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Abstract

Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality

by

Eric Michael Dzienkowski

We explore the emergence of locality and geometry in string theories from the

perspective of gauge theories using gauge / gravity duality.

First, we explicitly construct open strings stretched between giant gravitons

in N = 4 SYM. We find that these strings satisfy a relativistic dispersion relation

up to three-loop order and conjecture that this should hold to all loop orders. We

find the explicit dual solution to the string sigma model and find exact agreement

with the geometric nature of the SYM operator and dispersion relation. Using

these open strings as probes, we explore the local field theory on the worldvolume

of the giant gravitons.

Second, we use classical configurations in holographic matrix models to un-

derstand the emergence of geometry from matrix coordinates. We construct an

effective Hamiltonian for a probe brane that observes the geometry in a back-

ground matrix configuration from which we can construct membranes embedded

in three dimensional space. Adding angular momentum to these configurations

we are able to observe continuous topology changes. We also study the classical

evolution of holographic matrix models to generate a microcanonical ensemble of

configurations and study their thermal and chaotic behavior. We argue that these

thermal configurations are dual to black holes.
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Chapter 1

Introduction

Quantum mechanics has been a powerful framework for building physical models

of the universe that describe phenomena which occur at length scales comparable

to that of an atom. It has a tremendous range of applicability, from the electron-

ics in our mobile devices to processes occurring at the center of our Sun. It has

revolutionized the way we understand particles and measurements. We learned

that particle and wave like behavior have a unified description called the wave

function. The act of measuring once can change the outcome of future measure-

ments. These notions challenge our classical understanding of the world and have

truly affected the way we interpret reality.

As we probed nature over the past century, we determined that many of the

observed phenomena were due to the following four fundamental interactions:

electromagnetic, weak, strong, and gravitational. The first three of these interac-

tions have a very good quantum mechanical description called the Standard Model

of particle physics. The Standard Model outlines the fundamental constituents

of matter and their dynamics involving the first three of the four fundamental

interactions. It is incredibly accurate in predicting what happens in the universe
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Introduction Chapter 1

at length scales as small as 10−18 m. Gravity, the fourth fundamental interaction,

has a different story to tell.

Einstein’s theory of general relativity has provided an excellent classical de-

scription of gravity for about one hundred years. Like quantum mechanics, it has

revolutionized the way interpret our universe. We learned that space and time

are not separate entities, but have a unified description as a smooth manifold

and should be regarded simply as spacetime. Geometry is encoded in a local

gravitational field, the dynamics of which are governed by local energy and mo-

mentum densities. Spacetime possesses a curvature which can be measured in the

presence of many observers. The successes of general relativity appear at length

scales greater than those of quantum mechanics, from Global Positioning Systems

(GPS), to the precession of Mercury’s orbit around the Sun, and all the way to

the configuration of the cosmos.

However, general relativity is not a perfect theory. Solutions to Einstein’s

equations exist for which the curvature of spacetime is smooth except within some

subset of the spacetime for which the curvature diverges. The classical theory of

general relativity is incapable of describing the physics at these subsets of diverging

curvature, called singularities. Black holes can form when there is enough energy

in too small a region of spacetime and some of these solutions have singularities

residing at their center. Since we believe to observe black holes in nature, we are

obliged to decode the singularity. Singularities are generally characterized by the

presence a strong gravitational field occurring at small length scales. Therefore,

if we wish to understand the nature of the singularity, we must quantize gravity.

At this point it is important to note which properties of spacetime and gravity

2
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we begin to lose when we consider the quantum theory. Suppose we did have a

theory of quantum gravity that could describe singularities. We can not recover

the metric at the singularity in the classical limit, ~→ 0, because the metric is not

smooth there. Thus the singularity is not geometric. Regions of large curvature

near the singularity in the classical theory will then also lose their geometric nature

in the quantum theory. We can slowly move away from regions of large curvature

to regions of small curvature. We expect the non-geometric nature of the quantum

theory to dissipate as we transition from one region to the other. However, this

is not guaranteed and thus we lose some notion of geometry in a quantum theory

of gravity. Interesting questions arise such as what are the degrees of freedom of

quantum gravity, when can we recover geometry from them, and how can we do

it?

Black holes pose another interesting problem. The event horizon is a barrier

between the interior and exterior of a black hole which prevents light from escaping

a black hole. At the horizon spacetime is perfectly smooth, and so it is appropriate

to apply the techniques of quantum field theory there. Doing so Hawking showed

that black holes radiate [8]; light, and more generally energy, can cross the event

horizon and escape from a black hole. This is a contradiction! In particular it

violates locality, the idea that events in spacetime which are spacelike separate

have no effect on each other. The classical theory of general relativity is a local

theory and thus possesses no mechanism by which locality can be violated. We

hope that a quantum theory can resolve this issue.

Unlike the electromagnetic, weak, and strong forces, quantizing gravity is a

difficult task. The first three forces also have descriptions in terms of local field

3
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theories. Infinities appear during the quantization procedure of these field theo-

ries, but they can be absorbed into a finite number of counterterms dependent on

some energy scale. This is called renormalizing the theory and the process ren-

ders calculations finite and useful. General relativity requires an infinite number

of counterterms to render the theory finite and is thus non-renormalizable; the

theory is only effective up to some energy scale. If we with to understand quantum

gravity, we need something else. There are several proposals for describing grav-

ity including, but not limited to, superstring theory [9, 10], loop quantum gravity

[11], and causal dynamical triangulation [12]. To date, superstring theory poses

the best solution to the problem of quantizing gravity: the theory reproduces Ein-

stein’s equations (or some supersymmetric form of them), the theory is finite, and

computations are tractable in many scenarios. Unfortunately, superstring theory

nor any of its four-dimensional compactifications have yet to be experimentally

verified or falsified.

Gauge / gravity duality and holography are developing concepts in recent

decades that have either provided us insights into what a quantum theory of

gravity should look like or have directly told what the degrees of freedom in

quantum gravity are. At the heart of these concepts is a theory of quantum

gravity in some number dimensions being ‘dual’ to a typical quantum field theory

in some lower number of dimensions. These quantum field theories are typically

conformal field theories, where the spacetime and the fields possess additional

symmetries to the usual Poincaré ones. The quantum field theories are also like

the ones that describe the electromagnetic, weak, and strong forces; they are

gauge theories. The meaning of ‘dual’ is different with every pair of gauge /

4
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gravity theories, but generally means that the dynamics in one theory have some

approximate translation into the dynamics of the other. The exactness of each

translation can be quantified in many cases and determines how strong the duality

really is.

An explicit example of gauge / gravity duality is the AdS / CFT correspon-

dence [13]. The strongest form of the conjecture is a quantum mechanical one.

Quantum Type IIB superstring theory in an asymptotically AdS5×S5 background

with background five-form flux (the gravity theory) is dual to the superconformal

phase ofN = 4 Supersymmetric Yang-Mills (SYM) theory with gauge group U(N)

(the gauge theory). Here, dual means that there is an dictionary between objects

in the string theory and states (operators) in the gauge theory. The stringy ob-

jects and the gauge theory operators should have the same energy. Furthermore,

we expect that the dynamics of each theory should preserve the dictionary.

The parameters characterizing the string theory are the AdS radius R, the

inverse string tension α′, the string coupling gs, and the amount of five form flux

on the sphere N . In the gauge theory we have the rank of the gauge group N ,

and the Yang-Mills coupling constant gYM. Often we combine the two to form the

’t Hooft coupling λ = g2
YMN . The duality relates these parameters through the

relations

λ =
R4

α′2
,

λ

4πN
=
g2

YM

4π
= gs (1.1)

If we keep λ finite and take N → ∞, then gs → 0 and we recover the weak

coupling limit of string theory. The weak coupling limit of string theory is just

the classical sigma model on AdS5 × S5. The large N limit in the gauge theory

allows us to keep only planar Feynman diagrams and is called the planar limit. At

5
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this level of the conjecture the duality becomes a statement about the equivalence

of the sigma model and the planar gauge theory. After taking the planar limit, we

may then take the large λ limit, which corresponds to taking α′ small. When α′

is small, the massive string states decouple from the massless ones and the string

theory dynamics is governed by supergravity. At this level of the conjecture, the

duality becomes an equivalence between calculations done perturbatively in λ−1/2

in the gauge theory and calculations in supergravity with α′ corrections. Because

large λ corresponds to small α′, the AdS / CFT conjecture is example of a strong

/ weak duality. The strong coupling regime is dual to the weak coupling regime

of the other and vice versa.

Although sometimes difficult to work with, gauge theories are well understood.

We have many tools to analyze their spectra and dynamics, both analytically and

numerically. Furthermore, we can define them in a non-perturbative way through

a path integral approach. That is, quantities in the gauge theory do not necessarily

have to be computed order by order in the coupling constant g2
YM and the rank of

the gauge group N . On the other hand, superstring theory has only been defined

perturbatively. Scattering amplitudes are computed order by order in the coupling

gs, and by increasing the complexity of the topology of the string worldsheet. The

perspective that we take here is to use the gauge theory to define superstring

theory non-perturbatively.

Ordinary general relativity has non-perturbative properties as well. They are

characterized by objects which are not small deformations of ordinary flat space;

these objects are black holes and singularities. Locality and geometry lose some

of their meaning when we consider these objects in the quantum theory. Since

6
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string theory is a quantum theory of gravity, we should be able to recover them.

However, we can not do this directly in the string theory because it is only defined

perturbatively and describes spacetimes which have weak curvatures or and are

close to flat space. Gauge / gravity duality provides the only non-perturbative

definition of string theory. If wish to understanding locality and geometry in

quantum gravity, our only option is to search for these concepts in the gauge

theory.

Geometry in string theory has features beyond that of general relativity due

to the presence of additional objects. In addition to the geometry of spacetime,

string theory contains closed strings, opens strings, and D-branes. Closed strings

and open strings are more like particles, but D-branes are large, heavy membranes

which have their own unique geometric structure and dynamics.

In Part I we use open strings and D-branes in the planar limit of the AdS /

CFT conjecture to understand locality and geometry in the dual string theory.

Although many of the calculations are perturbative, we use symmetry arguments

to make claims about how these calculations can be extended to all orders in

perturbation theory. In Chapters 3 and 4 we construct open strings stretched

between a special class of D-branes known as giant gravitons in the gauge theory

and find its string theory dual. Using the gauge theory computations we make

claims about the nature of locality and geometry on the worldvolume of the D-

branes. In Chapter 5 we explore the emergence of the geometric backgrounds of

the string dual of the deformed N = 4 SYM.

In Part II we take the approach of using gauge theories generally to understand

geometry. The gauge theories we use are matrix models and have well known

7
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holographic duals. However, we consider the classical dynamics of these gauge

theories. In Chapter 7 we use classical matrix configurations to understand the

geometry to D-branes and discuss some interesting physics that arises. In Chapter

8 we study the chaotic behavior and thermodynamics of the classical evolution of

the gauge theories with specific sets of initial conditions. In Chapter 9 we continue

to study the thermal configurations of Chapter 8 and make arguments that these

are holographically dual to black holes. In Chapter 10 we consider solutions to

the classical gauge theories with angular momentum and study the geometry and

topology of those configurations.

1.1 Permissions and Attributes

1. The contents of Chapter 3 and Chapter 4 are the results of work in collabo-

ration with David Berenstein, and has previously appeared in the Journal of

High Energy Physics (JHEP) [5]. It has been reproduced here with the per-

mission of the International School of Advanced Studies (SISSA), Trieste,

Italy. http://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf

2. The contents of Sections 3.4 and Section 4.3 are partly the results of [1].

(This was all me.)

3. The contents of Chapter 5 are the results of work in collaboration with David

Berenstein, and has previously appeared in the Journal of High Energy

Physics (JHEP) [3]. It has been reproduced here with the permission of

the International School of Advanced Studies (SISSA), Trieste, Italy. http:

//jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf
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Introduction Chapter 1

4. The contents of Chapter 7, Section 9.2, Appendix D, Appendix E, and

Appendix F are the results of work in collaboration with David Berenstein,

and has previously appeared in Physical Review D (Phys. Rev. D) [7]. It

is reproduced here with the permission of the permission of the American

Physical Society (APS), College Park, MD, USA. http://publish.aps.

org/info/terms.html

5. The contents of Chapter 8, Section 9.1, and Appendix E are the results

of work in collaboration with Curtis Asplund and David Berenstein, and

has previously appeared in Physical Review D (Phys. Rev. D) [6]. It

is reproduced here with the permission of the permission of the American

Physical Society (APS), College Park, MD, USA. http://publish.aps.

org/info/terms.html

6. The contents of Sections 9.3 and 9.4 are the results of work in collaboration

with David Berenstein [4].

7. The contents of Chapter 10 are the results of work in collaboration with

David Berenstein and Robin Lashof-Regas and has previously appeared in

[2].

9
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Part I

Open Strings in AdS / CFT
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Chapter 2

Introduction

The AdS / CFT correspondence [13] suggests that there should be a relation

between the low energy effective field theories of string theory (both with open

and closed strings) or M-theory on AdS spaces and the dual gauge theory. These

effective field theories in higher dimensions are local and locally Lorentz invariant

in the supergravity limit. One of the biggest puzzles in understanding the AdS

/ CFT correspondence is on exactly how locality and geometry in higher dimen-

sions emerges from lower dimensional physics. If locality and higher dimensional

geometry is emergent, then they should be found at the end of some computation.

The integrability of the motion of closed strings propagating on AdS5 × S5

[14] is one feature of the AdS5 × S5 geometry that can help address the prob-

lem of locality, or at least, local Lorentz invariance. It has been argued that

integrability shows that local strings moving in AdS × S are related to certain

planar calculations on the boundary, where a similar integrable structure has been

found. Thus, one should be able to see how dynamics in higher dimensions can

be recovered from a field theory computation. For a review of integrability see

[15]. Integrability is very special and does not persist in more general setups like

11
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general marginal deformations of N = 4 SYM [16] or the conformal field theory

of the conifold where it is known that the string sigma model is not integrable

[17]. It also does not explain what happens when conformal invariance is broken.

The computation of scattering between string states in the integrability program

is still a work in progress.

An alternative way to understand the problem of how locality arises has been

by guessing field configurations which could dominate the strong coupling physics

[18], at least in the BPS case, and finding an approximation for the perturbative

spectrum around such configurations. At the moment this is an uncontrolled

approximation, but this setup has the advantage that the conformal symmetry of

the theory plays a smaller role. Wthin this approach one can produce different

backgrounds for the gravity theory (at least in principle) by expanding around

different BPS configurations.

Because probing local physics depends on being able to localize particles on

short distances, having objects with a shorter Compton wavelength make better

probes of the local geometry those that have a longer Compton wavelength. A

successful strategy to tackle the locality problem might start by studying objects

that are not strings, but much heavier objects. These heavy objects can not

appear in the low energy effective field theory of the AdS supergravity, as all

of the supergravity fluctuations are string states. Thus non-perturbative stringy

effects might be more amenable to study geometry than supergravity fields. The

natural candidates are D-branes (and membranes), which have well defined local

effective actions describing their motion. They furnish a well defined local probe

of the geometry that can be studied in detail. In order to find such states in the

12
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field theory, one needs to be able to control them at weak coupling. Ideally they

are BPS states that one can follow from weak coupling to strong coupling.

Giant gravitons [19] and their cousin D-brane excitations of AdS geometries

have become a very useful tool to understand geometric aspects of the AdS / CFT

duality. They are BPS objects whose quantum numbers are calculable and whose

degeneracies can be compared with field theory data [20, 21, 22, 23].

We can examine the local physics with one D-brane probing the geometry, but

the physics is much richer if we have multiple D-brane probes because they can

help us distinguish ‘here from there’. Given the two D-branes, we can measure the

distance from here to there by stretching a string between them and computing

its energy. Thus the energies of strings start serving as a probe of the metric of

the geometry. As we change the coupling constant in the dual CFT, the string

tension changes in AdS units, and distances of sub-AdS regions can become very

large in string units. We can use this to study how the gap between excitations

develops and how these massive string excitations can eventually decouple in

various processes.

We can also test if the string motion along the D-branes is compatible with

locally Lorentz invariant physics in ten dimensions, or more precisely, along the

world-volume of the D-brane. If the motion is locally Lorentz invariant, then in the

field theory limit the low lying strings should have a relativistic dispersion relation.

This is usually taken for granted in the AdS geometry because this is not given

from the beginning of the calculation in the dual field theory. Furthermore the

presence of the D-branes breaks conformal invariance, so that dispersion relations

in the presence of a D-brane is not just kinematics of the AdS isometry group. It
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is instead a fully dynamical derived quantity.

The subject of this Part is understanding how geometry is realized in the planar

limit from the anomalous dimensions of open strings stretched between two giant

gravitons. In Chapter 3 we review how to build open strings states in N = 4 SYM

and then translate these states and the action of the dilatation operator into a

form more suitable for calculations. We restrict ourselves to states in the su(2)

sector of the gauge theory for many reasons. First, the space of states can be

diagonalized into finite dimensional blocks which in itself immediately simplifies

computations. Another is that the dilatation generator is known to very high

loop order. Thus we our results to very high order in the ’t Hooft coupling and

give greater supporting evidence to conjectures. On a practical level, we actually

know how to build the giant graviton operators and their stringy excitations in

the su(2) sector. We have concrete handles on the states we want to study and

calculations can be done to any level of precision or abstraction that we desire.

Lastly, the string theory dual is known to be that of the string propagating in an

Rt × S3 subspace of the full AdS5 × S5 geometry. Many explicit solutions to the

equations of motion exist and can be compared exactly to gauge theory operators.

The main results of Chapter 3 will be a description of the open string states

in terms of Cuntz oscillator chains and the effective Hamiltonian governing their

dynamics. Armed with this technology, in Chapter 4 we begin studying the dy-

namics of this system. In particular we solve for the ground state and higher

order corrections to its energy and the ground state itself. The computation of

the ground state energy is done up to third order in the ’t Hooft coupling λ and is

compatible with the relativistic dispersion relation we would expect from a locally

14
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Lorentz invariant theory. We discuss the consequences of this dispersion relation

in the context of geometry in the string theory and propose from where it origi-

nates. Another point to take away from Chapter 4 are the amazing cancellations

that take place at higher loop orders that lead to the relativistic dispersion re-

lation itself. In the absense of integrability in the open string sector, in a Bethe

ansatz sense, it is not guaranteed that this calculation can be done exactly. Not

only can the exact answer be found, but analytic results exist as well.

Other geometries to consider in the context of integrability are β-deformations

of N = 4 SYM. This is a continuous family of supersymmetric conformal field

theories characterized by two parameters, λ = g2
YMN and β, which is in turn a

subset of the Leigh-Strassler deformations of N = 4 SYM [24]. In some contexts

these are known as q-deformations where q = exp(2iβ) and β is a real number.

The classical weakly coupled string theory on a very large geometry arises as

the effective description of the undeformed N = 4 SYM when g2
YMN → ∞, and

g2
YM � 1. For the case of β deformations, we know that the string theory is

integrable which results as a twist of the AdS5×S5 integrable system [16, 25, 26]

(see also [27] for a review). As such, we will continue to rely on integrability

to give us a recipe for the emergence of geometry. Unfortunately, this does not

automatically translate into a large set of states that are easily followed. The

corresponding twisted algebraic equations that need to be solved to find these

states are hard to solve for analytically, see however [28]. For the purposes of

this thesis we will assume that the integrability program has solved the problem

of understanding the geometric origin of AdS5 × S5 strings, but our goal will be

to understand the other geometries that can appear at different values of q. The
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focus of Chapter 5 is to understand which values of β, and hence q, lead to a well

defined classical geometry in this limit using a modification of the open string

ground state build in Chapter 4.
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Chapter 3

Anomalous Dimensions of Open
Strings

Our goal in Part I is to understand geometry from the anomalous dimensions of

open strings. In this Chapter we develop the technology for constructing the space

of states dual to open strings as well the action of the dilatation generator on that

space of states. The answer is written down in a Cuntz oscillator basis suitable

for doing typical quantum mechanical calculations.

3.1 The su(2) Sector

The theory N = 4 SYM with gauge group SU(N) (U(N)) is a supercon-

formal field theory whose spacetime isometries are described by the supergroup

PSU(2, 2|4) and the corresponding Lie superalgebra psu(2, 2|4). The field theory

contains six real scalars φI in the 6 of the R-symmetry and four Weyl fermions

ψAα , ψAα̇ in the 4 and 4̄, all of which live in the adjoint of the gauge group. There

is also a gauge field Aαα̇ which acts as the connection for the gauge group and

is a singlet under the R-symmetry. In the N = 1 formulation of N = 4 SYM,
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the six scalars are the real components of the lowest component complex scalars

of the three chiral superfields. We denote the complex scalars by X = φ1 + iφ4,

Y = φ2 + iφ5, Z = φ3 + iφ6. Their complex conjugates will be denoted by X̄, Ȳ ,

and Z̄ when necessary.

The anomalous dimensions of the operators in N = 4 SYM are given by the

dilatation generator when the theory is defined on a flat space background, and the

Hamiltonian when the theory is defined on R×S3. The conformal transformation

that relates these two theories is what makes radial quantization possible and

leads to the state / operator correspondence. Indeed, we will use the terms ‘state’

and ‘operators’ interchangeably when refering to objects lying in the Hilber space

of the field theory.

The Lie superalgebra psu(2, 2|4) has many sectors closed under renormaliza-

tion with respect to the dilatation generator. The smallest non-trivial subsector

is G = su(2)× u(1)× u(1) [29]. The states in the su(2) subsector are constructed

using only two of the three complex scalars. In this thesis, we will use Y and Z.

The space of physical states must be gauge invariant. Thus the subsector consists

of single and multitrace operators of Y and Z. The first u(1) of G is just the clas-

sical dimension of these operators and counts the total number of Y ’s and Z’s.

The second u(1) of G is the anomalous dimension, δD. Regarding each complex

field as either spin up or spin down, the Cartan generator of the su(2) is just

counts the difference between the number of Y and Z fields. Thus, state mixing

occurs in the su(2) sector between states which have exactly the same number

of Y and Z fields. This property aids in block diagonalizing δD and simplifies

computations of anomalous dimensions in this sector.
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The general problem of solving the spectrum of anomalous dimensions in N =

4 SYM is incredibly difficult, but simplifies in the planar limit. Planar N = 4

SYM is integrable up to one-loop [30] and expected to be integrable to all orders

in perturbation theory. The spectrum of anomalous dimensions is characterized

by a Bethe ansatz for an integrable psu(2, 2|4) spin chain [31]. A major success of

the integrability program is seen in the thermodynamic limit, where the solutions

to the Bethe ansatz become the algebraic curves of the closed string [32].

The integrability of the string sigma model on AdS5 × S5 [14] allows direct

comparisons to planar N = 4 SYM. In many cases the solutions to the equations

of motion and be mapped directly to specific states of the gauge theory. In

particular, the string theory dual of the su(2) subsector is well known. Operators

in this subsector correspond to strings propagating in an Rt × S3 background of

the AdS5 × S5 where Rt is the time direction in AdS5 and S3 ⊂ S5. A large

class of closed string solutions to the equations of motion in this subsector have

been found including circular strings, folded strings, spiky strings, and solitonic

strings [33, 34, 35, 36]. The solitonic strings are called giant magnons [37]. Bound

states of many giant magnons have been found in the gauge theory by studying

the asymptotic S-matrix [38]. These giant magnon states will be relevant when we

later construct open strings directly in the gauge theory, particularly in Section

4.5.
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3.2 Giant Gravitons and Open Strings

D-branes are non-perturbative objects in string theory lacking a full quantum

description. Calculations involving D-branes come in the form as BPS solutions

to the supergravity equations of motion, classical analysis of the DBI action, or

perturbatively in the form of open strings. Using N = 4 SYM as a definition

of quantum string theory provides the best approach to formulating D-branes

non-perturbatively. The class of D-branes known giant gravitons [19] has been

successfully constructed in the gauge theory. In this section we discuss how the

giant gravitons appear in the gauge theory and how to build open string excitations

on top of them. Much of the language and technology presented here is taken from

[39].

The particular giant gravitons we are interested in are D-branes with the world-

volume of an S3 traversing a great circle of the S5 in AdS5×S5. The radius of the

giant graviton is proportional to its velocity, or to its angular momentum around

the S5. They are half BPS whose angular momentum has an upper bound due to

the fact that the radius of an S3 subspace of S5 is bounded above by that of the

S5. The dual operators in the gauge theory were found in [40] and determined to

be subdeterminant operators of the form

detk(Z) =
1

N !

(
N

k

)
εa1...akck+1...cN εb1...bkck+1...cNZ

b1
a1
· · ·Zbk

ak
(3.1)

When k = N we just have detN(Z) = det(Z) which is called a maximal giant. The

classical upper bound on the angular momenta is directly related to the condition

that k ≤ N .
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Attaching open strings to a single subdeterminant was first suggested in [41],

following closely the set of states identified for the conifold theory [23]. One

can build string excitations, represented as words Wi in N = 4 SYM, on top

of maximal giants by contracting the indices of the epsilon symbols with these

operators instead of with the identity.

O(W1, . . . ,Ws) =
1

N !

(
N

s

)
εa1...aN−sc1...csεb1...bN−sd1...dsZ

b1
a1
· · ·ZbN−s

aN−s
W1

d1
c1
· · ·Ws

ds
cs

(3.2)

The approximate orthogonality of these states when s � N was shown in [42].

These operators are given by the generating function equation

O(W1, . . . ,Ws) = ∂κ1,...,κs det

(
Z +

s∑
i=1

κiWi

)∣∣∣∣∣
κi=0

(3.3)

We find that for one and two excitations

O(W1) = det(Z)Tr(Z−1W1) (3.4)

O(W1,W2) = det(Z)(Tr(Z−1W1)Tr(Z−1W2)− Tr(Z−1W1Z
−1W2)) (3.5)

The operator corresponding to a maximal giant can be separated from the ex-

citations reenforcing the idea that we are indeed forming string excitations on

maximal giants and not non-maximal ones. Our ability to separate the maximal

giant operator can actually be seen by rewriting (3.3) as

O(W1, . . . ,Ws) = det(Z)∂κ1,...,κs det

(
1 +

s∑
i=1

κiZ
−1Wi

)∣∣∣∣∣
κi=0

(3.6)
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The presence of the operator inverse Z−1 in the above expressions is purely

formal. The generating function (3.3) is polynomial in all of its variables. Taking

derivatives can not introduce inverses of these variables. As such, the operators

(3.4) and (3.5) are polynomial in its operator variables and completely well defined.

Even though the operator inverses are formal, the serve an important role. We

will eventually describe dynamical open strings in the gauge theory. Even at this

level of the construction we see that the boundary conditions themselves for the

opens string must be present in the operators. Here they are expressed as poles

in specially crafted multi-trace operators.

These giant graviton states have definite angular momenta, but are delocalized

in position space on the S5. To establish a connection to the classical string theory,

we want operators that are localized in position space and have indefinite angular

momentum. This is accomplished by shifting the matrix Z by a complex collective

coordinate α, that is, we take det(Z) → det(Z − α) [39]. Taking inner products

of giant gravitons with different collective coordinates yields

〈det(Z̄ − α∗2)det(Z − α1)〉 ≈ N ! exp(α∗2α1) (3.7)

The geometric interpretation of α being the coordinate of the giant graviton in a

complex disk of the S5 remains valid so long as αi <
√
N [39]. Expanding the op-

erator det(Z−α) in α, we see that the operator looks like a coherent state of giant

gravitons with different angular momenta and the exponential approximation of

the inner product is in line with this observation. Thus the states det(Z − α) are

in some sense classical.
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Dealing with multiple giant gravitons was originally worked out in [43]. The

subdeterminant operators (3.1) are Schur polynomials in the matrix Z corre-

sponding to a Young diagram with one column and k boxes. The Young diagram

correpsonds to a representation of the symmetric group and dictates how to con-

tract the indices over many occurrences of the matrix Z. The representation can

be arbitrary and its interpretation as point-like gravitons, strings, giant gravi-

tons, and dual giant gravitons depends on the number and length of the columns

and rows in the correpsonding Young diagrams. In particular, long columns are

thought of as the giant gravitons living in S5 while long rows are thought of as

the dual giant gravitons living in AdS5. To be concrete, if R is a representation

of the symmetric group Sn, then the corresponding graviton operator is given by

χR(Z) =
∑
σ∈Sn

χR(σ)Zi1
iσ(1)

Zi2
iσ(2)
· · ·Zin

iσ(n)
(3.8)

where χR(σ) is the character of the group element σ in the representation R and all

indices ij (which range from 1 to N) are summed over. Different representations

are orthogonal with respect to free field theory contractions

〈χR(Z̄)χS(Z)〉 = δRSfR (3.9)

with fR the weight of the Young diagram corresponding to the representation R.

String excitations Wi are added to the giants by introducing restricted charac-

ters for representations of the symmetric group. These restrictions fix where the

gauge indices are contracted to the rest of the giant graviton operator. The details

are beyond the scope of this work and we defer the reader to the review articles
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[44, 45, 46]. A consequence of this construction is that each row or column in the

Young diagram must have the same number of strings beginning and ending on

the corresponding giant. This is a Gauss law constraint for the number of open

strings on each of the giants.

Instead of delocalizing bound states of multiple giants expressed as Schur poly-

nomials, we simplify the problem of strings stretched between giant gravitons by

considering supersymmetric orbifolds of the N = 4 SYM theory [39]. Multiple

giants with collective coordinates αi can then be expressed as a product of deter-

minant operators

O(α1, . . . , αk) = det(Z1 − α1) · · · det(Zk − αk) (3.10)

with each Zi belonging to a different sector of the orbifolded theory. We stretch

strings between the giant given the schematic of (3.4) and (3.5). That is, a pole

in the field Zi − αi is introduced when we want to connect strings beginning

and ending on the giant graviton αi. For example, the operator for three giant

gravitons with strings stretching from branes 1→ 2→ 3→ 1 is given by

det(Z1 − α1)det(Z2 − α2)det(Z3 − α3)×

Tr
(
(Z1 − α1)−1W12(Z2 − α2)−1W23(Z3 − α3)−1W31

)
(3.11)

Up to this point we have chosen to leave the string excitations Wi arbitrary.

We restrict the excitations Wi to be composed only of the fields Y and Z. Then

the giant graviton operators together with their stringy excitations live in the

su(2) sector of the gauge theory.
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3.3 Strings as Cuntz Oscillator Chains

The operators of Section 3.2 give a concrete handle by which to manage open

strings directly in the gauge theory. Of particular interest is the open string

ground state and spectrum of excited states above it. These can be acquired by

diagonalizing the dilatation generator on this space of states. The action of the

dilatation generator in the su(2) sector is known to two-loops and in the planar

limit up to five-loops. In the planar limit, the dilatation generator acts on single

trace operators. The states include single and multi-trace operators of the fields

Y and Z. In the planar limit, the action of the dilatation operator simplifies by

acting on individual single trace factors.

Individual single traces can be interpreted as closed strings since the cyclicity

of the trace can be identified with periodic boundary conditions of the closed

string. This space of states can be represented as an su(2) spin chain with periodic

boundary conditions. Each type of field, Y or Z, represents either spin up or

down. The one-loop dilatation generator was recognized as the Hamiltonian of

the Heisenberg spin chain and helped kick off the integrability program in the

context of the AdS / CFT correspondence.

Another basis has been constructed to represent the space of states in the

planar su(2) sector. To construct it we fix the number of Y fields in a single trace.

Any number of Z fields can be placed between the Y . That is, the Y separate

sites at which one can place Z fields. Thus a state is labeled by the number of

Y ’s and the number of Z’s between each Y . The cyclic nature of the trace means
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that we should cyclically identify the states. For example

Tr(ZY ZZZY ZZY )→ |3, 2, 1〉 ≡ |2, 1, 3〉 ≡ |1, 3, 2〉 (3.12)

A general state is represented by some set of occupation numbers {ni}ki=1, where

k is the number of Y fields. The zero occupation number state is just Tr(Y k),

which we denote as |0〉k. A state with a general set of occupation numbers is

represented by |n1, . . . , nk〉k.

In spin chain representation of the su(2) sector, one use the raising and lowering

operators to change a Y field to a Z field and vice versa. In the occupation number

basis, we have fix the number of Y ’s and so it does not make sense to talk about

‘raising’ or ‘lowering’ the spin excitation. Instead, we need a means by which to

directly insert and delete occurrences of the Z fields.

To do so we introduce a set of Cuntz oscillators [47]. The Cuntz algebra is a

q-deformation of the harmonic oscillator algebra in the limit q → 0. One has a

lowering operator a and a raising operator a†. There is a zero occupation state

|0〉 satisfying a |0〉 = 0. The defining relations are

aa† = I, a†a = I − P0 (3.13)

and lead to the commutation relation

[a, a†] = P0 (3.14)

with P0 the projection onto the zero occupation state. Higher occupation states
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are obtained by acting with the raising operator, |n〉 = (a†)n |0〉. The commutation

relation (3.14) implies the simple action of the ladder operators

a† |n〉 = |n+ 1〉 , a |n〉 = |n− 1〉 (3.15)

with n > 0 for the second relation. Negative occupation numbers are not allowed.

We can extend these Cuntz oscillators to act on individual sites of our multi-

occupation number states by defining ai = I⊗
i−1 ⊗ a ⊗ I⊗k−i and likewise for a†i

and the projection operator P0i. We now have the commutation relation

[ai, a
†
j] = δijP0i (3.16)

In the Cuntz language, the state (3.12) can be written as (a†1)3(a†2)2(a†3)1 |0〉3 and

cyclic identifications thereof. Due to the periodic boundary conditions, we will

refer to states of the form (3.12) as closed Cuntz oscillator chains, sometimes

dropping the word ‘oscillator.’

Because aa† = I, all operators can (and should) naturally be written as linear

combinations of objects in normal ordered form Ŝkn = (a†)kan. It is easy to show

that Ŝnn = (a†)nan = 1−
∑n−1

m=0 Pm, where Pm is the projector onto the state with

occupation number m. It is clear that Ŝnn |m〉 = 0 if n > m and Ŝnn |m〉 = |m〉

otherwise. Thus the occupation number operator is given by

N̂ =
∞∑
n=1

Ŝnn = N̂ † (3.17)

One has [N̂i, a
†
i ] = a†i and consequently N̂i |n1, . . . , nk〉k = ni |n1, . . . , nk〉k. It is
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easy to show that N̂tot =
∑k

i=1 N̂ commutes with the Hamiltonian.

The Cuntz oscillator basis can be used to represent open strings as well. Con-

sider an open string state with strings stretched between two giant gravitons with

collective coordinates α1, α2. As a reminder, for multiple giants it is simpler to

work in the supersymmetric Zn orbifold of N = 4 SYM. For n = 2, this corre-

sponds to a U(N) × U(N) quiver theory with N = 2 SUSY in four dimensions.

The chiral superpartners of the vector fields will be called Z1, Z2, while the matter

hypermultiplets between the two gauge groups will be made of X, Y chiral fields.

The corresponding state will be given by

det(Z1 − α1)det(Z2 − α2)Tr

(
1

Z1 − α1

W12
1

Z2 − α2

W21

)
(3.18)

The string excitation W21 is needed to satisfy the Gauss law constraint. The

dilatation generator acts on single trace factors in a multi-trace operator in the

planar limit. The analogy for open strings is that the dilatation generator will

not act on W12 and W21 simultaneously without splitting the trace in the planar

limit. Thus we can focus our attention on individual strings stretched between

giant gravitons instead of the entire cycle, say W12. The string excitation W12 is

now given in this orbifolded case by

W12 = Y12Z
n1
2 Y21Z

n2
1 Y12Z

n3
2 · · ·Z

nk
1 Y12 (3.19)

The labels Y12 indicate that the Y is a bifundamental in the (N1, N̄2) represen-

tation of the U(N1) × U(N2) orbifold group (with N1 = N2 = N numerically),

whereas the Y21 is in the (N̄1, N2) representation. Thus an open string stretched
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from α1 to α2 can also be represented by a Cuntz oscillator chain with the Y

separating the individual sites. We take the open string states to be of the form∣∣α1, α2; {ni}ki=1

〉
without cyclic identification of the sequence. One should keep in

mind that for these states, even though we have only k sites, there are k + 1 Y

fields. This is to separate the giant graviton pole from other Z fields.

If we allowed the monomials to end with occurences of the Z fields, then the

poles could be reduced

Tr

(
1

Z − α1

ZY ZZ · · ·
)

= Tr (Y ZZ · · ·) + α1Tr

(
1

Z − α1

Y ZZ · · ·
)

(3.20)

The second term can be intrepreted as an open string state, but the end of the

open string has detached from the brane in the first term. Such a state may have

an interpretation when we are considering string joining and splitting, but it has

no place here where we are just looking at strings stretched between two D-branes.

Thus we will restrict ourselves to monomials of the form (3.18).

Most useful to us for open strings will be coherent states of the Cuntz oscilla-

tors. We introduce a set of complex numbers {zi}ki=1 such that the states satisfy

ai |α1, α2; z1, . . . , zk〉 = zi |α1, α2; z1, . . . , zk〉 For a single Cuntz oscillator we have

a |z〉 = z |z〉 for some complex number z. Solving for |z〉 yields

|z〉 = Nz

∞∑
n=0

zn(a†)n |0〉 (3.21)

Normalizing the coherent states gives the normalization factor

Nz =
1√

1− |z|2
(3.22)
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If we want to the coherent states to have finite norm, then z should lie in the

complex unit disk. The state |α1, α2; z1, . . . , zk〉 is obtained by tensoring the single

Cuntz coherent states with appropriate collective coordinate. These open string

states are now described by a collective of numbers in the complex unit disk. We

will later see that these locations correspond to the S3 ⊂ S5 of the AdS5 × S5

geometry.

3.4 The Cuntz Hamiltonian

The technology in the previous section was developed as a simpler means by

which to deal with open and closed strings in the gauge theory. To gain a handle

on the anomalous dimensions of these operators, we will have to translate the

dilatation generator into the basis of Cuntz oscillators. The planar version is

useful for dealing with closed string states and the stringy excitations of the open

string operators. To deal with the giant gravitons, it will be necessary to use the

full non-planar dilatation generator in the su(2) sector. Here we discuss both the

planar and non-planar versions and how they are translated build a Hamiltonian

for the closed and open Cuntz oscillator chains from which one can compute their

energies or anomalous dimensions. The results of this section are summarized in

Appendix B

3.4.1 Cuntz Hamiltonian for Closed Chains

The Hamiltonian for the closed Cuntz chains (closed strings) can be obtained

from the planar version of the dilatation generator. In the planar limit and in
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the su(2) sector, states can be represented as words in the letter Y and Z. Local

interactions of the dilatation generator can then be represented as permutations

of nearest neighbors, next-to-nearest neighbors, etc. One can rewrite the per-

mutation operators in terms of the so-called chiral functions [48] by shifting the

permutation operators by the identity. The chiral functions represent the chiral

structure of the underlying Feynman super-graphs that generate them [49]. Let

Pi,i+1 denote the permutation operator which swaps the ith and the (i+1)th letter

in a word in the su(2) sector. On a word of length L, the chiral functions are

defined by

χ(a1, a2, . . . , an) =
L∑
r=1

n∏
i=1

(P − I)ai+r,ai+r+1 (3.23)

with Ii,i+1 the identity operator on letters i and (i + 1). The planar dilatation

generator has an expansion in the ’t Hooft coupling λ = g2
YMN .

D∞ =
∞∑
`=0

(
λ

4π2

)`
D∞` (3.24)

where ` represents the number of loops. The first four terms of this sequence are

given by [49]

D∞0 = χ() = L (3.25)

D∞1 = −1

2
χ(1) (3.26)

D∞2 = −1

8
[(χ(1, 2) + χ(2, 1))− 2χ(1)] (3.27)

D∞3 = − 1

16
[(χ(1, 2, 3) + χ(3, 2, 1)) + χ(1, 3)− 4(χ(1, 2) + χ(2, 1)) + 6χ(1)]

(3.28)
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The reason we go to three loop order will be apparent in Section 4.3. The trans-

lation of these operators into the Cuntz language was first done in [5] using the

full non-planar dilatation generator, but it is easier to start in the basis of chiral

functions.

We can understand the chiral functions locally by considering their action on

words not cyclically identified whose length is equal to the range of the interaction.

For example, the range of χ(1) is two. It acts non-trivially only on the letter

combinations Y Z and ZY ,

χ(1)(ZY ) = Y Z − ZY (3.29)

χ(1)(Y Z) = ZY − Y Z (3.30)

To convert this to the Cuntz language, we note that the Y ’s lie on the boundary

of sites and so we can label the sites preceding it or after it by i, i+1, etc. We can

then use the lowering Cuntz oscillators ai and zero projectors P0i to identify the

number of Z’s in the input word. To get the output word we use the raising Cuntz

oscillators a†i to put Z’s in the appropriate sites. For the example of χ(1), let the

Z in ZY be at site i. Then the action of χ(1) is given by the Cuntz operators

(a†i+1 − a†i )ai. For Y Z, we choose the Z to sit at site i and the action of χ(1)

is (a†i − a
†
i+1)ai+1. Adding these contributions and summing over all the sites we

have

χ(1)→ −
k∑
i=1

(a†i+1 − a
†
i )(ai+1 − ai) (3.31)

Locally, the chiral functions will vanish on words which are all the same letter.

We do not have to consider cases with consecutive Z’s. Chains of consecutive Y ’s

32



Anomalous Dimensions of Open Strings Chapter 3

are sites with zero occupation which vanish under action of the lowering Cuntz

oscillators. Thus, the sum of the length of a word is equivalent to summing over

the sites of the corresponding Cuntz chain.

For an example with projectors, we consider the action of the Hermitian com-

bination χ(1, 2) + χ(2, 1) on Y ZY . One has

(χ(1, 2) + χ(2, 1))(Y ZY ) = −(ZY Y − 2Y ZY + Y Y Z) (3.32)

In the Cuntz language this becomes

− (a†i+1 − 2a†i + a†i−1)P0iai (3.33)

The full expression for χ(1, 2) + χ(2, 1) is

χ(1, 2) + χ(2, 1)→ −
k∑
i=1

(a†i − a
†
i−1)P0i(ai+1 − ai) + (a†i+1 − a

†
i )P0i(ai − ai−1)

+ (a†i+1 − a
†
i )(a

†
i+1ai + a†iai+1)(ai+1 − ai) (3.34)

The functions appearing in (3.25)-(3.28) left to be translated, χ(1, 2, 3) +

χ(3, 2, 1) and χ(1, 3), act on four letter words. Their translation is given by

χ(1, 2, 3) + χ(3, 2, 1)→

−
k∑
i=1

(a†i+2 − a
†
i+1)P0i+1P0i(ai − ai−1) + (a†i − a

†
i−1)P0i+1P0i(ai+2 − ai+1)

+ (a†i+1 − a
†
i )(a

†
iP0iai+1 + a†i−1P0iai)(ai − ai−1)

+ (a†i − a
†
i−1)(a†i+1P0iai + a†iP0iai−1)(ai+1 − ai)
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+ (a†i+1 − a
†
i )(a

†
i+1a

†
i+1aiai + a†ia

†
iai+1ai+1)(ai+1 − ai) (3.35)

χ(1, 3)→
k∑
i=1

(a†i+1 − a
†
i )(a

†
i − a

†
i−1)P0i(ai+1 − ai)(ai − ai−1) (3.36)

Let us begin assembling these pieces into the closed chain Cuntz Hamiltonian.

