety of 

somatic disorders. 	

While some endophenotypes may be amenable to minimal phenotyping, others represent 

extremely deep and rich data types. For example, by passively collecting data from wearable 



devices and smartphones, certain endophenotypes relevant to psychiatric disorders can be 

measured44. In a recent GWAS of circadian rhythm, wearable devices were used to gather objective 

measures of sleep timing, duration and quality45. More recently, structural connectivity from fMRI 

was proposed as endophenotype for IQ46. Elliott et al47 used 3,144 functional and structural brain 

imaging phenotypes from UKB to conduct GWAS that identified novel associations that included 

genes relevant to brain development, pathway signaling and plasticity.  

A path forward for researching endophenotypes 

Despite compelling examples like these, there has not been a coordinated effort to define 

and explore the endophenotype space. Whereas psychiatric disorders require ascertainment of 

cases and controls, endophenotypes are continuous and could therefore be measured at scale in 

PBCs (Figure 1). The Psychiatric Genomics Consortium (PGC) has subdivided psychiatric genetic 

studies into working groups for each major diagnostic category; in contrast, while individual groups 

have been formed around specific projects (e.g. the Social Science Genetic Association 

Consortium, https://www.thessgac.org; the Cognitive Genomics Consortium), there is no 

coordinated effort to establish a similar set of working groups focused on GWAS of 

endophenotypes or RDoC traits; however, we feel such an effort is overdue. 	

The approach we are proposing will be orthogonal to the efforts of the PGC because RDoC 

traits and endophenotypes “split” diagnostic categories into discrete units of analysis. The SUD field 

provides a good example of how a complex disorder can be split into smaller, more biologically 

meaningful units. SUD develop in accordance with an obligate longitudinal pattern: drug 

experimentation → regular use → harmful use → transition to compulsive use → quit attempts → 

relapse (Figure 3a). Approaching SUD with a case control framework merges the genetic liability 

for each of these stages into a single phenotype, obscuring the distinct biological factors relevant at 

each stage. In contrast, several recent projects have focused on individual stages of SUD, which 



can help to address this limitation. For example, GSCAN used data from almost 1 million individuals 

to examine a number of SUD-related traits, including smoking initiation48. In another example, the 

genetic relationship between alcohol consumption and AUD was explored using the AUDIT, a 10-

item questionnaire that measures alcohol use and misuse24. By dissecting the genetic contribution 

for alcohol consumption (first 3 items) vs problematic use (final 7 items), Sanchez-Roige et al24 and 

Kranzler et al9 showed a surprisingly low correlation between alcohol consumption and AUD 

(rg=0.33 and 0.52, respectively); however, the correlation between problematic alcohol use and 

AUD was stronger (rg=0.63)24.	

Even when the temporal stages of a psychiatric disorder cannot be so clearly delineated, it 

can be helpful to split diagnoses into endophenotypes that are associated with the disease of 

interest. For example, a recent GWAS of insomnia17, which is a core symptom of multiple 

psychiatric disorders and a DSM criterion for MDD, identified 202 loci and showed strong genetic 

correlations with MDD (rg=0.5) and several other psychiatric conditions . Similarly, neuroticism, 

which shares a common genetic basis with MDD but can be more easily measured, could serve as 

a clinical stratifying factor for antidepressant actions16. However, it can be difficult to determine what 

level of dissection is required; a recent study suggested that neuroticism reflected two genetic 

dimensions, one capturing depressed affect, and another capturing worry49. Another example 

comes from several GWAS of impulsive personality35, which has been proposed as an 

endophenotype for several psychiatric disorders including ADHD. The UPPS-P is a self-reported 

questionnaire that measures 5 different aspects of impulsive personality. Only two of those five 

were significantly associated with ADHD; in contrast, all three subscales of BIS-11, which is another 

impulsive personality questionnaire, were significantly associated with ADHD35. These examples 

illustrate how disease phenotypes can be dissected into component parts. Nonetheless, despite the 

original claim that endophenotypes would have a simpler genetic architecture50, all studies 



conducted to date have shown that both disease diagnoses and endophenotypes are highly 

polygenic.	

Once the traits that reflect domains of normal function have been measured (“split”) in 

genotyped cohorts, it becomes possible to explore their empirical relationships with one another 

(“clumping”) beyond those that are already defined by traditional psychiatric nosology (see Figure 

3b). Genomic SEM27 and related techniques are now being used in a number of such efforts. 

