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Active Classification for POMDPs: a Kalman–like State

Estimator

Daphney-Stavroula Zois,⋆ Student Member, IEEE, Marco Levorato,Member, IEEE, and

Urbashi Mitra,Fellow, IEEE

Abstract

The problem of state tracking with active observation control is considered for a system modeled

by a discrete–time, finite–state Markov chain observed through conditionally Gaussian measurement

vectors. The measurement model statistics are shaped by theunderlying state and an exogenous control

input, which influence the observations’ quality. Exploiting an innovations approach, an approximate

minimum mean-squared error (MMSE) filter is derived to estimate the Markov chain system state. To

optimize the control strategy, the associated mean–squared error is used as an optimization criterion in a

partially observable Markov decision process formulation. A stochastic dynamic programming algorithm

is proposed to solve for the optimal solution. To enhance thequality of system state estimates, approximate

MMSE smoothing estimators are also derived. Finally, the performance of the proposed framework is

illustrated on the problem of physical activity detection in wireless body sensing networks. The power of

the proposed framework lies within its ability to accommodate a broad spectrum of active classification

applications including sensor management for object classification and tracking, estimation of sparse

signals and radar scheduling.

I. INTRODUCTION

Active classificationrefers to the problem of accurately inferring and/or tracking an unknown (usually

time–varying) process in an uncertain environment by adaptively exploiting available heterogeneous
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resources such as different sensor types or actuation. Actively selecting between heterogeneous modes

results in different qualitative views of the same process and can lead to significant improvement in

estimation performance. As a result, the estimation and control processes are tightly interconnected and to

“maximize the amount of information” on the unknown processat each step, a resource allocation problem

must be addressed:which sensing mode should be employed at each step to providethe next observation?

The active classification problem arises in different formsin a broad spectrum of applications,e.g.sensor

management for object classification and tracking [1]–[3],coding with feedback [4], spectrum sensing

[5], amplitude design for channel estimation [6], visual search [7], estimation of sparse signals [8]–[10],

radar scheduling [11] and imaging [12], graph classification [13], health care [14], automatic speech

recognition [15], generalized search [16] and text, image and video classification and retrieval.

In this paper, the problem of system state tracking with observation control is considered for a system

modeled by a discrete–time, finite–state Markov chain. The ‘hidden’ system state is observed through a

conditionally Gaussian measurement vector that depends onthe underlying system state and an exogenous

control input, which shapes the observations’ quality. To accurately track the time–evolving system state,

we address the joint problem of determining recursive formulae for a structured minimum mean–squared

error (MMSE) state estimator and designing a control strategy. Specifically, following an innovations

approach, we derive a non–linear approximate MMSE estimator for the Markov chain system state.

To obtain a control strategy, we propose a partially observable Markov decision process (POMDP) [17]

formulation, where the filter’s mean–squared error (MSE) performance serves as the optimization criterion.

We also consider the problem of enhancing system state estimates by exploiting both past and future

observations and control inputs. More precisely, we derivenon–linear approximate MMSE smoothing

estimators (fixed–point, fixed–interval, fixed–lag) to acquire improved state estimates and comment on

their differences. Finally, we illustrate the framework’sperformance using real data from a body sensing

application.

The current work extends our prior work [14], which assumed discrete observations, performed Max-

imum Likelihood system state detection and employed a worst–case error probability bound as an

optimization metric. In fact, the framework proposed herein is much more general and realistic.

We focus on state estimation (versus state detection) for several reasons. First, contrary to our prior work

[14], the current framework enables a natural joint consideration of estimation and control that allows us
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to optimize the belief state (MMSE state estimate) [17], which corresponds to the conditional probability

distribution associated with the chain states. As a result,we acquire better belief state estimates, which in

turn give rise to high detection accuracy. Second, preliminary results [18] suggest that the related cost–

to–go functions are concave functions of the predicted belief state implying the potential use of efficient

methods for computation. Finally, it is well–known that finding the optimal solution of a POMDP is a

computationally intractable problem and thus not suited for large–scale applications. However, we believe

that we can significantly accelerate related computations by considering the underlying structure of the

related processes and exploiting sparse approximation methods similar to [19], [20]. Our framework

constitutes the basis toward addressing these large–scaleproblems.

The classical Kalman filter (KF) [21] along with the fixed–interval [22], fixed–point [23] and fixed–

lag [23], [24] smoothers are suitable for estimating discrete–time, linear Gauss-Markov systems. Their

extensions,i.e. the Extended and Unscented KF [21], the Extended Kalman smoother and the Unscented

Kalman smoother [25], are suitable for general, nonlinear,(non)–Gaussian systems, and they usually

adopt a Gaussian approximation for the state distribution,while their performance depends significantly

on either some kind of linearization or the careful selection of samples points. To reduce communication

costs in sensor network (SN) applications, the problem of state estimation using quantized observations

with/without availability of analog measurements has beenaddressed [26]–[28]. For example, the proposed

Sign-of-Innovation KF [26] and its extensions (see [27], [28] and references therein) are based on

quantized versions of the measurement innovation and/or real measurements for both Gaussian linear

and non-linear dynamical systems. Two well-known approaches for deriving recursive estimators are: 1)

the innovations method[29], [30], and 2) thereference probability method[31]. The former one defines

innovations sequences and exploits martingale calculus todetermine the estimator’s gain, while the latter

introduces a probability measure change to cast the observations independent and identically distributed

so as to simplify calculations1. MMSE and risk–sensitive2 estimators have been derived via these methods

for discrete–time, finite–state Markov chains observed viadiscrete observations [32]–[34] or observations

corrupted by white Gaussian noise [34], [35], but without exerting control. In [36], fixed and sawtooth

lag smoothers were derived for the same model as in [35]. On the other hand, the work in [37] proposed

1For a very nice survey on the reference probability method, see [31] and references therein.
2In contrast to risk–neutral (MMSE) estimation, risk–sensitive estimation penalizes higher–order moments of the estimation

error.
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an approximate MMSE estimator starting from a maximumà posteriori (MAP) detector, while [38]

derived risk–sensitive recursive estimators for discrete–time, discrete finite–state Markov chains with

continuous–valued observations. In contrast to all these works, our proposed estimators are approximate

MMSE estimators that build upon the innovations method [29], [32], [34] for discrete-time, finite-state

Markov chains observed via controlled(i.e.observations are actively selected by a controller) conditionally

Gaussian measurements.

At this point, we underscore that our work differs from the system state estimation problem in discrete–

time, jump Markov linear systems (JMLS) [39]–[41]. In thesesystems, the goal is to estimate the

underlying system state given that the system operates in multiple modes, each of which is linear and

the switching between them casts the overall system non–linear. The mode change is usually modeled by

a discrete–time, finite–state Markov chain, which can be assumed either known [39]–[41] or unknown

[41] leading to different estimation techniques (see [40],[41] and references therein). In the latter case,

the Markov chain true value is usually determined via minimization of the associated posterior detection

error probability. In contrast to the above line of work, oursystem state is a discrete-time Markov chain

that we want to estimate, and to achieve this goal, we actively select our measurements. Most prior

work in JMLS consists of ‘passive’ approaches,i.e. methods that attempt to do the best possible when

no control over the observations is exerted. Nonetheless, the problem of designing control sequences to

enable discrimination between the multiple modes subject to state and control constraints has also been

studied (see for example [42] and references therein). The key differences between [42] and our work are:

1) the control affectsboth state and measurements in [42] in contrast to our case, thus,complicating the

derivation of the optimal policy, 2) the control affects state and measurements in alinear way contrary

to our formulation, and 3) our focus is MSE minimization versus [42], where the goal is to minimize an

detection error probability upper bound.

In the context of SNs, our generic definition of control accommodates the fusion of multiple samples

from heterogeneous sensors and thus, generalizes prior frameworks that assume one observation from a

single sensor [43]–[46] orθ samples fromθ sensors [2], [47]. Furthermore, our filter’s MSE performance

is intertwined with the control policy design since the trace of the conditional filtering error covariance

matrix constitutes the cost functional of a POMDP, enablingus to focus on the estimation error explicitly.

In contrast, prior work usually focuses on generic costs [48], [49], general convex distance measures [2],
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[43], [45], detection error probability [46] or performance bounds [14], [44], [47], [50]. Our POMDP

proves to be non–standard due to non–linear dependence on the predicted belief state incurring additional

complexity in contrast to prior art [2], [48], [49] that deals with linear POMDPs. Still, the optimal policy

can be derived via stochastic dynamic programming versus [47], where a suboptimal scheme is needed.

