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Abstract

The dynamics of layered and non-layered oscillatory double-diffusive convection

by

Ryan D. Moll

Oscillatory double diffusive convection (ODDC) is a double diffusive instability

that occurs in fluids that are unstably stratified in temperature and stably strat-

ified in chemical composition. Regions unstable to ODDC are common in the

interiors of stars and giant planets, and knowing thermal and compositional trans-

port through these regions is important for stellar and planetary evolution models.

Using 3D direct numerical simulations, Rosenblum et al. (2011) first showed that

ODDC can either lead to the spontaneous formation of convective layers, or remain

in a state dominated by large scale gravity waves. Subsequent studies focused on

identifying the conditions for layer formation (Mirouh et al., 2012), and quan-

tifying transport through layered systems (Wood et al., 2013). This document

includes 3 works that build on the results of these earlier studies. The subject of

the first is transport through non-layered ODDC and shows that in the absence

of layered convection, ODDC is dominated by large scale gravity waves that grow

to the size of the domain. We find that while these gravity waves induce small

amounts of turbulent mixing, turbulent transport through non-layered systems is

not significant for the purposes of astrophysical modeling (unlike in layered con-

vection). The second study pertains to ODDC in the presence of Coriolis forces,

and shows that rotating systems can be categorized depending on the strength of

the rotation. We find that in the slowly rotating regime, the presence of rotation

does not significantly affect qualitative behavior, but leads to modest reductions

in thermal and compositional transport, while in the fast rotation regime qualita-

tive behaviors are radically different, and systems are dominated by vortices that

xv



affect thermal and compositional transport in complex ways. In the final work

we study simulations of ODDC at non-layered parameters that are forced into a

layered configuration by initial conditions. Our results show that measurements

of thermal and compositional transport deviate from values predicted by oft-cited

geophysical transport laws.
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Chapter 1

Introduction

1.1 Background

Double diffusive convection is a general term used to refer to turbulent mo-

tions that occur in fluids which are stratified in two quantities that affect density

and diffuse at different rates. Furthermore, a double diffusive fluid must be un-

stably stratified in one of the density components, and stably stratified in the

other such that the fluid is stable to regular overturning convection (but crucially,

not absolutely stable to all instabilities). In geophysical and astrophysical fluids

the diffusive quantities are usually temperature and chemical composition, where

temperature is the component which diffuses faster.

The primary focus of this work is double diffusive convection in astrophysical

fluids which have stabilizing compositional gradients (Ledoux stable) and a desta-

bilizing thermal gradients (Schwarzschild unstable). Double diffusive convection

of this kind (often referred to as “the diffusive regime" or “semi-convection") is

common in a variety of astrophysical objects and was first discussed in the as-

trophysical context by Schwarzschild & Härm (1958) with regard to the growing

convection zones of massive stars (> 10M�).

1



They postulated the existence of a layer separating the helium-enriched, con-

vective core of a massive star from the radiative hydrogen envelope, where there

exists a destabilizing thermal gradient and a composition gradient just steep

enough to prevent the region from being unstable to overturning convection.

Schwarzschild & Härm (1958) referred to this zone as being “semi-convective"

due to the fact that the region would be unstable to convection in the absence of

the stabilizing composition gradient. However, it was still believed to be linearly

stable.

It was Walin (1964) and Kato (1966) who realized that despite being stable

to overturning convection such an environment could be subject to another lin-

ear instability capable of driving the turbulent transport of heat and chemical

species. This type of linear instability is now commonly referred to as oscilla-

tory double-diffusive convection (ODDC) (Spiegel, 1969) due to the resemblance

the basic unstable fluid motions bear to over-stable internal gravity waves (Kato,

1966). Because of the pervasiveness of double diffusive regions in the interiors of

astrophysical objects, the efficiency of thermal and compositional mixing resulting

from ODDC is potentially significant to evolution models for stars (Langer et al.,

1985; Merryfield, 1995) and giant planets (Stevenson, 1982; Leconte & Chabrier,

2012; Nettelmann et al., 2015).

To understand the qualitative behavior of this linear instability recall that the

fast-diffusing quantity (temperature) has an unstable stratification and the slow-

diffusing quantity (chemical composition) has a stable stratification. To describe

the basic motions of ODDC, it is helpful first consider a system like the one

depicted in Figure 1.1a, which only has a stabilizing compositional gradient. In

such a system a fluid element perturbed up or down oscillates vertically about

its original position at the Brunt-Väisälä frequency. Over short timescales the

2



amplitude of this oscillation will remain fairly constant and over longer timescales

the amplitude will decay due to the effects of viscosity or diffusion.

When a destabilizing temperature gradient is added, as in Figure 1.1b, a fluid

parcel perturbed, say, upward will quickly looses heat to its surroundings, but its

chemical composition remains nearly unchanged due to the difference in diffusiv-

ities (Kato, 1966). The fluid parcel will then be denser than its surroundings,

and it will sink. When it returns to its original position, though, it will not have

fully thermally equilibrated to its surroundings, and will still be denser than it

was originally. As a result the parcel will continue to sink, and will, in fact, sink

a greater distance below its original position than it was originally perturbed up-

ward. The parcel continues to oscillate in this fashion with an amplitude which

grows exponentially until the instability reaches non-linear saturation.

(a)

(b)

Figure 1.1: (a) Sketch depicting a fluid which has only a stable compositional
gradient and (b) a fluid which has a stable compositional gradient and an unstable
temperature gradient.
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1.2 Mathematical model

In order to model ODDC mathematically, it is useful to consider a region that

is significantly smaller than the density scale height of a typical star or planet,

and where flow speeds are much smaller than the sound speed of the medium.

This allows for the use the Boussinesq approximation (Spiegel & Veronis, 1960)

and to ignore the spherical geometry of an actual stellar or planetary interior. For

simplicity, the domain is assumed to be a Cartesian box where z is oriented in

the radial direction. Furthermore, background gradients of temperature, T0z, and

mean molecular weight, µ0z, are assumed to be constant in the domain. We use

the following linearized equation of state,

ρ̃

ρ0
= −αT̃ + βµ̃ , (1.1)

where ρ̃, T̃ and µ̃ are dimensional perturbations to the background profiles of

density, temperature and chemical composition, respectively, and where ρ0 is the

mean density of the region. The parameters α and β are the coefficient of ther-

mal expansion and coefficient of compositional contraction, respectively, and are

defined as

α = − 1
ρ0

∂ρ

∂T

∣∣∣∣∣
p,µ

,

β = 1
ρ0

∂ρ

∂µ

∣∣∣∣∣
p,T

. (1.2)
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Under these assumptions, the governing equations for ODDC are given by

∇ · ũ = 0 ,
∂u
∂t

+ u · ∇u = − 1
ρ0
∇p+

(
αT̃ − βµ̃

)
gez + ν∇2u ,

∂T

∂t
+ u · ∇T =

∣∣∣T0z − T ad
0z

∣∣∣w + κT∇2T ,

∂µ

∂t
+ u · ∇µ = |µ0z|w + κµ∇2µ , (1.3)

where ũ is the velocity field, and where p̃ signifies perturbations to the background

pressure profile. The constant parameters κT , κµ, ν and g are the thermal diffusiv-

ity, compositional diffusivity, viscosity and gravitational acceleration, respectively,

and T ad
0z is the background adiabatic temperature gradient which is defined as

T ad
0z = − g

cp
. (1.4)

where cp is the specific heat at constant pressure. These equations are non-

dimensionalized using a unit length defined in terms of the dimensional constants

in (1.3),

[l] = d =
(

κTν

αg|T0z − T ad
0z |

) 1
4

, (1.5)

Using these constants, the units of time, [t], temperature,
[
T̃
]
, and mean

molecular weight, [µ̃], naturally emerge as

[t] = d2

κT
,[

T̃
]

= d|T0z − T ad
0z | ,

[µ̃] = α

β
d|T0z − T ad

0z | . (1.6)

In these units, the standard non-dimensional governing equations for ODDC
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(Rosenblum et al., 2011; Mirouh et al., 2012) are

∇ · ũ = 0 ,
1

Pr

(
∂ũ
∂t

+ ũ · ∇ũ
)

= −∇p̃+ (T̃ − µ̃)ez +∇2ũ ,

∂T̃

∂t
+ ũ · ∇T̃ − w̃ = ∇2T̃ ,

∂µ̃

∂t
+ ũ · ∇µ̃−R−1

0 w̃ = τ∇2µ̃ , (1.7)

where the non-dimensional numbers Pr, τ and R−1
0 are the Prandtl number, dif-

fusivity ratio, and inverse density ratio, respectively, defined as (Baines & Gill,

1969)

Pr = ν

κT
,

τ = κµ
κT

,

R−1
0 = β|µ0z|

α|T0z − T ad
0z |

. (1.8)

These parameters describe the physical properties of the fluid and the relative

strengths of the thermal and compositional stratifications and determine whether

or not a fluid is unstable to ODDC

In an infinite domain, ODDC occurs when R−1
0 is within the following range

(Kato, 1966; Walin, 1964),

1 < R−1
0 < R−1

c ≡
Pr + 1
Pr + τ

. (1.9)

When R−1
0 is less than one, the system is unstable to overturning convection, and

when R−1
0 is greater than R−1

c the system is stable to infinitesimal perturbations

(but may still be unstable to finite amplitude ones, as we will discuss in Chapter

6



4). A useful proxy for the inverse density ratio is the so-called “reduced inverse

density ratio" parameter (Mirouh et al., 2012), defined as,

r = R−1
0 − 1

R−1
c − 1 . (1.10)

This parameter maps the natural ODDC range to the interval [0, 1] where 0 marks

the onset of overturning convection, and 1 marks the boundary between the ODDC

parameter space and that of linear stability.

1.3 Linear stability analysis

The governing equation of ODDC in (1.7) are non-linear, and therefore have

no known analytical solution. However, properties of the linear instability, such

as the rate of growth and spatial structure of the fastest growing modes, can be

studied analytically by assuming that all perturbations are initially small and

that non-linear terms are initially negligible. The first step in the linear stability

analysis is to assume that all perturbations take the following functional form:

q = q̂eik·x+λt ,

k = {l,m, k} ,

x = {x, y, z} (1.11)

where q = {u, p, T, µ}, λ is the complex growth rate, and where l, m, and k are

spatial wave numbers in the x, y, and z directions. By applying these definitions

for the perturbations to the governing equations in (1.7) and by ignoring the

non-linear terms (u · ∇u, u · ∇T , and u · ∇µ) we get the following linearized

7



equations:

ilu+ imv + ikw = 0 ,

λû = ilp̂− Pr|k|2û ,

λv̂ = imp̂− Pr|k|2v̂ ,

λŵ = ikp̂− Pr
(
T̂ − µ̂

)
− Pr|k|2ŵ ,

λT̂ = ŵ − |k|2T̂ ,

λµ̂ = R−1
0 ŵ − |k|2µ̂ , (1.12)

From these equations we compute dispersion relation which only involves λ, Pr,

τ , R−1
0 and the wave numbers l, m, k,

(
λ+ Pr|k|2

) (
λ+ |k|2

) (
λ+ τ |k|2

)
−Pr

(
|kH|2

|k|2

) [(
λ+ τ |k|2

)
−R−1

0

(
λ+ |k|2

)]
= 0 ,

(1.13)

where |kH|2 = l2+m2. Figure 1.2 shows growth rates calculated from this equation

as a function of vertical and horizontal wavenumber. The figure shows that the

modes which grow the fastest have k = 0 meaning that they oscillate up and down

only in the vertical direction. The horizontal wavenumber of the fastest growing

modes depends on Pr, τ , and R−1
0 , but generally corresponds to features which

have a horizontal scale of 10−20d (in Figure 1.2 |kH| of the fastest growing mode

is ≈ 0.36 corresponding to a horizontal scale of ≈ 17d). Modes unstable to ODDC

have Re(λ) > 0 and Im(λ) 6= 0, and exist if and only if 1 < R−1
0 < R−1

c . In this

parameter regime, there are two complex conjugate roots and one real root that

is always negative.
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Figure 1.2: Contour plot showing growth rates of linearly unstable modes as a
function of the horizontal and vertical wave numbers. The dark red areas indicate
modes with the largest growth rates.

1.3.1 Numerical simulations and measured quantities

The long term behavior of fluids unstable to ODDC is of particular interest

in astrophysics. Because physical characteristics of stellar and planetary interiors

cannot be easily reproduced in laboratory experiments, numerical simulations are

needed to gain insight about the nonlinear behavior of ODDC in these objects.

All results that follow were generated by solving the equations in (1.7) using a

pseudo-spectral code called PADDI (Traxler et al., 2011), where all perturbations

are triply periodic in the domain. Some of the experimental data presented in sub-

sequent chapters was generated by Rosenblum et al. (2011), Mirouh et al. (2012),

and Wood et al. (2013) in simulations run using this code. All simulations are

initialized with random small perturbations to the temperature and/or chemical

composition fields.

The main quantities of interest extracted from these numerical simulations

are the turbulent vertical fluxes of temperature and chemical species, 〈w̃T̃ 〉 and

〈w̃µ̃〉, respectively, where the angle brackets represent a spatial integral over the

entire computational domain. It is often useful to express these fluxes in terms of
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thermal and compositional Nusselt numbers (NuT and Nuµ) which are the ratios

of the total fluxes to the diffusive fluxes (of temperature and composition). The

turbulent fluxes are defined as follows in terms of NuT and Nuµ,

F turb
T = 〈w̃T̃ 〉 = NuT − 1 ,

F turb
µ = 〈w̃µ̃〉 = τR−1

0 (Nuµ − 1) . (1.14)

As shown by Wood et al. (2013), these fluxes often exhibit fast oscillations

with large amplitudes due to the gravity waves, so for the purposes of analysis,

it can be more useful to consider related quantities known as the thermal and

compositional dissipations, 〈|∇T̃ |2〉 and 〈|∇µ̃|2〉. Indeed, as shown by Malkus

(1954), taking a spatial integral of the thermal and chemical evolution equations,

and then assuming that the system is in a statistically stationary state, we find

that the dissipations are related to the turbulent fluxes and Nusselt numbers by

NuT − 1 = 〈w̃T̃ 〉 = 〈|∇T̃ |2〉 ,

Nuµ − 1 = 〈w̃µ̃〉
τR−1

0
= 〈|∇µ̃|2〉(

R−1
0

)2 , (1.15)

where the bars indicate temporal averages over the entire statistically stationary

period. In practice, these are good approximations even when the temporal aver-

aging is done over relatively short periods (see Wood et al. (2013) for instance),

so in what follows we assume similar relations between the instantaneous Nusselt

numbers and dissipations as well. This is advantageous because the dissipations

are less sensitive to the oscillations of gravity waves than the fluxes, and are

therefore easier to analyze.
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1.3.2 Previous studies

A number of recent studies have been dedicated to describing long term behav-

ior of ODDC through the use of direct numerical simulations of the kind described

above. In a preliminary study, Rosenblum et al. (2011) first identified two general

classes of behavior that occur in ODDC after the saturation of the linear insta-

bility: spontaneous layer formation and non-layered “homogeneous turbulence".

They put the greatest emphasis on explaining the phenomenon of layer for-

mation. At smaller values of R−1
0 , they observed the spontaneous formation of

density staircases composed of convective layers of uniform density separated by

dynamic, but convectively stable interfaces. These layers emerge from the homo-

geneously mixed environment that exists immediately following the saturation of

the linear instability, and then merge progressively until a single layer interface re-

mains in the domain (regardless of how many layers initially form). Importantly,

as illustrated by the top row of Figure 1.3, they found that the formation and

mergers of layers were associated with stepwise increases in the turbulent flux of

temperature and chemical composition. The final, single-interface state, shows

turbulent fluxes that are smaller than fluxes from overturning convection but still

orders of magnitude larger than molecular diffusion. Rosenblum et al. (2011) pro-

posed that layers form through a mechanism known as the γ-instability (Radko,

2003).

Radko (2003) first proposed the γ-instability to describe layer formation in

fingering convection. The theory describes the growth of large-scale, horizontally

invariant perturbations to the background density profile. These perturbations

create regions of the domain where the density gradient is locally unstable to

overturning convection, leading to a configuration of stacked convective layers.

The theory is derived by taking spatial and temporal averages of the governing
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Figure 1.3: Figure 2 from Mirouh et al. (2012). The top row shows a snapshot
of the chemical field and a time series of the thermal and compositional fluxes for
a layered simulation with Pr = τ = 0.03 and R−1

0 = 1.5. The bottom row shows
similar figures for a non-layered simulation with the same values of Pr and τ and
R−1

0 = 5.

equations over small length scales and short time scales. There are assumed to

be no mean flows, and the layering perturbations grow only in the temperature

and chemical composition fields, allowing the momentum equation to be neglected

altogether. Ignoring all horizontal spatial derivatives, what remains are equations

for perturbations to the spatially and temporally averaged temperature, T , and

chemical composition, µ, fields given by

∂T

∂t
= −∂F

tot
T

∂z
,

∂µ

∂t
= −

∂F tot
µ

∂z
, (1.16)
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where F tot
T and F tot

µ are the total fluxes of temperature and chemical composition

through the domain. In the following calculations it is useful to explicitly define

the thermal Nusselt number, NuT , as,

NuT = F tot
T

1− dT
dz

, (1.17)

as well as the inverse flux ratio, γ−1
tot , as,

γ−1
tot =

F tot
µ

F tot
T

. (1.18)

In terms of these parameters the equations for T and µ become,

∂T

∂t
= ∂

∂z

[(
1− ∂T

∂z

)
NuT

]
,

∂µ

∂t
= ∂

∂z

[
γ−1

totF
tot
T

]
. (1.19)

To solve these equations, we assume that the parameters NuT and γ−1
tot only

depend on Pr, τ , and the local inverse density ratio, R−1
ρ , given by,

R−1
ρ =

R−1
0 − ∂µ

∂z

1− ∂T
∂z

. (1.20)

However, assuming T and µ are small, R−1
ρ can be approximated to first order as

R−1
ρ ≈ R−1

0

(
1− 1

R−1
0

dµ

dz
+ dT

dz

)
(1.21)

Under these assumptions the spatially and temporally averaged thermal evo-
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lution equation becomes,

∂T

∂t
= −A2

(
1
R−1

0

∂2µ

∂z2 −
∂2T

∂z2

)
+ Nu0

∂2T

∂z2 (1.22)

where Nu0 is the value of NuT after the primary ODDC instability saturates and

the system is in a homogeneously mixed state and where,

A2 = −R−1
0
dNuT
dR−1

ρ

∣∣∣∣∣
R−1

0

(1.23)

Likewise, the compositional evolution equation becomes,

∂µ

∂t
= γ−1

0
∂T

∂t
− A1Nu0

(
1
R−1

0

∂2µ

∂z2 −
∂2T

∂z2

)
(1.24)

where γ−1
0 is the value of γ−1

tot in the homogeneously mixed state and where,

A1 = −R−1
0
dγ−1

tot

dR−1
ρ

∣∣∣∣∣
R−1

0

(1.25)

In these evolution equations, the parameters A1 and A2 must be estimated through

empirical measurements of thermal and compositional flux from numerical simu-

lations.

Then by assuming functional forms for T and µ of (T , µ) = (T̂ , µ̂)eikz+Λt the

following dispersion relation can be calculated,

Λ2 + Λk2
[
A2

(
1− γ−1

0

R−1
0

)
+ Nu0

(
1− A1

R−1
0

)]
− k4A1Nu2

0
R−1

0
= 0 . (1.26)

From this equation it can be shown that growing solutions of Λ only occur when

γ−1
tot is a decreasing function of R−1

0 . Also, growth rates can be calculated for given

values of k. By taking measurements from simulations of ODDC, Rosenblum et al.