First we write the expansion

Hclosed =
∞∑
`=0

(
λ

4π2

)`
Hclosed,` (3.37)

where D∞` will be translated to Hclosed,`. The length of the word L is the total

number of Z and Y fields appearing in a single trace. The number of Y fields is

given by k for the closed Cuntz chains while the number of Z fields is given by

the number operator (3.17). Thus we have

Hclosed,0 = N̂ + k (3.38)

For ` = 1 the result is proportional to (3.31)

Hclosed,1 =
1

2

k∑
i=1

(a†i+1 − a
†
i )(ai+1 − ai) (3.39)

where the sites are cyclically identified, i ≡ i+ k.

For ` = 2, we make use of the identity I = a†iai + P0i.

(χ(1, 2) + χ(2, 1))− 2χ(1)

→
k∑
i=1

(−a†i + a†i−1)P0i(ai+1 − ai) + (a†i+1 − a
†
i )P0i(−ai + ai−1)
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+ (a†i+1 − a
†
i )(a

†
i+1(−ai) + (−a†i )ai+1)(ai+1 − ai)

+ 2(a†i+1 − a
†
i )(ai+1 − ai)

=
k∑
i=1

(−a†i + a†i−1)P0i(ai+1 − ai) + (a†i+1 − a
†
i )P0i(−ai + ai−1)

+ (a†i+1 − a
†
i )(a

†
i+1(−ai) + (−a†i )ai+1)(ai+1 − ai)

+ (a†i+1 − a
†
i )(a

†
i+1ai+1 + P0i+1 + a†iai + P0i)(ai+1 − ai)

=
k∑
i=1

(a†i+1 − a
†
i )

2(ai+1 − ai)2 + (a†i+1 − 2a†i + a†i−1)P0i(ai+1 − 2ai + ai−1) (3.40)

We define

Hclosed,2 = −1

8

k∑
i=1

(a†i+1 − a
†
i )

2(ai+1 − ai)2

+ (a†i+1 − 2a†i + a†i−1)P0i(ai+1 − 2ai + ai−1) (3.41)

The translation of D∞3 to Hclosed,3 involves nesting the identity I = a†iai + P0i

multiple times. The correct prescription is guided by the finite difference forms

of (3.39) and (3.41). We further take advantage of the known Cuntz forms of D∞1

and D∞2 and replacing χ(1) and χ(1, 2) + χ(2, 1) with them

D∞3 = − 1

16
[(χ(1, 2, 3) + χ(3, 2, 1)) + χ(1, 3) + 32D∞2 + 4D∞1 ] (3.42)

Using this particular combination of chiral functions, we insert the identity into

D∞1 and D∞2 as follows.

16D∞3 →
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k∑
i=1

[
(a†i+2 − a

†
i+1)P0i+1P0i(ai − ai−1) + (a†i − a

†
i−1)P0i+1P0i(ai+2 − ai+1)

+ (a†i+1 − a
†
i )(a

†
iP0iai+1 + a†i−1P0iai)(ai − ai−1)

+ (a†i − a
†
i−1)(a†i+1P0iai + a†iP0iai−1)(ai+1 − ai)

+(a†i+1 − a
†
i )(a

†
i+1a

†
i+1aiai + a†ia

†
iai+1ai+1)(ai+1 − ai)

]
− (a†i+1 − a

†
i )(a

†
i − a

†
i−1)P0i(ai+1 − ai)(ai − ai−1)

+
[
2(a†i+1 − a

†
i )

2(a†i+1ai+1 + P0i+1 + a†iai + P0i)(ai+1 − ai)2

+ 2(a†i+1 − 2a†i + a†i−1)(a†i+1ai+1 + P0i+1 + a†i−1ai−1 + P0i−1)P0i(ai+1 − 2ai + ai−1)
]

−
[
(a†i+1 − a

†
i )(a

†
i (a
†
iai + P0i)ai + P0i(a

†
i−1ai−1 + P0i−1))(ai+1 − ai)

+ (a†i+1 − a
†
i )(a

†
i+1(a†i+1ai+1 + P0i+1)ai+1 + P0i+1(a†i+2ai+2 + P0i+2))(ai+1 − ai)

]
(3.43)

To simplify this expression one has to collect all terms with the same number of

projectors and shift indices when needed. The result is

Hclosed,3 =
1

16

k∑
i=1

(a†i+1 − a
†
i )

3(ai+1 − ai)3 + vi†aMabP0iv
i
b

+ (a†i+2 − 3a†i+1 + 3a†i − a
†
i−1)P0i+1P0i(ai+2 − 3ai+1 + 3ai − ai−1)

(3.44)

via = (ai+1ai+1, ai+1ai, ai+1ai−1, aiai, aiai−1, ai−1ai−1) (3.45)
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Mab =



4 −8 2 2 0 0

−8 15 −3 −3 −1 0

2 −3 1 1 −3 2

2 −3 1 1 −3 2

0 −1 −3 −3 15 −8

0 0 2 2 −8 4


(3.46)

We will comment on the structure of Cuntz Hamiltonian in Section 3.5.

3.4.2 Cuntz Hamiltonian for Open Chains

The planar dilatation generator acts locally on words composed of Y ’s and Z’s

The Cuntz Hamiltonian for closed chains can be determined completely because

they are just a single words of composed of many letters. Open Cuntz chains are

more complicated; they correspond to states which contain determinants, poles,

and string excitations. The string excitations are just words and so the planar

dilatation generator is applicable to this part of the state. The boundary of the

state, that is, the determinants and poles, complicate the situation and one can no

longer use the planar dilatation generator in the basis of chiral functions. In fact,

we will see that the non-planar portions of the dilatation generator are necessary

for certain cancellations. Thus we need the full non-planar dilatation generator in

the su(2) sector. The purpose of this section is to use the non-planar operator to

compute the boundary contributions to the Cuntz Hamiltonian for open stretched

between two giant gravitons.

In the su(2) sector the dilatation generator, at finite N , can be written as an
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expansion in the ’t Hooft coupling λ = g2
YMN

D =
∞∑
`=0

(
λ

4π2

)`
D` (3.47)

where ` represents the number of loops. The first three terms in this sequence are

given by [29]

D0 = : Tr(ZŽ) : + : Tr(Y Y̌ ) : (3.48)

D1 = − 1

2N
: Tr([Y, Z][Y̌ , Ž]) : (3.49)

D2 = − 1

8N2
[: Tr([[Y, Z], Y̌ ][[Y̌ , Ž], Y ]) : + : Tr([[Y, Z], Ž][[Y̌ , Ž], Z]) :

+ : Tr([[Y, Z], T a][[Y̌ , Ž], T a]) :] (3.50)

where T a are generators of U(N) (SU(N)), the fields are expanded in these gen-

erators Y = Y aT a, and the checked operators are derivatives with respect to that

field, ŽB
AZ

D
C = (T a)BA(T b)DC Ž

aZb = (T a)BA(T b)DC δ
ab = δBAδ

D
C . The normal ordering

indicates that derivatives do not act on other fields inside the normal ordering.

Unlike for the planar case, we only have the result up to two loops.

Our goal is here is to translate D to an effective Hamiltonain for the open

Cuntz oscillator chain Hopen. It too has an expansion in the ’t Hooft coupling

Hopen =
∞∑
`=0

(
λ

4π2

)`
Hopen,` (3.51)

As already state, the action of D on the word W12 is given by the planar portion.

We need to compute the boundary contributions.

Let us begin with the tree level translation of D0 → Hopen,0. The dilatation
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operator in the su(2) sector does not change the length of the spin chain; the

total number of fields is conserved. The Cartan generator of the su(2) yields the

difference between the number of Y and Z fields. It commutes with the dilatation

generator and hence is also conserved. Thus the individual number of Y and Z

fields is unchanged. We can choose Z to be a highest weight state of the so(6)

R-symmetry which is positively charged under one of the angular momenta Ĵ1.

In the su(2) sector one can represent Ĵ1 = Tr(ZŽ). We can do something similar

with Y by choosing an orthogonal momentum Ĵ2 = Tr(Y Y̌ ). These are dual to

the two orthogonal momenta on the S3 in the Rt×S3 subspace of AdS5×S5. The

tree level dilatation operator is then given by D0 = Ĵ1 + Ĵ2. Although Ĵ2 is well

defined, the determinants contribute order N number of Z fields. Thus Ĵ2, and

hence its anomalous dimension, diverges in the planar limit. We should instead

consider the combination D − Ĵ1 for open strings. In particular we translate the

tree level dilatation generator to

(D0 − Ĵ1)→ Hopen,0 = k + 1 (3.52)

There are various results that need to be put together to calculate the bound-

ary contributions to the anomalous dimension of states of the form (3.18) beyond

tree level. In the planar limit, the dilatation generator does not mix the fields of

the string excitations W12 and W21. Thus we isolate contributions to the anoma-

lous dimension due to W12 and the poles. To get the full result, we add another

copy of the computation for the W21 excitation. We are forced to have an even

number of sites because Z1 and Z2 alternate between each other in the chain.
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However, this does not affect the boundary conditions on the chain that we want

to derive and in general we will ignore this condition.

We begin at one-loop order. The object to be computed is

〈α1, α2;n′1, . . . , n
′
k|Hopen,1 |α1, α2;n1, . . . , nk〉 (3.53)

where the states are normalized to have unit norm. The first question, is therefore

to compute the norm of the bare states above, to leading order in a 1/N expansion.

This answer is given by

|||α1, α2;n1, . . . , nk〉||2 = Nk+
∑
ni(N−α1α

∗
1)(N−α2α

∗
2) exp(α1α

∗
1 +α2α

∗
2) (3.54)

which results from combining the results of [39] with planar contractions of the

words of the chain. The planar contractions of (W12)ab and its complex conjugate

(W̄12)b̃ã in the leading planar approximation give a result proportional to δaãδ
b̃
b. The

factor of Nk+
∑
ni is this proportionality factor and counts the number of matrix

contractions necessary to make the word W12. The result is as if the composite

word W12 was acting as a single Y , but with a different normalization factor.

That other contributions are subleading in powers of 1/N was shown in [42]. The

reason these factors of N are important is that the effective Hamiltonian changes

the number of the ni at the edges, namely n1, nk in such a way that they can exit

the region sandwiched between the Y . The results in (3.53) can have different

powers of N and this affects the naive planar counting.

To compute the matrix elements of Hopen,1 using unnormalized states we need

to divide by the norm of the states carefully. For example, if one has in an
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unnormalized basis that

Hopen,1 |a〉 =
∑
b

H̃ba |b〉 (3.55)

Then we have that in a normalized basis

Hopen,1
|a〉
|||a〉||

=
∑
b

|||b〉||
|||a〉||

H̃ba
|b〉
|||b〉||

(3.56)

So

Hba =
|||b〉||
|||a〉||

H̃ba (3.57)

The orbifolded version of (3.49) is now given by

D1,orb = − 1

2N
: Tr

(
[Y,Z]

[
Y̌, Ž

])
: (3.58)

with

Z =

Z1 0

0 Z2

 , Y =

 0 Y12

Y21 0

 (3.59)

Ž =

Ž1 0

0 Ž2

 , Y̌ =

 0 Y̌21

Y̌12 0

 (3.60)

we can pinpoint various contributions to the anomalous dimension. The first one,

is where we take a Z2 from Zn1
2 and move is to the left of the Y12. We call that

a hop-out interaction (following the conventions of [45]). The planar contribution

to that term is captured by

− : Tr(Z1Y12Ž2Y̌12) : (3.61)
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Acting on the initial state gives a power of N from contractions between the

derivatives and the word Y12Z2. Notice that the words go in opposite order than

the way derivatives act on them (this is illustrated in [16], particularly the section

on matrix models). The state we get after this operation is given by

det(Z−α)det(Z2−α2)Tr

(
Z1

Z1 − α
Y12Z

n1−1
2 Y21Z

n2
1 Y12Z

n3
2 · · ·Z

nk
1 Y12

1

Z2 − α2

W21

)
(3.62)

Now, in the term with the Z1 pole in the trace we use the substitution Z1 =

(Z1−α1)+α1, generating two terms. One of them is α1 |α1, α2;n1 − 1, n2, . . . , nk〉,

and the other one which has no pole anymore at Z1 = α1 This is considered as a

single string state starting from brane two and ending on brane two. Such term

counts as changing the number of strings and it is non-planar (this can also be

checked by computing norms). The other term counts as planar, but proportional

to α1. Thus, the end result is proportional toNα1. However, when normalizing the

states, we see that the norm of the states changes as described in equation (3.54)

The result for normalized states with unit norm is actually given by following the

recipe in equation (3.53), which involves the ratio of the norms of the states. The

result is that for each Z we create we attach a factor of
√
N and for each Z we

annihilate we attach a 1/
√
N . When translating to the Cuntz oscillator basis, we

can use (
√
Na†i ) and (ai/

√
N) without having to recompute the normalizations of

the states; using these replacements instead of a†i and ai takes care of it for us.

In this process we have one less Z and so the hop-out interaction from the first
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element of the chain is given by the following extra contribution

Hhop-out, left ' −
(
α1√
N

)
a1 (3.63)

Hermiticity ensures that the hop-in interaction is the adjoint of this operation, so

we have that

Hhop-in, left ' −
(
α∗1√
N

)
a†1 (3.64)

Finally, there is one extra contribution to the left from acting with the term

: Tr(Z1Y12Y̌12Ž1) : where the derivative with respect to Z acts on the giant gravi-

ton. Such terms are identical to those that were already computed in [39], and

these are given by

Hgiants ' α1α
∗
1 (3.65)

These terms were called ‘kissing interactions’ in [45].

Putting it all together, we find that the open Cuntz chain Hamiltonian on the

left side of the Cuntz chain is given by

Hopen,1 =
1

2

[(
α1√
N
− a†1

)(
α∗1√
N
− a1

)
+ (a†1 − a

†
2)(a1 − a2) + . . .

]
(3.66)

A similar term shows up in the right hand side, with α1 → α2 and a1 → ak.

Notice that this is a simple generalization of equation (3.39) at the boundaries.

This is a nearest neighbor interaction with hopping in and out of the chain at

the boundaries. It is important to notice that since the parameter α is complex,

there are phases associated to hopping in and out at the boundary. This is a

simple generalization of the Cuntz Hamiltonian found in [50, 51]. The Hamiltonian
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can be made to be the same as the one presented in that work if we choose

α1 = α2 = −
√
N(1− p/N) in the notation of [50]. This result ends up having

the same information content as the one found in [45] (particularly equations 3.7

and 3.8). We interpret the parameter αi in our expression in terms of raising and

lowering operators associated to the momentum of the giant graviton. Since αi is

a coherent state parameter for a (inverted) harmonic oscillator, as shown in [39],

we can think of αi ' bi and α∗i ' b†i , for a harmonic oscillator pair. In this case,

acting with a lowering operator actually increases the R-charge of the giant, and

acting with the raising operator lowers the charge. We also have to be mindful of

conventions with respect to signs. When we chose the operators det(Zi − αi) as

our giant graviton representatives, we get minus signs in the expansion in terms of

subdeterminants. Those minus signs appear in the relative sign between α∗ and

a1 in the expressions above. If we would have chosen the operators det(Zi + αi)

instead, we would have gotten the result above with various signs changed. Those

sign differences would reproduce the results of [45] exactly, while changing from

Cuntz oscillators to ordinary oscillators would account for the numerical factors

in the square roots appearing in equation (3.7), as well as the equation on page

23 describing the boundary Hamiltonian.

Now we move on to two-loop translation of the dilatation operator into the

Cuntz Language, that is, D2 → Hopen,2. The full calculation is long and tedious

and so here we only point out some qualitative features regarding it leaving further

details to Appendix A. The constant of proportionality −1/8N2 will be dropped

for the calculation and restored at the end. Again, we will restrict our attention to

computing the boundary contributions only, as the contributions from the string
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excitation alone can be obtained from the planar part of the dilatation operator.

The orbifold trick does simplify things and so we will make use the operator

(3.18) for our open Cuntz chain. By symmetry we may focus solely on the left

boundary of the open Cuntz chain, that is, the graviton with collective coordinate

α1 and the first site. Thus for explaining this calculation we will take our open

Cuntz chain to have the schematic form

det (Z1 − α1) Tr

(
1

Z1 − α1

Y12Z
n1
2 W

)
(3.67)

where W is a word representing the rest of the Cuntz chain.

The boundary terms coming from the term in D2 proportional to D1 have

already been computed, but there are subtleties that will be discussed later. The

boundary of the Cuntz chain will make a contribution only if one of the Y deriva-

tives in D2 acts on the first Y in the Cuntz chain. The Z derivatives must act

on the determinant, or the first site. However, if the Z derivatives act on a site,

then a boundary contribution is made only when we hop out some Z’s. Our first

example will show how these choices of where the Z derivative acts complicates

things, but the orbifold trick makes things simpler.

Consider the action of the following term from D2 on (3.67)

: Tr
(
Y12Z2Z2Ž2Y̌12Ž1

)
: (3.68)

Had we not used the orbifold trick, the Ž2 would be a Ž1 and have the option of

acting on the determinant or the (Z1−α1)−1 inside the trace. These terms would

have split the oscillator chain and we would have thrown them away, but with the
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orbifold trick the bookkeeping becomes simpler. Indeed the result is

det (Z1 − α1) Tr

(
1

Z1 − α1

Y12Z
n1
2 W

)
→

Ndet (Z1 − α1) Tr

(
1

Z1 − α1

1

Z1 − α1

Y12Z
n1−1+1+1
2 W

)
(3.69)

−Ndet (Z1 − α1) Tr

(
1

Z1 − α1

)
Tr

(
1

Z1 − α1

Y12Z
n1−1+1+1
2 W

)
(3.70)

where in the first term Ž1 acted on the determinant and in the second term Ž1

acted inside the trace. We already have made use of the equality Z1 = Z1−α1+α1

and have thrown away terms of lower order. Using the results in Appendix A these

terms collect into a nice derivative of α1:

det (Z1 − α1) Tr

(
1

Z1 − α1

Y12Z
n1
2 W

)
→

N∂α

[
det (Z1 − α1) Tr

(
1

Z1 − α1

Y12Z
n1+1+1−1
2 W

)]
(3.71)

It was explained in [39] how double trace terms will form derivatives, but here we

have shown things explicitly to emphasize the care needed to get to the end result.

To translate this into the Cuntz language, we note that derivatives of α1 yield

factors of α∗1 (see Appendix of [39]) and we keep track of the normalizations using

the results earlier in this section. The contribution to the two-loop Hamiltonian

reads

N2

(
α∗1√
N

)
a†1a

†
1a1 (3.72)

Just as double pole terms generate a single derivative with respect to α1, we can

have triple pole terms and these will generate two derivatives with respect to α1.
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Such a term will appear later on. There are a total of eight terms with two Z

derivatives and all three derivatives sitting next to each that contribute to the

boundary Hamiltonian. The result of adding these together is

N2

(
a†1 −

α1√
N

)[(
− α1√

N

)
a1 + a†1

(
− α∗1√

N

)](
a1 −

α∗1√
N

)
(3.73)

Now we deduce which terms with two Y̌ ’s can make order N2 contributions.

A term containing Y̌ ŽY̌ can only make a contribution if the Ž acts on the first

site. Otherwise a factor of (Z1−α1)−1 gets inserted and splits the chain. In order

to get a contribution from the boundary, we have to hop a Z out of the chain.

There is only one such term in D2.

− : Tr(Z1Y12Y21Y̌21Ž2Y̌12) : (3.74)

We can pick up at most one factor of N from the Ž in terms with two Y̌ ’s. To

get the other factor of N , the Y̌ ’s must sit next to each other. Although there are

four such terms, one of them splits the chain. The three remaining contributing

terms are

: Tr
(
Y12Y21Z1Y̌21Y̌12Ž1 − Y12Z2Y21Y̌21Y̌12Ž1 + Z1Y12Y21Ž1Y̌21Y̌12

)
: (3.75)

Note that equation (3.74) and the second term of (3.75) couple the second site to

the giant graviton. The total contribution from these four terms is

N2

(
α1√
N
P01(a2 − a1) + (a†2 − a1)P01

α∗1√
N

)
(3.76)
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where P01 is the projection onto the zero occupation number state at site one.

The last contribution comes from the two derivative terms in D2, however, it

is just proportional to D1

: Tr([[Y, Z], TA][[Y̌ , Ž], TA]) : = 2ND1 (3.77)

The contribution from this operator was determined at one-loop and is given by

2N2

(
a†1 −

α1√
N

)(
a1 −

α∗1√
N

)
(3.78)

For the closed Cuntz chain we were able to complete various squares by insert-

ing two copies of the identity into the quadratic terms, one for each site involved.

Here we can not do such a manipulation immediately because one of the two

objects involved is not a Cuntz site, it is a giant graviton. We can insert the

identity for site one a†1a1 + P01. This manipulation only completes the square in

the commutator term coupling sites one and two, and the giant graviton. We are

still left with an incomplete quartic and some quadratic terms.

(
a†1 −

α1√
N

)[
a†1a+

(
− α1√

N

)
a1 + a†1

(
− α∗1√

N

)](
a1 −

α∗1√
N

)
+

(
a†1 −

α1√
N

)(
a1 −

α∗1√
N

)
(3.79)

The reason we do not have the nice form of the closed Cuntz chain at this point

is that we forgot about the contributions of certain non-planar terms. Indeed,

since the Z derivatives do not necessarily have to act on a site, we can loosen

the requirement that derivatives must sit next to each other. There are four such
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terms in D2 that have non-vanishing contribution:

: Tr
(
−ŽY12Z2Y̌12Ž1Z1 + Ž1Y12Z2Ž2Y̌12Z1

+Ž1Z1Y12Y̌12Ž1Z1 − Ž1Z1Y12Ž2Y̌12Z1

)
: (3.80)

Consider the action of the first term on the Cuntz chain (3.67). The relevant

terms are

− det (Z1 − α1) Tr

(
1

Z1 − α1

1

Z1 − α1

1

Z1 − α1

Z1Y12Z
n1+1
2 W

)
(3.81)

+ det (Z1 − α1) Tr

(
Z1

Z1 − α1

)
Tr

(
1

Z1 − α1

1

Z1 − α1

Y12Z
n1+1
2 W

)
(3.82)

+ det (Z1 − α1) Tr

(
1

Z1 − α1

)
Tr

(
1

Z1 − α1

1

Z1 − α1

Z1Y12Z
n1+1
2 W

)
(3.83)

+ det (Z1 − α1) Tr

(
1

Z1 − α1

1

Z1 − α1

)
Tr

(
1

Z1 − α1

Z1Y12Z
n1+1
2 W

)
(3.84)

− det (Z1 − α1) Tr

(
1

Z1 − α1

1

Z1 − α1

1

Z1 − α1

Z1Y12Z
n1+1
2 W

)
(3.85)

− det (Z1 − α1) Tr

(
Z1

Z1 − α1

)
Tr

(
1

Z1 − α1

Y12Z
n1+1
1 W

)
(3.86)

where we have not made use of the expansion Z1 = Z1 − α1 + α1. Making use

of the expansion, we see that equations (3.81), (3.83), (3.84), and (3.85) pick

up a factor of α. The factor of 1 from expanding Z1/(Z1 − α1) usually ends up

reducing at which order of N the corresponding term contributes. In (3.82) and

(3.86), however, we have a trace over the 1 and thus pick up a factor of N . These

terms come in at order N2 but are only quadratic in α1 and Cuntz operators. The

remaining six terms contain triple pole terms which all combine to give a single

second derivative with respect to α1. The contribution to the Hamiltonian from
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(3.80) is

N2

(
a†1 −

α1√
N

)(
− α1√

N

)(
− α∗1√

N

)(
a1 −

α∗1√
N

)
−N2

(
a†1 −

α1√
N

)(
a1 −

α∗1√
N

)
(3.87)

Note that the sign on the quadratic term is exactly opposite that of (3.79) pro-

viding a nice cancellation.

The final result after summing everything up and putting back the numerical

factors is

Hopen,2 = −1

8

[(
α1√
N
− a†1

)2(
α∗1√
N
− a1

)2

+
k−1∑
i=1

(a†i+1 − a
†
i )

2(ai+1 − ai)2

+

(
a†k −

α2√
N

)2(
ak −

α∗2√
N

)2

+

(
α1√
N
− 2a†1 + a†2

)
P01

(
α∗1√
N
− 2a1 + a2

)
+

k−1∑
i=2

(a†i+1 − 2a†i + a†i−1)P0i(ai+1 − 2ai + ai−1)

+

(
a†k−1 − 2a†k +

α2√
N

)
P0k

(
ak−1 − 2ak +

α∗2√
N

)]
(3.88)

The boundary terms have the same structure as the internal terms of the open

Cuntz Hamiltonian. We define the c-number operators

a0 ≡ ξ1 =
α∗1√
N
, a†0 = ξ∗1 =

α1√
N

(3.89)

ak+1 ≡ ξ2 =
α∗2√
N
, a†k+1 = ξ∗2 =

α2√
N

(3.90)

The ξi coordinates are the complex conjugates of similar named variables in [39].
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It is then convenient to rewrite the one and two-loop open Cuntz Hamiltonians as

Hopen,1 =
1

2

k∑
i=0

(a†i+1 − a
†
i )(ai+1 − ai) (3.91)

Hopen,2 = −1

8

k∑
i=0

(a†i+1 − a
†
i )

2(ai+1 − ai)2

− 1

8

k∑
i=1

(a†i+1 − 2a†i + a†i−1)P0i(ai+1 − 2ai + ai−1) (3.92)

We see that at one and two-loops the closed Cuntz Hamiltonian (3.39), (3.41) can

be modified very simply to obtain their open versions. One breaks the period of

the closed Cuntz chain and adds two boundary ‘sites’ that are ordinary c-numbers.

These c-numbers are scaled versions of the giant graviton collective coordinates.

We would also like the Cuntz Hamiltonian at three-loops for the open Cuntz

chain. Understanding the action of the dilatation operator at one and two-loops

on delocalized giants det(Z−α) [39, 5] and expanding in the collective coordinate

α, we see that the subdeterminants can be realized as a truncated representation

of the harmonic oscillator algebra. Denote the states by |n〉 = detn(Z) and op-

erators b and b† that act as b |n〉 = N−1/2
√
n |n〉, b† |n〉 = N−1/2

√
n+ 1 |n〉. The

delocalized giant graviton operators can be realized as a coherent state of this

truncated algebra |α〉 = det(Z − α) which satisfy b |α〉 = α√
N
|α〉 [52]. Then the

one-loop Cuntz Hamiltonian should be written as

∼ (b†2 − a
†
k)(b2 − ak) +

k−1∑
i=1

(a†i+1 − a
†
i )(ai+1 − ai) + (a†1 − b

†
1)(a1 − b1) (3.93)

where the subscript on b denotes which giant graviton the operator acts on. The
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one-loop open Cuntz chain Hamiltonian (3.91) is then realized as (3.93) in a

background of coherent state giant gravitons. This approximation is valid because

because we are taking the planar limit where the D-branes are rigid objects and

the open strings do not back react. We will assume that the giant gravitons

can be inserted into the Cuntz chain as ordinary harmonic oscillators happens at

three-loops as well. Realizing we are taking the planar limit then allows us to

replace the operators with ordinary c-numbers. The open Cuntz Hamiltonian at

three-loops is then given by

Hopen,3 =
1

16

k∑
i=0

(a†i+1 − a
†
i )

3(ai+1 − ai)3 +
1

16

k∑
i=1

vi†aMabP0iv
i
b

+
1

16

k−1∑
i=1

(a†i+2 − 3a†i+1 + 3a†i − a
†
i−1)P0i+1P0i(ai+2 − 3ai+1 + 3ai − ai−1)

(3.94)

with via and Mab defined by (3.45) and (3.46) and the boundary operators given

by (3.89).

3.5 Discussion

We devoted this Chapter to setting up the technology to be used for Chapters

4 and 5. We described states lying in the su(2) sector of N = 4 SYM dual to

open strings stretched between giant gravitons. Collective coordinates for the

giant gravitons introduce a generating series for giant graviton states of definite

R-charge and make them more semiclassical. In Section 4.5, the coordinates will

be an explicit realization of the boundary of the open strings we wish to attach
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to the giant gravitons. The string excitations between the D-branes come in the

form of spin chains. These spin chain states and the dilatation operator in this

sector were translated into a Cuntz oscillator basis. Diagonalizing the open Cuntz

Hamiltonian will yield the anomalous dimensions of open strings in the planar

limit. Of particular interest is the ground state of the open Cuntz Hamiltonian

and will be the subject of the next chapter. The Cuntz Hamiltonians for the open

and closed chains are summarized in Appendix B.

A few comments on the structure of the Cuntz Hamiltonians (3.91), (3.92),

and (3.94) are in order. The first term of each Hamiltonian takes the form

k∑
i=0

[(a†i+1 − a
†
i )(ai+1 − ai)]` (3.95)

with ` the loop order. This is the magnitude squared first order finite difference

between consecutive sites raised to a power equal to the loop level at which we

are operating. These terms can also been seen as self-energy and hopping terms

[5]. The consistent appearance of this terms leads us to conjecture that it will

appear at higher loop orders as well. Further evidence for this will be seen when

we compute higher order corrections to the energy of open string ground state

in Section 4.3. The energy of the state at each loop order receives contributions

proportional to (|ξ1−ξ2|2)`. We will conjecture with symmetry arguments that all

contributions at `-loops are proportional to (|ξ1 − ξ2|2)`. These contributions to

the ground state energy will appear in perturbation theory due to the expectation

values 〈Hopen,`〉 if a term of the form (3.95) appears in Hopen,`. The ground state

itself will be corrected as well, but this is accounted for by other terms in the
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Hamiltonian.

The last terms of (3.92) and (3.94) are the magnitude squared of a second and

third derivative finite difference operator, respectively. Each contains a number

of projection operators necessary for SU(2) invariance. They take into account

consecutive sites with low occupation number. These are operators where the Y

fields are separated by at most one Z at two loops and two Z at three loops. These

last terms is also symmetric about the sites on which they operate. For example,

switching i+2↔ i−1 and i+1↔ i for the three-loop Hamiltonian is a symmetry

of this term. At `-loops we expect a similar term to occur; the magnitude squared

of an `-order finite difference with `− 2 projectors in the middle

∼
k∑
i=1

(∑̀
m=0

(
`

m

)
a†i+m−b`/2c

)(
`−1∏
n=1

P0,i+n−b`/2c

)(∑̀
p=0

(
`

p

)
ai+p−b`/2c

)
(3.96)

The second term of (3.94) is mysterious and has no analog at a lower order.

Despite numerous attempts by the author, a simple finite difference form of the

operators quartic in the Cuntz oscillators could not be found. Given the nature

of the other terms, one would expect it to be a mixture of first and second order

finite differences. However, we will see that its expectation value against the open

string ground state is non-vanishing,
〈
Ω(0)

∣∣ (via)†MabP0i(v
i
b)
∣∣Ω(0)

〉
6= 0 with

∣∣Ω(0)
〉

the open string ground state. Thus it can not be rewritten so that every term

contains a second or higher order finite difference term. The non-vanishing of the

expectation value implies that the ground state must get corrected at higher orders

in perturbation theory. The second term, however, does have the same reflection

symmetry as the others. The exchange i + 1 ↔ i − 1 is a site-by-site symmetry.
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This can be seen by the fact that the matrix (3.46) remains unchanged after

flipping it over the horizontal and vertical axes and then swapping the middle two

columns and rows. The final swap is necessary because the exchange i+1↔ i−1

does not swap ai+1ai−1 and aiai in via.

The reflection symmetry is a consequence of the existence of a parity symmetry

at the planar level. Thus we expect this to be a local symmetry of the Cuntz

Hamiltonian to all orders in perturbation theory. That is, the Cuntz Hamiltonian

should have a normal ordered form such that every term exhibits the reflection

symmetry at the site level.

Another universal property of all the terms in the Cuntz Hamiltonian at all

loop levels here is that they contain the same number of Cuntz oscillators. Re-

calling that P0 = [a, a†] is quadratic in the Cuntz oscillators, we see that all terms

have 2` Cuntz oscillators at `-loop order. Even thought the different kinds of in-

teractions have different range, they all have the same number of Cuntz oscillators

when we fix the loop level. This is different than the spin chain picture where

the range of individual interactions can be different than the loop level (although

the maximum range is bounded by the loop level). We currently do not have an

explanation for why the same number of Cuntz oscillators appear, we do predict

that the Cuntz Hamiltonian can always be written in a form in which this is true

at all loop orders.
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Chapter 4

Exploring the Ground State

Using the technology of Chapter 3 developed for open strings stretched between

giant gravitons, we solve for the open string ground state and make inferences

about the geometry in which it lives. In particular, we conjecture that the open

string satisfies a relativistic dispersion relation to all loop orders whose origin

is a central charge extension of a su(2|2) symmetry left unbroken by the giant

gravitons. The central charge is given by the distance between the collective

coordinates of the giant gravitons between which the string is stretched.

4.1 Finding the Ground State

We use coherent states of open strings described at the end of Section 3.3

to find the ground state of the lowest order non-trivial open Cuntz Hamiltonian

(3.91). The procedure is to minimize the expectation value of the Hamiltonian

against a single coherent state. We will fix the giant gravitons to have collective

coordinates α1 and α2 for the remainder of this chapter and so we will omit

these labels when writing coherent states of open strings. That is, we will write
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|z1, . . . , zk〉 instead of |α1, α2; z1, . . . , zk〉. One obtains a simple quadratic function

of the zi

〈
z0

1 , . . . , z
0
k

∣∣Hopen,1

∣∣z0
1 , . . . , z

0
k

〉
=

1

2

[∣∣ξ1 − z0
1

∣∣2 +
k−1∑
i=1

|z0
i − z0

i+1|2 +
∣∣z0
k − ξ2

∣∣2]
(4.1)

When we minimize with respect to the z0
i parameters we find that

ξ1 − z0
1 = z0

1 − z0
2 = · · · = z0

i − z0
i+1 = · · · = z0

k − ξ2 (4.2)

Adding these together we have

ξ1 − ξ2 = (k + 1)(z0
i − z0

i+1) (4.3)

Solving for the individual collective coordinates we have

z0
i =

1

k + 1
[(ξ1 − ξ2)i+ (k + 1− i)ξ1] (4.4)

Here we let i = 0, . . . , k + 1 so that z0
0 = ξ1 and z0

k+1 = ξ2. For convenience, we

make the notational identification

∣∣Ω(0)
〉
≡
∣∣z0

1 , . . . , z
0
k

〉
(4.5)

Using z0
i − z0

i+1 = 1
k+1

(ξ1 − ξ2) we find that the expectation value of the

Hamiltonian against this state is

E
(1)
0 ≡

1

2

|ξ1 − ξ2|2

k + 1
(4.6)
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Here the superscript indicates that we are doing a one-loop computation, and the

subscript indicates the ground state energy. To show consistency with the previous

evaluation using the collective coordinate approach, we note that when k = 0 (a

chain with no sites), we reproduce the energy of the configurations calculated in

[39]. Additionally, if α1 = α2 (and hence ξ1 = ξ2), we get the same ground state

with zero energy first deduced in [50].

Let us show that the state we have found is not only an eigenstate of the

Hamiltonian, but the true ground state. We begin with the following operator

identity
k∑
i=0

(ai+1 − ai) = ξ2 − ξ1 (4.7)

Applying the Hamiltonian (3.91) to
∣∣Ω(0)

〉
we have

Hopen,1

∣∣Ω(0)
〉

=
1

2

ξ2 − ξ1

k + 1

k∑
i=0

(a†i+1 − a
†
i )
∣∣Ω(0)

〉
=

1

2

|ξ1 − ξ2|2

k + 1

∣∣Ω(0)
〉

(4.8)

which shows
∣∣Ω(0)

〉
is an eigenstate. Let |ψ〉 denote an abitrary state and |ψ〉i =

(ai+1 − ai) |ψ〉 including i = 0 and i = k. Using (4.7) we have

k∑
i=0

|ψ〉i = (ξ2 − ξ1) |ψ〉 (4.9)

Using the inequality between the quadratic mean and the arithmetic mean (suit-

ably generalized to complex vector spaces), we have

1

k + 1

k∑
i=0

|||ψ〉i||
2 ≥

∣∣∣∣∣
∣∣∣∣∣ 1

k + 1

k∑
i=0

|ψ〉i

∣∣∣∣∣
∣∣∣∣∣
2

=
|ξ1 − ξ2|2

(k + 1)2
〈ψ|ψ〉 (4.10)
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The inequality follows from convexity of the function || |ψ〉 ||2 on a complex vector

space. It is saturated only if the |ψ〉i are all the same vector. For a normalized

state 〈ψ|ψ〉 = 1 and we can translate this into the following inequality

〈ψ|Hopen,1 |ψ〉 =
1

2

k∑
i=0

|| |ψ〉i ||
2 ≥ 1

2

|ξ1 − ξ2|2

k + 1
= E

(1)
0 (4.11)

which shows that the energy for any other state is higher than the one for the

coherent state we found. The only thing left to show is that the state
∣∣Ω(0)

〉
has

finite norm. As explained in Section 3.3, this requires |z0
i | < 1 for 1 ≤ i ≤ k.

The α are required to have norm less than
√
N [39], it follows that |ξ| ≤ 1. Since

the z0
i are lie in the convex hull of ξ1 and ξ2, it follows that each of the z0

i have

norm less than one as well. Thus all of the zi are in the unit disk and the state is

normalizable.

4.2 Geometry from Giant Gravitons and Strings

What we see is that the z coordinates are very closely related to the α coor-

dinates characterizing giant gravitons. The geometric layout of the ground state

collective coordinates is displayed in Figure 4.1 The expectation value of the en-

ergy for a general coherent state with arbitrary collective coordinates zi in the

unit disk, with z0 = ξ1 and zk+1 = ξ2 is evaluated to a sum of squared distances

in the complex plane,

E(z0, . . . , zk+1) =
1

2

(
λ

4π2

) k∑
i=0

|zi+1 − zi|2 (4.12)
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z

z
z

ξ

ξ
∼

1
2

3

Figure 4.1: Geometric layout of the z0
i in the ground state, as an interpolating

chain of complex numbers between ξ1 and ξ2.

which is a geometric equation and we have restored the ’t Hooft coupling. Al-

though z0 and zk+1 are the giant graviton coordinates, the energy of the state

does treat them differently than the other zi. We can reverse the logic and state

that all the zi could be treated as if they are D-brane coordinates of some sort.

The formula for the mass squared then looks like a sum over contributions of

impurities stretched between successive D-branes with gauge invariance requiring

that for each incoming string to a brane there is an outgoing string. This inter-

pretation gives further evidence to the idea that geometry at strong coupling can

be understood in terms of open strings stretching between gases of eigenvalues

(D-branes) as espoused originally in [18]. This also makes contact with the cal-
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culations in [53, 54] which required a saddle point integral to obtain a geometric

interpretation. It improves on these concepts by allowing specific D-brane end-

points. Indeed, we find for the ground state an exact calculation at one-loop,

rather than an approximation.

We can write an effective action for the Cuntz chain with Hamiltonian (4.12)

to make further contact with the geometric interpretation of giant gravitons de-

scribed in [39]. The effective action for coherent states in the standard represen-

tation is

Seff =

∫
dt 〈~z(t)| i∂t |~z(t)〉 −

∫
dt 〈Hopen〉 (4.13)

The first term is the Berry phase for the coherent states. This was originally

computed in [50], but the result was written in a different coordinate system.

To compute the Berry phase in our coordinates, we need the following result for

unnormalized Cuntz coherent states

〈z̃|z〉 =
∞∑
k=0

(z̃∗z)k =
1

1− z̃∗z
(4.14)

Then we can take the limit

lim
z̃→z(t)

1

〈z̃|z(t)〉
i∂t 〈z̃|z(t)〉 =

iz̄ż

1− z̄z
(4.15)

This gives us a Berry connection on the set of states parametrized by |z〉. If we

choose to work with normalized states, we use the following definition for the
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Berry phase

lim
z̃→z(t)

1√
〈z̃|z̃〉

∂t

(
1√

〈z(t)|z(t)〉
〈z̃|z(t)〉

)
=
i

2

z̄ż − ˙̄zz

(1− z̄z)
(4.16)

which differs from the above by a total derivative. The Berry connection associated

to the holomorphic variable z gives rise to a metric for the z coordinate, which

turns out to be the metric of the Poincaré disc.

Apart from the one-loop correction Cuntz Hamiltonian, there is a tree level

contribution to the energy of the Cuntz chain which we have ignored. In Section

3.4.2 we made the translation D0 − Ĵ1 → k + 1. We subtracted out Ĵ1, which

counts the number of Z fields in a field theory operator, because in the large N

limit the graviton operators yield an infinite contribution. Here we will add Ĵ1

back to the open Cuntz Hamiltonian and compute its expectation value for open

Cuntz chains for the purpose of building an effective Hamiltonian.

The contribution to 〈Ĵ1〉 from the giant gravitons was computed in [39] and we

will freely include it later being careful with the fact that ξ is now defined to be

the complex conjugate of the variable ξ defined in that paper. The contribution to

〈Ĵ1〉 from the open string is 〈N̂〉, the expectation value of the occupation number

operator. Noting that equation (4.14) is a generating series for the amplitudes

of the different |n〉 states in a coherent state parametrized by z, the expectation

value can be easily computed as

〈N̂〉 = lim
z̃→z

(〈z̃|z〉)−1z∂z 〈z̃|z〉 =
z̄z

(1− z̄z)
(4.17)

The coherent state effective action to one-loop order, including the effects of
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the giant graviton and the string stretching back from ξ2 to ξ1, is

Stot = Sgg + Scc + Sreturn (4.18)

Sgg = N

∫
dt

[
i

2
(ξ1

˙̄ξ1 − ξ̄1ξ̇1)− (1− ξ̄1ξ1)

]
+N

∫
dt

[
i

2
(ξ2

˙̄ξ2 − ξ̄2ξ̇2)− (1− ξ̄2ξ2)

]
(4.19)

Scc =

∫
dt

(
i

2

k∑
i=1

z̄iżi − ˙̄zizi
(1− z̄izi)

)
−

k∑
i=1

z̄izi
1− z̄izi

− (k + 1)− 1

2

(
λ

4π2

) k∑
i=0

|zi+1 − zi|2 (4.20)

Sreturn = −
∫
dt

(
1 +

1

2

(
λ

4π2

)
|ξ1 − ξ2|2

)
(4.21)

The action Sreturn is from the return string previously labeled by W21. Here we

have let W21 = Y , that is, it is a Cuntz chain with zero sites.

