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Abstract

On /¢-adic Cohomology of Artin stacks: L-functions, Weights, and the Decomposition
theorem

by
Shenghao Sun
Doctor of Philosophy in Mathematics
University of California, Berkeley
Professor Martin C. Olsson, Chair

We develop the notion of stratifiability in the context of derived categories and the six
operations for stacks in [26, 27]. Then we reprove Behrend’s Lefschetz trace formula for
stacks, and give the meromorphic continuation of the L-series of F -stacks. We give an
upper bound for the weights of the cohomology groups of stacks, and as an application,
prove the decomposition theorem for perverse sheaves on stacks with affine diagonal, both
over finite fields and over the complex numbers. Along the way, we generalize the structure
theorem of (-mixed sheaves and the generic base change theorem to stacks. We also give a
short exposition on the lisse-analytic topoi of complex analytic stacks, and give a comparison
between the lisse-étale topos of a complex algebraic stack and the lisse-analytic topos of its
analytification.
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Chapter 1

Introduction

In topology there is the famous Lefschetz-Hopf trace formula, which roughly says that
if f: X — X is an endomorphism of a compact connected oriented space X with isolated
fixed points, then the number of fixed points of f, counted with multiplicity, is equal to the
alternating sum of the traces of f* on the singular cohomology groups H(X, Q).

There is also a trace formula in algebraic geometry, for schemes over finite fields, due to
Grothendieck. It says that if X is a scheme over I, separated and of finite type, and F} is
the g-geometric Frobenius map, then

2dim Xo

#Xo(F) = Y (=1)"Tr(Fy, H(X, Q)

=0

where H!(X,Q,) is the f-adic cohomology with compact support. In fact he proved the trace
formula for an arbitrary constructible sheaf. See [17, 38, 11].

Behrend conjectured the trace formula for smooth algebraic stacks over [F, in his thesis
and [2], and proved it in [3]. However, he used ordinary cohomology and arithmetic Frobenius
(rather than compact support cohomology and geometric Frobenius) to prove the “dual
statement”, probably because at that time the theory of dualizing complexes of algebraic
stacks, as well as compact support cohomology groups of stacks, were not developed. Later
Laszlo and Olsson developed the theory of the six operations for algebraic stacks [26, 27],
which makes it possible to reprove the trace formula, and remove the smoothness assumption
in Behrend’s result. Also we want to work with a fixed isomorphism of fields ¢ : Q, = C,
which is a more general setting.

Once we have the trace formula, we get a factorization of the zeta function into a possibly
infinite product of L-factors, and from this one can deduce the meromorphic continuation of
the zeta functions, generalizing a result of Behrend ([2], 3.2.4). Furthermore, to locate the
zeros and poles of the zeta functions, we give a result on the weights of cohomology groups
of stacks.

Drinfeld observed that, for a complex elliptic curve E, Gabber’s decomposition theorem



fails for the proper morphism f : Spec C — BFE. This is essentially due to the failure of the
upper bound on weights in [9] for the cohomology groups of BE. In the weight theorem, we
will see that for stacks with affine automorphism groups, the usual upper bound in [9] still
applies. As an application, we verify that the proof in [4] of the decomposition theorem can
be generalized to such stacks.

We briefly mention the technical issues. For the trace formula, there are three difficulties.
As pointed out in [3], a big difference between schemes and stacks is the following. If
f: Xo — Yj is a morphism of F,-schemes of finite type, and K, € D%(X,,Q,), then f.Kj
and fiK, are also bounded complexes. Since often we are mainly interested in the simplest
case when K, is a sheaf concentrated in degree 0 (for instance, the constant sheaf Q,), and D?
is stable under f, and fi, it is enough to consider D? only. But for a morphism f : 2y — %
of IF,-algebraic stacks of finite type, f. and fi do not necessarily preserve boundedness. For
instance, the cohomology ring H*(BG,,, Q,) is the polynomial ring Q,[T] with deg(T) = 2.
So for stacks we have to consider unbounded complexes, even if we are only interested in
the constant sheaf Q,. In order to define the trace of the Frobenius on cohomology groups,
we need to consider the convergence of the complex series of the traces. This leads to the
notion of an (-convergent complex of sheaves (see (4.1.1)).

Another issue is the following. In the scheme case one considers bounded complexes,
and for any bounded complex Ky on a scheme Xy, there exists a stratification of X, that
“trivializes the complex K{” (i.e. the restrictions of all cohomology sheaves 'K, to each
stratum are lisse). But in the stack case we have to consider unbounded complexes, and
in general there might be no stratification of the stack that trivializes every cohomology
sheaf. This leads to the notion of a stratifiable complex of sheaves (see (7.3.1)). We need
the stratifiability condition to control the dimensions of cohomology groups (see (3.2.5)). All
bounded complexes are stratifiable (3.1.4v).

Also we will have to impose the condition of (-mixedness, due to unboundedness. For
bounded complexes on schemes, the trace formula can be proved without using this assump-
tion, although the conjecture of Deligne (][9], 1.2.9) that all sheaves are (-mixed is proved by
Laurent Lafforgue. See the remark (2.2.5.1).

For the decomposition theorem on complex algebraic stacks, the main difficulties are the
comparison between the derived categories on the lisse-étale topos of the algebraic stack
and on the lisse-analytic topos of the associated analytic stack, as well as the comparison
between the derived categories with prescribed stratification of the complex stack and of the
stack over a field of positive characteristic. To prove the second comparison, we also need
to generalize the generic base change theorem (cf. [11]) to stacks.

We briefly introduce the main results of this paper.

Fixed point formula.



Theorem 1.0.1. Let 2, be an Artin stack of finite type over F,. Then the series

D (U"I(E, H (2. Q).

ne’

regarded as a complex series via i, 1s absolutely convergent, and its limit is “the number of
F,-points of Zy”, namely

#20(E) = D #Aut()

z€[Z0(Fq)]

Here F, denotes the g-geometric Frobenius. To generalize, one wants to impose some
condition (P) on complexes Ky € D (Zy,Q,) such that

(1) (P) is preserved by fi;

(2) if a complex K satisfies (P), then the “naive local terms” are well-defined, and

(3) trace formula holds in this case.

The condition (P) on Ky turns out to be a combination of three parts: ¢-convergence
(which implies (2) for Kj), -mixedness and stratifiability (which, together with the first
part, implies (2) for fiKy). See (4.1.2) for the general statement of the theorem. These
conditions are due to Behrend [3].

Meromorphic continuation.

The rationality in Weil conjecture was first proved by Dwork, namely the zeta function
Z(Xo,t) of every variety X, over F, is a rational function in ¢. Later, this was reproved using
the fixed point formula [17, 16]. Following ([2], 3.2.3), we define the zeta functions of stacks
as follows.

Definition 1.0.2. For an F,-algebraic stack Zy of finite type, define the zeta function

22t =esp (35 3 m)’

v>1 €[20(Fyv

as a formal power series in the variable t. Here [Zo(Fy)] is the set of isomorphism classes
of objects in the groupoid Zo(Fyp) (see 1.0.7 below).

Notice that in general, the zeta function is not rational (cf. §7). Behrend proved that,
if Zy is a smooth algebraic stack, and it is a quotient of an algebraic space by a linear
algebraic group, then its zeta function Z(Z2y,t) is a meromorphic function in the complex
t-plane; if 2 is a smooth Deligne-Mumford stack, then Z(Zy,t) is a rational function ([2],
3.2.4, 3.2.5). These results can be generalized as follows.



Theorem 1.0.3. For every F,-algebraic stack 2y of finite type, its zeta function Z(Zo,t)
defines a meromorphic function in the whole complex t-plane. If 2y is Deligne-Mumford,
then Z( %y, t) is a rational function.

See (5.2.3.1) and (5.3.1) for the general statement.
A theorem of weights.

One of the main results in [9] is that, if X, is an F,-scheme, separated and of finite
type, and %, is an (-mixed sheaf on X of punctual (-weights < w € R, then for every n,
the punctual -weights of H(X,.#) are < w + n. The cohomology groups are zero unless
0 <n < 2dim Xy. We will see later (5.2.2.1) that the upper bound w + n for the punctual
t-weights does not work in general for algebraic stacks. We will give an upper bound that
applies to all algebraic stacks. Deligne’s upper bound of weights still applies to stacks for
which all the automorphism groups are affine.

Theorem 1.0.4. Let Z, be an F,-algebraic stack of finite type, and let Fy be an t-mizved
sheaf on 2y, with punctual t-weights < w, for some w € R. Then the punctual t-weights of
HNZ ,7) are < dim 2y + § +w, and they are congruent mod Z to weights that appear in
Fo. If n > 2dim Zy, then HY(Z",—) = 0 on sheaves. If for all integers v > 1 and all points
x € Zo(Fy), the automorphism groups Aut, are linear algebraic groups, then the punctual
t-weights of HY (2, F) are < n+ w.

Decomposition theorem.

The estimation of weights for stacks with affine automorphism groups in (1.0.4) enables
us to follow [4] and prove the stack version of the decomposition theorem over F,.

Theorem 1.0.5. Let %, be an Fy-algebraic stack of finite type, with affine automorphism
groups.

(i) For any t-pure complex Ky € D° (26,Q,), the complexr K on 2 induced by K,y by
extension of scalars is isomorphic to the direct sum of the shifted perverse cohomology sheaves
(PHK)|—1).

(ii) Any t-pure Qy-perverse sheaf Fy on Xy is geometrically semi-simple, i.e. the induced
F is semi-simple in the category of perverse sheaves on 2.

After proving the generic base change and some necessary comparisons, one can give the
decomposition theorem for complex algebraic stacks. We only state a simple version here;
see (8.3.2.4) for the general one.

Theorem 1.0.6. Let f : X — Y be a morphism of complex algebraic stacks of finite type,
and X is smooth. Then f.C, is isomorphic to the direct sum of the ?P 7 (f.C)[—1]’s, and
each shifted summand is a semi-simple C-perverse sheaf on Y.



Organization. In chapter 2, we review some preliminaries on derived categories of /(-
adic sheaves on algebraic stacks over F, and (-mixed complexes, and show that -mixedness
is stable under the six operations.

In chapter 3, we develop the notion of stratifiable complexes in the context of Laszlo and
Olsson’s f-adic derived categories, and prove its stability under the six operations.

In chapter 4, we discuss convergent complexes, and show that they are preserved by fi,
and reprove the trace formula for stacks in terms of compacted supported cohomology. These
two theorems are stated and proved in [3] in terms of ordinary cohomology and arithmetic
Frobenius.

In chapter 5, we discuss convergence of infinite products of formal power series, and give
some examples of zeta functions of stacks. In one example we give the functional equation of
the zeta functions and independence of ¢ of Frobenius eigenvalues for proper varieties with
quotient singularities (5.2.3.2). Then we prove the meromorphic continuation of the L-series
of t-mixed stratifiable convergent complexes on stacks.

In chapter 6, we prove the weight theorem (1.0.4), and give some simple applications on
the existence of rational points on stacks. We also discuss “independence of ¢” for stacks,
and prove (6.3.5) that for the quotient stack [Xo/Go|, where X is a proper smooth variety
and Gy is a linear algebraic group acting on X, the Frobenius eigenvalues on its cohomology
groups are independent of /.

In chapter 7, we review Drinfeld’s counter-example, and complete the proof of the struc-
ture theorem for (-mixed sheaves on stacks. Then we follow [4] and generalize the decompo-
sition theorem for perverse sheaves on stacks over finite fields, using weight theory.

In chapter 8, we prove the generic base change for f, and R om, and use it to prove
a comparison between bounded derived categories with prescribed stratification over the
complex numbers and over an algebraic closure of a finite field, as well as a comparison
between the lisse-étale topos and the lisse-analytic topos of a C-stack, and finally we finish
the proof of the decomposition theorem over C.

Notations and Conventions 1.0.7. We fix a prime power ¢ = p® and an algebraic closure
[F of the finite field F, with ¢ elements. Let F' or F, be the g-geometric Frobenius, namely
the g-th root automorphism on F. Let ¢ be a prime number, ¢ # p, and fix an isomorphism
of fields Q, = C. For simplicity, let || denote the complex absolute value |wa, for a € Q,.

In this paper, by an Artin stack (or an algebraic stack) over a base scheme S, we mean
an S-algebraic stack in the sense of M. Artin ([25], 4.1) of finite type. When we want the
more general setting of Artin stacks locally of finite type, we will mention that explicitly.

Objects over F, will be denoted with an index (. For instance, 2, will denote an F,-Artin
stack; if % is a lisse-étale sheaf (or more generally, a Weil sheaf (2.2.1)) on 2y, then .#
denotes its inverse image on 2" := Z; @, F.

We will usually denote algebraic stacks over a base scheme S by

o X Y--. ifthe base S is unspecified,

o 20,%--- (vesp. &, % ---) if the base is F, (resp. F),



and complex analytic stacks are usually denoted by X,9)--- .

For a field k, let Gal(k) denote its absolute Galois group Gal(k*P/k). By a variety over
k we mean a separated reduced k-scheme of finite type. Let W (F,) be the Weil group F, qZ of
F,.

For a profinite group H, by Q,-representations of H we always mean finite-dimensional
continuous representations ([9], 1.1.6), and denote by Repg, (H) the category of such repre-
sentations.

For a scheme X, we denote by | X| the set of its closed points. For a category € we write
(€] for the collection of isomorphism classes of objects in %’. For example, if v > 1 is an
integer, then [2(F,»)] denotes the set of isomorphism classes of Fgv-points of the stack 2.
This is a finite set.

For x € Zy(F,») we will write k(z) for the field F. For an F,-scheme X, (always of
finite type) and x € | Xy|, we denote by k(z) the residue field of x. In both cases, let d(z) be
the degree of the field extension [k(z) : F,], and N(z) = ¢*®) = #k(z). Also in both cases let
x : Spec Fpp — 2o (or Xp) be the natural map (v = d(z)), although in the second case the
map is defined only up to an automorphism in Gal(k(x)/F,). Given a Ky € D.(25,Q,) (cf.
§2), the pullback 2*K, € D.(Spec k(z),Q,) = D.(Repg,(Gal(k(z)))) gives a complex Kz of
representations of Gal(k(z)), and we let F,, be the geometric Frobenius generator Fjaw) of
this group, called “the local Frobenius”.

Let V be a finite dimensional Q,-vector space and ¢ an endomorphism of V. For a function
f:Q, — C, we denote by ZVW f(«) the sum of values of f in «, with a ranging over all
the eigenvalues of ¢ on V' with multiplicities. For instance, >, o= Tr(p, V).

A 0 x O0-matrix has trace 0 and determinant 1. For K € D%@Q,) and an endomorphism
¢ of K, we define (following [11])

Tr(p, K) == ) (=1)"Tx(H" (), H"(K))

nez

and
det(1 — t, K) := [ [ det(1 — H"()t, H(K))V"
neZ
For unbounded complexes K we use similar notations, if the series (resp. the infinite product)
converges (resp. converges term by term; cf. (5.1.2)).

For a map f : X — Y and a sheaf % on Y, we sometimes write H"(X,.%) for
H"(X, f*7). We will write H"(Z") for H"(2",Q,), and h*(Z",.F) for dim H(Z, %),
and ditto for H}(Z") and R} (2 ,.F).

For the theory of dualizing complexes on algebraic stacks, as well as the theory of the
six operations on stacks, we follow [26, 27]. For the theory of perverse sheaves on schemes
and stacks, we follow [4, 28]. When discussing perverse t-structures, we will always take the
middle perversity.

The derived functors Rf., Rfi, Lf* and Rf' are usually abbreviated as f., fi, f*, f. But



we do not use similar abbreviations for ®”, R5#om and RHom; namely we reserve ®, 5 om
and Hom for the ordinary sheaf tensor product, sheaf Hom and Hom group respectively.



Chapter 2

Derived category of /-adic sheaves
and mixedness.

We briefly review the definition in [26, 27] for derived category of f-adic sheaves on
stacks. Then we generalize the structure theorem of (-mixed sheaves in [9] to algebraic
stacks (2.2.4.1). Finally we show that (-mixedness is stable under the six operations. By
a result of Lafforgue (2.2.5.1), this is automatic, but we still want to give a much more
elementary argument.

2.1 Review of /-adic derived categories for stacks.

In this section, we briefly review the definition in [26, 27] for derived category of ¢-adic
sheaves on stacks.

2.1.1. Let A be a complete discrete valuation ring with maximal ideal m and residual char-
acteristic £. Let A, = A/m™"! and let A, be the pro-ring (A,),. We take the base scheme
S to be a scheme that satisfies the following condition denoted (LO): it is noetherian affine
excellent finite-dimensional, in which ¢ is invertible, and all S-schemes of finite type have
finite /-cohomological dimension. We denote by X', ) --- Artin stacks locally of finite type
over S.

Consider the ringed topos & = &7 (X) := Mod(X} 4, Ae) of projective systems (M,,),, of
Ab(Xjsst) such that M, is a A,-module for each n, and the transition maps are A-linear.
An object M € & is said to be AR-null, if there exists an integer r > 0 such that for
every integer n, the composed map M, ., — M, is the zero map. A complex K in & is
called AR-null, if all cohomology systems #(K) are AR-null; it is called almost AR-null,
if for every U in Lis-ét(X), the restriction of #(K) to Et(U) is AR-null. Let 2(«7) be the
ordinary derived category of o7



Definition 2.1.2. An object M = (M,,),, € < is adic if all the M, ’s are constructible, and
for every n, the natural map
An ®An+1 Mn+1 - Mn

1s an isomorphism. It is called almost adic if all the M, ’s are constructible, and for
every object U in Lis-ét(X), the restriction M|y is AR-adic, i.e. there exists an adic
Ny € Mod(UJ, A) and a morphism Ny — M|y with AR-null kernel and cokernel.

A compler K in & is a \-complex if #(K) € &/ are almost adic, for all i. Let D.(</)
be the full triangulated subcategory of P(<f) consisting of A-complexes, and let D.(X,A) be
the quotient of P.(<7) by the thick full subcategory of almost AR-null complexes. This is
called the derived category of A-adic sheaves on X.

Remark 2.1.2.1. (i) D.(X,A) is a triangulated category with a natural t-structure, and its
heart is the quotient of the category of almost adic systems in .7 by the thick full subcategory
of almost AR-null systems. One can use this t-structure to define the subcategories DI (X, A)
for T = 4, 0.

If X/S is of finite type (in particular, quasi-compact), it is clear that K € Z(&f) is
AR-null if it is almost AR-null. Also if M € & is almost adic, the adic system Ny and
the map Ny — M|y in the definition above are unique up to unique isomorphism, for each
U, so by ([25], 12.2.1) they give an adic system N of Cartesian sheaves on Xjg4, and an
AR-isomorphism N — M. This shows that an almost adic system is AR-adic, and it is clear
([16], p.234) that the natural functor

A-Sh(X) — heart D.(X, A)

is an equivalence of categories, where A-Sh(X’) denotes the category of A-adic (in particular,
constructible) systems.

(ii) D.(X,A) is different from the ordinary derived category of Mod(&Xjsst, A) with con-
structible cohomology; the latter is denoted in [27] by Z.(X, A). Here Mod(AXjs6t, A) denotes
the abelian category of Axy-modules, not adic sheaves A-Sh(X').

(iii)) When S = Spec k for k a finite field or an algebraically closed field, and X = X
is a separated S-scheme, ([27], 3.1.6) gives a natural equivalence of triangulated categories
between D%(X, A) and Deligne’s definition 2°(X, A) in ([9], 1.1.2).

2.1.3. Let 7 : X, — Xise be the morphism of topoi, where m~1 takes a sheaf F' to the
constant projective system (F),, and , takes a projective system to the inverse limit. This
morphism induces a morphism of ringed topoi (7*,7,) : & — Mod(Xjjss, A). The functor
Rm, : 9.(o) — Z.(X,A) vanishes on almost AR-null objects ([27], 2.2.2), hence factors

through D.(X,A). In ([27], 3.0.8), the normalization functor is defined to be
K+ K := Lt*Rr, K : Do(X,\) — ().

This functor plays an important role in defining the six operations [27]. For instance:
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e For FF € D_(X,A) and G € D (X,A), R#om(F,G) is defined to be the image of
R omy, (F,G) in D, (X, A).

e For F,G € D_(X, ), the derived tensor product F ®% G is defined to be the image of
F ek, G.

e For a morphism f: X — Y and F € DI (X, A), the derived direct image f, F is defined
to be the image of fNF.

Let E) be a finite extension of @, with ring of integers ). Following [27] we define
D.(X, E)) to be the quotient of D.(X, 0)) by the full subcategory consisting of complexes
K such that, for every integer 4, there exists an integer n; > 1 such that ##*(K) is annihilated
by A". Then we define

D.(X,Q,) = 2-colimp, D.(X, E),

where ) ranges over all finite subextensions of Q,/Qy, and the transition functors are
E)\/ ®E/\ — . DC(X, E)\) — DC(X, E)\/)

for E)\ C E)\/.

2.2 -mixedness.

In this section, we take S = Spec F,. We recall some notions of weights and mixedness
from [9], generalized to F -algebraic stacks 2.

2.2.1. Frobenius endomorphism. For an F,-scheme X, (not necessarily of finite type),
let Fx, : Xo — X be the morphism that is identity on the underlying topological space and
g-th power on the structure sheaf O, ; this is an F,-morphism. Let oy, : X — X be the
induced F-morphism Fly, X idp on X = Xy ® F.

By functoriality of the maps Fx,, we can extend it to stacks. For an [F -algebraic stack
Zo, define Fo; © &y — % to be such that for every F,-scheme X, the map

Foy (Xo) @ Zo(Xo) —= Zo(Xo)

sends x to x o Fly,. We also define 0g;, : & — Z to be Fg, xidg : ' — 2.

Weil complexes. A Weil complex Ky on 2 is a pair (K, ¢), where K € D.(2°,Q,)
and ¢ : 0%, K — K is an isomorphism. We also call Ky a Weil sheaf if K is a sheaf. Let
W(25,Q,) be the category of Weil complexes on 2p; it is a triangulated category with the
standard ¢-structure, and its core is the category of Weil sheaves.

In this article, when discussing stacks over [y, by a “sheaf” or “complex of sheaves”, we
usually mean a “Weil sheaf” or “Weil complex”, whereas a “lisse-étale sheaf or complex”
will be an ordinary constructible Q,-sheaf or complex on the lisse-étale site of 2.
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For x € Zu(Fp), it is a fixed point of oy, hence there is a “local Frobenius automor-
phism” F, : Kz — Kz for every Weil complex K.

1-Weights and -mixedness. Recall that ¢ is a fixed isomorphism Q, — C. For a € @Z,
let wy(ar) := 2log, e, called the i-weight of o relative to ¢. For a real number 3, a sheaf
Fo on 2y is said to be punctually -pure of weight (3, if for every integer v > 1 and every
xr € Zo(Fgp), and every eigenvalue av of F, acting on Fz, we have wy () (o) = 3. We say % is
t-mixed if it has a finite filtration with successive quotients punctually (-pure, and the weights
of these quotients are called the punctual t-weights of .%,. A complex K, € W (%25, Q,) is
said to be t-mixed if all the cohomology sheaves K, are (-mixed.

Torsion. For b € @Z, let @éb) be the Weil sheaf on Spec [, of rank one, where F" acts by
multiplication by b. This is an étale sheaf if and only if b is an ¢-adic unit ([9], 1.2.7). For

an algebraic stack 2/, we also denote by @éb) the inverse image on 2 of the above Weil

sheaf via the structural map. If .%; is a sheaf on 2, we denote by ﬁéb) the tensor product

Fo ® @éb), and say that ﬁzéb) is deduced from %, by torsion, or a generalized Tate twist.
Note that the operation % — 5%([)) adds the weights by w,(b). For an integer d, the usual

__ —_(q—d
Tate twist Q,(d) is Qéq ) We denote by (d) the operation (d)[2d] on complexes of sheaves,
where [2d] means shifting 2d to the left. Note that -mixedness is stable under the operation

(d).

Lemma 2.2.2. Let %2, be an F,-algebraic stack.

(i) If Fo is an t-mized sheaf on 2y, then so is every sub-quotient of Fy.

(i) If 0 — F#[ — Py — F] — 0 is an exact sequence of sheaves on 2y, and F| and
Fo are i--mized, then so is Fy.

(iii) The full subcategory of t-mived complexes in W (Zy, Q,) is a triangulated subcate-
gory with induced t-structure, denoted by W,,(Zo, Q,). Similarly, let D,,( %o, Q,) be the full
subcategory of t-mived lisse-étale complex in D.(Zy, Q).

(iv) If f is a morphism of F,-algebraic stacks, then f* on complezes of sheaves preserves
L-mizedness.

(v) If j : U — o is an open immersion and i : 25 — Zy is its complement, then
Ko € D(Z20,Qy) is t-mized if and only if j* Ky and i* Ky are t-mived.

Proof. (i) If %, is punctually ¢-pure of weight 3, then so is every sub-quotient of it. Now
suppose % is (-mixed and %] is a subsheaf of .%;. Let W be a finite filtration

0OC---CFitcFc--CH

of %y such that Gr" (%) = F/Fi " is punctually -pure for every i. Let W’ be the
induced filtration W N.%} of .#}. Then Gr!¥' (%) is the image of

FoN Ty C Fy = G (Fo),
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so it is punctually t-pure. Let F[] = %/ % be a quotient of %y, and let W” be the induced
filtration of 7, namely (F})" := Fi/(FinF;). Then Grl""(F) = Fi/(Fi + FinNF),
which is a quotient of .Z}/.Zi™!' = Gr)V (%), so it is punctually t-pure. Hence every sub-
quotient of % is t-mixed.

(ii) Let W' and W” be finite filtrations of .%} and .Z! respectively, such that Gr!¥' (%)
and Gr!V" (Z!) are punctually i-pure for every i. Then W’ can be regarded as a finite filtration
of %, such that every member of the filtration is contained in %[, and W” can be regarded
as a finite filtration of .%; such that every member contains .%;. Putting these two filtrations
together, we get the desired filtration for .Z.

(iii) Being a triangulated subcategory means ([11], p.271) that, if K — Ky — K —
K}[1] is an exact triangle in W (25, Q,), and two of the three complexes are (-mixed, then
so is the third. By the rotation axiom of a triangulated category, we can assume K|, and K{/
are (-mixed. We have the exact sequence

o= WK = H Ky —> HK]

and by (i) and (ii) we see that " K, is (-mixed.

Wi (2o, Q,) has the induced t-structure because if Kj is (-mixed, then its truncations
T<n Ko and 75, K, are (-mixed.

(iv) On sheaves, f* preserves stalks, so it is exact and preserves punctual (-purity on
sheaves. Let f : 2y — %;. Given an (-mixed sheaf %, on %, let W be a finite filtration
of %y such that each Gr}" (%) is punctually -pure. Then f*W gives a finite filtration of
f*Zy and each Gr! ™" (f*.Zy) = f*GrlV (%) is punctually i-pure. So f*.%; is t-mixed. For
an (-mixed complex Ky on %, note that " (f*Ky) = f*#"(Ky), hence f*Kj is --mixed.

(v) One direction follows from (iv). For the other direction, note that j, and i, are exact
and preserve punctually (-purity on sheaves. If %, is an (-mixed sheaf on %4, with a finite
filtration 1 such that each Cr}" (%) is punctually t-pure, then for the induced filtration
W of ji.Z, we see that Gr?'" (j.%,) = jiGr!V (%) is punctually w-pure, so j.%, is t-mixed.
For an (-mixed complex Ky on %, use " (jiKy) = j17"(Ky). Similarly i, also preserves
(-mixedness on complexes. Finally the result follows from (iii) and the exact triangle

j!j*KO - K@ - Z*Z*K() —
O

To show that (-mixedness is stable under the six operations, we need to show that ¢-
mixedness of complexes on stacks can be checked locally on their presentations. To descend
a filtration on a presentation to the stack, we generalize the structure theorem of (-mixed
sheaves to algebraic spaces. Recall the following theorem of Deligne (][9], 3.4.1).

Theorem 2.2.3. Let %y be an t-mized sheaf on a scheme X, over F,.
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(i) Fo has a unique decomposition Fo = @Dcr /7 Fo(b), called the decomposition accord-
ing to the weights mod Z, such that the punctual t-weights of Fo(b) are all in the coset b.
This decomposition, in which almost all the Fy(b) are zero, is functorial in Fy. Note that
each Fy(b) is deduced by torsion from an t-mized sheaf with integer punctual weights.

(i) If the punctual weights of Fy are integers and Fq is lisse, Fo has a unique finite
increasing filtration W by lisse subsheaves, called the filtration by punctual weights, such that
GrlY () is punctually t-pure of weight i. This filtration is functorial in Fy. More precisely,
any morphism between t-mized lisse sheaves of integer punctual weights is strictly compatible
with their filtrations by punctual weights.

(1i1) If Fq is lisse and punctually t-pure, and Xq is normal, then the sheaf F on X is
semi-simple.

Remark 2.2.3.1. (i) If % is an abelian category and Z is an abelian full subcategory of &,
and C'is an object in &, then every direct summand of C' in % lies in & (or isomorphic to
some object in Z). This is because the kernel of the composition

ApBIA A Ag B

is B. So direct summands of a lisse sheaf are lisse. If .%; in the theorem above is lisse and
(-mixed, then each .%y(b) is lisse.

(ii) If the Q,-sheaf .%; is defined over some finite subextension E\ of Q,/Qy, then its
decomposition in (2.2.3i) and filtration in (2.2.3ii) are defined over E). This is because the
E\-action commutes with the Galois action.

(iii) In [9] Deligne made the assumption that all schemes are separated, at least in order
to use Nagata compactification to define fi. After the work of Laszlo and Olsson [26, 27],
one can remove this assumption, and many results in [9], for instance this one and (3.3.1),
remain valid. For (3.4.1) one can take a cover of a not necessarily separated scheme X, by
open affines (which are separated), and use the functoriality to glue the decomposition or
filtration on intersections.

Lemma 2.2.4. Let X,/F, be an algebraic space, and %y an t-mized sheaf on Xo.

(i) Fo has a unique decomposition Fo = Dyeg 7 Fo(b), the decomposition according to
the weights mod Z, with the same property as in (2.2.3i). This decomposition is functorial
in Fo.

(i) If the punctual t-weights of Fq are integers and Fy is lisse, Fy has a unique finite
increasing filtration W by lisse subsheaves, called the filtration by punctual weights, with the
same property as in (2.2.311). This filtration is functorial in .

Proof. Let P : X — Xy be an étale presentation, and let .#] = P*.%, which is also ¢-mixed
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(2.2.2iv). Let X{ be the fiber product

n__ / 1 Pl /
Xy = X Xx, Xog — X

| lp

X! Xo.