14



(2011) showed that for smaller values of R−1
0 , γ−1

tot is decreasing function of R−1
0 ,

and for large values it is an increasing function. They confirmed that layers only

spontaneously formed for simulations where γ−1
tot was a decreasing function (see

Figure 1.5). Also they confirmed that the predicted growth rates for layering

modes was consistent with the growth rates observed in numerical simulations.

Figure 1.4: Figure 5 from Mirouh et al. (2012) showing γ−1
tot as a function of

r for stated values of Pr and τ . Points with squares represent simulations with
spontaneous layer formation, and only occur when γ−1

tot is a decreasing function of
r.

Mirouh et al. (2012) built on the work of Rosenblum et al. (2011) by devel-

oping a semi-analytical rule for identifying the regions of parameter space where

layers naturally form, and where they do not. They found that layers can only

spontaneously form if 1 < R−1
0 < R−1

L < R−1
c , where R−1

L is typically of order

Pr−
1
2 . They also determined that non-layered regime of ODDC, which occurs

when R−1
L < R−1

0 < R−1
c , is ultimately dominated by large-scale internal gravity

waves (see the bottom row of Figure 1.3) which (surprisingly) also augment ther-

mal and compositional transport, though not as much as in the layered case. This

we be described in more detail in Chapter 2.
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Wood et al. (2013) then studied the dynamics and transport properties of

layered ODDC (1 < R−1
0 < R−1

L ). Specifically they identified how thermal on

compositional fluxes scaled with the thermal Rayleigh number, RaT , given in

terms of dimensional parameters by,

RaT =
αg
∣∣∣T0z − T ad

0z

∣∣∣ (HLd)4

κTν
= H4

L (1.27)

whereHL is the non-dimensional layer height. Figure 1.5 shows their results from a

simulation in a tall, thin domain that initially form 8 layers. As the layers merged

and the remaining layers became taller, measurements of the fluxes were taken so

that they could be plotted as a function of RaT . Their findings were consistent

with earlier studies of transport through layered double diffusive convection, and

showed that

NuT − 1 ∝ (PrRaT )1/3 ,

Nuµ − 1 ∝ (PrRaT )1/3 . (1.28)

The work presented in this document further investigates ODDC and double

diffusive layering through numerical simulations using the PADDI code. As a

natural progression from Wood et al. (2013), Chapter 2 focuses on characterizing

the behavior of non-layered ODDC when R−1
L < R−1

0 < R−1
c and quantifying

the associated thermo-compositional mixing it induces. In Chapter 3 we consider

how global rotation influences the growth and long term behavior of ODDC, with

emphasis on how rotation effects layer formation. In Chapter 4, we study how

finite amplitude perturbations may be used to excite layer formation, even in the

parameter regime where they do not form through the γ-instability. Finally, we
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Figure 1.5: Figure 5 from Wood et al. (2013) showing measure thermal and
compositional fluxes as a function of PrRaT . The solid lines are the functions
where NuT,µ ∝ (PrRaT )1/3

summarize our conclusions, and discuss future avenues of research in Chapter 5.
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Chapter 2

Non-Layered ODDC

The following chapter is composed of the main text of Moll et al. (2016),

published in The Astrophysical Journal in May of 2016. The co-authors of this

work are Pascale Garaud, professor of applied mathematics at the University of

California at Santa Cruz, and Stephan Stellmach of the Institut für Geophysik,

Westfälische Wilhelms-Universität Münster.

2.1 Introduction

As discussed in Chapter 1, previous work in our group focussed on under-

standing the conditions for layer formation in ODDC (Mirouh et al., 2012) and

the dynamics of layered convection (Wood et al., 2013). In this Chapter, we

complete their study and investigate the dynamics of non-layered ODDC. To do

so, we solve the model equations discussed in Chapter 1, with the PADDI code

developed by S. Stellmach.

In Section 2.2, we describe the evolution of a typical non-layered simulation

and discuss the difficulties of running numerical simulations in extreme parameter

regimes. In Section 2.3, we discuss the effectiveness of 2D simulations for modeling

18



ODDC compared to the full 3D DNS. We present the results of our numerical

experiments in 2D and 3D, focussing in particular on the measurements of thermal

and compositional fluxes in Section 2.4. Finally, in Section 3.7, we summarize the

findings of papers I, II, and III of this series, and discuss them in the context of

previous work and applications to astrophysics.

2.2 Behaviors of ODDC

In what follows, we show the results of a typical ODDC simulation, which has

Pr = τ = 0.03 and R−1
0 = 7.87, and was run at a resolution of 1923 (the simula-

tion domain has dimensions (100d)3). Note that for these parameters, R−1
L ' 2.5

(Mirouh et al., 2012) and R−1
c ≈ 17.2, so this value of R−1

0 is indeed in the range

R−1
L < R−1

0 < R−1
c which is unstable to ODDC, but where layers do not spon-

taneously form through the γ-instability. We first describe these results purely

qualitatively, then move on to a more quantitative analysis.

2.2.1 Qualitative study

Figure 2.1 shows the vertical component of the velocity field at early times, and

Figure 2.2 shows the y-component of the velocity field later on in the simulation.

At very early times, we first see the development of the fastest growing modes

of the basic instability of ODDC, which resemble tubes of vertically oscillating

fluid (shown in Figure 2.1a). This primary growth phase ends when the basic

instability saturates due to nonlinear interactions inherent to the problem (see

Figures 2.1b).

As previously discussed by Mirouh et al. (2012), after the primary saturation,

the small-scale fastest growing modes of the primary instability stop growing but
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(a)

(b)

Figure 2.1: Figure 2.1a shows the vertical component of the velocity field during
the basic instability growth phase (here at t = 2508), with red and blue signi-
fying upward and downward motion, respectively. Figure 2.1b shows the verti-
cal component of the velocity field at the saturation of the primary instability
(here at t = 2868). For each figure, R−1

0 = 7.87 and Pr = τ = 0.03.
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other larger-scale modes slowly continue to gain energy, amounting to a secondary

phase of growth. From Figure 2.2a we see that the latter (which ultimately come

to dominate the energetics of the system) generally have the largest possible scale

in the horizontal direction. As the system evolves, energy is funneled into modes

of progressively larger vertical scale until the secondary growth phase saturates

and the system reaches a statistically stationary state. The dynamics of this state

are characterized by gravity wave oscillations on fast timescales whose amplitudes

are modulated chaotically and intermittently. This intermittency appears to be

caused by nonlinear interactions between large scale gravity modes and large scale

horizontal shearing modes. Indeed, we regularly observe the emergence of a strong

horizontal shear layer that temporarily suppresses the wave field (Figure 2.2b).

The shear then dissipates, and the system proceeds as before. Figure 2.2 shows

the distinct differences in the y velocity field between a gravity-wave-dominated

phase and a shear-dominated phase.

2.2.2 Quantitative study

In order to study this system in a more quantitative way we now investigate

the energy contained in individual modes. We shall refer to specific spatial modes

by the number of wavelengths in the x, y, and z directions. So mode (l,m, k)

would refer to a mode with horizontal wave numbers 2πl
Lx

and 2πm
Ly

(in the x and y

directions), and vertical wave number 2πk
Lz

(in the z direction). We can quantify

the transfer of energy to larger scales by considering the amount of energy in a

mode “family". A family of modes consists of all the modes with equivalent spatial

structures given the symmetries between the x and y directions in the domain, and

negative and positive wave numbers in each spatial direction. For example, the

mode family 102 contains the modes (1,0,2) , (-1,0,2) , (0,1,2) , (0,-1,2) , (1,0,-2)
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(a)

(b)

Figure 2.2: The Figures 2.2a and 2.2b show, respectively, the velocity
field in the y direction at times when the system is dominated by grav-
ity waves (here at t = 20758) and when the system is dominated by shear
(here at t = 24718). Here red and blue represent motion in the positive and
negative y direction. As with the snapshots in Figure 2.1, R−1

0 = 7.87 and
Pr = τ = 0.03.
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, (-1,0,-2) , (0,1,-2) , (0,-1,-2) (Traxler et al., 2011).

Consistent with the qualitative results in Figure 2.2a, Figure 2.3 shows that

at early times, the dynamics of ODDC are dominated by modes that have small

horizontal scales (
√
l2 +m2 ≈ 8), with no structure in the vertical direction (with

vertical wavenumber k = 0). Around t = 2500, the primary instability saturates.

Mirouh et al. (2012) demonstrated that the level at which the primary instability

saturates can be used to identify regions of parameter space where layer formation

is expected to occur. However, the primary saturation level is of little use for

characterizing the long term transport properties of non-layered ODDC because

a secondary growth phase occurs after primary saturation, further augmenting

the thermal and compositional fluxes. From Figure 2.4, we see that while the

fastest growing modes of the primary instability stop growing at saturation, the

mode family (1,0,5) continues to grow, and for a brief time becomes the most

energetic mode family in the system. As time goes on, however, the mode family

(1,0,4) supplants (1,0,5) as the most energetic, which is in turn overtaken by

the mode family (1,0,3). For this particular simulation, the handoff of energy to

progressively larger scales stops with mode family (1,0,3); mode family (1,0,2)

never becomes dominant. Crucially, Figures 2.3 and 2.4 also reveal the growth

of the energy in large scale shearing modes with purely horizontal fluid motions

(mode families (0,0,1) and (0,0,2)). This is unexpected because these modes are

not directly excited by the primary instability of ODDC. Instead their growth

must arise from nonlinear interactions between rapidly growing ODDC modes.

Around t = 5000, after the mode family (1,0,3) becomes dominant, the sec-

ondary growth phase appears to end, saturating into a statistically steady turbu-

lent state. However, Figure 2.4 shows periodic bursts of growth in the shearing

mode energies, suggesting intermittent (yet powerful) interactions between the
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Figure 2.3: Total kinetic energy vs. time for various families of modes (see main
text for detail) for a simulation with Pr = τ = 0.03 and R−1

0 = 7.87. Shown is the
early part of a simulation where the total kinetic energy is dominated by modes
that are predicted to grow the fastest according to linear theory. The mode family
(6,5,0) is one of the fastest growing mode families.
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shearing modes and the dominant gravity wave modes. In these interactions, il-

lustrated in more detail in Figure 2.5, the growth of gravity waves excites the

rapid growth of horizontal shearing modes, which in turn causes a decay in the

amplitude of the waves. Without the wave field to amplify it, the shear then

decays viscously. This finally allows the energy in the gravity waves to ramp back

up again. While this interaction does not always manifest itself as such a distinct

relaxation oscillation, it is still present in one form or another in all gravity-wave-

dominated ODDC simulations. Figure 2.5 also shows that the interaction between

the shear and gravity waves leads to intermittent modulation of the thermal and

compositional fluxes, a result which may have some observational implications

(see Section 2.4).

While the intermittency in the fluxes caused by the shear is interesting in

its own right, for the purpose of modeling transport by ODDC in planetary or

stellar evolution calculations, we are more concerned with estimating the mean

fluxes over significant periods of time. These mean fluxes at secondary saturation

depend on the parameters of the system (R−1
0 , Pr, and τ). The results shown

in this section, which were obtained at moderate R−1
0 and moderate Pr and τ ,

suggest that turbulent transport in non-layered ODDC is weak. Indeed, Figure

2.5 shows that NuT and Nuµ remain of order unity throughout the simulations.

To determine whether this is a generic property of ODDC at R−1
0 > R−1

L , we

need to run numerical experiments at larger R−1
0 and smaller Pr and τ . Probing

this region of parameter space is difficult, however, because 3D simulations at low

Pr and τ can be computationally very expensive, particularly for values of R−1
0

that are close to marginal stability
(
R−1

0 → Pr+1
Pr+τ

)
. Small values of Pr and τ lead

to small-scale turbulent features with steep gradients of velocity, temperature,

and composition, which necessitate high spatial resolution. Furthermore, a larger
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Figure 2.5: The top figures show the temperature and composition Nusselt
numbers, which are related to the turbulent fluxes by the equations in (1.15).
Shown in the bottom figure is the total kinetic energy in the large-scale gravity
waves (modes from the families (1,0,n)) in green, and the kinetic energy in the
background shear (modes from the families (0,0,m)) in red, as a function of time.
The vertical lines mark times at which there are bursts of energy in the shear.
The simulation parameters used here are Pr = τ = 0.03, and R−1

0 = 7.87.

27



R−1
0 implies a larger buoyancy frequency

(
since N =

√
Pr(R−1

0 − 1)
)
, and leads

to higher frequency oscillations of the basic ODDC modes, necessitating smaller

time steps. Given these challenges, in the next section we discuss the possibility

of using 2D ODDC simulations as a potential surrogate for full 3D simulations at

these extreme regions of parameter space.

2.3 2D simulations

Simulations of 2D ODDC are computationally inexpensive and are also less

intensive in terms of data storage than 3D simulations. For this reason, we have

run a series of tests to compare both the qualitative behavior and quantitative

estimates of the fluxes (and other system diagnostics) in 2D and 3D. Simulations

in 2D and 3D often lead to very different types of dynamics, especially at low

Pr (Schmalzl et al., 2004; van der Poel et al., 2013; Garaud & Brummell, 2015).

Fortunately however, as we see from Figure 2.6, the secondary saturation level in

the 2D simulation at Pr = τ = 0.03 and R−1
0 = 7.87 is very similar to that of the

3D simulation analyzed in the previous section. This is, in fact, generally the case

for each parameter set (Pr,τ ,R−1
0 ) at R−1

0 > R−1
L where we have both 2D and 3D

simulations.

Measurements of mode family energies show that key physical processes that

dictate the behavior of 3D ODDC simulations are present in the 2D simulations

as well. Figure 2.7 explores the energetics of the gravity waves and shear, and

shows that the fractions of energy in each type of mode are of the same in order in

both cases. This is important because together these two types of modes contain

most of the energy in non-layered systems after secondary saturation.

The computational economy of 2D simulations makes other types of analysis

easier as well, such as running simulations in larger domains. In the previous
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Figure 2.6: Figures 2.6a and 2.6b show the thermal and compositional dissipa-
tions vs. time for the simulation with Pr = τ = 0.03 and R−1

0 = 7.87. Included are
data from a 3D simulation, and two 2D simulations with differing domain sizes.
While the larger 2D simulation takes longer to achieve its statistically stationary
state, the mean fluxes are ultimately very similar for all three runs.
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Figure 2.7: Figure 2.7a shows the energy in gravity wave families of the form
(1,0,n) as a percentage of the total energy in the system. Figure 2.7b shows the
energy in shearing modes families of the form (0,0,m) as a percentage of the total
energy. We estimate errors according to the method described in Section 2.4.
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section, we showed that after primary saturation the dominant gravity wave modes

have horizontal wavelengths commensurate with the domain size. Also we showed

that energy is transferred to modes with progressively larger vertical wavelengths.

This raises the question of whether this energy transfer would always terminate

at a vertical wavelength that depends on the domain size. For example, will the

dominant mode after secondary saturation in a (200d)3 domain have a vertical

wavelength that is twice that of the dominant mode in a (100d)3 domain? More

importantly, do the fluxes depend on the domain size?

Using 2D data we find that in all but one case, doubling the domain size in

each direction leaves the vertical wavelength of the dominant mode unchanged.

By contrast, the horizontal wavelength of the dominant mode always grows to the

largest possible scale allowed by the domain. As a consequence, the dominant

modes in the larger boxes are inclined more toward the horizontal than in the

smaller ones. Importantly though, Figures 2.6a and 2.6b show that despite some

qualitative differences between simulations with domains of different dimensions,

we find that the time-averaged fluxes of temperature and chemical composition do

not depend strongly on box size (they are within ∼ 10% of one another). In the

next section we shall therefore rely heavily on 2D simulations to draw conclusions

about turbulent fluxes through non-layered ODDC.

2.4 Results and Discussion

We now analyze the results of all numerical experiments done in 2D and 3D

computational domains. We evaluate thermal and compositional fluxes in terms

of the Nusselt numbers, which we calculate from thermal and compositional dis-

sipation data, as described in (1.15). More specifically, the quantities we consider

are NuT − 1 and Nuµ − 1 which, conveniently, are also measures of the turbulent
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fluxes in units of the diffusive fluxes. To find typical Nusselt numbers for a simula-

tion we calculate time averaged values for the period after secondary saturation.1

To estimate errors we first divide the time average domain into 10 bins. We then

take the average of each bin and calculate the standard deviation of the individual

bin averages from the overall average.

Figure 2.8 shows the thermal and compositional Nusselt numbers calculated

in both cases, for various values of Pr and τ . From this figure we also see that

the reasonable agreement between 2D and 3D simulations discussed in Section 2.3

persists in all cases studied.

The primary result of this analysis is that, while gravity waves consistently aug-

ment thermal and compositional transport in non-layered ODDC, the enhanced

fluxes are only slightly larger than the transport due to thermal and molecular

diffusion alone. Furthermore, this enhancement rapidly decreases with increasing

R−1
0 . For the simulations we have run with the smallest values of R−1

0 (those clos-

est to the layering threshold), the turbulent compositional flux is at most twice

that of the flux due to diffusion alone and the turbulent heat flux is at most

∼ 20% of the diffusive flux. However, at larger values of R−1
0 , closer to marginal

stability, the turbulent fluxes drop down to ∼ 5−10% of the diffusive fluxes. Crit-

ically, we also find that the turbulent fluxes decrease as Pr and τ decrease. The

simulations run at the parameter regime most similar to actual giant planetary

interiors (Pr = τ = 0.003) suggest that the mixing induced by non-layered ODDC

at R−1
0 > R−1

L is effectively negligible in this case.

Another result of our analysis is that gravity wave dominated ODDC is re-

sponsible for the generation of large scale shear. In all the simulations we have

run so far, the main effect of the shear has been to modulate the wave-induced
1We define the secondary saturation time to be the point at which the total kinetic energy

of the system reaches a statistically stationary level, and we identified it by inspection.
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Figure 2.8: Figures 2.8a and 2.8b show the Nusselt numbers after secondary
saturation for the available 3D and 2D simulations (in domains of size 100d3

or 100d2) as a function of r (which is related to R−1
0 by Equation 1.10). The

secondary saturation level decreases as r increases and as Pr and τ decrease.
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transport through strong non-linear interactions with the wave field. One might

wonder, however, whether the shear could become strong enough in some param-

eter regimes to trigger a shear instability which would then dramatically augment

turbulent transport. To evaluate the likelihood of this happening, we consider the

Richardson number, Ri, which is the ratio of the potential energy needed to cause

overturn to the available kinetic energy in the shear. In the units of this paper,

we define the Richardson number as,

Ri (z) = N2

|∂u
∂z
|2
' Pr

 R−1
0 − 1(

dū
dz

)2
+
(
dv̄
dz

)2

 , (2.1)

where N is the buoyancy frequency, defined dimensionally as N2 = −g d ln ρ
dz

where

ρ is the background density profile. The terms ū and v̄ are the horizontally av-

eraged x and y components of velocity, respectively (for 2D simulations v = 0

everywhere, for all time). To calculate the typical minimum Richardson number

for a simulation we find the minimum of Ri(z) for an individual time step, and

then take a time average of Rimin(z) over the period after secondary saturation.