Let us look at the equations of motion of the zi and ξ1, ξ2 in the case λ = 0

ξ̇1 = −iξ1, ξ̇2 = −iξ2 (4.22)

żi = −izi (4.23)

The collective coordinates ξ1, ξ2, and zi all rotate at the same angular speed. This

means that in the free field theory limit |zi−zi+1|2 is constant. When we minimize

the one-loop term with respect to the zi, we find a correction to the equations of

motion. On the ground state of the Cuntz chain this correction vanishes for the

z0
i . The only corrections to the equations of motion in this case are the corrections

to the equations of motion of ξ1, ξ1. This correction is suppressed by 1/N , so it

63



Exploring the Ground State Chapter 4

can be considered as back-reaction of the brane to the presence of strings attached

to it. If we consider small fluctuations of the z0
i around their ground state, the

fact that the ξ motion can only be corrected to order 1/N means that we can

treat it as a Dirichlet boundary condition, namely z0, zk+1 have a fixed motion

described by the free giant graviton solution to the equations of motion.

Although the coordinates ξ1, ξ2, zi parametrize the same disk, appear on

similar footing in the interacting Hamiltonian, and share the equations of motion

in the free field limit, the associated phase space for the variables is different.

The Berry connection for the variables ξ1, ξ2 gives rise to a flat metric in the

ξ coordinate, while the Berry phase in the z coordinate lead to a Poincaré disk

metric. This indicates that in the end the ξ and the z are representing different

objects: D-branes and pieces of strings. When we take the D-branes to the edge of

the disk we recover exactly the one loop dispersion relation for giant magnons and

their bound states made of k + 1 defects [38]. This will be important in Section

4.5, when we explicitly construct the open string dual to the ground state
∣∣Ω(0)

〉
.

We also find that the wave function characterized by the zi is exactly of the Bethe

ansatz type at complexified momentum and where the S-matrix coefficients for

various re-orderings of the momenta vanish. It is natural to identify z ' exp(ip)

at complex values of p to make this identification.

We can try to apply this result to other setups. For example, consider the

problem of open spring theory, where at the end of a long computation to one loop

order in a basis of operators made of Schur polynomials [43] with string decorations

[55], one obtains an effective Hamiltonian which is similar to a discretized hopping

on a lattice [56]. Diagonalizing this problem leads to an effective theory of free
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harmonic oscillators [57]. The springs are made of a string stretching between

two giants with a single Y (a Cuntz chain with zero sites). The main advance of

[39] was to simplify these computations by introducing the collective coordinate

approach. In this section we see that for strings (Cuntz chains) made with k + 1

Y’s stretching between the giants, where we get a Cuntz chain with k sites, the one

loop computation of the spring energy is reduced by 1/(k+ 1) relative to the case

with a single Y defect. This is similar to taking k+1 springs and connecting them

in a series configuration. To connect them in parallel one would use many strings

stretching between the giants. Thus we see that these computations generate

more configurations for the open spring theory program that lead to a system of

harmonic oscillators in the one loop approximation of anomalous dimensions.

4.3 Correcting the Ground State

So far we have studied the one-loop effective Hamiltonian for strings stretching

between giant gravitons and computed their ground state. We have seen that the

energy of the state can be understood geometrically. It is interesting to consider

the higher loop computation for various reasons. Consider for example the case of

the higher loop computation of BMN states [58, 59]. The goal there was to show

that the higher loop order corrections matched the string theory result for energies

[60] and to show that a low energy effective field theory on the worldsheet would

appear. One can follow the same rationale here, and ask what is the effective

Hamiltonian to higher loop orders and try to understand how the Hamiltonian

and its ground state are organized.
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It is simple to understand the giant magnon dispersion relation as arising from

saturating a BPS constraint for a centrally extended su(2|2) algebra [61] This also

applies for their bound states [38]. In general setups, like strings in flat space, one

notices that the central charge extension of supersymmetry vanishes for closed

string states on trivial topologies, that is, those that have no fundamental group.

This is not generally so for open strings. If one considers D-branes in a flat

background, the position separation between D-branes is a central charge. The

separation vector between two D-branes can be thought of as being T-dual to

momentum [62]. Momentum appears as a central charge for supersymmetry, as

seen in dimensional reduction. The central charges of excitations in general can

be physical in the open string sector even if they are confined for closed strings.

One can check that this central charge extension property applies to solitons

as well as fundamental particles in field theory [63]. This understanding is the

basis for dualities in N = 2 theories in four dimensions [64]. The fact that the

spectrum of closed (long) string excitations is characterized by building blocks that

carry a central charge suggests that the spectrum of open strings might actually

measure this charge directly in the ground state of the open string. Looking at

the results we found in the previous section, the string central charge is computed

exactly by the difference of the coordinates of the end D-branes in the droplet

plane. Obtaining additional evidence to identify α1 − α2 as a central charge is

important because then we can really start thinking of the giant gravitons as

collective objects in the field theory in a way that resembles the Coulomb branch

of N = 4 SYM more precisely. This is, after all, the expected low energy theory

on the worldvolume of the giant gravitons themselves when they coincide. It
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would also tell us that the ground state of these strings might be computed by a

BPS formula and extrapolating to strong coupling might be possible not only in

principle, but in practice as well.

Consider also the problem of understanding the origin of this central charge

from the point of view of string motion in AdS5×S5. For giant magnons this was

understood in [37] where the relation between the central charges of the spin chain

and the geometric formulation in gravity became clear; the giant magnon was

identified as a particular geometric configuration. It is important that relativistic

effects play a very important role in making the match between the sigma model

and the magnon dispersion relation possible. The geometric picture found this

way is very similar to the one that was argued for earlier in field theory [53, 54]

using a saddle point approximation on a background made of a gas of eigenvalues.

Obtaining further evidence for this geometric interpretation in field theory, and

more precisely, the interpretation of geometries as being approximately described

by eigenvalues forming some sort of quantum gas [18] whose excitations are bits

of strings stretching between the eigenvalues is worthwhile. Finding exactly how

this intuition ends up working in detail might give us a better understanding of

how higher dimensional geometry emerges in field theory.

Finally, consider the problem of integrability of the spin chain. The integra-

bility in the closed string sector has been argued in [65, 14], and perhaps a one

parameter family of integrable systems interpolate between these [66]. A review

of this program can be found in [15]. For open strings, one generally expects that

general boundary conditions of the spin chain will not be integrable, but that for

special boundary conditions the integrability might be preserved. It has been sug-

67



Exploring the Ground State Chapter 4

gested that integrability is preserved for general giant gravitons [67]. Only in the

special case of the maximal giant graviton, however, is there enough evidence for

this (see for example [68]) where one can argue that the system might be solvable

with a Bethe ansatz. In the case that the general giant graviton boundary condi-

tion is not integrable, understanding the structure of the Hamiltonian to higher

loop orders will help us understand the detailed dynamics of the strings better.

We can compare it directly to the effective action of a string in a particular ge-

ometry (with α′ corrections), rather than to the very special properties that make

the system fully solvable in an integrable setup. Also, even if the system with gi-

ant graviton boundary conditions is not integrable, one might still be able to find

some exact eigenstates of the spin chain, or in our case, the Cuntz Hamiltonian.

Given the Cuntz Hamiltonians in Section 3.4.2, we can correct the ground

state to first order in perturbation theory and the correction to the energy up to

second order. The equations to second order in perturbation theory require sums

over the eigenvalues of the Hamiltonian. It is unexpected that we could obtain

the spectrum for any number of sites due to the lack of integrability or a Bethe

ansatz for general boundary conditions of the giant gravitons. Regardless, we will

need a handle on the excited states of the Cuntz Hamiltonian.

4.3.1 Shifted Cuntz Operators

We would like to construct a Fock space of states identifying the open string

ground state as the vacuum. Consider a single Cuntz excitation at site i, a†i
∣∣Ω(0)

〉
.

It is not orthogonal to the ground state. We substract off the projection and find
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that 〈
Ω(0)

∣∣ [(a†i − z̄0
i )
∣∣Ω(0)

〉]
= 0 (4.24)

We think of (a†i − z̄0
i )
∣∣Ω(0)

〉
as a one particle state. The process for constructing

an n-particle state is just the Gram-Schmidt process beginning with the state

(a†i )
n
∣∣Ω(0)

〉
. The result is that the n-particle states are given by

(a†i )
n−1(a†i − z̄0

i )
∣∣Ω(0)

〉
(4.25)

They are mutually orthogonal, but not yet normalized. We define the site opera-

tors

A
(n)
i =


1 n = 0

(ai)
n−1(ai − z0

i ) n > 0

(4.26)

We include the n = 0 case for convenience. The operators (4.26) annihilate the

ground state for all n > 0, A
(n)
i

∣∣Ω(0)
〉

= 0. We think of A
(n)†
i as the creation

operator for an n-particle state at site i.

One can show by induction that the site operators satisfy the commutation

relations

[A
(m)
i , A

(n)†
j ] = δij

min(m,n)∑
i=1

A
(n−i)†
i P0iA

(m−i)
i (4.27)

Using (4.27) we find that the states A
(n)†

i

∣∣Ω(0)
〉
, n > 0, have norm squared

∣∣∣∣∣∣A(n)†
i

∣∣Ω(0)
〉∣∣∣∣∣∣2 =

〈
Ω(0)

∣∣A(n)
i A

(n)†
i

∣∣Ω(0)
〉

=
〈
Ω(0)

∣∣P0i

∣∣Ω(0)
〉

= 1− |z0
i |2 (4.28)

To fully normalize a state with particles created at multiple sites, one should
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divide by (1− |z0
i |2)1/2 for each A

(n)†
i present. Although for m = n = 1 we have

[A
(1)
i , A

(1)†
j ] = δijP0i (4.29)

the single excitation site operators do not form a Cuntz algebra. This can be seen

from the relation aia
†
i = I. For the single excitation site operators we have

A
(1)
i A

(1)†
i = (I − |z0

i |2)− z̄0
iA

(1)
i − z0

iA
(1)†
i (4.30)

As a consequence, if we choose to work in the basis of n-particle states instead of

the occupation number basis, we can not simply make the replacement ai → A
(1)
i ,

a†i → A
(1)†
i . To translate from the Cuntz oscillators to the site operators, one must

undo the transformation that takes ani to A
(n)
i . For n > 0 one has

ani =
n∑
`=0

(z0
i )
`A

(n−`)†
i (4.31)

The site operators have the property that they do not form an N homomorphism

1. That is, A
(m)
i A

(n)
i 6= A

(m+n)
i . The composition rule for m, n > 0 is A

(m)
i A

(n)
i =

A
(m+n)
i − zA

(m+n−1)
i . The site operators thus do not build a true Fock space.

Regardless, these operators do generate excitations above the open string ground

state and we will continue to refer to them as particles.

Lastly we can extend the site operators to boundary of the open Cuntz chain

by defining A
(1)
0 = b1−ξ, A(1)

k+1 = b2− ξ̃. It only really makes sense to introduce the

giant graviton collective coordinates when we are talking about coherent states.

1Thinking of N as a monoid, not a group.
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Using the arguments of Section 3.4.2, we should then think of these operators in

coherent state giant graviton backgrounds. Then we have A
(1)
0 = A

(1)
k+1 = 0.

We can reexpress the one-loop Cuntz Hamiltonians (3.91) in terms of the

site operators. We define the difference between the string collective coordinates

∆z ≡ z0
i+1 − z0

i = (ξ2 − ξ1)/(k + 1). The one-loop energy of the ground state has

already been computed to be

E
(1)
0 =

1

2

|ξ1 − ξ2|2

k + 1
(4.32)

The sum
∑k

i=0(Ai+1 − Ai) telescopes and hence vanishes. One has

Hopen,1 =
1

2

k∑
i=0

(A
(1)†
i+1 − A

(1)†
i + ∆z̄)(A

(1)
i+1 − A

(1)
i + ∆z)

= E
(1)
0 +

1

2

k∑
i=0

(A
(1)†
i+1 − A

(1)†
i )(A

(1)
i+1 − A

(1)
i ) (4.33)

Writing the Hamiltonian in this form directly isolates the ground state energy from

the energy of the excited states. That is, since A
(1)
i

∣∣Ω(0)
〉

= 0, it is immediate

that Hopen,1

∣∣Ω(0)
〉

= E
(1)
0

∣∣Ω(0)
〉
.

The system with one site, k = 1, is actually solvable. The Hamiltonian takes

the simple form

Hopen,0 = E
(0)
0 + A

(1)†
1 A

(1)
1 (4.34)

The spectrum was solved in [67] in the case of ξ1, ξ2 ∈ R with their α = −z0
1 =

−(ξ1 + ξ2)/2. The adjustment to account for complex giant graviton coordinates

is simple. The excited states and their energies above the ground state are given
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by

|Ψ(p)〉 =
∞∑
n=1

sin(pn)einArg(z01)A
(n)†
1 |0〉1 (4.35)

E1(p) = (1 + |z0
1 |2 − 2|z0

1 | cos(p)) = (1− |z0
1 |)2 + 4|z0

1 | sin2
(p

2

)
(4.36)

where p is a quasi-momentum defined in the range 0 ≤ p ≤ π and |0〉1 is the zero

occupation state for the one site Cuntz chain. We immediately see that there is

a gap between the ground state and the first excited state given by (1 − |z0
1 |)2.

These states are delta function normalizable

〈Ψ(p)|Ψ(p′)〉 =
π

2
(1− 2|z0

1 | cos(p) + |z0
1 |2)δ(p− p′) (4.37)

The states (4.35) are not written in terms of the n-particle states described earlier.

However, they can be written in that basis using

√
1− |z0

i |2 |0〉k = P0,i

∣∣Ω(0)
〉

= (1− z0
i a
†
i )
∣∣Ω(0)

〉
(4.38)

and a†A
(n)†
i = A

(n+1)†
i . Then (4.35) becomes

|Ψ(p)〉 =
1√

1− |z0
1 |2

∞∑
n=1

(
sin(pn)− |z0

1 | sin(p(n− 1))
)
einArg(z01)A

(n)†
1

∣∣Ω(0)
〉

(4.39)

where we have used |z0
1 | = z0

1 exp(−iArg(z0
1)). Equation (4.35) suggests that

the states A
(n)†
i P0i

∣∣Ω(0)
〉

might be a more natural candidate for the n-particle

states than the A
(n)†
i

∣∣Ω(0)
〉
, each contributing n units of p momentum. The one

site states take the form of a Bethe ansatz for a semi-infinite lattice and so we
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conclude some form of integrability.

The solution for the two site chain when ξ1 = ξ2 = 0 was given in [67]. For

this case of giant gravitons, the site operators are the usual Cuntz oscillators and

the ground state is the zero occupation number state, A
(n)
i → (ai)

n,
∣∣Ω(0)

〉
→ |0〉k.

The two site open Cuntz chain is related to a two site closed chain (the hopping

terms have a different normalization) and is integrable. The solution for the

excited states can be solved using a Bethe ansatz and is given by

|n, q〉 =
n∑
`=0

[2 sin(q`)− sin(q(`+ 1))](a†1)`(a†2)n−` |0, 0〉2 (4.40)

where q is a complex momentum subject to the constraint

4 sin(qn)− 4 sin(q(n+ 1)) + sin(q(n+ 2)) = 0 (4.41)

The energy of these states is given by

E2(n, q) = 2− cos(q) (4.42)

The appearance of the integer n reflects the fact that the Hamiltonian commutes

with the total occupation number operator. For each n there are finitely many

solutions to (4.41). The spectrum of the excited states is then countable, although

the solution space for real q should be dense in some subset of [0, π]. As we move

ξ1, ξ2 away from zero, the spectrum will deform but maintain this non-trivial

structure.

Another special case to consider is ξ1 = ξ2. This implies that the string
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collective coordinates are equal as well and there is only one free parameter z ≡

z0
1 = z0

2 . The site operators will produce factors of z when acting on states

A
(1)
i (A

(n)†
i |0〉k) = (A

(n−1)†
i − zA(n)†

i ) |0〉k (4.43)

A
(1)†
i (A

(n)†
i |0〉k) = (A

(n+1)†
i − zA(n)†

i ) |0〉k (4.44)

Even though the particle number changes indefinitely under these operators, the

same factor z is produced at all sites Thus for some states, it should be easier to

relate the amplitudes of different particle excitations. As a concrete example we

consider the eigenstate

|1, π/3〉z =
∞∑
n=1

(−z)n−1(A
(n)†
1 − A(n)†

2 ) |0〉2 , E2,z(n, π/3) =
3

2
(1 + |z|2) (4.45)

This state is the deformation of the two site excited state (4.40) with n = 1 and

q = π/3, which we obtain as we take z → 0. Note that this state does not contain

terms with particles excited at site one and site two. The cancellation happens

that makes this possible is

A
(1)†
2 (A

(1)
2 − 1

2
A1)

∞∑
n=1

(−z)n−1A
(n)†
1 |0〉2 (4.46)

= A
(1)†
2 ((−z)− 1

2
A1)

∞∑
n=1

(−z)n−1(A
(n)†
1 |0〉2) (4.47)

= A
(1)†
2

(
∞∑
n=1

(−z)nA
(n)†
1 − 1

2

∞∑
n=1

(−z)n−1A
(n−1)†
1 − 1

2

∞∑
n=1

(−z)nA
(n)†
1

)
|0〉2 (4.48)

= −1

2
A

(1)†
2 (4.49)
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There is another term with 1 ↔ 2 that allows (4.45) to be an exact eigenstate.

Similar cancellations occur where
∑∞

n1=1(−z)n−1A
(n1)†
1 A

(n2)†
2 will only generate

terms A
(m1)†
1 A

(m2)†
2 with m1, m2 < n2. Summing states of this type and solving the

constraints for low particle number might lead to new exact eigenstates, although

their exact form is beyond the scope of this work.

As for integrability, we note that the space of states characterized by the site

operators A
(n1)†
1 A

(n2)†
2 can be parametrized by the sum and difference of n1 and

n2. When ξ1 = ξ2 = 0, the space factorizes with n1 +n2 being a conserved number

and a Bethe ansatz exists for the subspace parametrized by n1−n2. When ξ1 6= 0

and ξ2 6= 0, this is no longer the case. It is not clear one could implement a Bethe

ansatz which also takes into account the dimension parametrized by n1 + n2 as

well. The state |1, π/3〉z could be interpreted as a Bethe asantz with complex

momentum log(−z), but at the same time looks like a Cuntz oscillator coherent

state. In particular we have that

(a1 + a2) |1, π/3〉z = (−z) |1, π/3〉z (4.50)

We note that the eigenstate |1, π/3〉z is antisymmetric under the interchange,

1 ↔ 2. There is another state that is symmetric under 1 ↔ 2 which is the

deformation of the second eigenstate with n = 1 at ξ1 = ξ2 = 0. We found

numerically that the deformed symmetric eigenstate has particle excitations at

both sites simultaneously without any kind of truncation occurring. It is not

obvious that this state is the result of a Bethe ansatz and so it may just be the

case that a Bethe ansatz describes only a subset of states.
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4.3.2 The Calculation

Although the full spectrum of the open Cuntz Hamiltonian is out of our hands

for now, one can still find the first order correction to the ground state
∣∣Ω(0)

〉
. We

begin with the expansions of the full Hamiltonian Hopen
2, the full ground state

|Ω〉, and its exact energy E0,

Hopen =
∞∑
i=0

(
λ

4π

)i
Hopen,i+1, |Ω〉 =

∞∑
i=0

(
λ

4π

)i ∣∣Ω(i)
〉
, E0 =

∞∑
i=0

(
λ

4π

)i
E

(i+1)
0

(4.51)

where Hopen,1

∣∣Ω(0)
〉

= E
(1)
0

∣∣Ω(0)
〉
. To second order in perturbation theory, the

equation Hopen |Ω〉 = E0 |Ω〉 yields

E
(2)
0 =

〈
Ω(0)

∣∣Hopen,2

∣∣Ω(0)
〉

= −1

8

|ξ1 − ξ2|4

(k + 1)3
(4.52)

(Hopen,1 − E(1)
0 )
∣∣Ω(1)

〉
= −(Hopen,2 − E(2)

0 )
∣∣Ω(0)

〉
(4.53)

E
(3)
0 =

〈
Ω(0)

∣∣Hopen,3

∣∣Ω(0)
〉
−
〈
Ω(1)

∣∣ (Hopen,1 − E(1)
0 )
∣∣Ω(1)

〉
(4.54)

To arrive at the expectation value (4.52) we need a couple of ingredients. One is

the relation (a†i+1−a
†
i )
∣∣Ω(0)

〉
= ∆z

∣∣Ω(0)
〉
. A great simplification then arises since

the second term of (3.92) vanishes on the ground state by virtue of the linearity of

the string collective coordinates, (ai+1−2ai+ai−1)
∣∣Ω(0)

〉
= (∆z−∆z)

∣∣Ω(0)
〉

= 0.

Thus we have

〈
Ω(0)

∣∣Hopen,2

∣∣Ω(0)
〉

= −1

8

k∑
i=0

|∆z|4 = −1

8

|ξ1 − ξ2|4

(k + 1)3
(4.55)

2We exclude tree level contribution and drop an overall factor of the coupling λ/4π2.
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Next we solve (4.53) to get the first order correction to the ground state
∣∣Ω(1)

〉
.

We expand the right hand side in the basis of n-particle states. Lastly we have

to rewrite the Cuntz oscillators in terms of the site operators. The non-vanishing

terms become

(ai+1−ai)2 = A
(2)
i+1−2A

(1)
i A

(1)
i+1 +A

(2)
i +A

(1)
i+1(2∆z− zi+1)−A(1)

i (2∆z+ zi) + (∆z)2

(4.56)

The right hand side of (4.53) is then

−(Hopen,1 − E(1)
0 )
∣∣Ω(0)

〉
=

1

8
(∆z)2

k∑
i=0

(A
(2)†
i+1 − 2A

(1)†
i A

(1)†
i+1 + A

(2)†
i + A

(1)†
i+1 (2∆z̄ − z̄i+1)

− A(1)†
i (2∆z̄ + z̄i) + (∆z̄)2)

∣∣Ω(0)
〉
(4.57)

=
1

4
(∆z)2

(
k∑
i=1

A
(2)†
i −

k−1∑
i=1

A
(1)†
i A

(1)†
i+1 −

k∑
i=1

z̄iA
(1)†
i

)∣∣Ω(0)
〉

(4.58)

We expect that Hopen,2

∣∣Ω(0)
〉

contains two particle states because the nonvanishing

terms contain two Cuntz oscillators. The appearance of one particle states is

caused by the site operators containing an indefinite number of Cuntz oscillators.

Admittedly, we do not have a way to brute force solve equation (4.53). The

solution was obtained using Mathematica by truncating the Hilbert space, solving

the linear system numerically, and realizing a pattern. The result is

∣∣Ω(1)
〉

=
1

4
(∆z)2

k∑
i=1

∞∑
n=2

zn−2
i A

(n)†
i

∣∣Ω(0)
〉

(4.59)
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Regardless, the analytic proof that (4.59) solves (4.53) exists and is given in

Appendix C. The state
∣∣Ω(1)

〉
is normalizable, implying that the ground state

remains normalizable to this order in perturbation theory,

〈
Ω(1)

∣∣Ω(1)
〉

=
k

16
|∆z|2 (4.60)

Note that when the giant gravitons are on top of each other, ∆z = 0 and the

ground state receives no corrections.

To finish the computation of E
(3)
0 we need the expectation values

〈
Ω(0)

∣∣Hopen,3

∣∣Ω(0)
〉

and
〈
Ω(1)

∣∣ (Hopen,1−E(1)
0 )
∣∣Ω(1)

〉
. The expectation value of first order finite differ-

ence term in (3.94) is simple to compute and yields

1

16
(k + 1)|∆z|6 (4.61)

The expectation value of the third order finite difference term in (3.94) vanishes

due to the linear nature of the string collective coordinates, (ai+2 − 3ai+1 + 3ai −

ai−1)
∣∣Ω(0)

〉
= (∆z−2∆z+∆z)

∣∣Ω(0)
〉

= 0. The expectation value of
∑

i(v
i
a)
†Mabv

i
b

in (3.94) is not as simple to compute because it has no immediate interpretation

in terms of finite differences. To simplify the computation we make use of the
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relations z0
i+1 = z0

i + ∆z and z0
i−1 = z0

i −∆z and write



ai+1ai+1

ai+1ai

ai+1ai−1

aiai

aiai−1

ai−1ai−1



∣∣Ω(0)
〉

=



z0
i+1z

0
i+1

z0
i+1z

0
i

z0
i+1z

0
i−1

z0
i z

0
i

z0
i z

0
i−1

z0
i−1z

0
i−1



∣∣Ω(0)
〉

=



1 2 1

1 1 0

1 0 −1

1 0 0

1 −1 0

1 −2 1




(z0
i )

2

z0
i ∆z

(∆z)2

∣∣Ω(0)
〉

(4.62)

The expectation value is now just a product of matrices localized at a single site

and we have

1

16

k∑
i=1

〈
Ω(0)

∣∣ (via)†MabP0iv
i
b

∣∣Ω(0)
〉

=
1

16
|∆z|4

k∑
i=1

(1− |z0
i |2) (4.63)

where the factors of (1−|z0
i |2) come from the projectors. Using the orthogonality

of the n-particle state, we have for the second expectation value

〈
Ω(1)

∣∣ (Hopen,1 − E(1)
0 )
∣∣Ω(1)

〉
= −

〈
Ω(1)

∣∣ (Hopen,2 − E(2)
0 )
∣∣Ω(0)

〉
(4.64)

=
1

4
(∆z)2

〈
Ω(1)

∣∣( k∑
i=1

A
(2)†
i −

k−1∑
i=1

A
(1)†
i A

(1)†
i+1 −

k∑
i=1

z̄iA
(1)†
i

)∣∣Ω(0)
〉

(4.65)

=
1

16
|∆z|4

k∑
i=1

(1− |z0
i |2) (4.66)
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This cancels exactly with (4.63) and we have

E
(2)
0 =

1

16
(k + 1)|∆z|6 =

1

16

|ξ1 − ξ2|6

(k + 1)5
(4.67)

Including the tree level contribution to the energy of the open string, we have

for the energy of the ground state to three-loops

E0 = (k + 1) +
1

2

(
λ

4π2

)
|ξ1 − ξ2|2

(k + 1)
− 1

8

(
λ

4π2

)2 |ξ1 − ξ2|4

(k + 1)3

+
1

16

(
λ

4π2

)3 |ξ1 − ξ2|6

(k + 1)5
+O(λ4) (4.68)

This agrees with the relativistic dispersion relation

E0 =

√
(k + 1)2 +

λ

4π2
|ξ1 − ξ2|2 (4.69)

and will be the subject of the next section.

4.4 A Relativistic Dispersion Relation

So far, we have done our calculations without trying to understand the in-

terpretation of the results from the point of view of AdS5 × S5 in detail. The

purpose of this section is to do this and to use the AdS5 × S5 geometric intuition

to conjecture how the higher loop order corrections might look like to all orders in

perturbation theory in detail. There are two important things we need to consider.

First, we saw evidence for being able to measure a central charge for open strings

in terms of a difference of coordinates of the end-points of the strings. We need to
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try to understand the significance of this observation on AdS5×S5. The existence

of a central charge suggests that there is a BPS formula that would characterize

the answer for the all loop result. The second thing we need to do is to try to

understand how our perturbative results relate to local ten dimensional physics

on AdS5× S5. Indeed, this is the obvious starting point for studying D-branes in

AdS5×S5, but since in the dual field theory the geometric concepts are emergent,

we need to ask ourselves, exactly, what is emerging from our answers?

The first thing we will do therefore is to make an educated guess for the answer

of the energy of the ground state of the string stretching between two such giants.

Our first observation is that when we take the D-brane to the edge of the BPS

quantum droplet, we seem to recover the dispersion relation for giant magnons

[61] and their bound states [38]. Indeed, such an expression would be of the form

∆− J1 =

√
(k + 1)2 +

λ

π2
sin2

(p
2

)
(4.70)

where we have a bound state of k + 1 constituents, and the BMN momentum is

p. We have denoted the eigenvalue of the dilatation operator by ∆ and that of

Ĵ1 by J1. The formula for the energy of the giant magnon relation depends on

having a centrally extended SU(2|2) symmetry on the worldsheet for which the

giant magnon produces a short representation. Although in principle one could

have a more general function of λ appearing in the square root, this form matches

both the weak coupling expansion, as well as the AdS5 × S5 sigma model limit

[37]. This suggests that this is the exact formula for all λ, suggesting a particular

non-renormalization theorem. One can make other field theory arguments that
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suggest that this is the only result that is compatible with S-duality [69].

In the case where we send ξ1, ξ2 towards the boundary, we have that both

become unitary ξ1 = exp(ip1), ξ2 = exp(ip2), and then

ξ1 − ξ2 = 2iei(p1+p2)/2 e
i(p1−p2)/2 − e−i(p1−p2)/2

2i
(4.71)

= 2iei(p1+p2)/2 sin

(
∆p12

2

)
(4.72)

so that

|ξ1 − ξ2|2 = 4 sin2

(
∆p12

2

)
(4.73)

If we identify ∆p12 = p and we assume compatibility with the giant magnon

dispersion relation we conclude that in this limit

∆− J1 = E0 =

√
(k + 1)2 +

λ

4π2
|ξ1 − ξ2|2 (4.74)

would give the correct energy of the string to all orders in perturbation theory. The

results of Section 4.3.2 agree with this conjecture up to third order in the ’t Hooft

coupling. Strong evidence is provided by the fact that non-trivial cancellations

occurred at higher orders in perturbation theory to make this happen.

If ξ1 and ξ2 compute the central charge associated to each end-point of the

string, then we must conclude that this result should be valid for all ξ and not just

for those special ξ that are unitary and live at the edge of the quantum droplet.

To test this conjecture, let us look at the special case when the giant gravitons

are on top of each other ξ1 = ξ2. The excitations stretching between the two
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giants should have the same spectrum as the excitations of a giant to itself. After

all, when the D-branes are on top of each other, there is an enhanced (gauge)

symmetry of coincident D-branes [62]. Such a dispersion relation would give us

∆−J1 = k+ 1 which indeed saturates a BPS inequality. The corresponding state

would belong to the chiral ring of the N = 4 SYM theory and can be compared to

the DBI fluctuations of giant gravitons finding an exact match [70]. The spectrum

of such fluctuations is independent of the size of the giant graviton and here we

find a match to those results.

The giant graviton background is made of Z fields, and this background breaks

the SO(6) R-symmetry to an SO(4) unbroken subgroup. The Y can be considered

the highest weight of a vector representation of this unbroken SO(4). This SO(6)

R-symmetry is related to the isometry rotations of the S5 into itself. The SO(4)

is the little group unbroken by the giant graviton, and it performs rotations of the

giant graviton into itself (this is an S3
GG ⊂ S5 rotating in S5 [19]). We identify

the S3
GG of the giant graviton as a different S3 than the one that determines the

radial quantization of the N = 4 SYM theory where the computations are made.

A state with the quantum numbers of Y k+1 has angular momentum k + 1 along

this SO(4). We should thus think of our string ground state as a state with

angular momentum k + 1 (this is in the same way that momentum is carried for

closed strings [53]).

Let us assume that the conjecture (4.74) does indeed capture the full result to

all orders for the lightest string with angular momentum k stretching between two

giant gravitons. The result is a square root and this suggests that we interpret it

as a relativistic dispersion relation for a massive particle in curved space.
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Let us consider first the case of branes in flat space. When two D3-branes

come close to each other, the low energy effective field theory on their worldvol-

ume is N = 4 SYM on the Coulomb branch [71] 3. In the Coulomb branch, the

vacuum expectation values of configurations that describe vacua consist of com-

muting matrices, which can be diagonalized. The positions of the D-branes are

the eigenvalues themselves. Given the positions of two D-branes ~X1 and ~X2 in

the transverse direction to the branes, the W bosons have masses proportional to

| ~X1− ~X2| and these are not renormalized. The massive vector multiplets of N = 4

SYM are short representations with a central charge proportional to ~X1− ~X2 itself.

This intuition should also apply if we embed the D-branes in a curved manifold

and we make the D-branes parallel to each other (in a curved manifold, where

the two D-branes are BPS states we take this to mean that the shortest distance

between the branes can be computed anywhere and the results don’t depend on

where we do this due to a group symmetry).

In the short distance limit between the branes, the same intuition should hold,

because we should be able to take a low energy field theory limit where the masses

and the geometry are fixed, but the string scale is taken to the α′ → 0 limit, just as

in the seminal AdS / CFT paper [13]. If there is a notion of a position transverse

to the brane, so that ~X1 − ~X2 makes sense, the mass of a W boson should be

proportional to the distance between the branes. The effective distance can be

computed using the central charge. If we have a constant mass for a W boson

independent of the position along the brane, then the problem of computing the

3This is because the ground state D-brane configuration breaks half of the supersymmetries
of flat space, and the only low energy field theory with 16 supersymmetries and spin content
with spin less than or equal to 1 is the N = 4 SYM itself.
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spectrum of W bosons should reduce at low energies to the problem of computing

a relativistic dispersion relation for N = 4 SYM on the Coulomb branch in curved

space. In this calculation the curved space is along the worldvolume of the nearby

branes themselves. These W bosons can be of spin one or zero depending on

the details of the state, but they will all belong to the same representation of

supersymmetry in flat ten dimensional space.

In our example, the central charge is |ξ1 − ξ2|, and the worldvolume of the

D-brane is a curved S3
GG, the worldvolume of the giant gravitons themselves. In

the limit ξ1 − ξ2 = 0, the Y fluctuations can be thought of as changing the

orientation of the brane embedding into the S5, so it is natural to think of them

as affecting the Goldstone modes that result from breaking SO(6) down to SO(4)

on the D-brane worldvolume. As such, when we turn on the separation between

the branes it makes sense to identify the W boson states we get as those that arise

from Goldstone bosons in the presence of spontaneous gauge symmetry breaking.

Since these are eaten up by the longitudinal component of the massive W bosons,

the states for which we have computed the mass are part of the massive vector

particle, rather than a scalar particle in the W multiplet. If we identify the

number of Y as a momentum, we see that there is no obvious string ground state

at zero momentum; in that case there is no Y connecting the two giants. This is

expected because fluctuations of the Goldstone boson at zero momentum can be

gauged away. This suggests that out of the k + 1 Y fields, only k of them should

be counted as momentum, and the last one should come from the spin of the W

particle.

Consider a free conformal field theory in four dimensions compactified on a
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sphere of radius R times time. If such a field theory has a free scalar field, the

scalar field will couple to the background curvature of the sphere with a non-

minimal conformal coupling. This is, one would need to solve for the spectrum of

the second order differential operator

∂2
t −∇2

S3 − aR−2 (4.75)

where aR−2 is the term with the Ricci scalar of the background metric. The

energy levels of such a conformally coupled scalar on the sphere will be

E` =
`+ 1

R
(4.76)

starting at ` = 0, . . . , where ` is the principal quantum number for spherical

harmonics on the sphere. For a massive scalar field of mass m, with a conformal

coupling, we would instead derive that

E` =

√(
`+ 1

R

)2

+m2 (4.77)

If we set R = 1, we get that

E` =

√
(`+ 1)2 +m2 (4.78)

The effective Laplacian gets a shift that makes it into a square. We have found

a similar equation, but we would need to identify k + 1→ `, whereas we seem to

be getting instead k+ 1→ `+ 1. Such a difference can be accounted by a unit of
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spin.

The AdS5 × S5 and N = 4 SYM on S3 themselves have 32 supersymmetries.

The superconformal group SU(2, 2|4) admits no central extension. The only way

that we get a central extension to have non-zero values in N = 4 SYM is by

spontaneously breaking the scaling symmetry, but keeping the flat space super-

symmetry. Indeed, the central charge extension is necessary to keep the spin to be

smaller than or equal to one. Only half the supersymmetry of the original system

survives when we do this, and this is done by going to the Coulomb branch.

By the same token, the presence of the giant gravitons breaks the conformal

symmetry of SU(2, 2|4) so that only half of the supersymmetries are unbroken.

Given that supersymmetry was broken to half, one can now argue that a central

charge extension can appear for the open strings stretching between giants in a

similar way to what happens in flat space. Moreover, there are 16 supersymmetries

acting on the system that do not act on the D-brane system, which is considered a

ground state. To only have particles of spin less than or equal to one survive as W

bosons in the presence of so many supersymmetries, it must be the case that there

is a central charge extension. Otherwise one would have long representations of

supersymmetry (they would have 28 states, rather than 24) which include particles

of spin higher than one and this would be inconsistent with the expectations of

low energy physics of D-branes. All of the other states in the multiplet should

therefore be accessible by acting with the unbroken supersymmetries. Some of

these commute with the twisted Hamiltonian HBMN = D− Ĵ1 and should produce

degeneracies with other states that have different spin. Thus, in a formula like

(4.74), the SO(4) charge could change by one unit, but the spin could also change
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in such a way that a (massive) particle of spin zero on the S3 has the same energy

as a vector particle with the right polarization, but where the splitting of quantum

numbers into momentum versus spin is different.

Further evidence for this identification of the coordinates of the quantum hall

droplet as giving rise to a central charge comes from considering the so called dual

giant gravitons (those that grow into AdS5 rather than on the S5 sphere [72, 73]).

In the quantum hall droplet picture, these states are interpreted as an eigenvalue

of the Z matrix acquiring a large expectation value and spontaneously breaking

the original U(N) gauge symmetry of the N = 4 SYM to U(N−1)×U(1) [73, 74].

This is a constant field configuration on the S3 of the original theory, and the dual

giant is also of the shape of an S3 which now is ‘parallel’ to the boundary S3. The

classical configurations of the Z that satisfy the corresponding BPS conditions are

exactly points on the Coulomb branch ofN = 4 SYM, and one can extend this idea

to 1/8 BPS states [18]. Indeed, this idea that the configurations on moduli space

can be turned to dual giants is applicable for fairly general AdS ×X geometries

and one can also argue that this is enough to reproduce plane wave limit spectra

and supergravity spectra from field theory [75, 76]. For this setup, the eigenvalues

of Z themselves determine the position of the branes on the Coulomb branch and

serve as the X coordinates, as well as the central charge. If we take a scaling limit

of large eigenvalues, the effective mass of all the W bosons can be made arbitrarily

large, much larger than the scale of compactification of the original field theory on

the S3, so that a flat space limit can be taken by going to intermediate energies

(momentum of order the mass, which correspond to wavelengths much shorter

than the S3 inverse radius) and we can really think of the system as N = 4 SYM
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on the Coulomb branch in flat space. This is seen also by taking appropriate

limits in supergravity solutions [77].

Perhaps a more convincing argument is to follow the work of [61, 78] more

closely. In that work Beisert argues that the central charge on the spin chain

with a ferromagnetic Z background corresponds to adding (or subtracting) a Z at

the left and right of asymptotic excitations (this only works on the infinite chain

limit). In our case, we would want to produce such a central charge extension

for a finite open string in such a way that it is compatible with the asymptotic

prescription. On each excitation we want to replace Y → [Y, Ž], or Y → [Z, Y ],

just like in the infinite chain so that we can add or subtract a Z from the chain

around each Y . This is realized by the Cuntz chain operators
√
N(a†i − a

†
i+1), or

(ai − ai+1)/
√
N (the additional normalization factor of

√
N is due to the change

in the norm of the state with a different length of the spin chain). To add a Z

to the left of the chain, in our notation for operators, we would use the identity

(Z − α)−1Z = 1 + α(Z − α)−1 to show that we get a factor of α (the term with

the one would be non-planar and would remove the boundary of the string on

the left, joining it with another string). Thus we would get that the asymptotic

central charge for each Y is either
√
N(a†i −a

†
i+1) or α−

√
Na†1 and a similar term

for the right boundary. For the case where we subtract a Z, we would identify

ξ1 − a1, a1 − a2, . . . , ak − ξ2 as the values of the central charge for each Y defect.

The total central charge is then

(α1 −
√
Na†1) +

√
N

k−1∑
i=1

(a†i − a
†
i+1) + (

√
Nak − α2) = α1 − α2 (4.79)
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Obviously, we see then that the condition to get a short multiplet of the cen-

trally extended SU(2|2) would correspond to the equation (4.74) exactly, and the

identification of ξ1 − ξ2 as the central charge of the full string is inevitable.

All our arguments so far are in order to make the claim that equation (4.74)

is correct to all orders in perturbation theory. We are claiming that this equation

should be interpreted as a relativistic dispersion relation for a (local) field theory

on S3
GG, the worldvolume of the giant gravitons themselves. The fact that we can

reproduce this to third order in λ suggests that we are actually probing properties

associated to local Lorentz invariance in higher dimensions. From the boundary

field theory it is natural to assume that time and the original S3 are related by

locality and causality, but that does not make it automatic for S3
GG, since this

S3
GG ⊂ S5 is emergent itself. The new local Lorentzian structure would mix an

SO(4)R symmetry with time, rather than the SO(4) ⊂ SU(2, 2) ' SO(4, 2) which

is also unbroken by the giant graviton. This relativistic dispersion relation is also

compatible with the usual way of thinking about the Higgs mechanism arising

from D-branes in string theory.

Having this relativistic dispersion relation has consequences for our under-

standing of locality on the sphere in the directions transverse to the D-brane,

not only along its worldvolume. So long as the gap in anomalous dimensions is

typically large, taking k large but finite and varying α1 − α2 to be small enough

so that g2
YMN |α1 − α2| ' k2, one can see that at large ’t Hooft coupling one can

corner oneself so that |ξ1 − ξ2| � 1 which means we have probed the geometry of

the sphere on distances much smaller than the AdS radius R transversely to the

D-branes, and on distances of order R/k along the giant graviton worldvolume.
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The limit where both terms are of the same size is of the order of the Compton

wavelength of the string as a W boson in the directions along the D-brane. This

is much smaller than the AdS radius, so it provides evidence for locality on much

smaller scales than the AdS radius in all directions along the sphere. One can also

argue that this extends to the AdS geometry itself; the giant gravitons are local-

ized at the origin of AdS in global coordinates. In principle we can move them so

that they can be at different positions in the AdS radial direction by giving the

giant gravitons some angular momentum (these are the result of superconformal

transformation on the different giant graviton states). Presumably one can find

evidence in such a case that the corresponding W bosons would also get a mass

from the AdS displacement which would also indicate local physics along all of

the AdS directions together with the sphere.

One can also consider the so called dual giant gravitons, which grow into AdS

but are point like on the sphere. The dual states to those D-branes growing into the

AdS directions are known but not their precise collective coordinate description

in the full quantum theory. To zeroth order one thinks of them as spontaneous

symmetry breaking of the original U(N) gauge field theory to U(N − 1) × U(1)

by a particular time dependent vev. For that case, the mass of W bosons is

determined from the classical physics of this symmetry breaking. One should

then realize these states in the geometry, as branes in the free fermion droplet

[74, 77]. Since these states break the same symmetries of the conformal group

as the ordinary giant gravitons, one expects that the string attached to them

would also measure a central charge which is measured by the coordinate of the

giant graviton in the quantum hall droplet plane geometry. The details of such a
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calculation are beyond the scope of the present work but progress has been made

in [52].