P

Then X{ is an F,-scheme of finite type.
(i) Applying (2.2.3i) to %) we get a decomposition .F = @beR/Z Fi(b). For j = 1,2,
applying p; we get a decomposition

P 7= €P v F ).

beR/Z

Since p; preserves weights, by the uniqueness in (2.2.3i), this decomposition is the decompo-
sition of p}.%; according to the weights mod Z. By the functoriality in (2.2.3i), the canonical
isomorphism p : pi. %y — p5.F; takes the form €D,cg 7 s, Where p 2 p7F(b) — p5.%4(b)
is an isomorphism satisfying cocycle condition as p does. Therefore the decomposition
Fo = Dier/z Fo(b) descends to a decomposition Fy = Pycg 7 Fo(b). We still need to show
each direct summand % (b) is t-mixed.

Fix a coset b and consider the summand .%,(b). Twisting it by a certain torsion, we can
assume that its inverse image .#((b) is t-mixed with integer punctual (-weights. By (2.2.2v)
and noetherian induction, we can shrink Xy to a nonempty open subspace and assume .%(b)
is lisse. Then .Z((b) is also lisse, and applying (2.2.3ii) we get a finite increasing filtration
W' of .Z}(b) by lisse subsheaves .%(b), such that each Gr!¥' (Z}(b)) is punctually i-pure
of weight i. Pulling back this filtration via p;, we get a finite increasing filtration p;W" of

p;Fo(b), and since Grfjw (p;F(b) = ;Grfvl(ﬁé(b)) is punctually ¢-pure of weight 4, it
is the filtration by punctual weights given by (2.2.3ii), hence functorial. So the canonical
isomorphism p, : p;. % (b) — p5.Z{(b) maps p;.Z{(b)" isomorphically onto p3.%}(b)?, satisfying
cocycle condition. Therefore the filtration W’ of .%{(b) descends to a filtration W of .%(b),
and P*Gr! (%, (b)) = GV (#(b)) is punctually t-pure of weight i. Note that P is surjective,
so every point x € Xo(F,v) can be lifted to a point 2’ € X{(F,nv) after some base extension
Fyno of Fpo. This shows Gr;" (%y(b)) is punctually i-pure of weight i, therefore .%y(b) is
r-mixed. This proves the existence of the decomposition in (i).

For uniqueness, let %, = @%(b) be another decomposition with the desired prop-
erty. Then their restrictions to X{, are both equal to the decomposition of .%j, which is
unique (2.2.3i), so they are both obtained by descending this decomposition, and so they are
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isomorphic, i.e. for every coset b there exists an isomorphism making the diagram commute:

Fo(b = Zo(b)

Fo.

For functoriality, let 9% = @ %(b) be another -mixed sheaf with decomposition on Xj,
and let ¢ : %y — % be a morphism of sheaves. Pulling ¢ back via P we get a morphism
' FL— 95 on X, and the diagram

P10 szﬁé

pfso’i J{péw/

PI% g 2%
commutes. By (2.2.31) ¢’ = @ ¢'(b) for morphisms ¢'(b) : Z#[(b) — ¥;(b), and the diagram

piF(b) == p3.F4(b)

p{tp’l ipéso’

Pi%(b) —zm= 3% (b)

commutes for each b. Then the morphisms ¢’(b) descend to morphisms ¢(b) : % (b) — % (b)
such that ¢ = @ ¢(b).

(ii) The proof is similar to part (i). Applying (2.2.3ii) to .%j on X| we get a finite
increasing filtration W’ of Z by lisse subsheaves %/ with desired property. Pulling back this
filtration via p; : X — Xj we get the filtration by punctual weights of p;.%. By functoriality
in (2.2.3ii), the canonical isomorphism p : pi.%} — p5.%; maps pi{.Z}' isomorphically onto
psF satisfying cocycle condition, therefore the filtration W’ descends to a finite increasing
filtration W of .%, by certain subsheaves .Z}. By ([35], 9.1) they are lisse subsheaves.

For uniqueness, if W is another filtration of Z by certain subsheaves E}% with desired
property, then their restrictions to X are both equal to the filtration W’ by punctual weights,
which is unique (2.2.3ii), so they are both obtained by descending this filtration W’  and
therefore they are isomorphic.

For functoriality, let ¢, be another lisse (-mixed sheaf with integer punctual -weights,
and let V' be its filtration by punctual weights, and let ¢ : %y — % be a morphism. Pulling
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¢ back via P we get a morphism ¢’ : #) — ¥ on X{), and the diagram

%
x gp! 0 x gp!
PF o —>DPaFy

pi‘qﬂi J{pés&’

PI —m 5%
commutes. By (2.2.3i1) we have ¢'(F}') C ¢, and the diagram

s .
* I * gp
plyo — p2‘j0

p{w’l ipiﬂp’

*cg *cg/h

P19 g, P27

commutes for each i. Let ¢ : Z} — 4}’ be the restriction of ¢’. Then they descend to
morphisms ¢’ : F¢ — i, which are restrictions of ¢. O

Remark 2.2.4.1. One can prove a similar structure theorem of -mixed sheaves on algebraic
stacks over F, : the proof of (2.2.4) carries over verbatim to the case of algebraic stacks, except
that for a presentation X)) — %2y, the fiber product X[ = X x 2, X{) may not be a scheme,
so we use the case for algebraic spaces and replace every “(2.2.3)” in the proof by “(2.2.4)”.
It turns out that (2.2.3iii) also holds for algebraic stacks, as a consequence of the proof of
(1.0.4). We will give the proof later (see (7.2.1)).

Proposition 2.2.5. Let 2y be an [F,-algebraic stack, and let P : Xo — %, be a presentation
(i.e. a smooth surjection with Xy a scheme). Then a complex Ky € W(Zo, Q) is t-mized if
and only if P*Ky (resp. P'Ky) is t-mized.

Proof. We consider P*Kj first. The “only if” part follows from (2.2.2iv). For the “if” part,
since P* is exact on sheaves and so J#'(P*Ky) = P*#"(K,), we reduce to the case when
Ky = % is a sheaf. So we assume the sheaf .#| .= P*.%; on X, is (-mixed, and want to

show .%; is also t-mixed. The proof is similar to the argument in (2.2.4).
Let X{ be the fiber product

p1
Xy = Xo X2, Xo— X

| ip

Xo Zo.

P

Then X[ is an algebraic space of finite type. Applying (2.2.31) to .%#| we get a decomposition



17

Fo = Byeryz Fo(b). For j = 1,2, applying p; we get a decomposition

;7= @ v 75 0),

bER/Z

which is the decomposition of p}.#; according to the weights mod Z. By the functoriality
in (2.2.4i), the canonical isomorphism i : pj.%; — p3.7; takes the form B, g 7 1y, Where
wy = piF(b) — p3F4(b) is an isomorphism satisfying cocycle condition as p does. Therefore
the decomposition of .#; descends to a decomposition Fy = @yep,z Fo(b). The -weights
of the local Frobenius eigenvalues of .%;(b) at each point of 2, are in the coset b. Next we
show that .%y(b)’s are (-mixed.

Replacing %, by a direct summand .%,(b) and then twisting by torsion, we may assume
its inverse image % is (-mixed with integer punctual (-weights. By (2.2.2v) we can shrink
Zo to a nonempty open substack and assume % is lisse. Then % is also lisse, and applying
(2.2.3ii) we get a finite increasing filtration W’ of #] by lisse subsheaves .Z/’, such that each
Gr!V'(#}) is punctually t-pure of weight i. Pulling back this filtration via p;, we get a finite
increasing filtration p;W’ of p;.%;, and since Gr? v (p; ) = ;Grfv '(Z}) is punctually .-
pure of weight 4, it is the filtration by punctual weights given by (2.2.4ii). By functoriality, the
canonical isomorphism p : pi.%) — psF#) maps pi.Z} isomorphically onto p}.Z, satisfying
cocycle condition. Therefore the filtration W’ of % descends to a filtration W of .%;, and
P*GrY (Fy) = GV (%)) is punctually i-pure of weight i. Since 7 is surjective, Gr/V (%) is
also punctually (-pure of weight i, therefore % is -mixed.

Next we consider P'K,. We know that P is smooth of relative dimension d, for some

function d : my(Xy) — N. Let X be a connected component of Xj. Since mo(Xp) is finite,

X9 is both open and closed in Xp, so f : XJ % X £, 2 is smooth of relative dimension
d(X{). Then P*Kj is t-mixed if and only if f*K, = j*P*Kj is r-mixed for the inclusion j
of every connected component, if and only if f'Ko = f*Ko(d(XJ)) is t-mixed, if and only if
P'Ky is t-mixed, since f' = j'P' = j*P". O]

Remark 2.2.5.1. As a consequence of his results on the Langlands correspondence for
function fields and a Ramanujan-Petersson type of result, Lafforgue was able to prove the
conjecture of Deligne ([9], 1.2.10), and in particular ([9], 1.2.9) that all sheaves on any
separated F,-scheme are (-mixed, for any . See ([24], 1.3). By taking an open affine cover,
one can generalize this to all F-schemes and, using (2.2.5), to all F,-algebraic stacks. In
the following, when we want to emphasize the assumption of -mixedness, we will still write

“Win(Zo,Q,)”, although it equals the full category W (2o, Q,).

Next we show the stability of -mixedness, first for a few operations on complexes on
algebraic spaces, and then for all the six operations on stacks. Denote by Dy, or just D the
dualizing functor R7#om(—, K »;), where K 4, is a dualizing complex on 2y ([27], §7).
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2.2.6. Recall ([22], II 12.2) that, for schemes over F, and bounded constructible sheaf com-
plexes on them, the operations f., fi, f*, f', D and — @ — all preserve (-mixedness.

Lemma 2.2.7. Let f : Xo — Y, be a morphism of F,-algebraic spaces. Then the operations
— @b — Dx,, f« and fi all preserve t-mizvedness, namely, they induce functors

— @l — W (X0, Q) x W (X0, Q) — W (Xo,Q,),
D: Wm(XQ,@g) — Wm(XOa@Z)Op>
fo: WH(Xo, Q) — WE(Ye,Q) and  fi: W, (X, Q) — W,, (Yo, Q).

Proof. We will reduce to the case of unbounded complexes on schemes, and then prove the
scheme case. Let P : X — X, be an étale presentation.

Reduction for ®%. For Ky, Ly € W (Xo,Q,), we have P*(K, @' Ly) = (P*K,) ®F
(P*Ly), and the reduction follows from (2.2.5).

Reduction for D. For K, € W,,(X,,Q,), we have P*DK, = DP'K, so the reduction
follows from (2.2.5).

Reduction for f. and fi. By definition ([27], 9.1) we have f, = Df,D, so it suffices to
prove the case for fi. Let Ky € W (X,,Q,), and let P’ : Y] — Yy and X}, — X, Xy, Y{ be

étale presentations:
g

Xj— (Xohy — =Yy
N
Xo—1 Y,

By smooth base change ([27], 12.1) we have P* fiKy = f/h*Ky. Replacing f by f’ we can
assume Yy is a scheme. Let j : Uy — X, be an open dense subscheme ([21], 1T 6.7), with
complement i : Zy — X,. Applying f; to the exact triangle

j!j*KO —> KO —_— Z*Z*KO —

we get
(fhj Ko — fiKo— (fi)ii* Ko —-

By (2.2.2iii) and noetherian induction, we can replace Xy by Up, and reduce to the case
where f is a morphism between schemes.

This finishes the reduction to the case of unbounded complexes on schemes, and now we
prove this case.

For the Verdier dual Dy,, since the dualizing complex Kx, has finite quasi-injective
dimension, for every K, € W,,,(Xo, Q,) and every integer i, there exist integers a and b such
that

%Z(DXOKQ) ~ %Z(DXOT[QMKO),
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and by (2.2.6), we see that Dx, Ky is t-mixed. B
Next we prove the case of @, Let Ky and Ly € W, (X, Q,). Consider the spectral
sequence

Bt = @D A7 (A(Ko) @ A7 (Lo)) = A" (K @" Lo).
i+j=k
The result follows from (2.2.2i, ii) and (2.2.6). B
Finally we prove the case of f, and fi. Let Ky € W5 (Xy,Q,). Then we have the spectral

sequence y ' . o
EY = Rif,(#'Ky) = R f.K,,

and the result follows from (2.2.6) and (2.2.2i, ii). The case for fi = Df.D also follows. [

Finally we prove the main result of this chapter. This generalizes ([3], 6.3.7).

Theorem 2.2.8. Let f : Zy — % be a morphism of Fy-algebraic stacks. Then the operations
fo f f5 f Doy, — @F — and R om(—, —) all preserve -mivedness, namely, they induce
functors

fe W;ﬁ(%,@e) - Wr—:(%,@z)a Ji: Wn_m(%/m@e) - Wﬁ(%,@é),
fr Wm(%,@e) - Wm(%,@z)a f! : Wm(%,@z) - Wm(%,@£)7
D Wm(%,@e) - Wm(%y@Z)Op,
@ Wi (20, Qo) x Wi (20,Qp) — W, (25,Q,)  and
Rt om(—, =) : W, (20, Q)% x W1 (20,Qp) — W1 (20, Q).

Proof. Recall from ([27], 9.1) that f, := Df.D and f':= Df*D. By ([27], 6.0.12, 7.3.1), for
KO € Wﬁ(%7@€) and LO S W+(%7Q€)v we have

D(Ko ®" DLy) = Ro#om(Ky @ DLy, K 2;,) = RA# om(Ky, R#om(D Ly, K 2,))
= RA#om(Ky, DDLy) = R om(Ky, Ly).

Therefore it suffices to prove the result for f,, f*, D and — ®% —. The case of f* is proved in
(2.2.2iv).

For D : let P : Xy — 2, be a presentation. Since P*D = DP', the result follows from
(2.2.5) and (2.2.7).

For @ : since P*(Ky®" Ly) = P*Ky®" P*Ly, the result follows from (2.2.5) and (2.2.7).

For f, and f; : we will start with f;, in order to use smooth base change to reduce to the
case when % is a scheme, and then turn to f, in order to use cohomological descent.

Let Ko € W (20,Qy), and let P : Yy — % be a presentation and the following diagram
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be 2-Cartesian:
f/
(%)YO — YO

A

Zo —— Y.

We have ([27], 12.1) that P*fiK, = f/P" Ky, so by (2.2.5) we can assume %, = Y is a
scheme. B
Now we switch to f., where f : 25 — Yy, and Ko € Wt (25,Q,). Let Xg — 25 be a

presentation. Then it gives a smooth hypercover X, of % :

Xon = Xo Xaq -+ X Xo,

n+1 factors

where each X, is an [F -algebraic space of finite type. Let f,, : Xy, — Y be the restriction
of f to Xo,,. Then we have the spectral sequence ([27], 10.0.9)

Since f;’s are morphisms of algebraic spaces, the result follows from (2.2.7) and (2.2.2i,
if). O
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Chapter 3

Stratifiable complexes.

In this chapter, we use the same notations and hypotheses in (2.1.1). Let XY --- be
S-algebraic stacks of finite type. By “sheaves” we mean “lisse-étale sheaves”. “Jordan-
Holder” and “locally constant constructible” are abbreviated as “JH” and “lec” respectively.
A stratification . of an S-algebraic stack X is a finite set of disjoint locally closed substacks
that cover X. If % is a lcc (A,)xy-module, a decomposition series of Z is a filtration by
lcc Ax-subsheaves, such that the successive quotients are simple Ay-modules. Note that
the filtration is always finite, and the simple successive quotients, which are (Ag)x-modules,
are independent (up to order) of the decomposition series chosen. They are called the JH
components of F.

3.1 Basic definitions and properties.

Definition 3.1.1. (i) A complez K = (K,), € Z.(<) is said to be stratifiable, if there
exists a pair (7, L), where % is a stratification of X, and L is a function that assigns to
every stratum U € 7 a finite set L(U) of isomorphism classes of simple (i.e. irreducible)
lecc No-modules on Uyss, such that for each pair (i,n) of integers, the restriction of the
sheaf ' (K,) € Mod.(Xiset, An) to each stratum U € . is lee, with JH components (as a
Ay-module) contained in L(U). We say that the pair (., L) trivializes K (or K is (.7, L)-
stratifiable), and denote the full subcategory of (.7, L)-stratifiable complexes by Dy (7).
The full subcategory of stratifiable complezes in D.(f) is denoted by D5 (H).

(i1) Let D3"(X, A) be the essential image of Z5™*(f) in D.(X, A), and we call the objects
of D¥™(X, A) stratifiable complexes of sheaves.

(iii) Let Ey be a finite extension of Q, with ring of integers €. Then the definition above
applies to A = O)\. Let D¥*™(X, E)) be the essential image of D" (X, 0)) in D.(X, E)).
Finally we define

D" (X, Q,) = 2-colimpy, DE"™ (X, E)).
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Remark 3.1.1.1. This notion is due to Beilinson, Bernstein and Deligne [4], and Behrend
[3] used it to define his derived category for stacks. Many results in this section are borrowed
from [3], but reformulated and reproved in terms of the derived categories defined in [27].

3.1.2. We say that the pair (%', L) refines the pair (., L), if . refines ., and for every
Ve Ue .S and L € L(U), such that V C U, the restriction L|y is trivialized by £'(V).
Given a pair (., £) and a refined stratification .’ of .7, there is a canonical way to define
L' such that (', L) refines (&, L) : for every V € ., we take L'(V) to be the set of
isomorphism classes of JH components of the lcc sheaves L|y for L € L(U), where U ranges
over all strata in . that contains V. It is clear that the set of all pairs (., £) form a filtered
direct system.

A pair (%, L) is said to be tensor closed if for every U € . and L, M € L(U), the sheaf
tensor product L ®,, M has JH components in L(U).

For a pair (., L), a tensor closed hull of this pair is a tensor closed refinement.

Lemma 3.1.3. Every pair (%, L) can be refined to a tensor closed pair (', L').

Proof. First we show that, for a lcc sheaf of sets .# on A4, there exists a finite étale
morphism f : Y — X of algebraic S-stacks such that f~1.% is constant. Consider the total
space [.#] of the sheaf .Z. Precisely, this is the category fibered in groupoids over (Aff/S) with
the underlying category described as follows. Its objects are triples (U € obj(Aff/S),u €
obj X(U),s € (v 2#)(U)), and morphisms from (U,u,s) to (V,v,t) are pairs (f : U —
V,a : vf = u) such that ¢ is mapped to s under the identification o : f~lo™.7% = ¢ 1.7,
The map (U,u,s) — (U,u) gives a map g : [#]| — X, which is representable finite étale
(because it is so locally). The pullback sheaf g~'.% on [#] has a global section, so the total
space breaks up into two parts, one part being mapped isomorphically onto the base [.Z].
By induction on the degree of g we are done.

Next we show that, for a fixed representable finite étale morphism ) — X, there are
only finitely many isomorphism classes of simple lcc Ag-sheaves on X’ that become constant
when pulled back to ). We can assume that both X and ) are connected. By the following
lemma (3.1.3.1), we reduce to the case where ) — X is Galois with group G, for some finite
group G. Then simple lcc Ag-sheaves on X that become constant on ) correspond to simple
left Ag[G]-modules, which are cyclic and hence isomorphic to Ag[G]/I for left maximal ideals
I of Ay[G]. There are only finitely many such ideals since Ay[G] is a finite set.

Also note that, a lcc subsheaf of a constant constructible sheaf on a connected stack is
also constant. Let L be a lcc subsheaf on X of the constant sheaf associated to a finite set M.
Consider their total spaces. We have an inclusion of substacks 4 : [L] < [],,cps Xm, Where
each part X, is identified with X. Then i~'(X,,) — X, is finite étale, and is the inclusion
of a substack, hence is either an equivalence or the inclusion of the empty substack, since X
is connected. It is clear that L is also constant, associated to the subset of those m € M for

which i71(X,,) # 0.
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Finally we prove the lemma. Refining . if necessary, we assume all strata are connected
stacks. For each stratum U € ¥, let J — U be a representable finite étale morphism,
such that all sheaves in L£(U) become constant on Y. Then define £'(U) to be the set of
isomorphism classes of simple lcc Ag-sheaves on Ui« which become constant on ). For any
L and M € L'(U), since all lcc subsheaves of L®,, M are constant on ), we see that L&y, M
has JH components in £'() and hence (., L') is a tensor closed refinement of (., £). O

Lemma 3.1.3.1. Let Y — X be a representable finite étale morphism between connected
S-algebraic stacks. Then there exists a morphism Z — Y, such that Z is Galois over X, i.e.
it s a G-torsor for some finite group G.

Proof. Assume X is non-empty, and take a geometric point T — X. Let € be the category
FEt(X) of representable finite étale morphisms to X', and let

F : % — FSet

be the fiber functor to the category of finite sets, namely F()) = Homx(7,Y). Note that
this Hom, which is a priori a category, is a finite set, since ) — X is representable and finite.
Then one can verify that (¢, F' : € — FSet) satisfies the axioms of Galois formalism in ([15],
Exp. V, 4), and use the consequence g) on p. 121 in loc. cit. For the reader’s convenience,
we follow Olsson’s suggestion and explain the proof in loc. cit. briefly. Basically, we will
verify certain axioms of (G1) — (G6), and deduce the conclusion as in loc. cit.

First note that €, which is a priori a 2-category, is a 1-category. This is because for any
2-commutative diagram
/

NS
X

where Y, Z € €, the morphism f is also representable (and finite étale), so Homx (Y, Z) is
discrete. By definition, the functor F' preserves fiber-products, and F'(X) is a one-point set.

Let f : Y — Z be a morphism in %, then it is finite étale. So if the degree of f is
1, then f is an isomorphism. This implies that the functor F'is conservative, i.e. f is an
isomorphism if F'(f) is. In particular, f is a monomorphism if and only if F'(f) is. This is
because f is a monomorphism if and only if p; : ) Xz )Y — ) is an isomorphism, and F
preserves fiber-products.

Since f : Y — Z is finite étale, its image stack )’ C Z is both open and closed, hence
Y’ — Z is a monomorphism that is an isomorphism onto a direct summand of Z (i.e.
Z =)Y'[]Y" for some other open and closed substack )" C Z). Also, since ) — )’ is epic
and finite étale, it is strictly epic, i.e. for every Z € €, the diagram

Yy

Z

Hom(Y',Z) — Hom(Y, Z) = Hom(Y Xy Y, Z)

is an equalizer.
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Every object ) in € is artinian: for a chain of monomorphisms
'—Nynﬁ"'ﬁyzﬁaﬁﬁy,
we get a chain of injections

= F(Yy) — - —= F()h) — F(Y),

which is stable since F'()) is a finite set, and so the first chain is also stable since F is
conservative.

Since F is left exact and every object in ¢ is artinian, by ([18], 3.1) the functor F'is strictly
pro-representable, i.e. there exists a projective system P = {P;;i € I} of objects in ¢ indexed
by a filtered partially ordered set I, with epic transition morphisms ¢;; : P; — P; (i < j),
such that there is a natural isomorphism of functors

F — Hom(P,—) := colim;Hom(P;, —).

Let ¢; : P — P; be the canonical projection in the category Pro(%) of pro-objects of €.
We may assume that every epimorphism P; — Z in % is isomorphic to P; 24 P, for some
t < j. This is because one can add P; — Z into the projective system P without changing
the functor it represents. Also one can show that the P;’s are connected (cf. loc. cit.), and
morphisms in 4 between connected stacks are strictly epic.

Given ) € ¥, now we show that there exists an object Z — X that is Galois and factors
through ). Since F'()) is a finite set, there exists an index j € I such that all maps P — )

factors through P Y P;. This means that the canonical map

PoY =YXy - Xy Y, where J := F(Y) = Hompyo)(P, )
#J f;rctors

factors as
P ﬁ> Pj i> yJ‘

Let P; — P A V7 be the factorization of A into a composition of an epimorphism and a
monomorphism B. We claim that P; is Galois over X.
Since F'(P;) is a finite set, there exists an index k € I such that all maps P — P; factors

through P ¥ Py. Fix any v : Py — P,. To show P, is Galois, it suffices to show that Aut(F;)
acts on F'(P;) = Hom(Py, P;) transitively, i.e. there exists a o € Aut(F;) making the triangle

commute:
P,——P,
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For every w € J = Hom(P;,)), we have uov € Hom(Pg,)), so there exists a u' €
Hom(P;,)) making the diagram commute:

P, ——P,

R‘T)y-

Since v is epic, the function u +— v’ : J — J is injective, hence a bijection. Let o : Y/ — Y7
be the isomorphism induced by the map u — u'. Then the diagram

P, —Y>pP L2y

«
Pik l/

PZT)yJ

commutes. By the uniqueness of the factorization of the map P, — ) into the composition
of an epimorphism and a monomorphism, there exists a 0 € Aut(F;) such that o o v = .
This finishes the proof. O

We give some basic properties of stratifiable complexes.

Lemma 3.1.4. (i) 25"*(&/) (resp. D3*(X,A)) is a triangulated subcategory of P.(<f)
(resp. D.(X,\)) with the induced t-structure.

(i) If f + X — Y is an S-morphism, then f* : D.((Y)) — DA (X)) (resp. f* :
D.(Y,\) — D.(X,\)) preserves stratifiability.

(i1i) If .7 is a stratification of X, then K € Z.(/ (X)) is stratifiable if and only if K|y
15 stratifiable for every V € 7.

(iv) Let P : X — X be a presentation, and let K = (K,,), € Z.(/(X)). Then K is
stratifiable if and only if P*K 1is stratifiable.

(v) D%(X | A) contains D%(X,N), and the heart of DS"(X,A) is the same as that of
Do(X,A) (2.1.2.1i).

(vi) Let K € D.(4/) be a normalized complex ([27], 3.0.8). Then K is trivialized by a
pair (L, L) if and only if Ky is trivialized by this pair.

(vii) Let K € 25"2(f). Then its Tate twist K (1) is also stratifiable.

Proof. (i) To show 25"?(¢/) is a triangulated subcategory, it suffices to show ([11], p.271)
that for every exact triangle K’ — K — K" — K'[1] in Z.(</), if K’ and K" are stratifiable,
so also is K.

Using refinement we may assume that K’ and K" are trivialized by the same pair (., L).
Consider the cohomology sequence of this exact triangle at level n, restricted to a stratum
U € .. By ([35], 9.1), to show that a sheaf is lcc on U, one can pass to a presentation U
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of the stack U. Then by ([29], 20.3) and 5-lemma, we see that the J#*(K,,)’s are lcc on U,
with JH components contained in L£(U). Therefore 25"?(o7) (and hence D"(X, A)) is a
triangulated subcategory.

The t-structure is inherited by Z5"?*(<7) (and hence by D™(X,A)) because, if K €
P.(47) is stratifiable, so also are its truncations 7<, K and 7, K.

(ii) f* is exact on the level of sheaves, and takes a lcc sheaf to a lcc sheaf. If (K,), €
P.(27(Y)) is trivialized by (.7, L), then (f*K,,),, is trivialized by (f*.7, f*L), where f*. =
{f7Y WMV € S} and (f*L)(f~1(V)) is the set of isomorphism classes of JH components of
f*L, L € L(V). The case of D.(—,A) follows easily.

(iii) The “only if” part follows from (ii). The “if” part is clear: if (.#, Ly) is a pair on V
that trivializes (K,|y)n, then the pair (Zx, L) on X, where .y = Uy and L = {Ly }yey,
trivializes (K,)y.

(iv) The “only if” part follows from (ii). For the “if” part, assume P*K is trivialized by
a pair (Sx,Lx) on X. Let U € .%x be an open stratum, and let V' C X be the image of U
([25], 3.7). Recall that for every T' € Aff/S, V(T) is the full subcategory of X(T") consisting
of objects x that are locally in the essential image of U(T), i.e. such that there exists an
étale surjection 77 — T in Aff/S and «' € U(T"), such that the image of v’ in X(7") and
x| are isomorphic. Then V' is an open substack of X' (hence also an algebraic stack) and
P|y : U — V is a presentation. Replacing P : X — X by P|y : U — V and using noetherian
induction and (iii), we may assume .#x = {X}. Take a pair (., £) on X’ that trivializes all
RP,L’s, for L € Lx. We claim that K is trivialized by (., L).

For each sheaf .% on X, the natural map .# — RYP,P*.Z is injective. To verify this on
Xy — U, for any u € X(U), note that the question is étale local on U, so one can assume
P : Xy — U has a section s : U — Xpy. Then the composition %y — R'P.P*Zy; —
RP,RYs,s*P* % = Fy of the two adjunctions is the adjunction for P o s = id, so the
composite is an isomorphism, and the first map is injective. Taking .%# to be the cohomology
sheaves 7 (K,,) we see that K is trivialized by (7, L).

(v) It suffices to show, by (i) and (2.1.2.1i), that all adic systems M = (M,), € o are
stratifiable. By (iv) we may assume & = X is an S-scheme. Since X is noetherian, there
exists a stratification ([16], VI, 1.2.6) of X such that M is lisse on each stratum. By (iii) we
may assume M is lisse on X.

Let £ be the set of isomorphism classes of JH components of the Ag-sheaf My. We claim
that £ trivializes M,, for all n. Suppose it trivializes M,,_; for some n > 1. Consider the sub-
A,-modules AM,, C M,[\"] C M, where M,[\"] is the kernel of the map \" : M,, — M,,.
Since M is adic, we have exact sequences of Ax-modules

0— M, — M, — My —0,
0 — M,[\"]| — M,, — \"M,, —0, and
O%AnMn%Mn%Mnfl —= ().
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The natural surjection M, /A\M,, — M, /M,[\"] implies that L trivializes \" M,,, and therefore
it also trivializes M,,. By induction on n we are done.

Since D? C DS C D,, and D% and D, have the same heart, it is clear that D5 has the
same heart as them.

(vi) Applying — ®ﬁn K, to the following exact sequence, viewed as an exact triangle in
D(X,A\,)

0 J N Ao 0,

we get an exact triangle by ([27], 3.0.10)
Ky,.1—K,— Ky—-

By induction on n and (3.1.4.1) below, we see that K is trivialized by (., £) if K| is.

(vii) Let K = (K,,),. By definition K (1) = (K,(1)),, where K,(1) = K, ®} A,(1). Note
that the sheaf A, (1) is a flat A,,-module: to show that — ®,, A, (1) preserves injections, one
can pass to stalks at geometric points, over which we have a trivialization A,, ~ A, (1).

Suppose K is (., L)-stratifiable. Using the degenerate spectral sequence

A (K) @, An(1) = A (K @5, Aa(1)),

it suffices to show the existence of a pair (-, L") such that for each U € ., the JH compo-
nents of the lcc sheaves L ®y, A,(1) lie in £'(U), for all L € L(U). Since L is a Ap-module,

we have
L@, An(1) = (L ®s, Ao) @, An(1) = L @4, (Ao @, An(1)) = L @4, Mo(1) = L @4, Mo(1),
and we can take £'(U) to be a tensor closed hull of {Ag(1), L € L(U)}. O

Remark 3.1.4.1. In fact the proof of (3.1.4i) shows that Zy (<) is a triangulated sub-
category, for each fixed pair (., L). Let Dy (X, A) be the essential image of Zy (/) in
D.(X,A), and this is also a triangulated subcategory.