A plot of the time-averaged minimum Richardson number of the available simula-

tions (Figure 2.9) shows that Rimin increases as r (or equivalently, R−1
0 ) increases.

This is due to the fact that by definition systems with higher R−1
0 have a stronger

stabilizing compositional stratification compared to their unstable thermal strat-

ification, making them less susceptible to overturning. Also, recall from Figure

2.7 that simulations with higher values of R−1
0 have a lower percentage of their

total kinetic energy in shearing modes. This Richardson number data therefore

suggests that if any shear-induced instabilities were to present themselves, they

would do so at values of R−1
0 that are very close to R−1

L , the threshold for the

layering instability.
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Figure 2.9: Time- and horizontally-averaged minimum Richardson number as a
function of R−1

0 . Included are data from all available 2D and 3D simulations (in
domains of size 100d3 or 100d2).

To summarize our results so far, we have found that mixing induced by non-

layered ODDC at R−1
0 > R−1

L is mostly negligible with turbulent fluxes at most

of the order of diffusive fluxes (usually several orders of magnitude smaller). The

propensity for gravity wave dominated ODDC to drive shear could be observa-

tionally interesting, however.

2.5 Conclusion

2.5.1 Synthesis of results from papers I, II and III

This study marks the conclusion of a series of papers aimed at describing the

thermal and compositional flux properties of ODDC (semi-convection), through-

out the entire linearly unstable range for fluid parameters appropriate to stellar
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and planetary interiors. Rosenblum et al. (2011) laid the groundwork for this series

by conducting a preliminary survey of the ODDC parameter space and identified

that ODDC either spontaneously forms layers, or remains in a non-layered, mildly

turbulent state, which Mirouh et al. (2012) later showed to be dominated by large

scale gravity waves. They also showed that the critical parameter to making

predictions about layer formation is the inverse total flux ratio γ−1
tot defined as

γ−1
tot = τR−1

0
Nuµ
NuT

. (2.2)

More precisely, Rosenblum et al. (2011) showed that through the γ-instability

(which was initially developed to describe the conditions that lead to layer forma-

tion in fingering convection; Radko, 2003) layers only form when

dγ−1
tot

dR−1
0

< 0 . (2.3)

Next, Mirouh et al. (2012) (Paper I) produced a semi-analytical model for γ−1
tot

given by

γ−1
tot = τR−1

0 + γ−1
turb (NuT − 1)

1 + (NuT − 1) . (2.4)

They used the following empirically motivated prescription for NuT − 1:

NuT − 1 = (0.75± 0.05)
(

Pr
τ

)0.25±0.15 1− τ
R−1

0 − 1
(1− r) ,

where r is the quantity defined in Equation (1.10). Meanwhile, γ−1
turb is the inverse

turbulent flux ratio, and is expressed only in terms of parameters that can be

calculated through a linear analysis of the original governing equations in (1.7).
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It is defined as

γ−1
turb = 〈w̃µ̃〉

〈w̃T̃ 〉
= R−1

0
(λR + l2) + λ2

I
(λR + τ l2) + λ2

I

λR + τ l2

λR + l2
, (2.5)

where λR and λI are the real and imaginary parts of the growth rate of the fastest

growing mode of the primary instability of ODDC for a given parameter set (R−1
0 ,

Pr, τ) and l is the corresponding horizontal wavenumber of the fastest growing

mode (see their appendix for an explanation on how l, λR and λI are calculated,

as well as analytical approximations in the limit of small Pr and τ).

Using their model for γ−1
tot , Mirouh et al. (2012) were able to predict the range of

R−1
0 where spontaneous layer formation is possible. The function γ−1

tot is concave-

up with a single minimum, so by identifying the value of R−1
0 at which γ−1

tot reaches

its minimum (referred to as R−1
L ) it is possible to identify the region of parameter

space where layers naturally form from infinitesimal perturbations (R−1
0 < R−1

L )

and where they do not (R−1
0 > R−1

L ). They found that, typically

rL = R−1
L − 1

R−1
c − 1 ∼ Pr

1
2 and R−1

L ∼ Pr−
1
2 . (2.6)

Wood et al. (2013) (Paper II) then presented prescriptions for quantifying

the thermal and compositional fluxes through layered systems in cases where

R−1
0 < R−1

L . They found that the thermal and compositional fluxes are,

FT = −ρcpκT
[
(NuT − 1)

(
T0z − T ad

0z

)
+ T0z

]
= −ρcpκTT

p

∂p

∂r
[NuT (∇−∇ad) +∇ad] ,

Fµ = −Nuµκµµ0z = −Nuµκµµ
p

∂p

∂r
∇µ . (2.7)

Alternately, the transport of chemical species can be expressed as an effective
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diffusivity defined as

Deff,µ = Nuµκµ . (2.8)

In the above equations, the Nusselt numbers NuT and Nuµ can be modeled as,

NuT − 1 = ATRaaTPrb ,

Nuµ − 1 = Aµτ
−1RacTPrd , (2.9)

where AT ' 0.1 and Aµ ' 0.03, and where a = 0.34 ± 0.01, b = 0.34 ± 0.03,

c = 0.37± 0.01, and d = 0.27± 0.04. The parameter RaT is the thermal Rayleigh

number for layered convection, and is defined as a function of the layer height, H,

RaT (H) =
(
H

d

)4
=
αg
∣∣∣T0z − T ad

0z

∣∣∣H4

κTν
= αgH4

κTν

∣∣∣∣∣∂p∂r
∣∣∣∣∣ |∇ −∇ad| . (2.10)

As discussed by Wood et al. (2013), it is not clear a priori what the value of

H should be because in simulations of naturally layered systems, layers always

gradually merge until only a single interface remains. This suggests that some

other physical mechanism outside the scope of our model of ODDC determines

layer height, or that layers may always merge indefinitely, leaving the fluid fully

mixed. For now, it is left as a free parameter, much like the mixing length in

mixing-length theory (see also Moore & Garaud, 2015).

Finally, from the work done in this paper (Paper III), we have found that the

turbulent transport of heat and composition can more-or-less be neglected in the

non-layered ODDC parameter space (i.e. R−1
L < R−1

0 < R−1
c ). We therefore model
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the total heat and compositional fluxes as

FT = −ρcpκT
dT

dr
= −ρcpκTT

p

∂p

∂r
∇ ,

Fµ = −κµ
dµ

dr
= −κµµ

p

∂p

∂r
∇µ , (2.11)

and we can write the corresponding effective compositional diffusivity simply as

Deff,µ = κµ . (2.12)

Note that, as discussed by Moore & Garaud (2015), R−1
0 is typically much smaller

than R−1
L in stellar models where the semi-convective region is adjacent to a

convection zone. Our conclusions for non-layered ODDC would therefore only

apply to stellar models with a semi-convection zone that is detached from the

convection zone, or possibly to planetary models.

2.5.2 Possible caveats to transport prescriptions

The model presented in Section 2.5.1 derives from a combination of “first-

principle" theory and numerical experiments and has been demonstrated to pro-

vide a good-to-excellent fit to the macroscopic transport properties of ODDC in

all available simulations. However, there are still potential sources of uncertainty

in each of the three components of the model. Here we discuss uncertainty that

may arise from the prescription for the layering cut-off, R−1
L , described by Mirouh

et al. (2012), the prescription for mixing in the layered case (R−1
0 < R−1

L ) pro-

posed by Wood et al. (2013), and the prescription for mixing in the non-layered

case (R−1
L < R−1

0 < R−1
c ) described in this work. We also mention several specific

circumstances under which we do not expect our model to remain valid.

As discussed by Mirouh et al. (2012), their proposed formula for R−1
L is likely
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to overestimate the true R−1
L by 20− 40% (see their study for an in depth expla-

nation). This is not likely to affect stellar model predictions because in the most-

commonly occurring stellar semi-convection zones R−1
0 is typically much smaller

than R−1
L (Moore & Garaud, 2015) meaning that their interiors are unambigu-

ously in the regime where ODDC leads to spontaneous layer formation. In giant

planets the effect of this uncertainty is less clear because no reliable estimates of

R−1
0 exist.

Next are caveats on the Wood et al. (2013) prescription for layered ODDC.

There are four sources of uncertainty in their scalings: that in the dependence

on Pr and τ , on RaT , and on R−1
0 . Due to computational constraints, a limited

range of values of Pr and τ was used to construct and test the model (between

Pr = τ = 0.01 and Pr = τ = 0.3). While these values may be appropriate for the

interiors of ice giant planets such as Uranus and Neptune (where Pr and τ are

of order unity), and approximately valid in degenerate regions of stars and giant

planets, such as Jupiter and Saturn (where Pr and τ are of order 10−3 − 10−4),

they are very far from non-degenerate stellar values, where Pr ∼ τ ∼ 10−6 or less.

So using these diffusivities in a stellar parameter regime requires some degree of

trust in the extrapolation from experimental values of Pr and τ down to stellar

values. They should be appropriate, however, for models of giant planets.

The scaling of the Nusselt numbers with RaT (which suggests that the fluxes

scale with the temperature difference and the compositional difference across the

layers to the power of 4
3) is the most robust because it is derived from arguments

based purely on dimensional analysis (Turner, 1968; Radko, 2003). Note however,

that some layered convection simulations with tall thin aspect ratios do deviate

from this 4
3 rule. This is seen in particular in the early work of Rosenblum et al.

(2011), where the use of a tall, thin domain artificially caused NuT to scale with
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a weaker power of H than 4
3 . The wider simulations of Wood et al. (2013) do not

suffer from this problem at low RaT . However, even in these simulations there

inevitably comes a point where the horizontal dynamics of the layers become in-

creasingly constrained by their aspect ratios because the layers themselves become

taller and thinner as the mergers take place. This is an artificial effect created

by the necessary constraint of the chosen simulation domain, and should not be

expected to occur in an actual star or planet. In other words, NuT ∝ (RaTPr)
1
3

and Nuµ ∝ RaT
1
3 are expected to hold at any stellar value.

The greatest source of uncertainty in the Wood et al. (2013) scalings is the

Nusselt numbers’ dependence on R−1
0 . For the layered simulations studied in that

work, R−1
0 was typically ∼ 1 − 3 (due to computational constraints). However,

at stellar values of Pr, layers can occur at inverse density ratios much larger than

10. In fact, for non-degenerate regions of a typical stellar interior R−1
L ∼ 1000.

This naturally leads to the question of how NuT and Nuµ scale with the inverse

density ratio at large R−1
0 . While this line of inquiry is interesting in its own right

from a hydrodynamic perspective, it is probably not relevant in semi-convective

zones adjacent to convection zones in actual stars, where typical values of R−1
0 are

more likely to be much closer to one (Moore & Garaud, 2015). For parameters

relevant to giant planetary interiors, the layering threshold is R−1
L ∼ 1−10, so the

simulations studied by Wood et al. (2013) spanned a substantial portion of the

range of R−1
0 where layered convection occurs. Therefore, the Nusselt numbers’

dependence on R−1
0 is not a significant source of uncertainty in the context of

giant planets.

Finally, there are also uncertainties in our flux model for ODDC in the regime

R−1
L < R−1

0 < R−1
c . First, in Equations (2.11) and (2.12) we simply chose to ignore

the turbulent contribution to the fluxes due to non-layered ODDC on the grounds
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that it is usually very small, although the turbulent fluxes can admittedly be nearly

as large as the diffusive fluxes when R−1
0 is close to the layering threshold R−1

L (see

Figure 2.8). We did this for simplicity, but the reader interested in improving the

estimates for the total fluxes in that limit should feel free to add the turbulent

fluxes as needed. Second, there is a more important model uncertainty which

comes from the possibility that ODDC might yet take the form of layered convec-

tion, even when R−1
0 > R−1

L . Indeed, there is a well-known subcritical branch of

solutions (Huppert & Moore, 1976; Proctor, 1981), where layered convection can

be triggered by very carefully selected finite-amplitude perturbations, even when

the system is stable to infinitesimal ones. Preliminary simulations show that if

a numerical experiment is initialized in an already-layered state it will remain

layered indefinitely. This is true even if the system is fully stable (R−1
0 > R−1

c ) or

simply stable to the layering γ-instability (R−1
L < R−1

0 < R−1
c ). Whether Equa-

tions (2.7)-(2.12) are still valid for layered convection at R−1
0 > R−1

L remains to be

determined. However, as we will discuss below, no compelling mechanism so far

has been proposed to explain how these very specific kinds of layered initial con-

ditions may naturally occur in stars of planets. Until such a mechanism is found,

we argue that non-layered ODDC is likely to be far more prevalent at values of

R−1
0 greater than the layering threshold R−1

L .

There are several other conditions under which our model (Equations (2.7)-

(2.12)) cannot be expected to hold. For example, in the presence of strong rota-

tion, the above prescriptions will probably not apply (Blies et al., 2014). Rota-

tion is known to inhibit regular overturning convection, and preliminary results

indicate that strong rotation suppresses transport of both temperature and com-

position in ODDC as well. A more in depth discussion of the effects of rotation

will be the subject of a future paper. Magnetic fields could clearly also affect our

42



results.

2.5.3 Implications for astrophysical modeling

The implication of our findings from this paper for planetary modeling is that

non-layered ODDC leads to fluxes that are not significantly larger than thermal

conduction or molecular diffusion. Consequently, it is not sufficient simply to

know if regions in the interior of a giant planet are unstable to ODDC. The fact

that layered and non-layered ODDC lead to very different transport characteristics

means that special attention must be paid to calculating the threshold R−1
L , to

determine which type of behavior will manifest.

The dynamics of non-layered ODDC is not expected to be pertinent to inter-

mediate mass main sequence stars where most semi-convective regions likely have

values of R−1
0 that are in the layered regime (Moore & Garaud, 2015). However,

it may be important in more massive stars that have standalone semiconvective

zones, i.e. regions unstable to ODDC that are well-separated from convective

zones, and in giant planets, where higher values of Pr (compared to stars) in-

dicate a smaller range of R−1
0 that is unstable to ODDC, and a lower layering

threshold, R−1
L .

In particular, the near-zero luminosity of Uranus suggests that thermal trans-

port through the planet’s interior is inefficient (Hubbard et al., 1995). Advances in

equation of state research (Redmer et al., 2011) lend credence to the idea that con-

vection is being inhibited by steep compositional gradients. If this is the case, the

inefficient gravity wave-dominated ODDC discussed in this paper may potentially

play a role in Uranus’s thermal evolution.

Also, though it is not yet known whether this phenomenon could produce

observable signatures, the intermittent growth of shear layers discussed in this
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work is a potentially significant feature of non-layered ODDC in the deep interiors

of giant planets. Indeed, in contrast to our simulations where there is a symmetry

between the x and y directions, global rotation may provide a preferred direction

for shearing motions, which could induce large scale azimuthal flows.

2.5.4 Discussion of prior studies

In this series of papers we have proposed a new prescription for transport due

to ODDC in both its layered and non-layered forms based on an analysis of a

comprehensive suite of numerical experiments. We now compare our complete

model summarized in Section 2.5.1 with existing work in the astrophysical litera-

ture. Typically, prior studies on this topic have only addressed either the layered

or non-layered form of double-diffusive convection, being unaware, perhaps, that

both regimes may in fact occur. Langer et al. (1983), for example, derived an ex-

pression for the effective diffusivity of composition through stellar semi-convective

regions without invoking thermo-compositional layers. They proposed that,

Dµ = ακT
6

∇−∇ad

∇ad + β
4−3β∇µ −∇

, (2.13)

where, in this case, α is an efficiency factor. By contrast, the majority of other

studies have assumed that double-diffusive regions are always layered. Steven-

son (1982), who was the first to import this notion to the astrophysical context,

proposed a relationship between thermal and compositional transport in double-

diffusive regions in Jupiter and Saturn,

Fµ ∼ τ
1
2FT . (2.14)

44



This kind of law naturally arises when assuming that the fluxes are limited to

diffusive transport through thin, stably stratified interfaces (see Linden & Shirt-

cliffe, 1978, and below). Later, Spruit (1992) also developed a parametrization for

transport through layers separated by stable interfaces of this kind, and proposed

that the thermal Nusselt number and compositional diffusivity scale as

NuT ∼ (PrRaT ) 1
4 ,

Dµ ∼ (κµκT ) 1
2

(
4
β
− 3

)
∇r −∇ad

∇µ

, (2.15)

where ∇r is the radiative gradient. More recently, works by Spruit (2013) and

Zaussinger & Spruit (2013) have revised this model to account for the theoret-

ically expected, and experimentally observed, 4
3 flux law that Spruit’s original

model did not satisfy. Also, recently Leconte & Chabrier (2012) have developed

a formalism for determining the transport of heat and chemical composition in

a giant planetary interior composed of convective thermo-compositional layers.

With their formalism, which is similar to that of mixing length theory, they cal-

culate the number of layers that compose a giant planetary interior, assuming, as

in previous studies, that the interfaces between the layers are diffusive.

As we have shown in this paper, however, layers do not always necessarily form.

The specious notion pervading recent astrophysical models that double-diffusive

regions must always take the form of layers separated by thin, diffusive interfaces

likely stems historically from earlier experimental work on double-diffusive con-

vection in the geophysical context. In geophysical fluids, where Pr ∼ 1, the range

of R−1
0 that is unstable to infinitesimal perturbations (see Equation 1.9) is very

small (R−1
c = 1.14 for Pr = 7 and τ = 0.01, and the layering threshold, R−1

L , pre-

sumably lies between 1 and 1.14, if it even exists). Meanwhile, double-diffusive

layering is observed fairly frequently in volcanic lakes and in the arctic ocean, and

45



the mean temperature and compositional gradients through these staircases have

corresponding density ratios well in excess of R−1
c (ie. the linearly stable regime).

While the necessary finite-amplitude mechanism by which these staircases form

in this case remain to be determined even to date, such a mechanism must clearly

exist in the geophysical case since the layers are observed. Laboratory experi-

ments to study double-diffusive layers at high Pr therefore nearly always start

with layers already present and merely focus on measuring the fluxes through the

staircase.

Turner (1965) was the first to conduct laboratory experiments of thermo-

compositional double-diffusive convection in such a layered regime. In those ex-

periments a layer of cold, low salinity, water was deposited carefully on top of a

layer of high salinity water that was then heated from below. The fluxes of tem-

perature and salt across the sharp interface were then measured. In that study,

the following prescription was proposed for the fluxes across the interface,

FT ∝ (∆T )
4
3 ,

FS ∝ (∆S)
4
3 , (2.16)

where ∆T and ∆S are the temperature and salinity differences between the two

layers. As discussed earlier, these scaling laws can be derived from simple dimen-

sional arguments (see Section 2.5.2). Later, Shirtcliffe (1973) conducted similar

laboratory experiments of double-diffusive convection where the diffusive quanti-

ties were sugar and salt dissolved in water. Linden & Shirtcliffe (1978) then used

Shirtcliffe’s results to develop the prescription for the relationship between the

thermal and compositional fluxes that Stevenson (1982) later applied to the as-

trophysical case (see Equation 2.14), and which is also at the heart of the models

presented by Spruit (1992, 2013).
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Given that geophysical and astrophysical double diffusive convection are gov-

erned by the same basic equations, and without the help of numerical simulations

at low Pr, it was natural for Stevenson (1982) and Spruit (1992) to extrapolate

from the results of geophysical experiments to draw conclusions about astrophys-

ical systems. This is, in fact, what led them to assume that astrophysical double-

diffusive convection takes the form of stacked convective layers separated by thin,

quiescent interfaces. However, with the help of modern numerical simulations,

and thanks to the work presented in this series of papers, we have now established

that such an extrapolation results from geophysical double-diffusive convection

to the astrophysical parameter regime is not only inadvisable, but in many cases

incorrect.