Determining suboptimal control policies by exploiting techniques such as [43], [45]3, where non–linear

POMDPs have previously appeared, is out of the scope of the current work. In contrast to [48], where the

authors address existence and stability issues for linear quadratic Gaussian control and generic Markovian

models, we provide a unified framework of estimation and control for systems modeled by discrete–time,

finite–state Markov chains observed via controlled conditionally Gaussian observations. Our work also

differs from [49] since we are interested in equally tracking all system states, not determining when the

Markov chain hits a specific target state and terminate tracking. To do so, we choose from a variety of

controls versus [49], where only two types of controls are considered.

Related problems in statistics and machine learning are theoptimal design of experiments(OED)

[51] (part of which is active sequential multihypothesis testing [9], [46], [50]) andactive learning4. In

OED, the objective is to design experiments that are optimalwith respect to some statistical criterion

so as to infer an unknown parameterized system. In active learning, the goal is to construct an accurate

classifier by utilizing the minimum number of training samples [16], [52]–[54]. This is usually achieved

by intelligent adaptive querying,i.e. selecting the input patterns for the training process in a statistically

optimal way. In comparison to the above, we allow the hypothesis to change with time as a Markov

chain and we do not have access to noisy discrete observations but noisy measurement vectors instead.

These two characteristics cast the problem more general butharder than the ones already considered in

the literature.

Our contributions are as follows. We propose a framework forestimation and control for controlled

sensing applications for a very important class of models: discrete–time, finite–state Markov chains

observed via controlledconditionally Gaussian measurements. Specifically, we derive recursive formulae

for the state estimator, which proves to beformally similar to the classical KF, as well as for the three

fundamental types of smoothers (fixed–point, fixed–interval, fixed-lag). In addition, we derive a dynamic

3In this case, the authors assume discrete–time, finite–state Markov chains observed via discrete observations.
4For a nice introduction to active learning and a survey of thecorresponding literature, see [52] and references therein.
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programming algorithm to derive the optimal control policy, which optimizes the filter’s MSE. Last but

not least, we provide numerical results validating the performance of the proposed framework on real

data from a body sensing application [14].

The remainder of the paper is organized as follows. In Section II, we introduce the active state tracking

problem by providing the associated stochastic system model and its innovations representation. Next,

in Section III, we derive the Kalman–like estimator and giveits MSE performance. We also comment

on the differences between the proposed estimator and the standard KF. In Section IV, we derive the

optimal control policy that drives the estimator, while in Section V, we derive smoothed estimators in an

attempt to acquire more refined system estimates. In SectionVI, we consider the body sensing application

example to illustrate the performance of our framework and we conclude the paper in Section VII.

II. PROBLEM STATEMENT

We consider a stochastic dynamical system with system statemodeled by a discrete-time, finite state

Markov chain that evolves in time. The system state is hiddeni.e. it is observed through a measurement

vector that depends both on the underlying state, as well as an exogenous control input selected by a

controller. Our goal is to accurately infer the underlying time-evolving system state by shaping the quality

of the observations. To this end, we consider the joint problem of determining formulae for the minimum

mean-squared error (MMSE) system state estimate from the past observations and controls (MMSE filter

equations) and the optimal control strategy that drives this estimator. We also consider the problem of

acquiring more refined state estimates by exploiting futureobservations and controls (MMSE smoother

equations). We begin by introducing the stochastic model of our system.

A. System Model

We consider a dynamical system, where time is divided into discrete slots andk = 0, 1, . . . denotes

discrete time. The system state corresponds to a finite-state, first-order Markov chain withn states,i.e.

X = {e1, . . . ,en} with ei denoting the unit vector with1 in the i-th position and zero everywhere else.

The Markov chain is defined on a given probability space(Ω,A, P ) and is characterized by the transition

probability matrixP with componentsPj∣i = P (xk+1 = ej ∣xk = ei) for ei,ej ∈ X . We assume that these

transition probabilities do not change with time, hence theMarkov chain is stationary.
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The system statexk is hidden and at each time step, an associated measurement vectoryk is generated.

Each such vector follows a multivariate conditionally Gaussian model of the form

yk ∣ ei,uk−1 ∼ f(yk∣ei,uk−1) = N(muk−1

i ,Quk−1

i ),∀ei ∈ X (1)

with statistics depending on the underlying system statexk and a control inputuk−1 selected by a

controller at the end of time slotk − 1. We denote the mean vector and covariance matrix of the

measurement vector for system stateei and control inputuk−1 asmuk−1

i andQ
uk−1

i , respectively. The

control inputuk−1 can be defined to affect the size of the measurement vectoryk (cf. adaptive estimation

of sparse signals in [9]), its form, or both and is selected bythe controller based on the available

information, i.e. history of previous control inputs and measurement vectors. We assume that there are a

finite number of controls supported by the system,i.e. uk ∈ U = {u1,u2, . . . ,uα}, and for the moment,

we do not consider the case of missing observations.

The above description indicates that we have adiscrete-time dynamical system with imperfect or

partially observed state information[17], also known as Partially Observable Markov Decision Process

(POMDP). Next, we introduce the innovations representation of our system model, which will play a

crucial role in the derivation of the filtering and smoothingequations.

B. Innovations Representation of System Model

We introduce the source sequence of true statesXk = {x0,x1, . . . ,xk}, the control sequenceUk =

{u0,u1, . . . ,uk} and the observations sequenceY k = {y0,y1, . . . ,yk}. We also define theglobal history

Bk = σ{Xk, Y k, Uk}, the histories B+k = σ{Xk+1, Y k, Uk} and B−k = σ{Xk, Y k−1, Uk−1}, and the

observation-control historyFk = σ{Y k, Uk−1}, whereσ{z} denotes theσ-algebra generated byz, i.e.,

the set of all functionals ofz. Each control inputuk is determined based on the observation-control

historyFk i.e. uk = ηk(Fk).

The innovations sequence{wk} related to{xk} [29] with respect toBk is defined as

wk+1 ≐ xk+1 −E{xk+1∣Bk}, (2)

so that due to the Markov property

E{xk+1∣Bk} = E{xk+1∣Xk, Y k, Uk} = E{xk+1∣xk} = Pxk. (3)
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Note that the sequence{wk} is a{B}–Martingale Difference (MD) sequencei.e. it satisfies the following

two properties

E{wk+1∣Bk} = 0, ∀k ⩾ 0 and wk+1 ∈ B+k , ∀k ⩾ 0, (4)

where the last condition implies thatwk+1 is a function ofB+k . Similarly, theinnovations sequence{vk}

related to the process{yk} [29] with respect toB−k is defined as

vk ≐ yk −E{yk∣B−k}, (5)

and the following relationship holds

E{yk∣B−k} = E{yk∣Xk, Y k−1, Uk−1} = E{yk ∣xk,uk−1} =M(uk−1)xk, (6)

whereM(uk−1) = [muk−1

1
, . . . ,muk−1

n ] and we have exploited the signal model in (1). Again, the sequence

{vk} is a {B−}–MD sequence,i.e.

E{vk ∣B−k} = 0, ∀k ⩾ 0 and vk ∈ Bk, ∀k ⩾ 0. (7)

Therefore, theDoob–Meyer decompositionsof {xk} and{yk} with respect toBk andB−k , respectively,

are

xk+1 = Pxk +wk+1, k ⩾ 0, (8)

yk =M(uk−1)xk + vk, k ⩾ 1. (9)

III. SYSTEM STATE ESTIMATOR

In this section, we develop a Kalman–like filter for estimating the discrete-time, finite-state Markov

chain system state from past observations and controls based on the theory introduced in [29], [32].

Specifically, we derive an approximate MMSE estimate for a point process observed via conditionally

Gaussian measurement vectors with statistics nonlinearlyinfluenced by the system state and a non-

deterministic control input. We also provide formulae for the filter performance and a comparison between

our proposed estimator and the standard KF.
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A. Kalman–like Estimator

We begin by defining thea posterioriprobability ofxk conditioned on the observation-control history,

also known as thebelief statein the POMDP literature [17], as

pk∣k ≐ [p1k∣k, . . . , pnk∣k]T ∈ P , (10)

where pik∣k = P (xk = ei∣Fk),ei ∈ X , andP = {pk∣k ∈ Rn ∶ 1Tnpk∣k = 1, 0 ⩽ pik∣k ⩽ 1,∀ei ∈ X}. The

expected value ofxk conditioned on the observation-control historyFk coincides withpk∣k since

xk∣k = E{xk ∣Fk} = n∑
i=1

eiP (xk = ei∣Fk) (11)

= [P (xk = e1∣Fk), . . . , P (xk = en∣Fk)] = pk∣k. (12)

From now on, the notationpk∣k will be used to denote the state estimator.