Also if EY = E™ is a spectral sequence in the category &/ (X), and the EY’s are
trivialized by (.7, £) for all 4, j, then all the E™’s are trivialized by (7, £).

We denote by DI*"2(X A), for = =+, b, the full subcategory of {-bounded stratifiable
complexes, using the induced t-structure.

3.2 Stability under the six operations.

The following is a key result for showing the stability of stratifiability under the six
operations later. Recall that M — M = Ln*Rw,M is the normalization functor, where
7 XN — X is the morphism of topoi in ([27], 2.1), mentioned in (2.1.3).
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Proposition 3.2.1. For a pair (%, L), if M € Dy (), then M e Dy (), too. In
particular, if K € D.(X,A), then K is stratifiable if and only if its normalization K € D.(</)
is stratifiable.

Proof. Since M is normalized, by (3.1.4vi), it suffices to show that (M), is trivialized by
(-7, L). Using projection formula and the flat resolution of Ag

0 A A A £ AO Oa
we have ([27], p.176)
(M) = Ao ®% Rm.M = R, (7" Ay @K, M),

where 7m*Aq is the constant projective system defined by Ay. Let C' € Z(47) be the complex
of projective systems 7*Aq ®k. M:; it is a A-complex, and C,, = Ay ®kn M, € D.(X, o).

Recall ([16], V, 3.2.3) that, a projective system (K,), ringed by A, in an abelian category
is AR-adic if and only if

e it satisfies the condition (MLAR) ([16], V, 2.1.1), hence (ML), and denote by (N,),
the projective system of the universal images of (K, )n;

e there exists an integer k > 0 such that the projective system (L, ), := (Npir /A" Nygr)n
is adic.

Moreover, (K,,), is AR-isomorphic to (L,),. Now for each i, the projective system J#*(C)
is AR-adic (2.1.2.1i). Let N* = (N}), be the projective system of the universal images of
A'(C), and choose an integer k > 0 such that the system L' = (L), = (N}, ® A,), is
adic. Since N!,, C H"(Cy4y) is annihilated by A, we have L}, = N/, and the transition
morphism gives an isomorphism

Li~ L@y Ay —>Li .

This means the projective system L' is the constant system 7*L{. By ([27], 2.2.2) we have
Rm, ' (C) ~ Rm, L', which is just L} by ([27], 2.2.3).
The spectral sequence .
Rig, H(C) = A" ((M),)

—~

degenerates to isomorphisms L} ~ J#((M)), so we only need to show that Lf is trivialized
by (., L). Using the periodic A,-flat resolution of A,

e Ay Ay T A = A S Ag 0,
we see that Ag ®% 7 (M,) is represented by the complex

= (M) 2> A (M,) 2> A (M,) — O,
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so A (N @ A7 (M,)) are trivialized by (., L), for all 4, j. From the spectral sequence
A (N @% A (M,)) = H7(C,)

we see (by (3.1.4.1)) that the 2#(C,,)’s are trivialized by (., £). The universal image N! is
the image of ' (C,1,) — H*(C,,) for some r > 0, therefore the N!’s (and hence the L’s)
are trivialized by (., L).

For the second claim, let K € D.(X, A). Since K is isomorphic to the image of K under
the localization Z.(«) — D.(X,A) ([27], 3.0.14), we see that K is stratifiable if K is.
Conversely, if K is stratifiable, which means that it is isomorphic to the image of some
M € 25"*(&7), then K = M is also stratifiable. O

3.2.1.1. For K € D.(X,\), we say that K is (., £)-stratifiable if K is, and (3.2.1) implies
that K € Dy (X, A) (cf. (3.1.4.1)) if and only if K is (., £)-stratifiable.

Corollary 3.2.2. (i) If .7 is a stratification of X, then K € D.(X,A) is stratifiable if and
only if K|y is stratifiable for every V € 7.

(ii) Let K € D.(X,\). Then K is stratifiable if and only if its Tate twist K (1) is

(i1i) Let P : X — X be a presentation, and let K € D.(X,\). Then K is stratifiable if
and only if P*K (resp. P'K ) is stratifiable.

Proof. (i) The “only if” if” part follows from (3.1.4ii), and the “if” part follows from (3.1.4iii),
(3.2.1), since K|y ~ (K|V)

(ii) This follows from (3.1.4vii), since K (1) = I?(T)

(iii) For P*K, the “only if” part follows from (3.1.4ii), and the “if” part follows from
(3.1.4iv) and (3.2.1), since P*K = (P*K) ([27], 2.2.1, 3.0.11).

Since P is smooth of relative dimension d, for some function d : mo(X) — N, we have
P'K ~ P*K(d)[2d], so by (ii), P*K is stratifiable if and only if P'K is. ]

Before proving the main result of this chapter, we prove some special cases.

Lemma 3.2.3. (i) If f : X — Y is a morphism of S-schemes, and K € DI (X,A) is
trivialized by ({X}, L) for some L, then f.K is stratifiable.

(i1) Let Ky and K’ be two A-dualizing complezes on the S-algebraic stack X, and let
D and D' be the two associated dualizing functors, respectively. Let K € D.(X,A). If DK
is trivialized by a pair (&, L), where all strata in 7 are connected, then D'K is trivialized
by (L, L") for some other L'. In particular, the property of the Verdier dual of K being
stratifiable is independent of the choice of the dualizing complex.

(i1i) Let S be a regular scheme satisfying (LO), and let X be a connected smooth S-
algebraic stack of dimension d. If K € D.(X,A) is trivialized by a pair ({X}, L), then Dy K
is trivialized by ({X'}, L") for some L.
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~

Proof. (i) By definition ([27], 8), f.K is the image of (f.(K),)n. By the spectral sequence
R f (K )n) = RPL((K)n)

and (3.1.4.1), we may replace (K), by its cohomology sheaves #((K),) and hence by
L € L, and it suffices to show the existence of a pair (-, Ly) on Y that trivializes R'f.L,
foralli € Z and L € L.

By a result of Gabber [19], the complex f.L is bounded for each L. Since the set
{R'f.Lli € Z, L € L} is finite, there exists a stratification .4 of Y that trivializes all
sheaves in this set. For each V' € .#y, define Ly (V') to be the set of isomorphism classes of
JH components of the lcc sheaves (R f.L)|y.

(ii) Recall that the dualizing complex Ky (resp. K’ ) is defined to be the image of a
normalized complex Ky o (resp. K% ,). See ([27], 7.2.3, 7.2.4). Asin the case of schemes [36],
for every n there exist an invertible A,,-module L, (i.e. L, ®* G, ~ A, for some G,,) and an
integer 7y, such that K%, ~ Ky, ®" L,[rn], and in fact L, [r,] ~ R om(Kxn, Kk ,) (this
can be checked locally, hence can be reduced to the case of schemes, which is ([16], Exp. I,
2)). By ([27], 4.0.8), the system (Ly[ry])n = R om((Kxn)n, (K% ,)) is normalized. Note
that the stalks of L, are free A,,-modules of rank 1, so L, is flat and L, @ G,, = L,, ® G,,.

We claim that if A is an invertible A,-sheaf on X’; then it is lcc. The following proof
is due to Olsson. Passing to a presentation X — X, we may assume X = X is a scheme.
By ([29], 20.3), we may replace X by Spec Oxz with generic point 1. Let B be such that
A® B ~ A,. Regard H°(Spec Ox 5, A) = Az ~ A, as a constant sheaf on Spec Ox z, and
consider the natural morphism Az — A. It suffices to show that this is an isomorphism, since
taking stalks at 77 gives the cospecialization map. Let K be the kernel of Az — A. Since B
is flat, we get a diagram where the row is exact:

Az ® B —= (A® B)z

e

0%K®B%A;®BWA®B ~ A,.
Since (1) is an isomorphism, we see that (2) is surjective, hence an isomorphism (all stalks
are finite sets). This implies K’ ® B, and hence K, are zero. So Az — A is injective, hence
an isomorphism.

For every stratum U € .7, let Lo(U) be the union of L(U) and the set of isomorphism
classes of the JH components of the lcc sheaf Lo|y. By (3.1.4vi), the complex D'Ky is
trivialized by (., L). Since all strata in . are connected, there exists a tensor closed hull
of (., Ly) of the form (.7, L), i.e. they have the same stratification .. Since D'Ky and
DK are both trivialized by (7, L), so also is D'K ~ DK @ D'K.

(iii) Note that by (ii), the question is independent of the choice of the dualizing complex.
By a result of Gabber ([36], 0.2), one can take the constant sheaf A to be the dualizing com-
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plex on S, so Ky = A(d). By definition ([27], 7.3.1), DK is the image of R omy, (K, Ay(d))
in D.(X,A), which is a normalized complex ([27], 4.0.8). Therefore, by (3.1.4vi) it suffices
to show that R#Zoma, (Ko, Ao(d)) is trivialized by ({X}, L) for some £'. Replacing Ky by
its cohomology sheaves 77 z'(I?O), and hence by their JH components, we see that all the
(R omy, (Ko, Ao(d)))’s are trivialized by ({X}, £'), where £ is a tensor-closed hull of
{Ao(1), LY|L € L}. Here LY = S omn, (L, \o). O

Next we prove the main result of this chapter.

Theorem 3.2.4. Let f : X — Y be a morphism of S-algebraic stacks. Then the operations
fo £ £ f, Dy, — @F — and R om(—,—) all preserve stratifiability, namely, they induce
functors

for DI(X,Qp) — DIV, Q),  fie DITHX, Q) — DY, Qy),
foDEY,Q) — DI(X,Q),  f DY, Q) — DX, Qy),
D : DF™(X, Q) — D™ (X, Q,)™,
@ : D7 (X, Q) x DX, Q) — D7*"™(X,Q,) and
RAom(—, =) : D5"(X, Q) x DI (X, Q) — DF"(X, Q).

Proof. Tt suffices to show stability of DI*"#(— A), for every finite extension A of Zj.

We consider the Verdier dual functor D first. Let P : X — X be a presentation. Since
P*D = DP', by (3.2.2ii) we can assume X = X is a scheme. Let K be a complex on X
trivialized by (7, £). Let S’ C S be a non-empty open affine regular subscheme. It is clear
that S’ satisfies the condition (LO). Let X C X be the inverse image of S’ in X. Refining
if necessary, we may assume all strata in . are connected and smooth over S, and are
contained in either Xg or X — Xg/. Let j : U — X be the immersion of an open stratum in
- which is contained in Xg/, with complement ¢ : Z — X. Consider the exact triangle

i:Dz(K|z) — DxK — j.Dy(Kl|y) —

Since U is connected and smooth over S’; by (3.2.3iii) we see that Dy (K|y) is trivialized by
({U}, L) for some L, so j.Dy(K|y) is stratifiable (3.2.31). By noetherian induction we may
assume Dy (K|y) is stratifiable, and it is clear that i, preserves stratifiability. Therefore by
(3.1.41), Dx K is stratifiable.

The case of f* (and hence f') is proved in (3.1.4ii).

Next we prove the case of @L. Fori = 1,2, let K; € D, (X, A), trivialized by (%, L;). Let
(«, L) be a common tensor closed refinement (by (3.1.3)) of (.}, £;), i = 1,2. The derived
tensor product K; @ K, is defined to be the image in D.(X,A) of K, %, K, which we
claim to be stratifiable. By ([27], 3.0.10) it is normalized, so it suffices to show (by (3.1.4vi))
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that K 10 ®F, f?2,0 is trivialized by (., £). This follows from the spectral sequence

P V(AR p) @rg H(Kop)) = APH(Ky o % Kop)

+j=q

and the assumption that (., L) is tensor closed.

The case of R#om(Ky, K) = D(K; @ DK>) follows.

Finally we prove the case of f, and f,. Let f: X — ) be an S-morphism, and let K be
a bounded above stratifiable complex on X, trivialized by a tensor closed pair (., L). We
want to show fiK is stratifiable. Let j : U/ — X be the immersion of an open stratum in .#,
with complement i : Z — X. From the exact triangle

(Fj*K — fK — (fi)i* K —

we see that it suffices to prove the claim for fj and fi. By noetherian induction we can
replace X by U. By (3.2.2ii) and smooth base change ([27], 12.1), we can replace ) by a
presentation Y, and by (3.2.2i) and (]27], 12.3) we can shrink Y to an open subscheme. So
we assume that ) =Y is a smooth affine S-scheme, that K is trivialized by ({X'}, £), and
that the relative inertia stack Z; := X XA xx,x.a X is flat and has components over X" ([3],

5.1.14). Therefore by ([3], 5.1.13), f factors as X % Z Y, where g is gerbe-like and h
is representable (cf. ([3], 5.1.3-5.1.6) for relevant notions). So we reduce to two cases: f is
representable, or f is gerbe-like.

Case when f is representable. By shrinking the S-algebraic space X we can assume
X = X is a connected scheme, smooth over an affine open regular subscheme S’ C S.
By (3.2.3iii) we see that DK is trivialized by some ({X}, L), and by (3.2.31), f,DK is
stratifiable. Therefore fiK = Df,DK is also stratifiable.

Case when f is gerbe-like. In this case f is smooth ([3], 5.1.5), hence étale locally on
Y it has a section. Replacing Y by an étale cover, we may assume that f is a neutral gerbe,
so f: B(G/Y) — Y is the structural map, for some flat group space G of finite type over
Y ([25], 3.21). By ([3], 5.1.1) and (3.2.2i) we may assume G is a Y-group scheme. Next we
reduce to the case when G is smooth over Y.

Let k(Y) be the function field of Y and k(Y) an algebraic closure. Then Gy o4 is

smooth over k(Y), so there exists a finite extension L over k(Y") such that G, ,eq is smooth
over L. Let Y’ be the normalization of Y in L, which is a scheme of finite type over S, and
the natural map Y/ — Y is finite surjective. It factors through Y’ — Z — Y, where Z is the
normalization of Y in the separable closure of k(Y) in L = k(Y'). So Z — Y is generically
étale, and Y’ — Z is purely inseparable, hence a universal homeomorphism, so Y’ and Z
have equivalent étale sites. Replacing Y’ by Z and shrinking Y we can assume Y’ — Y is
finite étale. Replacing Y by Y’ (by (3.2.2ii)) we assume Gyeq over Y has smooth generic
fiber, and by shrinking Y we assume G,¢q is smooth over Y.

Ghed 18 & subgroup scheme of G ([12], VI, 0.2). h: Gieq — G is a closed immersion, so
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Bh : B(Gyea/Y ) — B(G/Y) is faithful and hence representable. It is also radicial: consider
the diagram where the square is 2-Cartesian

Y(—Z> G/Gred 9 Y

| |

B(Grea/Y) 5= B(G/Y).

The map ¢ is a nilpotent closed embedding, so ¢ is radicial. Since P is flat and surjective,
Bh is also radicial. This shows that

(Bh)": D (B(G/Y),A) = D (B(Grea/Y), )

is an equivalence of categories. Replacing G by G,.q we assume G is smooth over Y, and
hence P :Y — B(G/Y) is a presentation.

Shrinking Y we can assume that the relative dimension of G over Y is a constant, say d.
Consider the associated smooth hypercover, and let f; : G* — Y be the structural map. To
show f,K is stratifiable is equivalent to showing D fiK = f,DK is stratifiable. By (3.2.3iii),
we see that DK is also trivialized by a pair of the form ({X'}, £’), so replacing K by DK, it
suffices to show that f,K is stratifiable, where K € DI (X, A) is trivialized by ({X'}, £) for
some L. As in the proof of (3.2.3i), it suffices to show the existence of a pair (%, Ly) on Y
that trivializes R" f,L, for all L € £ and n € Z.

From the spectral sequence ([27], 10.0.9)

BY = Rif.f;P"L = R f,L,

we see that it suffices for the pair (A, Ly) to trivialize all the EY terms. Assume i > 1. If
we regard the map f; : G — Y as the product map

1n:1le-11v
where the products are fiber products over Y, then we can write fP*L as
fiP* LR, Ag Ry -+ KA.
By Kiinneth formula ([27], 11.0.14) we have
fisfi PPL = frofi P*L @5, frefho ®F, -+ @K, f1o.

Since fi.ff P*L and f1.A\ are bounded complexes, there exists a tensor closed pair (-#y, Ly)
that trivializes them, for all L € L. The proof is finished. O]
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Finally we give a lemma which will be used in the next chapter. This will play the same
role as ([3], 6.3.16).

Lemma 3.2.5. Let X be a connected variety over an algebraically closed field k of character-
istic not equal to £, and let L be a finite set of isomorphism classes of simple lcc Ag-sheaves
on X. Then there exists an integer d (depending only on L) such that, for every lisse A-adic
sheaf F on X trivialized by L, and for every integer i, we have

dimg Hé(X, F Q) F) <d-rankg(F @, E),
where E is the fraction field of A.

Proof. Since L is finite and 0 < ¢ < 2dim X, there exists an integer d > 0 such that
dimy, H:(X, L) < d-ranky, L, for every ¢ and every L € L. For a short exact sequence of lcc
Ag-sheaves

0 =9 —9—=9"—0

on X, the cohomological sequence
- —=H(X,9")—H(X,9)— H(X,9") —---

implies that dimy, H:(X,¥) < dimpy, HY(X,9') + dimp, H{(X,9"). So it is clear that if ¥
is trivialized by £, then dimy, H/(X,¥) < d - rank,,¥, for every i.

Since we only consider .# ®, E, we may assume .# = (%,), is torsion-free, of some
constant rank over A (since X is connected), and this A-rank is equal to

ranky, .%o = rankg(F @\ E).

Hi(X,.Z) is a finitely generated A-module ([16], VI, 2.2.2), so by Nakayama’s lemma, the
minimal number of generators is at most dimy,(Ag ®x H!(X,.%)). Similar to ordinary coho-
mology groups ([29], 19.2), we have an injection

AO XA Hé(Xa‘gZ) — Hé(XayO)

of Ag-vector spaces. Therefore, dimp H!(X,.7 ®, E) is less than or equal to the minimal
number of generators of H:(X,.%) over A, which is at most

dimy, (Ag @ HA(X,.F)) < dimy, H.(X, %) < d -ranky, % = d - rankp(.F @, EF).
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Chapter 4

Convergent complexes, finiteness and
trace formula.

We return to F,-algebraic stacks Zg, %, - - - of finite type. A complex Ky € W (25, Q)
is said to be stratifiable if K on 2 is stratifiable, and we denote by W**( 25, Q,) the full
subcategory of such complexes. Note that if K is a lisse-étale complex, and it is stratifiable
on %y, then it is geometrically stratifiable (i.e. K on 2 is stratifiable). In turns out that in
order for the trace formula to hold, it suffices to make this weaker assumption of geometric
stratifiability. So we will only discuss stratifiable Weil complexes. Again, by a sheaf we mean

a Weil Q,-sheaf.

4.1 Convergent complexes.

Definition 4.1.1. (i) Let K € D.(Q,) and ¢ : K — K an endomorphism. The pair (K, )
is said to be an t-convergent complex (or just a convergent complex, since we fized ¢) if the
complex series in two directions

neZ H™

) DD D
(K),H" ()

is convergent, for every real number s > 0. In this case let Tr(p, K) be the absolutely con-
vergent complex series
D (=D)MTe(H" (), H'(K))
or its limat. B
(11) Let Koy € W~ (Z0,Qy). We call Ky an t-convergent complex of sheaves (or just a
convergent complex of sheaves), if for every integer v > 1 and every point x € Zo(Fyp), the
pair (Kz, Fy) is a convergent complex. In particular, all bounded complezes are convergent.
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(i4i) Let Ko € W~ (20, Qy) be a convergent complex of sheaves. Define

1
cy(Zo, Ko) = Z #Au—Tr(Fx,Kf) € C,

and define the L-series of Ky to be the formal power series

v
L(‘%E)a K()?t) = €xXp (ch(%7K0);

v>1

) el

The zeta function Z(2,t) in (1.0.2) is a special case: Z(20,t) = L(20,Q,,t). It has
rational coefficients.

Notation 4.1.1.1. We sometimes write co(Kp) for ¢,(Zo, Ky), if it is clear that Ky is on
Zo. We also write ¢,(Zp) for ¢,(Zo, Q).

Remark 4.1.1.2. (i) Behrend defined convergent complexes with respect to arithmetic
Frobenius elements ([3], 6.2.3), and our definition is for geometric Frobenius, and it is essen-
tially the same as Behrend’s definition. It is a little more general though, in the sense that
we fixed an (arbitrary) isomorphism ¢ : Q, — C and work with ¢-mixed Weil sheaves (in fact
all Weil sheaves, by (2.2.5.1)), while [3] works with pure or mixed lisse-étale sheaves with
integer weights. Also our definition is a little different from that in [33]; the condition there
is weaker.

(ii) Recall that Aut, is defined to be the fiber over x of the inertia stack % — Zj. It is
a group scheme of finite type ([25], 4.2) over k(z), so Aut,(k(x)) is a finite group.

(iii) If we have the following commutative diagram

Spec Fua — Spec Fgo

N

2o,

then (Kz, F}) is convergent if and only if (K57, F,v) is convergent, because F,, = F¢ and
s+ sd : R”? — R>Y is a bijection. In particular, for a lisse-étale complex of sheaves, the
property of being a convergent complex is independent of ¢ and the structural morphism
Zo — Spec F,. Also note that, for every integer v > 1, a complex K, on 2 is convergent
if and only if Ky ® Fpr on 2y ® Fype is convergent.

We restate the main theorem in [3] using compactly supported cohomology as follows. It
generalizes (1.0.1). We will prove this theorem in this chapter.

Theorem 4.1.2. Let f : Zo — % be a morphism of Fy-algebraic stacks, and let Ko €
W, st (24, Qy) be a convergent complex of sheaves. Then
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(i) (Finiteness) fiKy is a convergent complex of sheaves on %, and
(i) (Trace formula) ¢,(Zo, Ko) = ¢o(%, 1Ko) for every integer v > 1.

Before proving this theorem, we give a few preliminary lemmas and prove a few special
cases.

Lemma 4.1.3. Let
K'— K — K" — K'[1]

so’i %ﬂl icp” ©'[1]

|
K’ K K" K'[1]

be an endomorphism of an exact triangle K' — K — K" — K'[1] in D7 (Q,). If any two of
the three pairs (K',¢"), (K", ¢") and (K, @) are convergent, then so is the third, and

Tr(p, K) = Tr(¢', K') + Tr(", K").

Proof. By the rotation axiom we can assume (K’, ¢') and (K", ") are convergent. From the
exact sequence

oo = HY(K') — HY(K) — H"(K") —= H"™ (K" —> - -

we see that

Yoodalr< D el Y0 ol

HnK Hn ]{/7 / H’n I(//7 2
P ® ®

for every real s > 0, so (K, ) is convergent.
Since the series Y ., (=1)" > Hn (k) LU CONVETgES absolutely, we can change the order
of summation, and the second assertion is clear. O

Corollary 4.1.4. If K}, — Ky — K{ — K}[1] is an ezact triangle in W (25, Q,), and two
of the three complexes Ky, K{ and Ky are convergent complexes, then so is the third, and
co(Ko) = co(Kp) + e (7).

Proof. For every x € Zy(F ), we have an exact triangle
in D7 (Q,), equivariant under the action of F},. Then apply (4.1.3). O

Lemma 4.1.5. (4.1.2) holds for f : Spec F, — Spec F,.

Proof. We have an equivalence of triangulated categories

W~ (Spec F,,Q,) — Dc_(Rep@é(G)),
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where G is the Weil group FZ of F,. Let H be the subgroup F%, the Weil group of F .
Since f : Spec F,« — Spec I, is finite, we have fi = f,, and it is the induced-module functor

Homg, 17, (Q[G], —) : D; (Repg, (H)) — D (Repg,(G)),

which is isomorphic to the coinduced-module functor Q,[G] ®g, ) —- In particular, fiis exact
on the level of sheaves. B
Let A be a Q,-representation of H, and B = Q,[G] Qg, ] A. Let xy,--- , z,, be an ordered

basis for A with respect to which F'¢ is an upper triangular matrix

(03] * *

*
Qi
with eigenvalues oy, --- , a,,. Then B has an ordered basis
1®x1a F®.T1, ) Fd_l@ﬂjlv
1@y, F®zy, -+, F"' @ s,
1@ xm, FQapm, -+, FITl @ x,,
0 0 oy
M1 S * 1 O O
with respect to which F' is the matrix . x|, where M; = ‘
M, :
1 0

The characteristic polynomial of F on B is [[;%, (t* — o).
Let K, be a complex of sheaves on Spec F . The eigenvalues of F' on " (fiK) =
fi##"(K) are all the d-th roots of the eigenvalues of F¢ on s#"(K), so for every s > 0 we

have
DI D S
7 (K),Fd

no A(HK)F n

This shows that fiKj is a convergent complex on Spec FF, if and only if K is a convergent
complex on Spec Fq.
Next we prove
cy(Spec Fa, Koy) = c,(Spec Fy, filo)

for every v > 1. Since H"(fiK) = fiH"(K), and both sides are absolutely convergent series
so that one can change the order of summation without changing the limit, it suffices to
prove it when K = A is a single representation concentrated in degree 0. Let us review
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this classical calculation. Use the notation as above. For each i, fix a d-th root ozil /4 of Q;,
and let (4 be a primitive d-th root of unity. Then the eigenvalues of F' on B are ija; / d, for
i1=1,--- . mand k=0,---,d—1.

If d v, then Homp, (F,a,Fgv) =0, so ¢,(Spec Fya, A) = 0. On the other hand,

d—1
cy(Spec Fy, fiAd) = Te(F", B Z vk f/d Za;’/ng”k:O.
p k=0

If d|v, then Homg, (Fa,Fz) = Homg, (Fa,Fa) = Z/dZ. So

Cy(Fya, A) = dTr(F", A) = dZav/d.

On the other hand,

cy(Fy, B) = Tr(F*, B Z vk f/d Za’z‘{/d _ dZa;}/d.

i,k

Next, we consider BG), for a finite group scheme Gy over F,.

Lemma 4.1.6. Let G be a finite F,-group scheme, and let F, be a sheaf on BGy. Then
H'(BG,Z) = 0 for all v # 0, and HY(BG, %) ~ H°(BG,Z) has dimension at most
rank(F). If #y is .-mixed, then the set of weights of H)(BG,.F) is a subset of the weights
Of 90.

Proof. By ([33], 7.12-7.14) we can replace Gy by its maximal reduced closed subscheme,
and assume G is reduced, hence étale. Then Gy is the same as a finite group G(IF) with a
continuous action of Gal(F,) ([30], 7.8). We will also write G for the group G(F), if there is no
confusion. Since Spec F — B( is surjective, we see that there is no non-trivial stratification
on BG. In particular, all sheaves on BG are lisse, and they are just Q,-representations of G.

BG is quasi-finite and proper over F, with finite diagonal, so by ([33], 5.8), H.(BG, %) =
0 for all » # 0. From ([33], 5.1), we see that if .% is a sheaf on BG corresponding to the
representation V of G, then HY(BG,.%) = Vg and H°(BG, %) = VY, and there is a natural
isomorphism

UHZQ’UIVG—>VG.
geG

Therefore
h(BG, F) = dim Vg < dimV = rank(.%),

and if %, is (-mixed, then the weights of V; form a subset of the weights of V. O
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4.1.7. (i) If k is a field, by a k-algebraic group G we mean a smooth k-group scheme of finite
type. If G is connected, then it is geometrically connected ([12], V14, 2.1.1).
(ii) For a connected k-algebraic group G, let a : BG — Spec k be the structural map.
Then
a* : A-Sh(Spec k) — A-Sh(BG)

is an equivalence of categories. This is because

e BG has no non-trivial stratifications (it is covered by Spec k& which has no non-trivial
stratifications), and therefore

e any constructible A-adic sheaf on BG is lisse, given by an adic system (M,,),, of sheaves
on Spec k with G-actions, and these actions are trivial since G is connected. See ([3], 5.2.9).

(iii) Let Gy be a connected F,-algebraic group. By a theorem of Serge Lang (]23], Th.
2), every Gy-torsor over Spec F, is trivial, with automorphism group Gy, therefore

11
co(Go)  #Go(Fq)’

Recall the following theorem of Borel as in (]3], 6.1.6).

cy(BGy) =

Theorem 4.1.8. Let k be a field and G a connected k-algebraic group. Consider the Leray
spectral sequence given by the projection f : Spec k — BG,

B = H"(BGy) ® H*(Gy) = Q.

Let N° = EX* C H*(Gy) be the transgressive subspaces, for s > 1, and let N be the graded
Qg-vector space @521 N°*. We have

(a). N* =0 if s is even,

(b). the canonical map N\ N — H*(G%) is an isomorphism of graded Q,-algebras.

(c). The spectral sequence above induces an epimorphism of graded Q,-vector spaces
H*(BGy) = N[—1]. Any section induces an isomorphism

Sym*(N|[-1]) = H*(BGy).

Remark 4.1.8.1. (i) The E}*-term of the Leray spectral sequence of f should be H"(BGx, R® £.Q,),
and R*f,Q, is a constructible sheaf on BG. By (4.1.7ii), the sheaf R®f,Q, is isomorphic to
a*f*R*f,Q, = a*H*(Gy), where a : BG — Spec k is the structural map and H*(G%) is
the Gal(k)-module regarded as a sheaf on Spec k. Therefore by projection formula, E7®* =
H"(BGy) @ H*(Gy).

(ii) Since the spectral sequence converges to Q, sitting in degree 0, all E7* are zero, except
E%. For each s > 1, consider the differential map d¥; : E°) — ESH on the (s + 1)st
page. This map must be injective (resp. surjective) because it is the last possibly non-zero
map from E%* (resp. into E$T10). Therefore, it is an isomorphism. Note that N* = ngl
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is a subspace of Ey® = H*(Gy), and EZ1° is a quotient of B3™" = H**!(BGY). Using the
isomorphism dgfl we get the surjection H*™'(BGg) — N*.

4.1.8.2. Let G be a connected Fj-algebraic group of dimension d. We apply (4.1.8) to
investigate the compact support cohomology groups H(BG).