It is crucial to remember that, by contrast to the geophysical case, in giant

planets Pr ∼ τ ∼ 10−2− 10−3, and R−1
c ' 10− 100, meaning that there is a much

wider range of R−1
0 for which infinitesimal perturbations may trigger ODDC. In

fact, R−1
c is so large that in order to achieve R−1

0 > R−1
c requires, in many cases,

an unphysically large compositional gradient. In other words, unlike the Earth’s

oceans and lakes, it is likely that the linear instability is a ubiquitous feature of

double-diffusive regions in stars and planet. Far from being merely in intellectual

distinction, the way in which the instability is excited has two important effects

on the dynamics of double-diffusive systems in both the layered and non-layered

parameter regimes.

First, in ODDC when 1 < R−1
0 < R−1

L , the layers that spontaneously form

are fundamentally different from the layers observed in geophysics. In laboratory

experiments done at geophysical parameters (where finite-amplitude perturbations

are necessary to initiate layered thermo-compositional convection) (Noguchi &

Niino, 2010; Carpenter et al., 2012), layers appear to persist indefinitely, and the
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layer interfaces are quiescent, and diffusive. By contrast, in the layered simulations

presented in this series of papers, the interfaces between layers are dynamic and

turbulent, and the layers tend to merge until a single one remains in the domain.

More than being merely a qualitative difference, the different character of the

layers in each context leads to significant quantitative differences in thermal and

compositional transport. In particular, Wood et al. (2013) found that contrary to

Equation (2.14) proposed by Stevenson (1982) and used by Spruit (1992, 2013),

γ−1
tot is not proportional to τ 1

2 in systems where layers form spontaneously.

Second, the non-layered ODDC regime is never observed in geophysical ex-

periments, which is not surprising as (1) the range of parameters for which it

could theoretically be observed is tiny, and (2) most experiments are initialized

with layers in the first place. By contrast, non-layered ODDC is found so far to

be ubiquitous in astrophysical simulations initialized with infinitesimal perturba-

tions for R−1
L < R−1

0 < R−1
c . While it is possible that finite-amplitude layering

may naturally occur in astrophysics, no separate layering mechanism has yet been

proposed to suggest that these finite amplitude instabilities would be as common-

place in astrophysics as the linear instability is likely to be. Until such a mecha-

nism is found it is therefore preferable to focus on the dynamics of ODDC that

naturally develop from random infinitesimal perturbations, rather than artificially

imposed initial conditions consisting of layers of unspecified origin. Nevertheless,

the behavior of high-density ratio layered ODDC at astrophysical parameters is

an interesting problem that deserves further study, and will therefore be the topic

of a future paper.
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Chapter 3

Rotating ODDC

The following chapter is composed of the main text of work submitted to The

Astrophysical Journal in August of 2016. The co-author of this work is Pascale

Garaud, professor of applied mathematics at the University of California at Santa

Cruz.

3.1 Introduction

In the previous Chapters, we investigated the simplest possible model of ODDC

in which the only body force considered was gravity. It is natural to wonder how

additional physical mechanisms may affect the long term dynamics of ODDC.

Global rotation is one such mechanism that is particularly relevant to the gas

giant planets in our own solar system due to their rapid rotation periods (∼ 9.9

hours for Jupiter and ∼ 10.7 hours for Saturn). It is also potentially important

to rapidly rotating extra-solar giant planets, and massive stars. There have been

some recent studies of rotating layered convection in double-diffusive fluids, but

only for the geophysical parameter regime (Carpenter & Timmermans, 2014) in

conditions that are not unstable to ODDC (or to the γ−instability).
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In this work we study the effect of global rotation on the linear stability prop-

erties and long-term dynamics associated with ODDC. In Section 3.2 we introduce

our mathematical model and in Section 3.3 we study how rotation affects its linear

stability properties. We analyze the impact of Coriolis forces on the formation of

thermo-compositional layers in Section 3.4 by studying a suite of simulations with

parameter values selected to induce layer formation in non-rotating ODDC. In

Section 3.5 we show results from two other sets of simulations at different values

of the diffusivities and of the background stratification and study how rotation

affects the dynamics of the non-layered phase of ODDC. In Section 3.6 we study

the effect of colatitude on layer formation. Finally, in Section 3.7 we discuss our

results and present preliminary conclusions.

3.2 Mathematical Model

The basic model assumptions for rotating ODDC are similar to those made

in previous studies of the non-rotating systems (Rosenblum et al., 2011; Mirouh

et al., 2012; Wood et al., 2013; Moll et al., 2016). As in previous work, we consider

a domain that is significantly smaller than a density scale height, and where flow

speeds are significantly smaller than the sound speed of the medium. This allows

us to use the Boussinesq approximation (Spiegel & Veronis, 1960) and to ignore the

effects of curvature. We consider a 3D Cartesian domain centered at radius r = r0,

and oriented in such a way that the z-axis is in the radial direction, the x-axis is

aligned with the azimuthal direction, and the y-axis is aligned with the meridional

direction. We also assume constant background gradients of temperature, T0z, and

chemical composition, µ0z, over the vertical extent of the box, which are defined
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as follows:

T0z = ∂T

∂r
= T

p

∂p

∂r
∇ ,

µ0z = ∂µ

∂r
= µ

p

∂p

∂r
∇µ , (3.1)

where all the quantities are taken at r = r0. Here, p denotes pressure, T is

temperature, µ is the mean molecular weight, and ∇ and ∇µ have their usual

astrophysical definitions:

∇ = d lnT
d ln p , ∇µ = d lnµ

d ln p at r = r0 . (3.2)

We use a linearized equation of state in which perturbations to the background

density profile, ρ̃, are given by

ρ̃

ρ0
= −αT̃ + βµ̃ , (3.3)

where T̃ , and µ̃ are perturbations to the background profiles of temperature and

chemical composition, respectively, and ρ0 is the mean density of the domain.

The coefficient of thermal expansion, α, and of compositional contraction, β, are

defined as

α = − 1
ρ0

∂ρ

∂T

∣∣∣∣∣
p,µ

,

β = 1
ρ0

∂ρ

∂µ

∣∣∣∣∣
p,T

. (3.4)

We take the effect of rotation into account by assuming that the rotation vector

is given by:

Ω = |Ω| (0, sin θ, cos θ) , (3.5)

51



where θ is the angle between the rotation axis and the z−axis. With this assumed

rotation vector, a domain placed at the poles has a rotation axis aligned with the

z-direction (θ = 0), while at the equator the rotation axis is in the y-direction

(θ = π
2 ). Due the small sizes of the domains considered (compared to a stellar or

planetary radius) we use an f -plane approximation where rotation is assumed to

be constant throughout the domain.

In what follows we use new units for length, [l], time, [t], temperature, [T ],

and chemical composition, [µ] as,

[l] = d =
(

κTν

αg |T0z − T ad
0z |

) 1
4

=
 κTν

αg T
p

∣∣∣∂p
∂r

∣∣∣ |∇ −∇ad|

 1
4

,

[t] = d2

κT
,

[T ] = d
∣∣∣T0z − T ad

0z

∣∣∣ ,
[µ] = α

β
d
∣∣∣T0z − T ad

0z

∣∣∣ , (3.6)

where g is the local gravitational acceleration, ν is the local viscosity, κT is the

local thermal diffusivity, and where T ad
0z is the adiabatic temperature gradient

defined as

T ad
0z = T

p

dp

dr
∇ad at r = r0 . (3.7)

The non-dimensional governing equations for rotating ODDC are then given by

∇ · u = 0 ,
∂u
∂t

+ u · ∇u = −Pr∇p̃+ Pr
(
T̃ − µ̃

)
êz + Pr∇2u−

√
Ta∗

(
Ω
|Ω|
× u

)
,

∂T̃

∂t
+ u · ∇T̃ − w = ∇2T̃ ,

∂µ̃

∂t
+ u · ∇µ̃−R−1

0 w = τ∇2µ̃ , (3.8)
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where u = (u, v, w) is the velocity field. This introduces the usual non-dimensional

diffusion parameters Pr (the Prandtl number) and τ (the diffusivity ratio) as

Pr = ν

κT
, τ = κµ

κT
, (3.9)

where κµ is the compositional diffusivity, and the inverse density ratio, R−1
0 , as

R−1
0 = β |µ0z|

α |T0z − T ad
0z |

. (3.10)

In a non-rotating model Pr, τ and R−1
0 are sufficient to fully describe the

system. In a rotating model though, we must introduce a fourth non-dimensional

parameter that controls the strength of rotation,

Ta∗ = 4 |Ω|2 d4

κ2
T

, (3.11)

which is related to the commonly defined Taylor number in studies of rotating

Rayleigh-Bénard convection as:

Ta = 4 |Ω|2 L4
z

ν2 = Pr−2
(
Lz
d

)4
Ta∗ . (3.12)

Values of Ta∗ and d in a stellar or planetary interior are difficult to estimate due

to uncertainty in the superadiabaticity of double-diffusive regions. However we can

make reasonable estimates for their upper and lower bounds. As in Nettelmann

et al. (2015) we define the superadiabaticity, ∆T0z, as

∆T0z = ∇−∇ad

∇ad
= T0z − T ad

0z
T ad

0z
. (3.13)

In their study values of ∆T0z were typically between 10−2 and 102 (see their Figure
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2). This range of values, combined with data from French et al. (2012), allows

us to calculate d and Ta∗ as a function of depth for the interior of Jupiter. From

Figure 3.1 we see that the lowest estimates for Ta∗ are on the order of 10−3 (for

large ∆T0z) and the upper bound is between 1 and 10 (for small ∆T0z). As we will

show later, this range includes values of Ta∗ which indicate significant rotational

effects on the dynamics of ODDC. Larger values of ∆T0z are expected in the case

of layered ODDC, where T0z is close to T ad
0z , while smaller values are expected in

the case of non-layered ODDC, where T0z is closer to the radiative temperature

gradient.

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Ta
*

Radius (in units of RJ)

∆ T0z = 0.01
∆ T0z = 0.1
∆ T0z = 1

∆ T0z = 10
∆ T0z = 100

10-2

10-1

100

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

d

Radius (in units of RJ)

∆ T0z = 0.01
∆ T0z = 0.1
∆ T0z = 1

∆ T0z = 10
∆ T0z = 100

Figure 3.1: Values of Ta∗ (left) and d (right) estimated for the interior jupiter
using data from French et al. (2012). Estimates are made for various values of
∆T0z between 10−2 and 102.

The conditions for ODDC to occur in a non-rotating fluid are defined by Pr,

τ , and, most importantly, R−1
0 (Baines & Gill, 1969). For a system to be unstable

to infinitesimal perturbations, R−1
0 must be within the following range:

1 < R−1
0 < R−1

c ≡
Pr + 1
Pr + τ

. (3.14)

If R−1
0 < 1, the system is unstable to standard convection, and if R−1

0 > R−1
c the

system is linearly stable. It should be noted that while a fluid with R−1
0 > R−1

c
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may be linearly stable, it is still possible for an instability to be triggered through

finite amplitude perturbations (assuming that the perturbations are of the right

functional form, see Huppert & Moore, 1976; Proctor, 1981). When we discuss

ODDC, however, we are referring only to the linearly unstable kind of double-

diffusive convection.

3.3 Linear stability analysis

We analyze the linear stability of rotating double-diffusive convection by first

linearizing the governing equations in (3.8) around T̃ = µ̃ = u = 0. We then

assume that the functional form of the perturbations is

{u, T̃ , µ̃} = {û, T̂ , µ̂} exp (ilx+ imy + ikz + λt) , (3.15)

where the hatted quantities are the mode amplitudes, and where l, m, and k

are the wave numbers for the x, y, and z directions, respectively. By assuming

solutions of this form, we get the following dispersion relation:

(
λ+ PrK2

)2 (
λ+ τK2

) (
λ+K2

)
−K

2
H

K2 Pr
(
λ+ PrK2

) [(
λ+ τK2

)
−R−1

0

(
λ+K2

)]
−Ta∗ (m sin θ + k cos θ)2

K2

(
λ+ τK2

) (
λ+K2

)
= 0 , (3.16)

whereK =
√
l2 +m2 + k2 andKH is the magnitude of the horizontal wavenumber

defined as KH =
√
l2 +m2.

As in non-rotating ODDC, it can be shown that the fastest growing linear

modes in the rotating case have purely vertical fluid motions which span the

height of the domain (ie. k = 0). In fact, in Equation (3.16) we see that when
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θ = 0 and k = 0 the rotation-dependent term drops out altogether. The fastest

growing modes in rotating systems with θ = 0 are therefore identical to their

non-rotating counterparts both in horizontal wavenumber and growth rate.

However, when θ = 0 rotation does affect the growth of other modes which

have k 6= 0, and always acts to reduce their growth rates. This is illustrated in

Figure 3.2 which shows mode growth rates as a function of k and KH for various

values of Ta∗. In this “polar" configuration, the mode growth rate only depends on

the total horizontal wavenumber KH , and not on l or m individually. As rotation

increases we see that modes with k 6= 0 grow more slowly or become stable, while

only modes with very low k or k = 0 remain unstable.
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Figure 3.2: In each of the panels, Pr = τ = 0.1, R−1
0 = 1.25. Panels (a-c):

Growth rates versus horizontal and vertical wave numbers for stated values of Ta∗
with θ = 0. Panels (d-f): Surface of null growth rate for Ta∗ = 1 and stated
values of θ. The line shows the axis of l wavenumbers. All points on this axis are
unaffected by rotation, including the fastest-growing modes.

When θ 6= 0 the fastest growing modes still have k = 0. However, to avoid
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the attenuating effect of rotation on their growth rates, they must satisfy the

additional constraint,

m sin θ = −k cos θ . (3.17)

Consequently, the fastest growing modes must have both m = 0 and k = 0.

Because of this extra constraint, there are fewer modes that grow at the fastest

rate. This is well illustrated in Figure 3.2 where we see that in rotating ODDC

there is a ring of modes that are unaffected by rotation that is inclined at an

angle of θ. When θ 6= 0, this ring intersects the k = 0 plane at only two points

meaning that there are only two fastest growing modes whose growth rates are

not diminished by the effects of rotation. These unaffected fastest growing modes

take the form of invariant vertically oscillating planes, spanned by the direction

of gravity and the rotation axis (see Section 3.6 for more details on this limit).

3.4 Simulations with θ = 0

Reproducing the conditions of stellar or planetary interiors in laboratory ex-

periments is practically impossible, so in order to understand the development of

rotating ODDC beyond linear theory, we must study results from direct numerical

simulations (DNS). In this section we analyze data from 3D numerical simulations

run using a version of the pseudo-spectral, triply periodic, PADDI Code (Traxler

et al., 2011), which has been modified to take into account the effects of rotation.

Each simulation is run with Pr = τ = 0.1, R−1
0 = 1.25. We have chosen these

values because non-rotating simulations at these parameters have been found to

spontaneously form layers (as predicted by γ-instability theory, see Mirouh et al.,

2012) which allows us to evaluate how global rotation affects the formation and

evolution of these layers. We focus on 5 simulations with Ta∗ = 0, 0.01, 0.1, 1
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and 10. Based on their qualitative behavior, we consider the simulations with

Ta∗ = 0.01, and 0.1 to be “low Ta∗" and the simulations with Ta∗ = 1 and 10

to be “high Ta∗". Each has an effective resolution of 3843 mesh points and the

simulation domains have dimensions of (100d)3. The simulations are initialized

with random infinitesimal perturbations to the temperature field.

When studying the behavior of rotating ODDC using DNS, the quantities of

greatest relevance to astrophysical models are the vertical fluxes of temperature

and chemical composition through the domain. We express these fluxes in terms of

thermal and compositional Nusselt numbers, NuT and Nuµ, which are measures

of total fluxes (turbulent + diffusive) in units of the diffusive flux. Using the

non-dimensionalization described in Section 3.2, NuT and Nuµ are expressed as

NuT = 1 + 〈w̃T̃ 〉 , (3.18)

Nuµ = 1 + 〈w̃µ̃〉
τR−1

0
. (3.19)

In practice, we are most interested in the capacity of ODDC to induce vertical

turbulent mixing. We therefore quantify transport in terms of the non-dimensional

turbulent flux of temperature, NuT − 1, and the non-dimensional turbulent flux

of chemical species, Nuµ − 1. These quantities can also be viewed as the ratio of

turbulent diffusivity to the microscopic diffusivity for each transported quantity.

We also note that for astrophysical objects it is usually possible to estimate

the heat flux by observing the intrinsic luminosity, but direct measurements of the

compositional flux are more difficult to obtain. However, the rate of compositional

transport may be inferred through observations of the heat flux if a set relationship

exists between them. For this reason we also express our results in terms of the
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total inverse flux ratio, γ−1
tot , given (non-dimensionally) by

γ−1
tot = τR−1

0
Nuµ
NuT

. (3.20)

This is the the ratio of the total buoyancy flux due to compositional transport,

to the total buoyancy flux due to heat transport, which was first discussed by

Stevenson & Salpeter (1977). This ratio is typically smaller than one when dom-

inated by turbulent mixing, and describes what fraction of the total energy flux

can be used to mix high-µ chemical species upwards. The inverse flux ratio is

also a crucial player in the γ−instability theory: indeed, as shown by Mirouh

et al. (2012), a necessary and apparently sufficient condition for layer formation

in ODDC is that γ−1
tot be a decreasing function of R−1

0 . Furthermore, dγ−1
tot/dR

−1
0

controls the growth rate of layering modes.

Finally, measuring how the relative influence of rotation changes as rotating

simulations evolve offers insight into how our results may scale to larger systems.

We measure the influence of rotation with a Rossby number (the ratio of the

inertial force to the Coriolis force), which is usually defined as a turbulent velocity

divided by the product of a length scale and the rotation rate. Here, we define

the Rossby number as

Ro = uh,rms

2πLh
√

Ta∗
, (3.21)

where uh,rms is the rms horizontal velocity, and Lh is the expectation value of the

horizontal length scale of turbulent eddies over the power spectrum, defined as

Lh =
∑
l,m,k

(|ûlmk|2+|v̂lmk|2)√
l2+m2∑

l,m,k(|ûlmk|2 + |v̂lmk|2) , (3.22)

where ûlmk and v̂lmk are the amplitudes of the Fourier modes of u and v, re-
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spectively, with wavenumber (l,m, k). We define Ro this way because in systems

where θ = 0, only horizontal velocity components are affected by rotation.

3.4.1 Growth and saturation of the linear instability

Figure 3.3 shows the turbulent compositional flux as a function of time for each

of the simulations with Pr = τ = 0.1, and R−1
0 = 1.25, focusing on the growth and

saturation of basic instability of ODDC. It clearly shows that the growth of the

linear instability in simulations of rotating ODDC (with θ = 0) behaves similarly

to the non-rotating case. This is not surprising since the overall growth of the

linear instability is dominated by the fastest growing modes, which in this case

are completely unaffected by rotation (see Section 3.3).
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Figure 3.3: Exponential growth and early stages of the non-linear saturation of
the turbulent compositional flux for simulations with Pr = τ = 0.1, R−1

0 = 1.25,
θ = 0 and stated values of Ta∗. The growth rates are independent of Ta∗. The
fluxes immediately after non-linear saturation are also more-or-less independent
of Ta∗, except for the case with Ta∗ = 10.