4.5 The Open String Dual

In previous sections we found the ground state of the open string stretched

between two giant gravitons in N = 4 SYM and that the energy satisfied a rel-

ativistic dispersion relation. In this section we find the dual of the open string

states in the string theory itself. We solve the equations of motion for the open

string sigmal model on AdS5 × S5 with the boundary conditions that the strings

end on giant gravitons with fixed angular momentum on the S5. The identifi-

cation between the open string ground state in the gauge theory and the string

theory is supported by matching relativistic dispersion relations and the underly-

ing geometry of both objects.

Since our open Cuntz chains are BPS, their dual string states should corre-

spond to solutions of the sigma model that have this property, albeit modified to

include the effects of the new boundary conditions. The BPS states in N = 4

SYM with large angular momentum in the infinite chain limit are bound states of

elementary excitations as shown by Dorey [38] called giant magnons. Each state

is characterized by the quantum numbers

∆− J1 =

√
Q2 +

λ

π2
sin2(p/2) (4.80)

J2 = Q (4.81)
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with Q the number of magnon excitations, Ji the Cartan generators of the SO(6)

R-charge, and p the quasi momentum of the bound state. In particular, J1 is the

R-charge of the half-BPS ground state which is infinite in the infinite chain limit.

The corresponding classical string solutions were found in [79, 80] (see also [36]).

There, the Ji correspond to the angular momenta of the string on the S5 and p is

the geometric angle subtended by the string stretched between two points on the

edge of a maximal disk in the S5. Like their spin chain dual, these strings have

infinite length. Thus we take our ansatz to be these classical string solutions but

truncated so that the endpoints fall on the giant gravitons.

We verify that these truncated solutions are dual to the open Cuntz chain

ground state in three parts. First we need to relate the positions of the giants

gravitons in the S5 to the collective coordinates of the giant gravitons in the open

Cuntz chain. Otherwise we could not compare the energy and angular momentum

of the string to that of the open Cuntz chain. Then we need to check that the

infinite string can be truncated so that the ends follow the positions of the giant

gravitons (this is, the string ends don’t fall from the giant graviton). Lastly, we

need to relate ∆−J1 and J2 for the truncated solutions and get the relation (4.74),

namely

∆− J1 =

√
Q2 +

λ

4π2
|ξ1 − ξ2|2 (4.82)

J2 = Q (4.83)

where ξ1, ξ2 are coordinates on a unit disc.

First we need to find a relation between ξ1, ξ2 and the positions of the giant
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gravitons. Let us label the coordinates on the sphere by zi, i = 1, 2, 3 with

the constraint
∑

i z̄izi = 1. These should not be confused with the collective

coordinates of the open string Cuntz chains. The corresponding angular momenta

are the Ji. If we have a giant graviton with angular momentum L, wrapping an S3

inside S5 (it is a point in the z1 coordinate), then it moves with angular velocity

equal to one and sits at |z1| =
√

1− L/N [19]. In the dual CFT, in terms of the

description based on fermion droplets and coherent states of the dual field theory,

these also sit on a disk which can be normalized to have radius one [74, 39], and

have energy

E = L = N(1− |ξ|2) (4.84)

Fixing L, we see that |ξ| = |z1|. Furthermore, both notions of the angle direction

between field theory and gravity are the same; the angle is related to the conjugate

variable to angular momentum.

In order to impose the truncated boundary conditions, we need to make sure

that the string solutions can end on the giant gravitons and that they rotate with

angular speed equal to one in the z1 plane. This follows because the ends of the

infinite string classical solution travel at the speed of light and moreover they

reside at the edge of the disk. Traveling at the speed of light in this case means

that they move with angular velocity one and if we cut the solutions, they actually

end on the giant gravitons.

Using the variable definitions of [79], we recall the classical infinite string

solution. The worldsheet coordinates are called t, x. The time on the world

sheet is identified with the external time variable. The solution depends on two

auxiliary variables γ, θ. They are related to the magnon excitation number Q
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and quasi momentum p by

cot(γ) =
2r

1− r2
sin
(p

2

)
(4.85)

tan(θ) =
2r

1 + r2
cos
(p

2

)
(4.86)

where r is a function of the energy, angular momenta, quasi momentum, and

boundary conditions. The classical solution for the infinite string is then given by

u = (x cosh(θ)− t sinh(θ)) cos(γ) (4.87)

v = (t cosh(θ)− x sinh(θ)) sin(γ) (4.88)

z1 = eit
(

cos
(p

2

)
+ i sin

(p
2

)
tanh(u)

)
(4.89)

z2 = eiv
sin
(
p
2

)
cosh(u)

(4.90)

where u, v are auxiliary functions. Notice that at t = 0 the real part of z1 is

constant.

As we can see from equation (4.89), the string moves at constant angular

velocity equal to one. In these solutions, the range of u is infinite. For our case,

we want to cut the string so that the range of x (or u for that matter) is finite.

To find our string, we need to fix the boundary conditions by restricting the

range of the variables so that z1(u1, t) = ξ1 exp(it) and z1(u0, t) = ξ2 exp(it) and

then solving for u0, u1. Since we need the real part of z1 constant at t = 0,

we choose ξ1, ξ2 to have the same real part, which can be achieved by a global
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rotation of the D-brane configuration. The boundary conditions now read

cos
(p

2

)
+ i sin

(p
2

)
tanh(u1) = ξ1 (4.91)

cos
(p

2

)
+ i sin

(p
2

)
tanh(u0) = ξ2 (4.92)

The quasi momentum p is found from the real part of ξ1 or ξ2. Consequently we

have

tanh(u1) =
ξ1 − cos(p/2)

i sin(p/2)
, tanh(u0) =

ξ2 − cos(p/2)

i sin(p/2)
(4.93)

so that ξ1, ξ2 are enough to determine p and the values of u0, u1. We also have

the relation

sin
(p

2

)
(tanh(u1)− tanh(u0)) = |ξ1 − ξ2| (4.94)

which will be imporant when computing ∆− J1.

The energy and the angular momentum are given by

∆− J1 =

√
λ

2π

∫
dx (1−=(z̄1∂tz1)) (4.95)

J2 =

√
λ

2π

∫
dx=(z̄2∂tz2) (4.96)

over the appropriate range. This is evaluated at t = 0 for convenience, where u, x

are proportional to each other.

After some lengthy algebraic computation, one shows that

∆− J =

√
λ

2π

1 + r2

2r
sin
(p

2

)
cosh(θ) cos(γ)

∫
dx sech2(u) (4.97)

=

√
λ

2π

1 + r2

2r
sin
(p

2

)∫
du sech2(u) (4.98)
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=

√
λ

2π

1 + r2

2r
sin
(p

2

)
(tanh(u1)− tanh(u0)) (4.99)

Similarly, one finds that the J2 angular momentum is given by

J2 =

√
λ

2π
sin
(p

2

)
cosh(θ) cos(γ)

∫
dx sech2(u) (4.100)

=

√
λ

2π

1− r2

2r
sin
(p

2

)∫
du sech2(u) (4.101)

=

√
λ

2π

1− r2

2r
sin
(p

2

)
(tanh(u1)− tanh(u0)) (4.102)

We now want to fix J2 = Q. Since we know p, u0, u1, this determines the value

of r.

Notice that apart from the r dependence, ∆−J1 and J2 are essentially identical.

Call A± = 1±r2
2r

.One then sees that A2
+ − A2

− = 1. It follows that

(∆− J)2 − J2
2 =

(√
λ

2π

)2 ∣∣∣sin(p
2

)
(tanh(u1)− tanh(u0))

∣∣∣2 (A2
+ − A2

−) (4.103)

=

(√
λ

2π

)2 ∣∣∣sin(p
2

)
(tanh(u1)− tanh(u0))

∣∣∣2 (4.104)

=

(
λ

4π2

)
|ξ1 − ξ2|2 (4.105)

So we find that

∆− J1 =

√
Q2 +

λ

4π2
|ξ − ξ̃|2 (4.106)

As mentioned in Section 4.4, we should identify Q with k + 1 to complete the

matching of the open Cuntz chain ground state to this open string solution to the

equations of motion.
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4.6 Discussion

In this Chapter we solved for the ground state of the open Cuntz Hamiltonian

(3.91). In doing so we have solved for the open string ground state stretched

between a special class of giant gravitons and found its anomalous dimension.

We were able to correct the ground state energy to three-loop order in the gauge

theory. The energy is consistent with a relativistic dispersion relation which we

conjecture to hold to all loop orders. The energy in perturbation theory matches

the Taylor expansion of (4.74) in the mass squared |ξ1−ξ2|2 and not the momentum

k + 1.

Our conjecture is supported by the existence of a central charge extension of

the unbroken supersymmetry algebra that leaves the giant gravitons invariant.

The central charge is proportional to the distance between the giant gravitons

|ξ1−ξ2|. This quantity is often seen as the Higgs mass of W bosons in the Coulomb

branch of supersymmetric field theories. The distance between D-branes typically

gives masses to open strings stretched between them and we are seeing this effect

in our open Cuntz chains.

The effective action (4.18) is of a nearest neighbor type. This is reminiscent

of geometries being built by string bits stretching between D-branes that form a

non-trivial quantum gas. The nearest neighbor interactions would be the energies

of these string bits, and the higher order terms that are missed would deal with the

interactions between these string bits. Because the expansion seems to be written

in terms of multiple discrete derivative operators, as mentioned in Section 3.5,

one can imagine that in the continuum limit these might fully restore the string

sigma model in a particular gauge, where one can also recover higher derivative
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α′ corrections of the string propagation on AdS5 × S5. There might be issues

with this story at three loops where the middle term of (3.94) has no immediate

interpretation as finite differences. Noting that the projection operators yield

factors of the inverse metric, it is possible that this term is realized as derivatives

of the metric if one shifts around the site indices a bit. To further understand this

issue one necessarily has to go to higher loop orders.

As we have argued in this paper, string states stretched between D-branes

give us some insight into how geometry is realized. Although this is not a new

point of view, understanding its realization in the AdS / CFT correspondence

setup is important because it can lead to a much better understanding as to how

classical geometry is replaced by a quantum realization of geometry, or when

geometry stops making sense. This is in keeping with the idea that the CFT is

actually a definition of quantum gravity. Following this train of thought we have

been able to get a glimpse of how locality in higher dimensions can emerge in

the AdS / CFT context from a field theory computation. Particularly important

for this question is how the gap in anomalous dimensions is generated between

different states: those that remain massless in the supergravity limit, and those

that become stringy. In our example, the distance between the branes emerges

as a measurement of this gap. Indeed, we have found evidence that in the full

AdS5 × S5 geometry giant graviton D-brane defects break the conformal field

theory in such a way that they give rise to a central charge extension of the

unbroken SUSY algebra, extending previous ideas of this central charge extension

that are related to the integrable structure of the N = 4 spin chain model. The

simple interpretation of this central charge is that it is expected from trying to
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understand the emergent N = 4 SYM for a stack of D-branes in the Coulomb

branch (the D-branes in question are the giant gravitons, and the effective N = 4

SYM is the dynamics on their worldvolume). A non-zero value for such a central

charge in principle gives a lower bound for operator dimensions and helps further

explain this gap. Furthermore, such a central charge can be thought in some

instances to provide a natural notion of position, like in the case of flat D-branes

in flat space.

D-branes carry non-trivial gauge fields on their worldvolume. This implies

that open string joining and splitting necessarily takes place along the world-

volume of the D-brane. Thus interactions are local in the directions transverse to

the D-brane. This only makes sense so long as we can argue that the D-branes

are actually local in some geometry in the first place. Presumably, consistency of

locality between different such probes requires that physics is local in the geometry.

Since the D-branes can be moved closer or father apart from each other, one can

argue that so long as the gap is sufficiently large, one has probed locality on

distances longer than a Compton wavelength for a W boson. These distances are

much smaller than an AdS radius and thus one is finding locality on sub-AdS

lengths.

Although we have not studied this process yet, the fact that there is an effective

gauge theory on giant graviton states is understood because one can see that

there is a Gauss’ law constraint for counting string states between giants [55]

(see also [81, 39]). This is intimately tied to the gauge invariance of the original

N = 4 SYM and generalizes to other field theories. To nail the case of locality

one would need to show that interactions are polynomial in momenta. There
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are setups where constituents can have relativistic dispersion relations, but the

interactions do not respect Lorentz invariance, such as in noncommutative field

theory, which can appear as limits of string theory (see [82] for a review). We

believe that understanding the precise role that the central charge plays is crucial

to understanding locality in ten dimensions. Understanding exactly how this

central charge extension might control the effective field theory generated on the

D-brane would be very interesting.
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Chapter 5

Emergence of Geometric Limits
in N = 4 SYM

In this Chapter we study a one parameter family of supersymmetric marginal

deformations of N = 4 SYM with U(1)3 symmetry, known as β-deformations, to

understand their dual AdS×X geometry, where X is a large classical geometry in

the g2
YMN →∞ limit. The geometry is infered by studying the spectrum of open

strings stretched between giant gravitons developed in the previous chapters.

The number-theoretic properties of β are very important. When exp(iβ) is a

root of unity, the space X is an orbifold. When exp(iβ) close to a root of unity in

a double scaling limit sense, X corresponds to a finite deformation of the orbifold.

Finally, if β is irrational, sporadic light states can be present.

5.1 Marginal Deformations of N = 4 SYM

The N = 4 SYM admits a three parameter (complex) family of deformations

that preserves N = 1 super conformal invariance [24]. If we use N = 1 SUSY

notation, the N = 4 SYM has three chiral fields X̃, Ỹ , Z̃ in the adjoint represen-
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tation of the gauge group. We will be interested in the case where the gauge group

is SU(N) Then X̃, Ỹ , Z̃ are N × N are traceless Hermitian matrix superfields.

We will reserve the letters X, Y, Z without tildes for the lowest component of

the corresponding superfields, in the following manner:

X̃(x, θ) = X(x) +
√

2θψX(x) + θ2FX(x) (5.1)

The three parameter family is characterized by the superpotential

W = λ1Tr([X̃, Ỹ ]Z̃) + λ2Tr({X̃, Ỹ }Z̃) + λ3Tr(X̃3 + Ỹ 3 + Z̃3) (5.2)

where λ1, λ2, λ3 are arbitrary complex parameters. The gauge coupling constant

is determined from λ1, λ2, λ3 by requiring that the beta function of the gauge

coupling constant vanish. This amounts to the vanishing of the anomalous di-

mension of the fields X, Y, Z. Because the superpotential has enough discrete

symmetries to cyclically replace X̃ → Ỹ → Z̃ → X̃, the anomalous dimensions

of X̃, Ỹ , Z̃ are identical and they need to be set to zero. This requires the

R-charge of X̃, Ỹ , Z̃ be equal to one. In this case the beta function vanishes.

The requirement of vanishing anomalous dimension is enough to determine gYM

in terms of λ1, λ2, λ3. When λ3 = 0, the superpotential has a U(1)3 symmetry,

where X̃, Ỹ , Z̃ can be independently rotated from each other, a linear combina-

tion of these rotations, combined with spinor rotations is the U(1)R charge. The

N = 4 theory is obtained when λ2 = λ3 = 0, and in that case λ1 = gYM (this

convention requires the X, Y, Z fields to be canonically normalized). We are

interested in the case where we turn on both λ1 and λ2. It is convenient to rewrite
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the superpotential as follows

W = GYM

[
Tr(X̃Ỹ Z̃)− hTr(X̃Z̃Ỹ )

]
(5.3)

where GYM is a function of gYM and h. When h∗h = 1, we call h = exp(2iβ), and

in this case GYM = gYM. For the particular case of roots of unity, these result from

orbifolds with discrete torsion of the N = 4 SYM theory itself [83, 84]. In that

case, planar diagrams match those of the N = 4 SYM. This can be conveniently

understood by noticing that the corresponding spin chain can be obtained by

twisting the original spin chain of N = 4 SYM theory [16]. Results to various

loop orders when |h| 6= 1 were obtained in [85]. At one loop order one has that

g2
YM(1+|h|2) = 2G2

YM. This is easy to obtain by requiring that the one loop planar

anomalous dimension of X be equal to zero. The study of general h, although

rather interesting, is beyond the scope of the present Chapter. As argued in [16],

the model fails to be integrable. For us this means that we can not control the

results of calculations to all orders in perturbation theory.

In this Chapter we will be mostly interested in the generalized su(2) sector.

This is spanned by gauge invariant operators made of Y, Z alone which for h = 1

corresponds to a sector of operators that is closed under perturbation theory and

that moreover has an SU(2) symmetry of rotations of Y into Z. This SU(2) is

part of the SU(4) R-charge of N = 4 SYM. For general h, operators with these

quantum numbers can only mix with each other as there are no other states with

the same quantum numbers (this necessarily includes the bare dimension of the

operator). We have already discussed the su(2) in the case of β = 0 which has
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important consequences for the BPS states of the theory. What is important to

us here is that the half BPS giant gravitons [19] remain half BPS for all β. The

giants are characterized by coordinates which live on a disk in the S5, which is

selected upon choosing which half of the supersymmetries we wish to preserve.

Let us identify the U(1)3 symmetry charges of the theory. In our conventions

the θ, θ̄ variables of superspace have U(1)R charge equal to ∓3/2 respectively,

and Z̃ has R-charge equal to one. Thus, a superpotential term in the action of

the form ∫
d2θTr(Z̃3) (5.4)

has net R-charge equal to zero. Also, for the vector superfields we use Wα '

ψα + θ(F + D)α + θ2( /̄∂ψ̄)α. We can classify our fields by the U(1)3 charges.

This is depicted in Table 5.1. For the conjugate fields we reverse all the charges,

except the dimension ∆. We also introduce the charge J in analogy with the

corresponding charge for N = 4 SYM [60]. Fields other than Z in the field theory

have ∆− J > 0.

A particular subclass of operators is the set that are made of the single field

Field U(1)R U(1)1 U(1)2 ∆ (∆− J)
X 1 0 −1/2 1 1
Y 1 −1/2 1/2 1 1
Z 1 1/2 0 1 0
ψ 3/2 0 0 3/2 1
θ −3/2 0 0 -1/2 0

Table 5.1: List of charges of the fields under the U(1)3 symmetry and the
dimensions of the fields. For other fields they are determined by the charge of
the superspace variables and requiring that superfields have definite charges.
We have also defined J = (1/3)QR + (4/3)Q1 + (2/3)Q2.

105



Emergence of Geometric Limits in N = 4 SYM Chapter 5

Z. Any polynomial of Z that is gauge invariant is identical in algebraic form to

those of the half-BPS sector of N = 4 SYM that would be built out of Z. These

are multitraces of Z. If the degree of the polynomial is n, then the R-charge of

such an operator is n, and the U(1)1 charge is n/2. All of these operators have

∆ − J = 0. Thus, this subsector does not mix with any other (all other sectors

have fields with ∆ − J > 0). We also have that these operators can not have

any anomalous dimension either. These operators are the lowest component of a

scalar chiral superfield f(Z̃), so D̄f(Z̃) = 0. These equations imply that either the

lowest component of the multiplet f(Z̃) is a primary field, invariant under half of

the supersymmetries whose dimension is entirely controlled by the U(1)R charge,

or that f(Z̃) is a descendant of the form f(Z̃) = D̄U for some other superfield U

that is not chiral. Remember that D̄ acts without changing the value of ∆ − J .

The right hand side would need to be an operator with ∆ − J = 0, of the same

class as the ones we are studying. Since these operators are chiral, no such U

superfield can give a non-zero right hand side. The only possibility is that the

operator has a protected dimension. This is independent of how many traces make

up the operator. This is also true for arbitrary values of h, not only those where

|h| = 1. This means that this entire sector is protected by supersymmetry, no

matter the trace structure of the operator.

The set of half BPS operators can be classified in the free field theory limit

by studying Young tableaux [43]. The arguments in [74] show that the collection

of these objects can also be visualized in terms of a quantum hall droplet (free

fermions on a magnetic field). We can also interpret the corresponding particle

and hole states as analogous to dual giant gravitons and giant gravitons. Configu-
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rations can have one such giant graviton or many. Also, the collective coordinate

formalism of [39] can be adapted to this problem without any modifications. Hole

states will be associated to a point inside a fermion droplet of radius
√
N 1.

As described before, we are interested in the analogue of the SU(2) sector.

These are operators built of Y, Z. The operator ∆− J will count the number of

Y fields, which we will call m. Also, the U(1)2 charge of this operator is equal to

m/2. There are not many other operators that carry those quantum numbers for

∆ − J and U(1)2. The only candidate that also carries positive values of U(1)2

is ψ̄Z . Such a field contributes also one to ∆ − J and 1/2 to U(1)2. However, it

has a smaller R-charge than Y , namely, its R-charge is equal to 1/2, rather than

one, so it can not mix with the operators we have described (all three conserved

quantum numbers would need to match for mixing to occur). This means that

the SU(2) sector survives as a sector for all values of h, and not just for h = 1.

We will first consider single trace operators in the asymptotic limit where we

take

O '
∑
[ni]

a[ni]Tr(Zn1Y Zn2 . . . ZnkY ) (5.5)

in the planar limit with k fixed and very high occupation numbers ni. We are

interested in the value of ∆ − J for the operator O and when it exists. This

requires that
√
N �

∑
i ni � k. We can take

∑
i ni ∼ N1/a with a > 3 for

example to ensure that we can stick to planar diagrams. In this limit the Y

defects are dilute, and we can treat them independently of each other on a first

approximation. The spin chain has translation invariance of the Y relative to the

1This is the radius of the droplet for a particular normalization of the collective coordinate,
it can also be rescaled to be of order 1
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position of the Z, essentially because of the cyclic property of the trace [60]. The

vacuum Tr(Zn) is a ferromagnetic ground state with minimal ∆− J . A single Y

defect is an impurity. In the free field theory limit G2
YMN → 0, Y contributes

to ∆ − J by one. When there is more than one Y , the ni labels matter and

serve to measure the distance between the defects. At large separation we have

approximate translation invariance. Thus, it is natural that asymptotically we

have that a[ni] ' exp(i(q1n1 + q2n2 · · · + qknk)), so that each defect carries some

quasi momentum equal to φi = qi+1 − qi. In the planar limit, at each given loop

order s, the Y can move at most s steps to the left or to the right, so the energy

(this is the same as the anomalous dimension) of a defect can be computed locally

and should depend only on φi = qi+1−qi. We therefore expect to have a dispersion

relation ∆− J =
∑

iE(φi), where each defect contributes E(φi) to the energy.

An important question for us is what is the form of E(φi) for arbitrary h =

exp(2iβ) and gYM. This has been answered for h = 1 in a variety of ways [59, 53,

78]. The main result is that

E(φ) =

√
1 +

g2
YMN

π2
sin2

(
φ

2

)
(5.6)

In the notation of [59], the quantity 4 sin2(φ/2) = −α = exp(iφ)+exp(−iφ)+2 =

−(1−exp(iφ))(1−exp(−iφ)) is determined by the equations of motion. The same

calculation in the presence of β leads to

E(φ) =

√
1 +

g2
YMN

π2
sin2

(
φ

2
− β

)
(5.7)

One effectively shifts the quasi momentum of each particle excitation in the spin
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chain from φ→ φ−2β. This is in accordance with the fact that the associated spin

chain is just a twist of the original one [16]. The associated superpotential can be

written in terms of a generalized star product [25]. Thus one can guarantee that

the planar diagrams of the β-deformed theory coincide with the planar diagrams

of N = 4 SYM, to all orders, up to the point where we care about the periodicity

conditions of the various fields on the spin chain. A calculation for those giant

magnons based on the sigma model can be found in [86, 87]. For general |h| 6= 1,

there is no integrability at one loop level [16], and one can not argue that a

deformed su(2|2) symmetry survives that would protect the result on the right

hand side.

Our goal in this Chapter will be to understand the corresponding energy of

the su(2) ground state with n copies of Y and arbitrary Z, for an open string

whose ends attach to a giant graviton made of Z. This energy is interpreted

as a dispersion relation for a fluctuation between the D-branes with n units of

momenta.

5.2 The β-Deformed Cuntz Chain

Following the calculations of [16] it is easy to write down the Cuntz Hamil-

tonian for the one-loop su(2) sector in the Cuntz oscillator basis for arbitrary h.

The answer is

Hh
closed,1 =

1

2

(
G2

YMN

4π2

)∑
n

(a†n − ha
†
n+1)(an − h∗an+1) (5.8)

Hβ
closed,1 =

1

2

(
g2

YMN

4π2

)∑
n

(e−iβa†n − eiβa
†
n+1)(eiβan − e−iβan+1) (5.9)
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the second line is specific to h = exp(2iβ). This is directly derived from the

superpotential. Roughly, the cost to switch Y Z → ZY in the equations of motion

of Z is a factor of h. At this loop order, only the square of the superpotential

shows up. In this form the Hamiltonian is also a sum of squares, and in the SU(2)

sector for arbitrary h it corresponds to the XXZ chain.

The Hamiltonian (5.9) is obtained by replacing ordinary commutators in the

dilatation operator by q-deformed commutators. Define [A,B]q ≡ AB− qBA and

make the replacement [A,B] → [A,B]q. Dropping constants of proportionality,

the one-loop dilatation operator becomes

: Tr([Y, Z][Ž, Y̌ ]) :→ : Tr([Y, Z]q[Ž, Y̌ ]q∗) : (5.10)

Because we are working in the β-deformed theory with gauge group SU(N) and

not U(N), there is an additional term that needs to be added.

: Tr([Y, Z][Ž, Y̌ ]) :→ : Tr([Y, Z]q[Ž, Y̌ ]q∗) :− : Tr([Y, Z]q)Tr([Ž, Y̌ ]q∗) : (5.11)

The added term yields an additional contribution to the anomalous dimension

in the planar limit only for the operator Tr(Y Z), in which case the anomalous

dimension vanishes entirely. In [88] it was argued that the only state affected in

the SU(2) sector by these finite size effects, called prewrapping, is Tr(Y Z). Addi-

tionally it was shown that this state is protected to all loop orders. Integrability,

which we have assumed captures both sides of the AdS / CFT correspondence in

the planar limit, predicts a divergent anomalous dimension for Tr(Y Z) [89]. Later

on we will only be considering operators with large R-charge and so these finite
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size corrections unaccounted for by integrability for very short closed strings are

not a concern to us. We do not need to make any modifications to Hβ
closed,1.

To add the boundary conditions, we follow the calculations in [39] and Chapter

3. The way this works with the giant graviton collective coordinates amounts to

adding phases to the collective coordinates α for the boundary contributions. We

get that

Hβ
open,1 =

1

2

(
g2

YMN

4π2

)[(
e−iβξ1 − eiβa†1

) (
eiβ ξ̄−1 e

−iβa1

)
+ . . .

+
(
eiβξ2 − e−iβa†k

) (
e−iβ ξ̄2 − eiβak

)]
(5.12)

The twist to turn the theory to the previous Cuntz chain is easier to explain in

the open Cuntz chain. We just replace as = exp(−2isβ)ãs. Notice that this is an

automorphism of the Cuntz algebra, if at the same time we take a†s = exp(2isβ)ã†s.

We can then easily check that the phases cancel in the Cuntz chain Hamiltonian

after this replacement. This should be thought of as a local field redefinition of

the local fields an, a
†
n. To include the boundary conditions, we just need to take

the result in equation (3.91) and make the replacement

α2 → qk+1α2 = exp[2i(k + 1)β]α2 (5.13)

From here, it is easy to find the energy of the open string ground state with

angular momentum n = k + 1 to all orders. We just copy the result in equation
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(4.74) with the appropriate substitutions. We find that

∆− J =

√
n2 +

g2
YMN

4π2
|ξ1 − q−nξ2|2 (5.14)

The power of q−n = q−k−1 arises because αi and ξi are related to each other by

complex conjugation. This result follows from putting together two observations.

The first is based on integrability of the spin (Cuntz) chain and that equation

(4.74) is correct due to the central charge extension symmetry of the all loop spin

chain. The other is that the field theory dynamics predict planar equivalence (with

a twist) of the N = 4 SYM spin chain for the β-deformed version. This is the

usual statement that noncommutative field theories and regular field theories have

the same planar diagrams, which in this case results from a ∗-product deformation

[25]. These statements can be made entirely within quantum field theory and do

not require additional insight from string theory.

Consider the operators of the SU(3) sector with `1 Y and `2 X defects against

an Z background. In N = 4 SYM at one loop order, these operators can be

obtained by an SO(4) rotation of the ground state with only Y defects. In the

twisted theory, the net twist of the boundary condition is proportional to q`1−`2 .

The equations of motion of the Leigh-Strassler theory are cyclic in X, Y, Z. Thus

the cost in phase for a X to get past an Z ends up being opposite in phase to the

cost of having a Y jump past an Z.

For this more general case we find that

∆− J =

√
(`1 + `2)2 +

g2
YMN

4π2
|ξ1 − q−`1+`2ξ2|2 (5.15)
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We can also understand similar SO(4) rotations of Y into X̄ and X into Ȳ , and the

corresponding twists. For our purposes, the difference between X, Y is enough.

5.3 Geometric Limit Interpretation

In this section we consider various space-time configurations of D-branes,

choosing suitable values of α1, α2 (or ξ1, ξ2), and ask what happens to the spec-

trum in the limit g2
YMN → ∞ using expressions (5.14) and (5.15). The main

question we will ask is which states remain light in this limit. We will call states

light if their energy is below the typical string scale ∆ − J < `−1
s = (g2

YMN)1/4.

Even though ∆, J ' O(N) for the giant graviton ground state, it always remains

light in this sense since ∆ − J = 0. The appearance of `s makes sense because

we are measuring energies in units of the AdS radius in the gravity theory. As

such, `s can be thought of as a dimensionless ratio of the string length to the AdS

radius.

As a warm up to analyze this problem, let us start in the undeformed N = 4

SYM with a giant graviton at ξ1, and another one at ξ2. Equivalently we are

considering the case where q = 1. The spectrum of states between them will

contain light states if

∆− J =

√
n2 +

g2
YMN

4π2
|ξ1 − ξ2|2 < (g2

YMN)1/4 (5.16)

Unpacking the inequalities, we need that both

n2 < (g2
YMN)1/2 (5.17)

113



Emergence of Geometric Limits in N = 4 SYM Chapter 5

and that

g2
YMN

4π2
|ξ1 − ξ2|2 < (gYMN)1/2 (5.18)

because the term in the square root is a sum of squares.

The first term tells us that the momentum of the state is below the string

scale, that is, n < `−1
s which is usually what we mean by a low energy limit. This

condition is satisfied for all fixed n when we take the limit g2
YMN → ∞. This

shows that the volume of the five sphere is becoming infinite in string units; more

modes become available below the string scale as we take the geometric limit.

The second term essentially tells us that

|ξ − ξ̃| < `s (5.19)

so that the two D-branes have to be closer to each other than the string scale.

This is a standard way to extract the low energy field theory in the Maldacena

limit [13]. In this case all field theory modes survive (there is one state per angular

momentum n, up to the degeneracy expected from supersymmetry). Moreover,

this second term in the sum of squares can be thought of as the Higgs mass that

results when we separate two D-branes by a distance |ξ1 − ξ2|.

The simplest way to understand the geometric location of these states is to

consider maximal giant gravitons first, and to consider the standard fibration

structure of the 5-sphere as a circle bundle over the complex projective plane,

S1 ↪→ S5 → CP2. This fibration determines a choice of an N = 1 superspace R-

charge. BPS chiral ring states have their energy equal to the angular momentum

along the S1, which means that in the geometric optics limit they are at a fixed
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position in CP2 (they are null geodesic in AdS5 × S5). The little group of such

fixed position determines a fixed SU(2)×U(1) ⊂ SU(3) decomposition. The state

carries no SU(2) quantum numbers, so that it can be interpreted as a highest

weight of SU(3) with respect to this geometric decomposition. This is one way

to think of building CP2 in terms of coherent states.

In the presence of a maximal giant graviton, which is a maximal S3 that shares

its S1 fiber with that of the S5, the allowed positions for such an open string lie in

a CP1 ⊂ CP2, and similarly can be interpreted as a highest weight of SU(2). Seen

from the point of view of the Hopf vibration of S3, an object that carries n units

of angular momentum on S3 along the Hopf fiber can be thought of as a highest

weight state for a monopole spherical harmonic of charge n on the base. These

highest weight states are localized on CP1 because the effective magnetic field is

proportional to n and the Landau level classical orbits are circles centered around

some position on the sphere. The angular momentum is along the direction of the

point on the CP1.

A similar statement can be made for the other giant gravitons. These end up

moving at constant speed on the S1 fiber of S5, and the string is moves along with

them. It also moves inside the S3, and the SU(2) chiral symmetry preserved by

the giant graviton determines a similar Hopf fibration of this S3. The statement

results from looking at the x3, . . . x6 coordinates of the S5 as a C2, and then we

choose the standard complex structure on this C2 to pick the SU(2) we need.

The next case we want to look at are the orbifolds with discrete torsion, where

q is no longer equal to one, but instead is a fixed root of unity. Let us say qs = 1 is

a primitive root of unity for some integer s > 1 implying that β is rational. These
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orbifolds are interesting because the geometry is given by a S5/Zs × Zs quotient

[83, 84]. A giant graviton at fixed ξ will correspond to a brane wrapping a S3/Zs

We think of it as the corresponding S3 in the covering space S5 and act by the

corresponding quotient group that maps the position of the brane to itself. We

can also think of this scenario by the method of images a la Douglas-Moore [90].

Let us ask what happens at generic values of ξ1 = ξ2 ≡ ξ, that is, what happens

to the spectrum of fluctuations of a single brane. To have a light state will require

that

n < `−1
s (5.20)

and that

g2
YMN |ξ|2|1− q−n|2 < (g2

YMN)1/2 (5.21)

For generic |ξ| ' 1, we will need that |1− q−n| → 0 , or equivalently, that n is a

multiple of s Only fluctuations with s units of angular momentum will survive the

low energy limit. More precisely, if we go to the SU(3) sector, we will require that

|1 − q−`1+`2| survive, which shows that `1 − `2 is a multiple of s. This is exactly

what we expect from the optical limit on a S3/Zs space, which decomposes as a

Hopf vibration with a CP1/Zs base. The other heavy states can be thought of as

long strings stretching between ξ and its images qkξ.

Similarly, we can ask what happens if we take ξ2 = qmξ1, that is, we try to

locate a second brane in one of the image points of ξ under the Zs action that can

act on a complex coordinate of the S5. We find that a light spectrum of states

between the branes survive as long as n differs from m by a multiple of s. This

spectrum of states has fixed differences in momenta, plus a shift from zero. The
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natural interpretation is that the two D-branes are on top of each other, but they

differ in the choice of discrete electric Wilson lines between them, in a similar

vein to [91]. This means that the coordinate ξ contains both the position and the

Wilson line information. The position is uniquely determined by ξs. We can also

take limits where |ξ2 − q−nξ1| < `s to have such setups, and the interpretation in

terms of a relative discrete Wilson line does not change.

A natural question is to ask how we can deal with magnetic Wilson lines,

along the lines of [91]. This would be important to understand S-duality on the

set of states. It is hard to understand the S-dual magnetic strings between branes.

See however [69], where it is argued that the D-strings and (p, q)-strings have the

same world sheet sigma model as the ordinary strings, except for their tension.

We would expect that the BPS central charge argument is extended to these as

well, with the tension of the string making an appearance inside the square root

formula. However, a field theory computation for these states is beyond what can

be done with perturbation theory. The action of S-duality on the Leigh-Strassler

deformations is also complicated [92]. For us, the D3-branes with magnetic flux

need to be at the same location, so they must have the same value of ξs. Hence

they should be linear combinations of the branes at the values of ξ and its images.

It is natural to assume that such branes with magnetic Wilson lines will have

fixed values of the R-charge modulo s and are related to the ones with fixed ξ

by a discrete Fourier transform. Understanding S-duality in detail is beyond the

scope of the present paper.

Now let us ask also about the special limit where |ξ| → 0. In this case all of

these states can survive. We ask that |ξ| < `s and we get a construction where
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the images of a brane are separated from a brane itself by distances that are

sub-stringy. The spectrum is then the same as that of a single maximal giant

graviton. We can think of it as an S3 world volume, or as a U(s) theory on S3/Zs

in a ground state where there is a discrete nonabelian Wilson line given by

W ' (1, q, q2, . . . , qs−1) (5.22)

All we need is that W s = 1 as a matrix. Both of these give the same spectrum

of states. Which is more appropriate will then depend on the nature of the local

interactions; if they are local on S3, or on S3/Zs. We will not answer this question

here.

Now let us consider β to be close to zero, that is q → 1, and ξ1 = ξ2. Again,

we are asking about fluctuations of a single brane. In this case we can Taylor

expand in β around q = 1.

qn ' 1 + 2iβsn+O(n2) (5.23)

Again, just as before, we ask that n < `−1
s , and that

g2
YMN |ξ|2β2n2 < (g2

YMN)1/2 (5.24)

One simple way to do this is to take β2(g2
YMN) finite. It can even be made very

large in a double scaling limit sense so long as we allow ourselves to restrict n to

be smaller.

What we find is that the energy is proportional to n, and more generally, to
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the square root of a quadratic form involving `1, `2. This is the dispersion relation

of a squashed sphere, where different directions have been squashed differently.

Keeping β2(g2
YMN) gives a finite squashing; the sphere is still of a size comparable

to the AdS radius.

In this case, if we also separate the branes slightly, taking ξ1 6= ξ2, we notice

that the dispersion relation becomes a square root of a quadratic form involving

`1, `2 plus a constant term, and more crucially, a linear term will arise. One

can even fix ξ2 as being related to ξ1 by a phase such that the factors of q can-

cel for some n. Such a linear term is like a position dependent relative Wilson

line. This will need to be interpreted as having a non-trivial H-flux in the geom-

etry (this follows similar reasoning to [93]). These should end up matching the

Lunin-Maldacena geometries when we explore them in more detail [25], where the

squashing of the sphere and the H flux is known. This problem of reading the

flux can also be analyzed using other techniques with D-brane instantons [94].

The next question we need to ask is what happens for irrational β. At least

naively, nothing survives. This is because the numbers 1 − q−n will typically

never be close enough to zero at finite n. However, if we let ξ1 = ξ2 ≡ ξ with

|ξ| close to zero, we can have states for which |ξ|2|1 − q−n|2 < `2
s. If we use a

continuous fraction approximation to β/π, we can find integers r, t such that

|β/π − r/t| < 1/t2. We then find that |ξ| can be larger than `s by a factor of

roughly t. The states whose momenta are multiples of t will then survive to low

energies so long as the first order Taylor expansion of the exponential in 1/t is

still a reasonable approximation. Thus, for sufficiently small values of |ξ|, even if

they are larger than the string scale by a factor of t they look similar to orbifolds
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with discrete torsion S5/Zt × Zt. The value of t changes as we go away from

the fixed point |ξ| = 0. In this case we jump between geometric duality frames

depending on the distance from the origin |ξ| = 0. Even if the full result is not

geometric, certain classes of questions could be asked in the corresponding orbifold

with discrete torsion.

If `1 = `2, the states always survive. This means that we should think of the

brane as having at least one large circle of radius one in AdS units, with the other

directions forming a stringy geometry. The general structure of states is very

similar to what happens in the study of Melvin models [95], where the different

rational approximations to an irrational number play an important role. In our

case we are dealing with open strings stretched between D-branes, rather than

with the closed string spectrum. It is natural to imagine that the closed string

sector in these β-deformed theories will also have a list of sporadic light states

that depend on the number theoretic properties of β. A natural difference is that

in the work [95] the light states came from wrapped strings on a small circle,

while in our case they carry angular momentum. Momentum versus wrapping are

T-dual to each other, so exploring these issues further is very interesting.

A natural question to ask is how much of this picture could be obtained from a

stringy computation? Given the Lunin-Maldacena geometries, the corresponding

giant graviton states are known [96, 97] and in even more general deformations

where they become unstable [98]. Seeing as our classical solutions stretching be-

tween branes correspond to cutting well known solutions of the sigma model on

S3, it should be possible to produce these from solutions in the TsT transforma-

tions that generate the Lunin-Maldacena backgrounds and the work [99] These
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should also be applied to the orbifolds with discrete torsion. These details are

beyond the scope of the present work.

5.4 Discussion

In this Chapter we have analyzed the spectrum of open strings between gi-

ant gravitons in both the N = 4 SYM theory at strong coupling and in the

β-deformations of N = 4 SYM theory. We argued that this set of open string

states can be understood as a set of BPS states for the central charge extension

of the infinite spin chain discovered by Beisert [61] that determines their energy.

The results for the open string ground state of Chapter 4 can be ported over to

the β-deformed theories because the Cuntz chain is almost the same as in N = 4

SYM; there is a twist which only affects the boundary conditions of the open

strings in a simple way based on the quantum numbers of the string states. The

energies of these strings are encoded simply in equations (5.14) and (5.15) which

makes it possible to take limits and understand geometry very simply. We argue

that physics can be interpreted geometrically in the strong coupling limit if there

is a rich set of open string states with low energies (low compared to the string

scale) that survives.

This strong coupling limit with a large set of states depends very strongly on

the number theoretic properties of β, and the notion of geometry jumps discon-

tinuously as we move in β at infinite coupling, in a way that is very reminiscent

of Melvin models [95]. In general, we expect a similar structure as a function of

β for all toric quivers, since their dual geometries can also be deformed by the
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Lunin-Maldacena method [25]. It would also be interesting to understand other

marginal deformations of N = 4 SYM and which of them are geometric. A lot

less is known about such cases (see however [100, 101], where examples with dual

geometries are expected).

It would be interesting to explore this issue further in other orbifolds of N = 4

SYM. This again results in the same Cuntz chain, but the twistings that need to

be done are different [102] and it would be interesting to see how this can affect

the study of giant graviton states. It is also interesting to explore N = 2 theories,

where we also expect a central charge extension to control the allowed energies of

the states, but where we do not expect integrability [103].

We also discovered that in the orbifolds with discrete torsion, the giant gravi-

tons carried electric Wilson lines on their world volume. This suggests inter-

esting questions regarding how S-duality acts on those states. Considering that

the action of S-duality is complicated when looking at different questions [92]

for β-deformed theories, this suggests that resolving these issues might be very

non-trivial.
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Chapter 6

Introduction

The AdS / CFT dictionary is a one-to-one map between objects in certain string

theories and operators in N = 4 SYM in four dimensions. In addition to open

and closed strings, we expect to be able to describe D-branes [62]. Without a non-

perturbative definition of string theory, calculations involving D-branes come in

the form as BPS solutions to the supergravity equations of motion, classical analy-

sis of the Dirac-Born-Infeld (DBI) action, or perturbatively through open strings.