To properly address the problem of optimal nonlinear MMSE estimation, we begin by defining two

special sequences: theestimate innovations sequence{µk} and theobservation innovations sequence

{λk} (also called thefundamental MD of the observations[30]) as follows

µk ≐ pk∣k − pk∣k−1 = E{xk∣Fk} −E{xk ∣Fk−1} (13)

λk ≐ yk − yk∣k−1 = yk −E{yk∣Fk−1}. (14)

We can easily prove that both sequences are{F}–MD sequences. We note that the innovations sequences

in (13) and (14) try to capture the additional information contained in the observation and its impact on

the estimatepk∣k, similarly to the case of the innovation sequence in the standard KF [21]. However,

contrary to the standard KF case, where the innovations sequence is a white–noise sequence, herein,

the innovations sequence are{F}–MD sequences5. Next, we state the MD representation theorem [29],

which constitutes a very powerful tool for developing recursive nonlinear MMSE Kalman–like estimators

by exploiting the innovations sequences introduced above.

Theorem 1 (Segall [29], [32]). The estimate innovations sequence{µk} is an {F}–MD sequence and

5Roughly speaking, the MD property can be seen as an “intermediate” property between independence and uncorrelation [29].
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therefore, it may be represented as a transformation of the observation innovations sequence{λk} as

µk =Gkλk, (15)

where{Gk} is an {F}–adapted sequence that can be computed as follows

Gk = E{µkλ
T
k ∣Fk}[E{λkλ

T
k ∣Fk}]−1. (16)

Theorem 1 states that the gain sequence{Gk} is an{F}–adapted sequence. In general, this implies that

the optimal nonlinear MMSE estimator of the sequence{xk} does not admit a recursive structure6 since

the recursivity property can only be ensured by the predictability property [29]. To clarify the difference

between adaptability and predictability, we state their respective definitions.

Definition 1 (Segall [29]). A sequence{bk} is said to be{F}–adapted ifbk is measurable with respect

to Fk,∀k.

Definition 2 (Segall [29]). A sequence{bk} is said to be{F}–predictable ifbk is measurable with

respect toFk−1,∀k.

There exist some special cases (for more details, see [29], [32] and references therein), where it has

been successfully shown that the resulting estimator is finite-dimensional as a result of the predictability

property being true. Specifically, the gain sequence{Gk} is {F}–predictable for

i. all linear cases in discrete-time including the classical Kalman filter,

ii. the discrete-time nonlinear case for point processes [29], [32], [34].

At this point, we wish to underscore that in the discrete-time nonlinear case for point processes, the

predictability of the gain sequence has been proven for the uncontrolled case. For the controlled case, we

can follow the same arguments as in [34] and exploit the fact that the control input is measurable with

respect to the observation-control history to prove the predictability of the gain sequence. In the case of

discrete-time nonlinear signals in white Gaussian noise, the predictability of the gain sequence has been

disproven [29]. However, for certain classes of such system, the optimal MMSE estimator still admits a

finite-dimensional recursive structure. Specifically, fornonlinear systems characterized by a certain type

6Recursiveness is a very desirable property that ensures implementability of estimation in real time and significant memory
savings.
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of Volterra series expansion or state-affine equation, it has been shown that the resulting estimator is

recursive and of fixed finite dimension [55]. In this case, however, a more general theorem by Bremaud

and Van Schuppen for very general nonlinear discrete-time systems must be employed [56], [57].

The system model equations(8) and (9) do not fall into any of the categories above, where the

predictability of the gain sequence either holds or fails. Alternatively, direct application of the theorem

by Bremaud and Van Schuppen is impossible since their representation constitutes a general representation

of the filter equation without any explicit specification forthe related terms. We have instead numerically

established that the sequence{Gk} cannotbe {F}–predictable (see Section VI).Thus, for our problem

of interest, the optimal nonlinear Kalman–like MMSE estimator of the sequence{xk} is intrinsically

non-recursive (i.e. the resulting estimator is infinite-dimensional).At this point, inspired by [58], and

since a recursive solution is desired within the family of Kalman–like estimators in our case, weimpose

recursivity as a design constraint and use the following approximation7

Gk ≈ E{µkλ
T
k ∣Fk−1}[E{λkλ

T
k ∣Fk−1}]−1. (17)

This approximation along with the Doob–Meyer decompositions (8)–(9) and the definitions in (13)–(14)

allow us to determine a suboptimal Kalman-type nonlinear MMSE filtered estimator for the Markov chain

system state. Namely, exploiting this approximation, we will have that

µk =Gkλk, k ⩾ 0, (18)

whereGk is the time-varying gain given by (17). Note that for the set of recursive estimators with

a Kalman–like structure, the proposed estimator is an optimal MMSE estimator. Theorem 2 states the

recursive formulae for the proposed Kalman–like estimator.

Theorem 2. The Markov chain system estimate at time stepk is recursively defined as

pk∣k = pk∣k−1 +Gk[yk − yk∣k−1], k ⩾ 0 (19)

with

pk∣k−1 = Ppk−1∣k−1, (20)

7Note that if the gain sequence is predictable, the approximation symbol in (17) is replaced with an equality symbol.
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yk∣k−1 =M(uk−1)pk∣k−1, (21)

Gk =Σk∣k−1MT (uk−1)(M(uk−1)Σk∣k−1MT (uk−1) + Q̃k)−1, (22)

where x0∣−1 = π, and π is the initial distribution over the system states,Σk∣k−1 is the conditional

covariance matrix of the prediction error and̃Qk =∑n
i=1 p

i
k∣k−1Q

uk−1

i .

Proof: For proof, see Appendix A.

At this point, we underscore that even though the proposed filter is formally similar to the classical

KF, it is not a standard KF. In fact, the gainGk depends on the observationsand the resulting filter is

non-linear in contrast to the classical KF, which constitutes a linear filter. Furthermore, since no constraint

is imposed on the individual components ofpk∣k, there is no guarantee that they lie on the[0, 1] interval.

To overcome this issue without incorporating additional constraints that may challenge the determination

of a solution to our problem, we adopt the approach of [34],i.e. apply a suitable memoryless (linear or

nonlinear) transformation ofpk∣k to ensure feasible solutions are determined.

B. Filter Performance

The mean-squared error (MSE) performance of the filter in (19) is intertwined with theconditional

filtering error covariance matrix, which can be directly computed as follows

Σk∣k ≐ E{(xk − pk∣k)(xk − pk∣k)T ∣Fk} = diag(pk∣k) − pk∣kp
T
k∣k. (23)

Similarly, the MSE performance of the predictor in (20) is characterized by theconditional prediction

error covariance matrix, which can be again computed as

Σk∣k−1 ≐ E{(xk − pk∣k−1)(xk − pk∣k−1)T ∣Fk−1} = diag(pk∣k−1) − pk∣k−1p
T
k∣k−1. (24)

Both previous equations are directly obtained from their definitions and from the fact that the states

of the Markov chain constitute the standard orthonormal basis. We can also derive the same recursive

equations for the conditional error covariance matrices presented in [34] and repeated below for reasons

of completeness. Specifically, the conditional filtering error covariance matrix can also be expressed as

Σk∣k = Σk∣k−1 + diag(µk) −Gkλkλ
T
kG

T
k − 2Sym(pk∣k−1G

T
k λ

T
k ), (25)
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whereSym(B) = 1

2
(B +BT ) and the conditional prediction error covariance matrix as

Σk∣k−1 = PΣk−1∣k−1P
T + diag(pk∣k−1) −Pdiag(pk−1∣k−1)PT , (26)

which should be initialized as follows

Σ1∣0 = diag{π} − ππT . (27)

Both recursive equations areformally similar to the Riccati equation for the standard KF [17]. Further-

more, the specific form of (25) and (26) reveal the filter gain’s dependence on the observations.

C. Standard KF versus Markov chain Kalman–like filter

In this section, we comment on the similarities and differences of the mean-squared filtered estimator

given in Theorem 2 and the standard KF [21]. Figure 1 shows thesystem model and the corresponding

filter as well as the interconnection between them.