Luningham et al51 used genomic SEM to test multiple models of psychopathology among fourteen 

psychiatric disorders and related traits. They identified three factors (namely Externalizing, 

Internalizing, and Thought Problems), and an uncorrelated Neurodevelopmental Disorders factor. 

These factors showed distinct patterns of genetic correlations and accounted for substantial genetic 

variance. These empirically identified clusters may provide better targets for GWAS than individual 

disorders. In another example, Baselmans et al52 showed that it was possible to increase power by 

using Genomic SEM to integrate multiple traits (life satisfaction, positive affect, neuroticism, 

depressive symptoms) into a measure of “well-being spectrum”. By aggregating data from different 

sources of correlated traits, they reached a sample size of over 2.3 million individuals, which 

allowed them to identify 304 independent signals associated with well-being; a similar analysis 

suggested a two factor model that distinguishes “lower end” and “higher end” well-being factors53. In 

a third example, Thorp et al54 used Genomic SEM to identify two factors, which they referred to as 

“psychological” and “somatic” from the 9-item Patient Health Questionnaire (PHQ-9). Recently, 

several related methods have been developed (e.g. reverse GWAS, RGWAS55 and BUHMBOX56). 

Using RGWAS, Dahl et al55 proposed a stress subtype in MDD, and identified three novel subtypes 

of metabolic traits. Using BUHMBOX (Breaking Up Heterogeneous Mixture Based On Cross-locus 

correlations), Han et al56 found that seropositive and seronegative rheumatoid arthritis could be 

subdivided to form a new subgroup within seronegative-like cases. Conversely, they identified a 

genetic correlation between MDD and SCZ, but there was no evidence that this correlation was due 

to subgroup heterogeneity. 	



Clumping has been used to test the hypothesis, originally suggested by twin studies, that 

psychiatric disorders share a single common genetic factor (the “p-factor”)57. One of the earliest 

studies to use GWAS data to test this hypothesis showed that SNPs associated with schizophrenia 

were also associated with bipolar disorder58. Specific genes have been identified that confer risk for 

multiple psychiatric disorders (e.g. CACNA1C59–61). Evidence that the risk for substance abuse is 

shared across multiple substances (e.g. alcohol, tobacco48) is also consistent with earlier results 

from twin studies showing both substance-specific and substance-independent genetic risk. An 

example of this genetic overlap is the gene CADM2, which has been associated several substances 

(alcohol use24,62, tobacco and cannabis initiation63) and risky behavior18,35. Joint analysis of 

correlated traits may outperform that of single phenotypes and allows the possibility to disentangle 

genetic effects that are specific to each trait from those that capture a latent construct (Figure 3b).	

Clumping can also lead to new splits. For example, Bansal et al64 used GWAS results from 

two correlated traits: schizophrenia (a disorder) and educational attainment (a continuously 

distributed non-disorder trait) to propose two distinct etiologies of schizophrenia, one that 

resembled bipolar disorder and was characterized by high education, and another that reflected a 

cognitive disorder and was independent of education. Studies like this one provide greater flexibility 

to explore the phenotypic space, which can lead to novel insights and challenge established 

nosologies. 	

The utility of endophenotypes for translation to cellular and animal models 	

Throughout this perspective, we have alluded to GWAS producing novel biological insights; 

however GWAS have numerous limitations65 and do not themselves produce actionable new 

knowledge. The influence of locus on a phenotype may be due to a coding difference or a 

regulatory difference. The former can be directly identified from sequence data (although the 

interpretation of sequence variants is still challenging), whereas regulatory polymorphisms are 



typically identified by using complementary data from GTEx66, PsychENCODE 

(resource.psychencode.org), CommonMind 

(https://www.synapse.org/#!Synapse:syn2759792/tables/) and Brainspan 

(http://www.brainspan.org/); or protein QTLs (pQTLs; e.g. 67). Once identified, the protein products 

of such genes can be intensively studies and evaluated as possible drug targets68. Another way to 

follow up on GWAS results is to use cellular and animal models. However, these approaches have 

been challenging because psychiatric diseases cannot be recapitulated in cells or non-human 

animals. On the contrary, certain endophenotypes can be more readily modeled in animals, which 

provides an opportunity to evaluate the role of genes identified by GWAS at the molecular, cellular 

and circuit level56. Individual genes can also be manipulated in animal models by using viral vectors, 

genetically engineered null alleles (knock outs), over expression alleles, conditional alleles or 

knockins of humanized alleles. These approaches provide a gene-by-gene approach to translation -

- what is still lacking are robust methods for examining the polygenic nature of complex traits in 

animal models. In contrast, methods for using human-derived cellular models to examine the 

polygenic signals obtained from GWAS are better established. The ability to more directly model 

endophenotypes in experimental model systems will be critical in extracting biological insights from 

GWAS and thus realizing the full potential of psychiatric genetic studies. 		