In the limit of vanishing string coupling, the D-branes become rigid membranes

in some embedding space which act as boundary conditions for open strings. The

coordinate positions of D-branes were first suggested to be matrices in [104]. If we

treat the matrix variables classically and they all commute, then their eigenvalues

give the exact positions of the individual D-branes in the embedding space. When

the matrices no longer commute, the geometric information about the membranes

becomes encrypted and the ensemble is considered fuzzy. Extracting the mem-

brane information from this fuzziness is an important step in understanding how

full quantum D-branes emerge when we move away from non-vanishing string

coupling.
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Describing membranes as non-commuting coordinates also comes from the

lightcone quantization of the membrane [105]. The coordinates that do not com-

mute describe the internal degrees of freedom of the membrane itself. In the

lightcone quantization, the supermembrane acquires a non-degenerate Poisson

structure on its spatial worldvolume. One can consistently truncate the space of

functions on which the Poisson structure acts. The embedding coordinates be-

come Hermitian matrices and the Poisson structure is replaced with a u(N) Lie

bracket. The truncation acts as a UV regulator for the membrane on the light-

cone. The same story can be repeated for the supermembrane, a membrane with

bosonic and fermionic coordinates [106]. The dynamics of the full supermembrane

should be recovered as N →∞.

The truncation of the supermembrane results is the BFSS matrix model [107].

The BFSS matrix model was originally argued to be a candidate for the strongly

coupled dynamics of D0-branes with some momentum in the lightcone direction.

Its connection to the supermembrane means it has the capacity to describe mem-

branes, at least in the large N limit, and lead to the conjecture that the matrix

model is the discrete lightcone quantization (DLCQ) of M-theory in flat space.

At finite N , the BFSS matrix model should describe M-theory with one direction

compactified to a circle of radius R. If M-theory is a theory of membranes, then

they should exist at finite N in the BFSS matrix model as well! All considerations

of membranes as matrices so far holds in a classical context. There is no need for a

full quantum treatment in terms of solving the spectrum of the BFSS Hamiltonian

and extracting membranes from the eigenstates. This is the subject of Chapter

7: how can we extract classical surfaces in some embedding space using classical
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complex valued matrices at finite N? We will not ignore quantum mechanics

completely, as it is the governing dynamics of the system, but it will guide us in

building an effective Hamiltonian for extracting membranes from matrices.

The BFSS matrix model is a gauged quantum mechanics. It has nine scalar

matrices φi and sixteen fermionic matrices living in the adjoint of U(N). The

action is given by

SBFSS =

∫
dtTr

[
9∑
j=1

1

2(2R)
(D0φ

j)2 +
i

2
Ψ†D0Ψ +

(2R)

4

9∑
j,k=1

[φj, φk]2

+
9∑
j=1

1

2
(2R)(Ψ†γj[φj,Ψ])

]
(6.1)

with the time covariant derivative D0φ
i = ∂tφ

i− i[A0, φ
i] and A0 a non-dynamical

U(N) gauge connection. The parameter R can be scaled away showing that the

BFSS matrix model has no intrinsic scale. See Appendix D for more details.

Another important model we will consider is the BMN matrix model [60]. Its

action is given by

SBMN = SBFSS + Smass (6.2)

Smass =

∫
dtTr

[
1

2(2R)

(
−
(µ

3

)2
3∑
j=1

(φj)2 −
(µ

6

)2
9∑
j=4

(φj)2

)

− i
2

(µ
4

)
Ψ†γ123Ψ− iµ

3

3∑
j,k,l=1

εjklφ
jφkφl

]
(6.3)

where µ is a new mass scale. The BMN matrix model is a massive deformation

of the BFSS matrix model. The scalars and fermions both acquire a mass due to

the presence of a background four form flux and the Myers effect [108]. This has
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some major consequences, both classically and quantum mechanically. The BMN

potential is unbounded in all directions of the coordinate space whereas the BFSS

potential has flat directions. These flat directions lead to the classical instability

of the supermembrane. Quantum mechanically these flat directions lead to non-

normalizable modes, in the same way that occurs for a free particle, and leads to

a continuous spectrum. The BMN model, on the other hand, behaves more like a

quantum harmonic oscillator and the spectrum is discrete.

To arrive at the BMN matrix model, one considers a fast spinning particle

on a sphere in an AdS4,7 × S7,4 geometry. After taking a double scaling limit,

the particle sees the geometry of a parallel-plane wave with background four form

flux. One obtains the matrix model by performing the appropriate DLCQ for the

superparticle. The BMN matrix model should describe the DLCQ of M-theory

in a plane-wave background with background four form flux. This is very similar

to the BFSS matrix model. Indeed, the BMN matrix model contains a mass

parameter µ which in the limit µ→ 0 turns off additional interactions and leaves

the BFSS matrix model. Holographically the plane-wave becomes ordinary flat

space and the four form flux turns off. Another similarity these models share

is that they can both be obtained by dimensional reduction. The BFSS matrix

model can be realized as the dimensional reduction of N = 4 SYM on flat four

dimensional space. For the BMN matrix model, one starts with N = 4 SYM on

R× S3 and takes the singlet sector of one of the SU(2)’s of the sphere [109].

At some level of the AdS / CFT correspondence, we expect to find full ge-

ometries in addition to stringy objects hiding in the states of the gauge theory.

After all, string theory should be considered as a single theory that describes all

127



Introduction Chapter 6

geometric backgrounds [9]. Solving strongly coupled gauge theories in general is

a very difficult problem, especially the one relevant to the full correspondence,

N = 4 SYM. We can alleviate this issue in two ways: one is to consider these

theories classically, and the other is to use matrix models.

Before searching for the geometries hiding in classical gauge theories, we should

comment on the success of holography in computing transport coefficients. Be-

ginning with the work of [110], the problem of large N (high dimensional gauge

group), finite temperature, strongly coupled quantum gauge theory dynamics is

replaced by the much simpler problem of analyzing classical Green’s functions in

various black hole backgrounds with boundary conditions that reflect our under-

standing of response theory. The calculation in [110] and subsequent work is, to

leading order and when properly normalized [111], completely independent of N

and all the precise details of the field theory. These are classical gravity computa-

tions in AdS black hole backgrounds. Corrections appear when the gravitational

theory suffers quantum corrections, i.e., when the curvature is large somewhere in

Planck units, or when the truncation to gravity breaks down, as when the black

hole has curvature radii of order the string scale. In the dual field theory, this

corresponds to finite N or weak coupling.

In Chapter 8 we consider the opposite scenario of extracting gravitational and

geometric information using classical gauge theories. The strong non-linearities

will cause chaotic dynamics. The large N limit should be understood as a thermo-

dynamic limit, where the number of degrees of freedom grows as N2 even though

some aspects of the dynamics are N -independent. We will also look for collective

modes to emerge, akin to hydrodynamic variables, that indicate collective time
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dependent dynamics also roughly independent of N .

Classical non-linear field theories have an infinite number of degrees of free-

dom and suffer from the ultraviolet (UV) catastrophe. The UV catastrophe is

cured by introducing the Planck constant, which originally gave birth to quantum

mechanics. This would seem to stop this idea of studying classical non-linear field

theory dynamics in its tracks. However, thinking of a field theory expanded in

Fourier modes, a finite ~ freezes the dynamics of most of the modes to be in their

ground state. The frozen modes are exist above some cutoff determined by the

dynamics and the initial conditions. One is only dealing with finitely many active

degrees of freedom and the initial problem of an infinite number of degrees of

freedom in field theory can be solved. By studying matrix models, we begin with

finitely many degrees of freedom and avoid the UV catastrophe completely.

Chapter 8 is devoted to building classical equilibrium configurations of matri-

ces through the real time simulations of the BMN and BFSS matrix models and

analyzing their chaotic dynamics. We study both equilibrium configurations with

their associated equations of state, and also simple transport processes, or more

precisely, out of equilibrium relaxation. We study the latter via fluctuations of

the appropriate variables and by invoking the fluctuation-dissipation theorem.

In Chapter 9 we begin our search for geomtries in this classical regime of holog-

raphy. We discuss whether such classical models can be used to study holographic

dualities, where we also have some gravitational information. We use the tech-

niques and tools developed in Chapter 7 to explore the extent to which the matrix

configurations developed in Chapter 8 can be called black holes.

We conclude the study of geometry in the context of holography in Chapter 10.
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The BMN matrix model has exact, supersymmetric solutions with zero energy [60].

These matrix configurations are characterized by all adjoint representations of

su(2) and are called fuzzy spheres. It is expected that adding angular momentum

to the fuzzy sphere states can induce topology changes from a sphere to a torus

[112]. The purpose of Chapter 10 is to investigate this topology transition with a

special family of matrix solutions at finite angular momentum. Once the solutions

are found, the geometry of the corresponding fuzzy membrane is analyzed using

the techniques of Chapter 7.
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The Geometry of Membranes

The coordinate positions of D-branes [62] are realized as matrices [104]. If we

treat the matrix variables classically and they all commute, then their eigenvalues

give the exact positions of the individual D-branes in the embedding space. When

the matrices no longer commute, the geometric information about the membranes

becomes encrypted and the ensemble is considered fuzzy.

In this Chapter we investigate how to decode the fuzziness of classical matrix

coordinates to obtain information about the membranes hiding inside them, and

eventually the D-branes themselves. We work in the context of the BFSS matrix

model and its massive deformation, the BMN matrix model.

7.1 Orbifolding The BFSS and BMN Matrix

Models

The simplest version of the BFSS and BMN matrix models are obtained by

setting N = 1. In this case we are working with 1 × 1 matrices. The classical

configurations are given by their positions in R9. The fermions add degeneracy to
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these states and give the correct counting for the number of degrees of freedom

for a graviton supermultiplet in eleven dimensions [107]. The R9 describes the

transverse directions to the lightcone and the rank of the matrices is the amount of

lightcone momentum. The lonely 1× 1 matrix model describes a single D0-brane.

The lowest energy configurations in the classical theory in general correspond to

configurations of commuting matrices, where N such D0-branes are located on

R9.

An important aspect about the BFSS matrix model is its capability to de-

scribe extended objects. One can describe configurations of D-branes of varying

orders. These are easy to see in the infinite N limit [113], as central charges in

the supersymmetry algebra become activated which encode objects of infinite ex-

tent. These solutions lead to effective noncommutative field theories. A modern

introduction to the geometric interpretation of these developments can be found

in [114].

One can also check that matrix configurations source the various supergravity

fields at long distances and that the couplings to weakly curved backgrounds give

us a way to compute the currents and the multipoles with respect to the brane

charges of the configurations. This was very systematically developed in the works

of Taylor and collaborators [115, 116, 117]. A review of the BFSS matrix model

where all of this is very clearly addressed is in [118].

Finite matrix configurations can also behave like extended D-branes. The sim-

plest example are fuzzy spheres [119], where three of the matrices are proportional

to angular momentum matrices, that is, the irreducible representations of su(2).

The BFSS matrix model can in principle describe all types of D-branes in type
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IIA string theory. However, a random configuration of matrices would very com-

plicated and encode somewhat random extended D-branes of the type IIA theory.

It is important to ask if these geometries survive at finite N , or if they are only

well defined strictly when N →∞. In this chapter we show that a description for

precise geometries exists even at finite N . We begin by reducing the problem to

studying surfaces in three dimensions, where three of the φ matrices matter and

the other six are eliminated somehow.

One way of doing this begins with the realization that the BFSS matrix model

can be obtained by dimensionally reducing N = 4 SYM in 3 + 1 dimensions

down to 0 + 1 dimensions. By reducing the supersymmetry from N = 4 SYM

to just N = 1 SYM, we only have to deal three of scalar matrices instead of all

nine. These arise from the dimensional reduction of the gauge field connection. In

this situation, the D0-branes are confined to an R3 instead than an R9. We might

expect that we can only describe D2-branes, as any higher dimensional even brane

would have too high a dimension to fit in three dimensions.

To achieve this truncation and keep a full geometric interpretation of the

system in terms of string theory we consider the supersymmetric orbifold C3/Zk.

These are described by quiver theories which can be constructed by the techniques

developed by Douglas and Moore [90]. What matters for us is that we can end

up with a theory where only the dynamics of N = 1 SYM matter.

This would be the theory of N identical fractional branes at the orbifold sin-

gularity. A explanation of how those field theories can be built and studied is

found in [120]. The geometric interpretation in terms of fractional branes and

intersection theory of those objects can be found in [121].
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For simplicity we can choose a Zk action that gives rise to chiral theories where

between any two nodes in the quiver there is at most one chiral field connecting

them. If we add a probe for a different fractional brane, we can get a single chiral

multiplet worth of fields connecting the probe to the configuration. In particular,

we choose the orbifold given by C3 with coordinates α1, α2, α3 and whose action

of Zk is defined by the identifications α1 → ωα1, α2 → ω2α2, α3 → ω−3α3, and

ω = exp(2πi/k) is a primitive root of unity. Many other orbifolds will have similar

properties and the precise details of the orbifold are not important at this stage.

All that we need can be visualized by a simple subquiver diagram

U(N) • −→ • U(1) Probe (7.1)

where the arrow indicates a single chiral multiplet.

The advantage of having a single chiral field is that the fermions are represented

by a two component Weyl spinor, and the gamma matrices appearing in the BFSS

matrix model reduce to the four dimensional gamma matrices, that is, the Pauli

matrices. The details of the reductions are shown in Appendix E. Chiral fields

have the additional advantage in that they carry anomalies in four dimensions.

Thus they might encode topological information even in the reduction to 0 + 1

dimensions.

Upon reduction, the fermion terms involve only four dimensional gamma ma-

trices. Indeed, if we reduce to a single chiral multiplet, then we can think of the
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gamma matrices themselves as Pauli matrices. The effective action is then

Sorb =

∫
dtTr

[
3∑
j=1

1

2(2R)
(D0φ

j)2 +
i

2
Ψ†D0Ψ +

(2R)

4

3∑
j,k=1

[φj, φk]2

+
3∑
j=1

1

2
(2R)(Ψ†σj[φj,Ψ])

]
(7.2)

where if ψ is chiral, then ψ† is antichiral. Again, R is meaningless as it can be

redefined away, and the classical symmetries of Sorb have the same properties as

those for SBFSS. The action above is a shorthand; it is the same action of the

BFSS matrix model, but the matrices are restricted by the orbifold conditions

[90] 1.

We have thus achieved our goal of only having to deal with three (Hermitian)

matrices instead of nine. Additionally, the Pauli matrices are easier to handle

than the nine dimensional gamma matrices.

Now we ask the physically meaningful quesiton: can we associate a collection

of D2-branes in a specific geometric configuration in R3 to the three Hermitian

matrices φ1,2,3? To the extent that we can, we may then uplift any gained intuition

to nine dimensions and understand better how membrane geometries arise in the

BFSS matrix model.

Another useful matrix model to consider is the BMN matrix model [60]. This

model describes M-theory on a plane wave in the discrete lightcone quantization.

1In practice this can be done keeping the form of the action fixed and adding information
about the matrix restrictions by using a crossed product algebra [122]. This will produce a set
of orthorgonal projectors for each node of the quiver, and the commutation relations with these
projectors will recover all the information of the quiver diagram. For example the traces of the
projectors will recover the rank of the gauge groups on each node.
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Its action is given by

S = SBFSS + Smass (7.3)

Smass =

∫
dtTr

[
1

2(2R)

(
−
(µ

3

)2
3∑
j=1

(φj)2 −
(µ

6

)2
9∑
j=4

(φj)2

)

− i

2

(µ
4

)
Ψ†γ123Ψ− µ

3
i

3∑
j,k,l=1

εjklφ
jφkφl

]
(7.4)

which is a mass deformation of the BFSS matrix model. Again, if we look at the

N = 1 case, the configuration space is R9. However, there are no flat directions

due to the quadratic potential in the Hamiltonian. This is expected and just

reflects the presence of the gravitational potential in the plane wave geometry.

The BMN model can be obtained by a dimensional reduction of N = 4 SYM to

0 + 1 dimensions. In this reduction, however, the four dimensional gauge theory

is placed on R × S3 and fields invariant under one of the two SU(2)’s of the

sphere remain [109]. Again, we can get simplify the situation to three matrices

by playing the same orbifold trick to get rid of the matrices φ4...9. We can get

rid of R and choose units where µ = 3, but then we are not free to rescale ~

to be whatever we want any longer. Thus the BMN matrix model does have a

parameter ~, even when we orbifold. As we move to the classical regime, we can

ask the same question as above: can we associate a collection of D2-branes in a

specific geometric configuration in R3 to the three Hermitian matrices φ1,2,3?

We answer this question in the affirmative in both the BFSS and the BMN

matrix models. The surfaces will be slightly different in the two models for a

given set of matrices φ123 because the fermions have mass in BMN. This reflects
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the fact that in the eleven dimensional maximally supersymmetric plane wave

background there is a non trivial background flux. Such a contribution changes

slightly the shape of the branes that one associates to the configurations and this

is essentially due to the Myers effect [108]; branes are polarized in the presence of

RR backgrounds. In particular a D0-brane can polarize into a sphere.

The remainder of this chapter is to look in detail at the fermion degrees of

freedom to understand the geometry of branes. We relabel the matrices φ1,2,3 →

X, Y, Z or ~X when appropriate. From the point of view of the fermion degrees

of freedom we ask the question, what would a probe point like D0-brane see in

the constant background ~X?

7.2 The Index: Adding a D0-brane Probe

As described previously, the geometry in the BFSS and BMN matrix models

is encoded in matrices of dimension one. In this section we work exclusively in the

context of the BFSS matrix model and only add some passing remarks at the end.

To understand how a generic object of the model looks geometrically (a general

matrix configuration), we add a point-like probe. That is, we extend a matrix

configuration by taking a direct sum with a zero-brane probe. We embed an N×N

matrix configuration into an (N + 1) × (N + 1) matrix in the upper left corner

and add an eigenvalue in the rightmost bottom corner with zeros everywhere else.
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We have a new auxiliary configuration with

X̃ =

X 0

0 x

 , Ỹ =

Y 0

0 y

 , Z̃ =

Z 0

0 z

 (7.5)

with X, Y, Z three Hermitian matrices of one of the orbifolded matrix models.

The geometric characterization of the auxiliary matrices are then encoded in

the observations of the spectator brane. The spectator brane can only ask ques-

tions related to the dynamics of the matrix models themselves and in particular

of the degrees of freedom that connect the extra eigenvalue to the matrix con-

figuration. There are two classes of modes that connect the extra eigenvalue to

the configuration: the bosonic degrees of freedom and the fermionic degrees of

freedom. Here we will restrict ourselves to the fermionic degrees of freedom and

the questions we ask depend on the position of the extra eigenvalue probe.

We decompose the fermionic degrees of freedom as

ψ̃ =

0 ψ

0 0

 (7.6)

where our goal now is to ask what are the energies associated to the modes ψ̃.

Notice that we picked very particular components of the fermions and not others.

This can be justified completely in orbifold models, as we discussed previously, but

orbifolds are not really required to make this argument. All we need is the sub-

quiver diagram that enforces the restrictions of the matrices defined by equations

(7.5) and (7.6). To do this carefully, we are choosing the probe to be a different
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fractional brane than the matrices ~X represent. The chirality of these modes in-

dicates that if the branes were four dimensional fractional branes and we think

of fractional branes as higher dimensional branes wrapped on collapsed cycles,

then they would definitely intersect. The intersection properties of the fractional

branes represent the intersection properties of the collapsed cycles [121]. Also

notice that we did not put fermions in the bottom leftmost corner; this is our

chirality assumption for the arrow.

The first question we ask is if there is a definition of distance from the eigen-

value probe to the matrix configuration. The way to answer that question is to

look at the spectrum of fermions connecting the probe eigenvalue to the matrix

configuration. The eigenvalue probe is located at x, y, z in a background of the

three Hermitian matrices X, Y, Z. The dynamics are described by the following

effective Hamiltonian

Heff = (X − xIN)⊗ σx + (Y − yIN)⊗ σy + (Z − zIN)⊗ σz (7.7)

where IN is the N × N identity matrix which we will omit in the future. The

origin of this Hamiltonian comes from the Yukawa terms in the full Hamiltonian

given by

Tr(Ψ†γi[Xi,Ψ]) (7.8)

and evaluated in the configuration X̃, Ỹ , Z̃. The Hamiltonian above describes

the mass term for the off diagonal modes of the fermion ψ that are charged under

the gauge group of the extra eigenvalue probe. The structure of how the Pauli

matrices appear for chiral multiplets is derived in Appendix E. The dependence
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on the bosonic variables comes directly from the commutators.

We can think of this as a Hamiltonian in a tensor product space Hbig =

HN ⊗ H↑↓ of an N− dimensional Hilbert space times a spin one half object (a

single q-bit). The Hamiltonian Heff is covariant under unitary transformations

of HN . A transformation U ∈ Aut(HN), induces an automorphism of Hbig via

U ⊗ 1. The automorphism takes X → UXU−1, Y → UY U−1, Z → UZU−1 and

Heff → (U ⊗ 1)Heff(U−1 ⊗ 1) which shows that the spectrum of Heff is invariant

under such rotations. This is inherited from the gauge transformations of the

original matrix model. What is important is that the spectrum of Heff is gauge

invariant.

As is usual in string theory, the off diagonal modes connecting a subconfigura-

tion to another are considered to be strings, once they are quantized. The typical

energy of a string of length ` is given by α′` where α′ denotes the string tension 2.

Hence, in our effective Hamiltonian, we can denote the distance from the probe

brane located at (x, y, z) to the configuration by the eigenvalues of the effective

Hamiltonian Heff. The reason to look at fermions is that fermionic Hamiltonians

do not have tachyons. Thus technically all energies are positive and thus the no-

tion of distance is positive. This is also true for string states; open string fermions

in the NSR superstring appear in the Ramond sector for open strings. The zero

point energy of the fields cancels between bosons and fermions on the worldsheet

because they have the same boundary conditions Thus the only contribution to

the energy of the string is from the classical stretching between the ends of the

strings.

2The units of α′ are energy per unit length, althoug in natural units it is inverse length
squared.
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The eigenvalues of Heff themselves can be positive or negative. As such, we

interpret the positive eigenvalues as the frequencies of creation operators, and

the negative eigenvalues as frequencies of lowering operators upon second quan-

tization. The absolute value of the spectrum of Heff is then the list of distances

from the probe brane to the object when interpreted as strings. Obviously, if we

have more than one distance, the object with respect to which we are measuring

distances should be considered to be an extended object. The minimal eigenvalue

of the spectrum obtained should give us the minimal distance to the extended

configuration.

The Hamiltonian Heff is covariant under rotations and translations. These

symmetries are inherited from the original BFSS Lagrangian. More importantly,

the Hamiltonian is also covariant under rescalings: if we rescale X, Y, Z and the

coordinates x, y, z by the same common factor, the entries of the matrix rescale

with the same power and thus the eigenvalues scale as well.

First let us solve the spectrum in the asymptotic regime, where (x, y, z) →

∞ along a determined direction in R3 keeping the X, Y, Z matrices fixed. By

convenience, we can use rotation invariance to take z →∞ keeping x, y equal to

zero. We then have that

Heff = −z ⊗ σz + (Z ⊗ σz +X ⊗ σx + Y ⊗ σy) (7.9)

We can compute the eigenvalues of Heff by considering it as a perturbation theory

of Heff ' −zσz. The eigenvalues of this matrix are degenerate. There are N

eigenvalues of values +z and N eigenvalues of value −z. These are very large.
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Since the spectrum is degenerate, to first order we need to resolve the splitting

among the degenerate subset. This is done by looking at the perturbation terms

in Heff that commute with σz. The term that does that is Zσz itself. So the

transformation that diagonalizes Heff along the two degenerate subsets is the same

transformation that diagonalizes Z. We find that the leading order spectrum is

given by

Eig(Heff) = ±(z − λzi ) +O(1/z) (7.10)

where λzi are the eigenvalues of Z. The extra corrections of order 1/z result from

the ‘energy denominators’ in perturbation theory and involve the components of

X, Y .

We find the familiar theme that the eigenvalues of the matrices X, Y, Z

describe the positions of objects (distances) as viewed from infinity. Since the

eigenvalues are continuous functions of the matrices, we find that the notion of

distance by taking the minimum eigenvalue is a continuous function of the posi-

tion.

Let us now ask what happens when we are at distance zero from a configu-

ration. This can happen in two ways: an eigenvalue of Heff crosses zero, or the

eigenvalues just grazes zero and keeps its sign. We will define an index that counts

possible crossings of zero from infinity. At infinity, the spectrum of Heff is paired

into positive and negative eigenvalues and to first order in perturbation theory

they are equal to each other up to sign, obviously this implies that they both have

the same number of eigenvalues. If an eigenvalue goes from positive to negative,

the number of positive eigenvalues decreases by one, and the number of negative

eigenvalues increases by one. Similarly in the other direction. We want the index
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to be zero at infinity and changes by one at each crossing. The definition of the

index is given by

I((x, y, z))X,Y,Z =
n+ − n−

2
(7.11)

where n+ the number of positive eigenvalues of Heff, and n− is the dimension of the

space of negative eigenvalues of Heff. The index is a locally constant function (after

all, eigenvalues of matrices are continuous functions of the entries) that can only

change values at locations where Heff has null eigenvalues. If for a configuration

we have that I(x, y, z) 6= 0, we know that on any path connecting x, y, z to

infinity there are crossings of zero and thus the location (x, y, z) is surrounded by

the noncommutative object characterized by X, Y, Z.

Such an index was defined in [123] for the position x, y, z = 0 called a

Bott index. In their formulation, they dealt with approximations to a sphere,

where X2 + Y 2 + Z2 ' 1 and the introduction of Pauli matrices was an auxiliary

construction in mathematics. The matrices X, Y, Z represented observables

in a quantum system where only finitely many states were allowed and hence

position observables became finite matrices. They were also restricted to small

commutators. The operator Heff in that case would square to something that

was very closed to the identity, so that all eigenvalues of Heff were very close

to ±1. Counting positive and negative eigenvalues is an invariant under small

deformations that prevent the eigenvalues from getting too far from ±1. The

index was interpreted in that case as an obstruction to localizing states on a sphere

(making X, Y, Z strictly commute). Demanding that ||X2 +Y 2 +Z2−r2|| < δ by

deformations of X, Y, Z imposes a bound on their commutators. The spectrum

of the operator ~X · ~σ is also used in numerical studies of noncommutative field
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theories (see [124] for a recent example). One can also use the operator ~X · ~σ to

define a fuzzy sphere by studying a single matrix model of 2N×2N matrices with

a constraint [125].

In the case we have described, the index is dictated by the dynamics of

fermionic degrees of freedom on D-branes. There are no restrictions on the size of

commutators. These ideas can be extended further to higher dimensions and ma-

trices with various restrictions following the ideas in [126]. Such a generalization

is beyond the scope of the present paper.

Here are basic properties of the Index function (some of these already appear

in the work [123]):

1. The index is an integer. At infinity the index vanishes (as we computed

already). The index changes by ±1 if a single eigenvalue crosses zero. It

changes by integers if many eigenvalues cross zero.

2. The index defines a collection of oriented closed surfaces. The surfaces are

the locus of where the index changes value. The orientation is defined by

going from larger values to smaller values of the index (this includes the

sign, thus −1 > −2 etc). The surface set itself is obtained from the zero

locus of a polynomial in (x, y, z) obtained by taking determinants. These

surfaces will be called membranes or D-branes interchangeably.

3. The index has an additive property. Given two configurations X1, Y1, Z1

and X2, Y2, Z2, we can consider a new configuration given by taking direct

sums X3 = X1⊕X2, Y3 = Y1⊕ Y2, Z3 = Z1⊕Z2. Under such constructions
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we have

I((x, y, z))X3,Y3,Z3 = I((x, y, z))X1,Y1,Z1 + I((x, y, z))X2,Y2,Z2 (7.12)

and the set of surfaces with orientation is also additive under this operation.

4. The index possesses Orientation reversal. We can reverse the orientation of

a surface without affecting its shape. To do so, we consider the complex

conjugate of the matrices X, Y, Z. In equations, we have that

I((x, y, z))X,Y,Z = −I((x, y, z))X∗,Y ∗,Z∗ (7.13)

The proof is as follows. A matrix and its transpose have the same eigenval-

ues. Then ( ~X − ~x) ⊗ ~σ has the same eigenvalues as ( ~X − ~x)T ⊗ ~σT . Since

~X is Hermitian, we can exchange ~XT for ~X∗. However, for Pauli matrices

we have that ~σT ' −~σ after a unitary transformation in the spin one half

subspace. Thus we have that the eigenvalues of ( ~X−~x)⊗~σ are equal to the

eigenvalues of ( ~X∗ − ~x) ⊗ (−~σ). That is, the matrix ( ~X∗ − ~x) ⊗ ~σ has the

same eigenvalues as ( ~X−~x)⊗~σ but with signs changed. This exchanges n+

and n− and reverses the index.

5. If X, Y, Z are real, then I((x, y, z)) = 0 everywhere. This is a corollary

of the orientation reversal property. For such configurations we have that

I((x, y, z))X,Y,Z = −I((x, y, z))X∗,Y ∗,Z∗ = −I((x, y, z))X,Y,Z . In particular

this holds for collections of zero branes which are direct sums of one dimen-

sional problems.
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6. The index is covariant under rotations, translations, and dilatations of the

system. This follows from the similar properties that Heff has.

7. The index is not trivial. In the next section we will explore matrix configu-

rations (X, Y, Z) for which I((x, y, z))X,Y,Z 6= 0.

If we instead work with the BMN matrix model, we get an effective Hamilto-

nian given by

Heff = (X−xIN)⊗σx+(Y −yIN)⊗σy+(Z−zIN)⊗σz+
3

4
IN⊗σx(−iσy)σz (7.14)

The extra term ruins some of the properties above. In particular, the scaling the

surfaces no longer holds, as does the ability to change the sign of the eigenvalues

by complex conjugation. Translation and rotation covariance do remain. The

index still vanishes when a probe is at infinity, but one can check that even for

1 × 1 matrices, the index changes when the probe used to define the index is on

top of the D0-brane that described the configuration. This is the Myers effect in

action [108]. As far as fermions are concerned, the presence of a background RR

flux changes the Dirac equation, and an computed example can be found in [93].

In that example the displacement of the location of the fermion zero modes was

required in order for configurations to form tori that were BPS. In the present

case, the structure of the gamma matrices follows the background flux in the BMN

model [60].

On the other hand, in this case many fuzzy spheres are ground states of the

system and one expects that these solutions survive as time independent configu-

rations. Also, many of these can be made to oscillate slightly so the membranes
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can persist indefinitely.

7.3 Fuzzy Spheres and Emergent Surfaces

7.3.1 Fuzzy spheres

Now that we have defined an index, let us consider some special examples of

the index computation. We will start with a fuzzy sphere and ask about the index

at the center of the sphere. The fuzzy sphere is defined as follows. Let L1,2,3 be

the angular momentum matrices of an irreducible representation of SU(2) of spin

j. These satisfy the identities

[Li, Lj] = iεijkLk (7.15)

The maximum eigenvalue of L3 are ±j. Consider the following set of 3 matrices

built by the following combinations:

X =
r

j
L1, Y =

r

j
L2, Z =

r

j
L3 (7.16)

We call this a fuzzy sphere. The maximum eigenvalue of Z is |r|. One could then

argue that the sphere has radius |r| as seen from infinity using our large distance

computation in the previous section. On the other hand, X2 +Y 2 +Z2 = j(j+1)
j2

r2.

Thus one could also argue that the radius of the sphere is given by r̃ =
√

1 + 1
j
|r|.

These two become identical in the large j limit, but at finite j there is some

discrepancy. However, it is natural to believe that there is a well defined surface
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near this radius that surrounds the origin and that is our candidate for a locus

where an eigenvalue changes sign.

Let us prove this assertion by computing the index in the center of the con-

figuration, at x = y = z = 0. The effective Hamiltonian we have to deal with is

then given by

Heff =
r

j
~L · ~σ (7.17)

This is the same type of problem that shows up in spin-orbit coupling in the

hydrogen atom. The important thing is that this is spherically symmetric, so it

makes sense to decompose the Hilbert space Hbig into irreducible representations

of SU(2). The big Hilbert space is given by

Hbig ' (j)⊗
(

1

2

)
'
(
j +

1

2

)
⊕
(
j − 1

2

)
(7.18)

and it decomposes into two irreducible representations of SU(2). For each of

them, we have a common eigenvalue of Heff. Moreover, Heff is traceless. This can

be proved in general because the Pauli matrices themselves are traceless. Thus,

the two possible eigenvalues of Heff have the opposite sign. One is positive, and

the other is negative. This depends on the sign of r. Let us choose the sign of r so

that n+ > n−. The number of eigenvalues of the bigger representation of SU(2)

is n+ = 2j + 2, while those of the smaller representation are n− = 2j. These are

the dimensions of the two irreducible representations of SU(2) appearing in the

tensor product. We obtain that

I((0, 0, 0))Fuzzy Sphere =
n+ − n−

2
= 1 (7.19)
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We already knew that the index was an integer, and that the typical change

should be by ±1. Here we find an explicit example where the index changed by

one somewhere between the origin and infinity. Because of spherical symmetry,

the index changes value at a fixed sphere radius. A direct computation carried out

in Appendix F shows that the radius at which it happens is given exactly by |r|.

We thus find that the radius is governed by the maximum eigenvalue, rather than

by the value of X2 + Y 2 + Z2. Indeed, if we use the definition of distance from

the origin that is obtained from the spectrum of Heff we find that the distance is

equal to |r|. Indeed, with the spectral definition of distance we used, we find that

the distance from any point in space to the sphere is the one that is obtained by

elementary geometry.

We can also set up direct sums of concentric fuzzy sphere configurations of

various radii, so we can get configurations where the index is arbitrarily large.

For such configurations the index counts the (minimal) number of sphere layers

that need to be crossed to get out of the center. Since the index counts with sign,

surfaces (which we call membranes) of different orientations can be present and

the index itself represents a lower bound on the number of layers that need to be

crossed.

7.3.2 From a Sphere to a Torus

Here we detail how to make configurations that lead to a fuzzy torus embedded

in three dimensions. The idea is to begin with a fuzzy sphere and to deform the

matrices in the simplest way to get to a fuzzy torus. We follow the construction of

the giant torus as described in [112] (other examples of embeddings of Riemann
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surfaces in R3 can be found in [127], and in [128] one can also find a different

example that interpolates between sphere and tori). In the case of the giant torus,

one is supposed to add strings with maximal angular momentum to a sphere until

the geometry transitions to a torus. To do this, it is convenient to use matrices

defined by

X± = X ± iY (7.20)

and in the other direction

X =
1

2
(X+ +X−), Y =

1

2i
(X+ −X−) (7.21)

The matrices X± in the fuzzy sphere of spin j case are rescaled ladder operators

for spherical harmonics and are adjoints of each other. In a natural basis for a

sphere, we have that

X+
ba = r

√
j(j + 1)− a(a+ 1) δb,a+1 (7.22)

The labels a, b range from j, . . . ,−j.

If we quantize fluctuations of the fuzzy sphere (see for example [129]), one can

check that the different diagonals of the matrix X+ carry different amounts of

angular momentum in the z direction. They differ by one unit, and the diagonal

where X+ has entries carries no angular momentum in the z direction. When we

condense these fluctuations, we replace them by an expectation value which be-

comes a number multiplying the appropriate fuzzy tensor harmonic. Since we are

looking to maximize the angular momentum of the fluctuations, the deformation
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we seek is given by

X+
ba = r

√
j(j + 1)− a(a+ 1) δb,a+1 + rβδb,jδa,−j (7.23)

and take X− = (X+)†. We are using the index convention for the matrices that

is associated to the Lz spin of the SU(2) representation of spherical harmonics.

The self-adjoint matrices X, Y are built from the same linear combinations as

above, after the deformation. The parameter r just rescales the full solution, so

we can ignore it. The parameter β then controls the geometry. For β = 0 we have

a sphere. Indeed, the sphere topology is preserved for some values of β around

zero. Numerically we have seen that the topology changes at the precise value

β = j, although this is not essential for our discussion.

The presence of β also breaks the rotational symmetry of the surface to Z2j+1,

where 2j + 1 = N is the rank of the matrices. It is the unbroken symmetry

associated to condensing the state with highest spin along the z axis. Thus the

torus shape is not invariant under full rotations along the X, Y plane. The

simplest case where the family of surfaces we get seems to contain a torus is for

4× 4 matrices. A figure for the case of 6× 6 matrices is presented in Figure 7.1.

We should also notice that in our case it is obvious we have a torus. Deter-

mining the genus of the surface in other setups is more involved. One may use an

approximation to Morse theory on the surface [130], but the result is inherently

more fuzzy or explicitly requires taking a limit of large matrices. One can also

obtain more standard fuzzy tori as zero energy configurations in higher dimensions

by studying beta deformed matrix models [131].
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Figure 7.1: A fuzzy torus, for r = j = 5/2, β = 2.55. The Z6 symmetry is
easily visible.

7.3.3 D2-branes

The intriguing feature of D-branes is that they carry a connection on their

worldvolume. We see this in the open string sector, where a massless spin one

particle exists on the D-brane worldvolume. Here, we want to show the geometry

we deduced for these surfaces carries the information of a line bundle on it.

The surfaces are defined by the vanishing of an eigenvalue of Heff, as calculated

from equation (7.7). For a single zero eigenvalue there is a corresponding eigen-

vector, call it ψ0(x, y, z). The eigenvector ψ0, normalized to unity, is well defined

up to a U(1) phase. This is the familiar symmetry for states in a Hilbert space

in quantum mechanics; a global phase for the full wave function is not measur-
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able, as physical states are rays in the Hilbert space. Since the eigenvectors are

smooth functions of the matrix elements, they change continuously as we change

our location on the surface. One can construct a bundle from the eigenvectors

ψ0(x, y, z) and thus build sections over that bundle. One may further introduce

patches over the bundle and a phase multiplying ψ0(x, y, z) on each patch with a

transformation rule on patch intersections.

The tranformation rules can be supplemented by defining a connection. We

use the familiar Berry phase, defined by

vµAµ = −ivµψ∗0(x, y, z)∂µψ0(x, y, z) = −ivµ〈ψ0|∂µ|ψ0〉 (7.24)

where vµ is a vector tangent to the surface. This completes the definition of

the connection of a line bundle on the worldsheet. Thus the membrane behaves

exactly as we would expect a D2-brane to behave. At this stage, it is not clear

the Berry connection that one would compute this way is just the connection that

open strings feel, or if this is further twisted by the tangent bundle on the surfaces

that were defined as we prescribed.

The full exploration of the curvature on these bundles and the precise connec-

tion to D-branes is beyond the scope of the present paper. We will show later that

there is further evidence for physical states feeling a connection on the membrane

worldsheet when we intersect two of these objects.
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7.4 A Linking Number

Now that we have defined a geometric object for a collection of three Hermitian

matrices, let us take two such objects and ask how they are related to each other.

In the matrix model setups, each of them would be a configuration of branes. The

spectrum of strings stretching between them becomes interesting from a dynamical

point of view. In particular, one can define a linking number that for a D0-brane

at position ~x reduces to the index we defined in previous sections.

We take matrices X1, Y1, Z1 of rank r1, matrices X2, Y2, Z2 of rank r2,

and define a matrix analog the Hamiltonian Heff(x, y, z)X1,Y1,Z1 , where we replace

(x, y, z) by Hermitian matrices (X2, Y2, Z2). If the matrices commute with one

another, we want the Heff operator to give us an operator that acts as Heff on the

direct sum over the eigenvalues of X2, Y2, Z2. The Hamiltonian that does the

trick is

H
(1)
eff ( ~X1, ~X2) = (X1 ⊗ Ir2 − Ir1 ⊗X2)⊗ σx + (y ↔ x) + (z ↔ x) (7.25)

Once H
(1)
eff is defined this way, it does not matter anymore that the X2, Y2, Z2

matrices commute with each other.

The definition of our linking number is given by

L(1)[(X1, Y1, Z1), (X2, Y2, Z2)] =
n1

+ − n1
−

2
(7.26)

The linking number L(1) is antisymmetric in its entries because tensor product

spaces A ⊗ B are equivalent to B ⊗ A as Hilbert spaces. If we think of these
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spaces in tensor notation, the equivalence is a reordering of the indices and the

Hamiltonian H
(1)
eff changes sign More precisely, H

(1)
eff ( ~X, ~X ′) is unitarily equivalent

to −H(1)
eff ( ~X ′, ~X)) when we exchange the triples ~X1 and ~X2.

There is a second linking number that one can define by changing a brane to

an antibrane, that is, by reversing the orientation:

H
(2)
eff = (X1 ⊗ 1r2 − 1r1 ⊗X∗2 )⊗ σx + (y ↔ x) + (z ↔ x) (7.27)

Again, if X2, Y2, Z2 commute with each other and are diagonal, we can not

distinguish H
(2)
eff from H

(1)
eff . If the matrices do not commute with each other, we

can distinguish them. The definition of the second linking number is

L(2)[(X1, Y1, Z1), (X2, Y2, Z2)] =
n2

+ − n2
−

2
(7.28)

This is symmetric in the exchange of (X1, Y1, Z1) and (X2, Y2, Z2). This uses the

antisymmetry of L(1) combined with the change in sign of the index upon complex

conjugation discussed in previous sections. It turns out that when considering the

dynamics of fermions as given in the BFSS matrix model, it is the spectrum of

H
(2)
eff that controls the physics [132]. This is because the matrix multiplication

rules on commutators translate to needing to take the transpose of the matrices

X2, Y2, Z2, which is equivalent to using their complex conjugates. This is also

equivalent to saying that the fermions transform as a fundamental under one set

of branes and an antifundamental with respect to the other set of branes.

Note that if we take one of the objects to infinity (say by adding multiples of

the identity matrix), then at infinity both of the linking numbers are zero. If we
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shrink one object until it is point-like (by making X2, Y2, Z2 proportional to the

identity matrix, with coefficients x2, y2, z2), then the linking number is r2 times

the index I(x2, y2, z2)X1,Y1,Z1 .

One can also use the Hamiltonians H
(1)
eff and H

(2)
eff to define a spectral distance

between two such configurations, again by taking the eigenvalues closest to zero

and taking absolute values. For infinite membranes touching each other in the

IKKT matrix model one finds zero modes [133]. The effective Hamiltonian for

fermions in that case takes a similar form to the BFSS matrix model. This is as

expected from the mode spectrum of brane intersections at angles [134]. When

the intersections are extended and compact, the low lying modes at the inter-

section need to be quantized carefully and zero modes are not guaranteed. One

would expect that the spectral distance then gives an upper bound for a geometric

distance between the brane configurations.

We now provide an application of the linking numbers. We will show that the

linking numbers contain information about the connections on the line bundles of

the surfaces defined in the previous section which couple to physical states. This

provides further evidence that the surfaces are actually behaving as D2-branes.

This is easiest to check from the calculations in Appendix F.