Comparing the block diagrams given in Fig. 1a and 1b respectively, we observe that their formal

structure is similar,e.g. both filters contain within their structures a model of the plant, processing

is done following the same sequence of steps,etc. The main difference between the two estimators

lies mainly on the underlying dynamical system they assume.The system model for the standard KF,

shown in Fig. 1a, assumes that (i) the state and measurement equations are linear, (ii){xk} is a Gauss-

Markov sequence since all related processes have Gaussian distributions, and (iii) the control input linearly

influences the system state. In contrast, our system model, shown in Fig. 1b, assumes that (i) the state and

measurement equations include non-linear terms, (ii){xk} is a discrete-time, finite-state Markov chain

and the associated measurements conditioned on the system state and the control input are Gaussian, and

(iii) the control input influences the measurements in a non-linear fashion. Furthermore, in the standard

KF setting, the role of the control is to affect the system state evolution in contrast to our case, where the

control affects only the measurements’ quality. Another important difference between the two estimators

relates to the filter gain in the sense that the KF gain does notdependent on the measurements as it is the

case with the gain of our estimator. A direct outcome of this dependence in conjunction with our system

model is that our proposed estimator constitutes a non-linear filter opposed to the standard KF, which is

a linear filter. Finally, in the standard KF setting, the conditional distribution of the system state proves
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to be Gaussian with the system state estimate being the conditional mean and the conditional filtering

error covariance matrix being the conditional covariance matrix. However, in our setting, this distribution

coincides with the system state estimate.

IV. OPTIMAL CONTROL POLICY DESIGN

We consider the active state tracking problem introduced inSection II, where the information available

to the controller at timek consists of the observation–control history defined earlier as

Fk = σ{y0,y1, . . . ,yk,u0,u1, . . . ,uk−1}, k = 1, 2, . . . , L,

F0 = σ{y0}.
(28)

We are interested in determining an admissible control policy γ = {η0, η1, . . . , ηL−1} [17] that minimizes

the cost function

Jγ = E
y0,y1,...,yL

{ L∑
k=1

tr (Σk∣k(yk,uk−1))} (29)

subject to the system equation (8) and the observations equation (9) withL denoting the horizon length and

uk = ηk(Fk). The termtr (Σk∣k(yk,uk−1)) denotes the trace of the conditional filtering error covariance

matrix with its dependence on the measurement vectoryk and the control inputuk−1 stated explicitly.

Thus, we have the followingfinite horizon, partially observable stochastic control problem

min
u0,u1,...,uL−1

Jγ . (30)

In contrast to standard problems of this type [17], [59], we note that our cost function is defined with

respect to the observations, not the system states. This fact along with the definition of our cost function

influences the form of the solution. To determine the optimalpolicy, we exploit the ideas in [17],i.e.

i. We first reformulate our problem as a perfect state information problem usingFk−1 as the new

system state, and derive the corresponding dynamic programming (DP) algorithm.

ii. Next, we determine a sufficient statistic for control purposes and derive a simplified DP algorithm,

which solves for the optimal control policy.

A. Perfect State Information Reformulation & DP Algorithm

In this section, we reduce our problem from imperfect to perfect state information and then, we derive

the corresponding DP algorithm. From the observations–control history definition in (28), we observe
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that

Fk = (Fk−1,yk,uk−1), k = 1, 2, . . . , L − 1, F0 = σ{y0}. (31)

The above equations can be seen as the evolution of a system with system stateFk−1, control inputuk−1,

and random “disturbance”yk. Furthermore, we have thatp(yk∣Fk−1,uk−1) = p(yk∣Fk−1,uk−1,y0,y1, . . . ,

yk−1), since by definition,y0,y1, . . . ,yk−1 are part ofFk−1, and thus, the probability distribution ofyk

depends explicitly only on the stateFk−1 and control inputuk−1. In view of this, we define a new

system with system stateFk−1, control inputuk−1 and random “distrurbance”yk, where the state is now

perfectly observed.

Before we proceed to the derivation of the DP algorithm, we state two well–known important results,

the fundamental lemma of stochastic control and the principle of optimality.

Lemma 1 (Speyer, Chung [59]). Suppose that the minimum to

min
u∈U

g(x, u)
exists andU is a class of functions for whichE{g(x, u)} exists. Then,

min
u(x)∈U

E{g(x, u(x))} = E{ min
u(x)∈U

g(x, u(x)).} (32)

Principle of Optimality (Bellman, 1957). An optimal policy has the property that whatever the initial

state and initial decision are, the remaining decisions must constitute an optimal policy with regard to

the state resulting from the first decision.

Theorem 3 gives the DP recursion for computing the optimal control policy for the new system with

stateFk−1, control inputuk−1, and random “disturbance”yk.

Theorem 3. For k = L − 1, . . . , 1, the cost–to–go functionJk(Fk−1) is related toJk+1(Fk) through the

recursion

Jk(Fk−1) = min
uk−1∈U

[E
yk

{ tr (Σk∣k(yk,uk−1)) + Jk+1(Fk−1,yk,uk−1)∣Fk−1,uk−1}], (33)
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The cost–to–go function fork = L is given by

JL(FL−1) = min
uL−1∈U

[E
yL

{ tr (ΣL∣L(yL,uL−1))∣FL−1,uL−1}]. (34)

Proof: We apply the property of iterated expectation and exploit the conditional independence of

the observation–control history to rewrite the optimal cost J∗ as follows

J∗ = min
u0,u1,...,uL−1

E
y0,y1,...,yL

{ L∑
k=1

tr (Σk∣k(yk,uk−1))}
= min

u0,u1,...,uL−1

E{E{ tr (Σ1∣1(y1,u0)) +E{ tr (Σ2∣2(y2,u1)) + . . . +E{ tr (ΣL−1∣L−1(yL−1,uL−2))+
. . . +E{ tr (ΣL∣L(yL,uL−1))∣FL−1,uL−1}∣FL−2,uL−2}∣ . . . ∣F1,u1}∣F0,u0}}. (35)

We then use Lemma 1 to interchange the expectation and minimization operations as follows

J∗ = E{min
u0

E{ tr (Σ1∣1(y1,u0)) +min
u1

E{ tr (Σ2∣2(y2,u1)) + . . .+
min
uL−2

E{ tr (ΣL−1∣L−1(yL−1,uL−2))+
min
uL−1

E{ tr (ΣL∣L(yL,uL−1))∣FL−1,uL−1}∣FL−2,uL−2}∣ . . . ∣F1,u1}∣F0,u0}}. (36)

Finally, we employ the principle of optimality to acquire the following recursions

JL(FL−1) = min
uL−1∈U

[E
yL

{ tr (ΣL∣L(yL,uL−1))∣FL−1,uL−1}],
JL−1(FL−2) = min

uL−2∈U
[ E
yL−1

{ tr (ΣL∣L(yL−1,uL−2)) + JL−1(FL−2,yL−1,uL−2)∣FL−2,uL−2}],
⋮

J1(F0) = min
u0∈U
[E
y1

{ tr (Σ1∣1(y1,u0)) + J2(F0,y1,u0)∣F0,u0}],
where the last step concludes the proof.

B. Sufficient Statistic & New DP Algorithm

As typical with imperfect state information problems, the DP algorithm is carried out over a state

space of expanding dimension since the dimension of the state Fk−1 increases at each time stepk − 1

with the addition of a new observation. Thus, we seek a sufficient statistic for control purposes (seee.g.
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[17], [59]). For our problem formulation, we can prove by induction [17] that an appropriate sufficient

statistic is the conditional probability distributionpk∣k−1, which also corresponds to the one-step predicted

estimate of the system state.

Proposition 1. For our active state tracking problem, the conditional distribution pk∣k−1 constitutes a

sufficient statistic for control purposes.

In one time step, the evolution of this sufficient statistic follows Bayes’ rule and is characterized by the

following recursive formula

pk+1∣k =
Pr(yk,uk−1)pk∣k−1

1Tnr(yk,uk−1)pk∣k−1

, (37)

where r(yk,uk−1) = diag (f(yk∣e1,uk−1), . . . , f(yk∣en,uk−1)) is the n × n diagonal matrix of mea-

surement vector probability density functions and1n is a column vector consisting ofn ones. Finally,

Theorem 4 gives the DP algorithm in terms of the sufficient statistic pk∣k−1.