After the initial growth of the linear instability, each simulation reaches a non-

linear saturation (at around t = 300 in each case) and becomes homogeneously

turbulent. Figure 3.3 shows that the compositional flux in the homogeneously

turbulent phase are roughly independent of Ta∗ at low Ta∗. For Ta∗ = 0.01, 0.1
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and 1 the mean fluxes during this phase are statistically similar to one another,

while the most rapidly rotating simulation (Ta∗ = 10) reaches a plateau that is

slightly higher than the others. Note that the composition flux in the non-rotating

simulation (Ta∗ = 0) behaves differently, because in this case layers begin to form

almost immediately after saturation. This causes it to continue to grow after

saturation (albeit at a slower rate), never achieving a quasi-steady state as the

rotating simulations do. We now look in more detail at the behavior of the low

Ta* and high Ta* sets of simulations, respectively.

3.4.2 Low Ta∗ simulations

Figure 3.4 shows that in low Ta∗ simulations the homogeneously turbulent

phase (where fluxes remain more or less statistically steady) is followed by a

series of step-wise increases in the compositional (and thermal) flux, which are

indicative of layers that form spontaneously through the γ-instability and then

merge progressively over time. In each case, three layers initially form which then

merge into two, and ultimately into a single layer with a single interface. This

final configuration is statistically stationary. We therefore find the qualitative

evolution of layers to be consistent with previous studies of non-rotating layered

ODDC (Rosenblum et al., 2011; Wood et al., 2013). However, the progressive

increase in rotation rate introduces quantitative differences between rotating and

non-rotating cases, even at low Ta∗. The rotation rate clearly affects the time

scales for layer formation and layer mergers, respectively, with stronger rotation

leading to delays in both processes.

The formation of layers can be understood quantitatively by studying the

growth of “layering modes" predicted by γ-instability theory (as in Stellmach

et al., 2011; Rosenblum et al., 2011; Mirouh et al., 2012, for example). Each
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Figure 3.4: Long-term behavior of the turbulent compositional flux (left) and of
γ−1

tot (right) for stated values of Ta∗. In each simulation, Pr = τ = 0.1, R−1
0 = 1.25,

and θ = 0. In low Ta∗ simulations, the turbulent compositional flux increases in
a stepwise manner indicative of layer formation, while in the high Ta∗ cases there
is no clear evidence for similar stepwise increases.

layering mode corresponds to a horizontally invariant, vertically sinusoidal per-

turbation to the background density profile. To analyze them, we therefore look

at the amplitude of the Fourier modes of density perturbations with wave num-

bers (0, 0, kn), where kn = 2πn
Lz

, where Lz = 100d is the domain height, and n is

the number of layers in the process of forming. The evolution of the (0, 0, k2) and

(0, 0, k3) modes as a function of time for each of the three low Ta∗ simulations is

shown in Figure 3.5.

For simulations with Ta∗ = 0, 0.01 and 0.1, (0, 0, k3) is the mode that initially

grows to have the largest amplitude, which explains why the staircases first form

with three layers. We see that, at low Ta∗, the (0, 0, k3) modes all initially grow

at roughly the same rate. This is unsurprising, since rotation does not have a

direct effect on the γ-instability because Coriolis terms only appear in the mo-

mentum equation in (3.8), which is ignored in the mean field theory upon which

the γ-instability is based (Mirouh et al., 2012). Rotation could in principle have

an indirect influence over layer formation by significantly affecting the turbulent
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Figure 3.5: Time series of the amount of energy in layering modes (0, 0, k2) (left)
and (0, 0, k3) (right) for simulations with Pr = τ = 0.1, R−1

0 = 1.25, and θ = 0, for
various values of Ta∗. Layering modes are horizontally invariant perturbations to
the background profiles of temperature and chemical composition. Also shown are
the theoretical amplitudes these layering modes must attain in order to trigger
layered convection. Perturbation amplitudes in the low Ta∗ regime attain this
amplitude, but fall short in the Ta∗ = 1 simulation.

fluxes in the homogeneously turbulent phase and changing the relationship be-

tween γ−1
tot and R−1

0 , but as we see in Figure 3.3 this is not the case in the low Ta∗

regime.

To understand the delay in the formation of layers we must instead look at the

amplitude that the density perturbations must achieve in order to trigger the onset

of layered convection. Indeed, rotation is well-known to delay the onset of insta-

bility in the case of thermal convection between parallel plates (Chandrasekhar,

1961), so by analogy, we expect that the localized positive density gradients caused

by the growth of layering modes must be larger to trigger convective overturning

and cause the staircase to appear. In the Appendix, we estimate the critical den-

sity gradient needed to trigger convection in rotating Rayleigh-Bénard convection.

Using this result, we then compute the amplitude the layering modes must achieve
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as a function of kn and Ta∗, to be

|An| =

∣∣∣∣∣∣∣∣
3π4

H4
n

(
H4
nTa∗

2Pr2π4

) 2
3 + 27π4

4H4
n

+
(
R−1

0 − 1
)

2kn

∣∣∣∣∣∣∣∣ . (3.23)

where Hh = Lz/n = 2π/kn is the nondimensional layer height associated with the

layering mode (0, 0, kn). This amplitude is shown in Figure 3.5 for each of the

(0, 0, k3) modes in the low Ta∗ simulations. Consistent with our idea, the layering

modes stop growing shortly after achieving their respective critical amplitudes

(except for the Ta* = 1 case, see Section 3.4.3). This indicates that layered con-

vection has commenced, taking the form of turbulent convective plumes bounded

by freely moving, stably stratified interfaces.

In each case the mode (0, 0, k3) is then overtaken by modes (0, 0, k2) and ul-

timately (0, 0, k1) (not shown here). These multi-layer phases are metastable in

that they persist over many eddy-turnover times before merging. Snapshots of

the 3, 2, and 1-layered phases for Ta∗ = 0 and Ta∗ = 0.1 are shown in Figure 3.6b

and 3.7b.
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Figure 3.6: (a) Density profiles and (b) snapshots of the chemical composition
field in the 3, 2, and 1 layered phases for a non-rotating simulation (Ta∗ = 0) with
Pr = τ = 0.1 and R−1

0 = 1.25.
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Figure 3.7: (a) Density profiles and (b) snapshots of the chemical composition
field in the 3, 2, and 1 layered phases for a simulation with Ta∗ = 0.1, Pr = τ = 0.1,
R−1

0 = 1.25 and θ = 0. Noteworthy are the layer interfaces which are more stably
stratified than in the non-rotating case. Also, there is a larger positive density
gradient in the layers themselves.

Rotation also has a strong influence on several aspects of the dynamics of lay-

ered convection including the mean density profile within the layers, the stability

of the interfaces, and, as mentioned earlier, the merger timescale. In Figures 3.6a

and 3.7a, horizontally averaged density profiles show in greater detail the struc-

ture of the layers themselves in the three-, two-, and one-layered phases. Stronger

rotation is correlated with larger positive density gradients in the layers them-

selves, which in turn necessarily leads to more stably stratified layer interfaces (at

fixed R−1
0 ).

The increase with rotation rate of the density gradients within the layers is

similar to what occurs in rotating Rayleigh-Bénard convection (Julien et al., 1996).

It is usually argued that turbulent buoyancy mixing by convection adjusts the

mean density gradient (outside of any potential boundary layers) to a state of

marginal stability. Combined with the fact that the critical density gradient for

marginal stability increases with Ta∗ (see Equation (3.23)), our results are not

surprising. We see, however, that this effect is strongest for smaller layers and
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gradually decreases as the layers merge and their heights increase.

In Figure 3.4 we see that the simulation with Ta∗ = 0.1 spends a greater

amount of time in the three- and two-layered phases than either of the other two

simulations, and consequently takes about twice as long as the non-rotating run

(Ta∗ = 0) to reach the one-layered phase. The root cause is related to the lower

supercriticality of convection within the layers combined with the increased sta-

bility of the interfaces. Through inspection of the density profiles of our layered

simulations, we see that the positions and shapes of the interfaces in rotating sim-

ulations have less variability with time compared with non-rotating simulations.

We also see in Figure 3.4 that the fluxes in the rotating layered systems oscillate

less than they do in the non-rotating ones. Wood et al. (2013) already discussed

these large amplitude oscillations in non-rotating simulations and attributed them

to the presence of large plumes of fluid punching through interfaces periodically

causing spikes in transport. In our layered rotating simulations (particularly the

Ta∗ = 0.1 case) the absence of large amplitude oscillations in the layered phase

suggests that the motion of these plumes is inhibited, possibly because convection

is weaker and the interfacial gradients are stronger. Since the plumes could be key

players in the layer merger events, their suppression in the rotating simulations

could also explain why the merger timescale is longer.

All of these effects also contribute to the reduction of mean fluxes of tem-

perature and chemical composition through density staircases in rotating ODDC

compared with the non-rotating case. To show this quantitatively, Table 1 presents

measurements of NuT − 1 and Nuµ − 1 (with standard deviations) for each value

of Ta∗. For low Ta∗ simulations, which clearly form convective layers, the fluxes

are measured in the one-layered phase. The simulation with Ta∗ = 0.01 shows 2%

and 7% decreases in thermal and compositional fluxes, respectively, compared to

66



Ta∗ Ta NuT − 1 Nuµ − 1 γ−1
tot

0 0 25.3 ± 10.8 149.8 ± 84.4 0.68 ± 0.12
0.01 1 24.5 ± 5.2 139.0 ± 37.5 0.68 ± 0.074
0.1 10 15.5 ± 4.0 82.9 ± 28.4 0.62 ± 0.067
1 100 10.2 ± 2.1 46.5 ± 12.4 0.52 ± 0.061
10 1000 14.4 ± 3.1 61.7 ± 14.7 0.51 ± 0.061

10 (narrow) 1000 44.0 ± 11.2 216.5 ± 58.9 0.62 ± 0.16

Table 3.1: Non-dimensional thermal and compositional fluxes through the do-
main in the ultimate statistically stationary state achieved by the simulation. In
each case, Pr = τ = 0.1, R−1

0 = 1.25 and θ = 0. For the cases with Ta∗ = 0,
0.01 and 0.1, these fluxes are measured in the 1-layered phase. For the cases with
Ta∗ = 1 and 10, fluxes are measured once the system reaches a statistically steady
state (see Figure 3.4).

the non-rotating simulation, while the Ta∗ = 0.1 simulation shows 38% and 44%

reductions.

Wood et al. (2013) showed that fluxes in non-rotating layered ODDC fol-

low a power law scaling which depends on the product of the Prandtl num-

ber and the thermal Rayleigh number based on the layer height. In our non-

dimensionalization, the latter is defined as

RaT =
gα
∣∣∣T0z − T ad

0z

∣∣∣ (Hd)4

κTν
= H4 , (3.24)

where H is the non-dimensional layer height. Figure 3.8 shows the mean non-

dimensional turbulent compositional flux as a function of PrRaT for each of our

low Ta* simulations (Ta∗ = 0, 0.01, 0.1). To collect this data, average fluxes

were computed in the 1, 2, and 3 layer phases of each simulation. We clearly see

that rotation leads to reduced transport rates in layered convection. This is not

entirely surprising because rotation is known to reduce the convective efficiency

in Rayleigh-Bénard convection (Rossby, 1969). Bearing in mind the very limited

amount of data available, we nevertheless attempt to fit it with flux laws of the
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Figure 3.8: Non-dimensional compositional flux as a function of PrRaT for low
Ta∗ simulations with Pr = τ = 0.1, R−1

0 = 1.25. In the Ta∗ = 0.1 simulations
rotation acts to reduce the turbulent compositional flux in each layered phase.
However roughly the same power law applies to all simulations.

form NuT − 1 = A(PrRaT )a and Nuµ − 1 = B(PrRaT )b, using a nonlinear least

square fit. The results are presented in Table 2.

We find that rotation affects the constants of proportionality (A and B), much

more than it affects the exponent of PrRaT (a and b). For Ta∗ = 0.01 rotation has

a minimal effect on the fluxes in each layered phase and the relationship between

flux and PrRaT is the same as in the non-rotating case (Wood et al., 2013). For

Ta∗ = 0.1 however, rotation reduces the coefficient A by almost a factor 5 and

increases the exponent a by around 15%. There is evidence however that this

change in the exponent may be due to the fact that the relative effect of rotation

decreases for increasing values of PrRaT . Indeed, Figure 3.9 shows an increase

in Rossby number as layers merge in low Ta∗ simulations (see Equation(3.21) for

definition of Rossby number). This suggests that for sufficiently large layer heights

rotational effects could become negligible and the flux law probably tends to the

one found by Wood et al. (2013). This will need to be verified in simulations using

larger computational domains.
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NuT − 1 = A(PrRaT )a Nuµ − 1 = B(PrRaT )b
Ta∗ Ta A a B b
0 0 0.076 0.32 0.21 0.36

0.01 1 0.071 0.32 0.22 0.35
0.1 10 0.016 0.37 0.035 0.42

Table 3.2: Best fits for data presented in Figure 3.8.
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Figure 3.9: Rossby number Ro (left) and average horizontal lengthscale of tur-
bulent eddies Lh (right) for simulations with Pr = τ = 0.1, R−1

0 = 1.25 and θ = 0,
for various values of Ta∗. Noteworthy is that Ro increases as layers merge in
the low Ta∗ regime suggesting a decreased influence of rotation. Also note how
the horizontal length scale in the high Ta∗ simulations, which host a large-scale
vortex, is constrained by the domain size.
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3.4.3 High Ta∗ simulations

In contrast to the low Ta∗ case, the behavior of high Ta∗ simulations (Ta∗ = 1

and 10) is radically different from that described in studies of non-rotating ODDC.

In Figure 3.4 we see that neither of the high Ta∗ simulations shows clear stepwise

increases in either the compositional flux or γ−1
tot . Instead we see turbulent fluxes

that grow slowly and oscillate rapidly after saturation of the linear instability until

they reach a highly variable statistically stationary state.

The Ta* = 1 and Ta* = 10 simulations are themselves quite different from

one another. Figure 3.10 shows that the growth of step-like density perturbations

through the γ-instability occurs for the Ta∗ = 1 simulation just as they do in

the low Ta∗ cases. However, from Figure 3.5 we see that their amplitudes never

becomes large enough to trigger the onset of convection. The absence of the

standard stepwise increase in the fluxes associated with the transition to layered

convection also supports the idea that the latter does not happen in this simulation

(see Figure 3.4). Interestingly, the snapshot of chemical composition shown in

Figure 3.10 reveals that the system is dominated by a large scale cyclonic vortex.

Inspection of the vertical velocity field shows that it is (roughly) constant within

the vortex, which is consistent with Taylor-Proudman balance but is inconsistent

with a system composed of convective layers separated by interfaces that resist

penetrative motion. In some sense, it is perhaps more appropriate to consider

Ta∗ = 1 to be a transitional case rather than a high Ta∗ case because it displays

features of both high and low Ta∗ regimes.

For significantly higher Ta∗ (in this case Ta∗ = 10) we see that the growth of

perturbations to the density profile is completely suppressed for the duration of

the simulation. Instead, after a transitional period the system becomes dominated

by a cyclonic vortex similar to that observed in the Ta∗ = 1 simulation albeit with

70



much stronger vorticity. From the snapshots of vertical vorticity, ωz, in Figure
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Figure 3.10: (a) Density profiles and (b) snapshots of the chemical composition
field for a simulation with Ta∗ = 1, Pr = τ = 0.1, R−1

0 = 1.25 and θ = 0. Note
the presence of both a large scale vortex and layers.

3.12 we see that the simulations with Ta∗ = 1 and 10 have highly concentrated,

vertically invariant vortex cores, necessarily surrounded by a more diffuse region

of mostly anti-cyclonic vorticity (since
∫ ∫

ωz(x, y, z)dxdy = 0 for all z). We find

that, based on all available simulations, these large-scale vortices only occur in

the high Ta∗ regime. By comparison, the Ta∗ = 0.1 simulation shows no large

scale coherent structure in the vorticity field (which is true of the other low Ta∗

simulations as well). These features are strongly reminiscent of the large scale

vortices found by Guervilly et al. (2014) in rotating Rayleigh-Bénard convection

using stress-free boundary conditions. In a parameter study they found that

Reynolds numbers greater than 300 and Rossby numbers less than 0.15 were

needed for large scale vortices to form. Using the Reynolds number from Guervilly

et al. (2014) defined as

Re = wrmsLz
Pr , (3.25)

where wrms is the rms vertical velocity, we find that values of Re for our simulations
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Figure 3.11: (a) Density profiles and (b) snapshots of the chemical composition
field for a simulation with Ta∗ = 10, Pr = τ = 0.1, R−1

0 = 1.25 and θ = 0.
Note the complete absence of perturbations to the background density profile,
indicating that layering modes do not grow.

are ∼ 103. Meanwhile, the Rossby numbers are shown in Figure 3.9 and are less

than 0.1 for high Ta∗. This suggests that their vortex formation process may

be applicable to our high Ta∗ simulations despite the significant differences in

the systems being studied (ODDC vs. Rayleigh-Bénard convection). Also as in

Guervilly et al. (2014), we find that whenever large scale vortices form they always

grow to fill the horizontal extent of the domain1. Julien et al. (2012) proposed

that this may always occur in Cartesian domains using the f−plane approximation

regardless of box size. However they argued that this would be limited in practice

by the Rossby radius of deformation in astrophysical objects. Beyond that size,

convection or ODDC would likely lead to development of zonal flows in banded

structures instead.

The amount of energy that can be extracted from ODDC to drive large scale

vortices in the high Ta∗ regime is illustrated in Figure 3.13 where we see the vast

majority of kinetic energy in the Ta∗ = 1 and 10 simulations goes into horizontal
1To verify this, we have run an additional simulation in a domain of horizontal scale 200d×

200d, and height 50d. The large-scale vortex grew to fill the domain in this case as well.
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(a)$ (b)$ (c)$

Figure 3.12: Volume-rendered plots of the component of vorticity in the z-
direction, ωz, for three simulations with Pr = τ = 0.1, R−1

0 = 1.25 and θ =
0. (a) Ta∗ = 0.1. (b) Ta∗ = 1. (c) Ta∗ = 10. Purple/blue implies positive
(cyclonic) vorticity, while red/yellow implies negative (anticyclonic) vorticity. The
first simulation is in the low Ta∗ regime (Ta∗ = 0.1) and the other two are in the
high Ta∗ regime (Ta∗ = 1 and Ta∗ = 10). Vertically coherent, large scale vortices
are present in the high Ta∗ simulations, but no large-scale coherent structures
exist in the low Ta∗ case.

fluid motions. These results showing ratios of horizontal kinetic energy to total

kinetic energy are consistent with those calculated in Guervilly et al. (2014). The

total amount of kinetic energy in the vertical fluid motions remains the same

however in all the simulations, while it is the total kinetic energy of the system

that is much larger for high Ta* than for low Ta* simulations.

It is worth noting that while the thermal and compositional fluxes (see Figure

3.4) and vertical velocity stop growing and reach a statistically stationary state (at

around t = 3500 in both high Ta∗ simulations) the total kinetic energy continues

to grow (driven by the continued growth of the horizontal kinetic energy) and has

not saturated by t =6000. This can be attributed to the fact that horizontal fluid

motions are only limited by viscosity, and may only saturate on the global viscous

diffusion timescale which is ∼ 105 in these simulations.