We have graded Galois-invariant subspaces N = @,.; N" C €D,~, H"(G) concentrated
in odd degrees, such that the induced map - -

AN — H*(G)

is an isomorphism, and H*(BG) = Sym*N[—1]. Let n, = dim N, and let v,1,- -+ , v, be a
basis for N" with respect to which the Frobenius acting on N” is upper triangular

(o791 * *
*
A,
with eigenvalues a1, - - , Q. By ([9], 3.3.5), the weights of H"(G) are > 7, so || > ¢"/% >

1. We have . _
H*(BG) = Sym™Q,(vj;|for all 4, j) = Qy[vy;],

with deg(v;;) =i+ 1. Note that all i + 1 are even. In particular, H*~'(BG) = 0 and

H?(BG) = {homogeneous polynomials of degree 2r in v;;}

— @AH v Z mg;(i + 1) = 2r).
2% 2%

With respect to an appropriate order of the basis, the matrix representing F' acting on
H?"(BG) is upper triangular, with eigenvalues

H ag?, for Z mgj(i+ 1) = 2r.
2% 4,3

By Poincaré duality, the eigenvalues of F acting on H;*~2¢(BG) are q~¢ I, ai_jm”, for
tuples of non-negative integers (m;;); ; such that >, ;m;;(i+1) = 2r. Therefore the reciprocal
characteristic polynomial of F' on H*~24(BGq) is

P72T72d(3007 t) = H (1 — qid H Oé;m” . t)
1,J

mij 20
22,5 mij(i+1)=2r
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4.2 Finiteness theorem: Proof of (4.1.2i).

In the following two lemmas we prove two key cases of (4.1.21).

Lemma 4.2.1. Let Gy be an F,-group scheme of finite type. Then (4.1.2i) holds for the
structural map f : BGy — Spec F,.

Proof. In fact, we will show that (4.1.2i) holds for all convergent complexes K, € W~ (BGy, Q,),
without assuming it is -mixed or stratifiable.

By ([33], 7.12-7.14) we may assume Gy is reduced, and hence smooth. Let GY be the
identity component of GGy and consider the exact sequence of algebraic groups

14>G84>G()4>7T0<G0)4>1.

The fibers of the induced map BGy — Bmy(Gp) are isomorphic to BGY, so we reduce to
prove two cases: Gy is finite étale (or even a finite constant group scheme, by (4.1.1.2iii)),
or GGy is connected and smooth.

Case of G finite constant. Let G¢/F, be the finite constant group scheme associated
with a finite group G, and let Ky € W (BGy, Q,). Again we denote by G both the group
scheme Gy ® F and the finite group Go(IF), if no confusion arises. Let y be the unique point
in Spec F,

BG —— BGj

d

Spec F - Spec F,.

Then D7 (BG,Q,) is equivalent to D_ (Repg,(G)), and the functor
(fy)! . DC_(BG/]Fa@Z) B Dc_(spec ]Fv@é)
is identified with the coinvariance functor
()a : D (Repg, (G)) — D, (Qy),

which is exact on the level of modules, since the category Rep@Z(G) is semisimple. So
(fiKo)y = (fyh K = K¢ and 5" (Kg) = A" (K)qg. Therefore

Yo lalf< Y laP

A ((fgh K),F H(K),F

for every n € Z and s > 0. Therefore, if K is a convergent complex, so is fKj.
Case of (G; smooth and connected. In this case

f*: Q,-Sh(Spec F,) — Q,-Sh(BG)
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is an equivalence of categories (4.1.7ii). Let d = dim Gy, and let %, be a sheaf on BG),
corresponding to a representation V' of the Weil group W (IF,), with 5y, - - - , 3, as eigenvalues
of F. By the projection formula ([27], 9.1.i)) we have H}(BG,%#) ~ H!(BG) ® V, and by
(4.1.8.2) the eigenvalues of F' on H;*~24(BG) @ V are (using the notation in (4.1.8.2))

—d —Myj
q ﬂk H aij )
i,J

for k=1,---,m and tuples (m;;) such that >, -m;;(i + 1) = 2r. For every s > 0,

2. 2 lal'= Zq_dSW’ H|O‘_m” (ilﬁk Zq_dSH|az| e

n€Z H2(BG)QV,F mij,k k=1 o

which converges to
E | 8| ) | | —_
( L ||~

since |a;;|® < 1 and the product above is taken over finitely many indices.

Let Ky be a convergent complex on BGy, and for each k € Z, let Vj, be a W (F,)-module
corresponding to #* K. For every & € BG((F,) (for instance the trivial Go-torsor), the pair
(HF(K)z, F,) is isomorphic to (V}, F'). Consider the W (F,)-equivariant spectral sequence

H'(BG, #"*(K)) = H'™(BG, K).

We have
) Z WSZ > > laPf=3 > o
nez n(BG,K), n€Z r+k=n  H?(BG,/*K),F rk€Z  HI(BG)QVy,F
IS ST S RO e
keZ rez 7(BG)®Vj,F kez v
1
L T Tl
keZ Vi, F K

where the first factor is convergent by assumption, and the product in the second factor is
taken over finitely many indices. This shows that fi K is a convergent complex. O]

Let ) be a finite subextension of Q,/Q, with ring of integers A and residue field A,
and let (., L) be a pair on 2~ defined by simple lcc Ag-sheaves on strata. A complex
Ko € W(Zp,Qy) is said to be (7, L£)-stratifiable (or trivialized by (., L)), if K is defined
over F), with an integral model over A trivialized by (., L).
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Lemma 4.2.2. Let Xo/F, be a geometrically connected variety, Ey a finite subextension
of Q;/Qq with ring of integers A, and let L be a finite set of simple lcc Ag-sheaves on X.
Then (4.1.2i) holds for the structural map f : Xo — Spec Fy and all lisse .-mized convergent
complexes Ky on Xq that are trivialized by ({X}, £).

Proof. Let N = dim X,. From the spectral sequence

E* = H'(X, #"K) — H ™ (X, K)

we see that
S S S
> > ol <D > ) ol = ) ) laf®,
n€Z  H»(X,K),F n€Z  r+k=n  HI (X, #*K),F 0<r<2N  HI (X #*K)F

“kez

therefore it suffices to show that, for each 0 < r < 2N, the series }°) 7 > pr(x srre) p [0
converges.

Let d be the number in (3.2.5) for £. Each cohomology sheaf 77" K is (-mixed and lisse
on X, so by (2.2.31) we have the decomposition

H"Ky = @ (A" Ko)(b)

beR/Z

according to the weights mod Z, defined over F) (2.2.3.1ii). For each coset b, we choose a rep-
resentative by € b, and take a b; € Q, such that wy(b;) = —by. Then the sheaf (2" K) (b))
deduced by torsion is lisse with integer punctual weights. Let W be the filtration by punctual
weights (2.2.3ii) of (" K)(b)®). For every v > 1 and z € Xo(F,), and every real s > 0,

we have
SRS SINTEED S SR

neL (eyanO)j7Fz bne% (/f"Ko = Fx
€R

= > Yo /P

nEL (A Ko)(b)PV Py

bER/Z

— Z grs/? Z laf*/
ikl KB F

= > Py 3 ]/
beR /2 i€ Gl (Ko () ))w e

= Z ghos/? Z g rank(GriW((f%””Ko)(b)(bl))),

nez i€Z
beR/Z
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Since K is a convergent complex, this series is convergent.

For each n € Z, every direct summand (" Ky)(b) of " K, is trivialized by ({X}, £).
The filtration W of each (" Ky)(b)®) gives a filtration of (22" K,)(b) (also denoted W)
by twisting back, and it is clear that this latter filtration is defined over E),. We have
Gr}¥ (A" Kp) (b)) = (Gr}Y (A" Ky)(b))®) | and each Gr}¥ ((A"K,)(b)) is trivialized by
({X}, L£). By (3.2.5),

hi(X, G (o7 K) (0)™)) = hi(X, Gr}” (" K) (b)) ([27], 9.11)
< d - rank(Cr}” ((#"K)(b)))
= d - rank(GrV (" K) (b)),

Therefore
Z Z ‘O"s = Z Z ‘als
ne€Z  Hr(X,#"K), neZ HE(X,(nK) (b)), F
bER/Z
=2 . b
=2 MY S
bgﬁ%z €2 Hp(X,GrV (4" K)(b)*1)),F
< Z ghos/? Zq(m)s/z CRI(X, GV (27K (0)PV))
nez i€Z
bER/Z
< qrs/2d Z qbos/2 Z qi8/2 . rank(GrZV((%nK)(b)(bl))),
nez icZ
beR/Z
and it converges. -

Now we prove (4.1.21) in general.

Proof. We may assume all stacks involved are reduced. From (2.2.8) and (3.2.4) we know
that fiKo € W= (%, Q).

Let y : Spec Fa — % be an F,-morphism, and we want to show that ((f1Ko)g, Fy) is a
convergent complex. Since the property of being convergent depends only on the cohomology
sheaves, by ([27], 12.5.3) we reduce to the case when %, = Spec F . Replacing ¢ by ¢%, we
may assume d = 1. By (4.1.1.2iii) we only need to show that (R['.(2", K), F') is convergent.

If j : % — Zp is an open substack with complement i : Z) — %2, then we have an
exact triangle

317 Ko — Ko —1,0" Ko —
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in W; (20, Q,), which induces an exact triangle
ch(%a ]*KO) e ch(%7 KO) e RFC(QP(M Z*KO) e

in W~ (Spec F,,Q,). So by (4.1.4) and noetherian induction, it suffices to prove (4.1.2i) for
a nonempty open substack. By ([3], 5.1.14) we may assume that the inertia stack .#, is flat
over Zy. Then we can form the rigidification 7 : 25 — X, with respect to .#, ([34], §1.5),
where X is an F,-algebraic space of quasi-compact diagonal. X, contains an open dense
subscheme ([21], II, 6.7). Replacing 2 by the inverse image of this scheme, we can assume
Xy is a scheme.

If (4.1.21) holds for two composable morphisms f and g, then it holds for their compo-
sition g o f. Since RI'.(Z0, —) = RI.(Xy,—) o m, we reduce to prove (4.1.2i) for these two
morphisms. For every x € X(F,v), the fiber of m over x is a gerbe over Spec k(x). Extending
the base k(x) (4.1.1.2iii) one can assume it is a neutral gerbe (in fact all gerbes over a finite
field are neutral; see ([3], 6.4.2)). This means the following diagram is 2-Cartesian:

BAut, — 2,

.

Spec Fpo 5 X,.

So we reduce to two cases: 2y = BG for an algebraic group Go/F,, or Zy = X is an
[F,~scheme. The first case is proved in (4.2.1).

For the second case, given a convergent complex K, € W% (X, Q,), defined over some
E\ with ring of integers A, and trivialized by a pair (., £) (£ being defined over Aj) on X,
we can refine this pair so that every stratum is connected, and replace Xy by models of the
strata over some finite extension of I, (4.1.1.2iii). This is proved in (4.2.2). O

4.3 Trace formula for stacks.

4.3.1. Before proving (4.1.2ii), we give some notations that will be used in this section.

For a finite étale F,-scheme X, we will denote by X both the scheme X, ® F and the
finite set Xo(IF), with the map Fx,(F) = ox,(F) on it written as ox : X — X, if there is no
confusion. N

Every action of the group Z on a finite set X is continuous (since any subgroup of finite
index in 2, for instance the kernel of Z — Aut(X), is open). By descent theory (for instance
([30], 7.8)), the functor

XO = (X , 0 X)

is an equivalence from the category FEt/F, (resp. Gp(FEt/F,)) of finite étale F,-schemes
(resp. finite étale F,-group schemes) to the category of finite sets with a Z-action (resp.
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finite groups with a Z-action by group homomorphisms), which is equivalent to the category
FSet? (resp. FGp?) of pairs (X, o), where X is a finite set (resp. a finite group) and o is a
permutation (resp. a group automorphism) on X.

Lemma 4.3.2. Let Gy be an Fy-group scheme. Then Fg, : Go — Gq is a homomorphism
of group schemes, and the induced morphism BFg, : BGy — BGq is 2-isomorphic to the
morphism Fpg, : BGy — BGY.

Proof. For any F,-scheme T and any g € Go(T'), we have a commutative diagram

T*g>G0
FT\L ; J/FGO
T4>G0.

So Fo(T)(g) := Fg,09 = go Fr =: Go(Fr)(g), and Fg,(T) is a group homomorphism, since
Go(Fr) is. This shows that Fi, is a homomorphism of group schemes.

Next we compare BFg, with Fg,. Let a € BGo(T) correspond to the Go-torsor P - T
over T with Gy-action

P x5, Go—"= P xp (T xp, Go) —2ton
prll \ /
P

Then (BFg,)(T)(a) is the Gy-torsor
P x%Fe Gy — T,
and Fpg,(T)(a) is the fiber product

P XT.Fr T*>P

b

T T.

T

We shall define a natural map of Gy-torsors
P x%Fa0 Gy — P xpp, T,

which will automatically be an isomorphism. By the universal property of the pushed forward
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torsor, it suffices to define a Gy-equivariant map P — P X g, T. Define it to be (Fp,a) :
Fp

PZ —(Fpa)- =P XT Fr T Bry

\ \Lprg . i

T T.

Note that it is functorial in 7" and P. The Gg-equivariance of this map is equivalent to the
commutativity of the following diagram

P x GO action P
(FPya)XFGOl/ \L(FP,G)

(P XT,FT T) X GO%P XT,FT T,

which can be verified on the two factors of P xp g, T
The commutativities of
P x GO action J2
) k
a

P T

and
Fp,a)xF action
PXGO( Pa)xFoy (P X T Fr T)XGO%P XT,FTT

iprl prs |

P T,

a

shows the commutativity when projected to the second factor 7', and the commutativities of

i Fp,a
P % GO action P ( ) P XT,FT T
Fp XFGO \L Fp

P x GO action p
(since the action of Gy on P is defined over IF, and Fp X Fg, = Fpyg,) and

(Fp,a)xFg,

PXGO G()X(P XT7FTT)LM>P XT,FTT

pr pr
m l 13 i 1

PXGO P,

action
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gives the commutativity when projected to the first factor P. This finishes the proof that
BFg, = Fpg,- O

We prove two special cases of (4.1.2ii) in the following two lemmas.

Proposition 4.3.3. Let Gy be a finite étale group scheme over Fy, and %y a sheaf on BGY.
Then
Cl(BGo, ﬂo) = cl(SpeC Fq, RFC(BG(), ﬂo))

Proof. This is a special case of ([33], 8.6), on correspondences given by group homomor-
phisms, due to Olsson. For the reader’s convenience, we apply Olsson’s idea and prove it
again.

Let (G,0) € FGp? correspond to Gy. Let o € BGy(F,) correspond to the trivial Gy-
torsor on Spec F,. Let V = %z, be the representation of GG corresponding to the sheaf .#
on BG, and let 7 : V' — V be the map F,,, which gives a W (F,)-module structure on V.
The action of G on V is semi-linear for the action of W(F,), i.e. if p : G — GL(V) is the
G-action, then

7(p(g) - v) = plog) - 7(v), for g€ G, veEV.

In particular, 7(V¢) C V¢ By (4.1.6) we see that H)(BG,Z) = Vg = V¢ is a W(F,)-
submodule of V, and 7|y, is just the global Frobenius action F. So

c1(Spec Fy, RT'.(BGy, %)) = Tr(7|v,, Va).

To compute ¢1(BGy, %), we shall realize the groupoid of rational points BGy(F,) as the
F-points of the fixed point stack. Let Fix(Bo) be the fixed point stack of the endomorphism
Bo on BG ([33], 1.4), i.e. the 2-fiber product over F :

Fix(Bo) —— BG

\L l(l,Bo‘)

BG —2~ BG x BG.

Lemma 4.3.3.1. There is a natural equivalence of groupoids BGy(F,) — Fix(Bo)(IF).

Proof. The groupoid BGy(IF,) consists of Go-torsors over Spec F, and isomorphisms between
them. The groupoid Fix(Bo)(F) has pairs (P, u) as objects, where P is a G-torsor over
Spec F (which can be identified with a set-theoretic torsor) and u : P — Bo(P) is an
isomorphism of G-torsors, with morphisms of torsors compatible with p.

Bo(P) = P x%° @, the G-torsor with underlying set the quotient of P x G by the
equivalence relation (p,h) ~ (pg~',a(g)h), and the G-action given by (p, h)g = (p, hg). It is
isomorphic to the G-torsor P? with underlying set P and G-action p * g = po~1(g), via the
isomorphism

[p,h] = pxh: P x%° G— P,
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which is easily verified to be well-defined.

Define the functor BGy(F,) — Fix(Bo)(F) as follows. Given a Go-torsor P, let P be
the G-torsor on Spec [F obtained by base extension, regarded as a set-theoretic torsor, and
define 1 : P — P to be u(p) = op' (p). Since the action of Gy on Py is defined over F,, the
diagram

Px G- p
UPXUG\L op

P x G action P

commutes, and so p is G-equivariant:

1(pg) = op' (pg) = op' (P)o(g) = 05" (p) * g = pu(p) * g.

If fo: By — P} is an isomorphism of G-torsors, the commutativity of

R

Fp, J/ iné

PP

gives the commutativity of
p—l—p
H u
]
P —— p7,

This defines a functor BGy(F,) — Fix(Bo)(F). We will show that it is fully faithful and
essentially surjective.

Let Py and P} € BGy(F,), with images (P, ) and (P’, y') € Fix(Bo)(F). Then the Hom
set Hompe,r,)(Fo, Fy) consists of morphisms fy : Py — P of F,-schemes such that the
diagrams

ti
PO % GO action PO

hxll iﬁ

P! x — P
0 GO action 0

commute. This Hom set is in natural bijection with the set of F,-morphisms f; such that
the diagrams of finite sets

P % G action J2

fxli lf

P'xG——P

action



ol

commute, because the functor

forget

FEt/F, —— FSet” — FSet
sending X, — X is faithful. Hence it is in natural bijection with the set of G-torsor homo-
morphisms f : P — P’ such that
f P
S

Po’ > P/O'

fO'

commutes. This set is Hompix o)) ((P; ), (P, 1t')). Therefore, the functor is fully faithful.
Given a set-theoretic G-torsor P with an isomorphism p : P — P of G-torsors, we
regard p as a permutation of the finite set P such that u(pg) = u(p)o=t(g), forp € P, g € G.
By descent theory, the pair (P, ') descends to a (unique up to isomorphism) finite étale
F,-scheme F,. We will show that the G-torsor structure on P also descends to a G-torsor
structure on F.
The condition p(pg) = u(p)o—t(g) is equivalent to the commutativity of the diagram

P % G action P

O’pXUl/ \LO’p

PxG——P,
action

since op is identified with !, This implies that the action map
PxG—P

descends to an [Fy-morphism
Py xp, Go — P,.

The facts that this defines an action of Gy on P, and that this action makes P, into a
Go-torsor over Spec F,, i.e. the commutativity of certain diagrams and the fact that

(pry, action) : By xg, Go — Py xr, Fo

is an isomorphism, can be easily verified in FSet?. This shows the essential surjectivity of
the functor BGy(F,) — Fix(Bo)(IF). O

Let (P,u) € Fix(Bo)(F). Then P is always a trivial torsor, and let us take a section
e € P. Then p is determined by some g € G such that p(e) = e * g. If we choose another



52

section eh € P, then

p(eh) = p(e) * h = e x (gh) = (eh)h"'a~"(gh)
= (eh)o ™ (a(h™")gh) = (eh) * (a(h™")gh).

This shows the category Fix(Bo)(F) is equivalent to the quotient G//p™), where pV) is the
right action of G on G given by h : g — o(h™1)gh. Here we regard the quotient G/pV), or
more accurately, the action p(!)| as a groupoid whose objects are elements in G and

Hom(g1, 95) = {h € G|p" (h)(g1) = g2}

See ([33], 7.9, 7.10).

Fix an element g € G. Its orbit [g] in the quotient G/p(V) determines a pair (P,, i1,) €
Fix(Bo)(F), where P, = G is the trivial G-torsor with right multiplication action, e € G is
the identity element, and p,(e) = ex g = pu'(g). Let z, € BGy(F,) be the corresponding
rational point, determined up to isomorphism. Note that . is the trivial torsor zy € BG(F,)
we had before.

Let us denote by .#, the stalk of .%; at the geometric point z,, with the local Frobenius
automorphism F, . Then we claim that the eigenvalues of F, on F, are the same as that
of Tg on V (recall that V := %3, and 7 := F,).

The map F,, : #, — Z, is induced by the 2-isomorphism

Spec F _d. Spec F

BdG BG.

Bo
The automorphism group of the trivial torsor P, is (G, so g gives a 2-isomorphism
Zo
Spec F T BG.
~——e T

Zo

Regard the identity map G — G as a fixed isomorphism A : P, — P, of trivial G-torsors.
This is a 2-isomorphism

Spec F W\A BG.
T

Zo
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Since p. = o1, the following diagram of G-torsors commutes:

I
‘9>Pg0

S

g
P.—>P,——~P7.

This means the following two composite 2-isomorphisms are the same:

Spec F .y Spec F = Spec F .y Spec F
T T Ay
BG ——— BG BG —%— BG.

Conjugate matrices have the same eigenvalues, so by pulling back along these 2-isomorphisms,
we conclude that the eigenvalues of F,, on .#, are the same as the eigenvalues of 7g on V.

In particular,
Tr(F,,, #y) = Tr(1g, V).

We have
1(BGo, Fo) = Z T (e, Fx) = = Z —— r(F,,, Fy)
seionE,y Tt (Fo) #G St #Stab(g)
1 1
=g > HODTH(E, Fy) = 2= Ti(F,, F)
l9leG/p™) geG
1 1
= —ZTI"(TQ, V)="Tr(ro Zg’ V).
#G poere #G =

Consider the map

vrzizg: V—V.

geG

Its image is V¢, and the natural inclusion V¢ < V gives a splitting of the surjection
v:V = VY soV =V%@W and with this identification, 7 is the projection to V¢ followed
by the inclusion. Since 7 preserves V¢, the map 7oy : V — V can be written as the block

matrix
T|VG 0
0 0

with respect to the decomposition V = V¢ @ W. Its trace is obviously equal to Tr(7|ye, V).
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This shows
Cl(BGo, 320) = cl(Spec Fq, RFC(BG(), 320))

]

Proposition 4.3.4. Let Gy be a connected F,-algebraic group, and let %, be a sheaf on
BGqy. Then
Cl(BGo, 90) = cl(Spec Fq, RPC(BG(), Lg})))

Proof. Let f: BGy — Spec F, be the structural map and d = dim Gy. By (4.1.7ii), the sheaf
Fy on BGy takes the form f*V, for some sheaf V' on Spec F,. By (4.1.7iii), we have

o 7y - D V)
Cl(BG07L¢0) — #T(]Fq)Tr(Fz’Jf) - #GO(]Fq) .

By the projection formula we have H(BG, . #) ~ H(BG) ® V, so
T(F, H'(BG, 7)) = Tv(F, H*(BG)) - Te(F, V).
Then

c1(Spec Fy, RTo(BGo, %)) = » (—1)"Tx(F, H!(BG, %))

n

=Te(F.V) Y (-1)"Tx(F, H (BG)),

n

so we can assume .%, = Q,. Using the notations in (4.1.8.2) we have

> (-1)"Tn(F,H(BG)) = Y Te(F.H”"(BG)= > ¢ H a;"

! =0 S i (i+1)=2r
m;; >0
mi;>0 iy i
=¢']] L
1] — of.l
Z7‘7 ZJ
It remains to show
i7j
In (4.1.8.2), we saw that if each N’ has an ordered basis v;1,- -+ , vy, with respect to

which F is upper triangular, then since H*(G) = A N, H'(G) has basis

Viggy N Viggo N = N Vi
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such that >>" i, =i, i, < i,41, and if 4, = 4,44, then j, < j41. The eigenvalues of F
on HY(G) are ay,j, - - - a,,j, for such indices. By Poincaré duality, the eigenvalues of F' on
H*=(G) are ¢*(yyj, - - @i, j,,) . Note that all the i, are odd, so

2d—i=i=) i,=m mod 2.

r=1

Applying the classical trace formula to Gy, we have
#Go(F,) = Y (~1)"g"ar, arly, = qu (1= a3,

This finishes the proof. O
4.3.4.1. Note that, in (4.3.3) and (4.3.4) we did not assume the sheaf .%; to be (-mixed.

Now we prove (4.1.2ii) in general.

Proof. Since ¢,(Z0, Ko) = c1(Zo @ Fp, Ko @ Fv), we can assume v = 1. We shall reduce to
proving (4.1.2ii) for all fibers of f over F,-points of %, following the idea of Behrend ([3],
6.4.9).

Let y € %(F,) and (%), the fiber over y. Then (Z£y),(F,) is the groupoid of pairs
(x,a), where z € Zy(F,) and o : f(x) — y is an isomorphism in % (F,). Fix an z € Z,(F,)
such that f(z) = y over F,, then Isom(f(z),y)(F,) is a trivial left Aut,(F,)-torsor. There
is also a natural right action of Aut,(F,) on Isom(f(x),y)(F,), namely ¢ € Aut,(F,) takes
a to ao f(p). Under this action, for o and ' to be in the same orbit, there should be a
¢ € Aut,(F,) such that the diagram

fla) L2
)

L f(@)
e

commutes, and this is the definition for (z, @) to be isomorphic to (z, ') in (Z),(F,). So
the set of orbits Isom(f(z),y)(F,)/Aut,(F,) is identified with the inverse image of the class
of x along the map [(Z0),(F,)] — [Z0(F,)]. The stabilizer group of a € Isom(f(x),y)(F,) is
Aut(; ) (IFy), the automorphism group of (z,a) in (Zo),(Fy).

In general, if a finite group G acts on a finite set S, then we have

o

2 #&mm = D #Orbo(x) = #5.

[z]es/G [z]€S/G
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Now S = Isom(f(z),y)(F,) and G = Aut,(F,), so we have

Aut, (F
Z %Zf:lltu—%l‘g) - #ISOm(f(x)’ y) (Fq) = #AUty(Fq)Q
(z,0)€[(20)y (Fq)] (z,0) g

(z,0)—z

the last equality follows from the fact that S is a trivial Aut,(F,)-torsor.
If we assume (4.1.2ii) holds for the fibers f, : (£y), — Spec F, of f, for all y € #(F,),
then

Tr(Fy, (fil)y)

c1(%, fiKo) = Z

yeimteyy Aty (Fy)
Z Te(Fy, (fK)y)
yel%(Fy)] #A“tyGFq)
.S Z Te(F,, Ky)
y€[%(Fq)] #Aut ) (z,0)€[(20)y( #Aut“‘( )
Tr(F,, Kz)
- Z Aut Z ( Z Aty o (F >
y€[% (F # ( )IE[XQ(]F‘Z)] (z,a)e[(ﬂfo)y(]}?q)] # u (z, )( Q>
YE[Z(Fq)] #A e[,[ ]F)]# ( )
#Aut, (Fy) )
S T T (F,, K)
<x’°‘)(€[(3§”o> (Fq)] #AU (2.0 (Fy)
Tr(F,, Kz)
> O Lt FRNTES
ye[%(Fy)] #A we(2a(F,) #Aut, (Fy)
Te(F,, Kz)
= Z - Cl(%vKO)
velniny TAUL(F)

So we reduce to the case when % = Spec F,. N
If K — Ko — K — K{[1] is an exact triangle of convergent complexes in W, *"2( 2y, Q,),
then by (4.1.4) and (4.1.2i) we have

c1(Zo, Ko) = c1(Zo, Kp) + c1(Zo, Ky)
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and
Cl(%a f!KO) - Cl(%? f'K(/]> + Cl(%a f'K(/)/)

If j: % — %o is an open substack with complement i : Z; — 2, then
c1(Zo, 1" Ko) = c1(%, 5" Ko) and c1(Z0,1.1" Ko) = ¢1(20, 1" Ko).

By noetherian induction we can shrink 2, to a nonempty open substack. So as before we
may assume the inertia stack %, is flat over 2y, with rigidification 7 : 25 — Xy, where X
is a scheme. If (4.1.2ii) holds for two composable morphisms f and g, then it holds for go f.
So we reduce to two cases as before: 25 = Xj is a scheme, or 25 = BGq, where G is either
a connected algebraic group, or a finite étale algebraic group over F,. We may assume X is
separated, by further shrinking (for instance to an affine open subscheme).

For a sheaf complex K, and an integer n, we have an exact triangle

T<nK0 —> 7‘<n+1K0 — %”(Kg)[—n] —

SO

c1(T<n1Ko) = c1(T<n Ko) + 1 (F7 (Ko)[—n])
= 1(T<n Ko) + (=1)"er (K" (Ky)).

Since Ky is bounded from above, 7.y Ky ~ K for N > 0. Since K is convergent, ¢1(7,Ky) —
0 absolutely as n — —o0, so the series ) _,(—1)"c;(H#"(Ky)) converges absolutely to
C1 (Kg)

Applying RI'. we get an exact triangle

RFC(%, T<nK0) — RFC(%, T<n+1K0) — RFC(%, %nKo)[—TL] —

in W, (Spec F,, Q,). We claim that, for 25 = X, a scheme, or BGy, we have

lim ¢ (Spec Fy, R (20, T<nKp)) =0

n——0oo

absolutely. Recall that ¢i(RT(7<,Ko)) = > .cp(—1)"Tr(F, H(Z , 7, K)), so we need to

show
Z Z la| = 0 as n — —oo.

€L HUZ ,7<nK),F

From the spectral sequence

B = H{( 2, A 7 K) = HIN( 2 700 K)
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we see that

2 2L lels=d > 2. ol

€7 HUZ 1enK),F €2 rtk=i  HY(2 Akt nK)F

=2 2 2l

€2 rk=i  HU (2 HFK)F
k<n

Let d = dim Zj (cf. 6.0.3). In the cases where 2 is a scheme or BGy, we have H (2", 7 ) =
0 for every sheaf .# unless r < 2d (cf. (4.1.8.2) and (4.1.6)). Therefore

>, 2 oo olals > > >l

1EL T;gf—k:i HI (% kK),F i<n+2d r+k=i HI (%, kK),F
<n

and it suffices to show that the series

PN >,

i€Z rtk=i HT (2 HFK),F

converges. This is proved for BGy in (4.2.1), and for schemes X, in (4.2.2) (we may shrink
Xy so that the assumption in (4.2.2) is satisfied).

Note that in the two cases 2y = Xy or BG we are considering, (4.1.2ii) holds when Kj
is a sheaf concentrated in degree 0. For separated schemes X, this is a classical result of
Grothendieck and Verdier [17, 38]; for BG), this is done in (4.3.3) and (4.3.4). Therefore,

for a general convergent complex K, we have

1 (Rl e(T<n1K0)) = c1(RTo(T<nKo)) + 1 (RT (" Ko)[—n])
= c1(RUo(7<nKo)) + (=1)"er (A" Ky),

and so

Cl(RFC(K())) = Z(—l)”cl(%f"Ko) + lim Cl(RFC(T<nK0)) = Cl(K()).

n——oo
neL

]

Corollary 4.3.5. Let f : Zo — % be a morphism of Fy-algebraic stacks, and let Ko €
W52 (24, Qy) be a convergent complex of sheaves. Then

m

L(%? K07 t) = L(%v f!K07 t)
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Chapter 5

Meromorphic continuation of L-series.