Theorem 4. For k = L − 1, . . . , 1, the cost-to-go functionJk(pk∣k−1) is related toJk+1(pk+1∣k) through

the recursion

Jk(pk∣k−1) = min
uk−1∈U

[pT
k∣k−1h(pk∣k−1,uk−1) +∫ 1Tnr(y,uk−1)pk∣k−1Jk+1( Pr(yk,uk−1)pk∣k−1

1Tnr(yk,uk−1)pk∣k−1

)dy],
(38)

whereh(pk∣k−1,uk−1) is a column vector with componentsh(e1,pk∣k−1,uk−1), . . . , h(en,pk∣k−1,uk−1)
with h(ei,pk∣k−1,uk−1) = 1−tr (GT

kGkQ
uk−1

i )−∥pk∣k−1+Gk(muk−1

i −yk∣k−1)∥2. The cost-to-go function

for k = L is given by

JL(pL∣L−1) = min
uL−1∈U

[pT
L∣L−1h(pL∣L−1,uL−1)]. (39)

Proof: For proof, see Appendix B.

Determining the desired control policy via the recursions in Theorem 4 results in high computational

complexity. Specifically, as with traditional POMDPs, the predicted belief statepk∣k−1 is uncountably

infinite [17]. Furthermore, the control input definition suggests that the control space size can be ex-

ponentially large, while determining the expected future cost is challenging since it requires, in the

worst-case, anN–dimensional integration for a measurement vector of length N . Finally, contrary to

standard POMDP problems [17], the termpT
k∣k−1h(pk∣k−1,uk−1) is a non–linearfunction of the predicted
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belief statepk∣k−1 and thus, existing efficient techniques such as [60] cannot be directly employed. Still,

for small problem sizes, an approximate solution via numerical computation is feasible and can reveal

structural characteristics of the optimal solution. Extending techniques from [43], [45], where non–linear

POMDPs have previously appeared can lead to suboptimal but less computational intensive algorithms

for deriving the desired control policy. This is out of the scope of the current work and is part of our

future research agenda.

V. SMOOTHING ESTIMATORS

In this section, we develop suboptimal MMSE smoother formulae for estimating the discrete-time,

finite-state Markov chain at each time step. Our goal is to obtain more refined system state estimates

given the availability of bothpast and future observations and control inputs. We seek recursive formulae

for pk∣s, s > k.

Exploiting the theory introduced in [29], [32], we begin by defining two sequences, similar to the ones

in (13) and (14), as follows

γs ≐ pk∣s − pk∣s−1 = E{xk∣Fs} −E{xk ∣Fs−1}, (40)

ζs ≐ ys − ys∣s−1 = ys −E{ys∣Fs−1}, (41)

which we can easily prove that are{F}–MD sequences. Therefore, the MD representation theorem allows

us to write{γ} in terms of the innovations{ζ} as

γs =Csζs (42)

andCs can be determined as in (16) from

Cs = E{γsζTs ∣Fs}[E{ζsζTs ∣Fs}]−1. (43)

Once more, the gain sequence{Cs} is not {F}–predictable and thus, to determine a recursive solution,

we impose recursivity as a design constraint and use the following approximation

Cs ≈ E{γsζTs ∣Fs−1}[E{ζsζTs ∣Fs−1}]−1. (44)

Theorem 5 states the general, finite-dimensional expression for the proposed suboptimal MMSE smoother
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for the Markov chain system state.

Theorem 5. The R–stage, smoothed estimator ofxk, denoted bypk∣R with R ⩾ k + 1, k ⩾ 0, is given by

the expression

pk∣R = pk∣k +
R

∑
s=k+1

Cs(ys − ys∣s−1) (45)

with

Cs = (Θk,s − pk∣s−1p
T
s∣s−1)MT (us−1)(M(us−1)Σs∣s−1MT (us−1) + Q̃s)−1, (46)

where

Θk,s = E{xkx
T
s−1∣Fs−1}PT , (47)

E{xkx
T
s−1∣Fs−1} = Θk,s−1r(ys−1,us−2)

1Tn [Θk,s−1r(ys−1,us−2)]1n , (48)

with 1n denoting then× 1 vector of ones,r(yk,uk−1) = diag (f(yk∣e1,uk−1), . . . , f(yk∣en,uk−1)) the

n × n diagonal matrix of measurement vector probability densityfunctions,E{x0x
T
0 ∣F0} = diag(p0∣0)

and Q̃s =∑n
i=1 p

i
s∣s−1Q

us−1

i .

Proof: For proof, see Appendix C.

The MSE performance of the smoother in (45) can be calculatedsimilarly to the MSE performance

of the filter and is characterized by theconditional smoothing error covariance matrix

Σk∣R ≐ E{(xk − pk∣R)(xk − pk∣R)T ∣FR} = diag(pk∣R) − pk∣Rp
T
k∣R, R ⩾ k + 1, k ⩾ 0. (49)

As evident from Theorem 5, the gain matrixCs dependsnon-linearly on the observations, as it is

the case with the Kalman–like filter. Comparing our smoothedestimator with the corresponding Kalman

smoother [21], we observe that in both cases filtered estimates are required to obtain smoothed estimates

and the smoothers gains do not depend on conditional smoothing error covariance matrices. Furthermore,

as with the standard Kalman smoother, the Kalman–like filter’s gain is a factor of the smoother gain

since

Cs = (Θk,s − pk∣s−1p
T
s∣s−1)Σ−1s∣s−1Gs, (50)
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and this allows us to rewrite the smoother in (45) as follows

pk∣R = pk∣k +
R

∑
s=k+1

(Θk,s − pk∣s−1p
T
s∣s−1)Σ−1s∣s−1(ps+1∣s − ps+1∣s). (51)

There are three well-known types of smoothers in the literature depending on the way observations are

processed:fixed–point, fixed–interval, andfixed–lag. The fixed–pointsmootherpk∣R,R ⩾ k + 1, uses all

available information up to and including time stepR, to improve the estimate of a state at a specific time

step. On the contrary, thefixed–intervalsmootherpk∣L ≐ E{xk∣FL}, k = 0, 1, . . . , L−1, uses all available

information, while thefixed–lagsmootherpk∣k+∆ ≐ E{xk∣Fk+∆}, k = 0, 1, . . . , uses all information up

to and including a fixed interval of time∆ from the time step of interest. Theorem 5, Propositions 2

and 3 give the expressions for the fixed–point, the fixed–interval and the fixed–lag smoothed estimators,

respectively.

Proposition 2. The fixed–interval smoothed estimator ofxk,pk∣L, is given by the expression

pk∣L = Ppk−1∣L + (In −P) L

∑
s=k

Cs(ys − ys∣s−1), k = 1, 2, . . . , L − 1, (52)

whereIn is then × n identity matrix, and is initialized by

p0∣L = p0∣0 +
L

∑
s=1

Cs(ys − ys∣s−1), (53)

which is obtained from the fixed–point smoothed estimator bysettingk = 0.

Proof: For proof, see Appendix D.

Proposition 3. The fixed–lag smoothed estimator ofxk,pk∣k+∆, is given by the expression

pk∣k+∆ = Ppk−1∣k+∆−1 + Γ(k,∆) + (In −P) k+∆−1∑
s=k+1

Cs(ys − ys∣s−1), k = 0, 1, . . . , (54)

whereIn is then × n identity matrix,Γ(k,∆) is defined as

Γ(k,∆) ≐ Ck+∆(yk+∆ − yk+∆∣k+∆−1) − pk+1∣k − pk∣k−1 +Ppk∣k−1, (55)

and the smoother is initialized by

p0∣∆ = p0∣0 +
∆

∑
s=1

Cs(ys − ys∣s−1), (56)
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which is obtained from the fixed–point smoothed estimator bysettingk = 0.

Proof: For proof, see Appendix E.

We underscore that, as in the case of the Kalman–like estimator, we can apply a suitable memoryless

(linear or nonlinear) transformation to the smoothed estimates above to obtain valid probability mass

functions.