Unlike in the low Ta∗ regime where average fluxes are calculated through

time-integration of the quasi-steady 1-layered phase, we choose ranges for time

integration of fluxes from t = 3500 to the end of the simulations in the high Ta∗
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Figure 3.13: Horizontal kinetic energy as a fraction of the total for simulations
with Pr = τ = 0.1, R−1

0 = 1.25, and θ = 0, for various values of Ta∗. In the high
Ta∗ case this quantity is a proxy for the strength of the large-scale vortices, since
they almost entirely dominate the energetics of the system.

regime. From Table 1 we see that the simulation with Ta∗ = 1 has the weakest

transport in either Ta∗ regime with 58.1% and 67.4% reductions to thermal and

compositional transport, respectively, compared to the non-rotating case. Inter-

estingly, the Ta∗ = 10 simulation shows a slight increases in flux over the Ta∗ = 1

case. A possible explanation for this is that the presence of a stably stratified in-

terface separating non-convective layers in the Ta∗ = 1 simulation inhibits vertical

motion through the large-scale vortex. This could also suggest that in the high

Ta∗ regime, increased rotation may actually serve to enhance transport rather

than suppress it, through vertical motions whose coherence is strengthened by

the vortex. However, by contrast with the layered regime, fluxes in the presence

of a large scale vortex are highly dependent on the aspect ratio of the box. In

Table 1 the narrower simulation at high Ta∗ = 10 has significantly higher fluxes

than its wider counterpart. This makes it challenging to scale our results to sim-

ulations with larger domains, let alone apply them to more realistic astrophysical

situations.

Also noteworthy in Table 1 is that γ−1
tot in the ultimate statistically steady
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state is roughly the same across all simulations (namely γ−1
tot ≈ 0.5 − 0.65) with

high Ta∗ simulations having a γ−1
tot that is at most 15% lower than in the low

Ta∗ regime. This is significantly less than the variability that occurs due to the

formation of large scale structures (layers or vortices): Figure 3.4b shows how γ−1
tot

increases from roughly 0.35 in the homogeneously turbulent phase to about 0.6 in

the ultimate stages.

3.5 Varying Pr, τ , and R−1
0

We now study the effect of varying Pr, τ , and R−1
0 on both the quantitative and

qualitative attributes of rotating ODDC discussed in the previous section. This is

not meant to be an exhaustive study, but rather to test whether the conclusions

from previous section still hold.

3.5.1 Varying Pr and τ

In order to study the effect of varying Pr and τ we show a set of simulations

with Pr = τ = 0.3, and R−1
0 = 1.1. As in Section 3.4, we have chosen parameters

at which layers form in non-rotating ODDC. Figure 3.14 shows the evolution of

the turbulent compositional flux as a function of time for simulations with Ta∗ =

0, 0.09, 0.9, 9, and 90 (corresponding to Ta = 0, 1, 10, 100 and 1000). Consistent

with Section 3.4 we find that at low Ta∗ stepwise increases in mixing rates indicate

the transition to layered convection, whereas in the high Ta∗ case we do not. The

transition between low and high Ta∗ is still Ta∗ ≈ 1 (equivalently Ta = 10 when

Pr = 0.3). This shows that Ta∗ is a more appropriate bifurcation parameter than

Ta to determine when ODDC is rotationally dominated. As in Section 3.4, layer

formation only occurs in the low Ta∗ regime. As with the Ta∗ = 1 simulation
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from Section 3.4 which shows characteristics of both high and low Ta∗ ODDC,

the Ta∗ = 0.9 simulation here develops a large scale vortex, as well as layer-

like perturbations to the background density profile (without evidence of actual

layered convection).

Large scale vortices are observed in simulations with Ta∗ = 0.9 and 9 and look

very similar to the corresponding snapshots of the Ta∗ = 1 and 10 simulations in

Figures 3.10 and 3.11 from the previous section. Interestingly, however the large

scale vortex does not form in our most rapidly rotating simulation with Ta∗ = 90;

instead we see multiple small scale vortices (see Figure 3.14). Analysis of Re and

Ro for this simulation places it in a regime where large scale vortices should form

according the criteria of Guervilly et al. (2014). This suggests that there may

be additional constraints on the formation of large scale vortices in ODDC which

should be determined through a more in-depth survey of parameter space in a

future study. Surprisingly, the compositional fluxes for the Ta∗ = 9 and 90 runs

are similar, which is likely a coincidence as we saw that the fluxes in the presence

of large scale vortices depend on domain size.

3.5.2 Simulations at large R−1
0

The simulations we have presented so far were runs with small values of R−1
0

which are conducive to layer formation in non-rotating ODDC. However, there is

a range of larger values of R−1
0 where a system is unstable to ODDC, but where

layers are not predicted to spontaneously form through the γ-instability. Previous

studies have showed that, without exception, simulations in this parameter regime

remain non-layered for as long as they are run. These simulations are dominated

by large scale gravity waves and were studied in depth by Moll et al. (2016) in

the context of non-rotating ODDC. In that work they found that the growth of
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Figure 3.14: (a) Non-dimensional turbulent compositional flux for simulations
with Pr = τ = 0.3 and R−1

0 = 1.1. One simulation is in the low Ta∗ regime
(Ta∗ = 0.3) and the other three are in the high Ta∗ regime. (b) Snapshot of the
component of vorticity in the z-direction for the most rapidly rotating simulation
at Ta∗ = 90, which appears to be dominated by small scale vortices. This may
suggest that large-scale vortices only occur in a specific range of values of Ta∗
(with θ = 0).

large scale gravity waves is associated with very moderate (but still non-zero)

increases in thermal and compositional transport. However, these increases are

very small compared to the increases in turbulent transport due to layers, and

are likely unimportant for the purposes of stellar and planetary modeling. As a

result, turbulent transport by ODDC at R−1
0 greater than the layering threshold

R−1
L can be ignored.

We now address how rotation affects non-layered ODDC (ie. ODDC at R−1
0 >

R−1
L ). As in Section 3.4, we present five simulations with Ta∗ = 0, 0.01, 0.1, 1 and

10, and with Pr = τ = 0.1 and θ = 0. However, for each of these simulations we

now set R−1
0 = 4.25. For comparison, for the stated values of Pr and τ , R−1

L ' 1.7

and the critical inverse density ratio for marginal stability is R−1
c = 5.5.

As in Section 3.4 we find that high R−1
0 simulations can be divided into two

general classes of behavior depending on Ta∗. As seen in the snapshots in Figure
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3.15, low Ta∗ simulations are qualitatively similar to non-rotating simulations in

that they are dominated by large scale gravity waves. The strongest gravity wave

mode in both the Ta∗ = 0 and Ta∗ = 0.01 simulations has three wavelengths

in the vertical direction, one wavelength in the x-direction, and is invariant in

the y-direction. The simulation with Ta∗ = 0.1 by contrast is dominated by a

larger scale mode with a single wavelength in each spatial direction. Despite their

qualitative similarity, inspection of the compositional flux in Figure 3.16 shows

large reductions compared to the non-rotating simulation (Ta∗ = 0), even in the

case where Ta∗ = 0.01. To understand why this is the case note how Ro is small

even in the lowest Ta∗ simulation. This is because the rms velocities are very

small in this regime. Rotation therefore plays a role in the saturation of the

gravity waves and acts to reduce their amplitudes, which in turn strongly reduces

the mixing rates.

As seen in the snapshot in Figure 3.15e, the Ta∗ = 10 simulation is dominated

by vertically invariant vortices, while the Ta∗ = 1 is again a transitional case which

shows evidence both of gravity waves and of vortices. A significant difference with

the results of Section 3.4 however, is that vortices at low R−1
0 are large-scale, while

those at high R−1
0 are small-scale (for the same values of Ta∗). This suggests that

the formation of large-scale vortices requires a more unstable stratification (which

leads to more turbulence) than is present in the high R−1
0 simulations shown here.

This is, again, qualitatively consistent with the findings of Guervilly et al. (2014)

that large scale vortices only form for sufficiently high Reynolds number.

The most rapidly rotating simulation (Ta∗ = 10) shows a slight increase in

the compositional flux compared to the non-rotating simulation but remains far

less efficient than layered convection. Importantly, as with the non-rotating sim-

ulation, layers never form at any point (when R−1
0 = 4.25). Consequently, the
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conclusion from Moll et al. (2016), that fluxes through non-layered (high R−1
0 )

systems are effectively diffusive, remains valid for all the simulations presented

here.

3.6 Inclined simulations

So far, for simplicity, we have discussed simulations in which the rotation

vector is aligned with the direction of gravity, and which only model conditions

applicable to the polar regions of a star or giant planet. We now discuss the

dynamics of ODDC at lower latitudes (ie. simulations with θ 6= 0). In what

follows, we return to the parameters studied in Section 3.4 (ie. Pr = τ = 0.1

and R−1
0 = 1.25). We focus on two sets of simulations with Ta∗ = 0.1 and 10,

respectively, which are each comprised of runs with angles θ = π
8 ,

π
4 ,

3π
8 , and π

2 .

Figure 3.17 shows the growth of the linear instability by way of the heat flux

as a function of time for the set of simulations with Ta∗ = 10. Each simulation

grows at roughly the same rate regardless of inclination, which is expected from

linear theory. However there is a slight difference between the amplitudes in

inclined simulations and the non-inclined simulation. This can be understood

by considering that the simulations are initialized with small amplitude, random

perturbations on the grid scale and many more modes are initially attenuated in

the inclined case than in the case where θ = 0 (see Section 3.3). As a result the

amount of energy in the initial perturbations projected onto the fastest growing

modes is smaller. Figure 3.18 shows snapshots of the chemical composition field

during the growth of the primary instability for simulations with θ = 0, π8 ,
π
4 ,

3π
8 ,

and π
2 . In all inclined simulations, there are prominent modes that are invariant

in the direction of rotation. In simulations with smaller (or no) inclinations (θ =

0 and π
8 ) the dominant modes are those with structure both in the x and y
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directions while simulations with larger inclinations (simulations that are closer

to the equator) have a strong preference for modes that are invariant in the plane

spanned by the rotation and gravity vectors.

While the behavior of the linearly unstable phase is qualitatively similar for

both low and high Ta∗ simulations regardless of θ, we find that this is not the

case after the saturation of the basic instability. While inclination has only small

effects on systems in the low Ta∗ regime, it has a more significant influence on

post-saturation dynamics in the high Ta∗ regime.

Figure 3.19 shows turbulent compositional fluxes for simulations in the low Ta∗

regime (Ta∗ = 0.1). The fluxes in the homogeneously turbulent phase are roughly

independent of θ indicating that inclination should have a minimal effect on the

growth rate of layering modes through the γ-instability. Indeed, the stepwise

increases in fluxes over time show that layer formation occurs at all inclinations.

Inspection of the chemical composition profiles show that the layer interfaces are

perpendicular with the direction of gravity, regardless of inclination. The latter

seems to affect the layer formation timescale and layer merger rate, but this may

be due the inherent stochasticity of the convective layers. Finally, aside from the

equatorial case, we find that inclination has a minimal impact on flux in each

layered phase, so the flux laws discussed in Section 3.4.2 apply more or less at

all latitudes. As a result, we expect that heat and compositional fluxes through

layered convection on a sphere should be fairly isotropic.

Figure 3.19 also shows the turbulent compositional flux for simulations in the

high Ta∗ regime (Ta∗ = 10). The lack of clear stepwise increases indicates that

layer formation is suppressed for most values of θ (as is the case in non-inclined

simulations). The notable exception to this rule is the simulation at the equator

(θ = π
2 ) where layers are observed to form even in the high Ta∗ case. Why they
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form in this case remains to be determined.

Another major difference between inclined and non-inclined simulations is that

there is no evidence for the large scale vortices in simulations with θ 6= 0, even

though they are observed in θ = 0 simulations at the same parameters (see Section

3.4). This is illustated in Figure 3.20 which shows the quantity ωyz = ω·Ω
|Ω| . There

are many smaller scale vortices aligned with the rotation axis but no large scale

vortex. This is even true in the simulation with the smallest inclination (θ = π
8 ),

bringing into question whether large scale vortices would be common in stars and

planets except exactly at the poles. The inclination of the small scale vortices is

associated with smaller vertical transport, and Figure 3.19 suggests that mixing

becomes less efficient as θ gets larger (except very close to the equator).

3.7 Conclusion

3.7.1 Summary and discussion

The main result of this study is the discovery of two distinct regimes in rotating

ODDC depending on whether the rotation rate Ω is high or low. We find that

the most appropriate parameter for determining if a system is in one regime or

the other is Ta∗ = 4Ω2d4

κ2
T

, where d is given in Equation (3.6) and κT is the thermal

diffusivity. The transition from the regime with slow rotation to the regime that

is rotationally dominated occurs consistently at Ta∗ ≈ 1.

In the low Ta∗ regime in polar regions (with θ = 0), rotating ODDC be-

haves in a qualitatively similar way to non-rotating ODDC. The transition to

layered convection (or lack thereof) at low Ta∗ is consistent with the predictions

of γ-instability theory made for non-rotating ODDC (Mirouh et al., 2012): at

parameters where layers form in non-rotating ODDC, we also observe layer for-
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mation in low Ta∗ simulations. Likewise, in the simulations we ran at non-layered

parameters, we find that low Ta∗ simulations do not form layers, and are dom-

inated by gravity waves like their non-rotating counterparts (Moll et al., 2016).

We understand this to be true because the thermal and compositional fluxes im-

mediately after saturation of the primary instability of ODDC are unaffected by

rotation in this regime. Since the γ-instability only depends on these fluxes, it

is similarly unaffected. Given the limited number of available simulations, we

cannot say definitively what effect (if any) rotation has on the layering threshold

R−1
L (the value of the inverse density ratio, R−1

0 , below which layers are predicted

to form through the γ-instability, and above which they are not), only that it

is not significant in the low Ta∗ simulations presented here, which are far from

that threshold. However, we believe that R−1
L would be relatively unaffected by

rotation for Ta∗ < 1.

Beyond these qualitative similarities with non-rotating simulations, however,

rotation in low Ta∗ simulations has a deleterious effect on thermal and compo-

sitional transport in both the layered and non-layered parameter regimes. For

a given layer height, turbulent fluxes through a thermo-compositional staircase

decrease as rotation increases (eg. by about 50% in the Ta∗ = 0.1 simulation

presented in Section 3.4.2). However, our results also suggest that this effect be-

comes smaller as the layer height increases (through mergers, for example). For

reasonably large layer heights, we postulate that rotation has a minimal effect on

ODDC, and that the flux laws originally proposed by Wood et al. (2013). actually

hold. Turbulent fluxes through non-layered ODDC in the gravity-wave-dominated

phase are reduced by as much as 90% compared with the non-rotating case, but

this merely implies that they remain negligible as discussed by Moll et al. (2016).

Finally, low Ta∗ simulations at higher colatitude θ are not significantly dif-
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ferent from their polar counterparts. Inclination has a negligible effect on the

temperature and compositional fluxes, but may induce differences in the time

scales of layer formation and mergers.

In the high Ta∗ regime, dynamics are radically different from non-rotating

and low Ta∗ simulations. Most striking is that layer formation is inhibited at

low inverse density ratios (except in the equatorial case). Instead, the dynamics

are dominated by vortices aligned with the direction of rotation, which span the

domain. Their horizontal scales seem to depend on R−1
0 , θ and Ta∗. In polar

regions, we observe that some simulations become dominated by a single large

scale cyclonic vortex which grows to fill the domain, similar to those observed by

Guervilly et al. (2014) in rotating Rayleigh-Bénard convection. Our preliminary

data show that this phenomenon may be limited to low R−1
0 , together with Ta∗

between 1 and 10, but the precise conditions necessary for these large scale vortices

to form remain to be determined. We find that large scale vortices do not occur

in the most rapidly rotating simulation (Ta∗ = 90) at low R−1
0 , in any of the high

R−1
0 simulations or in any of the inclined simulations. In these cases the system

dynamics are instead dominated by many smaller scale vortices of both polarities.

Turbulent fluxes through different types of vortices vary with parameters in

a complex manner, and it is therefore difficult to make general statements about

them. The fluxes in the presence of large scale vortices are significant, but appear

to be highly dependent on the dimensions of the domain, which makes it difficult

to predict in situ mixing in a star or planet. On the other hand, fluxes in the

presence of small scale vortices are not likely to be dependent on domain size,

but their dependence on Ta∗ and R−1
0 has yet to be extensively studied. The

most definitive aspect of the fluxes in simulations that host small scale vortices

is that they are highly dependent on the inclination θ, with higher inclinations
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causing less efficient transport (except at the equator). This is due to the fact that

velocities are constrained to being along the axis of rotation by Taylor-Proudman

effects. It is interesting to note that in the high Ta∗ regime, layers form in our

equatorial simulation (θ = π
2 ). In this run, turbulent fluxes through the layers

are comparable to layered fluxes in the low Ta∗ and non-rotating regimes. All

of this suggests that the poles and equator may be regions of strongly enhanced

temperature and compositional transport in ODDC, while turbulent mixing at

latitudes in between is quenched.

Finally, simulations where Ta∗ ≈ 1 appear to be edge cases with features

of both high and low Ta∗. At parameters conducive to layering, simulations

with Ta∗ ≈ 1 show evidence of perturbations to the background density profiles,

indicating the growth of the γ-instability. However, we also see the development

of large-scale vertically invariant vortices which prevent actual layered convection

from occurring. Also, when Ta∗ ≈ 1 at non-layered, gravity-wave-dominated

parameters, we see evidence of gravity waves as well as small thin vortices which

are nearly vertically invariant.

There are several caveats to these conclusions that should be mentioned. The

dimensionality of parameter space that would need to be explored to provide a

comprehensive study of rotating ODDC is high, and comprises of (Lx, Ly, Lz),

θ, Pr, τ , Ta∗ and finally R−1
0 . Computational limitations force us to be highly

selective on the sets of simulations explored so this study does not constitute a

comprehensive sweep of parameter space. As such, there may be behaviors that

occur at unexplored parameters that are not addressed here.

First of all, in the interest of reducing computational expense we have chosen

to run most of our simulations in domains with dimensions (100d)3. With boxes

of this size layers always merge until a single interface remains (as in the non-
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rotating case). It would be interesting to see in a taller domain if rotation has

a role in determining the layer height (ie. to see if layers stop merging before

reaching the one-layered phase). Wider domain sizes may also help to answer

questions about the vortices present in high Ta∗ simulations. Particularly, they

may reveal whether large scale vortices have a characteristic horizontal length, or

whether they always grow to fill the domain. Wider boxes may also show if there

are so far undetected large scale features emerging in systems dominated by small

scale vortices.

Another area of uncertainty is that the chosen values of R−1
0 , R−1

0 = 1.25 and

R−1
0 = 4.25, are fairly close to the convective and marginal stability thresholds,

respectively, making them somewhat extreme cases. While we do not believe

that choosing less extreme parameter values would lead to dramatic qualitative

changes in the results, we cannot rule this possibility out until further work has

been completed.

Finally, for computational reasons, the values of Pr and τ chosen for our sim-

ulations (Pr = τ = 0.1 and 0.3) are substantially larger than the values in stellar

interiors (where Pr ∼ τ ∼ 10−6) and the interiors of giant planets like Jupiter and

Saturn (where Pr ∼ τ ∼ 10−3). Consequently, there may be additional physical

effects that occur at low parameter values that are not observed here. However,

the values used here may be closer to actual values for ice giants such as Uranus

and Neptune whose equations of state are influenced by the presence of water and

methane ices in their atmospheres (Redmer et al., 2011).