In this chapter, we will show that the L-series of every (-mixed stratifiable convergent
complex of sheaves on an algebraic IF,-stack has a meromorphic continuation to the whole
complex plane. First of all, we give some basic results on infinite products, or more generally,
sequences that are convergent term-by-term. Then we give some examples of zeta functions,
and finally use (4.1.2) to prove the meromorphic continuation.

5.1 Infinite products

For a convergent complex Ko on 2y, the series ) -, ¢,(Ko)t"/v (and hence the L-series
L(Zy, Ko, t)) usually has a finite radius of convergence. For instance, we have the following
lemma.

Lemma 5.1.1. Let X,/F, be a variety of dimension d. Then the radius of convergence of
D es1 Co(Xo)t" /v is 1/¢°.

Proof. Let fx,(t) = >, 5 ¢(Xo)t"/v. Let Yj be an irreducible component of X, with com-
plement Uy. Then c¢,(Xo) = ¢,(Yy) + ¢,(Up), and since all the c,-terms are non-negative, we
see that the radius of convergence of fx,(t) is the minimum of that of fy,(¢) and that of
fu,(t). Since max{dim(Yy),dim(Up)} = d, and Uy has fewer irreducible component than Xj,
by induction we can assume X is irreducible.

Then there exists an open dense subscheme Uy C X, that is smooth over Spec F,. Let

Zy = Xo — Uy, then dim(Z)) < dim(Xy) = d. From the cohomology sequence
H2N(Z) — HX(U) — H(X) — H2(Z)

we see that H?4(X) = H2!(U) = Qy(—d). The Frobenius eigenvalues {c;;}; on H:(X) have
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i-weights < ¢, for 0 < i < 2d ([9], 3.3.4). By the fixed point formula,

c(Xo) g + 20§i<2d<_1)i >0 qid + qid Zo§i<2d(_1)i Zj(tzidj )

Cor1(Xo)  glvtDd 4 20§i<2d(_1)i Zj O‘;}]ﬂ o1+ 20§i<2d(_1)i Zj(%)vﬂ ’
which converges to 1/¢¢ as v — oo, therefore the radius of convergence of fx,(t) is

lim CU(XO)/U
v=oo 1 (Xo) /(0 +1) ¢

1
=—.

[]

In order to prove the meromorphic continuation (5.3.1), we want to express the L-series
as a possibly infinite product. For schemes, if we consider only bounded complexes, the
L-series can be expressed as a finite alternating product of polynomials P, (Xy, Ko, ), so it
is rational [17]. In the stack case, even for the sheaf Q,, there might be infinitely many
nonzero compact cohomology groups, and we need to consider the issue of convergence of
the coefficients in an infinite products.

Definition 5.1.2. Let f,(t) = .50 ant® € C[[t] be a sequence of power series over C. The
sequence is said to be convergent term by term, if for each k, the sequence (any), converges,
and the series

lim f,(t) := Ztk lim a,y

n—00
k>0

is called the limit of the sequence (fu(t)) .

n

5.1.2.1. Strictly speaking, a series (resp. infinite product) is defined to be a sequence (ay, ),
usually written as an “infinite sum” (resp. “infinite product”) so that (a,), is the sequence
of finite partial sums (resp. finite partial products) of it. So the definition above applies to
series and infinite products.

Recall that log(1 +g) = 3~ (=1)" g™ /m for g € tC[[t]].

Lemma 5.1.3. (i) Let fu(t) =14 Yo, amt” € C[[t] be a sequence of power series. Then

(fn(t))n is convergent term by term if and only if (log fn(t))n is convergent term by term,
and

lim log f,(t) = log lim f, ().

(ii) Let f and g be two power series with constant term 1. Then

log(fg) = log(f) + log(g).
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(i) Let f,(t) € 1+ tC[[t] be a sequence as in (i). Then the infinite product [],~, fu(t)
converges term by term if and only if the series Zn21 log f.(t) converges term by term, and

Z log fu(t) = log H fu(t).

n>1 n>1

Proof. (i) We have

log fu(t) = > _(=1)"" (D aut*)" /m

m>1 E>1
6121 6131
=t- ap1 + t2<an2 - %) + tg(anS — Qyp1Qp2 + %)
4 a?ﬂ 2
+1 (an4 — Up1Qan3 — 7 + anlan2> +o
= Z Anktk.
E>1

In particular, for each k, A,k — anp = h(an1, -+ ,anr—1) is a polynomial in a, -+, Gp -1

with rational coefficients. So if (a,x), converges for each k, then (A,x), also converges,
and by induction the converse also holds. If lim,, .. a,. = ag, then lim, . A, = ap +
h(ah e 7ak—1)7 and

log lim f,(t) = log(1 + Zaktk) = Z(ak +h(ay, - ap1))t" = lim log f,(t).
k>1 k>1

(ii) log and exp are inverse to each other on power series, so it suffices to prove that for
f and g € tC[[t]], we have

exp(f + g) = exp(f) exp(g).

This follows from the binomial formula:

n n n k n—k
i +9) = S+t = S () =3 3o o
" k=0 ) '

n>0 n>0 nz0 k=0
= f_' . i' = (D £/ (D g /3") = exp(f) exp(g).
=0 " s j20

(iii) Let Fy(t) = [I\, fa(t). Applying (i) to the sequence (Fy(t))y, we see that the
infinite product [],, fu(t) converges term by term if and only if (by definition) (Fn(t))
converges term by term, if and only if the sequence (log F N(t))  converges term by term, if
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and only if (by definition) the series ) ., log f,(t) converges term by term, since by (ii)

N N
log [T fult) =) _log fu(t)
Also

N
log ] T fu(t) =log lim Fx(t) = lim log Fy(t) = lim » log fu(t) =t ) log fu(t).
n=1

n>1 n>1

5.1.4. For a complex of sheaves Ky on 2y and n € Z, define
P,(Zy, Ko, t) :==det(1 — Ft, H}(Z, K)).

We regard P,(20, Ko, t)*! as a complex power series with constant term 1 via ¢.

Proposition 5.1.5. For every convergent complex of sheaves Ko € W s"(25,Q,), the
infinite product
H Pn(%); K07 t)(_l)n+l

nez

is convergent term by term to the L-series L(Zo, Ko, t).
Proof. The complex RI'.(%Z, K) is bounded above, so P,(Zy, Ko,t) = 1 for n > 0, and the

infinite product is a one-direction limit, namely n — —oc.
Let apy, -+, G, be the eigenvalues (counted without multiplicity) of F on H (2", K),
regarded as complex numbers via ¢, so that

P.(t) = P.(Zo, Ko, t) = (1 — apit) -+ - (1 — apm, 1)

By (5.1.3iii) it suffices to show that the series

> (1) log Pu(t)

nezZ

converges term by term to > -, ¢, (Ko)t"/v.

We have
S0 og Pult) = 3= 1) og [T~ ity = S0y 3037
nez nez i nez 1 Y

= Z % Z(—l)n Z Oé;}n = Z %Q}(RFC(KO))v

v>1 nez v>1
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which converges term by term (4.1.2i), and is equal (4.1.2ii) to > - ¢, (Ko)t"/v. O

Remark 5.1.5.1. By (5.1.5) we have

Z(Zo.t) = [[ Pu(20.)°0",

nez

where P,(Zy,t) = det(1 — Ft, H(Z")). When we want to emphasize the dependence on the
prime ¢, we will write P, o(Z0,t). This generalizes the classical result for schemes ([17], 5.1).

If Gy is a connected FF-algebraic group, (4.1.8.2) shows that the zeta function of BGj is
given by

2(BGo,1) = | I (- g [Jei™ t>_1

r>0 m;; >0
22,5 Mg (i+1)=2r

N
i,J

mZ]ZO

5.2 Examples of zeta functions

In this section we compute the zeta functions of some stacks, and in each example we
do it in two ways: counting rational points and computing cohomology groups. Also we
investigate some analytic properties.

Example 5.2.1. BG,,. By ([?]iii) we have ¢,(BG,,) = 1/¢,(G,,), so the zeta function is

Z(BGm,t):exp<ch(BGm)ﬁ>:exp<z ! tv).

v q—1v
v>1 v>1

Using Borel’s theorem (4.1.8) one can show (or see ([25], 19.3.2)) that the cohomology ring
H*(BG,,) is a polynomial ring Q,[T’], generated by a variable T" in degree 2, and the global
Frobenius action is given by FT™ = ¢™I™. So by Poincaré duality, we have

Te(F, H,*"*(BGy,)) = Tr(F, H.*"*(BGy, Qu(—1)))/q
= Te(F~ ' H*(BG,,))/qg=q ™"

This gives

[[2.(BG,.. )" =J[(1—q )"

nez n>1
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It is easy to verify (5.1.5.1) directly:

exp( qvl_l%):eXp<Zli/—f;qv%>—e P(Z Z rw)

v>1 v>1 n>1

Lo (5 7)< T - e

n>1 v>1 n>1

There is also a functional equation
1

which implies that Z(BG,,,t) has a meromorphic continuation to the whole complex plane,
with simple poles at t = ¢", for n > 1.

H ?""2(BG,,) is pure of weight —2n—2. A natural question is whether Deligne’s theorem
of weights ([9], 3.3.4) still holds for algebraic stacks. Olsson told me that it does not hold in
general, as the following example shows.

Example 5.2.2. BE, where E is an elliptic curve over F,. Again by (4.1.7iii) we have

1
#E(Fy)

Let o and (8 be the roots of the reciprocal characteristic polynomial of the Frobenius on
HY(E):

c(BE) =

>~ (1+q—ci(E)z+q=0. (5.1)
Then for every v > 1, we have ¢,(E) =1—a’ ="+ ¢" = (1 —a’)(1 — ). So
1 B a—'l} ‘ ﬁ—'[}
(I-a’)(1—-p") 1—av 1-p3"

~(Se = 5 ()

n>1 m>1 n,m>1

Cv(BE) =

Y

and the zeta function is

Z(BE,t) = exp (ch(BE)%) = exp ( Z (a”ﬁm) /v> = nH (1— antﬁm)—l.

v>1 n,m>1
v>1

To compute its cohomology, one can apply Borel’s theorem (4.1.8) to E, and we have
N = N' = HY(F), so N[—1] is a 2-dimensional vector space sitting in degree 2, on which
F has eigenvalues o and . Then H*(BE) is a polynomial ring Q,[a,b] in two variables,
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both sitting in degree 2, and the basis a, b can be chosen so that the Frobenius action F' on
H?(BE) is upper triangular (or even diagonal)

")

HQ”(BE) = Sym"N[—1] = Q,{a", a1y, - ,0™)

Then F' acting on

can be represented by

a” * * %
a3
NE
gn
with eigenvalues o™, ™13, -+ 3" So the eigenvalues of F' on H_?7?"(BE) are

qilaina qilalinﬁila e 7q7157n7
and [[,op Pu(BE, )" s

1
(I =¢ )1 =g o)1 =g ][ - ¢ la?) (1 — ¢ a1 (1 — g1 5728 -
which is the same as Z(BE,t) above (since aff = q).
Let Z,(t) := Z(BE, qt). Its radius of convergence is 1, since by (5.1.1)

lim —Cv(BE) = lim —CUH(E) =
v=00 Cup1(BE) w00 cy(E)

There is also a functional equation

Zilot) = =2 (0)Z3(0),

where
1

(1—aBt)(1—aB2t)(1—aB3t) -

Z5(t) is holomorphic in the open unit disk and satisfies the functional equation

Zo(t) =

1

2(Bt) = 1— ot

Zs(t).
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Therefore Z5(t), and hence Z(BE,t), has a meromorphic continuation to the whole complex
t-plane with the obvious poles.

Remark 5.2.2.1. H_?7*"(BE) is pure of weight —2 — n, which is not < —2 — 2n unless
n = 0. So the upper bound of weights for schemes fails for BE. Also note that, the equation
(5.1) is independent of ¢, so all the eigenvalues are independent of /.

Example 5.2.3. BGj, where Gy is a finite étale F,-group scheme. In the proof of (4.3.3)
we see that BGo(F ) = Fix(Bo?)(F) = G/p), where p® is the right action of G on the set
G given by h: g — o®(h™1)gh. So

and the zeta function is

Its cohomology groups are given in (4.1.6): H?(BG) = Q,, and other H! = 0. This verifies
(5.1.5.1).

Note that Z(BG),t) is the same as the zeta function of its coarse moduli space Spec F,,.
As a consequence, for every F,-algebraic stack 2y, with finite inertia %y — 2, and coarse
moduli space 7w : 2y — Xo ([5], 1.1), we have Z(Zy,t) = Z(Xy,t), and hence it is a rational
function. This is because for every x € X(F,v), the fiber 77*(z) is a neutral gerbe over
Spec k(z), and from the above we see that c,(77!(x)) = 1, and hence ¢,(25) = ¢,(Xp). The
fact that Z(Xo,t) is a rational function follows from ([21], II, 6.7) and noetherian induction.
More generally, we have the following.

Proposition 5.2.3.1. Let 2y be an Fy-algebraic stack. Suppose that 2 either has finite in-
ertia, or is Deligne-Mumford (not necessarily separated). Then for every Ko € W°( 25, Q,),
its L-series L(Zo, Ko, t) is a rational function.

Proof. Note that we do not assume Ky to be t-mixed. We will show that (4.1.2) holds for
the structural map 2y — Spec F, and K, € Wb(25,Q,) in these two cases, without using
(2.2.5.1).

Case when %, has finite inertia. Let 7 : Z; — X, be its coarse moduli space.
For any sheaf .%; on 2y, by (4.1.6) we have isomorphisms H! (X, R'm.%) ~ H!(Z , F), so
RU.(Zy, %) is a bounded complex, hence a convergent complex. To prove the trace formula
for Zy — Spec [, and the sheaf .%, it suffices to prove it for Zy — X, and X, — Spec F,.
The first case, when passing to fibers, is reduced to BGq, and when passing to fibers again,
it is reduced to the two subcases: when (G is finite, or when Gy is connected. In both of
these two cases as well as the case of algebraic spaces X, — Spec F,, the trace formula holds
without the assumption of (-mixedness (4.3.4.1). Therefore, (4.1.2) holds for 2, — Spec F,
and any sheaf, and hence any bounded complex, on 2.
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The trace formula is equivalent to the equality of power series

L(Zo, Ko, t) = [ [ (20, Ko, t) TV

1EZL

and the right-hand side is a finite product, because from the argument above, RI'.(Z0, Ko)
is a bounded complex. Therefore, L(Zg, Ko,t) is rational.

Case when Zj is Deligne-Mumford. For both (i) and (ii) of (4.1.2), we may replace
2o by a non-empty open substack, hence by ([25], 6.1.1) we may assume 2 is the quotient
stack [X(/G], where X{) is an affine F -scheme of finite type and G is a finite group acting
on X{. This stack has finite diagonal, and hence finite inertia, so by the previous case we are
done. Also, we know that RI'.(Zy, Ko) is bounded, therefore L(Zy, Ko,t) is rational. ]

If one wants to use Poincaré duality to get a functional equation for the zeta function,
([33], 5.17) and ([27], 9.1.2) suggest that we should assume 25 to be proper smooth and of
finite diagonal. Under these assumptions, one gets the expected functional equation for the
zeta function, as well as the independence of ¢ for the coarse moduli space, which is proper
but possibly singular. Examples of such stacks include %g,n over F,.

Proposition 5.2.3.2. Let Z, be a proper smooth F,-algebraic stack of equidimension d,
with finite diagonal, and let m: Zy — Xo be its coarse moduli space. Then Z(Xy,t) satisfies
the usual functional equation

1
Z(Xo, %) =+ X Z (X, 1),

where x = Z?ZO(—l)i deg P; o( Xy, t). Moreover, H'(X) is pure of weight i, for every 0 < i <
2d, and the reciprocal roots of each P;(Xo,t) are algebraic integers independent of (.

Proof. First we show that the adjunction map Q, — 7, 7*Q, = 7,Q, is an isomorphism.
Since 7 is quasi-finite and proper ([5], 1.1), we have 7, = m ([33], 5.1) and R"mQ, = 0 for
r # 0 ([33], 5.8). The natural map Q, — R°7,Q, is an isomorphism, since the geometric
fibers of 7 are connected.

Therefore RT(25,Q,) = RI'(X,, m.Q,) = RI'(X,,Q,), and hence ([33], 5.17) H(Z) ~
H{(Z) ~ H(X) ~ H{(X) for all i. Let P,(t) = P;(20,t) = P;(Xo,t). Since Xy is an
algebraic space of dimension d, P;(t) = 1 if i ¢ [0,2d]. Since %2 is proper and smooth,
Poincaré duality gives a perfect pairing

H(Z) x H**H(2") = Qy(—d).

Following the standard proof for proper smooth varieties (as in ([29], 27.12)) we get the
expected functional equation for Z(%2y,t) = Z(Xo,t).
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H(X) is mixed of weights < i ([9], 3.3.4), so by Poincaré duality, it is pure of weight .
Following the proof in ([8], p.276), this purity implies that the characteristic polynomials

Pi,Z(X()a t) = det(l - Ft? Hl(Xa @@))
have integer coefficients independent of £. O]

Remark 5.2.3.3. Weizhe Zheng suggested (5.2.3.1) to me. He also suggested that we give
a functional equation relating L(.2o, DKy, t) and L(25, Ko, t), for Ko € W( 25, Q,), where
Z is a proper [F-algebraic stack with finite diagonal, of equidimension d, but not necessarily
smooth. Here is the functional equation:

L(%a KOat_l) = tXe . Q : L(%-Oa DKOat)a

where x. = Z?io hi(Z, K) and Q = (t*L(Zo, Ko,1))|t=co- Note that the rational function
L(Zy, Ko, t) has degree —y., hence @ is well-defined. The proof is similar to the above.

Example 5.2.4. BGLy. We have #GLy(Fp) = (¢"Y — 1) (g*N — ¢¥) -+ - (¢*N — ¢"©¥~V), s0
one can use ¢,(BGLy) = 1/¢,(GLy) to compute Z(BGLy,t). One can also compute the
cohomology groups of BG Ly using Borel’s theorem (4.1.8). We refer to ([2], 2.3.2) for the

result. Let us consider the case N = 2 only. The general case is similar.
We have

1 1 2 2 3 3
cv(BGLz):F(1+—+—+—+—+—+---),

and therefore

2086121) = (S L) o (S L) o (T HEE)

v

1 1 1 \2 12 13
T 1t/ 11—t/ (1—t/q6> ' <l—t/q7> ' (1—t/q8>
So Z(BGLQ,qt) = Z(BGLQ,t) : Zl(t), where

1
(I—t/¢®) A —t/®) A —t/q")(1 —t/q) -

Z1(t) satisfies the functional equation

Zy\(t) =

Z:(¢*) Zu(1),

So Zy(t), and hence Z(BGL,,t), has a meromorphic continuation with the obvious poles.
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The non-zero compactly supported cohomology groups of BG Ly are given as follows:

HA"(BGLy) = Qyn+ 42 (E+) >0,

This gives

-~y _ 1
};[ZPn(BGLz, t) (L—t/g) (L — /) (1 — t/q®)2(1 — t/q")2- -

and (5.1.5.1) is verified. Note that the eigenvalues are 1/¢"**, which are independent of .

5.3 Meromorphic continuation.

We state and prove a generalized version of (1.0.3).

Theorem 5.3.1. Let 25 be an F,-algebraic stack, and let Ko € W, =%( 25, Q,) be a con-
vergent complex. Then L(Zo, Ko,t) has a meromorphic continuation to the whole complex
t-plane, and its poles can only be zeros of the polynomials Py, (2o, Ko,t) for some integers
n.

We need a preliminary lemma. For an open subset U C C, let &(U) be the set of
analytic functions on U. There exists a sequence { K, },>1 of compact subsets of U such that

U=U, K, and K, C (K,41)°. For f and g in O(U), define

e¢] 1 n

pa(f,9) =sup{|f(2) —g(x)l;z € K.} and p(f.g) = <_) pulf:9)

2/ 14 pu(f,9)

Then p is a metric on (U) and the topology is independent of the subsets { K}, chosen
(ct. (6], VIL, §1)).
The following lemma is ([6], p.167, 5.9).

Lemma 5.3.2. Let U C C be connected and open and let (f,)n be a sequence in O(U)
such that no f, is identically zero. If Y (fu(2) — 1) converges absolutely and uniformly
on compact subsets of U, then [],~, fn(2) converges in O(U) to an analytic function f(z).
If 2 is a zero of f, then zy is a zero of only a finite number of the functions f,, and the
multiplicity of the zero of f at zy is the sum of the multiplicities of the zeros of the functions
fn at 2.

Now we prove (5.3.1).

Proof. Factorize P,(Zo, Ko,t) as [} (1 — ay;t) in C. Since RT'.(Zo, Ko) is a convergent
complex (4.1.2i), the series ) || converges.
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By (5.1.5) we have

mn

L( 24, Ko t) = [T (T (2 = anst) ™"

neZ j=1

as formal power series. To apply (5.3.2), take U to be the region C — {a;
the lexicographical order on the set of all factors

njimeven}. Take

1
1 — ay,t, for n odd; ————, for n even.
1— Oénjt

Each factor is an analytic function on U. The sum “> (f.(2) —1)” here is equal to

Z —pt) + Z 1(_%;”]

n odd,j n even,j

2 |angt|, noodd,
gn(t) = mn |anjt‘
> j=1 Timan: T even.

We need to show that ) g¢,(t) is pointwise convergent, uniformly on compact subsets of U.
Precisely, we want to show that for any compact subset B C U, and for any € > 0, there
exists a constant Ng € Z such that

D galt) <e

n<N

for all N < Np and ¢t € B. Since g,(t) are non-negative, it suffices to do this for N = Np.
There exists a constant Mp such that [¢t| < Mp for all t € B. Since }_, . [an;| converges,
|| — 0 as n — —oo, and there exists a constant Lp € Z such that |am\ < 1/(2M3p) for

alln < Lg. So
1) <2 |ant]
j=1

for all n < Lg and t € B. There exists a constant Ng < Ly such that

Z Z]am\ <e/(2Mp)

TL<NB

D70 <2 D ot <2Mp Y D an] <

n<Np n<Np J n<Np J

and hence
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By (5.3.2), L(%Z, Ko, t) extends to an analytic function on U. By the second part of (5.3.2),
the oz;jl’s, for n even, are at worst poles rather than essential singularities, therefore the
L-series is meromorphic on C. O

Now L(Zy, Ko,t) can be called an “L-function”.
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Chapter 6

Weight theorem for algebraic stacks,
and first applications to independence

of /.

6.0.3. We prove (1.0.4) in this chapter. For the reader’s convenience, we briefly review the
definition of the dimension of a locally noetherian S-algebraic stack X from ([25], chapter
11).

If X is alocally noetherian S-algebraic space and z is a point of X, the dimension dim,, (X)
of X at x is defined to be dim,,(Xy), for any pair (Xg,zo), where Xj is an S-scheme étale
over X and xg € Xy maps to x. This is independent of the choice of the pair. If f: X — Y
is a morphism of algebraic S-spaces, locally of finite type, and z is a point of X with image
y in Y, then the relative dimension dim,(f) of f at x is defined to be dim,(X,).

Let P: X — X be a presentation of an S-algebraic stack X', and let x be a point of X.
Then the relative dimension dim,(P) of P at x is defined to be the relative dimension at
(x,z) of the smooth morphism of S-algebraic spaces pr; : X xy X — X.

If X is a locally noetherian S-algebraic stack and if £ is a point of X, we define the
dimension of X" at & to be dimg(X') = dim,(X) — dim, (P), where P : X — X is an arbitrary
presentation of X and x is an arbitrary point of X lying over £. This definition is independent
of all the choices made. At last we define dim X = sup, dim¢ X'. For quotient stacks we have
dim[X/G] = dim X — dim G.

6.1 Weight theorem.

Now we prove (1.0.4).

Proof. 1f j : %y — %4 is an open substack with complement i : Z5 — 2, then we have an
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exact sequence
- —HN%,j*F)—=HNZ,F)—=H\Z,i*F)—---.

If both HN(% ,j*%) and H!(Z,i*.%) are zero (resp. have all punctual -weights < m for
some number m), then so is H}(Z ,.%). Since the dimensions of %, and % are no more
than that of 25, and the set of punctual (-weights of i*.%, and j*.%, is the same as the set
of punctual -weights of .%;, we may shrink 2, to a non-empty open substack. We can also
make any finite base change on IF,. As before, we reduce to the case when 2 is geometrically
connected, and the inertia f : %) — 2, is flat, with rigidification 7 : 2y — X, where X
is a scheme. The squares in the following diagram are 2-Cartesian:

fo -~ Auty

o,

BAuty; — BAut, — 2 <— Spec Fgo

S

Spec F —= Spec Fgr —= X

We have (R*m. %)z = H¥(BAutz, 7). Since f is representable and flat, and 25 is connected,
all automorphism groups Aut, have the same dimension, say d.

Assume (1.0.4) holds for all BGy, where G are F,-algebraic groups. Then R*m.%, = 0
for k > —2d, and for k < —2d, the punctual t-weights of R¥m.%, are < g — d + w, hence
by ([9], 3.3.4), the punctual -weights of H! (X, R¥m.#) are < & — d + w + r. Consider the
Leray spectral sequence

Ey¥ = H' (X, RFn.%) = H ™M (2, F).
If we maximize g — d + w + r under the constraints
r+k=mn, 0<r<2dimX,, and k£ < —2d,

we find that H(Z,.#) = 0 for n > 2dim Xy — 2d = 2dim 2y, and for n < 2dim 2, the
punctual t-weights of H'(2", %) are < dim X + § +w — d = dim Zy + § + w.

So we reduce to the case Zy = BGy. The Leray spectral sequence for h : BGy — Bm(Go)
degenerates (by (4.1.6)) to isomorphisms

HY(Bmo(G), R"h.Z) ~ H"(BG, .F).

The fibers of h are isomorphic to BGY, so by base change and (4.1.6) we reduce to the case
when G is connected. Let d = dim Gy and f : BGy — Spec F, be the structural map. In
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this case, Fy = f*V for some Q,-representation V of W(F,), and hence %, and V have the
same punctual (-weights. Using the natural isomorphism H!(BG) ® V ~ H!(BG,.%), we

reduce to the case when ., = Q,. In (4.1.8.2) we see that, if c;y, - - - , iy,, are the eigenvalues
of Fon N i >1 odd, then the eigenvalues of F on H;?**724(BG) are

g H a; ", where Zmij (i +1) = 2k.
irj ij

Since i > 1, we have Y im;; > k; together with |ay;| > ¢%/2 one deduces

—d — —k—2d
|q | | Q; <q z,
1,J

so the punctual -weights of H 2*724(BG) are < —k —2d for k > 0, and the other compactly
supported cohomology groups are zero.

It is clear from the proof and ([9], 3.3.10) that the weights of H?(.Z",.%) differ from the
weights of %, by integers.

Recall that H?*(BG) is pure of weight 2k, for a linear algebraic group Gy over F, ([10],
9.1.4). Therefore, H_?*~24(BQG) is pure of weight —2k — 2d, and following the same proof as
above, we are done. O

Remark 6.1.1. When 2, = X is a scheme, and n < 2dim Xy, we have dim Xy + § +w >
n+w, so our bound for weights is worse than the bound in ([9], 3.3.4). For an abelian variety
A/F,, our bound for the weights of H'(BA) is sharp: the weights are exactly dim(BA) + 7,
whenever the cohomology group is non-zero.

In the following chapter, as an application of the weight theorem, we will generalize
Gabber’s decomposition theorem to stacks with affine diagonal. We also expect (1.0.4) to
be useful when studying the Hasse-Weil zeta functions of Artin stacks over number fields in
future. For instance, it implies that the Hasse-Weil zeta function is analytic in some right
half complex s-plane.

6.2 Some examples on the existence of rational points.

Using (1.0.4) we can show certain stacks have [ -points.

Example 6.2.1. Let Z; be a form of BG,,, i.e., 2" = BG,, over F. Then all the automor-
phism group schemes in 2 are affine, and h;?>72"(2") = h;>?"(BG,,) = 1, for all n > 0.
Let a_5_s, be the eigenvalue of F on H_?7?"(%"). Then by (1.0.4) we have |a_5_5,| < ¢~ 17"
Smoothness is fppf local on the base, so 2; is smooth, hence H72(2) = Q,(1) and
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a_s =¢q ' So

#H20(Fy) = Te(FH> M 2)=q ' +aat+a g+

n>0

q_1>0
when ¢ # 2. In fact, since there exists an integer r > 1 such that Zy ® Fr = BG,, /5., we
see that all cohomology groups H,*2"(Z") are pure, i.e. |a_g o,| = ¢ 17"

In fact, one can classify the forms of BG,,/F, as follows. If Zj is a form, then it is also
a gerbe over Spec F,, hence a neutral gerbe BG|, for some algebraic group Gy by ([3], 6.4.2).
By comparing the automorphism groups, we see that Gy is a form of G,,/F,. There is only
one nontrivial form of G,,/F,, because

HY(F,, Aut(G,,)) = H'(F,,Z/27Z) = 7./27,
and this form is the kernel of the following norm map

11— Rlqu2/]Fqu - R]FqQ/Fqu E) Gm - 17

where R]Fq2 JF, is the operation of Weil’s restriction of scalars. Therefore, the only non-trivial
form of BG,,/F, is B (RIqu2 /¥, Gyn). In particular, they all have F -points, even when ¢ = 2.

Example 6.2.2. Consider the projective line P! with the following action of G,, : it acts by
multiplication on the open G,, C P!, and acts trivially on the other two points 0, 00. So we
get a quotient stack [P'/G,,] over F,. Let 25 be a form of [P!/G,,] over F,. We want to find
an [F-point on Zp, or even better, an F,-point on 2, which, when considered as a point in
Z (F) = [P'/G,,](F), lies in the open dense orbit [G,,/G,,](F).

6.2.2.1. Consider the following general situation. Let G be a connected F,-algebraic group,
and let X be a proper smooth variety with a Gy-action over F,. Let

[ X0/Go 2N BGy -2 Spec T,

be the natural maps, and let 25 be a form of [X,/Go|. Then f is representable and proper.
For every k, R*f.Q, is a lisse sheaf, and takes the form ¢g*Vj for some sheaf V} on Spec F,.
Consider the Leray spectral sequence

EyF = RP g R* £,Q, = R™*(g)iQ,.