VI. N UMERICAL EXAMPLE

In this section, we provide numerical results to illustratethe performance of the proposed framework

for a body sensing application [14]. The goal is to estimate the time-evolving physical activity state

of an individual by using information from three biometric sensors: two accelerometers (ACCs) and

an electrocardiograph (ECG). We focus on distinguishing between four physical states (Sit, Stand, Run,

Walk) with transition probability matrixP of the form

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6 0.2 0 0.4

0.1 0.4 0.1 0

0 0.1 0.3 0.3

0.3 0.3 0.6 0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The control input is defined as a tuple with each element indicating the requested number of samples from

the associated sensor at each time step, while the total requested number of samples does not exceed

a budget ofN samples. Each sample corresponds to an extracted feature value from the associated

biometric signal and here, we focus on three features: 1) theACC mean from the first ACC (S1), 2)

the ACC variance from the second ACC (S2), and 3) the ECG period from the ECG (S3). Based on the

problem characteristics and the control input definition, the signal model in (1) constitutes an AR(1)–

correlated multivariate conditionally Gaussian model with statistics

m
uk−1

i = [µuk−1

i,S1

, µuk−1

i,S2

, µuk−1

i,S3

]T , (57)

Q
uk−1

i = diag(Quk−1

i (S1),Quk−1

i (S2),Quk−1

i (S3)), (58)

Q
uk−1

i (Sl) =
σ2

Sl,i

1 − φ2
T + σ2

zI, (59)

wherei indicates physical stateei, Sl denotes sensorl, µuk−1

i,Sl

is of sizeNuk−1

l
×1, T is a Toeplitz matrix
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with first row/column[1, φ, φ2, . . . , φN
uk−1

l
−1], I is theN

uk−1

l
×Nuk−1

l
identity matrix,Nuk−1

l
indicates

the requested number of samples from sensorSl, φ is the parameter of the AR(1) model andσ2
z accounts

for sensing and communication noise. For more information about the model, we refer the interested

reader to [14].

Our numerical simulations are based on the above model and driven by real data collected by a

prototype body sensing network, the KNOWME network [61]. Data collection was conducted in the

lab and consisted of three to four sessions, where twelve subjects performed eight physical activities.

A detailed description of the data collection protocol and subject characteristics can be found in [61].

Herein, to showcase our framework’s performance, we focus on distinguishing between four activities

for a single individual with signal model distributions shown in Fig. 2. We have assumed for a budget of

N = 2 samples,φ = 0.25 andσ2
z = 2. Even though the number of samples are few, patterns still emerge.

We underscore that our methods are directly applicable to multiple sensors and physical states as well

as larger budget of samples.

We begin by numerically establishing the suboptimalilty ofour proposed Kalman–like estimator.

Specifically, we test its optimality by numerically comparing its performance with the performance of the

optimal MMSE estimator. More precisely, for our system model of interest, the optimal MMSE estimate

can be recursively determined via Bayes’ rule as follows

pk∣k =
r(yk,uk−1)Ppk−1∣k−1

1Tnr(yk,uk−1)Ppk−1∣k−1

. (60)

In Fig. 3, the MSE performance (trace of filtering error covariance matrix) of the Kalman–like estimator

in (19) and the optimal MMSE estimator in(60) are shown. Comparing the MSE performance of the

two estimators, we observe that the proposed Kalman–like estimator achieves higher MSE compared

to the optimal MMSE estimator. This fact implies that the former estimator is suboptimal in the sense

that it results in higher MSE on average. In addition, using an MAP rule on top of the two estimators

results in87% and92% detection accuracy for the Kalman–like filter and the optimal MMSE estimator,

respectively. This fact reinforces our belief that the proposed estimator must be suboptimal.

Next, in Fig. 4, we present the tracking performance of the proposed framework (Kalman–like estimator

and optimal policy design) by showing the true and estimatedstate sequences. The output of our system

is an estimate of the belief state and we estimate our activity state via a MAP rule. We observe that the
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proposed framework tracks significantly well the underlying, time-evolving activity state even though the

total number of samples used are few. Furthermore, we note that theStandstate is usually not detected

since according to the stationary distribution of the Markov chain, it corresponds to an ephemeral state.

Modifications of the tracking cost similar to the ones presented in [14] can be employed to detect

ephemeral states.

Table I summarizes the detection accuracy achieved by employing different control policies. The

different control policies are: 1) always select one samplefrom ACC Mean (strategy A), 2) always select

one sample from ACC Variance (strategy B), 3) always select one sample from ECG period (strategy

Γ), and 4) optimal sensor selection policy. We find that selecting a control strategy independent of the

estimated belief (strategies A, B,Γ) does not benefit the detection accuracy. Similar is the caseof using

only one sample from one of the available sensors unless the selected sensor can discriminate easily

between all the states. Furthermore, fusing samples from sensors of different capabilities, as done by the

optimal control policy, can boost detection performance significantly. Finally, we expect that for larger

values of the total numberN of available samples, the detection accuracy would be even higher.

At this point, we wish to comment on the form of the optimal control policy. The optimal control

policy consists of three types of control inputs: 1) ACC mean– 2 samples, 2) ACC mean – 1 sample

and ACC variance – 1 sample, and 3) ACC mean – 2 samples. The first type of control input is selected

for most of the predicted belief states and this is due to the fact that it can discriminate between the

more likely statesi.e. Sit, Run, Walk. The second and third types of control input are primarily selected

for detecting the least likely state,Stand. Specifically, when the Sit state has low probability (⩽ 0.5),

the second control input is selected since one sample from each of the informative sensors can help

us discriminateStand from the rest of the states. However, when theRun and Walk states have zero

probability, samples from ACC mean are enough to detectStand, as verified by Fig. 2.

Finally, Table II summarizes the detection accuracy of filtering and smoothing operations. We observe

that as expected, smoothing enhances detection accuracy. However, also expected, the smoothing per-

formance saturates as the stageR increases. We underscore that different Markov chains and/or signal

model statistics would result in different smoothing performance improvements. In Fig. 5, we present

an example of the effect of increasing the smoother’s stage on the pmf over the underlying state. We

observe that future information can enhance or overturn ourbelief with respect to the true system state
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unveiling its true value. AsR increases, our belief stabilizes, which is also is indicated by the results in

Table II. Finally, even though the detection accuracy does not improve significantly asR increases, the

associated MSE does, as supported by the results in Table II.

VII. C ONCLUSIONS& FUTURE WORK

In this work, we addressed the active state tracking problemfor a discrete–time, finite–state Markov

chain observed via conditionally Gaussian measurements. We proposed a unified framework that combines

MMSE state estimation (prediction, filtering and smoothing) and control policy design. Following an

innovations method, we derived a non–linear Kalman–like estimator for the Markov chain system state,

which is formally similar to the classical KF. We also derived a stochastic dynamic programming algorithm

to determine the optimal control policy with the cost functional being the filters’ MSE performance. To

enhance state estimation performance, we derived recursive formulae for the three fundamental smoothing

types (fixed–point, fixed–lag, fixed–interval). Finally, weverified the successfulness of our proposed

framework on a body sensing application using real data collected from a prototype body sensing network.

Our results differ from prior work in that we jointly consider time-varying systems, discrete states and

active control over measurements. We believe that our framework is widely applicable to a broad spectrum

of active classification applications including sensor management for object classification and control,

radar scheduling and estimation of sparse signals.

At this stage, approximate optimal control policies were determined by numerically solving the DP

equation. Our current efforts involve the structural characterization of the optimal control policy, based on

which computationally efficient control strategies will beproposed. Future work will focus on considering

sensing usage costs and addressing applications admittingour framework.

APPENDIX

A. Proof of Theorem 2

Having defined the estimate and observations innovation sequences as in (13) and (14), we apply (18)

to get the desired recursive filter equation. To this end, we need to determine a recursive form that relates

pk∣k−1 to pk−1∣k−1 and explicit formulas foryk∣k−1 andGk.
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The expected value ofxk conditioned on the observation-control historyFk−1 can be determined as

follows

pk∣k−1 = E{xk∣Fk−1} = PE{xk−1∣Fk−1} +E{wk∣Fk−1} (61)

(a)
= Ppk−1∣k−1 +E{E{wk∣Bk−1}∣Fk−1} (62)

(b)
= Ppk−1∣k−1, (63)

where we have exploited(a) the law of iterated expectations forσ–algebras and(b) the fact thatwk

is a {B}–MD sequence. For the the initial condition, we havep0∣−1 ≐ E{x0} = π, whereπ is the initial

distribution over the system states. Similarly, the expected value of the process{yk} conditioned on the

observation-control historyFk−1 can be determined as follows

yk∣k−1 = E{yk∣Fk−1} = E{M(uk−1)xk + vk ∣Fk−1} (64)

(a)
= M(uk−1)E{xk∣Fk−1} +E{vk∣Fk−1} (b)= M(uk−1)pk∣k−1, (65)

where we have exploited that(a) uk−1 = ηk−1(Fk−1) and(b) vk is a {B−}–MD sequence.