3.7.2 Prospects for stellar and planetary modeling

As summarized above, our results for the low Ta∗ regime show that attenuation

of the fluxes due to rotational effects is not likely to be significant for astrophysical
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models or observations. In this regime we advocate use of the parameterizations

presented in Wood et al. (2013) in layered ODDC and Moll et al. (2016) in non-

layered ODDC. However, a potentially observable effect of rotating ODDC in this

regime could be related to how rotation affects the structure of layers and inter-

faces in low Ta∗ simulations. We have found in our experiments that rotation

leads to layer interfaces that are more stably stratified than in non-rotating sim-

ulations. It may be possible in the future that such steep density gradients could

be observed in a star through asteroseismology. This line of inquiry could even

be extended to Saturn where it may be possible to detect density gradients using

ring seismology (Fuller, 2014).

In the high Ta∗ regime the results of this study have potential observational

implications for thermal and compositional transport in stars and planets. The

sensitivity of the turbulent heat flux to θ in our high Ta∗ simulations suggests

that the transport in a rapidly rotating giant planet could vary substantially with

latitude (with higher fluxes at the poles and equator). Indeed, the gas giants in our

own solar system are found to have luminosities that are independent of latitude,

despite the fact that regions close to the equator receive more solar energy. Since

we would expect regions of Jupiter or Saturn’s atmosphere that get more radiation

from the sun to have higher luminosities (because they are reradiating more solar

energy) the isotropy of the outgoing flux in luminosity suggests that more heat

from the interiors of these planets is being radiated at the poles than at other

latitudes. Further study is warranted to determine if rapidly rotating ODDC

contributes to this effect. The large-scale vortices present in the polar regions of

the high Ta∗ simulations present an intriguing observational potential, of regions

with strong heat and compositional fluxes and strong collimated vertical flows.

However, there is reasonable doubt as to whether large scale vortices represent a
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real physical phenomenon. We only observe them to occur in polar simulations (in

a limited range of Ta∗), and it is possible that even a slight misalignment between

the direction of gravity and the rotating axis could prevent them from forming.

For stars, in the case of semi-convection zones adjacent to convection zones,

Moore & Garaud (2015) showed that non-rotating ODDC is always in the layered

regime, and that transport through the semi-convective region is so efficient that

the latter gets rapidly absorbed into the convection zone. In essence, aside from a

fairly short transient period, the star evolves in a similar way taking into account

semi-convection, or ignoring it altogether and using the Schwarzchild criterion

to determine the convective boundary. Our results suggest that this conclusion

remains true for slowly rotating stars. However, if the star is in the high Ta∗ regime

instead, layered convection is suppressed, transport through the semi-convective

region is much weaker, and may possibly depend on latitude. This would in turn

imply fairly different evolutionary tracks and asteroseismic predictions.

87



(a)$

(b)$

(c)$

(d)$

(e)$

Figure 3.15: Snapshots of the horizontal velocity field (u or v) for simulations
with Pr = τ = 0.1, R−1

0 = 4.25, and θ = 0, for various values of Ta∗: (a) Ta∗ = 0,
(b) Ta∗ = 0.01, (c) Ta∗ = 0.1, (d) Ta∗ = 1, and (e) Ta∗ = 10.
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Figure 3.16: Time series of the turbulent compositional flux (left) and Rossby
number (right) for simulations with Pr = τ = 0.1, R−1

0 = 4.25, and θ = 0 for
various values of Ta∗.
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Figure 3.17: Nondimensional turbulent compositional flux during the primary
instability growth phase, and immediately following non-linear saturation for sim-
ulations with Pr = τ = 0.1, R−1

0 = 1.25, Ta∗ = 10, and various values of θ.
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Figure 3.18: Snapshots of the vertical velocity field during the growth of the
linear instability for simulations with Pr = τ = 0.1, R−1

0 = 1.25, Ta∗ = 1, and
various values of θ: (a) θ = 0, (b) θ = π/8, (c) θ = π/4, (d) θ = 3π/8 and (e)
θ = π/2.
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Figure 3.19: Long-term behavior of nondimensional turbulent fluxes of composi-
tion for simulations with stated values of θ and with Ta∗ = 0.1 (left) and Ta∗ = 10
(right). In both sets of simulations, Pr = τ = 0.1, and R−1

0 = 1.25. In the low Ta∗
case the succession of layered phases is similar for polar and inclined simulations,
with only small differences in layering time scales and turbulent fluxes. In the
high Ta∗ case, fluxes in inclined simulations are sharply attenuated compared to
the polar case.
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Figure 3.20: Snapshots of ωyz, the component of the vorticity parallel to the
rotation axis, during saturation of the linear instability. Shown are simulations
with Pr = τ = 0.1, R−1

0 = 1.25, Ta∗ = 1, and (a) θ = π
8 , (b) θ = π

4 and (c) θ = 3π
8 .

In each case, coherent small scale vortices are aligned with the axis of rotation.

91



Chapter 4

Diffusive Convection with

Proto-Layered

4.1 Introduction

Up to this point, we have discussed only double-diffusive instabilities that

are triggered through infinitesimal perturbations (this is indeed how we define

ODDC). As discussed in Chapter 1, ODDC can be either layered or non-layered de-

pending on the value of the inverse density ratio, R−1
0 . However, even in the regime

where layers do not spontaneously form (R−1
L < R−1

0 < R−1
c , where R−1

L ∼ Pr−1/2

and R−1
c = Pr+1

Pr+τ ) it is possible to force a diffusive system into a persistent layered

configuration. This can be accomplished by exciting the well-known subcritical

branch of double diffusive convection with finite amplitude perturbations (Hup-

pert & Moore, 1976). In fact, the subcritical layering instability is by necessity

the relevant one in geophysical systems.

Indeed, diffusive convection was first observed in terrestrial oceans and lakes

(Degens et al., 1973; Perkin & Lewis, 1984). Fluids with a stable composition

92



gradient and an unstable temperature gradient are found in the arctic ocean both

in the upper layers where melting ice can cause the surface to be colder and fresher

than the water below which intrudes from the North Atlantic, and on the ocean

floor where geothermal heating creates weakly unstable temperature gradients in

water that is stably stratified in salinity (Timmermans et al., 2003). The same

process of geothermal heating may create diffusive systems in geologically active

lakes as well, where dissolved volcanic gasses (such as CO2 and methane) provide

a strongly stabilizing compositional stratification. Crucially, layering is observed

in all of these cases, yet none of them are in the ODDC-unstable regime. Recall

that in order for a system to be linearly unstable, the inverse density ratio, R−1
0 ,

must satisfy the condition

1 < R−1
0 < R−1

c = Pr + 1
Pr + τ

. (4.1)

In water, Pr = 7 and τ ' 0.01 resulting in a critical inverse density ratio of R−1
c =

1.14. However, the geophysical examples listed above typically have R−1
0 ≈ 5−10,

and are therefore stable to ODDC. This strongly suggests that layering in this case

must occur via a subcritical instability, which necessitates forcing layers to form

with finite amplitude perturbations.

Forced layering in diffusive convection was studied first in geophysical labora-

tory experiments by Turner (1965). In those experiments a double diffusive fluid

was initialized in a layered configuration, in which water with a low concentration

of salt was carefully deposited on top of a layer with a higher salinity and then

heated from below. This setup lead to rising and falling convective plumes within

the layers and enhanced diffusion of temperature and salt through the convec-

tively stable layer interface. In those experiments, the flux of temperature, FT ,
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through the thin interface separating the layers was found to be

FT ∝ (∆T )4/3 (4.2)

where ∆T is the temperature difference across the interface. The compositional

flux (in their case, salinity) was similarly found to be FC ∝ ∆C4/3. Both scalings

can be explained in terms of dimensional analysis. Similar results were later found

by Shirtcliffe (1973) using a salt-sugar double diffusive system. Later, Linden &

Shirtcliffe (1978) described the steady state profiles of temperature and salinity

in layered systems with diffusive interfaces similar to those studied by Turner

(1965) and Shirtcliffe (1973). Assuming an equilibrium between the thickening

of the interface due to diffusion and the scouring of temperature and salt from

the interface due to layered convection, they concluded that the inverse flux ratio,

γ−1
tot , in such a system must be

γ−1
tot = FC

FT
= τ 1/2 . (4.3)

As noted in Chapter 3, the quantity γ−1
tot is of great significance in planetary

science because in most cases, the intrinsic heat flux of a planet can be measured,

but the compositional flux cannot. However, if γ−1
tot can be constrained through

theory alone, predictions can be made for the compositional flux through a planet’s

interior (see, for instance, Stevenson, 1982; Guillot et al., 2004).

In an equilibrated staircase, the fluxes through the system as a whole are equal

to the fluxes through the interface, which are also equal to the fluxes through the

convective layers. It follows naturally from the prescription for γ−1
tot of Linden &

Shirtcliffe (1978) that the ratio of the compositional and thermal gradients in the
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interface should be
∂C/∂z

∂T/∂z
= τ−1/2 . (4.4)

Finally, assuming that the ratio of the background gradients for the entire system

must be smaller than the ratio of the gradients in the interface, implies that

R−1
0 < τ−1/2 . (4.5)

This sets a theoretical upper limit on R−1
0 for the existence of an equilibrium

staircase, at least according to Linden & Shirtcliffe (1978).

Results from these studies of geophysical diffusive convection were then ported

to the astrophysical context where Stevenson (1982) applied them to the deep in-

teriors of gas giant planets and Merryfield (1995) adapted geophysical theories

to stars. Further studies of astrophysical diffusive convection also continued to

assume that it always takes the form of well mixed layers separated by station-

ary, diffusive interfaces (Leconte & Chabrier, 2012; Spruit, 1992, 2013) leading to

predictions for the temperature flux and γ−1
tot that were, on the whole, similar to

those from the geophysical literature.

However, whether or not these geophysically-derived models of transport in

subcritically-formed staircases apply to astrophysical conditions (where the Prandtl

number is much lower) remains an open question. In what follows we study this

issue using DNS in which layers are artificially induced through initial conditions,

or what we refer to here as “proto-layered". We use the same mathematical model

as in Chapter 1, where the system is governed by the equations in (1.7). We also

use the same numerical simulation code (PADDI) with a few important modifica-

tions to the initial conditions. The dimensions of the domain for all simulations

considered here are (100d)3 with a resolution of at least 3843 meshpoints. Further-
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more, we primarily consider systems that are solidly in the regime where layers

do not form spontaneously through the γ-instability (see Chapter 1).

In Section 4.2 we describe and compare different types of finite amplitude

perturbations that may be used to excite the subcritical instability. In Section

4.3, we then discuss the conditions under which proto-layers lead to persistent

layered structures in our simulations. In Section 4.4 we discuss the properties of

proto-layered simulations where persistent layering takes hold, and compare our

results to those from the geophysical literature. Finally, in Section 4.5 we present

our conclusions.

4.2 Exciting the subcritical instability

Ignoring for now the question of how finite amplitude layering might naturally

be triggered in stellar or planetary interiors, there are several ways of initializing a

numerical experiment to create a layered system when R−1
0 > R−1

L . One way to do

it is to initialize the simulation with horizontally invariant regions where density

is either constant or increases with height (and are hence convectively unstable).

In what follows, we explore two different possible types of initial conditions. In

one, we impose a sinusoidal initial perturbations to the temperature and chemical

composition (now denoted with µ) fields given by,

T̃ (z) = ξT ,

µ̃(z) = A cos (2πnL
Lz

z) + ξµ , (4.6)

where nL is the initial number of layers in the height Lz, A is the amplitude of

the perturbation, and ξT and ξµ represent random small amplitude noise. As

mentioned previously, for all simulations considered here, Lz = 100, so a 3-layered
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state would have layers of height ' 33, a 2-layered state would have layers of

height ' 50, and a 1-layered state would have a layer height of 100. As seen in

Equation (4.6), the initial high-amplitude perturbation is applied to the compo-

sition field only. This is appropriate because any perturbation we apply to the

temperature field would quickly diffuse away (and become insignificant compared

to the compositional perturbations) due to the fact that κT � κµ.

In the second type of initial condition, we use stepped profiles that are closer

to a staircase configuration with fully-mixed layers separated by thin, more stable

interfaces. We construct them using the following initial temperature and com-

positional perturbations, similar to Noguchi & Niino (2010) and Carpenter et al.

(2012), for instance:

T̃ =
[
z − Lz

2

(
tanh

[2z − Lz
h

]
+ 1

)]
+ ξT ,

µ̃ = R−1
0

[
z − Lz

2

(
tanh

[2z − Lz
h

]
+ 1

)]
+ ξµ . (4.7)

In this case, initial conditions are applied to both T and µ. These are initial

conditions for a 1-layered system, however similar functions can be superimposed

on one another to initialize multi-layered systems. The parameter h determines

the initial interface thicknesses for both T and µ.

In either case, the density profile relates to these perturbations as,

ρ = (1−R−1
0 )z − T̃ + µ̃ . (4.8)

Note that for the sinusoidal case, there is a minimum amplitude that the per-

turbations must have in order to trigger layered convection. Assuming that an

instability is only triggered if dρ
dz
> 0 somewhere in the fluid, the condition for
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instability is

|A| > Lz(R−1
0 − 1)

2πnL
= |A|min . (4.9)

It is important to stress that this is a theoretical absolute minimum value. When

|A| is equal to this value, dρ
dz

= 0 at precisely one point in each proto-layer, and

is negative (stable) everywhere else. The regions with unstable density gradients

become larger as |A| increases. However, for values of |A| close to the limit (where

unstable regions are small) other influences not considered by this model, such

as viscosity or diffusion, may prevent persistent convective layers from forming.

Therefore, in practice convective layers only form if |A| is substantially larger than

the threshold, |A|min.

By way of demonstrating that proto-layered simulations indeed lead to the

formation of fully-developed thermo-compositional staircases, as well as testing

the influence of initial conditions on the result, we first compare the long-term

evolution of proto-layered systems initiated with a stepped profile and a sinusoidal

profile to one another, as well as two systems which are identical except for the

initial amplitudes of their sinusoidal perturbations.

In the first set of simulations, we use the parameters Pr = τ = 0.03 and

R−1
0 = 4.0, and start with perturbations that each have 3 layers. For the stepped

profile we use h = 5, while for the sinusoidal profile, we use A = 65 (|A|min ≈ 16

for the given parameters).

Figure 4.1a shows the evolution of the density profiles for each simulation, and

Figure 4.1b shows the evolution of their respective Nusselt numbers. We see that

the two methods yield identical steady states after a fairly long transient period,

with similar mean density profiles and similar transport rates. In both cases, we

see a well-defined thermo-compositional staircase with 3 mixed layers (regions of

nearly constant density) separated by thin and apparently stable interfaces (see
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Section 4.4 for more on the staircase structure). The staircases thus appears to be
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Figure 4.1: (a) Density profiles for two 3-layered simulations with different
types of initial conditions (sinusoidal and stepped). Shown are initial profiles
(dashed lines) and then profiles from when the simulations have reached equilib-
rium (solid). (b) Turbulent compositional flux for these two simulations. In their
initial phase of growth, they are somewhat different, but the fluxes in the two
simulations are similar when they reach equilibrium.

independent of initial proto-layered conditions, and in what follows, we continue

to work only with the sinusoidal initial conditions from Equation (4.6).

In Figure 4.2 we compare two simulations at Pr = τ = 0.03 and R−1
0 =

7.87, both initiated with 2 layers using the sinusoidal initial conditions, but with

different initial amplitudes A = 100 and A = 200 respectively. Again, we see that

99



the two simulations eventually converge to the same statistically steady state but

it is interesting to notice that, in contrast to the previous pair of simulations, it

takes a very long time to arrive at this quasi-stationary state. We believe that

the adjustment occurs on a time scale comparable to the compositional diffusion

time across the interface, defined as

tC = H2
I

τ
(4.10)

where HI is the initial thickness of a layer interface. In the A = 100 and 200

simulations, tC ≈ 15000 and 7000, respectively. From Figure 4.2 we see that the

increases in the thermal and compositional fluxes are accompanied by commen-

surate changes in the layered structure of the system (layers gradually become

thicker and interfaces become thinner).

This slow convergence notwithstanding, it is reassuring to see that, once the

layer height is set through the scale height of the initial perturbation, there is

a unique well-defined equilibrium configuration for the staircase, with a given

interfacial structure and set thermal and compositional fluxes through it. We will

discuss this structure more in Section 4.4.

Finally, it is worth noting that, regardless of initial conditions and initial

numbers of layers, layered convection appears to remain in a configuration with the

same number of layers as the initial conditions. This is in stark contrast to layers

that form spontaneously through the γ-instability in ODDC, where Rosenblum

et al. (2011) observed that no matter how many layers initially form, they always

merge progressively until a single interface remains in the domain.
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4.3 Conditions for layer formation

Aside from the obvious condition on the initial perturbation amplitude, it is

interesting to ask under which other conditions proto-layers lead to the formation

of an equilibrium staircase. We have found, for instance, that another limiting

factor in the formation of persistent layers is the number of proto-layers with which

a simulation is initialized. For example, Figure 4.3a shows the evolution of the

density profiles from a simulation with Pr = τ = 0.03, R−1
0 = 7.87, A = 100 and

nL = 3 (|A| > |A|min by a significant amount). We see that the perturbed density

profile in the nL = 3 simulation initially leads to the formation of 3 well-mixed

layers, separated by laminar interfaces. However, over time the layers that initially

form shrink and the stable interfaces thicken. Eventually, the layers disappear

altogether, and what is left is weakly turbulent gravity-wave-dominated ODDC

of the sort described in Chapter 2. Figure 4.3b confirms this by showing that

temperature fluxes steadily decrease as the layers disappear (from about t = 200

to t = 700), and then start to grow modestly again due to the emergence of large

scale gravity waves excited by ODDC. Generally, with the exception of one case

with Pr = τ = 0.03 and R−1
0 = 4 (see Table 4.1), we find that most simulations

with 3 layers are unstable, and return back to a non-layered state. By contrast,

Figure 4.2 shows that nL = 2 simulations with the same values of Pr, τ , and R−1
0

maintain their layered states. What factors decide whether a staircase can persist

or diffuse away remains to be determined. However, a strong possibility is that

convection within the layers has to be strong enough to prevent the diffusion of the

interfaces. In 3-layered simulations, the intensity of convection within the layers

is weaker, because their Rayleigh number is smaller. As a result, mixing is less

efficient and the interface diffusion eventually takes over. By contrast, simulations

with taller layers, or simulations that are generally more weakly stratified (i.e. for
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smaller R−1
0 ), should be able to maintain their layered structure.

In fact, as noted in Section 4.1 both geophysical (Linden & Shirtcliffe, 1978)

and astrophysical (Spruit, 2013) studies predict an upper limit on the inverse

density ratio below which layered convection can be maintained, given by R−1
0 =

τ−1/2. In order to test this law, we have run a number of proto-layered simulations

that lead to staircases with 1 layers, at various values of Pr, τ , R−1
0 , and starting

amplitudes |A| (see Table 4.1 for details). Our results are reported in Figure

4.4, where circles show persistent layers while crosses show decaying layers. The

theoretical upper limit given by Equation (4.5) is also plotted. This data show that

R−1
0 can be significantly larger than τ−1/2 and still maintain layered convection.

Similar observations of persistent layering at inverse density ratios larger than the

theoretical limit have been observed in the past (Newell, 1984).

The fact that persistent layers exist for such large values of R−1
0 also suggests

that the interfacial gradients of temperature and chemical composition, and hence

γ−1
tot , may be different than the predicted values in Equations (4.3)-(4.5).