To show this, we take two fuzzy spheres and displace them relative to each

other. For simplicity, we have normalized them so that their radii are equal

to j and j′, the spin of the corresponding representations of SU(2). Let the

displacement between the fuzzy sphere centers be characterized by the parameter

b. Due to the high amount of symmetry, one can actually compute the index

analytically and follow the crossings of the zero fermion eigenvalues in great detail.
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If the displacement is b along the z axis and the fermions are decomposed into

fuzzy spherical harmonics with respect to both fuzzy spheres, one finds that the

eigenvalues cross zero sequentially when b = j − j′ + `, where ` is an integer

between 0 and 2j′ inclusive. The index of the configuration where the big fuzzy

sphere surrounds the smallest is exactly equal to 2j′ + 1, which is the dimension

of the representation of the spin j′ set of matrices. We expect this as the small

fuzzy sphere is made of 2j′+ 1 D0-branes so that when they are all inside the big

fuzzy sphere, we expect the index to be 2j′ + 1 times the index of the smallest

representation.

The first zero mode appears when the spheres touch each other for the first

time, at displacement b = j − j′. As b advances further, the two fuzzy spheres

touch each other along a circle. We expect the lightest fermions to be localized in

this circle. The problem effectively reduces to one dimension. As can be seen from

the results of Appendix F, the fermion modes with maximal angular momentum

in each SU(2) representation of fuzzy spherical harmonics do not mix with other

states, and their frequencies are given exactly by

j − j′ + `− b (7.29)

with ` an integer. These states are evenly split in energy, creating effectively a

Kaluza-Klein tower of finitely many states. This is very similar to the Kaluza-

Klein tower of tachyons between such spheres computed in the BMN model for

such crossings in [135]. Such a Kaluza-Klein tower is an approximation to a

quantum field theory for zero mass fermions on a circle in the presence of an
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holonomy. The fermions can be either leftmoving or right-moving depending on

the positivity of the energy mode and the holonomy can be accommodated through

quasi-periodic boundary conditions on the fermions. The fermions can have zero

eigenvalues if the holonomy is a multiple of 2π. This can be removed by a large

gauge transformation and redefines the notion of momentum on said circle. The

important thing to note is that if the corresponding intersecting surfaces have the

properties of D-branes, in that each carries a connection A1, A2, then the fermions

that stretch between them feel the connection A1 − A2. Because of spherical

symmetry, this connection can be computed from Gauss’ law by calculating the

area of the region of the sphere that the circle where the fermions lie enclose∮
A1 =

∫
S1
F1. The area of a sphere slice is proportional to the height of the slice,

hence
∫
S1
F1 ∝ A which is linear in the vertical height of the slice.

Hence, shifts of 2π in the holonomy are equally spaced in b. Indeed, if the

sphere is made of n D0 branes, we expect the total flux through the sphere of

this bundle to be equal to n = 2j + 1. However, we can also expect a curvature

correction. If we think of the matrices as describing a lowest Landau level of

endpoints on each sphere and the endpoints as monopole spherical harmonics, in

order to have n states we need a monopole flux equal to n − 1. This extra one

is the contribution of the curvature of the sphere. One can check this way that

the net flux for this connection through each sphere is 2j and 2j′ respectively, as

opposed to 2j + 1 and 2j′ + 1. Thus the net flux through a slice is proportional

to the area, which is 2πj(2j − t) where t is the height of the slice. Since the total

flux through each sphere is 2j, and the area is 4πj2 for each sphere, we get that

the flux per unit height is constant and the same for both spheres. Thus, the flux
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}

}
}

j’

j

b

Figure 7.2: Illustration of two intersecting spheres. The net connection seen by
the fermions stretching between can be computed by calculating the net flux
through the solid lines.

for each sphere is linear in height with the same coefficient. This is visualized in

Figure 7.2. As seen in the figure, the net flux that we need to compute is the

one associated to the surface that has not been dashed in the graphic. This is

proportional to j+ j′+ b as a function of the displacement. This number needs to

be an integer to get the correct holonomy. Thus the geometric argument matches

the matrix computation. We should mention, however, that this is a simplified

computation where the flux per unit height on each sphere is the same.

The setup shows that the surfaces we make are indeed compatible with the

idea of having a curvature of a line bundle on them for physical states that thread

between them. Another way to think about this, which we have already discussed,

is that on the locus of positions where an eigenvalue vanishes there is a preferred

fermion wavefunction for the Hamiltonian Heff; the zero eigenvector itself. This

is only well defined up to a phase. If we want to patch these together to form a
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vector bundle over the surface, we need a line bundle connection so that this phase

ambiguity is resolved on parallel transport. This is the generic case, but we can

set it up so that the null eigenspaces are degenerate (thereby giving us multiple

branes on top of each other). Thus, in general one will need a bundle connection

to resolve these issues. Since the structure that we are analyzing involves the

symmetries of a Hilbert space under change of basis, the connection in general

will be U(n) valued for n coinciding branes.

Lastly in this section we would like to give a more physical interpretation

of these zero modes. The main idea, which we have hinted at already when

we defined the index function, is that a crossing by zero represents a raising

operator becoming a lowering operator and vice versa. If we follow a ground state

continuously past this change, the ground state is defined by a |0〉 = b |0〉 = 0,

where a is the lowering operator for particles with positive frequency, and b is the

lowering operator for the particles with negative frequency, i.e., the antiparticles.

After a zero crossing, the state |0〉 no longer remains a ground state. Instead,

one of the lowering operators becomes a raising operator. The state on the other

side of the barrier will have a non-zero occupation number for a single fermion in

the Hilbert space. That is, on a zero crossing, a fermion is created. This is the

Hanany-Witten effect (and its various generalizations discussed in [136, 137]).

The linking number we defined then encodes the number of strings that are

created (with orientation) when separating two objects that are partially inside

each other. Equivalently it describes the number of strings that were created on

bringing the objects together from infinity as they cross one another. We see this

by following a vacuum adiabatically until the point where the transition happens

160



The Geometry of Membranes Chapter 7

exactly. Creation operators become annihilation operators and vice versa, and so

strings are either created or destroy at each transition. The resulting vacuum will

then have a net string number associated to the number of these transitions.

This interpretation in terms of the Hanany-Witten effect explains why the

geometry is so sharp. The presence or not of strings connecting the two surfaces

is easy to test We check if the fermionic ground state is gauge invariant or not.

The Hanany-Witten effect has the property that the fermionic ground state is not

always gauge invariant, so the presence of the strings is protected by topology.

7.5 Discussion

We have orbifolded the BFSS and BMN matrix model to reduce the num-

ber of supersymmetries from sixteen down to four. Consequently, three of the

nine bosonic matrices remain which capture some of the dynamics of the full the-

ory. Chiral fermions arise if the orbifold is chosen with respect to a Zk action.

By adding a D0-brane probe to classical bosonic background configurations, the

Yukawa terms in each matrix model yield an effective Hamiltonian for the chi-

ral fermions, seen as fractional branes, which allowed us to examine some of the

topological informaiton carried by the fermions.

The eigenvalues, being porportional to the string length, provide an effective

distance to the background matrix configuration. The positivity of the eigen-

values determine whether the corresponding fermionic operators are of creation

or annihilation type and we defined an index encoding this information. As one

crosses a membrane from a higher to lower index, a fermion creation operator is
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transformed into a fermion annihilation operator. In the BFSS matrix model we

can view this as a generalization of the Hanany-Witten effect. In the BMN matrix

model, the dynamics of flux changes the results and many of the properties of the

index are modified. We were also able to generalize this index to a linking num-

ber between two configurations. The linking number can also be interpreted as

a Hanany-Witen effect in that it counts how many such strings are created when

trying to separate the two configurations.

The locus of zero eigenvalues defines a surface in R3. We showed configurations

that correspond to both spheres and tori. We were also able to show that the

surfaces carry the information of a line bundle on them with connection (which can

be calculated using Berry phase arguments). This shows that the membranes we

found really behave like D2-branes. Our exploration of this issue was very sketchy,

so finding how to make this correspondence precise requires more work. Indeed,

we would need to see if the connection we computed also includes information

of the tangent bundle of the surface or not and how to separate that part from

the D-brane worldvolume spin one excitations. For recent investigations, see [138,

139, 140].

After solving the problem of embeddings into three dimensions, it would be

interesting to understand how this same story plays out in higher dimensions. One

of the ways in which extended objects are understood is in terms of Berry phase

dynamics [141] (for a more recent discussion see [142] and references therein).

The Berry phase can lead to a non-trivial vector bundle structure of fermion

excitations connecting a probe to a brane. If topology requires that this structure

becomes degenerate at various loci, then these loci probably describe extended
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objects. One has to look for fermion zero modes depending on position and at

least in principle it should be possible to predict that there are degenerations in

some setups. However, the story might be more complicated, as we might need to

have more than one fermion zero mode simultaneously to describe this locus. The

Berry phase dynamics associated to that setup would then be non-abelian, which

might also require using extended probe branes to see the effects. The general

question will then be to understand generalized versions of the Hamiltonian (7.7)

and the general structure of degenerations. Our construction also suggests that

in these general setups there can be a similar linking number so long as one can

guarantee crossings of zero of the eigenvalues of Heff. One can show that for even

dimensions (an even number of matrices) the spectrum of fermions starting from

a D0-brane probe to a configuration is mirrored; for every positive eigenvalue

there is a negative one. This is because one can find a matrix similar to γ5 in

four dimensions that anti-commutes with Heff as given by the generalization of

equation (7.7). This suggests that ideally we should work with an odd number

of matrices to make the existence of zero modes plausible for somewhat general

configurations.

The inverse problem is also interesting to study. Given a surface, and perhaps

some additional information, how can one recover the matrices and their rank?

One could also ask if the surfaces we obtained move in a way that closely resembles

the membrane dynamics once we turn on the dynamics. This might be important

to understand 1/N effects in matrix theory. We found that in general we could

reverse orientations of branes by using complex conjugation. It would be nice to

understand if a brane-antibrane pair in these models generally leads to tachyons
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on their worldvolume and it would be interesting to analyze how tachyon conden-

sation would progress in these setups. It would also be interesting to understand

this issue with a probe D0-brane on top of a D2-brane, that is, do we always get

tachyons in this way?

Additionally, the ideas found in [126] suggest various generalizations to differ-

ent types of matrices. These ideas have applications in condensed matter physics

and the connections we found with string theory ideas might provide ways of

analyzing the condensed matter systems and their dynamics. Such changes of

the structure of matrices are natural when considering orientifolds. Thus our

arguments should generalize to those setups as well.
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Chapter 8

Classical Dynamics of
Holographic Matrix Models

In this Chapter we accept our inability to solve strongly coupled quantum theo-

ries directly, drop the adjective ‘quantum,’ and study ‘strongly coupled classical

theories.’ We simulate the real time classical dynamics of the BFSS and BMN

matrix models, which have well known holographic dual descriptions. The non-

linearity of these theories will induce chaotic dynamics. In the large N limit good

thermodynamic and hydrodynamic variables will emerge. Along the way we will

make connections to holography, but leave a larger portion of the gravitational

intrepretation to Chapter 9.

8.1 Observables and Symmetry

The regime where the four dimensional N = 4 SYM theory is dual to a semi-

classical (super) gravity theory is large N and strong ’t Hooft coupling [13]. This

regime involves ~ in a crucial way because the strong coupling regime implies that

g2
YMN~� 1. We should be careful interpreting this relation. In dimensions other
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than four, like our 0 + 1 dimensional matrix models, the Yang-Mills coupling

constant has units. Thus the left hand side can not be compared to the right

hand side without choosing a state and multiplying by the appropriate quantum

numbers to obtain a dimensionless ratio.

If we choose a thermal state at temperature T for an oscillator degree of free-

dom with angular frequency ω, we can ask if thermal fluctuations are larger than

quantum fluctuations for that degree of freedom. This happens when kBT � ~ω

and so ~ can be small if the temperature is high enough. For relativistic quantum

field theories there is always some ω where kBT < ~ω. Such degrees of freedom

would be responsible for the UV catastrophe. On the other hand, for oscillators

with small ω the left hand side is much larger than the right hand side and the

corresponding oscillators are at high occupation quantum numbers. The dynam-

ics of these low frequency modes is controlled by classical physics. The classical

world meets the quantum world in the intermediate regime. Roughly speaking,

the correspondence principle in quantum mechanics should let us interpolate be-

tween the classical and the quantum regimes. In the BMN and the BFSS matrix

model we only have a finite number of degrees of freedom, so the UV catastrophe

issue is avoided However, we can still try to push the system to the correspondence

limit, which we describe below.

Typical quantum states are superpositions of position eigenstates, so if we

are to match various physical quantities of the quantum system we should either

average over positions or smear the classical states to a volume of ~ for each

canonical pair of variables. If the system is chaotic, most energy eigenstates

behave as if they are thermal for sufficiently small subsystems [143] (one has to
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make allowances if there are conserved quantities which don’t thermalize), so the

correspondence principle suggests that we should study the statistical properties

of the thermal ensemble to study the coarse grained properties of the quantum

states. In this paper we do not calculate anything in the regime where quantum

effects start making a difference, but we keep in mind that in the end we want to

understand the system in the quantum regime.

Let us return to the BMN and BFSS matrix models. The regime of interest for

us is the large N regime, as dictated by holography. In this regime, the number

of degrees of freedom grows like N2. We will see that the large N limit is not

only a thermodynamic limit but that we also observe a kind of hydrodynamics.

Here we do not mean thermodynamic limit in a formal, rigorous sense, but simply

that we find various state variables that remain finite as N grows. Ideally, we

should be able to show local equilibrium and transport to claim hydrodynamic

behavior. Unfortunately, we do not know how to make such a formulation from

first principles, as the degrees of freedom in these matrix models are essentially

non-local. If we take one of the matrices of the matrix model, we can interpret

the eigenvalues as positions of D-branes [62, 71], while the off-diagonal elements

are strings stretching between the branes. In the classical regime we are studying,

all the off-diagonal modes are excited, so it is hard to define local quantities that

could play the role of, e.g., densities of D-particles.

Instead we can add a probe far away and determine what it sees. In the BFSS

matrix model such a formulation leads to an effective potential for the probe.

The effective potential can be computed from traces of the configuration [107]

convolved with some Green’s functions that decay polynomially in the distance
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[132]. This is a quantum computation where one integrates out the off-diagonal

degrees of freedom connecting the probe to the configuration under study. This

gives rise to gravitational interactions between general D-brane objects and gravi-

tons (the interactions between gravitons by integrating off-diagonal models is part

of the original formulation of the BFSS matrix model [107] 1). The natural candi-

dates for hydrodynamic variables are these traces of various products of matrices

appearing in the effective potential. They act as moments of the distributions of

matter in the effective potential for a faraway probe.

We need to show that the dynamics of these collective modes are roughly

independent of N to justify calling their dynamics hydrodynamic. Note that we

only make claims about these collective degrees of freedom in a statistical sense

as if we were considering the hydrodynamic variables of a system of molecules.

Since we will be studying mostly equilibrium configurations, all we have access to

are the fluctuations of these variables. The results of this chapter will show that

these fluctuations have some dynamical properties independent of N .

Specifically, we will study time dependent correlation functions of certain single

trace observables. Consider first a single trace operator

O[i] = Tr
(
X i1X i2 . . .

)
, (8.1)

where [i] is a multi-index. In the brane picture this will be a source for some

1The simplest one loop computation was done in [144, 145], while a two loop result was
obtained in [146]. Higher order results require information on the wave functions of the graviton
states one is scattering.
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gravity field, or more generally a closed string field. We usually find that

O[i] '
∫
ddx ρα(x)f(x), (8.2)

where ρα would be the local source of the field (if such a notion makes sense)

with its corresponding spin labels and f is some polynomial function of x, which

can also carry angular momentum labels. Together these would combine into a

multipole expansion labeled by the multi-index [i]. We can decompose the product

into spherical harmonics, and then symmetry considerations will tell us that if the

configuration is spherically symmetric the averages of objects whose spin is non-

zero vanishes. For many interesting observables the time average should vanish

〈O[i]〉t = 0, (8.3)

even though it does not do so for each configuration.

Given two such observables Oi(t), we can consider averages of the form

Sij(a) = 〈Oi(t)Oj(t+ a)〉t (8.4)

where we average over a trajectory (or a collection of such trajectories with the

same energy and conserved quantities). The correlation function Sij(a) will de-

scribe the statistical properties of the time dependent correlations between the

observables and encode fluctuation-dissipation information. These correlation

functions can be different from zero, even if the individual expectation values

of the Oi vanish. This is similar to studying sound modes for gas in a cavity.
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If the individual harmonics are not excited, then their average is zero, but there

will be thermal fluctuations. These fluctuations, when properly normalized, will

have a good thermodynamic limit, but away from this limit there can be finite

size effects that are sensitive to the number of particles.

We will say the system behaves hydrodynamically if a collection of the Sij(a)

properly normalized has a large N limit where the collection Sij(a) converges to

a single function of a for fixed ij, and for a reasonable interval of time that is

short compared to the Poincaré recursion time, but that can be much longer than

any thermalization time (or scrambling or relaxation time) for near equilibrium

dynamics.

On the other hand, this may be too narrow a definition. Consider a toy model

of gas in a box with a somewhat random shape that is temperature dependent (like

a rubber balloon filled with an ideal gas). We would say that the hydrodynamic

behavior there is independent of the box. However, let us imagine that we want

to study hydrodynamics by looking at the normal modes of sound in the box,

or other such decomposition into normal modes. If we change the temperature,

we would change the shape of the box somewhat because the added pressure

would deform the walls of the container. This would deform the harmonics of the

box, and the collection of harmonics of the box would be temperature dependent.

These changes can not be done while preserving the spectrum (even after rescaling

time). Additionally, if we change the number of particles inside the box in such

a way that the pressure stays the same, the shape of the box would not change.

The temperature of the gas, however, would change depending on the number of

particles. In such a case, the modes of sound on the box would be independent
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of the temperature only after a rescaling of time, and the ratios of the different

frequencies would be invariant, but not the frequencies themselves.

Our systems are somewhat analogous to this. After thermalization, the matri-

ces will relax to an approximately spherically symmetric configuration about the

center of mass. This is in the absence of angular momentum for the initial condi-

tions. We will consider the addition of angular momentum in Chapter 10. These

spherical configurations grow in size if we increase the temperature. In the BMN

system, the geometry of the plane wave in which the configuration is embedded

acts like a box, similar to how AdS acts like a mirror. If we increase the temper-

ature the configuration grows in size and the external pressure changes. There is

also an internal pressure that makes the system want to collapse. Excitations of

the off-diagonal modes between the branes act like a glue that makes the system

shrink. If these are treated as harmonic oscillators, one would expect that each

such harmonic oscillator has an energy of kBT and that the energy stored in these

configurations is independent of the position. However, as we move a D-particle

far away from the system, the effective frequency of these modes goes up, and

there is a corresponding shrinkage of the available phase space for these modes.

Thus, there is an entropy cost to move a D-particle away from the configuration

and the internal pressure to hold the system together is an entropic force. It has

been argued that this type of entropic effect leads to the gravitational force near

the horizon of a black hole [147].

At the same time, thermal pressure makes the system expand. These two

forces can reach an equilibrium. In the very high temperature limit we expect

that the internal pressure dominates over the external pressure so that the shape
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of the container matters less. However, we will not be able to guarantee that the

system is hydrodynamic without fine tuning. To do so we would need to match

the box shapes between different values of N . Doing this carefully requires a fairly

detailed understanding of the phase diagram of the system.

All of this is much simpler to study in the BFSS matrix model. The classical

dynamics of the BFSS model has a scaling property. Any configuration at a given

energy can be rescaled to any other energy by a rescaling of time and the matrix

components. Thus, it does not matter at what energy we study the system as the

dynamics is essentially the same. Thus in BFSS we can get rid of the temperature

dependent shape parameters. Then the dynamics of the thermal system depends

only on N and we can explore that singular dependence. For of this reason, we

analyze the large N limit primarily in the BFSS matrix model.

8.2 Numerical Implementation

The numerical implementation of these simulations has been discussed pre-

viously in [148]. We work with a leapfrog algorithm and we indicate how to

implement the constraints in the initial conditions. Here we reiterate the algo-

rithm.

In Appendix D we list the BFSS and BMN matrix models. In this Chapter we

relabel the fields to explicitly indicate the breaking of the SO(9) symmetry in the

BFSS matrix model to SO(3)×SO(6) in the BMN case. Here we label the bosonic

matrices X i = φi+1, i = 0, 1, 2, and Y a = φa+3, a = 1, . . . , 6. Additionally the

dynamics in this chapter are Hamiltonian and so we have the conjugate momenta
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to X i and Y a denoted by Pi and Qa, respectively. Because we are only beginning

to explore the classical dynamics, we completely ignore the fermions.

The bosonic part of the Hamiltonian can be written as

H =
1

2
Tr

(
P 2
i +Q2

a + (αX i + iεijkXjXk)2

+
α

4
(Y a)2 − [X i, Y a]2 − 1

2
[Y a, Y b]2

)
(8.5)

The potential is written to emphasize that the SO(3) part can be written as a

sum of squares. For α = 0 we get the BFSS matrix model. When α 6= 0 we

have the BMN matrix model, but for convenience we set α = 1. We have rescaled

the variables so that the classical equations of motion are independent of ~ and

all of the quantum mechanics is hidden in the initial conditions. We have also

normalized the mass of X to one, i.e., we measure time by the oscillation period

of one of the X modes. Along with the U(N) gauge symmetry comes the Gauss’

law constraint

G =
2∑
i=0

[X i, Pi] +
6∑

a=1

[Y a, Qa] = 0 (8.6)

To integrate the equations of motion we use a leapfrog algorithm. This has the

virtue of preserving the constraints. The discretized matrix equations of motion

read

Xt+δt = Xt + Pt+ δt
2
δt, Pt+ δt

2
= Pt− δt

2
− ∂V

∂X

∣∣∣
t
δt (8.7)

and similarly for the Y modes. Since we have the X i, Pi evaluated at different
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times, we need to be a little careful with the constraint. We define

G(t) = [X i(t), Pi(t+ δt/2)] + [Y a(t), Qa(t+ t/2)] (8.8)

and will set it to zero in the initial conditions. We also define the constraint at

half intervals to be given by

G(t+ δt/2) = [X i(t+ δt), Pi(t+ δt/2)] + [Y a(t+ δt), Qa(t+ δt/2)] (8.9)

To show that the constraints are satisfied notice that when we evolve the constraint

by using the equation of motion (8.7), after one half step in t we get that

G(t+ δt/2)−G(t) =
∑
i

[δX i(t), Pi(t+ δt/2)] + . . .

=
∑
i

[Pi(t+ δt/2), Pi(t+ δt/2)]δt+ · · · = 0 (8.10)

which vanishes term by term. For the second half step we need to work harder,

but so long as V is a sum of traces of products of X and Y matrices (or functions

of such traces), one can prove that the contribution from each such trace van-

ishes by summing cyclically over the letters making the word in the trace. Hence,

G(t + δt) − G(t) = 0 and this tells us that G(t) is a constant of motion of the

discrete evolution. Incidentally, the same arguments work for angular momentum

conservation laws. Our initial conditions are those for (near) zero angular momen-

tum. The only place where constraint violations might appear is from rounding

errors, so we need to check that we don’t suffer from this problem. To improve

numerical stability we use double precision numbers. To check for numerical er-
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rors, we record the absolute value of the constraint CV = |Tr(G2)| as a check for

the code. We find that the constraint is well satisfied for the runs we perform,

so we do not need to implement constraint damping. The equations of motion

evolve Hermitian matrices into Hermitian matrices. Truncation errors in matrix

multiplication can also take us away from that locus. We found that we needed

to enforce hermiticity of the matrices every few steps, by taking X → (X+X†)/2

and similarly for all other matrices. We do this every time we write the matrix

configurations.

The main sources of difficulty in the setup are the initial conditions. For this

paper, we have used the following initial classical configurations:

X0 =

L0
n 0

0 0

 , X1 =

L1
n δx1

δx†1 0

 , X2 =

L2
n δx2

δx†2 0

 ,

P0 =

0 0

0 v

 , P1,2 = 0 = Q1,...,6, Y a = δya (8.11)

in the BMN matrix model. These are the same initial conditions that were used

in [148]. The δx and δy are generated by Gaussian distributions with a width

proportional to
√
~/(N − 1). This is a classical estimate of the quantum uncer-

tainty of the modes. The parameter ~ is only used in the initial conditions and is

similar to the standard practice in molecular dynamics simulations [149].

To generate matrix configurations in the BFSS matrix model, we first evolve

in the BMN matrix model, set α = 0 at some time later, and then continue

the evolution of the system. As mentioned at the end of the previous section,
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Figure 8.1: Constraint violation and normalized constraint violation as a func-
tion of machine time. The constraint violation stays very low through the
computation. The graph indicates values at N = 4, 7, 10, 13, 18, 27, 47,
and after normalization it shows larger fluctuations for smaller N . These are
due to the statistical fluctuations of Tr(X2)Tr(P 2), which are an integral part
of the dynamics. In the plot to the right we have selected larger intervals in
machine time to aid visualizing the different values of N .

the classical BFSS matrix model enjoys a scaling symmetry and the only free

parameter is N . Thus we can test the convergence of quantities as we increase N

in a temperature independent way.

We store the full configurations of the matrices every few steps in δt (for the

data sets present here we set this number to ten unless otherwise stated), and

we store other information for faster processing at different intervals. This is

especially important for long simulations. We will call machine time the total run

in the simulation in units of the smallest time step that is recorded.

Our results for the constraint violation can be seen in Figure 8.1. The con-

straints have units and so we need to normalize them. We define the normalized

constraint violation to be NCV = −NTr(G2)/(Tr(X2)Tr(P 2))(t) (we randomly

chose X2, P1) with N the size of the matrices. In the simulations depicted in

Figure 8.1 we set α = 0 after machine time t = 2000.
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Figure 8.2: Eigenvalues of X0 as a function of time for a simulation of rank
8 matrices with δt = 0.001, v = 20.0, and ~ = 0.001. The abscissa measures
discrete time units between recordings. The sinusoidal curve at the bottom is
the trace of X0 which serves as a clock due to its equations of motion.

8.3 Thermalization

In [148] it was shown that the initial conditions (8.11) generate configura-

tions of eigenvalues which coalesce into a uniformly oscillating blob, for example

see Figure 8.2. The system was argued to have thermalized in that time aver-

aged distributions of the momentum degrees of freedom follow a Gibbs ensemble

dP dQ exp(−βH) for some inverse temperature β. The Gibbs distribution fac-

tors into a product of Gaussians because the BFSS and the BMN Hamiltonians

depend quadratically on the momenta. It was shown that the binned eigenvalues

collected over time follow the semicircular distribution for random matrices, as
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is expected for random Gaussian matrices in the large N limit. Here we explore

in more detail the nature of the thermalization, the appropriate finite N Gibbs

distribution, and the design of a correctly calibrated thermometer.

One thing to note is that the equations of motion for the traces of the coor-

dinates and their momenta are those of a harmonic oscillator. The traces of the

X i and P i oscillate with period 2π while those of Y a and Qa oscillate with period

4π. Although this property of the BMN system can be used to generate a clock

for the system (as in Figure 8.2), it is undesired here. The trace is a protected

degree of freedom that does not thermalize. To describe the thermalized system

in a statistical manner, we must remove the trace degree of freedom from our

Gibbs distribution. The matrices are Hermitian, and so we must also enforce that

on our Gibbs distribution. What we are left with is the Traceless Gaussian Uni-

tary Ensemble (TGUE), a means by which to select random traceless Hermitian

matrices. The trace of the matrices represents the center of mass motion of the

system and thus our partition function really only describes the internal degrees

of freedom that can thermalize.

In order to study ensemble quantities of the system, we must coarse grain the

dynamics leaving only gauge invariant quantities to be studied. We can study

our Gibbs distribution in a gauge invariant manner by focusing on eignvalues and

traces. Integrating over the unitary degrees of freedom gives the joint probability

distribution for the eigenvalues. This result is well known for the GUE and is

simple to modify for the traceless case in which we are interested. The trace is

invariant under a unitary transformation, and thus we may enforce tracelessness

by inserting a delta function without affecting the removal of the unitary degrees
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of freedom. We define the following partition function as the integral of the joint

probability of the eigenvalues for the TGUE

Zλ =

∫
dNλ δ(Tr(Σiλi))

∏
1≤i<j≤N

|λi − λj|2 exp

(
−β

2

N∑
i=1

λ2
i

)
(8.12)

where N is the rank of the matrices of interest and β is a parameter analogous

to the standard deviation for normal distributions. For us β is physically the

inverse temperature of our system. Note that the polynomial in the integrand is

the square of the Vandermonde determinant of the eigenvalues.

Before moving on to the thermodynamics, we would like to point out some-

thing about the dynamics of the eigenvalues. We can move the Vandermonde

determinant into the exponential

Zλ =

∫
dNλ δ(Tr(Σiλi)) exp

(
−β

2

N∑
i=1

λ2
i + 2

∑
i<j

log |λi − λj|

)
(8.13)

The exponential describes a quadratic potential with a logarithmic term. Thus

the eigenvalues should always repel each other and do not cross. Although the

rogue eigenvalue in Figure 8.2 appears to pass through the others at early times,

it actually just transfers energy to the adjacent eigenvalue, like a Newton’s cradle.

This behavior can be realized in plots like Figure 8.2 with a sufficiently small time

step, a large enough sampling rate, and enough zooming. An example of such is

shown in Figure 8.3.

To determine if our system has thermalized, the first step is to match our

eigenvalue distribution to the distribution predicted by the partition function Zλ.

The Vandermonde determinant becomes exponentially complex with increasing
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Figure 8.3: In the left figure we have zoomed in on the time interval [370, 470] in
Figure 8.2. In the right figure we have blown up the small rectangle in the left
figure to observe more closely a crossing between the two largest eigenvalues.
The sampling rate was increased 50 fold to obtain the right figure, however the
time scales between the two figures have been kept in sync to avoid confusion.

N and so a direct comparison is time expensive. Instead we use the probabil-

ity distribution obtained by integrating the partition function over all but one

eigenvalue, i.e., the eigenvalue probability density or level density function. An

explicit form of the level density for the TGUE for arbitrary N has been found in

[150] 2. Figure 8.4 shows that the eigenvalues of the traceless momentum matrices

sampled over time after thermalization do indeed fit the predicted function.

In order to make these comparisons, we need to know the temperature β. If

we consider the tracelessness of the matrices as a constraint, then we can apply

the proof in Appendix G to a single traceless matrix and obtain

T =
〈Tr(P 2)〉0
N2 − 1

(8.14)

2We thank John Mangual for his discussions about random matrices and for his pursuit of
a formula for the level density for the TGUE at arbitrary N . This led to a discussion on the
website mathoverflow.net and the answer of F. Bornemann [151], which ultimately resulted in
the formula reported in [150].
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Figure 8.4: A histogram of the eigenvalues of P 0 for a simulation of rank 6
matrices sampled after thermalization. A total of 4 × 105 configurations were
sampled meaning we fitted using 2.4 × 106 eigenvalues. By computing the
second moment, we can fit the distribution to the level density of the TGUE.
The level density has been normalized to the total number of samples times
the bin size. The fit has an R2 value of 0.999904.

where P is any single momentum matrix and the zero subscript indicates we take

the expectation value with respect to the TGUE. For numerical measurements,

the zero subscript indicates averaging only over the traceless part of the matrices.

The momentum contribution to the Hamiltonian is invariant under an SO(9)

transformation and one would expect that we could use any momentum matrix

and obtain the same temperature. The numerical data of Table 8.1 shows that

this is not the case.

What we have forgotten in developing our thermometer are the constraints. If

we read directly from the table under our naive assumptions, we would conclude

that the system has two different temperatures even though the isotropy exists

along the relevant directions in phase space. It would seem that either the system

is not thermal or the thermometers are broken. To solve this puzzle, we note that
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N 〈Tr(P 2
0 )〉0 〈Tr(P 2

1 )〉0 〈Tr(P 2
2 )〉0

4 23.2± 0.6 23.3± 0.4 23.2± 0.5
11 26.9± 0.3 27.2± 0.2 27.0± 0.3
23 32.2± 0.3 32.2± 0.2 32.1± 0.2

N 〈Tr(Q2
1)〉0 〈Tr(Q2

2)〉0 〈Tr(Q2
3)〉0 〈Tr(Q2

4)〉0 〈Tr(Q2
5)〉0 〈Tr(Q2

6)〉0
4 21.3± 0.5 21.3± 0.5 21.2± 0.6 21.2± 0.4 21.3± 0.4 21.0± 0.4
11 26.6± 0.2 26.5± 0.3 26.6± 0.2 26.6± 0.3 26.6± 0.2 26.5± 0.2
23 31.9± 0.2 31.9± 0.2 31.9± 0.2 31.9± 0.2 31.9± 0.2 32.0± 0.2

Table 8.1: Time average samples of the trace of the square of the traceless
momenta for various N with v = 20.0, ~ = 0.001, and δt = 0.001. For each
expectation value, 20 samples were used but the number of configurations varies
with N due to limited hard disk space. The differences between the values in
the disjoint groups of 〈Tr(P 2

i )〉0 and 〈Tr(Q2
a)〉0 are smaller compared to the

differences of the values in the union of these two groups indicating the breaking
of the SO(9) symmetry between the momenta that is present the Hamiltonian.

the naive Gibbs ensemble is over all P , Q matrices, but the full ensemble should

be over P , Q, X, Y matrices. There is a constraint associated to the U(N) gauge

symmetry. Additionally there are 3 + 15 = 18 angular momentum constraints

associated to the SO(3) × SO(6) symmetry of the model. In particular, the

SO(9) symmetry is broken by the X and Y matrices in the potential. When we

integrate out the X and Y fields, the momenta will have different weights in the

gauge constraint because of this broken symmetry. Consequently, the distributions

for the individual momentum matrices will be different for in the SO(3) and SO(6)

parts of the model and explains the discrepancy in Table 8.1.

Putting everything together, our true Gibbs distribution is the GUE for nine

matrices with the constraint of tracelessness, the gauge constraint, and the total

amount of angular momentum set to zero. Each of these constraints is linear

in the momenta. We may thus apply the result in Appendix G, which is just

a generalized equipartition theorem, to obtain an absolute normalization of the

182



Classical Dynamics of Holographic Matrix Models Chapter 8

temperature.

2∑
i=0

〈Tr(P 2
i )〉0 +

6∑
a=1

〈Tr(Q2
a)〉0 =

(
9(N2 − 1)− (N2 − 1)− 3 · 2

2
− 6 · 5

2

)
T

= (8N2 − 26)T (8.15)

The lowest rank matrix which can exhibit thermalization behavior nontrivially is

N = 2 and so we do not run into an issue of negative temperature. Otherwise this

would indicate we have not taken into account relations between the constraints.

We would also like to ensure that temperature measurements are independent

of the time step parameters in our numerical implementation, that is, δt. The

BMN matrix model exhibits chaos. Shrinking the time step does not cause the

numerical solution to converge to a solution of the equations of motion as small

differences grow exponentially for large times. We still expect that each of the

trajectories computed this way would lead to the same ensemble since we should

be sampling the phase space according to the dynamically invariant measure, in

a manner typical of numerical simulations of chaotic dynamical systems.

In order to measure the temperature we need to measure 〈Tr(P 2)〉0 for all mo-

menta matrices. We can determine the accuracy of our measurements by dividing

the configurations into groups to obtain several sample measurements of 〈Tr(P 2)〉0.

The expectation value is independent of the grouping of configurations due to its

linearity, but now we can obtain a standard deviation. Consecutive configurations

are correlated, so some care must be taken when grouping configurations to make

a sample. To minimize correlations between samples, we group configurations

consecutively. Each sample will be correlated with itself, but different samples

183



Classical Dynamics of Holographic Matrix Models Chapter 8

N
δt 4 14 23

0. 005 1.932± 0.014 0.16235± 0.00050 0.06845± 0.00018
0. 003125 1.932± 0.014 0.16234± 0.00043 0.06844± 0.00017
0. 0025 1.932± 0.014 0.16235± 0.00047 0.06843± 0.00016
0. 002 1.932± 0.016 0.16234± 0.00048 0.06843± 0.00018
0. 00125 1.932± 0.013 0.16234± 0.00050 0.06843± 0.00016
0. 001 1.932± 0.014 0.16234± 0.00048 0.06843± 0.00016
0. 000625 1.932± 0.015 0.16234± 0.00053 0.06843± 0.00016
0. 0005 1.932± 0.017 0.16234± 0.00051 0.06843± 0.00017
0. 0004 1.932± 0.015 0.16234± 0.00051 0.06843± 0.00015

Table 8.2: Measured temperatures of thermalized system for rank 4, 14, and
23 matrices for several δt using the same initial conditions for each N . The
sampling rate is chosen such that the time separation between recorded con-
figurations is kept constant, in particular (sampling rate) × (δt) = 0.05. A
total of 20 samples were used for each measurement, however, the number of
configurations per sample was decreased with increasing N .

will only be correlated at their boundaries. This sampling process provides a way

to measure 〈Tr(P 2)〉0 with some degree of accuracy. The temperature is computed

using equation (8.15) and the standard deviation is computed by summing the

standard deviations of the 〈Tr(P 2)〉0 in quadrature.

Table 8.2 lists the temperatures of simulations for various N and various δt

with the same initial conditions for each N . The temperatures are equal to several

significant figures and the error bars intersect a common average value. Further-

more we find that the coefficients of variation are less than 1%. To claim our

comparison among different δt is reasonable, the sampling rate is chosen such

that the time between recorded configurations is constant. We conclude that the

temperature is a well defined quantity regardless of how far apart trajectories in

phase space become due to changing the time step.
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Some simple observables that are also natural thermodynamic variables are

the sizes of the distributions of X and Y matrix eigenvalues. We can determine

how they scale with the temperature and N using the virial theorem. For our

case, a virial can be computed for each X and Y matrix. Consider, for simplicity,

the expression

d

dt
Tr(X iPi) = Tr(P 2

i ) + Tr(X iṖi) = Tr(P 2
i )− Tr(X i∂XiV ) (8.16)

where we are only using the traceless parts of the matrices (we subtract the trace

modes, which are decoupled) and we don’t sum over i. We then integrate over a

period of time τ and average to obtain

1

τ
(Tr(X iPi)(τ)− Tr(X iPi)(0)) =

〈
Tr(P 2

i )− Tr(X i∂XiV )
〉
τ

(8.17)

If the trajectories are bounded then the left hand side asymptotes to zero as

τ →∞ and we obtain a relation between the kinetic energy and various derivatives

of the potential energy. This is simplest in the BFSS matrix model. We find after

summing over the Xi that

∑
i

Tr(P 2
i ) +

∑
ij

Tr([X i, Xj][X i, Xj]) = 0 (8.18)

This is, we find that the kinetic energy is twice the potential energy 2Ekin = 4Epot.

We have already argued that the left hand side grows like (8N2−26)T , so we find
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Figure 8.5: A histogram of the eigenvalues of X2 and Y 6 for a simulation of
rank 6 matrices sampled after thermalization. A total of 4×105 configurations
were sampled meaning we fitted using 2.4 × 106 eigenvalues. Each fit has an
R2 value of 0.99925 and 0.9988 respectively.

that the right hand side takes the same value. The total energy in that case is

Etot =
3

4
(8N2 − 26)T (8.19)

At large N , we get that the energy as a function of the temperature is 3
4
(8N2)T .

The specific heat is essentially the same as that of 6N2 harmonic oscillators and is

constant. Notice that this result also matches the Monte-Carlo lattice simulations

in the matrix model, as seen in Figure 3 of [152]. Other such simulations [153] do

not cover the high temperature regime.

Another means of getting at the size of the X and Y matrices is to look

at the distribution of the eigenvalues. The elements of any single coordinate

matrix appear at most quadratically in the Hamiltonian. Integrating the Gibbs

distribution exp(−βH) over all momenta and all but one coordinate matrix will

be a Gaussian distribution in the remaining coordinate matrix elements. The

standard deviation will be modified due to the constraints, but the form of the

integrand will remain unchanged. The only constraint left over is the tracelessness
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Figure 8.6: A plot of the size of X0, measured as α =
√
〈Tr(X2)〉/N , as a

function of temperature for various N . The error bars for larger N are smaller
than the point size and thus may not be visible in the plot. The lines are given
by α = cN1/4T 1/4 for constant N . Doing a least squares fit gives the constant
c = 0.504. Plots for the other coordinate matrices give identical results.

of the matrices. Thus we expect that the eigenvalues follow the level density of

the TGUE. Observing Figure 8.5 this is exactly what we see.

We can also estimate the commutator squared term if we assume that the X

and Y matrices are random. If the eigenvalues of X are of order α (we call this

the size of the matrix), then the eigenvalues of [X i, Xj][X i, Xj] grow like α4, and

we get that Nα4 ' N2T . Thus the size of the matrices grows like α ' N1/4T 1/4.

This is also true for the BMN matrix model at high temperature. In that case,

the cubic and quadratic terms in the potential are subleading when the size of

the matrices gets large and one asymptotically matches the BFSS matrix model.

A test of our prediction is shown in Figure 8.6 with remarkable agreement. Our

claims hold for large N and so we see larger deviations for smaller N .
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8.4 Power Spectra and Classical Chaos

As we have seen, there is evidence for thermalization in the BMN matrix

model. Similar considerations show that the BFSS matrix model thermalizes (this

has been studied for different initial conditions in [154]). This should not be sur-

prising. Both the BFSS and BMN matrix models result from dimensional reduc-

tion of N = 4 SYM to constant configurations on either flat space or the sphere,

respectively. The dynamics of translation invariant configurations of Yang-Mills

theories generally exhibit chaos [155, 156] and therefore the BFSS matrix model

exhibits chaos (this was reiterated in [157]). Because of classical scale invariance

of the Yang-Mills action, chaotic behavior extends all the way to infinitesimal con-

figurations of the fields. Chaos is also present if a mass term is added [158], but

to access the chaotic region requires finite field configurations. The BMN matrix

model is effectively a massive version of the BFSS matrix model, so it should also

exhibit chaos for field configurations where the fields are sufficiently large, but can

display integrable behavior for small oscillations around vacuum states.

In this section we analyze chaos in both the BFSS and BMN matrix models

and show how we can use this information to study holography. For this purpose,

let us pretend that a configuration in our classical system represents a thermal

equilibrium state in a quantum system. Then we would be interested in various

response functions and correlation functions of observables in order to understand

the dynamics of the thermal state.

A typical gauge invariant observable would be a trace. The simplest traces are

those of the matrices X i and Pi. However, we do not gain much from studying

these as they decouple and either work as a harmonic oscillator (this is the center of
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mass motion in the BMN matrix model), or they give free non-relativistic motion

on flat space (this is the center of mass motion in the BFSS matrix model).