Conclusion	

Over the last 10 years, GWAS for psychiatric disorders have turned a corner and begun to 

identify numerous significant loci for all major psychiatric disorders. It is generally understood that 

larger samples will extend on these successes. In this perspective, we have considered additional 

study designs that go beyond disease diagnoses. Although they are not without limitations, PBC are 

quickly becoming the predominant ascertainment strategy. Direct-to-consumer genetic companies, 

which collectively account for millions of research participants (https://thednageek.com/dna-tests/), 

are the largest PBCs. Publicly funded PBC already account for millions of research participants and 



are linked to electronic health records and other rich data types (e.g. questionnaire data, imaging 

data, epigenetics). Unlike previous ascertainment strategies, PBC have provided adequate sample 

sizes for GWAS of endophenotypes. This has allowed for increasingly sophisticated study designs. 

These resources are already leading to neurobiological insights about the molecular, cellular and 

circuit underpinnings associated with psychiatric disorders that will facilitate the translation of 

psychiatric genetic insights to other fields of neuroscience.	



Figure 1. Case control vs continuous phenotypes. Psychiatric disorders require ascertainment 

of cases and controls and because of their binary nature they do capture variability within the two 

classes, a problem that is addressed by a continuous phenotype.	

	



Figure 2. The trade-off between phenotyping depth and sample size. Deep phenotyping is 

more expensive and time consuming; therefore, when the available budget is fixed, greater 

phenotyping depth comes at the expense of sample size. In contrast, scalable phenotyping 

strategies, which are more commonly used in PBCs, allow for larger sample sizes. 	

	

 



Figure 3. Splitting vs clumping. Psychiatric disorders can be further dissected or “split” into 

discrete units of analysis; for example, SUDs can be split into smaller, more biologically meaningful 

traits, that manifest into an obligate longitudinal pattern: drug experimentation → regular use → 

harmful use → transition to compulsive use → quit attempts → relapse. The empirical correlations 

among these traits can be examined (“clumping”) beyond those that are already defined by 

traditional psychiatric nosology. Recently, The Externalizing Consortium has sought to analyze the 

genetic correlations between different traits from the externalizing spectrum (https://osf.io/xkv36/), 

including sexual and drug-related phenotypes, impulsivity, and attention-deficit/hyperactivity 

disorder, with the goal of identifying loci involved in a shared underlying liability to externalizing 

versus genes unique to specific phenotypes. 



	

Box 1. Some of the major population-based cohorts in psychiatric genetics  

• UK Biobank (UKB): prospective cohort with rich phenotypic information including 

biological, lifestyle, biomarkers, and imaging data and genetic information from 

approximately 500,000 volunteer research participants across the United Kingdom. 

Participants are predominantly of European ancestry, middle age and older69, and with 

higher socioeconomic backgrounds than the general population70. 

• Million Veterans Project (MVP): observational cohort study in the Department of 

Veterans Affairs (VA) health care system containing deep phenotyping, including the 

VA electronic health records, and genotypes21. At the time of this writing more than 

450,000 individuals have already been genotyped. Most participants are male, with a 

mean age of 64. While the majority of the participants are of European ancestry, this 

cohort also contains significant numbers of individuals from other ancestral groups. 

• deCODE Genetics, Inc.: biopharmaceutical company based in Reykjavík, Iceland, funded in 

1996 to study genetic risk factors for several diseases (https://www.decode.com). deCODE 

contains genotypic and medical data from >160,000 volunteer participants, comprising 

about half of the adult population in Iceland.  

• 23andMe, Inc: direct-to-consumer genetic company with over 5 million genotyped 

individuals71; research participants tend to have higher education levels and 

socioeconomic status than the general population (e.g. 34).  

 



	

Box 2: criteria for a trait to be considered an endophenotype, as defined by50	

1. The endophenotype is associated with illness in the population [genetic correlation].  	

2. The endophenotype is heritable. 	

3. The endophenotype is primarily state-independent (manifests in an individual whether or not 

illness is active). 	

4. Within families, endophenotype and illness co-segregate.	
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