76

Since R"g R*f,.Q, = R"9:(g*Vi) = (R"9:Q,) ® Vi, we have

(2 = (X/E) < 3 K(BG) -dmV= Y WI(BG) - h(X).

r+k=n r+k=n

Return to [P'/G,,]. Since h°(P') = h?(P') = 1 and h;*(BG,,) = 1 for i > 1, we see that
(%) =0 for n odd and

0, n>1,
he (27) < BP(PYRT(BGy) + (PR *(BG,,) = { 1, n =0,
2, n<0.

Since 2 is smooth of dimension 0, we have H(.2") = Q,. By (1.0.4), the punctual «-weights
of H>"(Z) are < 2n. The trace formula gives

#20(Fy) =D Te(F,HX(Z)) =1+ Y Te(F,H™Z 1—2Zq—1——>0

1
n<0 n<0 n<0

when ¢q > 4.

In order for the rational point to be in the open dense orbit, we need an upper bound for
the number of F -points on the closed orbits. When passing to F, there are 2 closed orbits,
both having stabilizer G,,. So in [Z(F,)] there are at most 2 points whose automorphism
groups are forms of the algebraic group G,,. Consider the non-split torus R]}(ﬂ /]Fqu in

(6.2.1). By the cohomology sequence
11— (R%qz/FquxFq) — I RALL 3

we see that #(R]} /F Gn)(F,) = ¢+ 1. Since ? < = 1, the space that the closed orbits

can take is at most q— and equality holds only when the two closed orbits are both defined
over F, with stabilizer G,,. In order for there to exist an F,-point in the open dense orbit,

we need
1 2 > 2
g—1" ¢—1

and this is so when ¢ > 7.
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6.3 About independence of /.

The coefficients of the expansion of the infinite product

Z(Zo,t) = [ [ Pue( Zo, 1)

€7

are rational numbers and are independent of ¢, because the ¢,(Zp)’s are rational numbers
and are independent of £. We want to know if this is true for each P, (2o, t). First we show
that the roots of P, (%, t) are Weil g-numbers. Note that P, o(Zo,t) € Qg[t].

Definition 6.3.1. An algebraic number is called a Weil g-number if all of its conjugates
have the same weight relative to q, and this weight is a rational integer. It is called a Weil
g-integer if in addition it is an algebraic integer. A number in Q, is called a Weil g-number
if it is a Weil g-number via t.

For a € Q,, being a Weil g-number or not is independent of ¢; in fact the images in C
under various (’s are conjugate.

This definition is different from the classical definition (for instance ([31], I11.2)). The
classical notion can be called Weil g-numbers of weight 1, according to our definition.

For an F -variety Xy, not necessarily smooth or proper, ([9], 3.3.4) implies all Frobenius
eigenvalues of H!(X) are Weil g-integers. The following lemma generalizes this.

Lemma 6.3.2. For every F -algebraic stack %y, and a prime number £ # p, the roots of
each P, ,(Zo,t) are Weil g-numbers. In particular, the coefficients of P, o(Zo,t) are algebraic
numbers in Qq (i.e. algebraic over Q).

Proof. For an open immersion j : % — % with complement i : Z) — Z,, we have an
exact sequence

e W) = HAZ ) HU(Z)

so the set of Frobenius eigenvalues of H!(2) is a subset of the union of the Frobenius
eigenvalues of H(% ) and H'(%). Thus we may shrink to a non-empty open substack. In
particular, (6.3.2) holds for algebraic spaces, by ([21], II 6.7) and ([9], 3.3.4).

By dévissage we can assume 2 is smooth and connected. By Poincaré duality, it suffices
to show that the Frobenius eigenvalues of H(.2") are Weil g-numbers, for all i. Take a
presentation Xy — 2 and consider the associated smooth simplicial covering X§ — 2y by
algebraic spaces. Then there is a spectral sequence ([27], 10.0.9)

E* = HNX") = H"™MZ),

and the assertion for 2y follows from the assertion for algebraic spaces. O]
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Problem 6.3.3. Is each
Pi’g(c%fo, f}) = det(l — Ft, HZ(%,Q@))
a polynomial with coefficients in QQ, and the coefficients are independent of ¢7

Remark 6.3.3.1. (i) Note that, unlike the case for varieties, we cannot expect the coeffi-
cients to be integers (for instance, for BG,,, the coefficients are 1/¢°).

(ii) (6.3.3) is known to be true for smooth proper varieties (][9], 3.3.9), and (coarse moduli
spaces of) proper smooth algebraic stacks of finite diagonal (5.2.3.2). It remains open for
general varieties. Even the Betti numbers are not known to be independent of ¢ for a general
variety. See [20].

Let us give positive answer to (6.3.3) in some special cases of algebraic stacks. In §7 we
see that it holds for BE and BGLy. We can generalize these two cases as follows.

Lemma 6.3.4. (1) (6.3.3) holds for BA, where A is an abelian variety over F,.
(i1) (6.3.3) holds for BGy, where Gy is a linear algebraic group over F,,.

Proof. (i) Let g = dim A. Then N = H'(A) is a 2g-dimensional vector space, with eigenvalues
aq, -+, g, for the Frobenius action F), and N is pure of weight 1. Let aq,--- , agy be a basis
for N so that F' is upper-triangular

Then H*(BA) = Sym*N[-1] = Qlay, - , ay,], where each a; sits in degree 2. In degree
2n, H*(BA) = Q,(as, ---a;,|1 < i1,--- i, < 2g), and the eigenvalues are o, - -- oy, . By
Poincaré duality

H;*"=%9(BA) = H*"(BA)" © Qu(9)

we see that the eigenvalues of F' on H;297"(BA) are

q_g . O{,_l ...O[,_l

11 in °

Each factor

Poogon(gt)= [ (1= (i)™ )

1<y, in<2g

stays unchanged if we permute the «;’s arbitrarily, so the coefficients are symmetric poly-
nomials in the a; '’s with integer coefficients, hence are polynomials in the elementary sym-
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metric functions, which are coefficients of [[72,(t — a;!). The polynomial

2g

[T — ait) = det (1 — Ft, H(A, Q)

i=1

also has roots «; ', and this is a polynomial with integer coefficients, independent of ¢, since
A is smooth and proper. Let m = +¢9 be leading coefficient of it. Then

29 29

[[¢t—a") = % [T = ).

i=1 =1

Therefore (6.3.3) holds for BA.
(ii) Let d = dim Gy. For every k > 0, H**(BQ) is pure of weight 2k ([10], 9.1.4), hence
by Poincaré duality, H 2¢=2*( BG) is pure of weight —2d — 2k. The entire function

1

m = H P72d72k(BG0)t) € Q[[t“

k>0
is independent of ¢, and invariant under the action of Gal(Q) on the coefficients of the Taylor

expansion. Therefore the roots of P_oy ox(BGo,t) can be described as

“zeros of 7 that have weight 2d + 2k relative to ¢”,

L
(BGo, 1)

which is a description independent of ¢, and these roots (which are algebraic numbers) are
permuted under Gal(Q). Hence P_y4_or(BGo, t) has rational coefficients. O

The following proposition generalizes both (5.2.3.2) and (6.3.4ii).

Proposition 6.3.5. Let X, be the coarse moduli space of a proper smooth I -algebraic stack
of finite diagonal, and let Gy be a linear [F,-algebraic group that acts on Xy, and let 2, be
the quotient stack [Xo/Go]. Then (6.53.3) holds for Z.

Proof. Let
2y > BGy = Bmo(Gl)

be the natural maps. It suffices to show that H}(Z") is pure of weight n, for every n.
Let d = dim GGy. Consider the spectral sequence

Hc_2d_2r(BG, ka'@g) —_— Hc—2d—2r+k(vg{')'



80

The FEs>-terms can be computed from the degenerate Leray spectral sequence for h :
H*7*(BG, R [iQq) ~ H)(Bmo(G), R™*7* I R* [,Q).

The fibers of R™**~*"hyR¥ £iQ, are isomorphic to H;272"(BG°, R¥£,Q,), and since G° is
connected, RF f,Q, is the inverse image of some sheaf via the structural map BGJ — Spec Fy,.
By projection formula we have

H_*7(BGY, R* Q) ~ H*™*(BG®) @ H"(X)

as representations of Gal(FF,), and by (5.2.3.2), the right hand side is pure of weight —2d —
2r+k. By (4.1.6), H; %" (BG, R* f,Q,) is also pure of weight —2d —2r +k, therefore H"(.2")
is pure of weight n, for every n. n

6.3.6. Finally, let us consider the following much weaker version of independence of ¢. For 2,
and i € Z, let U(20,1) be the following property: the Frobenius eigenvalues of H!(2",Q,),
counted with multiplicity, for all £ # p, are contained in a finite set of algebraic numbers with
multiplicities assigned, and this set together with the assignment of multiplicity, depends
only on £y and i. In particular it is independent of /. In other words, there is a finite
decomposition of the set of all prime numbers ¢ € N — {p} into disjoint union of some
subsets, such that the Frobenius eigenvalues of H'(Z", Q,) depends only on the subset that
¢ belongs to. If this property holds, we also denote such a finite set of algebraic numbers
(which is not unique) by ¥ (Zp, ), if there is no confusion.

Proposition 6.3.6.1. The property V(Zo,1) holds for every Zy and i.

Proof. If % is an open substack of 2 with complement %, and properties ¥(%,7) and
U(Z,4) hold, then W (Zp,14) also holds, and the finite set W(%2y,7) a subset of U(%,7) U
U(Z%,19).

Firstly we prove this for schemes X,. By shrinking X, we can assume it is a connected
smooth variety. By Poincaré duality it suffices to prove the similar statement W*(X, 1) for
ordinary cohomology, i.e. with H! replaced by H', for all 7. This follows from [7] and ([9)],
3.3.9). Therefore it also holds for all algebraic spaces.

For a general algebraic stack 2, by shrinking it we can assume it is connected smooth.
By Poincaré duality, it suffices to prove W*(Z2p,4) for all i. This can be done by taking a
hypercover by simplicial algebraic spaces, and considering the associated spectral sequence.

O
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Chapter 7

Decomposition theorem for stacks
over [¥.

Firstly, we study a counter-example given by Drinfeld, to see why the assumption on
the diagonal is necessary. Then we give the structure theorem of -mixed sheaves on stacks,
as the prototype for the analogous results for perverse sheaves. Finally we prove the stack
version of some results in ([4], 5), and deduce the decomposition theorem.

7.1 A counter-example: BE.

Let E be a complex elliptic curve, and let f : pt=Spec C — BFE be the natural projection;
this is a representable proper map. There is a natural non-zero morphism Cpp — Rf.C,
adjoint to the isomorphism f*Cgzp ~ C ., but there is no non-zero morphism in the other
direction, because

==pt’

Hom(Rf. Cpt’CBE):Hom(thvf!gBE) Hom(C,, C,[2]) = 0.

ptr ==
Here the Hom’s are taken in the derived categories. Similarly, the non-zero natural map

Rf.C,, — R*f.C,[-2] = Cpp[—2] lies in

Hom(R{.Cyy Cppl~2)) = Hom(Cyy, f'Cppl-2)) = Hom(C,y, C,) = C,

pt?

but the Hom set in the other direction is zero:
Hom(gBE[_2]’ Rf*gpt) = H0m<f*QBE[_2]7 th) = Hom(gpt[_2] ) th) =0.

Therefore, Rf,C is not semi-simple of geometric origin (since it is not a direct sum of the
P (f.C)[—i]’s). The same argument applies to finite fields, with C replaced by Q,.
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Remark 7.1.1. This example was first given by Drinfeld, who asked for the reason of the
failure of the usual argument for schemes. Later, it was communicated by J. Bernstein to
Y. Varshavsky, who asked M. Olsson in an email correspondence. Olsson kindly shared this
email with me, and explained to me that the reason is the failure of the upper bound of
weights in [9] for stacks.

In the following we explain why the usual proof (as in [4]) fails for f. The proof in [4]
of the decomposition theorem over C relies on the decomposition theorems over finite fields
([4], 5.3.8, 5.4.5), so it suffices to explain why the proof of ([4], 5.4.5) fails for f, for an elliptic
curve E/F,.

Let Ky = Rf.Q,. The perverse t-structure agrees with the trivial t-structure on Spec Fy,
and by definition ([28], 4), we have P " Ky = 7" (Ky)[—1] on BE, and so

DA K) i = P K)-i).

Each R'f.Q,[—i] is pure of weight 0. In the proof of ([4], 5.4.5), the exact triangles
T<iK0 — TSiKO — (%ZK())[—Z] -

split geometrically, because Ext!((#'K)[—i], 7-;K) has weights > 0. We will see that for
f : Spec F, — BE, this group is pure of weight 0, and in fact has 1 as a Frobenius eigenvalue.

Let m : BE — Spec F,; be the structural map; then 7o f = id. Since F is connected,
the sheaves R'f,Q, are inverse images of some sheaves on Spec F,, namely f*R’ 1.Q,. By
smooth base change, they are isomorphic to 7*H*(E) as Gal(F,)-modules. In particular,

R°f.Q, = Q,, R'f.Q, = 7*H'(E) and R?f.Q, = Q,(—1). Then the exact triangle above
becomes

1=2: T§1K0—>KO %@é(—l)[—Q]%
Zzl @Z%TglK()%ﬂ'*Hl(E)[—l]%'
Apply Ext*(Q,(—1)[—2], —) to the second triangle. From (5.2.2) we see that H*~!(BE) = 0,

and H*(BE) = Sym'H'(E). Let o and 3 be the eigenvalues of the Frobenius F' on H*(E).
We have

Ext'(Qy(—1)[-2],Q,) = Ext*(Q,, Q,(1)) = H*(BE)(1) =0,

and

Ext'(Qu(-1)[-2], 7" H'(E)[-1]) = H(BE)@H'(E)(1) = H(E)®H(E)(1) = End(H'(E)),
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which is 4-dimensional with eigenvalues /3, 5/, 1,1, and
Ext*(Qy(-1)[~2],Q,) = HY(BE)(1),
which is 3-dimensional with eigenvalues «/3, 3/, 1. This implies that the kernel
Bat'(Qy(-1)[-2],7a1 K) =
Ker(Bat'(@(-1)[-2), 7 B (E)[-1)) — Ext*@u(-1)[-2, Q)

is non-zero, pure of weight 0, and has 1 as a Frobenius eigenvalue. So the first exact triangle
above does not necessarily (in fact does not, as the argument in the beginning shows) split
geometrically. Also

Eot'(n"HY(E)[-1),Q,) = Ext*(Q,, 7' H(E)") = H\(E) ® HY(E)" = End(H'(E))

is 4-dimensional and has eigenvalues o/ 3, 3/, 1, 1, hence the proof for the geometric splitting
of the second exact triangle fails too.

In [28], Laszlo and Olsson generalized the theory of perverse sheaves to Artin stacks
locally of finite type over some field. In §6.1, we proved that for Artin stacks of finite
type over a finite field, with affine automorphism groups (defined below (8.1.5.1)), Deligne’s
upper bound of weights for the compactly supported cohomology groups still applies. In this
chapter, we will show that for such stacks, similar argument as in [4] gives the decomposition
theorem.

7.2 The prototype: the structure theorem of mixed
sheaves on stacks.

We generalize the structure theorem of (-mixed sheaves (][9], 3.4.1) to stacks. This result
is independent from other results in this chapter, but it is the prototype, in some sense I
think, of the corresponding results (e.g. weight filtrations and the decomposition theorem)
for perverse sheaves.

Theorem 7.2.1. (stack version of ([9], 3.4.1)) Let Zy be an F,-algebraic stack.

(i) Every i-mized sheaf Fo on Zo has a unique decomposition Fo = @Dyer/z Fo(b),
called the decomposition according to the weights mod Z, such that the punctual t-weights
of Fo(b) are all in the coset b. This decomposition, in which almost all the Fo(b)’s are zero,
is functorial in .

(ii) Every t-mized lisse sheaf Fy with integer punctual t-weights on 2y has a unique
finite increasing filtration W by lisse subsheaves, called the weight filtration, such that Gr}”



84

is punctually c-pure of weight i. Every morphism between such sheaves on Zy is strictly
compatible with their weight filtrations.

(iii) If Zo is a normal algebraic stack, and Fy is a lisse and punctually t-pure sheaf on
Zo, then F on X is semi-simple.

Proof. (i) and (ii) are proved in (2.2.4.1), where (iii) is claimed to hold without giving a
detailed proof. Here we complete the proof of (iii).

First of all, note that we may replace 2, and %, by 2y ® F,o and %, ® F,v, for any
finite base change F. /IF,.

From the proof of ([28], 8.3), we see that if % C 2 is an open substack, and ¥, is a
subsheaf of .7 |4, then it extends to a unique subsheaf ¥ C .Z. Therefore, we may shrink
Z to a dense open substack %, and replace Z; by some model of % over a finite extension
F,o. We can assume %2 is smooth and geometrically connected.

Following the proof ([9], 3.4.5), it suffices to show ([9], 3.4.3) for stacks. We claim that, if
F, is lisse and punctually t-pure of weight w, then H'(2",.%) is t-mixed of weights > 1+ w.
The conclusion follows from this claim.

Let D = dim Z,. By Poincaré duality, it suffices to show that, for every lisse sheaf
Fo, punctually (-pure of weight w, H?P~1(2",.F) is t-mixed of weights < 2D — 1 + w. To
show this, we may shrink 2, to open substacks, and hence we may assume that the inertia
Fy — Zy is flat. As in the proof of (1.0.4), we have the spectral sequence

H(X,R*mF) = HI"M (2 ,.F),

so let »+ k = 2D — 1. Note that k£ can only be of the form —2i — 2d, for ¢ > 0, where
d = rel.dim(.%/ Z0). So we have r = 2dim X, + 2¢ — 1, and in order for H](X, —) to be

non-zero, ¢ = 0. Then
HXP N2, F) = H2 XN X, R 7).

It suffices to show that H_?Y(BG, %) has weights < w—2d, where Gy is an algebraic group of
dimension d, and .%; is a lisse punctually t-pure sheaf on BG of weight w. In fact, R=%4m.%
is punctually ¢t-pure of weight w — 2d. We reduce to the case where G is connected, and the
claim is clear. [

7.3 Decomposition theorem for stacks over F,.

For an algebraic stack 2y/F,, let D,,(25,Q,) be the full subcategory of -mixed sheaf
complexes in D.(Z25,Q,) as before (2.2.2iii). It is stable under the perverse truncations
Proo and P1>q. This can be checked smooth locally, and hence follows from (2.2.5) and ([4],
5.1.6). The core of D,,(2,Q,) with respect to this induced perverse t-structure is called the
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category of (-mixed perverse sheaves on 2y, denoted Perv,,(Zp). This is a Serre subcategory
of Perv(Zy). Again, using (2.2.5.1), all of these are trivial.

Definition 7.3.1. Let K, € D,,,(2,Q,).

(i) We say that Ko has t-weights < w if for each i € Z, the t-weights of 'K, are
<i+w, and we denote by D<,,(Zo,Q,) the subcategory of such complezes. We say that K,
has 1-weights > w if its Verdier dual DKy has t-weights < —w, and denote by Ds, (2o, Q)
the subcategory of such complezes.

(11) For a coset b € R/Z, we say that Ky has t-weights in b if the t-weights of 'Ky are
n b, for allv € 7Z.

Lemma 7.3.2. Let P : Zy — %o be a representable surjection of Fy-algebraic stacks, and
Ky € D.(Z0,Qy). Then Ky is t--mized of weights < w (resp. > w) if and only if P*Ky (resp.
P'K,) is so.

Proof. Tt suffices to consider only the case where K, has weights < w, since the other
statement is dual to this one. The “only if” part is obvious. The “if” part for (-mixedness
follows from (2.2.5), and the “if” part for the weights follows from the surjectivity of P. [

In particular, this applies to the case where P is a presentation.

We say that an F-algebraic stack 2 has affine automorphism groups if for every integer
v > 1 and every x € Zy(F), the automorphism group scheme Aut, over k(z) is affine. In
the following, some results require the stack to have affine automorphism groups. We will
first give results that apply to all stacks, and then give those that require this condition.

The following lemma is the perverse sheaf version of (7.2.1i).

Lemma 7.3.3. Every t-mized perverse sheaf %y on 2o has a unique decomposition

into perverse subsheaves, called the decomposition according to the weights mod Z, such
that for each coset b, the t-weights of Fo(b) belong to b. This decomposition, in which almost
all the Fy(b)’s are zero, is functorial in Fy.

Proof. By descent theory ([28], 7.1) we reduce to the case where 2 = X is a scheme. One
can further replace X, by the disjoint union of finitely many open affines, and assume Xj is
separated. We want to reduce to the case where X is proper.

Let 7 : Xo — Y, be a Nagata compactification, i.e. an open dense immersion into a
proper scheme Yy, and assume we have the existence and uniqueness of the decomposition
of any (-mixed perverse sheaf on Y| according to the weights mod Z, and the decomposition

is functorial. Let
juFo= P Golb)

bER/Z
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be the decomposition for ji,..%y. Applying j* we get a decomposition

Fo= P 5*Go(b).

bER/Z

Note that j* takes a perverse sheaf to a perverse sheaf. This shows the existence. For
uniqueness, let %, = @, Fy(b) be another such decomposition. Then we have

JwFo = @ JFo(b).

beR/Z

Following the proof in [4] we see that j1..%(b) is t-mixed of weights in b (by twisting, we
may assume .%,(b) is t-mixed of integer weights, then follow the proof in ([4], 5.3.1) to show
Jis preserves (-mixedness with integer weights, and finally twist back). By uniqueness of the
decomposition for ji..% we have j1..%,(b) = Go(b), and so Fy(b) = j*Go(b). For functoriality,
given a morphism %y, — %, between t-mixed perverse sheaves on X, we get a morphism
JFo — Jjix4 of --mixed sheaves on Y, which respects their decompositions by assumption,
and then apply j*.

So we may assume that X,/F, is proper. Let a be the structural map of Xy/F,. Let K,
and Lo in D%(X,, Q,) be t-pure complexes of (-weights w and w’, respectively, and assume
w —w' ¢ Z. Then we claim that Ext!(Ky, Ly) = 0. From the exact sequence ([4], 5.1.2.5)

0— Eat="\(K, L)p — Exti(Ko, Lo) — Ext'(K, L)F —0

we see it suffices to show that 1 cannot be a Frobenius eigenvalue on Ext'(K, L), for every
i. Note that Ro#om (Ko, Ly) = D(Ko ®" DLg) is t-pure of weight w’ — w, by the spectral
sequence

%Z(Ko ®L %]DL()) — %H_j(Ko ®L DL())

and the similar one for the first factor K. Consider the spectral sequence
R'a, RV om(Ky, Ly) = R™ (a7 0om)(Ko, Lo).

Since a, = ai, by ([9], 3.3.10) we see that the -weights of Ext'(K, L) cannot be integers.
Therefore Ext'(Ky, Ly) = 0.

For every b € R/Z, we apply ([4], 5.3.6) to Perv,,(Xj), taking St (resp. S7) to be the set
of isomorphism classes of simple t-mixed perverse sheaves (and hence t-pure (7.3.5)) of weight
not in b (resp. in b). Then for every -mixed perverse sheaf .%;, we get a unique subobject
Fo(b) with -weights in b, such that %/ %,(b) has t-weights not in b, and .%y(b) is functorial
in .%,. As we see from the argument above, this extension splits: %y = Zo(b) ® Fy/F (D),
so by induction we get the decomposition, which is unique and functorial. O]

Lemma 7.3.4. (stack version of ([4], 5.5.2)) Let j : U — Zo be an immersion of algebraic



87

stacks. Then for any real number w, the intermediate extension ji. ([28], 6) respects Pervs,,
and Perv<,,. In particular, if Fo is an t-pure perverse sheaf on %, then j..%y is t-pure of
the same weight.

Proof. For a closed immersion i, we see that i, respects D>, and D<,, so we may assume
that 7 is an open immersion. We only need to consider the case for Perv<,, since the case
for Pervs,, follows from ji.D = Djy,.

Let P: Xg — %, be a presentation, and let the following diagram be 2-Cartesian:

Up 2> X,

P

%07:%)

For .7, € Perve, (%), by (7.3.2) it suffices to show that P*j,,.% € D<,(Xo, Q). Let d be
the relative dimension of P. By ([28], 6.2) we have

P juFo = (P (jueFo)d])[=d] = ji,(P" Fo[d])[—d].

Since P*%, € D<,,, P".%[d] € D<yia, and by ([4], 5.3.2), ji,(P"*.%[d]) € Perve, 4, and
by definition P*j,..%y € D<,,. O

Corollary 7.3.5. (stack version of ([4], 5.3.4)) Every .-mixed simple perverse sheaf %y on
an algebraic stack Zy is t-pure.

Proof. By (]28], 8.2ii), there exists a d-dimensional irreducible substack j : % — Zj such
that ¥{eq is smooth, and a simple (-mixed (hence (-pure) lisse sheaf Lo on ¥ such that
Fo = juLg[d]. The result follows from (7.3.4). O

The stack version of ([4], 5.3.5) is given in ([28], 9.2), and the following is a version for
i-mixed perverse sheaves with integer weights (7.3.1ii), which is the perverse sheaf version
of (7.2.1ii).

Theorem 7.3.6. Let %y be an t-mized perverse sheaf on 2o with integer weights. Then
there exists a unique finite increasing filtration W of %y by perverse subsheaves, called the
weight filtration, such that Gr}" . %, is .-pure of weight i, for each i. Every morphism between
such perverse sheaves on Zy is strictly compatible with their weight filtrations.

Proof. As in ([28], 9.2), we may assume 2y = X is a scheme. The proof in ([4], 5.3.5)
still applies. Namely, by (7.3.9ii), if %, and ¥, are (-pure simple perverse sheaves on Xy, of
-weights f and g respectively, and f > g, then Ext' (%4, %) = 0. Then take ST (resp. S™)
to be the set of isomorphism classes of (-pure simple perverse sheaves on X of (-weights > ¢
(resp. <) for each integer ¢, and apply ([4], 5.3.6). O
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Theorem 7.3.7. (stack version of ([4], 5.4.1, 5.4.4)) Let Ky € Db (24,Q,). Then Ky has
t-weights < w (resp. > w) if and only if "' Ky has t-weights < w + 1 (resp. > w +1), for
each i € Z. In particular, Ky is t-pure of weight w if and only if each P Ky is t-pure of
weight w + 1.

Proof. The case of “ > 7 follows from the case of “ <7 and P# o D = D o?2#~". So we
only need to show the case of “ > 7.

Let P: Xqg — %2 be a presentation of relative dimension d. Then K, has -weights < w
if and only if (7.3.2) P*Kjy has t-weights < w, if and only if ([4], 5.4.1) each *J#*(P*K)
has -weights < w +i. We have P (P*Ky) = P (P*(Ko|—d])[d]) = P** " (Ky|—d])[d] =
PP 4K,)[d], so P*(P 7 4K,), and hence P "9 K,, has -weights < w +i — d. O

In the following results, except (7.3.8i, ii, iv, v), we will need the assumption of affine
automorphism groups.

Proposition 7.3.8. (stack version of ([4], 5.1.14)) (i) The Verdier dual D interchanges
D<,, and D>_,,.

(ii) For every morphism f of F,-algebraic stacks, f* respects D<,, and f' respects Ds,,.

(111) For every morphism f : 2y — %, where Zy is an Fy-algebraic stack with affine
automorphism groups, fi respects D;itra and f. respects D;itra.

(iv) @ takes D_,, x DZ,, into DZ, ..

(v) R om takes DZ,, x DT, into DI

>w'—w*

Proof. (i), (ii) and (iv) are clear, and (v) follows from (iv). For (iii), if 2 has affine
automorphism groups, so are all fibers f~(y), for y € %,(F, ), and the claim for f; follows
from the spectral sequence

H(f7' @), 27 K) = H7 (71 (1), K)
and (1.0.4), and the claim for f, follows from (2.2.8, 3.2.4) and the claim for f. O

Corollary 7.3.9. (stack version of ([4], 5.1.15)) Let Z; be an F-algebraic stack with affine
automorphism groups, and let a : &y — Spec F, be the structural map. Let Ky (resp. Lg)
be in DZ, (%0, Q) (resp. DT, (Z0,Qy)) for some real number w. Then

(i) a, R om(Ky, Lo) is in D¥y(Spec F,, Q,).

(’LZ) El‘tl(K(), LQ) =0 fO’f’i > 0.

If Ly € DI, then a.R#om(Ky, Lo) is in DI, and we have

(i4i) Ext' (K, L) =0 fori > 0. In particular, for i > 0, the morphism Ext'(Ky, L) —
Ezt'(K, L) is zero.

The proof is the same as ([4], 5.1.15), using the above stability result for stacks with
affine automorphism groups.
The following is a perverse sheaf version of (7.2.1iii), the decomposition theorem.
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Theorem 7.3.10. (stack version of ([4], 5.3.8)) Let Zy be an F,-algebraic stack with affine
automorphism groups. Then every t-pure perverse sheaf %o on 2y is geometrically semi-
simple (i.e. F is semi-simple), hence F is a direct sum of perverse sheaves of the form
JiLldy], for inclusions j : U — X of dy -dimensional irreducible substacks that are essen-
tially smooth, and for simple v-pure lisse sheaves L on % .

Proof. Let %' be the sum in .% of simple perverse subsheaves; it is a direct sum, and is
the largest semi-simple perverse subsheaf of .%. Then .#’ is stable under Frobenius, hence
descends to a perverse subsheaf .#] C %, (([4], 5.1.2) holds for stacks also). Let F =
Fo/ F,. By (7.3.9iii), the extension

0—=F —F—=F"—0

splits, because .#} and % have the same weight ([28], 9.3). Then .#” must be zero, since
otherwise it contains a simple perverse subsheaf, and this contradicts the maximality of .%#’.
Therefore .# = %' is semi-simple. The other claim follows from ([28], 8.2ii). O

Theorem 7.3.11. (stack version of ([4], 5.4.5)) Let Zy be an Fy-algebraic stack with affine
automorphism groups, and let Ko € D° (20, Q) be t-pure. Then K on 2 is isomorphic to
the direct sum of the shifted perverse cohomology sheaves (P K)[—1i].

Proof. By (7.3.7), both P7; K, and (P #"Ky)[—i| are t-pure of the same weight as that of
K. Therefore, by (7.3.9iii), the exact triangle

PTeilo —"T<i Ko — ("' Ky)[—i] —
is geometrically split, i.e. we have
pTSiK ~ p7'<iK D (p%lK)[—Z],

and the result follows by induction. O]
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Chapter 8

Decomposition theorem over the
complex numbers.