At this point, we can specify each of the terms that comprise the filter gain in (16). Specifically, for

E{λkλ
T
k ∣Fk−1}, we have

E{λkλ
T
k ∣Fk−1} = E{(yk − yk∣k−1)(yk − yk∣k−1)T ∣Fk−1} = E{yky

T
k ∣Fk−1} − yk∣k−1y

T
k∣k−1. (66)

In order to determine the exact form ofE{yky
T
k ∣Fk−1}, we first need to determinep(yk∣Fk−1). Thus,

we work as follows

p(yk∣Fk−1) = p(yk∣y0, . . . ,yk−1,u0, . . . ,uk−2) (a)= p(yk∣y0, . . . ,yk−1,u0, . . . ,uk−1) (67)

=
n

∑
i=1

P (xk = ei∣y0, . . . ,yk−1,u0, . . . ,uk−1)p(yk∣xk = ei,uk−1) (68)

(b)
=

n

∑
i=1

P (xk = ei∣Fk−1)f(yk∣ei,uk−1) = n

∑
i=1

pik∣k−1f(yk∣ei,uk−1), (69)

where for(a), (b), we have exploited thatuk−1 = ηk−1(Fk−1). The last result implies that

E{yky
T
k ∣Fk−1} = ∫ yyT p(y∣Fk−1)dy = n

∑
i=1

pik∣k−1∫ yyT f(y∣ei,uk−1)dy (70)
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=
n

∑
i=1

pik∣k−1[Quk−1

i +muk−1

i (muk−1

i )T ], (71)

and substituting back to (66), and performing some manipulations, we get

E{λkλ
T
k ∣Fk−1} = n

∑
i=1

pik∣k−1[Quk−1

i +muk−1

i (muk−1

i )T ] − yk∣k−1y
T
k∣k−1 (72)

=
n

∑
i=1

pik∣k−1Q
uk−1

i +M(uk−1)diag (pk∣k−1)MT (uk−1)
−M(uk−1)pk∣k−1p

T
k∣k−1M

T (uk−1) (73)

= Q̃k +M(uk−1)(diag (pk∣k−1) − pk∣k−1p
T
k∣k−1)MT (uk−1) (74)

= Q̃k +M(uk−1)Σk∣k−1MT (uk−1), (75)

whereQ̃k = ∑n
i=1 p

i
k∣k−1Q

uk−1

i and we have also used the definition of the conditional prediction error

covariance matrix in (23). Next, we derive the termE{µkλ
T
k ∣Fk−1}. Specifically:

E{µkλ
T
k ∣Fk−1} = E{pk∣kλ

T
k ∣Fk−1} −E{pk∣k−1λ

T
k ∣Fk−1}. (76)

The first term of (76) is determined as follows

E{pk∣kλ
T
k ∣Fk−1} = E{E{xk∣Fk}λT

k ∣Fk−1} = E{E{xkλ
T
k ∣Fk}∣Fk−1} (77)

= E{xk(yk − yk∣k−1)T ∣Fk−1} = E{xky
T
k ∣Fk−1} − pk∣k−1y

T
k∣k−1, (78)

where we have exploited the MD property ofλk. The termE{xky
T
k ∣Fk−1} can be determined as follows

E{xky
T
k ∣Fk−1} = E{xkx

T
kM

T (uk−1)∣Fk−1} +E{xkv
T
k ∣Fk−1} (79)

=
n

∑
i=1

eie
T
i P (xk = ei∣Fk−1)MT (uk−1) +E{E{xkv

T
k ∣B−k}∣Fk−1} (80)

= diag (pk∣k−1)MT (uk−1) +E{xkE{vT
k ∣B−k}∣Fk−1} (81)

= diag (pk∣k−1)MT (uk−1), (82)

where we have used the facts thatuk−1 = ηk−1(Fk−1), xk ∈ B−k by definition and the MD property ofvk.

The second term of (76) is determined as follows

E{pk∣k−1λ
T
k ∣Fk−1} = pk∣k−1E{λT

k ∣Fk−1} = 0, (83)
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where the last equality holds sinceλk is a {F}–MD sequence. Combing the above results, we have

E{µkλ
T
k ∣Fk−1} = diag (pk∣k−1)MT (uk−1) −pk∣k−1y

T
k∣k−1 (84)

= (diag (pk∣k−1) − pk∣k−1p
T
k∣k−1)MT (uk−1) = Σk∣k−1MT (uk−1), (85)

and the gainGk takes the following form

Gk =Σk∣k−1MT (uk−1)(M(uk−1)Σk∣k−1MT (uk−1) + Q̃k)−1. (86)

Therefore, using (13) and (14), (18) can be rewritten as:

pk∣k = pk∣k−1 +Gk[yk − yk∣k−1], k ⩾ 0,

and together with (63), (65) and (86) constitute a recursiveexact algorithm for the computation of the

belief state defined in (10).

B. Proof of Theorem 4

Before we proceed with the proof of Theorem 4, we state the following lemma, which will be used

later in the proof.

Lemma 2 (Petersen, Pedersen [62]). Assumex ∽ N (m,Σ) andb,A a vector and a matrix of appropriate

dimensions, then

E{(x − b)TA(x −b)} = (m − b)TA(m − b) + tr (AΣ).
Next, starting from the DP algorithm given in (33), we separately determine each of the two terms inside

the minimization. From the definition of the conditional filtering error covariance matrix in (23) and the

filter equation in (19), we have that

tr (Σk∣k(yk,uk−1)) = 1 − ∥pk∣k−1 +Gk(y − yk∣k−1)∥2. (87)

Thus, the first term, which corresponds to the immediate costof selecting control inputuk−1, can be
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computed as follows

E
yk

{ tr (Σk∣k(yk,uk−1))∣Fk−1,uk−1} = ∫ p(y∣Fk−1,uk−1) tr(Σk∣k(y,uk−1))dy
=

n

∑
i=1

pik∣k−1∫ f(y∣ei,uk−1) tr(Σk∣k(y,uk−1))dy
=

n

∑
i=1

pik∣k−1[1 −E{∥pk∣k−1 +Gk(y − yk∣k−1)∥2∣xk = ei,uk−1}]. (88)

To determine the termE{∥pk∣k−1 +Gk[y − yk∣k−1]∥2∣xk = ei,uk−1}, we work as follows

E{∥pk∣k−1 +Gk(y − yk∣k−1)∥2∣xk = ei,uk−1} = ∥pk∣k−1∥2 + 2pT
k∣k−1E{Gk(y − yk∣k−1)∣xk = ei,uk−1}

+E{(y − yk∣k−1)TGT
kGk(y − yk∣k−1)∣xk = ei,uk−1} .(89)

Note thatGk andyk∣k−1 depend by definition on the control inputuk−1 and this implies that

E{Gk(y − yk∣k−1)∣xk = ei,uk−1} =Gk(muk−1

i − yk∣k−1), (90)

where we have exploited the signal model in (1). To determinetheE{(y−yk∣k−1)TGT
kGk(y−yk∣k−1)∣xk =

ei,uk−1}, we exploit Lemma 2 and get

E{(y − yk∣k−1)TGT
kGk(y − yk∣k−1)∣xk = ei,uk−1} = (muk−1

i − yk∣k−1)TGT
kGk(muk−1

i − yk∣k−1)
+ tr(GT

kGkΣ
uk−1

i ) (91)

Substituting (90) and (91) back to (89) and combining terms,we get

E{∥pk∣k−1+Gk(y−yk∣k−1)∥2∣xk = ei,uk−1} = ∥pk∣k−1+Gk(muk−1

i −yk∣k−1)∥2+ tr (GT
kGkΣ

uk−1

i ) (92)

and the immediate cost of selecting control inputuk−1 becomes

n

∑
i=1

pik∣k−1[1 − tr (GT
kGkΣ

uk−1

i ) − ∥pk∣k−1 +Gk(muk−1

i − yk∣k−1)∥2]. (93)

The second term in (33) represents the expected future cost of selecting control inputuk−1 and can be

determined as follows

E
yk

{Jk+1(Fk−1,yk,uk−1)∣Fk−1,uk−1} = E
yk

{Jk+1(Φk(pk∣k−1,yk,uk−1))∣pk∣k−1,uk−1}
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= ∫ p(y∣pk∣k−1,uk−1)Jk+1(Φk(pk∣k−1,y,uk−1))dy, (94)

where we have used the facts thatpk∣k−1 is a sufficient statistic forFk−1 anduk−1 = ηk−1(Fk−1), and

we have denoted byΦk the update rule governing the evolution ofpk+1∣k. At this point, we only need

to determine the termp(y∣pk∣k−1,uk−1) and this can be done as follows

p(y∣pk∣k−1,uk−1) = n

∑
i=1

P (xk = ei∣pk∣k−1,uk−1)p(y∣xk = ei,uk−1) = n

∑
i=1

pik∣k−1f(y∣ei,uk−1). (95)

Substituting back to (94), we get

E
yk

{Jk+1(Φk(pk∣k−1,yk,uk−1))∣pk∣k−1,uk−1} = ∫ n

∑
i=1

pik∣k−1f(y∣ei,uk−1)Jk+1(Φk(pk∣k−1,y,uk−1))dy
= ∫ 1Tnr(y,uk−1)pk∣k−1Jk+1( Pr(yk,uk−1)pk∣k−1

1Tnr(yk,uk−1)pk∣k−1

)dy, (96)

where we have used the update rule forpk∣k−1 given in (37). Substituting (93) and (96) to (33), we get

the final form of the DP algorithm given in (38). The cost-to-go function for time stepL simply consists

of the immediate cost of selecting a particular control and has the form given in (93).