Instead, we should look at traces of composite objects. Remember that we are

studying configurations with zero angular momentum. This means we are looking

for spherically symmetric configurations in ten dimensions (nine spatial plus the

lightcone time). In the BMN model, these configurations are only approximately

spherically symmetric. Perturbations of these configurations may be characterized

by their angular momenta. The matrices X i form a 9 of SO(9) in the BFSS matrix

model, so it is convenient to study configurations that are highest weight states

of SO(9) multiplets.. In BMN the appropriate group is SO(3) × SO(6), which

is only slightly more complicated to analyze. Spherical symmetry then predicts

that the one point correlation functions of SO(9) non-singlets in a thermal state

would be zero, but two point functions could be non-zero if there is a singlet in

the tensor product of the two SO(9) representations.

Consider the SO(9) highest weight state Z = X1 + iX2 and operators of the

form OL = Tr(ZL). These operators will be highest weight states of symmetric

traceless combinations of the X with angular momentum L. In the context ofN =

4 SYM, modes constructed from scalars at zero temperature are protected states

[43] and are dual to gravitational excitations in AdS space. At zero temperature

these states already display incompressible and dissipation free hydrodynamic

behavior, in the form of a quantum hall droplet [74]. Collective excited states

can be put in one to one correspondence with gravity states [77] and the shape of

the gravity configuration is directly determined by the expectation values of these

traces. We expect that these simplest traces are also closely related to gravity
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modes of a black hole in the dual of N = 4 SYM at finite temperature. We are

further lead to believe that these dynamical variables are also related to gravity

modes in both the BFSS and BMN matrix models at finite temperature. For

example, they could describe how gravitational or dilaton partial waves (see, e.g.,

[159, 160]) are absorbed or emitted from such systems. Regardless, these variables

are important for understanding these configurations in detail and could help us

to ultimately learn about emergent black hole phenomena like Hawking radiation,

or whatever corresponds to it in the regime we are studying.

Consider the conjugate operators are ŌL = Tr(Z̄L) and the two point function

〈
OL(t)ŌL(t′)

〉
= SL(t− t′) (8.20)

The dependence on the time difference t − t′ is due to the time translation in-

variance of the thermal density and the Hamiltonian. One can also study the

Fourier transform of this correlator S̃L(ω) =
∫
SL(a) exp(−iωa) da, which is how

frequency dependent transport coefficients are usually defined. Closely related

quantities can be calculated in gravitational setups by using the holographic dic-

tionary in a perturbed black hole geometry with infalling boundary conditions at

the horizon. This ultimately yields a relation between the quasinormal modes of

asymptotically AdS black holes and CFT response functions (see [161, 162, 163]

for reviews). To compute these quantities in the classical dynamics we note that

in quantum chaotic regimes we expect SL(t − t′) to be roughly independent of

the microstate we choose, even if it is a pure state, so long as it is a typical state

of the thermal system 3. Indeed, we expect most correlation functions of energy

3This expectation is an extension of the idea that all energy eigenstate behave as if they
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eigenstates |Ei〉 to be approximately thermal

〈
Ei
∣∣OL(t)ŌL(t′)

∣∣Ei〉 ' SL(t− t′) (8.21)

with the dependence on the difference t− t′ guaranteed by time translation invari-

ance of the matrix elements of the energy eigenstates. Here thermalization means

that SL decays to zero (usually exponentially) with some thermalization time τ ,

and that the left hand side approximates the right hand side on time scales that

are short compared to Poincaré recurrence times.

We extend this to more typical states, which are superpositions of energy

eigenstates around some energy value, by averaging over t keeping t− t′ fixed. We

then expect 〈〈
ψ
∣∣OL(t)ŌL(t+ a)

∣∣ψ〉〉
t
' SL(a) (8.22)

where |ψ〉 is some typical state and we average over time. The quantum theory

should match the classical theory for these correlation functions in the correspon-

dence limit. That is, at very large quantum numbers the answer in the classical

and quantum theory should be very similar so long as the time scales involved

are relatively small compared to the Poincaré recurrence time. For our large N

matrix models, all time scales considered are much smaller than the recurrence

time.

We compute the left hand side of (8.22) by using a typical state of the mi-

crocanonical ensemble and averaging over its trajectory. We obtain these from

our simulations by first waiting until the system thermalizes then averaging over

are thermal states for time independent questions [143]. Some evidence of this behavior can be
found in examples [164].
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Figure 8.7: Time series of the function Re(Tr(Z2(t))). We show four different
time series obtained by rotations of the Z by SO(9) action. They all look simi-
lar, showing approximate rotation invariance of the time average. We showcase
the discrete data we have in one of them, so show that the time dependent fea-
tures are well covered by our time slicing. The sample shown here is for 18×18
matrices.

various configurations. The functions SL(a) are the autocorrelation functions of

the system. Let us first consider the time series of OL(t) for some L after ther-

malization. We display this in Figure 8.7. From the figure we see oscillations of

a typical frequency, but they are not regular nor centered on zero. Rather, they

appear to be superposed on waves of a much longer period than the time period

shown.

To extract information from the time series, we compute S̃L(ω) by taking the

Fourier transform of OL(t) and averaging over many configurations. In our case,

rotation invariance tells us that we did nothing special by choosing (X1 + iX2)

as our highest weight state. Since all tensor representations of SO(n) are real,

(X1 − iX2) can be obtained from a rotation of (X1 + iX2). This means that the

right hand side of (8.22) only depends on the absolute value of a and therefore

the power spectrum P (ω) = S̃(|ω|) is an even real function of ω. Thus we only

have to display the answer for ω ≥ 0. We show power spectra for L = 2, 3, 4 in
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Figure 8.8: The power spectrum of S(a) = 〈Tr(X1+iX2)L(t)Tr(X1−iX2)L(t+a)〉
for various L in random units. Results shown are for 13 × 13 matrices in the
BFSS matrix model after thermalization. The results are averaged over 15
runs of the same length, taken from splitting a single time series in 15 equal
parts. The jiggling of the data should be interpreted as an estimate of the
statistical error bars for each frequency.

Figure 8.8.

The first observation we make from these plots is that the power spectra are

those of a chaotic system. If a system is integrable, we expect it to be solvable

in terms of action-angle variables. The angle variables are multivalued, with

period 2π or 1 depending on conventions, but possess the simple time dependence

φα(t) = φα(0) + ωαt. Any single valued function on phase space can then be

represented by its Fourier series in the angle variables. Its time dependence is that

of a quasi-periodic function of time with characteristic frequencies determined by

all integer linear combinations of the ωα. Thus, the power spectrum of a time series

in an integrable system should display delta-function peaks at the characteristic

frequencies of the system. The series we observe is better described by broad
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band noise than delta-functions peaks. This is one of the standard criteria to

distinguish chaotic from non-chaotic systems [165].

Let us return to Figure 8.7 to make more sense of it. For L = 2 there seem to

be two peaks, one near zero and another one at a characteristic frequency ω0. We

may then describe the signal approximately as oscillating with some characteristic

frequency while riding on a very low frequency envelope. There is information

present in the other modes as well. For L = 4 we observe broader peaks located

in roughly the same places as well as a frequency doubling of the ω0 peak. For

L = 3 we observe peaks at ‘half period’ spacings relative to L = 2. The reader

may have concern that in Figure 8.7 we used 18× 18 matrices, whereas in Figure

8.8 we studied 13× 13 matrices. The natural way to understand this is to look at

how the power spectrum depends on N , the size of the matrices. This is shown

in Figure 8.9.

We see from Figure 8.9 that the power spectrum of all L = 2 modes for various

values of N are actually very similar to each other. Each has a large peak at zero,

which is more noticeable in a log-linear plot. We also see a second peak at some

characteristic frequency which depends on the energy of the system and N . We

compare various values of N by finding the location of the peak and rescaling

the power to make the plots lie on top of each other. To find the location of the

peak we do a fit of the log(P (ω)) to a quadratic function of ω in a small interval

around the visual maximum. We then extract the value of ω that corresponds to

the maximum and we scale each axis of frequency to the corresponding ωN found

for each N . The main systematic error comes from the choice of the interval. The

result is shown in Figure 8.10. The data have collapsed to a single graph.
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Figure 8.9: The power spectrum of Tr((X1+iX2)2)(t) for various sizes of N×N
matrices in arbitrary units (its Fourier transform is S(a)). Results shown are
for the BFSS matrix model after thermalization. The results are averaged over
15 runs of the same length, taken from splitting a single time series in 15 equal
parts. We also average further over 8 rotations of the variables to increase the
statistics. The jiggling in the curves gives a measure of the statistical error
bars of the data sets.

As shown suggestively in Figure 8.10, the logarithm of the power spectrum

seems to have rather distinct features characterized by straight lines. We can

numerically compare the different values of N to get an idea of how closely the

curves match by considering the width of the peak near zero, relative to ωN . The

dimensionless width can be parametrized by the slope

γN = −
(
ωN

d

dωN
log(P (ω)N)

)−1

(8.23)

which is evaluated near zero and with a cutoff slightly below 0.4ωN . Larger γN

corresponds to a larger width. This is a dimensionless number that can be used

to quantify how close the curves at different N are to each other. We show this in
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Figure 8.10: The power spectrum of Tr(X1+iX2)2(t) for various sizes of N×N
matrices. The axis of frequency has been rescaled for each N , to the frequency
ωN , and we have also rescaled the power spectrum. The reference frequency
for each N is located at 1 in the graph. Results shown for N = 7, 10, 47. We
also have drawn additional suggestive straight lines superposed on the graph
that serve as distinctive features of the power spectrum.

Figure 8.11. As seen in the figure, all values of N > 4 have similar behavior and

differences are controlled by the systematics of the fit, which are dominated by the

choice of interval over which we compute the slope. This matching is necessary to

have a well defined large N limit for these time dependent correlation functions.

We have checked that the graphs are very similar for other simple operators and

so they all seem to have a good large N limit.

How should we interpret these results? We would like to conclude that the

system is behaving hydrodynamically as described in Section 8.1. There are some

large N collective variables whose time dependent characteristics are independent

of N , up to some rescalings of the variables by the natural frequency of the

dynamics. We checked the simplest angular momentum mode with L = 2, but we
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Figure 8.11: The dimensionless quantity γN versus N . The error bars indicate
systematic errors from choosing the fitting intervals. A fit to a single number
has been done ignoring N = 4 which is an outlier by inspection. All of the
different values of N > 4 align within the systematic errors.

can do the analysis for Tr(ZL) for various L. The plot of the power spectrum for

various L can be seen in Figure 8.12. As the reader can see, the patterns observed

for low L in Figure 8.8 persist. Notice that the logarithmic scaling of the power

spectrum makes the pattern more regular. To investigate this in more detail we

need to address further how the different N are related to each other.

We can also look at what happens when we deform the system from the BFSS

matrix model to the BMN matrix model. It is interesting to see how symmetry

breaking is implemented in the power spectra. In Figure 8.13, the power spectrum

of Tr(X1 + iX2)2 acquires a new bump near where the power spectra of the

BFSS matrix model had a local minimum. The bump is less pronounced in the

Tr(XY ) channel and seems absent in the Tr(Y 1 + iY 2)2 channel. There is also
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Figure 8.12: Power spectrum in arbitrary units for OL, with L = 2, . . . 10, with
values of L increasing from bottom to top in the graph. The plots are vertically
separated so they can be easily distinguished. For each L we show two such
sets. These data are from N = 27.

a deformation of the Tr(XY ) bump near the second minimum. This shows that

three objects that had the same symmetry properties in the BFSS matrix model

exhibit the broken symmetry of the BMN matrix model in their dynamics. If

we zoom in near the bump at zero, we can also see small differences. The size of

these bumps depends on the strength of the mass term in the BMN matrix model.

A full analysis of these deformations would consider the mixing between modes

in different symmetry classes and provide some understanding of response theory

beyond the linear level. We made a finite deformation of the Lagrangian and the

response to the deformation can be measured in dynamical quantities, or at least

in this case, in power spectra.

Understanding how the bump size depends on N and the effective mass while
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Figure 8.13: Power spectra in arbitrary units for O2 for various matrix combi-
nations. The plots are artificially separated so they can be easily distinguished.
In most of these plots the net normalization of Tr(X2) ' Tr(Y 2) is very close
to each other, as shown previously. These arise from 40 × 40 matrices with
initial velocity in our initial conditions set to v = 100.

keeping the temperature fixed could give us a better understanding of the phase

diagram of the BMN matrix model. We would also be able to fine tune the system

to obtain an appropriate large N limit. This requires the effects of the mass term

and cubic term deformations to be compatible with the large N scaling we ob-

tained in Section 8.3. We can analyze this in terms of their expected contributions

to the free energy. The corrections to the free energy from the mass terms should

be of order Nµ2N1/2T 1/2, as compared to N2T . If we want the ratios of these

two contributions to the free energy to stay fixed (so that we get a proper large

N counting of the free energy), we need to scale µ2 ' N1/2T
1/2
0 for some reference

temperature T0. Performing such an analysis is beyond the scope of the present

work.
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8.5 Factorization

A crucial aspect of large N physics is factorization. This states that correlators

have a large N expansion in powers of 1/N , where the leading power of N arises

from planar diagrams [166] and subleading corrections arise from higher genus

Feynman diagrams. For the simplest observables, the leading expectation value

of a product of observables is the product of the expectation values, so long as

these expectation values do not vanish in the first place. Planarity and the idea

that large N physics is approximately free with interactions governed by 1/N

corrections is an integral part of gravitational holography [13] (see [167] for a nice

description of this physics).

The classical dynamics we have factorizes in a trivial sense. The value of a

product of any set of observables at time t is the product of the values. What

we would like to check is that expectation values averaged over time have this

property as well. That is, the simple degrees of freedom can be converted into

approximately ‘free’ constituents. The thermal fluctuations in observables are

independent of each other for the factorized degrees of freedom. Because the

degrees of freedom are approximately free, the fluctuations should be Gaussian. In

the quantum theory near the vacuum, there is a standard way to understand that

this leads to a consistent large N classical dynamics [168]. Here we want to check

that there are also classical thermodynamic (or more precisely hydrodynamic)

variables on which one can do a similar type of analysis.

Imagine that the simulations we are doing with time evolution in the BFSS or

200



Classical Dynamics of Holographic Matrix Models Chapter 8

BMN matrix model can be reinterpreted as a matrix model calculation

〈O(t)〉t '
∫
O(X) exp(−βV (X))MM∫

exp(−βV (X))MM

(8.24)

where MM denotes an integration measure with respect to some matrix model.

If the right hand side factorizes, then so does the left hand side. The algorithm

we are following would compute the right hand side using a hydrodynamic Monte

Carlo code. As long as the trajectories in the system we have mix sufficiently well,

equation (8.24) should hold for large times t.

Interestingly, the right hand side of equation (8.24) in the BFSS matrix model

has no terms quadratic in the X variables. Hence the usual arguments based on

planar diagrams do not hold. In the BMN matrix model at large β the quadratic

terms matter very little and it is instead the quartic term that dominates. More-

over, the BFSS potential has flat directions. Both of these observations combined

could conceivably produce anomalous powers of N in the final answer, so it is

worth checking that factorization holds.

We proceed in two steps. First, we will check some consequences of factoriza-

tion at some large value of N . For example, consider the matrix model correlators

(as in equation (8.24)) of the following form

〈OnLŌmL 〉 = ALm,n (8.25)

where Z = X1 + iX2 (or any of its rotations), OL = Tr(ZL), and ŌL = Tr(Z̄L).

Rotational invariance of the ensemble implies that Am,n = Amδm,n. Our goal

is to understand the ALm at large N . Notice that 〈OL〉 = 0, so this is exactly
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one of the cases where the naive large N factorization does not apply. Instead,

we can consider AL1 as our first non-trivial value, and use it to normalize the

answers. Because the potential in the BFSS matrix model is a scaling function,

the ratios ALm/A
L
1 should be independent of the effective coupling constant β.

Arguing analogously to [60], we can think of Tr(ZL) as a raising operator for

a composite field (an in single string state), and Tr(Z̄L) as the corresponding

lowering operator (an out single string state). The effective propagator for raising

and lowering would be just A1. This is the naive argumentation if planar diagrams

were applicable. Then we would find that

Am = m!(A1)m (8.26)

from all the free contractions between raising and lowering operators. This would

be the leading diagram for closed string propagation without interactions, and

furthermore, other diagrams with interactions would be suppressed by 1/N2. Thus

the statistical distribution of Tr(ZL) would be that of a random Gaussian variable.

A simple check is to bin the results of sampling the real part of Tr(ZL), divide by its

normalization (which in this case is AL1 /
√

2), and compare it to a Gaussian model

for the distribution normalized to the number of samples. This is independent of

L. We can see the results of this procedure in Figure 8.14. The results of the

test are that the different OL have Gaussian statistics and we conlcude that the

correlators do factorize in this sense. We did this for N = 87, but the results are

very similar for other values of N .
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Figure 8.14: Test of factorization for N = 87. We bin the samples of Re(OL(t))
for various L obtained from the time series after thermalization. We compare to
a Gaussian model of the data. Using logarithmic scaling in the counts permits
us to check the tails of the distribution. We put measured counts of zero at
10−4.

We also consider correlators such as

〈OLOMŌL+M〉√
AL1A

M
1 A

L+M
1

∼ CL,M,L+M

N
+O(1/N3) (8.27)

which should give rise to the structure constants CL,M,L+M that have a well defined

large N limit. If we ignore the 1/N3 corrections, then the CL,M,L+M should be

independent of N up to statistical uncertainties. Since Z̄ can be obtained by an

SO(9) rotation of Z, the above correlators are real.

Note that this correlator decays only 1/N and not as 1/N2. This is important
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N = 10 N = 13 N = 18 N = 87
C2,2,4 4.97± 0.51 4.54± 0.15 4.94± 0.8 4.97± 1.2
C3,3,6 6.97± 0.86 6.9± 0.4 7.58± 0.5 8.36± 1.4

Table 8.3: Values of CL,M,L+M at various values of N

for understanding the large error bars of the measurement 4. The value of an

instantaneous measurement on the left is of order one while the expectation value

is of order 1/N . Thus the various measurements must cancel each other most

of the time, leaving a small residual. A non-zero average could be also called

a “violation of Gaussianity” if we think of the OL as statistically independent

variables. A simple test for two possible CL,M,L+M is shown in Table 8.3, where

we can see that the CL,M,L+M are indeed N independent given the error bars.

This gives us confidence that the standard large N counting is applicable.

We can generalize equation (8.27) to include time dependence and check that

〈OL(t)OM(t)ŌL+M(t+ a)〉t√
AL1A

M
1 A

L+M
1

∼ CL,M,L+M(a)

N
+O(1/N3) (8.28)

where now the CL,M,L+M(a) indicate nonlinear correlations with time dependence.

If the matrix model and gravity are to be matched, these powers of N should be

robust. We expect that the right hand side will decay with time a, as correlations

typically do in chaotic systems. A plot of the correlation function C2,2,4(a)N−1

can be seen in Figure 8.15, where it decays as expected. The statistical error band

that one should associate to the graph is similar in size to the error bars seen in

Table 8.3.

4Similar issues appeared in [169], where an object similar to CL,M,L+M had a theory predic-
tion that was being tested against a model.
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Figure 8.15: Correlation function C2,2,4(a)/N compared to the normalized au-

tocorrelations A2,4
1 (a) = 〈Tr(Z2,4(t))Tr(Z̄2,4(t + a))〉t. The normalization is

A2,4
1 = A2,4

1 (0) for L = 2, 4 respectively. The statistical error band on C2,2,4

should be roughly at 25% of the maximum around the value at zero. The graph
shows data from a run at N = 87.

Note how the correlation between the different variables OL(t) peaks when

the autocorrelation of the variables also peaks and that the correlations between

different variables roughly decay as the autocorrelation function decays. This is

consistent with naive expectations. The purpose of this check is to show that large

N counting is also applicable to general dynamical questions. If the initial non-

Gaussianity is of order 1/N and it bounds the time dependent non-Gaussianity,

then these can not be larger than 1/N .
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8.6 Discussion

There are strong indications that the BFSS and BMN are chaotic and thermal-

ize given the appropriate intial conditions. Most prominently, the momentum and

position matrix variables behave as random matrices from the traceless Gaussian

unitary ensemble at late times. This is expected for the momentum matrices be-

cause the Hamiltonian is quadratic in the relevant degrees of freedom, but because

of the nonlinearities in the potential we would not immediately guess this for the

position matrices. We showed how the presence of constraints alters the naive

arguments about the appropriate random matrix ensembles for these systems.

We have also seen that certain observables behave hydrodynamically, i.e., their

power spectra at equilibrium are approximately independent of the total number

of degrees of freedom and they have approximately Gaussian statistics. Large

N counting applies to time correlation functions between observables, so that

violations of Gaussianity scale like 1/N , i.e., there is factorization of these degrees

of freedom. This 1/N scaling is associated with quantum corrections under the

usual AdS/CFT power counting arguments.

This was not guaranteed. Hydrodynamics usually requires a geometric coarse

graining of degrees of freedom confined to small regions. Holographic systems are

usually made of D-branes. The holographic degrees of freedom are the strings

stretching between the branes, which are extended objects that generally do not

localize to small volumes. In the case of AdS bulk geometries, even small regions

on the AdS boundary have infinitely large volumes in AdS, so this issue does

not apply directly. One does hydrodynamics on the boundary of AdS and not

in the bulk, as in [110]. In the case of the BMN matrix model, the conformal
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boundary of the dual plane wave geometry has no spatial extent [170, 171] and

so one cannot have transport there. Hence, hydrodynamic behavior was not an

obvious possibility in this case. However, the membrane paradigm for black holes

suggests that there should be transport phenomena for the degrees of freedom in

the near horizon limit of our thermal matrix configurations.

We seek to further investigate the dissipation and other transport properties.

For example, the time autocorrelation functions of various observables, such as

those displayed in Figure 8.15, can be integrated to compute the associated trans-

port coefficients, via the Green-Kubo relations. We could investigate how these

depend on the temperature, N , or other variables, and see whether the behavior

can be interpreted holographically and meets our expectations from gravity. We

note that these transport phenomena are related to the chaotic dynamics of the

system, characterized by quantities such as the Lyapunov exponents, Pollicot-

Ruelle resonances, and Kolmogorov-Sinai entropy (see, e.g., [172] for a review).

These quantities also control the far from equilibrium dynamics. In that vein, we

may be able to profitably study other non-equilibrium phenomena by applying

further techniques and results from non-equilibrium statistical mechanics.
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Black Holes From Matrix Models

Simulations have been carried out in matrix models to understand various aspects

of the dynamics of black holes in holographic setups. The main idea so far has

been to compare the numerical simulations in the BFSS matrix model with black

holes as described in [137]. The numerical approach was initiated in the works

[173, 174] and a lot of the thermodynamic static properties of the black holes have

been matched in the quantum mechanics. The most impressive such agreement

is in [153]. The BFSS matrix model has an infinite moduli space of vacua, so the

thermal ensemble of these models is not well defined and contributes systematic

errors to these calculations. The BMN matrix model has a well defined ensemble

that avoids these complications. Numerical simulations using lattice techniques

were carried out in [175].

We additionally have the numerical simulations of the BMN matrix model of

Chapter 8 which themselves were a continuation of the work [148]. In this Chapter

we explore the holographic interpretation of the thermalized classical dynamics of

Chapter 8 using gravitational arguments and some of the techniques developed in

Chapter 7.
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9.1 Gravity From Matrix Models

Let us begin with the D-brane background geometries in the absence of exci-

tations. They are characterized by the supergravity solutions found in [176]. In

the string frame, the ten dimensional metric is given by

ds2 = H−1/2(r)(dx2
‖) +H1/2(r)(dr2 + r2dΩ2

8−p) (9.1)

where dx‖ are the p+1 coordinates that run along the worldvolume of the p-brane,

r is a radial direction, and Ω8−p is an 8−p dimensional sphere The harmonic form

H is given by

H(r) = 1 +
Na

r7−p (9.2)

where a is a constant that depends on p, but not on N or r.

We start with a few comments on string theory in this geometry. For p ≤ 3

these metrics produce a long throat near r = 0, in that limr→0

∫ R
r
H1/4(r′) dr′

diverges. If not for the time warping, a string that stretches to the brane from

the origin would have infinite mass. Thus the region near r = 0 can be considered

a large volume (in string units), and we are justified in dropping the 1 in (9.2).

As noted in [137], the string coupling remains finite as we take the near horizon,

decoupling limit. For p = 0, which is the case of interest given the SO(9) symmetry

of the BFSS system, the effective curvature becomes large for large r, and is small

near r = 0.

Imagine adding energy to this system and creating a black hole with the same

asymptotics as this background. These black holes have positive specific heat. If
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the temperature is low, the curvature of the black hole near the horizon is small

in string units [137]. Because the dilaton runs in these geometries towards small

coupling in the UV, the effective string scale depends on the position, and the

curvature becomes large in string units in the UV. Correspondingly, the curvature

will be large in string units if the temperature is high, so the high temperature

black hole is stringy. The regime of interest for us is high temperature, where

the curvature near the putative back hole is large and where stringy corrections

must be important. In the spirit of [177], we should be able to describe that

region by replacing the black holes by configurations of D-branes, because we are

in the stringy regime. The classical dynamics we studied in Chapter 8 are the mi-

croscopic, classical dynamics of the D-brane configurations. These configurations

with D-brane sources are horizonless in the sense of classical gravity, but when

the system cools enough we recover a black hole. This notion that we recover a

black hole when we cool the system down is the reverse of the scenario in [177],

where the authors argued that a black hole that becomes small enough to become

stringy is replaced by a set of strings and possibly D-branes. We assume that

this philosophy is applicable in this case as well, as there is no reason to expect a

phase transition and we can corroborate this by examining the scalings of various

quantities with respect to N and T .

From our calculations via the virial theorem in Section 8.3 we know that the

radius of the brane configurations in the classical system grows as R ' N1/4T 1/4,

so the effective (codimension two) size covered by the brane system scales as

R8 ' N2T 2. The energy is of order N2T whereas the entropy of the D-brane gas

is of order N2 log(T/T0), where T0 is some reference temperature whose precise
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value does not concern us here. As computed in [173], the entropy at low tem-

peratures scales as S ' N2T 9/5 and the free energy scales as E ' N2T 14/5. The

smooth transition to the brane gas occurs near T ' 1 in their units. Since for

the black brane we have the usual area law for the entropy S ' r8, for T ' 1

we have R8 ' r8. Hence the brane gas extends all the way to where we would

imagine the black hole horizon to be. The entropy in both cases is of order N2,

as is their energy, so there is no gap between the energy or entropy scalings that

would suggest a phase transition. This is the essence of the argument in [177]

for smooth interpolation between strings and black hole physics. Furthermore,

that the configuration reaches the same radius as where the black hole horizon

would be located is very similar to the fuzzball geometries (see [178] for a review).

This suggests that the system can be described both as a black hole and as a

collection of D-branes. We will have further comments on this in Section 9.4. If

the transition between the descriptions is smooth, we can choose one or the other

depending on the question we want to ask.

Now we want to consider the dissipation we observe, in the sense of decaying

correlations, in our simulations. As shown in Figure 8.10, we get a very similar

power spectrum of fluctuations for all N . Applying fluctuation-dissipation rela-

tions, we can use these to characterize response functions. Matching to gravity,

which should be valid at lower temperatures, we would expect dissipation to arise

as the presence of quasinormal modes associated with a black hole horizon.

We expect the point of comparison between both descriptions to be the analytic

structure of correlation functions and power spectra, such as those shown in Figure

8.10. As shown in the Figure, there are many suggestive straight lines that describe
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the logarithm of the power spectrum. Remember also that the power spectrum is

symmetric about ω = 0. The most naive fit to the graph near ω ' 0 is

P (ω) ' exp(−β|ω|) (9.3)

The absolute value is not an analytic function of the complex variable ω and the

Fourier transform of equation (9.3) only decays polynomially at large times. An

analytic function of ω could replace |ω| to smooth out the singularity near ω = 0.

A simple function that does the job is f(ω) =
√
ω2 + ε. When ε → 0 we recover

the above result. The presence of ε suggests a pair of branch cuts beginning near

ω ' 0 along the imaginary axis. If these are the closest singularities to the real

axis, then the function decays exponentially in time. Thus, even if the ultimate

late time fate of the system has correlation functions that decay exponentially in

time, there can be a long transient where the decays of the correlation functions

are only polynomial.

A square root branch cut can be approximated by a density of poles (this is

often seen in matrix models [179]). Since we only have the analytic function on the

real numbers, extrapolating to find the poles requires a very good understanding

of the analytic structure of the function and the pattern of pole locations. For

comparison, another similar function would be given by

P (ω) ' exp
(
−
√
βω2 + ε−

√
β∗ω2 + ε∗

)
(9.4)

where β, β∗ are complex conjugates of each other. This is real on the real axis and

has four branch cuts near the origin starting at ω = ±i
√
ε/β and ω = ±i

√
ε∗/β∗.
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Such branch cuts could indicate a series of poles along straight lines, starting from

the brach cut endpoints and going towards infinity. Such patterns of quasinormal

modes aligning on fairly straight curves have been observed in Schwarzschild and

AdS black holes [161, 162, 163]. A particularly nice set of examples can be found

in [180], Figure 4, and [181]. In gravity setups such patterns are interpreted in

terms of the membrane paradigm [182].

Our results suggest that there is agreement between our analytics and the

existence of a large collection of quasinormal modes for each L near ω = 0. We

might eventually be able to interpret them as shear or sound modes once we

understand the details of how these modes are mapped into each other. As we

increase L, as in Figure 8.12, the curves become flatter near ω = 0 for even

L. This suggests that the corresponding poles nearest to the origin are moving

away from the real axis. It is possible that there is a dispersion relation for the

frequencies ω(L) of these poles such that Im(ω(L)) increases with L. Since L is

the angular momentum about the sphere of the spherical black hole geometry,

such a dispersion relation could be interpreted geometrically. However, without

an model predicting the locations of the poles and branch cuts, any match to a

specific dispersion relation would remain speculation.

The analytic structure of the power spectra of observables in a chaotic dynami-

cal system is generally controlled by poles off the real axis known as Pollicot-Ruelle

resonances. The locations of these are known for some simple systems, but find-

ing them in general, even for very low dimensional systems, is difficult (see, e.g.,

[183]). For large systems with many degrees of freedom there are expected to

be accumulations of poles and also branch cuts [184], in line with our discussion
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above. More detailed information on the analytic structure may be difficult to

obtain, but we plan to analyze this in more detail in the future. We also note the

other lines drawn in the Figure 8.10. They suggest similar interpretations for the

other peaks as modes whose frequencies begin with a non-zero real part.

We do not have a theory for the analytic structure of the power spectra,

but based on the data and our general understanding of dissipative phenomena,

we speculate that there are branch cuts in the analytically continued spectra.

Given the behavior of black hole horizons, as in the membrane paradigm and

as characterized by the quasinormal modes, we think our numerical data are

consistent with having a smooth transition from the matrix configurations to a

black hole at low temperatures. That is, our thermal matrix configurations are

holographically dual to black holes and we will refer to each with the other in

mind.

9.2 Aspects of Matrix Black Holes

The constructions of Chapter 7 permit us to ask very geometric questions

about matrix configurations in a thermal ensemble. For example, understanding

how to count the number of membranes inside one of these holographic black holes

might help us understand black hole entropy. The general consideration of black

hole entropy for non-extremal black holes currently suggests that they are made

of a gas of brane anti-brane pairs [185] and their excitations.

As explained in the previous section, the numerical matrix configurations of

Chapter 8 are holographically dual to black holes. We can ask what these look like
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Figure 9.1: Eigenvalues of Heff(x, 0, 0)X,Y,Z from a typical configuration of
matrices after thermalization, when varying x. The matrices have rank 21.

in the matrix variables. We truncate the data to the three matrices X, Y, Z gen-

erated by these simulations and compute the spectrum of Heff(x, y, z)X,Y,Z . Here

we use the BMN effective Hamiltonian (7.14). We fix the matrix configuration

and set y, z = 0. A typical result is shown in Figure 9.1.

What we should notice is that there are various crossings of zero, and that there

is a region in the center of the configurations where the eigenvalues of Heff do not

seem to have a gap in them. That is the black hole region of the configuration.

For large x we see that the eigenvalues behave as parallel lines and this matches

our expectations based on perturbation theory from equation (7.10). We clearly

see various crossings of zero, mostly because of the shift of flux. Also, in the

region without a gap the eigenvalue distribution appears to have a well defined

density of eigenvalues. In Section 9.3 we will continue this analysis in the context

of the BFSS matrix model to better understand the location of the horizon in
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these holographic blackholes.

As explained in Section 8.3 and reiterated in the previous section, the eigen-

values of the X matrices grow approximately as N1/4T 1/4 when the temperature

T is large. Consequently, the eigenvalues of Heff grows as N1/4 as well. If we as-

sume the in the ungapped region the Hamiltonian Heff has a well defined density

of eigenvalues in the N →∞ limit, that is, it behaves like a random matrix, then

since we have 2N eigenvalues, the eigenvalue density near the black hole region

near zero grows like N3/4. The flux contribution to the fermion mass displaces the

center of the eigenvalue distribution from zero; in our units it is 3/4 (see Appendix

D). Far away from the center of the matrix configuration, half the eigenvalues are

above the x axis and half are below. We roughly have that ρ(0) ' O(N3/4) eigen-

values cross zero. This means the inside of the black hole is full of branes that have

been polarized, all with the same orientation. As the temperature is increased,

the eigenvalue distribution becomes wider and fewer eigenvalues cross zero. The

N dependence is still correct, but there is also a temperature dependence. This

polarization into D-branes is mostly because of the Myers effect. Remember that

we have truncated to three matrices and are actually working with an orbifold.

The true fermion Hamiltonian in the BMN matrix model uses all nine matrices

and will have different characteristics. Thus, if we truncate this way we are work-

ing with something that resembles more a brane-world black hole (we can not

move it away from some locus).

An important characteristic of black holes is that if one throws matter at them,

then the matter does not come out at the other side. Let us throw a fractional

D0-brane at such a (orbifold) black hole. Note that we need to do so in the
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orbifold of the BMN geometry. We can require the fractional D0-brane to be at

a large distance from the black hole, say k times the size of the black hole itself.

The energy of such a D0-brane in the BMN matrix model that starts at rest is of

order k2N1/2. To estimate this we just look at the quadratic potential term for

the X1,2,3 matrices.

If we throw a fractional D0-brane to the black hole as described above, at

each zero eigenvalue crossing a string is created due to the Hanany-Witten effect

we discussed in Section 7.4. This is identical to the creation of strings observed

in the one dimensional model for D-brane scattering studied in [144]. There are

about N3/4 such strings per D0-brane that are created; there are as many going

in as out. When we reach the end of the matrix configuration, these strings have

a length of order N1/4, so the energy stored in these strings is of order ~N . As

long as ~N � k2N1/2, we find that the D0-brane does not have enough energy to

come out the other side; some of the energy gets transfered to the strings. Note

that this depends on ~. When we take N → ∞, it is clear that the strings win

over the initial energy of the D0-brane. Thus we find that the thermal matrix

configuration becomes a very good absorber; every fractional D0-brane that is

thrown at it is eaten. If we throw bigger objects at the thermal ensemble, say a

collection of fractional D0-branes, then the effect is proportional to the number

of fractional D0-branes making the object and this will be reflected in the linking

number. All objects are absorbed with the same efficiency. This is very similar to

how we currently think black holes operate.

Usually in these dynamical setups, if fermions are created by dynamics, then

so are bosons. The accounting might be different, but they usually follow each
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other somewhat. In the BMN model alone, the presence of tachyons in some

regions of the dynamics can generate large numbers of bosons [135]. Thus one

should also expect bosonic modes to be created by dynamical mechanisms (the

modes become non-adiabatic) rather than by a simple topological argument in

general.

This simple accounting of how objects are absorbed that we found is different

than other approaches that presume the formation of a tachyon in an ensemble

[186]. Maybe an effective tachyon can be thought of as a collective effect of all

these fermions and bosons.

We remind the reader that we should not take the arguments above based on

generalizations of the Hanany-Witten effect very seriously for the full BMN ma-

trix model. There the dynamics of the other matrices might change the physics

substantially, as we expect these D2-branes to fluctuate in the transverse direc-

tions. Thus, the topology of the Hanany-Witten effect would only be available for

D8-branes, rather than D2-branes, so that there is no background flux to polarize

D8-branes in large numbers.

9.3 Exploring the Gapless Region

Figure 9.1 reveals a gapless region in the truncated data of our thermal matrix

configurations. In this Section we explore the transition that occurs as one moves

from the gapped region to the gapless region using all of the matrix data. The

truncated data is valid only in the orbifolded BMN theory and so we should check

that a similar effect happens in the full matrix model.
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In the next section we will analyze the effective field theory of the fermions

near the transition. We will see that it breaks down at the transition and the

local physics changes. We know that local quantum field theory is valid far away

from a black hole, while the physics at the singularity is expected to be highly

non-geometric. Thus somewhere between infinity and the singularity the effective

local physics has to drastically change. This implies that in some sector of the

dual gauge theory the effective local physics must also change. There is an ongoing

debate as to where in spacetime this change occurs on the gravity side [187, 188],

but here it does not matter. We can first search for some signature of changing

physics in the gauge theory and ask later where this is happening in the gravity

theory. All questions will be addressed within the dynamics of the gauge theory.

Even though the black holes in question are hot and stringy, we will give robust

arguments that our conclusions should extend to cold semiclassical black holes as

well.

We first extend the notions of Chapter 7 to the full BFSS Hamiltonian, not

just some orbifolded version of it. The fermionic part of the BFSS Hamiltonian

[107]

Hferm ∼ Tr
(
Ψ†Γi[X i,Ψ]

)
(9.5)

where 1 ≤ i ≤ 9, the Ψ are SO(9) spinors, and Γi the nine dimensional gamma

matrices. The constant of proportionality depends on the normalization of the

fields and ~ (see Appendix D for notes on scalings). The matrices X i and Ψ are in

the adjoint of U(N), that is, they are Hermitian. Just as we did for the orbifold,

we can construct an N+1×N+1 configuration X̃ i from an N×N configuration of

X i by adding a single D0-brane probe with coordinates xi ∈ R9 in the lowest right
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corner. We only want to consider the fermion modes connecting the background

and the brane probe.

X̃ i =

X i 0

0 xi

 , Ψ̃ =

0 ψ

0 0

 (9.6)

where ψ is an N × 1 column vector (it is in the fundamental of U(N)). The

effective Hamiltonian for the configuration (X̃ i, Ψ̃) is analogous to (7.7)

H
(9)
eff ∼

9∑
i=1

ψ†([X i − xiIN ]⊗ Γi)ψ (9.7)

This effective Hamiltonian can be considered at each instant of time and for

each position of the probe. Furthermore, we can choose to make the probe fully

dynamical or not. If we make it dynamical, we can call it an ‘observer’ and choose

a set of initial conditions, that is, the initial position and velocity of the probe. If

the probe is not dynamical, we can scan over R9 with the position of the probe

and label each point by the properties of the fermion spectrum of eigenvalues in

equation (9.7).

We consider the spectrum of H
(9)
eff for our thermal matrix configurations. With-

out loss of generality we may take the matrices to be traceless. By rotational

invariance (the configurations do not have angular momentum), we need only

consider moving the brane probe in a single direction, say x1, and we choose to go

through the center of the configuration. The spectrum of H
(9)
eff for a typical config-

uration is plotted in Figure 9.2. Since the nine dimensional gamma matrices are

16×16 the spectrum of fermions for a rank N configuration has 16N modes. The
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Figure 9.2: Fermionic eigenvalue spectrum for a typical configuration of matri-
ces with N = 47 after thermalization. The units are arbitrary.

spectrum is typically non-degenerate and there are crossings of zero; a fermion

becomes massless at such loci. Recall from Section 7.4 that the number of strings

created when the probe is moved to the bulk from infinity is a generalization of

the Hanany-Witten process [136].

Adding the remaining matrix data did not ruin qualitative nature of the dif-

ferent regions of Figure 9.1. Figure 9.2 shows a clean separation of two regions.

In the first region, the eigenvalues of the fermions are well separated from zero;

there is a gap which can be used to measure the distance from the probe to the

configuration. There is a second region where the typical eigenvalue separation

of the fermion spectrum from zero is similar to the separation of the eigenvalues

from each other. We call this region gapless. Remember that the simulated matrix

configurations are thermal. The temperature gives a thermal activation energy

kT . So long as the modes near zero have energies below kT , they can become
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thermally active. At large N and fixed temperature, the size of the matrix con-

figuration X i scales as N1/4 and so the number of fermions in the band of energy

kT grows as N3/4 ' NN−1/4. Thus, in a large N setup there are a lot of fermion

states that could in principle get activated. In this sense, there is no gap.

9.3.1 Spectral Dimension and Nonlocality

We wish to understand the nature of the physics inside the gapless region, and

in particular if we can understand this information geometrically or not. One step

in this direction is knowing the effective dimension of spacetime that the matrix

configuration describes. Since we are exploring R9, it is natural to suspect that

the matrix configuration in the gapless region is 9 + 1 dimensional. In massless

free field theories in d + 1 dimensions, the density of states near zero follows a

power law ρ(ε) ∼ εγ−1 where ε is the energy and γ = d. We call γ the spectral

dimension of a configuration and argue that using a probe to measure γ yields the

local spatial dimension of standard configurations.

Consider a toy model for matrix black holes in which the matrices X are

essentially commuting and describe a gas of D0-branes (this has been argued

recently for example in [189, 190] and references therein). The matrices can be

diagonalized simultaneously, and we can talk about the positions of the D0-branes

as the common eigenvalues in R9. More importantly, we can think of a density

of eigenvalues in some region of R9, call it ρ(r). The energy of the fermions

connecting a probe at x to an eigenvalue at r will be ε ' |x − r|. The number

of such states at fixed |x − r| = s for small s is n(s) =
∫
d9r ρ(r)δ(|x − r| −

s) ' ρ(x)s8 ' ρ(x)ε8. So in a region where ρ(x) 6= 0 we expect to measure a
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spectral dimension of γ = 9. Similarly, we can consider a D2-brane background

obtained from a fuzzy sphere configuration. If we put the D0-brane probe in

contact with the fuzzy sphere, it is easy to show that one gets a spectral dimension

γ = 2, the dimensionality of the sphere as a geometric object. This coincides with

approximating the D2-brane as a collection of D0-branes uniformly distributed

on the surface of the fuzzy sphere. The spectral dimensionality captures the

dimension of extended objects, or equivalently of the smearing of D0-branes in

some region. It is natural to expect that if the matrix configuration can be pictured

as some extended D-brane contorted to fill the gapless region, one would measure

γ = 9 just from smearing into a density of D0-branes. We check if this is true or

not numerically. If it does coincide with γ = 9, we would be giving evidence in

favor of the toy model of black holes as a gas of D0-branes or an extended brane

filling the region. We find a completely different result.

We define

γ ≡ lim
ε→0

d ln(ρ(ε))

d ln(ε)
+ 1 (9.8)

The difficulty with this definition is that we can not take the limit on a configu-

ration of finite size matrices, where we only have finitely many eigenvalues in the

effective Hamiltonian. What we need is a fit to a power law by choosing a few

points near ε ' 0. The precise way in which we choose to do this can give slightly

different answers. To reduce such problems, we average over many configurations

so that we can measure γ statistically.