4.4 Layer properties and comparison to geophys-

ical laws

In this section we analyze in more detail the results from a two 2-layered sim-

ulation with Pr = τ = 0.03, R−1
0 = 7.87 and |A| = 200. As in the 3-layer cases

mentioned in Section 4.3, convective layers are created that have uniform density

and are separated by stably stratified interfaces. To compare our simulations to

the predictions of Linden & Shirtcliffe (1978) we first must consider that the essen-

tial component of their model is the assumption that layer interfaces are composed

of a diffusive core with unstable boundary layers above and below. If we detect

102



a diffusive core in our simulations, their model may apply. To determine this, we

measure the horizontally averaged, depth dependent thermal and compositional

Nusselt numbers defined as

NuT = 1 + wT

1− dT
dz

, Nuµ = 1 + wµ

τ
(
R−1

0 − dµ
dz

) , (4.11)

where the overbars denote horizontal averages. From Figure 4.5a, we see that

NuT and Nuµ are both close to 1 in the interfaces, meaning that transport of

temperature and chemical composition through them is almost entirely diffusive.

Interestingly, however, looking at the horizontally averaged rms velocity, urms =

u2 + v2 +w2, we see that the interface is not entirely quiescent, but instead has a

non-zero urms. This may be due to gravity waves in the interface, which have some

kinetic energy but do not induce any net transport of temperature or chemical

species.

Looking at the mean temperature and compositional profiles in Figure 4.5b,

we see that the region that is fully mixed in temperature is smaller than that

for chemical composition, owing to the fact that temperature diffuses much more

quickly. This disparity is, in fact, what drives the layered convection, because the

presence of an unstable temperature gradient in regions that are fully mixed in

chemical composition leads to a small but crucial inversion in the density profile

(Carpenter et al., 2012). The size of this unstable boundary is determined by

the gradients of temperature and chemical composition in the diffusive interfacial

core. Linden & Shirtcliffe (1978) predict that the ratio of the these gradients is

given by Equation (4.12). For the simulation presented here the predicted value

is
∂µ/∂z

∂T/∂z
= (0.03)−1/2 ≈ 5.8 . (4.12)
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However, from Figure 4.5c we find that ∂µ/∂z
∂T/∂z

≈ 16.5. This discrepancy with

prediction suggests that there could be a similar discrepancy in the inverse flux

ratio, γ−1
tot .

To study this, we now discuss our quantitative results from measurements

of γ−1
tot in all of our proto-layered simulations. As in Section 4.3, we consider

simulations which have been initialized with one layer, and have various values

of Pr, τ and R−1
0 (detailed in Table 4.1). Figure 4.6a shows γ−1

tot as a function of

the reduced inverse density ratio, r, (see Equation 1.10) for Pr = τ = 0.01, 0.03,

0.1, and 0.3. Also included are data points from spontaneously formed layers in

simulations of ODDC run by Mirouh et al. (2012), which we reanalyzed to measure

γ−1
tot in the 1 layered phase. Simulation data (not shown here) demonstrates that

layers that form spontaneously have identical steady states to proto-layers that

are imposed in the spontaneous layer formation parameter regime. For each set of

Pr and τ , γ−1
tot initially decreases sharply with r, and then asymptote to a constant

for larger values of r. The shape of these curves is reminiscent of Figure 7 from

Turner (1965) which shows a similar plot of (the equivalent of) γ−1
tot as a function

of R−1
0 for geophysically relevant values of Pr and τ (Pr = 7 and τ = 0.015).

The model of Linden & Shirtcliffe (1978) discussed in Section 4.1 only applies to

this high density ratio regime where γ−1
tot is independent of r, and predicts that

γ−1
tot = τ 1/2. In order to test its applicability to the more astrophysically relevant

low Pr regime, we now focus on the value of γ−1
tot in the plateau region. Our results

are shown in Figure 4.6b. We see that our measurements are inconsistent with

the model of Linden & Shirtcliffe (1978). Our measurements fit more closely with

the γ−1
tot = τ 1/4 line (shown for reference). Why this is the case remains to be

determined, but some preliminary ideas are discussed below.
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nL Pr, τ R−1
0 r A Layers NuT − 1 Nuµ − 1 γ−1

tot
3 0.03 7.87 0.42 500 no NA NA NA
3 0.03 7.87 0.42 100 no NA NA NA
3 0.03 7.87 0.42 80 no NA NA NA
3 0.03 4.00 0.19 65 yes 2.2± 0.23 9.0± 0.75 0.39± 0.028
2 0.3 1.5 0.43 100 no NA NA NA
2 0.3 2.0 0.86 100 no NA NA NA
2 0.3 7.87 5.9 100 no NA NA NA
2 0.03 3.0 0.12 100 yes 5.4± 0.23 32.1± 2.0 0.47± 0.029
2 0.03 7.87 0.42 100 yes 1.38± 0.061 3.0± 0.054 0.40± 0.018
2 0.03 7.87 0.42 200 yes 1.52± 0.064 3.4± 0.060 0.41± 0.024
2 0.03 10.0 0.56 100 no NA NA NA
1 0.3 1.5 0.43 49 yes 7.5± 2.1 11.1± 3.2 0.73± 0.034
1 0.3 2.0 0.86 57 yes 2.0± 0.40 2.4± 0.32 0.69± 0.058
1 0.3 3.0 1.7 57 yes 0.48± 0.029 0.74± 0.039 0.83± 0.028
1 0.3 7.87 5.9 150 no NA NA NA
1 0.1 2.25 0.28 61 yes 3.8± 0.74 7.5± 1.6 0.56± 0.056
1 0.1 3.25 0.5 76 yes 1.7± 0.099 2.4± 0.11 0.51± 0.042
1 0.1 4.25 0.72 92 yes 1.0± 0.19 1.39± 0.075 0.51± 0.076
1 0.03 2.0 0.56 73 yes 6.8± 0.94 51.7± 14.1 0.61± 0.037
1 0.03 3.0 0.56 73 yes 2.8± 0.2 9.6± 1.0 0.42± 0.059
1 0.03 7.87 0.56 150 yes 0.77± 0.054 1.2± 0.045 0.37± 0.033
1 0.03 10.0 0.56 184 yes 0.57± 0.019 0.88± 0.01 0.38± 0.012
1 0.01 3.0 0.56 73 yes 2.9± 0.30 26.7± 4.3 0.44± 0.042
1 0.01 7.87 0.56 150 yes 0.81± 0.029 2.0± 0.12 0.28± 0.021
1 0.01 10.0 0.56 184 yes 0.63± 0.028 1.3± 0.081 0.26± 0.024

Table 4.1: A summary of the characteristics of each of our proto-layered simu-
lations
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4.5 Discussion & conclusion

Here we have analyzed the subcritical branch of solutions for layered diffusive

convection in the astrophysical parameter regime. The results presented here are

pertinent for any astrophysical systems where parameters are not conducive to

spontaneous layer formation in ODDC, namely when R−1
0 > R−1

L . For example,

subcritical layering may be important near the cores of giant planets where large

compositional gradients are likely to exist. They could also be pertinent to semi-

convective regions in intermediate-mass stars that are far from the convective

core.

Past studies of double diffusive layering in astrophysics have assumed that

subcritical layers are always excited, and their associated flux laws are the same

as those developed for double diffusive layering in geophysical fluids. To test

these assumptions, we have run numerical simulations to determine the conditions

under which finite amplitude perturbations excite the subcritical instability at

astrophysical parameters. While we do not have enough data to test the flux

law in Equation 4.2 from Turner (1965), we have run a suite of simulations to

test the predictions of Linden & Shirtcliffe (1978), namely Equations (4.3)-(4.5).

The primary result of this work is that our data do not fit the prediction that

γ−1
tot = τ 1/2. Instead our results seem to suggest that γ−1

tot ∝ τ 1/4. Why this is the

case is not certain, but there are a few interesting possibilities.

One possible explanation is that, at astrophysical parameters, the simulations

studied here are still unstable to non-layered ODDC (of the kind described in

Chapter 2) meaning that their inverse density ratios satisfy the conditions

R−1
L < R−1

0 < R−1
c . (4.13)
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From the ratio of the interfacial gradients of temperature and chemical compo-

sition shown in Figure 4.5c we estimate the inverse density ratio in the interface

to be R−1
I ≈ 13. For Pr = τ = 0.03 however, R−1

c ≈ 17.2 meaning that even the

interface is theoretically unstable to ODDC (though it is unclear if the interface

is thick enough for the primary instability to actually grow).

This is in contrast to the geophysical systems studied by Linden & Shirtcliffe

(1978) where R−1
0 > R−1

c (as mentioned earlier R−1
c ≈ 1.14 for systems with

Pr = 7 and τ = 0.01). The fact that we are taking measurements in regions of

parameter space with different dynamics, could be the cause γ−1
tot to have a different

relationship with τ . However, we believe that for astrophysically relevant systems,

R−1
L < R−1

0 < R1
c is the correct parameter regime to investigate, since cases with

R−1
0 > R−1

c would require an unphysically large stabilizing compositional gradient

to exist.

Another explanation is that because Pr is so low there could be turbulent

mixing of chemical composition in the boundary layer between the diffusive inter-

facial core and the mixed layer. Consequently, the relevant diffusivity to consider

when calculating γ−1
tot =

(
κµ
κT

)1/2
may in fact be a turbulent diffusivity of chemi-

cal composition rather than the molecular one. This possibility deserves further

investigations that will be the subject of future work.

An important observational implication of this work is that the relation, γ−1
tot ∝

τ 1/4, results in a higher compositional flux (relative to the temperature flux) than

predicted by Linden & Shirtcliffe (1978). This could mean that, for example,

the cores of giant planets may erode faster than originally thought. Indeed, as

shown by Guillot et al. (2004) one can use γ−1
tot (which they call χ) to estimate the

evolution of the core mass as a function of time for Jupiter and Saturn. They use

the γ−1
tot = τ 1/2 model with τ = 0.01 to estimate χ = 0.1, and show that about 20
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M⊕ of Jupiter’s core can be eroded this way. However, if instead the γ−1
tot = τ 1/4

model is used, that would mean χ ≈ 0.3. Since the erosion rate is proportional

to χ that means the amount of material removed from the core could be 3 times

higher than previously thought. Consequently, at present day Jupiter may not

have a core at all unless the original core mass was greater than ' 60M⊕.

An important caveat to consider in this discussion is that in order to fully

understand this type of layering we must also identify possible excitation mech-

anisms for the subcritical instability. Possible triggers could be the presence of

shear flows (Radko, 2016) or a bottom heating mechanism similar to that stud-

ied in lakes and oceans on earth. Given that we observe subcritical layering on

earth through a number of mechanisms, suggests that the formation of layers in

astrophysics when R−1
0 > R−1

L is likely to occur in at least some circumstances.

However, as we have shown here, fairly specific conditions must be satisfied for a

finite amplitude perturbation to be able to excite persistent layers, and it would

therefore be hasty to assume that subcritical layering is always excited.
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Figure 4.2: Time series of (a) turbulent temperature flux and (b) γ−1
tot for proto-

layerd simulations with A = 100 and A = 200. In both cases Pr = τ = 0.03 and
R−1

0 = 7.87. Both simulations were initialized with 2 proto-layers. (c) Initial and
equilibrium density profiles for both simulations.
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Figure 4.3: (a) Density profiles at various times and (b) time series of turbulent
temperature flux for proto-layered simulation with Pr = τ = 0.03 and R−1

0 = 7.87.
The simulation was initialized with three layers, and with A = 100.
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111



(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-1 -0.8 -0.6 -0.4 -0.2  0  0.2

z

ρ

-T

µ

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-5  0  5  10  15  20

z

(dµ/dz)/(dT/dz)

(c)

Figure 4.5: (a) the horizontally averaged vertical profiles of NuT , Nuµ, and urms
(rms velocity). Arrows indicate the locations of the interfaces. Both NuT and
Nuµ are close to 1 in the interfaces indicating that they are almost completely
diffusive. (b) Vertical profiles of temperature, chemical composition and density.
Temperature is normalized by Lz, chemical composition by R−1

0 Lz, and density
by (1 − R−1

0 )Lz. (c) Horizontally averaged ratio ∂µ/∂z
∂T/∂z

≈ 16.5 as a function of
deption.
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Figure 4.6: (a) γ−1
tot as a function of r for various astrophysically relevant values

of Pr and τ . Stars indicate proto-layered simulations and squares represent data
taken from spontaneously formed layers in simulations of ODDC. (b) γ−1

tot as a
function of τ . Also shown is the line γ−1

tot = τ 1/2 (predicted value for geophysical
systems from Linden & Shirtcliffe (1978)), and the line γ−1

tot = τ 1/4 (for reference).
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Chapter 5

Conclusion

The work presented here comprises a broad study of the dynamics of both lay-

ered and non-layered double diffusive convection in the astrophysical parameter

regime. Chapters 2 and 3 both focused on numerical simulations started from

random noise to study the dynamics that evolve naturally from the linear insta-

bility that is ODDC. This method has revealed a myriad of different behaviors

and a complex multi-dimensional parameter space (a sample of which is shown in

Figure 5.1).

The in-depth study of non-layered oscillatory double diffusive convection (ODDC)

from Chapter 2 completes a comprehensive study of the parameter space of ODDC

begun by Rosenblum et al. (2011), Mirouh et al. (2012) and Wood et al. (2013).

In the non-layered parameter regime there is far less regularity in long term be-

havior than in the layered regime. The interplay of large scale gravity wave modes

is highly non-linear, and the large scale dynamics are more difficult to predict. In

one simulation intermittent large scale shear was generated, but this phenomenon

could not be reproduced in simulations at different parameters. Also, it remains

to be determined whether one can create a theory from first principles describing

quasi-steady levels of thermal and compositional flux. Studying non-layered sys-
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Figure 5.1: Snapshots of the chemical composition and vertical vorticity fields
(labeled µ and ω, respectively) for simulations with various values of R−1

0 and Ta∗.
For each, Pr = τ = 0.1 and θ = 0.

tems is further complicated by the fact that it is a numerically difficult parameter

space to explore, due to the wide range of time scales present: for instance, at

high R−1
0 the gravity wave oscillation time scale is very fast while the growth of

the primary instability is very slow. This problem surfaces in the rotating systems

studied in Chapter 3 as well, particularly in rapidly rotating simulations.

Chapter 3 is a first step into more complex models of ODDC that include

more sophisticated physical effects (in this case global rotation).With rotating
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ODDC we have had success determining analytically when convective overturn

is expected to occur in layers. We also established a criterion to indicate when

ODDC is rotationally dominated (Ta∗ > 1). This was a broad survey of the rotat-

ing parameter space both in rotation rate and in the inclination of the direction of

rotation with respect to the direction of gravity. Consequently, we observed a wide

range of behaviors including both small and large scale vortices. These features

deserve further study, as their presence in simulations is usually associated with

the suppression of layer formation (at parameters conducive to layer formation in

non-rotating ODDC).

The approach of Chapters 2 and 3 is somewhat different from the way double

diffusive convection has historically been studied in the astrophysical regime. In-

deed, double diffusive systems have typically been assumed to exist in a layered

configuration, so studying properties of both layered and non-layered systems im-

plicitly challenges this assumption. In that same spirit, Chapter 4 also challenges

widely held notions about the applicability of geophysically derived flux laws to

astrophysical systems.

As mentioned in Chapters 2 and 4, flux laws commonly quoted in the as-

trophysical literature are originally derived from geophysical studies. This was

initially a reasonable thing to do because in situ measurements and laboratory

experiments of the dynamical properties of double diffusive fluids at astrophysical

parameters is functionally impossible. As we have discussed previously, however,

this comparison is imperfect, and may lead to incorrect results. The work pre-

sented here (along with prior work by Rosenblum et al., 2011; Mirouh et al., 2012;

Wood et al., 2013) is an attempt to develop an astrophysical numerical equiva-

lent to the earlier laboratory experiments in the geophysical regime by the likes

of Turner (1965) and Shirtcliffe (1973). In that sense, an underlying purpose of
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each of the studies presented here is to demonstrate the versatility and useful-

ness of direct numerical simulations for studying the dynamics of double diffusive

convection.

The worked presented here reveals several possible avenues of future research.

First of all, the study of rotating ODDC in Chapter 3 was a preliminary survey

of parameter space, and issues such as the precise conditions for the formation of

large scale vortices and the effects of inclination in the high Ta∗ regime deserve

further study. It would also be interesting to apply proto-layered initial conditions

to a rotating system to determine what impact rotation has on the persistence

of subcritical layering. Also, one question left unanswered in Chapter 4 with

regard to subcritical layering is whether or not the temperature (and chemical

composition) flux predictions from Turner (1965) still hold in the astrophysical

parameter regime (namely T ∝ (∆T )4/3). Finally, studying the effects of other

physical mechanisms such as large scale shear and magnetic fields on the dynamics

of double diffusive convection is fertile ground for future research.

Appendix: Minimum mode amplitudes for lay-

ered convection

In rotating systems density perturbations must grow to a higher amplitude in

order for layered convection to occur, compared to non-rotating ones. This can

be understood better by considering how convective plumes form at the edges

of the diffusive boundaries in layered convection. In order for a hot plume at

the bottom of a layer to rise it must displace the fluid above it. Because the

interfaces act as flexible but more-or-less impenetrable boundaries, fluid that is

moving upward because of the rising plume must be deflected by the top boundary
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and displaced horizontally. Rotation resists motion involving gradients of velocity

in the direction of the rotation axis. In order to overcome this resistance, and

therefore for convection to take place in the layer, a more strongly positive density

gradient must be present between the interfaces.

We make quantitative estimates of this effect on layered convection in ODDC

through adaptation of a theory related to rotating Rayleigh-Bénard convection

(Chandrasekhar, 1961). Assuming free boundary conditions, the critical Rayleigh

number, Rac, for rotating Rayleigh-Bénard convection is the following function of

Ta∗:

Rac(Ta∗) = 3π4
(
H4Ta∗

2Pr2π4

) 2
3

+ 27π4

4 , (.1)

where H is the layer height. In our non-dimensionalization the critical density

gradient for a convective layer,
∣∣∣∂ρ
∂z

∣∣∣
c
, can be written in terms of Rac as

∣∣∣∣∣∂ρ∂z
∣∣∣∣∣
c

= Rac
H4 . (.2)

Then by considering a density profile defined as

ρ = (1−R−1
0 )z + 2An sin (knz) , (.3)

where An is the amplitude of the perturbation from a single layering mode with

vertical wavenumber kn, we provide a second definition for the critical density

gradient ∣∣∣∣∣∂ρ∂z
∣∣∣∣∣
c

= max
(
∂ρ

∂z

)
= 1−R−1

0 + 2Ankn . (.4)

From equations (.1) through (.4) we can then generate an expression for |An|

in terms of Ta∗, R−1
0 , H, and kn, and thus an estimate for the critical layering
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mode amplitude for the onset of layered convection,

|An| =

∣∣∣∣∣∣
Rac
H4 +

(
R−1

0 − 1
)

2kn

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
3π4

H4

(
H4Ta∗

2Pr2π4

) 2
3 + 27π4

4H4 +
(
R−1

0 − 1
)

2kn

∣∣∣∣∣∣∣∣ . (.5)

This formula recovers Equation (29) of Rosenblum et al. (2011) in the non-rotating

limit, as long as the term 27π4/4H4 can be neglected (which is always true for

physically realizable layer heights, that typically have H > 30).
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