In this chapter, we prove the decomposition theorem for complex algebraic stacks with
affine automorphism groups. To mimic the proof in [4], there are several things to generalize.

e To use the weight technique and results over finite fields, we need to prove a comparison
between the derived categories with prescribed stratification over C and over F. For that, we
generalize the generic base change theorem to stacks.

e Since the statement of the decomposition theorem will be about the analytic stack
associated to a complex algebraic stack, we need to prove a comparison between the derived
categories of the lisse-étale topos and of the lisse-analytic topos. Note that the lisse-analytic
derived category will also be defined using the usual adic formalism, since the comparison is
proved over the torsion level first.

e One can define another lisse-analytic derived category, using the ordinary topology, and
the statement of the decomposition theorem will be about this derived category. Therefore,
we need to prove a comparison between this one and the one defined using adic formalism.

8.1 (Generic base change.

We prove a stack version of the generic base change theorem ([11], Th. finitude) in this
section.

8.1.1. Let S be a scheme satisfying the condition (LO) as in (2.1.1): it is a noetherian
affine excellent finite-dimensional scheme in which ¢ is invertible, and all S-schemes of finite
type have finite ¢-cohomological dimension. As before, let (A,m) be a complete DVR of
mixed characteristic, with finite residue field Ay of characteristic £ and uniformizer \. Let
A, = A/m" L Let o = o/ (X) = Mod(X] 4, Ae).

For a pair (., L), where . is a stratification of the stack X', and L assigns to every
stratum U € .7 a finite set L(U) of isomorphism classes of simple lcc Ag-sheaves on U, let
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D (7)) be the full subcategory of Z.(<7) consisting of the complexes of projective systems
K = (K,), trivialized by (., £), and define D » (X, A) to be its essential image under the
localization Z,(</) — D.(X,A); in other words, it is the quotient of Zy (/) by the thick
subcategory of AR-null complexes. It is a triangulated category.

8.1.2. For a morphism f : X — ) of S-algebraic stacks and K € DI (X,A,) (resp.
D (X, A)), we say that the formation of f.K commutes with generic base change, if there
exists an open dense subset U C S such that for any morphism ¢g : 8" — U C S with '
satisfying (LO), the base change morphism ¢* f, K — fg,.¢"*K is an isomorphism. The base
change morphism is defined to be the one corresponding by adjunction (¢'*,¢.) to f. K —
9. fsxg"* K ~ f.g”¢"* K, obtained by applying f. to the adjunction map K — ¢”¢"* K.

11

x <2 Xo
f lfs’
JJ J Vs
S<—U<L-g

We give some basic results on generic base change.

Lemma 8.1.3. (i) Let P : Y — Y be a presentation, and let the following diagram be
2-Cartesian:

x<Cxy

f| |7

Y=<——Y

Then for K € DY (X,A,) (resp. K € D} (X,\)), the formation of f.K commutes with
generic base change if and only if the formation of fLP*K commutes with generic base
change.

(ii) Let K' — K — K" — K'[1] be an exact triangle in D} (X, A,) (resp. DI (X, A)),
and let f : X — Y be an S-morphism. If the formations of f.K' and f.K" commute with
generic base change, then so is the formation of f.K.

(iii) Let f : X — Y be a schematic morphism, and let K € D?X}’L(X,A) for some
finite set L of isomorphism classes of simple Ag-modules on X. Then the formation of f,K
commutes with generic base change.

(iv) Let K € Df(X,A), and let j : U — X be an open immersion with complement
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1:2Z— X. Forg:S" — S, consider the following diagram obtained by base change:

U° 7 X ; °Z Yy
f
J« g’
N%

Suppose the base change morphisms

9 (f9)ed K — ([is)egii™ K,
G (i)' K — (flis)egsi K and

are isomorphisms, then the base change morphism ¢ f, K — fe.g"*K is also an isomor-
phism.

(v) Let f - X — Y be a schematic morphism of S-Artin stacks, and let K € DF="(X, A).
Then the formation of f. K commutes with generic base change on S.

(vi) Let f : X — Y be a morphism of S-Artin stacks, and let j : U — Y be an open
immersion with complement i : Z — Y. Let K € DY (X,A) (or DF(X,A,)). For a map
g:S"— S, consider the following diagram, in which the squares are 2-Cartesian:

-/ -/
Jgr tgr

XZ/{,S’( XS” )XZ,S’
g1 g"’ 9z
/ fug, / for /
XL{C y X M )XZ fZS,
j i
\L f \L Iz
fu Z/{S/( - yS’ - )ZS’a
9 I8! / b8! /
u/ y g )Z 9/2
i i

and assume that the base change morphisms

1% % 1% -1

G fund" K = fuggf i K and g3 fz0"K — fz g% K

are isomorphisms. Then after shrinking S, the base change morphism ¢"”* f. K — fs.g" K is
an isomorphism.
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Proof. (i) Given a map g : S" — S, consider the following diagram

1
9y

Xy s

Y

where all squares are 2-Cartesian. For the base change morphism ¢"”* f, K — fs.¢"*K to be
an isomorphism on Vg, it suffices for it to be an isomorphism locally on Ys . In the following

commutative diagram
Pék/g/*f*K - PS*,fS,*g//*K

(0)
(1) i@)

GPLE [ Phg K

(3)l (4)
VES /P/*K (5) !/ 1% /*K
ng* - fS/*gY )

(1) and (4) are canonical isomorphisms given by “P*g* ~ ¢*P*” (2) and (3) are canonical
isomorphisms given by “P*f, = f,P*”, which follows from the definition of f, on the lisse-
étale site. Therefore, (0) is an isomorphism if and only if (5) is an isomorphism.

(ii) This follows easily from the axioms of a triangulated category (or 5-lemma):

g/*f*K/ g/*f*K g/*f*KI/

P -

fS,*g/l* K/ fS/*g//*K fS,*g//*K/l .

(iii) By (i) we may assume that f : X — Y is a morphism of S-schemes. Note that the
property of being trivialized by a pair of the form ({X'}, £) is preserved when passing to a
presentation. By definition f.K is the class of the system ( f*[?n)n, so it suffices to show that
there exists a nonempty open subscheme of S over which the formation of f*IA(n commutes
with base change, for every n. By the spectral sequence

R f.#(K,) = R f.K,

and (ii), it suffices to show the existence of a nonempty open subset of S, over which the
formations of f,L commute with generic base change, for all L € L. This follows from ([11],
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Th. finitude).
(iv) Consider the commutative diagram

g’*f Gyl K fgx*g B0 K — 58 forwisngsi' K
0| @
g*(fi).i' K (fsris)gsi K.

(5)

(1) and (4) are canonical isomorphisms, (5) is an isomorphism by assumption, and (3) is the
base change morphism for i,, which is an isomorphism by ([27], 12.5.3), since i, = 4, (note
that 7, has finite cohomological dimension, so it is defined on complexes unbounded in both
directions). Therefore, (2) is an isomorphism. Similarly, consider the commutative diagram

/*f ,]*,] K — @) fS *g .]*,] K?fS’*]S/*guj K
| (@

g (fi)g K (fsrjs)«g7" K.

(5)

(1) and (4) are canonical isomorphisms, and (3) and (5) are isomorphisms by assumption,
so (2) is an isomorphism. Then applying (ii) to the exact triangle i,i'K — K — j,j*K —,
we are done.

(v) By (i), we may assume that f : X — Y is a morphism of S-schemes. Assume K
is trivialized by (., L), and let j : U — X be the immersion of an open stratum in .&
with complement ¢ : Z — X. Then j*K € D{U}l: ) (U, A), so by (iii), the formation of
J«(K|r) commutes with generic base change. This is the third base change isomorphism in
the assumption of (iv). By noetherian induction and (iv), we replace X by U and assume
that ./ = {X}. The result follows from (iii).

(vi) In the commutative diagrams

9" Jsfung* K Jsr Gyl Jun " K

@) e
g/*(fj/)*j/*KW (fS’jis‘/)*gzl,,{*]l*KE)js’*fusl*gzl,,{*j/*[{

and

. . . o
9" i fz" K is19% fzu1" K

™) |®

9" (fi) " K <5 (fari w95 1" K o isre [z, 095 1K,

(2), (5), (7) and (10) are canonical isomorphisms, (3) and (8) are isomorphisms by assump-
tion, (6) is an isomorphism by proper base change, and (1) is an isomorphism after shrinking
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S by (v). Therefore, (4) and (9) are isomorphisms. Also by (iii), the base change morphism
9" " K — jo.9 7" K becomes an isomorphism after shrinking S. Hence by (iv), the base

change morphism ¢ f, K — fs.g"*K is an isomorphism after shrinking S. O

8.1.4. For K € D_(X,A) and L € Df(X,A), and for a morphism ¢ : Y — X, the base
change morphism ¢* R omy (K, L) — R omy(g*K, g*L) is defined as follows. By adjunc-
tion (g*, g«), it corresponds to the morphism

R#omy(K,L) — g.R#omy(g"K,g*L) ~ R omy (K, g.g"L)
obtained by applying R# omy (K, —) to the adjunction morphism L — g¢.g*L.
The following is the main result of this section.

Theorem 8.1.5. (i) Let f : X — Y be a morphism of S-algebraic stacks. For every
K € D" (X, A) (resp. DF*"*(X A,)), the formation of f. K commutes with generic base
change on S.

(ii) For every K,L € D%X,A) (resp. D%X,A,)), the formation of R# omx(K,L)

commutes with generic base change on S.

Proof. (i) We can always replace a stack by its maximal reduced closed substack, so we will
assume all stacks in the proof are reduced.

Suppose K is (., L)-stratifiable for some pair (., £). By (8.1.3i,iii,iv), we can replace
Y by a presentation and replace X by an open stratum in ., to assume that ) =Y is a
scheme, that . = {X'}, that the relative inertia Z; is flat and has components over X’ ([3],
5.1.14), and let

X=Xty

be the rigidification with respect to Z;. Replacing X by the inverse image of an open dense
subscheme of the S-algebraic space X, we may assume X is a scheme. Let % = 7w,.K,
which is stratifiable (3.2.4). By (8.1.3v), the formation of b,.# commutes with generic base
change. To finish the proof, we shall show that the formation of 7, K commutes with generic
base change. As in the proof of (8.1.3iii), it suffices to show that there exists an open dense
subscheme of S, over which the formations of 7, L commute with any base change g : S" — U,
for all L € L.

By ([3], 5.1.5), 7 is smooth, so étale locally it has a section. By (8.1.3i) we may assume
that 7 : BG — X is a neutral gerbe, associated to a flat group space G/X. By (8.1.3vi)
we can use dévissage and shrink X to an open subscheme. Using the same technique as
the proof of (3.2.4), we can reduce to the case where G/X is smooth. For the reader’s
convenience, we briefly recall this reduction. Shrinking X, we may assume X is an integral
scheme with function field k(X), and G/X is a group scheme. There exists a finite field
extension L/k(X) such that Gieq is smooth over Spec L. Factor L/k(X) as a separable
extension L'/k(X) and a purely inseparable extension L/L’. Purely inseparable morphisms
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are universal homeomorphisms. By taking the normalization of X in these field extensions,
we get a finite generically étale surjection X’ — X, such that G.eq is generically smooth over
X'. Shrinking X and X’ we may assume X' — X is an étale surjection, and replacing X
by X’ (8.1.3i) we may assume G,eq is generically smooth over X, and shrinking X we may
assume Gheq is smooth over X. Replacing G by Greq (since the morphism BGreq — BG is
representable and radicial) one can assume G/ X is smooth.

Now P : X — BG is a presentation. Consider the associated smooth hypercover, and let
fi : G* — X be the structural maps. We have the spectral sequence ([27], 10.0.9)

R fi ffP*L = R™n,L.

As in the proof of (3.2.4), we can regard the map f; as a product [[, fi and apply Kiinneth
formula (shrinking X we can assume X is affine, so X satisfies the condition (LO), and we
can apply ([27], 11.0.14))

fisfi P*L = fi. f{ P*L @ frlho @ -+ % fr.\o.

Shrink S so that the formations of fi,f;P*L and fi.Ay; commute with any base change on
S. From the base change morphism of the spectral sequences

G R fiufiPPL g R*n.L

|
A ((g* frofTP*L) ®F, (9" frelho) @F, -+ @5, (9" fredho))
|~ M
A ((freg” [T P*L) ®@F, (freg™Do) @F, - @, (f1.g"Mo))
|
A ((frefrP g L) ®F, (frlho) @F, -~ @K, (frsho))

R fi frP*g*L Ritir,g*L

we see that the base change morphism (1) is an isomorphism.

(i) For K and L € D% X, A), the complex R7#om(K, L) is defined to be the image in
D (X, A) of the projective system Rs#omy, (f? ; Z), so we only need to prove the case where
K and L are in D%(X, A,,).

Note that for an algebraic stack X, R omy takes D%°P x DY into DP. To see this, take
a presentation P : X — X of relative dimension d, for some locally constant function d on
X. For bounded complexes K and L on X, to show R omx (K, L) is bounded, it suffices
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to show that P*RZomy (K, L) is bounded. We have
P*R#omy(K,L) = PPR#omy(K,L)(—d) = R# omx(P*K, P'L)(—d)
= R omx(P*K, P*L),
which is bounded on X.

Let g : S — S be any morphism, and consider the 2-Cartesian diagrams

/
XS’ L) XS/ — g

R
X—>X—5.

For the base change morphism
g"RAomy(K,L) — RA# omy, (9" K,g"L)

to be an isomorphism, we can check it locally on Xg . Consider the commutative diagram

P RA om (K, L) —=—= P"RA oz, (9" K, g" L)

)| |®

g"*P*R#omx(K, L) RComx,, (P*g*K,P*g*L)

@] B
g”*R%()mX(P*Ku P*L)LRﬁome/(gﬂ*P*K, g”*P*L)a

where (2) and (5) are canonical isomorphisms, (3) and (4) are proved to be isomorphisms
above, and (6) is an isomorphism after shrinking S ([11], Th. finitude, 2.10). Therefore (1)
is an isomorphism after shrinking S. O

Remark 8.1.5.1. This result generalizes ([35], 9.10ii), in that the open subscheme in S can
be chosen to be independent of the index i as in R*f,F.

8.2 Complex analytic stacks.

In this section, we give some fundamental results on constructible sheaves and derived
categories on the lisse-analytic topos of the analytification of a complex algebraic stack, and
prove a comparison between the lisse-étale topos and the lisse-analytic topos of the stack.
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8.2.1 Lisse-analytic topos.

For the definition of analytic stacks, we follow [32, 37]. Strictly speaking, Toen only
discussed analytic Deligne-Mumford stacks in [37], and Noohi only discussed topological
stacks in [32] (and mentioned analytic stacks briefly). I believe that they could have done
the theory of analytic stacks in their papers. For completeness, we give a definition as follows.

Definition 8.2.1.1. Let Ana-Sp be the site of complex analytic spaces with the analytic
topology. A stack X over this site is called an analytic stack, if the following hold:
(i) the diagonal A : X — X x X is representible (by analytic spaces) and quasi-compact,
(i) there exists an analytic smooth surjection P : X — X, where X is an analytic space.

8.2.1.2. Similar to the lisse-étale topos of an algebraic stack, one can define the lisse-analytic
topos Xjsan Of an analytic stack X to be the topos associated to the lisse-analytic site
Lis-an(X) defined as follows:

e Objects: pairs (U,u : U — X), where U is an complex analytic space and u is a smooth
morphism (or an analytic submersion, in the topological terminology);

e Morphisms: a morphism (U,u € X(U)) — (V,v € X(V)) is given by a pair (f, ),
where f : U — V is a morphism of analytic spaces and « : vf = u is a 2-isomorphism in
xX(U);

e Open coverings: {(j;, ) : (Ui, u; € X(U;)) — (U,u € X(U)) }ier is an open covering if
the maps j;’s are open immersions of analytic subspaces and their images cover U.

To give a sheaf F' € Xjis.an is equivalent to giving the data

e for every (U, u) € Lis-an(X), a sheaf F, in the analytic topos Uy, of U, and

e for every morphism (f,«) : (U,u) — (V,v), a morphism f*: f~'F, — F,.

The sheaf F' is Cartesian if f* is an isomorphism, for every (f, a). By abuse of notation,
we will also denote “F,” by “Fy”, if there is no confusion about the reference to u.

This topos is equivalent to the “lisse-étale” topos Xjs.¢ associated to the site Lis-ét(%)
with the same underlying category as that of Lis-an(X), but the open coverings are surjective
families of local isomorphisms. This is because the two topologies are cofinal: for a local
isomorphism V' — U of analytic spaces, there exists an open covering {V; C V}; of V by
analytic subspaces, such that for each i, the composition V; C V' — U is isomorphic to the
natural map from a disjoint union of open analytic subspaces of U to U.

8.2.2 Locally constant sheaves and constructible sheaves.

For a sheaf on the analytic site of an analytic space, we say that the sheaf is locally
constant constructible, abbreviated as lcc, if it is locally constant with respect to the analytic
topology, and has finite stalks.

Let X be an analytic stack. For a Cartesian sheaf F' € Xjqan, We say that F' is locally
constant (resp. lcc) if the conditions in the following (8.2.2.1) hold. This lemma is an
analytic version of ([35], 9.1).
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Lemma 8.2.2.1. Let F' € Xjis.an be a Cartesian sheaf. Then the following are equivalent.
(i) For every (U,u) € Lis-an(X), the sheaf Fy; is locally constant (resp. lcc).
(ii) There exists an analytic presentation P : X — X such that Fx is locally constant
(resp. lcc).

Proof. 1t suffices to show that (ii)=(i), which is similar to that of ([35], 9.1). There exists
an open covering U = UU;, such that over each U;, the smooth surjection X Xpx, U — U
has a section s; :

X xxU—X

7
Si
s

UC U———X.

Therefore Fy, ~ s} Fxy v, which is locally constant (resp. lcc). O

8.2.2.2. Let X be a complex algebraic stack. Following ([32], 20), one can define its associ-
ated analytic stack X" as follows. If X; = Xy — X is a smooth groupoid presentation, then
X" is defined to be the analytic stack given by the presentation X{" = Xj", and it can be
proved that this is independent of the choice of the presentation, up to an isomorphism that
is unique up to 2-isomorphism. Similarly, for a morphism f : X — ) of complex algebraic
stacks, one can choose their presentations so that f lifts to a morphism of groupoids, hence
induces a morphism of their analytifications, denoted f2" : X*" — Y*". The analytification
functor preserves 2-Cartesian products.

8.2.2.3. Let X = A®" for a complex algebraic stack X, and let P : X — X be a pre-
sentation. For a Cartesian sheaf F' € Xjs .., we say that F is constructible, if for every
(U,u) € Lis-ét(X), the sheaf Fyan is constructible, i.e. lcc on each stratum in an algebraic
stratification of the analytic space U".

One could also define a notion of analytic constructibility, using analytic stratifications
rather than algebraic ones, but this notion will not give us a comparison between the con-
structible derived categories of the lisse-étale topos and of the lisse-analytic topos.

Lemma 8.2.2.4. Let F' € Xjis.an be a Cartesian sheaf. Then the following are equivalent.
(i) F is constructible.
(7i) Fxan is constructible on X** (in the algebraic sense above).
(iii) There exists an algebraic stratification /" on X, such that for each stratum U®",
the sheaf Fyan s lcc.

Proof. (i)=-(ii) is clear.

(il)=(iii). Let #x be a stratification of the scheme X, such that for each U € .#x, the
sheaf Fyan is lcc. Let U be an open stratum, and let V' be the image of U under the map P;
then V' is an open substack of X', and Py : U — V is a presentation. Let V' — V2" be an
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analytic presentation. There exists an analytic open covering V' = UV}, over which Pj" has
a section:

Uan( > Xan
7
i’L ~ Pl(}’fb ipan
‘/;’Q) V/ s Van(_> %7

so Fyr ~ 7' Fyan is lcc, therefore Fys (and hence Fyan, by (8.2.2.1)) is lec. Note that
X — P7YV) — X — V gives an algebraic presentation of (X — V)™ =X — V" and

(F|x,van)(X7P—l(V))an >~ FXan‘(Xip—l(V))an

is still constructible, so by noetherian induction we are done.
(iii)=-(i). Let (U,u) € Lis-ét(&X’). Then u**.7*" = (u*.)* is an algebraic stratification
of U?", and it is clear that Fyan is lcc on each stratum of this stratification. O

8.2.2.5. A constructible \,,-module on Xy .n is a A,-sheaf, which is constructible as a sheaf
of sets. They form a full subcategory of Mod(X, A,,) that is closed under kernels, cokernels
and extensions (i.e. it is a Serre subcategory). It suffices to show that Cartesian sheaves
form a Serre subcategory, because lcc A,,-modules form a Serre subcategory, and one can use
(8.2.2.4ii).

Let (f,«) : (U u) — (V,v) be a morphism in Lis-an(X). Note that the functor F' — f*F :
Mod(Van, Ap) — Mod(Uan, Ay) is exact, because f*F = Apy @15, , f7'F = f7'F. Let a:
F — G be a morphism of Cartesian sheaves. Then Ker(f*ay : f*Fy — f*Gy) = f*Ker(ay),
and it is clear that the induced morphism f*Ker(ay) — Ker(ay) is an isomorphism:

f*KeI'(CL\/> f*FV Ty f*GV

i AU

Ker(ay) Fy ——=Gy.

The proof for cokernels and extensions (using 5-lemma) is similar. One can also mimic the
proof in ([35], 3.8, 3.9) to prove a similar statement for analytic stacks, in the more general
situation where the coefficient ring is a flat sheaf. In this chapter, we will only need the case
of a constant coefficient ring.

8.2.3 Derived categories.

8.2.3.1. Again assume X = X*". Let D(Xjsan, An) be the ordinary derived category of
A,-modules on X. By (8.2.2.5), we have the triangulated subcategory D.(Xjis.an, An) of com-
plexes with constructible cohomology sheaves. We follow [27] and define the derived category
D(Xiis.an, A) of constructible A-adic sheaves (by abuse of language, as usual) as follows. A
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complex of projective systems K in the ordinary derived category Z(XL, ., A,) of the sim-
plicial topos Xl ringed by Ay = (A,,),, is called a A-complez if for every i and n, the sheaf
H'(K,,) is constructible and the cohomology system #(K) is AR-adic. A A-module is a
A-complex concentrated in degree 0. Then we define D.(Xjis.an, A) to be the quotient of the
full subcategory Z.(XL. ., A.) of A\-complexes by the full subcategory of AR-null complexes
(i.e. those with AR-null cohomology systems).

This quotient has a natural ¢-structure, and we define the category A-Sh.(X) of con-
structible A-adic sheaves on Xjis_an to be its core, namely the quotient of the AR~adic projec-
tive systems with constructible components by the thick full subcategory of AR-null systems.
By ([16], p.234), this is equivalent to the category of adic systems, i.e. those projective sys-
tems F' = (F,),, such that for each n, F), is a constructible A,-module on Xjisa,, and the
induced morphism F,, ®,, A,_1 — F,_1 is an isomorphism.

Using localization and 2-colimit, one can also define the categories D.(Xjs.an, F\) and
D.(Xyisan, @g)7 and their cores, the categories of constructible E) or @E-Sheaves on Xisan-

8.2.3.2. Let Mod(X, C) be the category of sheaves of C-vector spaces on Xy an, with C-linear
morphisms, and define the category Mod.(X, C) of constructible Cx-modules to be the full
subcategory of Mod (X, C) consisting of those sheaves M, such that there exists an algebraic
stratification . of X, over each stratum of which M is locally constant, and stalks of M are
finite dimensional C-vector spaces. Note that, in order for M|y to be constant, we may have
to refine . to an analytic stratification that is not necessarily algebraic. Then we define
D.(Xjis.an, C) to be the full subcategory of the ordinary derived category of Cx-modules,
consisting of those sheaf complexes with constructible cohomology sheaves. The core of the
natural t-structure on D.(Xjs an, C) is Mod.(X, C).

Similarly, one can also define the category 9t0d.(Ax) of constructible Ax-modules, i.e. Ax-
sheaves for which there exists an algebraic stratification of X, such that over each stratum
the sheaf is locally constant, and stalks are finitely generated A-modules. Then we define
De(Xjisan, N) (and also with E\- and Q,-coefficients) to be the full subcategory of the ordinary
derived category (denoted Z(Xjis.an, A)) of Ax-modules, consisting of those with constructible
cohomology. In (8.2.5.4), we will show that the two derived categories D.(Xjsan, A) and
D.(Xjis.an, A) are equivalent.

For simplicity, for any coefficient 2, we will usually drop “lis-an” in D.(X}is.an, €2), if there
is no confusion. Also we will drop “lis-ét” in D, (Xjis.et, €2)-

In the following lemma, we show that the category A-Sh.(X) admits a similar description
as Mod.(%, C).

Lemma 8.2.3.3. There is a natural equivalence between A-Sh.(X) and 9Mod.(Ax).

Proof. Firstly, we define the functor ¢ : A-Sh.(X) — 9Mod.(Ax). Let F' = (F},),, be an adic
sheaf on Xjis an, and define ¢(F) to be @n(Fn)n For a morphism b : F' — G of adic sheaves,
define ¢(b) to be the induced morphism on their inverse limits.
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Then we show it is well-defined. Let P : X — X be a presentation. Then Fxan :=
(F, xan)p is an adic sheaf on X?". By the comparison ([4], 6.1.2, (A”)), Fxan is algebraic, i.e.
it comes from a constructible A-adic sheaf G on X¢;. Since X is noetherian, G is lisse over
the strata of a stratification .#x of X. Let U € .¥x be an open stratum, and let V' be its
image under P. Then V C X is an open substack and Py : U — V is a presentation. We
have (Gp)™ = ¢(F)yam = P (¢(F)yan), and it is the A-local system on U(C) obtained
by restricting the continuous representation pg,, of 7$'(U, %) corresponding to the lisse sheaf
Gy to M (U™ 7) :

. P
AP (U ) — 1 (U, ) —

GL(Gua).

The sheaf ¢(F')yan is locally constant because U is covered by contractible analytic open
subspaces.

As in the proof of (8.2.2.4), one can take an analytic presentation V' — V?" and cover
the analytic space V' by analytic open subspaces V/, such that P3" has a section s; over each
V!, and so ¢(F )Vi, is locally constant with stalks finitely generated A-modules, and the same
is true for ¢(F)yan. Finally apply noetherian induction to the complement X — V?" to finish
the proof that ¢ is well-defined.

Then we define a functor ¢ : 9Mod.(Ax) — A-Sh.(X). Given a Ag-module M, let M, =
M ®p A, and define ¥(M) to be the adic system (M,),. For a morphism ¢ : M — N of
constructible Ax-modules, define ¢(c), to be ¢ ® A,,.

We need to show (M) gives a constructible A-adic sheaf on Xjs ay. It is clearly adic. To
show each M, is constructible, by (8.2.2.4), it suffices to show that there exists an algebraic
stratification of X, such that over each stratum M,, is lcc. This follows from the definition
of MODC(A;{)

Finally, note that ¢ and v are quasi-inverse to each other. O]

8.2.4 Comparison between the derived categories of lisse-étale and
lisse-analytic topoi.

Given an algebraic stack X' /C, let X = X*" and let P : X — X be a presentation, with

analytification P*" : X" — X. Let € : X, — X be the associated strictly simplicial smooth

hypercover, and let €*" : X" — X be the analytification. They induce morphisms of topoi,
denoted by the same symbol. Consider the following morphisms of topoi:

,yan 62.1ﬂ an
%lis—an < %lis—an|X§”‘ > Xo,an
W
\Lg.

v e
‘)(lis-ét < ')(lis-ét ‘X. > Xo,ét-

\\_e__//
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Following ([27], 10.0.6), we define the derived category D.(X2", A) as follows. A sheaf F' €
Mod(X3™", A.) is AR-adic if it is Cartesian (in the e-direction) and F|ymn is AR-adic
for every n. A complex C' € 2(X2N A,) is a A-complex (resp. an AR-null complez) if
the cohomology sheaf 7 (C) is AR-adic and (C,,)|xan is constructible, for every i,m,n
(resp. C|xan is AR-null, for every n). Finally we define D (X", A) to be the quotient of
the full subcategory Z.(X2™N A,) C 2(X2™N A,) consisting of all A\-complexes by the full
subcategory of AR-null complexes.

Using the diagram above, we will show that Re, o R, , o €™* gives an equivalence be-
tween D.(X,A) and D.(X,A), and it is compatible with pushforwards. It is proved in ([27],
10.0.8) that, (e*, Re,) induce an equivalence between the triangulated categories D (X, A)
and D.(X,,A). We mimic the proof to give a proof of the analytic analogue.

Proposition 8.2.4.1. (i) The functors (e*™*, Re?™) induce an equivalence between the tri-
angulated categories D.(X,A) and D.(XZ", A).

(ii) Let X be a C-scheme, and let §& : X* — Xg be the natural morphism of topoi.
Then RE, is defined on the unbounded derived category, and the functors (£*, RE,) induce an
equivalence between D (X, A) and D.(X, A).

(iii) Let f: X — Y be a morphism of C-schemes, and let {x, &y be as in (ii). Then for
every ' € DI (X, A), the natural morphism

G fF — [PETE)
18 an isomorphism.

Proof. (i) Firstly, note that 02% : Ab(Xjis.an|xan) — Ab(XEh,) is exact, since the topologies

e®.an
are the same. So in fact, R;%, = d7%,. The functor 4;", is the restriction functor, and ;™

n,*

takes a sheaf F' € X2 to the sheaf 02™*F that assigns to the object

n,an

U—=X"

N

X

the sheaf u*F on Uyy. It is clear that (d;™*, 05", ) induce an equivalence between the category
Modeart (X|xan, A) of Cartesian sheaves on the localized topos X|xa» and Mod (X", A,,).
For K € D(X2",A,,), we see that the adjunction morphism

K —s §an ganx g~

is an isomorphism by applying 7 :
%ZK N %i((gan 5an’*K) ~ gan 5&11,*%1‘(}()7

nakon nkon
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noting that §3%, is exact. Similarly, if K € D(X[xan, Ay,) has Cartesian cohomology sheaves,
the coadjunction morphism
oo K — K

is an isomorphism. Hence (05™*,6;",) induce an equivalence
Dcart(x|X§m7 Am) « D(Xfmy Am)

We will show later that constructible sheaves form a Serre subcategory in Mod(X|xan, A;y,),
and then it is also clear that (§2™*, (5'ff}k) gives an equivalence

De(X[xzn, Am) < De(X3", Ay).