C. Proof of Theorem 5

The smoothed estimator ofxk can be derived by summing (40) froms = k to s = R and substituting

for γs andCs from (40) and (44), respectively, as follows

R

∑
s=k

γs =
R

∑
s=k

(pk∣s − pk∣s−1) = pk∣R − pk∣k−1⇒ (97)

pk∣R = pk∣k +
R

∑
s=k+1

γs = pk∣k +
R

∑
s=k+1

E{γsζTs ∣Fs−1}[E{ζsζTs ∣Fs−1}]−1ζs. (98)

At this point, we only need to determine the termsE{γsζTs ∣Fs−1} andE{ζsζTs ∣Fs−1} and this can be done

similarly to the Kalman–like filter gain. The second term canbe derived following the same principles

as in the derivation ofE{λkλ
T
k ∣Fk−1} and thus, we have

E{ζsζTs ∣Fs−1} = Q̃s +M(us−1)Σs∣s−1MT (us−1), (99)
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whereQ̃s =∑n
i=1 p

i
s∣s−1Q

us−1

i , while for the first term, we work as follows

E{γsζTs ∣Fs−1} = E{pk∣sζ
T
s ∣Fs−1} −E{pk∣s−1ζ

T
s ∣Fs−1} (100)

= E{E{xk∣Fs}ζTs ∣Fs−1} −pk∣s−1E{ζTs ∣Fs−1} (101)

(a)
= E{E{xkζ

T
s ∣Fs}∣Fs−1} = E{xk(ys − ys∣s−1)T ∣Fs−1} (102)

(b)
= E{xkx

T
s ∣Fs−1}MT (us−1) +E{xkv

T
s ∣Fs−1} − pk∣s−1y

T
s∣s−1, (103)

where we have exploited that(a) ζs is a {F}–MD sequence and(b) us−1 = ηs−1(Fs−1). To derive a

closed-form expression for the termΘk,s = E{xkx
T
s ∣Fs−1}, we first observe that

Θk,s = E{xkx
T
s ∣Fs−1} = E{xkx

T
s−1∣Fs−1}PT +E{xkw

T
s ∣Fs−1} (104)

= E{xkx
T
s−1∣Fs−1}PT +E{E{xkw

T
s ∣Bs−1}∣Fs−1} (105)

= E{xkx
T
s−1∣Fs−1}PT +E{xkE{wT

s ∣Bs−1}∣Fs−1} (106)

= E{xkx
T
s−1∣Fs−1}PT . (107)

Then, for determining the termE{xkx
T
s−1∣Fs−1}, we work as follows

E{xkx
T
s−1∣Fs−1} = n

∑
i=1

n

∑
j=1

eie
T
j P (xk = ei,xs−1 = ej ∣Fs−1) (108)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P (xk = e1,xs−1 = e1∣Fs−1) . . . P (xk = e1,xs−1 = en∣Fs−1)
P (xk = e2,xs−1 = e1∣Fs−1) . . . P (xk = e2,xs−1 = en∣Fs−1)

⋮ ⋱ ⋮

P (xk = en,xs−1 = e1∣Fs−1) . . . P (xk = en,xs−1 = en∣Fs−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(109)

=
1

p(ys−1∣Fs−2,us−2)E{xkx
T
s−2∣Fs−2}PT r(ys−1,us−2) (110)

=
1

p(ys−1∣Fs−2,us−2)Θk,s−1r(ys−1,us−2) = Θk,s−1r(ys−1,us−2)
1Tn [Θk,s−1r(ys−1,us−2)]1n , (111)

wherer(ys−1,us−2) = diag(f(ys−1∣xs−1 = e1,us−2), . . . , f(ys−1∣xs−1 = en,us−2)) is then × n diagonal

matrix of measurement vector probability density functions and1n is a column vector ofn ones. Note

that the above recursive formula is initialized byE{x0x
T
0 ∣F0} = diag(p0∣0). For the termE{xkv

T
s ∣Fs−1},
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we have

E{xkv
T
s ∣Fs−1} = E{E{xkv

T
s ∣B−s }∣Fs−1} = E{xkE{vT

s ∣B−s }∣Fs−1 = 0, (112)

where we have exploited the MD property ofvs along with the fact thatxk ∈ B−s ,∀s > k. The above

results forΘk,s andE{xkv
T
s ∣Fs−1} allow us to rewrite (103) as

E{γsζTs ∣Fs−1} =Θk,sMT (us−1) − pk∣s−1y
T
s∣s−1 = (Θk,s − pk∣s−1p

T
s∣s−1)MT (us−1) (113)

Finally, substituting (99) and (113) back to (44) completesthe proof.

D. Proof of Proposition 2

The fixed–point smoother is defined as

pk∣L = pk∣k +
L

∑
s=k+1

Cs(ys − ys∣s−1) (114)

and settingk = k − 1, we get

pk−1∣L = pk−1∣k−1 +
L

∑
s=k

Cs(ys − ys∣s−1). (115)

Multiplying (115) byP, subtracting it from (114) and rearranging terms, gives us the following

pk∣L = Ppk−1∣L + pk∣k − pk∣k−1 −PGk(yk − yk∣k−1) + (In −P) L

∑
s=k+1

Cs(ys − ys∣s−1). (116)

At this point, we observe from the filter definition in (19) that

pk∣k − pk∣k−1 −PGk(yk − yk∣k−1) = (In −P)Ck(yk − yk∣k−1), (117)

where we have exploited thatGk coincides withCk. Substituting (117) back to (116) gives us the final

form of the fixed–interval smoother given in (52).

E. Proof of Proposition 3

SettingL = k +∆ in the formula for the fixed–point smoother, we get

pk∣k+∆ = pk∣k +
k+∆

∑
s=k+1

Cs(ys − ys∣s−1), (118)
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and fork = k − 1, (118) becomes

pk−1∣k+∆−1 = pk−1∣k−1 +
k+∆−1

∑
s=k

Cs(ys − ys∣s−1). (119)

Multiplying (119) byP, subtracting it from (118) and rearranging terms, gives us the following

pk∣k+∆ = Ppk−1∣k+∆−1 + [Ck+∆(yk+∆ − yk+∆∣k+∆−1) −PCk(yk − yk∣k−1) −Ppk−1∣k−1]
+ (In −P) k+∆−1∑

s=k+1

Cs(ys − ys∣s−1).
(120)

We observe that

PCk(yk + yk∣k−1) −Ppk−1∣k−1 = pk+1∣k + pk∣k−1 −Ppk∣k−1, (121)

and after settingΓ(k,∆) = Ck+∆(yk+∆ − yk+∆∣k+∆−1) − pk+1∣k − pk∣k−1 +Ppk∣k−1, we obtain the final

form of the fixed–lag smoother given in (54).
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TABLE I: Detection accuracy for different control policies(A: ACC mean – 1 sample, B: ACC variance
– 1 sample,Γ: ECG Period – 1 sample.)

Control policy A B Γ Optimal
Detection accuracy 74% 77% 40% 85%
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Fig. 1: Interconnection of system block diagram and MMSE estimator block diagram.

TABLE II: Filtering and smoothing detection accuracy.

Filtering 85%

Smoothing,R = k + 1 87%

Smoothing,R = k + 2 88%

Smoothing,R = k + 3 88.2%

Smoothing,R = k + 4 88.4%
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Fig. 2: Gaussian distributions associated with each of the four activity states for the ACC mean, ACC
variance and ECG period features, respectively. The plots indicate that a combination of samples from
the ACC mean and the ACC variance can help us discriminate between the physical activities of interest.
On the other hand, the ECG Period is not very informative.
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Fig. 3: Average MSE performance of optimal MMSE estimator and Kalman–like estimator.
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Fig. 5: Exemplary effect of stageR on the smoothed state estimates (pmfs). The initial filteredestimate
is also given for comparison.
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