To show v** induces an equivalence on the torsion level A,,, we will apply ([26], 2.2.3).
For the morphism 7" : (Xjis.an|xan, Am) — (Xlisan, Am ), all the transition morphisms of topoi
in the strictly simplicial ringed topos (Xys.an|xan, Arm) as well as 4** are flat. Let € be the
category of constructible A,,-modules on Xjis ., which is a Serre subcategory (8.2.2.5). We
need to verify the assumption ([26], 2.2.1), which has two parts.

e ([26], 2.1.2) for the ringed site (Lis-an(X)|xan, Ay,) with € = constructible A,,-modules.
This means, for every object U in this site, we need to show that there exist an analytic
open covering U = UU; and an integer ng, such that for every constructible A,,-module F
on this site and n > ng, we have H"(U;, F') = 0. This follows from ([13], 3.1.5, 3.4.1).

o 1 ¢ — %, is an equivalence with quasi-inverse Ry2". Here %, is the essential
image of € under y*™* : Mod(X, A,;,) — Mod(X|xan, A;,), called the category of constructible
sheaves in the target. Recall that, an object in Mod(X|xan, Ay,) is given by a family of
objects F; € Mod(X|xan,A,,) indexed by 4, together with transition morphisms a*F; — F;
for each a : i — j in the strictly simplicial set A™°P. Consider the commutative diagram

Xan 4 Xan

N

For F' € Mod(X, Ay,), its image y** F'is given by F; = Fyan € Mod(X{™, Ay,) >~ Modcart (X[ xan, Ar),
and the transition morphisms a*F; — F; are part of the data in the definition of F. One can
prove the analytic version of ([35], 4.4, 4.5) stated as follows.

Let Des(X®* /X, A,,) be the category of pairs (F,«), where F' € Mod(X*" A,,), and
a : piF — p3F is an isomorphism on the analytic topos X{%, (where p; and p, are the
natural projections X = Xj" = X?"), such that pi;(a) = pi;(a) o piy(a) : piF — piF
on X3". Here p; : Xy — X, are the natural projections. There is a natural functor A :
Modeart (%, Ay) — Des(X?* /X, A,,), sending M to (F,«), where F' = Myan and « is the
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composite
* *\—1
PiF —2s My W pyF.
There is also a natural functor B : Modeat (X2, A,,) — Des(X?* /X, A,,,) sending F' = (F});
to (Fy, ), where « is the composite

—1
* can can %
p1Fo Fy 5 Fo,

and the cocycle condition is verified as in ([35], 4.5.4).

Lemma 8.2.4.2. The natural functors in the diagram

MOdcart<X:m7 Am) & MOdcart<Xfm7+a Am)

Ean,*T lB
A

Modears (X, Arn) Des(X* /%, A,,)

are all equivalences, and the diagram is commutative up to natural isomorphism.

The proof in ([35], 4.4, 4.5) carries verbatim to analytic stacks, so we do not write
down the proof again. This finishes the verification of ([26], 2.2.1). In particular, €, =
Modars (X|xz0, Am) is a Serre subcategory ([26], 2.2.2), so as we mentioned before, (63", 63%)
give an equivalence

Do(X|xan, Am) < Do(X2", Ar).
By ([26], 2.2.3), the functors (v*™*, Ry2") induce an equivalence

DC(:{, Am) — DC(X|X';1H, Am)

It is clear that the composition of equivalences

an

an,x 50 *
De(%, Ap) T Do(X|x3n, M) = Do(X2, A,y

an,*

is just € (they are both restrictions). Since 67", is the quasi-inverse of 63", it is both a
left adjoint and a right adjoint of §™*. This implies that Re?™ = Ry2" o 3™* and it is a

quasi-inverse of the equivalence
€ Do(X,Ay) — Do(X3™, Ay

Note that for M € 2.(XN,A,) (resp. Z.(X2N A,)), each level M, is in D.(X, A,,) (resp.
D.(X&,A.,)), and the property of M being AR-adic (resp. AR-null) is intrinsic ([16], V,
3.2.3). So the notions of AR-adic (resp. AR-null) on the two sides correspond under this



106

equivalence. Therefore, we get equivalences
(€™ Re™) : Du(XN, Ay) = Do(X2NAL)

and
(™" Re™) : Do(X,A) < D.(X2 A).

(ii) This is a generalization of ([4], 6.1.2 (B”)), which says that &* : D%(X,A) —
Db(X® A) is an equivalence. We prove it on the torsion level first.
For a A,-module G on X", the sheaf R'¢,G on Xy is the sheafification of the presheaf

(U — X) — H(U™ G).

By ([13], 3.1.5, 3.4.1), R'¢.G = 0 for all sheaves G and all i > 1+2dim¢ X, so RE, has finite
cohomological dimension, hence it extends to a functor

RE, : D(X™ A,) — D(X,Ay).

It takes the full subcategory D.(X?", A,) into D (X, A,), since for any i there exist integers
a and b such that R'¢,G = R'¢, 7, 4G.

Given F' € D.(X,A,), we want to show that the adjunction morphism F — RE.E*F is
an isomorphism. Recall that £* is the analytification functor, which is exact. For each 7 € N,
we want to show the morphism

H'F — REEF
is an isomorphism. Consider the spectral sequence
RPEE A = RFTIGEE,
where RPEE*HIF is the sheafification of the functor
(U — X)— HV(U™, ) = HP(U™, (A1F)™).

By the comparison theorem of Artin ([1], XVI, 4.1), we have H?(U*", (#€1F)*) = HP(U, #1F),
and this presheaf sheafifies to zero if p > 0 ([29], 10.4). When p = 0, the sheafification is
obviously JZ7F. Therefore, the spectral sequence degenerates to isomorphisms

HF = 5*5*%ZF = Rif*g*F,

and the adjunction morphism is an isomorphism.
Given G € D.(X*,A,), we want to show that the coadjunction morphism £*R{.G — G
is an isomorphism. Consider the spectral sequence

ERPEHIG = CFRPTIEG,
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where £* RPE, 771G is the analytification of the sheafification of the presheaf on Et(X )
(U — X) — HP(U™, 2G).

By the comparison ([4], 6.1.2 (A)), the constructible A,-sheaf J#9G is algebraic, therefore
by Artin’s comparison theorem ([1], XVI, 4.1) again, £*RPE,#71G = 0 for p > 0, and the
spectral sequence degenerates to isomorphisms

G =EHG ~ EREG.
This proves that we have an equivalence

(&, RE) - D (X A,) < DX, Ay)

for each n. As in the proof of (i), the notions of being AR-adic (resp. AR-null) for complexes
in 2(X*N A,) and in 2(X"Y, A,) are the same, therefore, we have equivalences

(€% RE) + Zo(X™ Na) = Z(XY, M)

and
(£*>R€*) : DC(XanaA) — D, (X, A).

(iii) Applying 2" on both sides, we should show that
R fF — RfP(EF)

is an isomorphism. Replacing F' by various levels E, of its normalization, we reduce to the
case where F' € DF (X, A,,). We know that f. and f> have finite cohomological dimension
(for instance by generic base change), so one can replace F' by 71,5, F and reduce to the case
where F'is bounded. Taking truncations again and using 5-lemma, we reduce to the case
where F' is a constructible A,-sheaf, and this follows from Artin’s comparison ([1], XVI,
4.1). O

8.2.4.3. Let f : X — Y be a morphism of C-algebraic stacks. Choose a commutative
diagram

X, v,
€x \Ley
x 1.y
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Then by construction, the diagram

an,*

DF(X, )~ DF (X", A)

an Tan
* *
an,

DF(9,A) = DF (Y™, A)

commutes. On the algebraic side, the equivalence €¢* is also compatible with taking coho-
mology (cf. [27], p.202). As a summary, we have the following commutative diagram

an,x

€x 5}. 6;\’
D (%,A) == Df (X2 A)<— D} (X,,A\) <= D} (X,A)

l . lf ifl if*
DI, A) o DEYVI ) <o — D (Yo, A) <= DV, A),

C *
bY &ve

where the horizontal arrows are all equivalences of triangulated categories.

8.2.5 Comparison between the two derived categories on the lisse-
analytic topos.

In (8.2.3.1) and (8.2.3.2), we defined two derived categories, denoted D.(X,A) and
(%, \) respectively. Before proving they are equivalent, we give some preparation on
the analytic analogues of some concepts and results in [27].

8.2.5.1. As in [14], let 7 : XN — X be the morphism of topoi, with m, = lim. We have
derived functors Rm. and L7* between 2(X",A,) and 2(X,A). Denote Mod(X", A,) by
o/ (X) or just <.

Lemma 8.2.5.2. Let M be an AR-null complex in 9 (/). Then Rr,M = 0.

Proof. Each of (M) and 7-;M is AR-null, so by ([14], 1.1) we have Rm, 7" (M) =
Rm,m~;M = 0. By ([13], 3.1.5, 3.4.1), the assumption ([26], 2.1.7) for the ringed topoi
(Xlis-an, An) with €, = all A,-sheaves is satisfied, so by ([26], 2.1.10) we have Rr,M =0. O

Therefore the functor Rm, : Z.(«/) — Z.(X,A) factors through the quotient category
D.(X,A) :
R,

Do) —2= Do(X, N) 22 9,(%, N) > (7).

One can also define the normalization functor to be K — K := Lr*Rm, K. For M € D (),
we will also write M for Q(M), if there is no confusion. A complex M is normalized if the

natural map M — M is an isomorphism. The analytic versions of ([27], 2.2.1, 3.0.11, 3.0.10)
hold, as we state in the following.
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Proposition 8.2.5.3. (i) For U — X in Lis-an(X) and M € 2(</ (X)), we have Rm,(My) =
(Rm. M)y in D(Uan, N).

(i1) For U — X in Lis-an(X) and M € 2(X,A), we have L7*(My) = (L7*M)y in
D (A (Uan)).

(i1i) For M € 9(<f (X)), it is normalized if and only if the natural map

L
Mn ®An An,1 — Mn,1
s an isomorphism for each n.

They can be proved in the same way as in [27], and we do not repeat the proof here.

Proposition 8.2.5.4. (i) The functors (Q o L7*, Rm,) induce an equivalence D.(X,A)
D.(%,N).

(ii) Let f : X — Y be a morphism of complex algebraic stacks, and let f** : X — Q) be
its analytification. Then the following diagram commutes:

RWX,*

DI (X,A) —= 71 (X, A)

C

N B

DHD,A) 222 95(9, A),

Proof. (i) We will show that the adjunction and coadjunction maps are isomorphisms. For
coadjunction maps, this is an analogue of ([27], 3.0.14).

Lemma 8.2.5.5. Let M € 2.(XN,A,). Then M s constructible and the coadjunction map
M — M has an AR-null cone. In particular, M € Z.(XN, A,).

Proof. 1t can be proved in the same way as ([27], 3.0.14). We go over the proof briefly.

Let P: X — X be an algebraic presentation, i.e. the analytification of a presentation of
the algebraic stack X'. By (8.2.5.3), the restriction of the natural map M — M to X gives
the natural map N — N in 2(« (X)), where N = M|x. It suffices to show the cone of
N — Nis AR~null, and M is Cartesian.

1. By ([13], 3.1.5, 3.4.1) and ([27], 2.1.i), the cohomological dimension of R, on X,, is
finite. Since L7* also has finite cohomological dimension, the same is true for the normal-
ization functor, namely there exists an integer d, such that for every a and N € 2=¢(XV)
(resp. 2<%(XM)), we have N € 2294(XN) (resp. Z=*t4(XxN)).

2. One reduces to the case where N is a A-module. This is because

HN) = A (751 ar<iraN)

and hence one can assume N is bounded, and then a A-module.
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3. One reduces to the case where N is an adic system. There exists an adic system K
with an AR-isomorphism K — N, whose normalization K — N is an isomorphism (8.2.5.2).

4. By comparison ([4], 6.1.2 (A”)), the adic system N on X is algebraic, so by ([11],
Rapport sur la formule des traces, 2.8) there exists an ngy such that N/Ker(A\") is torsion-
free. Hence one reduces to two cases: N is torsion-free, or A" N = 0.

5. Assume N is torsion-free and adic. Then the component N, is flat over A,,, for each
n, and the natural map

Nn ®ﬁn An—l x~ Nn ®An An—l :> Nn—l

is an isomorphism, i.e. N is normalized. Then the cone of N — N is zero.
6. Assume AN = 0. One reduces to the case where ny = 1 by considering the \-
filtration. This means the map

(Nn)n - (Nn/)‘Nn)n = (NO)n

is an AR-isomorphism, so N and 7*Ny = (Vg), have the same normalization. Note that
Rm.(No)n = No ([27], 2.2.3), hence TNy = L1*N. By (8.2.2.4), Ny is lcc on each stratum
of an algebraic stratification of X, and one can check if L7*Ny — 7* Ny is an isomorphism
on each stratum. By ([4], 6.1.2 (A")), Ny is algebraic, and one can replace each stratum by
an étale cover on which Ny is constant. Finally by additivity we reduce to the case Ny = Ag,
which is proved by computing L7*Aq via the 2-term flat A-resolution of Ay (cf. ([27], 3.0.10)).

The proof for M being Cartesian is also the same as ([27], 3.0.14) (note that the analytic
version of ([27], 3.0.13) holds). Let us not to repeat it here.

In particular, M € P.(</ (X)), since the cone (which is AR-null) is AR-adic, and -

complexes form a triangulated subcategory. O

We prove that the adjunction map is an isomorphism in the following lemma. This will
be the crucial step; it only holds in the analytic category.

Lemma 8.2.5.6. Let M € 2.(X,A). Then the adjunction map M — Rm,Lw*M is an
isomorphism.

Proof. For simplicity, let us denote R, L7*M by M. Note that if M’ — M — M" — M'[1]
is an exact triangle, and the adjunction maps for M’ and M" are isomorphisms, then the
same holds for M, since M’ — M — M" — M’[1] is also an exact triangle.

1. That the map M — M is an isomorphism is a local property, since it is equivalent to
the vanishing of all the cohomology sheaves of the cone, which can be checked locally. So
we may replace X by the algebraic presentation X.

2. On the analytic topos X,,, the functor Rm, has finite cohomological dimension ([27],
2.1.i). Then as explained in (8.2.5.5), since the functor M + M has finite cohomological
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dimension, one reduces to the case where M is a constructible A y-module. This case follows
from ([4], 6.1.2 (B")), but for the reader’s convenience, we continue to finish the proof.

By (8.2.3.3), M is the limit of some adic sheaf F' € A-Sh.(X,,), and by comparison ([4],
6.1.2 (A")) we see that F is algebraic. Therefore by ([11], Rapport sur la formule des traces,
2.8), we reduce to two cases: M is torsion-free (i.e. stalks are free A-modules of finite type),
or M is killed by A. The second case follows from ([27], 2.2.3).

3. Assume M is a torsion-free constructible sheaf. We want to use noetherian induction
to reduce to the case where M is locally constant. Let j : U < X be the open immersion of
a Zariski open subspace over which M is locally constant (by definition; see (8.2.3.3)), and
let ¢ : Z — X be the complement. Consider the exact triangle

Z*F%M%R]*MU%’

where F = Ri'M € D.(Z,, ). Tt suffices to show that the adjunction maps for i, F and
Rj. M, are isomorphisms.
We have the following commutative diagram of topoi
N

N _* | N
Zan Xan

~z| |

)
Zan > Xam

s0 Rrx, ol ~ i, 0 Rry,. Also Lr% oi, ~ il o L7}, since i, is just extension by zero,

and i, (F ®@% A,) ~ i.F ®@% A,,. Therefore, the adjunction map for i, /' on X is obtained by
applying ¢, to the adjunction map for F' on 7 :

i — Rrx  Lrnyi, F ~i,Rry Ln,F,

which is an isomorphism by noetherian hypothesis.
We have the commutative diagram of topoi

N
N _J | N
Uan Xan

) |

J
Uan X an»

so Rrx. o RjY ~ Rj, o Rmy.. Also RjY o L}, ~ Lr% o Rj,. For each n we have a natural

morphism A, @k Rj.F — Rj.(F @k A,). Let P* be the flat A-resolution 0 — A YA A,
of A, and let ' — [°® be an injective resolution of the sheaf F. Then I®* ®, P*® is also a
complex of injectives, and it is clear that j,(I*® P*) = j.(I*)® P°®. Therefore, the adjunction
map for Rj, My on X is obtained by applying Rj, to the adjunction map for My on U. Hence
we reduce to the case where M is a locally constant sheaf on X.
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4. Since the question is local for the analytic topology, we may cover X by analytic open
subspaces over which M is constant, and hence reduce to the case where M is constant,
defined by a free module A" of finite rank. By additivity we may assume M = A. Then
Lr*A = (A,),, and 7. (A,,), = lim(A,,),, = A. To finish the proof, we shall show R'7,(A,), =

<_
0 for ¢ # 0.
Recall that Rim,(A,), is the sheafification of the presheaf on X,,

U H (U, (A,),)-
Consider the exact sequence ([27], 2.1.1)
0— R'lim H~Y(U, A) — H'(7*U, Ay) — lim H*(U, A,,) — 0.

Since X is locally contractible, and R! @HU(U, A,) = R! @A. = 0 for U connected, we
see tha‘g the sheafification R, A, is zero for i # 0. This proves that the adjunction morphism
M — M is an isomorphism. O

Therefore, (Q o L7*, R,) induce an equivalence between D.(X,A) and Z.(X, A).

(i) If X, — X is a strictly simplicial algebraic smooth hypercover, we have D.(X,A) ~
D.(X.,A) by (8.2.4.1i). Similarly, Z.(%X,A) is naturally equivalent to Z.(X,, A). This can
be proved in the same way as we prove “D.(X,A,,) >~ D.(X2",A,,)” in (8.2.4.1).

So we may assume that X = X is the analytic space associated to an algebraic scheme.
By definition of Rm,, it suffices to show the following diagram commutes

RWX,*

DA (X)) —= 2 (X, A)

fﬁi . lf*
2H(A(Y)) —= 25 (Y, A),

and this follows from the commutativity of the diagram of topoi

N _™x
Xan Xan

| if

Y = Yo
Note that the corresponding diagram for f : X — %) does not even make sense, since if f is

not smooth, it does not necessarily induce a morphism of their lisse-analytic topoi. O

Similarly, Ry . induces a fully faithful functor D.(X,A) — Z.(X, A), which is compatible
with f,.
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8.3 Over C.

Let (A,m) be a complete DVR as before, with residue characteristic ¢ # 2. Let X be
an algebraic stack over Spec C. We first prove a comparison theorem between the lisse-étale
topoi over C and over IF, and then use this together with (8.2.4.3) to deduce the decomposition
theorem for C-algebraic stacks with affine diagonal.

8.3.1 Comparison between the lisse-étale topoi over C and over F.

Let (.7, L) be a pair on X defined on the level of A. By refining we may assume all strata
in .7 are essentially smooth (i.e. their maximal reduced substack is smooth) and connected.
Let A C C be a subring of finite type over Z, large enough so that there exists a triple
(Xs, S5, Lg) over S := Spec A giving rise to (X,., L) by base change, and 1/¢ € A. Then
S satisfies the condition (LO); the hypothesis on ¢-cohomological dimension follows from ([1],
X, 6.2). We may shrink S to assume that strata in .5 are smooth over S with geometrically
connected fibers, which is possible because one can take a presentation P : Xg — %5 and
shrink S so that the strata in P*.#s are smooth over S with geometrically connected fibers.
Let a : X — S be the structural map.

Let A C V C C, where V is a strictly henselian DVR whose residue field is an algebraic
closure of a finite residue field of A. Let (Xy, ., L) be the triple obtained by base change
to V, and let (X, %, L) be its special fiber. Then we have morphisms

XXy~ X,

Proposition 8.3.1.1. (stack version of ([4], 6.1.9)) For S small enough, the functors
DKbV,L(X7 An) - D.bij,zzv (XV7 An) - D.bYS,LS (Xs, An)

and
D;,L(X7 A) & Dgﬂv,ﬂv (XV? A) $ Dgﬁs,ﬁs (XS? A)

are equivalences of triangulated categories.

Proof. Clearly, they are all triangulated functors.

By (8.1.5), we can shrink S = Spec A so that for any F' and G of the form j L, where
Jj:Us — Xgin s and L € Lg(Us), the formations of R omy,(F,G) commute with base
change on S, and the complexes a,& xtg(S(F ,G) on S are lec and of formation compatible
with base change, i.e. the cohomology sheaves are lcc, and for any g : 8" — S, the base
change morphism for a, :

g a8ty (F,G) — agi.g" Eaty (F,G)
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is an isomorphism. Then using the same argument as in [4], the claim for « and i} follows.
For the reader’s convenience, we explain the proof in [4] in more detail.

Note that the spectra of V, C and s have no non-trivial étale surjections mapping to them,
so their small étale topoi are the same as Sets. In particular, Ray, (resp. Rac. and Ras,) is
just RT. Let us show the full faithfulness of u and i first. For K, L € D%, . (Xv,A,), let
K¢ and L¢ (resp. K and Lg) be their images under u} (resp. ). Then the full faithfulness
follows from the more general claim that, the maps

Eatiy(Ke, Le) <= Eaty, (K, L) 2> Exti, (K., L)

are bijective for all 7.

Since Homp,(x.a,) (K, —) and Homp,(x a,)(—, L) are cohomological functors, by 5-lemma
we may assume that K = F and L = G are A,-sheaves. Let j : Us — Xg be the immersion
of an open stratum in .5, with complement i : Zg — Xg. Using the short exact sequence

and noetherian induction on the support of F' and G, we may assume that they take the
form jy L, where j is the immersion of some stratum in %5, and L is a sheaf in Ly. The

spectral sequence
Rpam,*é‘)xtgcm (Fo,Gp) = Ext’;;;q(FD, Gn)

is natural in the base [, which can be V,C or s. The assumption on S made before implies
that the composite base change morphism

g bty (F,G) = asng” Extyy (F,G) — asn &ty (9" F, 9" G)
is an isomorphism, for all g : 8" — S. Therefore, the maps
Eatiy(Fe, Ge) <= Extly, (F.G) = Eati, (F,, G,)
are bijective for all . The claim (hence the full faithfulness of ! and i) follows.

This claim also implies their essential surjectivity. To see this, let us give a lemma first.

Lemma 8.3.1.2. Let F : € — 2 be a triangulated functor between triangulated categories.
Let A, B € Obj €, and let F(A) % F(B) — C — F(A)[1] be an ezact triangle in 9. If the
map

F : Homg (A, B) — Homg(F(A), F(B))

is surjective, then C' is in the essential image of F.

Proof. Let u: A — B be a morphism such that F'(u) = v. Let C’ be the mapping cone of u,
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i.e. let the triangle A = B — (" — A[1] be exact. Then its image
F(A) = F(B) — F(C") — F(A)[1]

is also an exact triangle. This implies that C' ~ F(C"). O

Now we can show the essential surjectivity of u; and 7). For K € Dg,@ £ (X, Ay), to show
that K lies in the essential image of u’, using the truncation exact triangles and (8.3.1.2),
we reduce to the case where K is a sheaf. Using noetherian induction on the support of K,
we reduce to the case where K = j L, where j : Y — X is the immersion of a stratum in ./,
and L € L(U). This is the image of the corresponding jy Ly, since they are all defined over
S. Similarly, ¢; is also essentially surjective.

Next, we prove that v* and ¢* are equivalences.

We claim that for K, L € D%(Xy, A), if the morphisms
- Homp, iy an) (K, L) — Homp, s (Knc, Lng)

and
22 : HOmDC(XV,An)(Kna Ln) - HomDC(XS,An)(Kn,sa Ln,s)

are bijective for all n, then the morphisms
u* 1 Homp,x, a) (K, L) — Homp, xa(Kc, Le)

and
VA HomDC(XV,A)(Ka L) — Hoch(XS,A)(KsaLs)

are bijective. Let [J be one of the bases V,C or s. Since K and L are bounded, we see from
the spectral sequence

Rpag,*éal’tg\gm (f?mg, Zn’g) — Extl;‘;q(f/(\'n’g, En,g)
and the finiteness of R7om and Ran . ([26], 4.2.2, 4.1) that, the groups E.I‘t_l(f?nﬂ, Enﬂ)
are finite for all n, hence they form a projective system satisfying the condition (ML). By
([27], 3.1.3), we have an isomorphism
Homp,x, 0 (Ko, Lo) = @HomDC(XD,An)(f(n,D, L),

n

natural in the base [, and the claim follows.

Since when restricted to DbyD ¢y the functors uy, and 4;, are fully faithful for all n, we
deduce that u* and * are also fully faithful.

Finally we prove the essential surjectivity of u* and ¢*. In the following 2-commutative
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diagram
Q
9};\/,[,\/ (%<XV)) = Dﬁfv,ﬁv(XV?A)

. I

Db, (A (X)) —L— Db, (X, N),

the localization functors ) and )y are essentially surjective. Given K € Df’y,’ﬁ(X ,A\), to

show that K lies in the essential image of u*, it suffices to show that K € DYy (A (X)) lies
in the essential image of u™.

Let M = K = (M,),; it is a normalized complex ([27], 3.0.8). Let p,, : M,  — M, 1 be
the transition maps. Since wu is an equivalence, there exists (uniquely up to isomorphism)
an M,y € D;V,LV(XVaAn) such that w’ (M, ) ~ M,, for each n. Also there exists p, 1 €
Hosz;pVYLV (Xv,An)(Mn,W M,,_1v), which is mapped to p, via u}. We see that the induced

morphism p,, : M, v ®,L\n A,—1 — M,_,y is an isomorphism, since its image under the
equivalence v’ _; is an isomorphism ([27], 3.0.10).

For My = (M, ), to be an object of 2%, . (& (Xy)), we need to show it is an object
of 2.(4(Xy)), i.e. the cohomology systems #(My) are AR-adic ([27], 3.0.6).

Let N = (N!),, be the universal image of the projective system J#°(M). Recall ([16],
V, 3.2.3) that, since (M) is AR-adic, it satisfies the condition (MLAR) (so that it makes
sense to talk about its system of the universal images), and there exists an integer & > 0
such that [y (N?) := (N/ . /A""IN} ), is an adic system. Let 7 > 0 be an integer such that
N! is the image of ' (M,,,) — H*(M,), for each n. Then for every s > r, we have

Im(%i(Mn-H”,V) - %i(MmV))
(A (Myysv) — A (Myyv))

=0,

since its image under the equivalence v, is zero. This shows that (M) also satisfies the
condition (MLAR), with universal images N}, |, = Im(" (M, 4, v) — H* (M, )). Also, the
projective system [(N{,) is adic, since the image under v} of the transition map

(Mo v /A N1 v) @ An = Ny v /AN v
is an isomorphism. By ([16], V, 3.2.3) again, the system J#*(My ) is AR-adic. This finishes

the proof that u* (and similarly, i*) is essentially surjective. O]

8.3.2 The proof.
Let P: X — X be a presentation and let X = X*" be the associated analytic stack.

8.3.2.1. Following [28], one can define Q-perverse sheaves (for Q = C, Ey or Q) on X as
follows. Let p = p;/o be the middle perversity on X*". Let d : mo(X) — N be the dimension
of the smooth map P. Define ?PD=%(X, Q) (resp. PD=%(X,)) to be the full subcategory of
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objects K € D.(X,Q) such that P*™*K[d] is in PD=0(X* Q) (resp. PDZ°(X?™ Q)). As in
([28], 4.1, 4.2), one can show that these subcategories do not depend on the choice of the
presentation P, and they define a t-structure, called the (middle) perverse ¢-structure on X.

8.3.2.2. Following ([4], 6.2.4), one can define the sheaf complexes of geometric origin as
follows. Let .# be a Q-perverse sheaf on X (resp. a Q,-perverse sheaf on X'). We say that
F is semi-simple of geometric origin if it is semi-simple, and every simple direct summand
belongs to the smallest family of simple perverse sheaves on complex analytic stacks (resp.
lisse-étale sites of C-algebraic stacks) that

(a) contains the constant sheaf 2 over a point, and is stable under the following opera-
tions:

(b) taking the constituents of T, for T = f., fi, f*, f', R#om(—,—) and — @& —,
where f is an arbitrary algebraic morphism between stacks.

A complex K € Db%(%, Q) (resp. D(X,Q,)) is said to be semi-simple of geometric origin
if it is isomorphic to the direct sum of the (P#°K)[—i|’s, and each K is semi-simple of
geometric origin.

One can replace the constant sheaf F) by its ring of integers €, and deduce that every
complex K € 2°(%,Q,) that is semi-simple of geometric origin has an integral structure.
Then we can apply (8.2.5.4).

Lemma 8.3.2.3. (stack version of ([4], 6.2.6)) Let F be a simple Q,-perverse sheaf of
geometric origin on X. For A C C large enough, the equivalence (8.8.1.1)

D;,ﬁ('X7@Z) - D?y{g,gs(xs;@e)

takes F to a simple perverse sheaf Fs on X, such that (X, %) is deduced by base extension
from a pair (X, %) defined over a finite field F,, and % is t-pure.

Proof. %, is obtained by base extension from some simple perverse sheaf .%; on 2y, so it
suffices to show % is t-mixed (7.3.5). This is clear, since the six operations, the perverse
truncation functors and taking subquotients in the category of perverse sheaves all preserve
-mixedness, and the constant sheaf Q, on a point is punctually pure. O

Finally, we are ready to prove the stack version of the decomposition theorem over C.

Theorem 8.3.2.4. (stack version of ([4], 6.2.5)) Let f : X — Y be a proper morphism with
finite diagonal of C-algebraic stacks with affine automorphism groups. If K € D(X,C) is
semi-simple of geometric origin, then f2 K is also bounded, and is semi-simple of geometric
origin on ).

Proof. By (8.2.5.4) we can replace D%(X,C) by D%(X,Q,), and by (8.2.4.3) we can replace
this by D?(X,Q,).

From ([33], 5.17) we know that there is a canonical isomorphism f; ~ f, on D (X,Q,).
For K € D’ we have fiK € D; and f.K € D}, hence f.K € Db.
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Lemma 8.3.2.5. We can reduce to the case where K is a simple perverse sheaf % .

Proof. There are two steps: firstly, we show that the statement for simple perverse sheaves of
geometric origin implies the statement for semi-simple perverse sheaves of geometric origin.
This is clear:

1D 7) =D 1.7 = DD 47 (1.7 = P (£.(D Z:)-i)

Then we show that the statement for semi-simple perverse sheaves implies the general
statement. If K is semi-simple of geometric origin, we have

fol = @ FEANK)]—i] = 619 @Wff*wm[—z‘ —j]-

Taking ?.77™ on both sides, we get

PAfI) = D T AL ANK),

i+j=n
therefore f,K = @, ?#"(f.K) and each summand is semi-simple of geometric origin. [

Now assume K is a simple perverse sheaf .#. By (3.1.4v) every bounded complex is
stratifiable. By (8.3.2.3), .# corresponds to a simple perverse sheaf .#; which is induced
from an -pure perverse sheaf %, by base change. By (8.1.5), the formation of f, over C is
the same as the formation of f . over F or fy. over a finite field. By (7.3.8), fo.-% is also
i-pure. By (7.3.10, 7.3.11), we have

fs,*gs = @p%i(fs,*ys)[_iL

1EL

and each P (f,..F,) is semi-simple of geometric origin. Therefore f..% is semi-simple of
geometric origin. ]
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