We also need to compare the spectra of eigenvalues of the effective Hamiltonian

at different values of N . This way we can extrapolate to large N and find a value

of γ that is valid in the thermodynamic limit. This helps to show that our result is
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robust. To put different values of N on top of each other we take advantage of the

scaling symmetry of the classical BFSS matrix model and scale the X i by some N -

dependent factor that is also temperature dependent. Since the X i approximately

follow the Gaussian Unitary Ensemble for traceless Hermitian matrices (TGUE),

as explained in Section 8.3, we can scale the matrices such that their distributions

of eigenvalues can be analyzed in terms of the limits of the TGUE which are

semicircle distributions. This is done by fixing the second moment. The width of

the associated semicircle is given by 2
√
Nσ where σ is the width of the TGUE.

The value of σ is given by

σ =

√
〈
∑9

i=1 Tr(X i)〉
9(N2 − 1)

(9.9)

where we have averaged over all nine bosonic matrices which is allowed by the

SO(9) invariance.

The spectral dimension of the field theory when the probe is at the center

of the gapless region is γ = 1.0. This can be seen from Figure 9.3 where the

density of states is flat at zero energy. As we move away from the center of the

gapless region the spectral dimension stays approximately constant. Near the edge

of the gapless region, the spectral dimension shoots up to about γ = 1.3 ± 0.1.

The density of states at the edge shown in Figure 9.3 shows the cusp at zero

energy. It is difficult to pin down exactly where the gapless transition occurs due

to a finite bin size and limited statistics, but log-log plots indicate a qualitative

change at around |x| = 0.33 ± 0.03 for the rescaled matrix configurations. For

reference, the matrices are scaled so that average maximum eigenvalue of the X i
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Figure 9.3: A plot of the density of states as a function of energy at the center
and edge of the gapless region for various values of N averaged over 1000
configurations. Each function is normed such that

∫
ρ(ε) dε = 1.

approaches one as N →∞. Even with numerical errors the spectral dimension at

the boundary is far from nine. In the BFSS matrix model it is believed that there

is no finite temperature phase transition between the high temperature regime

and the low temperature regime. Thus if we include quantum corrections, the

value of γ should stay close to the classical physics value. The lack of a phase

transition has been verified numerically as the free energy curves as a function of

the temperature are smooth [174, 152, 153]. Also, the thermal states in the BFSS

model are deconfining for arbitrary small temperatures in the dual supergravity

setup [190].

How should we interpret this result? The authors of [191] consider a class

of theories with fermions defined on a fully connected lattice whose links are
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weighted. They argue that the typical configuration is maximally connected giv-

ing rise to a theory on one maximally non-local infinite-dimensional simplex; all

sites are adjacent to each other. When the weights are Gaussian distributed, the

spectrum of the Hamiltonian follows a cumulative semicircle distribution (in the

large N limit). Near zero energy the spectrum is linear, the density of states is flat,

and they conclude that the non-local fermion theory has an effective description

in 1 + 1 spacetime dimensions, in the sense that the density of states is the same

as the one of a 1 + 1 dimensional theory. We also find a spectral dimension of one

and thus consider ourselves to be in the same universality class as the models in

[191], which is also the universality class of a random Hamiltonian. By analogy to

the fully connected lattices, we believe that the probe brane is in an environment

where is it effectively equally far from the D0-brane matrix background no matter

where the D0-branes are located. Our numerical results are inconsistent with a

local gas of D-branes. If this persists in the fully quantum regime, the results of

calculations based on models of such gases are suspect. The setup is maximally

non-local, but it looks as if the dynamics lives effectively in 1 + 1 dimensions.

9.4 Locating the Horizon

Up to this point we have made a very strong claim about our thermal matrix

configurations; that they are holographically dual to black holes. We have used the

thermal properties, power spectra, and chaotic dynamics of these configurations

to make our arguments, but black holes have many other properties. They have

mass and entropy. They possess metric data responsible for interactions with
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other objects in their vicinity, for example stable and unstable orbits. The most

defining characteristic of black holes is that they possess event horizons and a

singularity behind it. Our matrix configurations should possess this property and

we will use the results of the previous section to argue that they do.

We propose to place the horizon of the black hole exactly at the interface

between the gapless region and the gapped region shown in Figure 9.2. This

is potentially different than the proposal in [186]. Consider a string suspended

between a probe D-brane at fixed position and a black hole. The energy carried by

such a string is given by
∫ rD
r0

T (r)
√
gttgrr dr where T (r) is the local string tension

at r, r0 is the horizon, and rD is the position of the brane. This is finite for

typical black holes since the black hole horizon is at finite distance. In the limit

rD → r0 we get that the energy of such a string goes to zero. In our setup, the

fermionic energies connecting the probe to the matrix configuration have this same

behavior. Also, the presence of a large number of massless modes appearing at

the edge of the gapless region indicates that wiggles on a string also get redshifted

and produce a large number of string states with small energies. This is analogous

to strings spreading when reaching the horizon [192].

A natural question to ask is if we can integrate out the modes connecting the

probe to the matrix configuration and extract an effective action for the probe.

This is how gravitational interactions and forces between objects are captured in

the BFSS matrix model [107] (see [132, 116] for a systematic treatment). In our

case the answer to this question is yes, for fermions, away from the gapless region.

If we reintroduce ~ and call an eigenvalue of (9.7) ω, the energy of such a

fermionic mode is ~|ω|. The light fermion modes become thermally active when
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~|ω| < kT . In classical physics all the fermions are active, yet we will assume

that the system is cold enough so that most fermions are not active. After taking

the limit where N is large with ~ constant, and rescaling X so that the matrix

configuration is of finite size in the probe coordinates, the light fermions become

active exactly when we enter the gapless region. The approximation where we can

integrate out the off-diagonal degrees of freedom connecting a probe to the black

hole breaks down exactly at the putative horizon. This puts further into question

the paradigm that black holes be treated as D-brane gases.

The breakdown of effective field theory of a configuration plus a probe, con-

sidered as an observer, further suggests that physics has changed dramatically on

crossing the horizon (see however [193]). The fourth postulate of [194] was that

no drama occurs when crossing the horizon. Removing this postulate to restore

consistency suggested the existence of a firewall. We see that the BFSS matrix

model provides a physical model for the firewall.

This in itself does not give a proof that firewalls exist. There could be some

other physical effect on the probe that comes from understanding the bosonic

degrees of freedom that forces us to put the horizon elsewhere, as in [186]. Bosonic

instabilities might be realized only via parametric resonance and would require a

full time dependent treatment to be understood.

Our analysis so far has been done for our stringy black holes of Chapter 8.

For such black holes the horizon and the singularity are on top of each other in

string units. The 1 + 1 dimensional effective physics could be associated with

the singularity rather than with the horizon. This can be remedied with fully

quantum simulations [189, 190].
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Physics at the black hole singularity is also argued to be effectively 1 + 1

dimensional in the causal dynamical triangulation program, since the effective

UV structure of gravity has a different dimension [195] (see also [196]).

Also note that this picture, although similar in spirit to the fuzzball picture

[178], is distinct. The known fuzzball solutions are geometric (non-singular solu-

tions of supergravity) and they stretch all the way to the horizon. Microphysics

in these setups is essentially gravitational. In our case the inside of the black

hole gets replaced by non-geometric, non-local objects whose effective dimension

is different than that of the ambient space.

The presence of an effective 1 + 1 dimensional field theory starting at the

horizon is also reminiscent of ideas espoused by Carlip [197] and suggests that the

additional entropy added to the black hole when the probe is absorbed can be

computed using Cardy’s formula.

9.5 Discussion

The BFSS and BMN matrix models are of particular interest because of their

dual gravitational interpretation. Though quantum effects are crucial to the emer-

gent gravitational dynamics in general, we have argued that at high temperatures

the classical dynamics of these matrix models do encode certain dual gravitational

phenomena, including black holes, albeit in a stringy regime. As such, a direct

comparison with supergravity solutions is not possible, but we can look for and

have found some qualitative agreement.

The first level of correspondence is between black holes, broadly defined to
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include large stringy corrections, and equilibrium thermal states in these models.

This thermodynamic correspondence was referred to in both of the seminal papers

on BFSS matrix theory and AdS / CFT [107, 13] and subsequently investigated

and verified in many situations. As a first step toward a more detailed correspon-

dence, we have presented evidence here that the approximate analytic structure

we find in the power spectra of certain observables at large N could be the rem-

nant of the quasinormal modes of supergravity black holes. This is suggested by

the numerical data, where the results we find on the real axis seem to be well

approximated by functions that, when analytically continued, would have branch

cuts in the complex plane. These could be an approximation of a sequence of

roughly evenly spaced poles.

Reflecting on what we have accomplished here, we have made a modest at-

tempt at reconciling gravitational dynamics in holographic setups with the theory

of chaotic dynamical systems. We have argued that these types of analyses do

cover interesting black holes in the stringy regime. We have barely scratched the

surface of what can be computed and analyzed and it would be interesting to

pursue this further to improve our understanding of holography. The simulations

of the classical dynamics provide new ways to address questions about black holes

in simple systems where the numerical computations are easily implemented. It

is also important to understand how to move away from the correspondence limit,

which would mean quantum dynamics starts becoming important and the dynam-

ics of fermions starts affecting the results. In such setups the tools of quantum

chaos will play an increasingly important role. This is closely related to the ques-

tion of whether at low temperatures it is the fermionic degrees of freedom that
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dominate, or if they only play a marginal role in most of the dynamical regimes

of interest.

We were able to show that the surfaces constructed using the techniques of

Chapter 7 could be used to analyze numerical data from classical simulations

of matrix models. We were able to make contact with conjectures about the

structure of black hole interiors as made from brane-antibrane systems. We were

also able to show that with the Hanany-Witten effect, the fermions created on

these surfaces could be used to stop a probe D0-brane particle in a simple model.

Thus it is clear that these modes can give us a handle on black hole dynamics

that do not require much effort.

Extending the techniques of Chapter 7 to the full BFSS matrix model revealed

the persistence of a gapped and a gapless region for a D0-brane probe interacting

with a background matrix configuration. We used the spectral dimension during

the transition to show that there exists a locus of points in R9 where the effective

field theory of the fermion modes connecting the probe to the configuration breaks

down. We propose placing a horizon at this locus, although we concede that this

may be premature. Since the black holes in question are hot and stringy, the locus

may be sitting on the singularity and not the horizon. Additionally the bosonic

excitations in that region may also provide an explanation for the breakdown of

the effective theory. We leave this for future work.
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Adding Angular Momentum

The BMN matrix model has exact, supersymmetric solutions with zero energy

[60]. These matrix configurations are characterized by all adjoint representations

of su(2). They have an interpretation as giant gravitons [19]. The spectrum of

fluctuations around these solutions is known [129] (see also [135] for an alternative

derivation of the spectrum) and one can argue that there is a large tower of

protected states that are available to study [198]. Unfortunately, the nonlinear

structure of the classical solutions keep this tower of BPS states unknown.

It is expected that adding angular momentum to the fuzzy sphere states can

induce topology changes from a sphere to a torus [112]. In this Chapter we

investigate this topology transition with a special family of matrix solutions at

finite angular momentum. We devote most of our attention to constructing these

solutions. Once the solutions are found, the geometry of the corresponding fuzzy

membrane is analyzed using the techniques of Chapter 7.

232



Adding Angular Momentum Chapter 10

10.1 The Hamiltonian and the Ansatz

The SO(3) BMN matrix model is the matrix model (D.1) restricted to the

bosonic SO(3) sector. We label the three N × N Hermitian matrices X1,2,3, or

alternatively X, Y, Z. The conjugate momentum matrices are P1,2,3, and PX,Y,Z

respectively. The Hamiltonian for this restricted system is given by

H =
1

2
Tr(P 2

1 + P 2
2 + P 2

3 ) +
1

2
Tr

(
3∑
j=1

(Xj + iεjmnX
mXn)2

)
(10.1)

The system possesses a U(N) gauge symmetry where X i and Pi both transform

in the adjoint, X i → UX iU−1 and Pi → UPiU
−1. The presentation of the Hamil-

tonian (10.1) is in the gauge A0 = 0. The generators of gauge transformations are

the matrix of functions on phase space given by

G = i
3∑
j=1

[Xj, Pj] (10.2)

The dynamics need to be supplemented by the Gauss’ law constraint G = 0. The

system also enjoys an SO(3) symmetry of rotations of the matrices X, Y, Z into

each other. The generator of angular momentum along the Z direction is

J = LZ = Tr(XPY − Y PX) (10.3)
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with similar expressions for the other two SO(3) generators. Lastly, the equations

of motion are

Ẋj =
∂H

∂P j
= Pj, (10.4)

Ṗj = − ∂H

∂Xj
= −Xj − 3iεjmnXmXn − [[Xj, Xm], Xm] (10.5)

The solutions with H = 0 are given by fuzzy spheres. These are solutions of

the equations

[X i, Xj] = iεijkXk (10.6)

The solutions to these equations are characterized by direct sums of the adjoint

matrices for irreducible representations of su(2). For these solutions we have

P1, P2, P3 = 0 and thus are classically gauge invariant according to (10.2). These

solutions carry no angular momentum as ~L = 0 identically.

The Hamiltonian also satisfies a BPS inequality bound, where H ≥ |J | (details

can be found in [199]). Solutions that saturate the bound will be called extremal

or BPS. This follows from writing the Hamiltonian as a sum of squares in a slightly

different way

H = Tr

(
1

2
P 2

3 +
1

2
(P1 ± (X2 + iε231[X3, X1]))2

+
1

2
(P2 ∓ (X1 + iε123[X2, X3]))2 +

1

2
(X3 + iε312[X1, X2])2

)
± J

(10.7)

The cross terms between X2, P1 and X1, P2 in the squares generate a copy of

J that needs to be subtracted. The cross terms with P1 and [X3, X1] lead to
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something that does not automatically cancel for generic matrices, but after a bit

of reshuffling can be shown to be proportional to

X3([X1, P 1] + [X2, P 2]) (10.8)

and we recognize the Gauss’ law constraint starting to arise. After imposing the

full Gauss’ law constraint, we get Tr(X3[X3, P 3]) that does vanish identically.

The BPS bound is not directly related to supersymmetry. Instead it is de-

rived from the conformal group in four dimensions, where one can show based

on unitarity arguments that E ≥ J by requiring that K = P †, where P, K are

the generators of translations and special conformal transformations on S3 × R.

This bound asserts that the dimension of operators is greater than the spin and

is usually saturated for free theories, or nearly free theories at leading order in

perturbation theory. This should be lifted in general theories (see [200] for a re-

cent discussion). However, the bound does show up in studying supersymmetric

BPS states [201, 202] for the full BMN matrix model. This bound descends to

any classical solution of Yang-Mills theory which is a conformal field theory at the

classical level.

Now we construct solutions to (10.4) and (10.5) with non-zero J . We define

the matrices

X+ =
1

2
(X + iY ), X− =

1

2
(X − iY ) (10.9)

X = X+ +X−, Y = −i(X+ −X−) (10.10)
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We will make an ansatz for a solution more general than the fuzzy spheres

X+(t) =



0 a1 exp(iω1t) 0 . . .

0 0 a2 exp(iω2t) . . .

. . . . . . . . .
...

0 . . . 0 aN−1 exp(iωN−1t)

aN exp(iωN t) 0 . . . 0


(10.11)

with ai constants, and X−(t) = (X+(t))† (this is the transpose complex conju-

gate). At the same time we also take

Z(t) = diag(z1, . . . , zN) (10.12)

independent of time and real. We will explain the origin of this ansatz in the

following section. Notice that all fuzzy sphere ground states are solutions of this

kind already, with ωi = 0, and some of the ai = 0. Gauge transformations

that commute with Z allow us to vary the relative phases of the ai. Therefore

we can assume that they are real, and a common phase can be translated away

by choosing the starting time appropriately. This ansatz is different to those

that have been studied before [199] (previous works also look for solutions of the

BMN and BFSS matrix model where more than three matrices are oscillating

[203, 203, 204]). Other time dependent solutions can be found in [205, 206, 207],

but again, these involve more matrices being turned on. In particular, we allow

for multiple frequencies to arise in the ansatz, rather than just one. This does not

affect fact that the system is rigidly rotating. One can use a gauge transformation
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to make the frequencies the same, but one pays the price that A0, the connection

in the time direction, becomes non-trivial. This is actually very useful for the

BPS states, where A0 ∝ Z [201].

The method of solving the equations is then to first solve for the conjugate

momenta by using equation (10.4). Then, we solve the Gauss’ law constraint

(10.2) to relate the ωi to each other. These can then be substituted into the

angular momentum equation (10.3), so that we can express the ωi in terms of

the total angular momentum Lz = J and the ai. One can then show that the

system of equations of motion (10.5) reduces consistently to an algebraic set of real

equations for the ai, zi and that it has as many unknowns as there are variables.

One therefore expects to generally find a discrete (possibly empty) set of solutions

to the equations. We will show eventually that this set of solutions is non-empty

for all J .

10.1.1 Relation to SYM and N = 1∗

The BMN Hamiltonian (10.1) also arises from sphere reductions of four di-

mensional Yang-Mills into a S3 × R [109] and from the N = 1∗ theory. The

relation to Yang Mills on S3 × R is as follows. Consider that the round three

sphere is also the group manifold of SU(2), and has an SU(2)× SU(2) isometry

group by acting with the group on the left and on the right. We can use a basis

of left invariant one-forms under SU(2), e1,2,3 and write the spatial part of the

connection connection as follows

A = Aie
i (10.13)
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where the Ai are now Lie-algebra valued functions on S3. Requiring that the

allowed configurations are invariant under left actions of the group, we have that

Ai becomes position independent and is just a constant Hermitian matrix. The

Mauer-Cartan equations for the one forms ei then give us that

dA+ A ∧ A = Aide
i + [Ai, Aj]e

i ∧ ej (10.14)

whereas the electric fields will give

DtA ' (DtAi)dt ∧ ei (10.15)

Because of the large amount of symmetry preserved, we are led to a consistent

truncation of the SYM lagrangian. We then identify Ai ' Xi and P i ' DtAi.

The Legendre transform of the Lagrangian for SU(2) invariant fields will give rise

to the same BMN Hamiltonian.

The N = 1∗ field theories are obtained from N = 4 SYM after an SO(3)

invariant mass deformation of the superpotential. The N = 4 SYM Lagrangian

can be characterized by having three chiral matter superfields φ1,2,3 in the adjoint

of SU(N), and a super potential of the form

W = Tr(φ1φ2φ3 − φ3φ2φ1) (10.16)

The full potential has an SO(6) R-symmetry invariance, of which only an SU(3)

symmetry is manifest in terms of N = 1 super fields.
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TheN = 1∗ deformation adds the super potential mass term

δW = − i
2
MTr

(
3∑

k=1

(φk)2

)
(10.17)

The factor of i is a choice of convention, as the phase of M can be changed by a

global R-charge rotation of the φ. This preserves an SO(3) global symmetry from

the R-charge, but the theory can confine in the infrared in some of its vacua. For

this theory, the classical vacua are given by fuzzy spheres, or su(2) representations

[208] (see also [209] for the characterization of the vacua at strong coupling). The

potential for the φ fields is given by

V (φ) =
3∑

k=1

∣∣[φ`, φm]ε`m
k + iMφk

∣∣2 +

(
3∑

k=1

[φk, φ̄k]

)2

(10.18)

where the first term is the F-term and the last term comes from the D-terms of

Yang-Mills. The theory also has a parity transformation that sends the superfield

φi → φ̄i. This is a symmetry of N = 4 SYM if the theta angle of the field

theory vanishes. The scalar potential is invariant under this transformation. We

can choose to look for configurations that are classically parity invariant. In that

case, we only preserve the real part of φi, while the imaginary part is removed.

This parity transformation commutes with the SO(3) symmetry group, but not

the full SU(3).

With this constraint on the fields, the potential term arising from the D-terms

automatically vanishes. Moreover, the potential for V (φ) becomes the BMN po-

tential after factoring out the dimensionful constant from the fields φ. A transla-

tion invariant classical solution of the N = 1∗ field theory with parity invariance
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can be understood as a classical solution of the SO(3) BMN matrix model. The

angular momentum of the BMN matrix model solutions becomes a charge den-

sity for a global symmetry of the field theory. This is a charge density in a four

dimensional N = 1 field theory, so it is not a charge density for a central charge.

The solutions are to be regarded as non-supersymmetric, but in the classical limit

they are controlled by the same dynamics as the SO(3) BMN matrix model. The

quantum corrections will be different. The structure of solutions will then be de-

scribed by the (parity invariant) phase diagram for the weakly coupled N = 1∗

field theory at finite charge density. This in turn can be understood as a phase

diagram for a (top-down) holographic superconductor [210].

10.2 Symmetry Considerations

A natural question to ask is if we can find rotationally invariant configurations

of the SO(3) BMN matrix model around the Z axis that rotate uniformly without

changing the shape of the configuration and while being small perturbations of

a single fuzzy sphere. After all, this is how the giant torus configurations in

supergravity are constructed [112]. It turns out that the answer is no.

The way to see this is as follows. Assume that Z is a Hermitian matrix

with eigenvalues that are non-degenerate. A configuration will be rotationally

invariant around the Z-axis if a naive rotation of the matrices into each other can

be undone with a gauge transformation. This is the same way that the method

of images works for D-branes on orbifolds when considering a discrete subset of

the rotation group [90] (this is also the mechanism for rotational invariance of
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monopole solutions in nonabelian gauge theories [211, 212]).

That is, for any angle θ can we find a unitary matrix U(θ) such that

U(θ)ZU−1(θ) = Z

U(θ)XU−1(θ) = X cos(θ)− Y sin(θ) (10.19)

U(θ)Y U−1(θ) = Y cos(θ) +X sin(θ)

Because Z has non-degenerate eigenvalues, the first equation tells us that U must

be diagonal in the same basis that Z is (they commute with each other). We

gauge transform to such a basis without loss of generality. The angle θ will be

identified with the time evolution itself later on. The uniform rotation motion of

the configuration requires that Z is time independent, so that Ż = 0.

Let |1〉 , . . . , |N〉 denote the eigenvectors of Z. We rewrite the last two equa-

tions of (10.19) in terms of the general matrix X+ = X + iY and its adjoint. The

matrix X+ is unconstrained. Then we have that

U(θ)X+U−1(θ) = exp(iθ)X+ (10.20)

Using a general expression for X+ |m〉 = X+
mn |n〉, and U ' diag(exp(iθi)) we find

that X+
mn transforms under conjugation by U as

X+
mn → exp(i(θm − θn))X+

mn (10.21)

which can only be equal to exp(iθ)Xmn if θm − θn = θ mod (2π) or if X+
mn = 0.

Picking θ arbitrarily small, we can only satisfy θm − θn = θ for some of the
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components, and because θ is very small, we can arrange the kets |n〉 such that

the θn are strictly decreasing as we increase n. This shows that U(1) invariance

requires X+
mn to be upper triangular with zeros on the diagonal. Now, comparing

with the fuzzy sphere solutions, X+ actually must border the diagonal. That is,

we find that the solutions must be of the form

X+ =



0 |a1| exp(iφ1) 0 . . .

0 0 |a2| exp(iφ2)
. . .

...
. . . . . .

...

0 . . . 0 |aN−1| exp(iφN−1)

0 0 . . . 0


(10.22)

where the ai are some as of yet unspecified numbers that depend on time, and

both X+X− and X−X+ are diagonal and rotationally invariant themselves. Thus

if a configuration is rotating uniformly we find that the only possible solution has

the |ai| being constant, and all the dynamics will be in the phases φi(t). Inserting

these expressions in the Gauss’ law constraints, we find that

|ai|2φ̇i − |ai+1|2φ̇i+1 = 0 (10.23)

for all i. We then have that φ̇N−1 = 0 and from there, φ̇i = 0 for all i. The

solutions are thus static and carry no angular momentum. Since we want to turn

on angular momentum, we need to relax the rotational invariance around the

Z-axis of the configuration.

The obvious idea is to look for the maximal discrete subgroup of rotations
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that can actually be preserved if we can not have a full SO(2) symmetry. Let us

assume that we turn on an Xmn which is not one of the above. The matrix U

that implements the constraint (10.20) for X+ defined in (10.22) is diagonal and

up to a global phase it is equal to

U = diag[exp(−iθ), exp(−2iθ), exp(−3iθ) . . . exp(−Niθ)] (10.24)

We then have that nθ−mθ = θ mod (2π), or equivalently, that (m+1−n)θ =

0 mod (2π). This tells us that we can preserve a Zm+1−n subgroup of the SO(2)

rotations if we turn on this particular Xmn. If we want to maximize this group,

we find that we must take m = N and n = 1, where we get an ZN subgroup of the

rotation group to be invariant. None of the other Xmn that are not already turned

on are neutral under this subgroup. We can self-consistently set them to zero by

symmetry arguments; if an initial solution for X, P respects the symmetry, ZN

invariance will guarantee that no symmetry breaking can occur afterwards. We

are therefore led to a general ansatz for X+ which can still have arbitrary time

dependence

X+ =



0 |a1| exp(iφ1) 0 . . .

0 0 |a2| exp(iφ2)
. . .

...
. . . . . .

...

0 . . . 0 |aN−1| exp(iφN−1)

|aN | exp(iφN) 0 . . . 0


(10.25)

Now we want to insist that the only motion that the system undergoes is
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rigid rotation, so that the |ai| are necessarily constant, but the φi can vary in

time. Substituting this in Gauss’ law shows that all the motions in the angles

are related to each other by |ai|2φ̇i − |ai+1|2φ̇i+1 = 0 cyclically. Furthermore, one

can show that Lz = 1
2

∑
i |ai|2φ̇i = J which is a conserved quantity. Putting

these two pieces of information together shows that the phases φi have constant

time derivatives which we call ωi. This leads us to the general form of the ansatz

described in equations (10.11) and (10.12).

Notice also that the ansatz we have made has an additional remnant discrete

ẐN symmetry on the variables ai, zi, where we send |ak| exp(iφk)→ |ak+1| exp(iφk+1)

and zk → zk+1 cyclically. That is, any solution of the equations can be permuted

to a new solution using this symmetry. This is a subset of the gauge freedom of

the original system, where we permute the eigenvalues of a Hermitian matrix. In

D0 brane dynamics this permutation symmetry is associated to the permutation

statistics of D-branes [107]. This symmetry can also be understood if we orbifold

the matrix problem by the original ZN symmetry we identified via the rules of

[90]. In the orbifold theory by an abelian symmetry, it is expected that one has a

dual quantum symmetry ẐN that permutes the nodes of the corresponding quiver

theory [84]. Gauging this dual quantum symmetry restores the original theory in

a straightforward way [122]. There is a second symmetry where we reverse the

order of the |ai|, zi and also change the sign of the zi. This acts essentially as

reflection on the Z-axis, so that when we combine it with time reversal, we can

still spin in the same direction. These two symmetries form a dihedral group with

2N elements and it will be useful for analyzing the set of solutions of the ansatz.

Notice that if a discrete subgroup of the quantum symmetry is left unbroken,
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this implies that there is an enhanced unbroken gauge group so long as it is not

just the spatial reflection symmetry. For example, if the ẐN is unbroken (we find

some solutions of this type), the unbroken gauge group turns out to be U(1)N .

The solution can be interpreted as N D0 branes separated from each other in a

ZN symmetric pattern of rotations around the origin, just like one would expect

from the method of images in an orbifold.

10.3 The Solutions as a Set of Critical Points

The equations of motion that follow from the Hamiltonian (10.1) come in two

different sets. First, we have that

Ẋj = Pj (10.26)

We can solve these immediately given the ansatz for the X. We find that PZ = 0

and that

PX = Ẋ = iΩX+ − iX−Ω (10.27)

PY = Ẏ = ΩX+ +X−Ω (10.28)

where the matrix Ω of angular velocities is given by

Ω = diag(ω1, ω2, . . . , ωN) (10.29)

245



Adding Angular Momentum Chapter 10

This way we find that

PXX −XPX = (iΩX+ − iX−Ω)(X+ +X−)− (X+ +X−)(iΩX+ − iX−Ω)

(10.30)

PY Y − Y PY = (ΩX+ +X−Ω)(−i(X+ −X−))− (−i(X+ −X−))(ΩX+ +X−Ω)

(10.31)

Adding these two, we find that the terms with two X+ or two X− cancel each

other, so that the Gauss’ law constraint reads

G = 2iΩX+X− − 4iX−ΩX+ + 2iX+X−Ω (10.32)

A straightforward computation shows that this is a diagonal matrix and that it

is equal to

G = 4i diag(|ai|2ωi − |ai+1|2ωi+1) (10.33)

To satisfy the Gauss law constraint, we need that G = 0 identically. Hence we

find that |ai|2ωi is independent of i.

Similarly, we find that the angular momentum is written as

J = Tr((X+ +X−)(ΩX+ +X−Ω)− (−iX+ + iX−)(iΩX+ − iX−Ω)) (10.34)

and similarly, the terms with two copies of X+ or X− cancel even before taking

the trace. We find that

J = 2Tr(X+X−Ω +X−ΩX+) = 2Tr(diag(ωi|ai|2 + ωi−1|ai−1|2)) (10.35)
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Now, notice that because of Gauss’ law constraint, all the ωi|ai|2 are equal to each

other. Thus, even before taking the trace, the matrix version of J is proportional

to the identity. We can interpret this as having uniform density of angular mo-

mentum per unit D0-brane of the corresponding fuzzy membrane. We use this to

find that

J = 4Nωi|ai|2 (10.36)

so that we can substitute

ωi =
J

4N |ai|2
(10.37)

Knowing the |ai|, the zi and J , we can evaluate the energy by substituting the

above results in the Hamiltonian (10.1). The result for the kinetic energy is

Ekin(J, |ai|) =
1

2
Tr(P 2

X + P 2
Y ) =

1

2
Tr(PX + iPY )(PX − iPY ) (10.38)

=
4

2
Tr(ΩX+X−Ω) (10.39)

= 2
N∑
i=1

|ai|2ω2
i =

1

8N2

N∑
i=1

J2

|ai|2
(10.40)

What is important to realize is that this looks very similar to an angular momen-

tum centrifugal potential, where each particle (associated to the radial variable

ai) has the same angular momentum J/N and the same mass (in this case the

mass would be interpreted as 4). To specify the full problem, we need to evaluate

the potential energy as well. A straightforward, though rather tedious procedure

shows that

V (|ai|, zi) =
N∑
i=1

1

2
[zi + 2|ai−1|2 − 2|ai|2]2 + 2(1 + zi+1 − zi)2|ai|2 (10.41)
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where the i are defined modulo N . We denote the full energy of a configuration

(J, |ai|, zi) by

E(J, |ai|, zi) = Ekin(J, |ai|) + V (|ai|, zi) (10.42)

When we consider the energy function E(J, |ai|, zi) and recall that PZ = 0 in

our ansatz, it is straightforward to notice that the equations of motion of the Z

variables are exactly the equations that extremize E as a function of the zi keeping

the other variables fixed. Namely, that ∂ziE = 0. This suggests that to look for

solutions of the original problem we set out to do with our ansatz, it is enough

to consider the extrema of the energy function E at fixed J . Indeed, any solution

of the ansatz that solves the equations of motion of the Hamiltonian (10.1) are

going to be extrema of the energy function E and vice versa, any extremum of

the energy function can be shown to give a solution of the equations of motion

derived from the SO(3) BMN Hamiltonian.

The essence of the proof is that when we take the derivatives of the kinetic

energy with respect to the |ai| we find that

∂|ai|Ekin = − J2

4N2|ai|3
= −4ω2

i |ai| (10.43)

and these can be assembled into ṖX = Ẍ, ṖY = Ÿ . Then we need to compare this

expression to the derivatives of the potential

∂|ai|V (10.44)

which can be assembled into the right hand side of the Hamilton’s equations for
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(10.1). The two sets of equations can be shown to be the same set when we remove

the time dependent phases exp(iωit).

The potential is a sum of ‘nearest neighbor’ terms and it is a sum of squares.

As a function of the zi it is quadratic. Therefore if we fix the |ai|, we can solve

for the zi via a linear set of equations, and these equations are independent of J .

The quadratic form that appears in front of the zi is of the form δij + Uij where

U is a non-negative matrix. Therefore it is always invertible.

The kinetic energy is also a sum of squares. Therefore the energy function

is bounded from below. Notice that when J 6= 0, and as we take |ai| → 0 the

energy diverges at |ai| = 0. Also, when we take the |ai| → ∞ the potential grows

quadratically in the |ai|, and if we solve for the zi in this limit, they are bounded.

Therefore we expect that generically the potential grows quartically at infinity.

The only time when this does not happen is when we take a double scaling limit

where |ai|2 = Λ→∞ independent of i. In this case one has that the zi → 0 and

the potential grows only like Λ2.

Considering the configuration space as the set of open intervals |ai| ∈ (0,∞)

(since after all we can solve for the zi given the ai), we have that the domain of

interest is an open ball (it is diffeomorphic to (0, 1)N), and the potential function

diverges on all the boundary, while it is finite (and indeed analytic) in the interior.

This shows that the energy function has at least one minimum. Moreover, if we

compactify the boundary of the configuration space by adding one point at infinity,

we get a configuration space which is compact and has the topology of a sphere.

The point at infinity realizes the maximum of the energy function continuously 1.

1We can always map the energy function from [0,∞) to [0, 1] by using tanh(E) for example.
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Notice that

∂|ai|EJ(|ai|) = ∂|ai|E(J, zi(ai), ai)|z + ∂zjE(J, zi(ai), ai)
∂zj
∂|ai|

= ∂|ai|E(J, zi(ai), ai)|z

(10.45)

since the zi solve the ∂zjE(J, zi(ai), ai) = 0 equations. Any critical point of the

original E(J, ai, zi) will give rise to a critical point of EJ(|ai|) and vice versa.

In our original ansatz where we have 3N variables, given by ai, ωi, zi, we have

managed to reduce the problem to a set of algebraic equations in N variables, the

ai themselves.

For the purpose of analyzing configurations, the function EJ(|ai|) where we fix

the J and have already solved for the zi will be thought of as a Morse function

on this topological sphere (the reader unfamiliar with Morse theory should look

at [213, 214], and the lecture notes by Hutchins are very approachable [215]).

The main reason for using Morse theory is that it utilizes and analyzes the set of

critical points of a function, and from this set the topology of the manifold can be

reconstructed. For us, the topology is already known (it is a sphere), but the set

of critical points is not. The set of critical points and gradient flows between them

gives a model for the cohomology of the manifold, which in our case is known.

Given a set of critical points we can ask if the set is consistent with the topology

of the manifold. If it is not, we are missing critical points. Also, as J changes,

the set of critical points can change dimension and how these changes can happen

is understood in general. In our case, because of the extra symmetries of the

potential, the critical points will exhibit also a representation of the symmetry

group.
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10.4 The case of 2× 2 matrices

The case of N = 2 is the simplest we can analyze given the structure of our

ansatz that is not completely trivial. The matrices take the form

X+ =

 0 |a1| exp(iω1t)

|a2| exp(iω2t) 0

 , Z =

z1 0

0 z2

 (10.46)

When we compute the equations that the zi must satisfy for fixed ai, J , we find

that

0 = z1 + |a1|2(−6 + 4z1 − 4z2) + |a2|2(−6 + 4z1 − 4z2) (10.47)

0 = z2 + |a1|2(−6 + 4z2 − 4z1) + |a2|2(−6 + 4z2 − 4z1) (10.48)

Summing the two, we find that z1 + z2 = 0. We can substitute this result back to

find that

z1,2 = ± 6(|a1|2 − |a2|2)

1 + 8|a1|2 + 8|a2|2
(10.49)

At this point it becomes clear that the expressions simplify if we consider the

two variables P = |a1|2 + |a2|2 and Q = |a1|2 − |a2|2. This is because P is even

with respect to the Z2 symmetry |a1| ↔ |a2|, and Q is odd. Thus, the symmetry

algebra acts simply on the variables P and Q themselves. We find then that

E(J, zi(|ai|), |ai|) =
J2

16P − 16Q
+

J2

16(P +Q)
+

32(P − 1)Q2

8P + 1
+ 2P (10.50)
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When we compute the equations that P, Q must satisfy, obtained by consider-

ing ∂P,QE = 0, it is convenient to eliminate the J dependence of one algebraic

combination of these. After a bit of work, this is accomplished by considering

2PQ∂PE + (P 2 +Q2)∂QE =
4(4P − 1)Q (32P 3 − 4P 2 + P (32Q2 − 1) + 16Q2)

(8P + 1)2

(10.51)

Notice that this factorizes, so there are three branches. One where Q = 0 identi-

cally, one where P = 1/4 identically and another one where

Q2 =
−32P 3 + 4P 2 + P

16(2P + 1)
(10.52)

which is positive only if P ≤ 1/4.

Let us analyze the first one. We can substitute Q = 0 in E, to find that

E =
J2

8P
+ 2P (10.53)

And the minimum occurs for P → J/4 (here we have taken J > 0, and obviously

P is positive since it is a sum of squares). We can then evaluate that for this

solution

E = J (10.54)

in the limit J → 0, this solution reduces to the trivial solution where all matrices

are identically zero. For the second solution, we take P = 1/4, and we find

similarly that

E =
J2 + (1− 16Q2)

2

2− 32Q2
(10.55)
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which is of similar form if we use the variable x = 1 − 16Q2 (this is, of the form

Ax+Bx−1). Again, the minimum occurs when

Q =

√
1− J
4

(10.56)

and we also find that E = J identically. This is the solution where we choose to

take Q > 0. There is a similar solution with Q < 0 that is a Z2 reflection of this

solution. When J → 0, this is the standard fuzzy sphere of 2× 2 matrices. When

J → 1, this matches our other solution with Q = 0. The three solutions meet at

J = 1. Beyond J = 1 this solution does not exist anymore.

In the third branch, we have that

E =
2J2(2P + 1)

(4P + 1)(16P − 1)
− 4P 2 + 9P − 9P

2P + 1
(10.57)

and it is easy to solve for J as a function of P (essentially solving ∂PE = 0),

giving us

J2 =
(1− P )P (64P 2 + 12P − 1)

2

(2P + 1)2(8P + 1)
(10.58)

So that we end up with a parametric solution J(P ), rather than the other way

around. This can be inverted numerically. This only makes sense if J2 ≥ 0, so that

necessarily P ≤ 1, and remember also that 1/4 ≥ P ≥ 0 from the reality of Q.

But moreover, |Q| ≤ P , and this restricts P to be bigger than 1/16. Notice that

when J → 0, there are various values of P that can arise as roots. The only one

that is new corresponds to P = 1/16. This is a fuzzy sphere at half radius. This

can be easily understood if we make an ansatz of spherical symmetry for a saddle
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point. In this case the matrices X, Y, Z are all proportional to the corresponding

Pauli matrices with proportionality constant r. Because the energy for a static

configuration is quartic in the matrices, and we have that E = 0 at r = 0 and

E = 0 at r = 1, and always E ≥ 0, then the energy must be proportional to

r2(1 − r)2. This has a maximum at r = 1/2, which is the sphere at half radius.

This solution also matches the solution at Q = 0 that we already had when we

set P = 1/4. There is similarly a reflected solution with Q < 0, where we take the

other square root branch cut of equation (10.52). The new solution of the fuzzy

sphere at half radius migrates to higher angular momentum as we increase P from

1/16 to 1/4 and is a saddle point. Therefore it has Morse index one. This solution

and the one that is reflected by taking Q→ −Q can cancel the two minima from

the BPS solution as they meet at J = 1 with the trivial solution that has Z = 0

throughout.

The full set of solutions is depicted in Figure 10.1. There we can see that for

low angular momenta there are five critical points. Three are minima and two are

saddles with Morse index one. The saddles and two of the minima are reflected

into each other by the Z2 symmetry, and one minimum is at the fixed point. The

two saddles and two of the minima annihilate each other when J = 1. Because the

minima that annihilate with the saddles are BPS, the saddles need to approach

the extremal limit and thus must touch the fixed point set, because one can not

descend further from the saddle to the fixed point otherwise.
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Figure 10.1: Parametric plot of the solutions for a1, a2 derived either from
equation (10.52), from P = 1/4 or from the solution Q = 0 with a1 = a2.
Superposed we find level sets of the energy function at J = 0.3, with the
energy levels shown, and we see that the curves pass through the critical points
of the energy function.

10.5 The case of 3× 3 matrices

The equations that the ai and zi need to satisfy can be directly derived from

(10.43) and (10.41). We have not been able to solve them algebraically in general,

although there is one trivial solution with zi = 0 and all ai equal to each other.

This solution exists for any value of the angular momentum (and actually all

values of N as well). Our strategy for solving the problem is to start with known

solutions at J = 0 and perturb them numerically slowly by varying J until a new

solution near the old one is found. Because the solutions are saddle points of the

energy function, which is considered as a Morse function, small perturbations of
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the function preserve the saddles in general. These are saddles for any J until

a subset of the saddles collides. A saddle with index m can be annihilated by a

saddle of index m+ 1 or m− 1 2.

The obvious solutions at J = 0 are the fuzzy sphere vacua. For any such

fuzzy sphere with k × k matrices, we can also find an unstable fuzzy sphere at

half size, which is analogous to the one we found for 2× 2 matrices. We can then

combine these solutions together into new solutions. The reason for this is that

in any fuzzy sphere for k × k matrices we have |ak|2 = 0 and the matrix is upper

triangular. This is true regardless of if the fuzzy sphere is stable or unstable. We

can then mix and match these solutions and put them in some order. For 3 × 3

matrices this does not matter as there are not too many ways of partitioning 3 into

integers, but the strategy works in general for other values of N . The value J = 0

is technically a singularity of the family of Morse functions because the fuzzy

sphere vacua end up with some ai = 0, and we argued before that these points

need to be identified with each other in the one point compactification of the

open intervals |ai| ∈ (0,∞) to get a sphere topology. Numerically, we can start

with these solutions and perturb entries that start at zero by a small amount,

while at the same time turning on a small amount of angular momentum. All

solutions persist under this procedure, so we can safely describe them by taking

the limit J → 0. We also need to count them with multiplicity, because we have

our dihedral group of (quantum) symmetries that let us find new solutions of the

ai by permuting them clockwise, or by reflection. This is described in Table 10.1

If we take the solutions as above and we compute the Morse polynomial with just

2Recall that the index of a critical point is number of negative eigenvalues of the Hessian at
that point.
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Splitting Stability Morse Index Multiplicity Unbroken Quantum Symmetry
1+1+1 S, S, S 0 1 D3

2+1 S, S 0 3 Z2

2+1 U, S 1 3 Z2

3 S 0 3 Z2

3 U 2 3 Z2

Table 10.1: Table of sphere solutions. The splitting indicates the size of ma-
trices of the fuzzy spheres, S, U indicates if they are stable BMN vacua, or
unstable spheres at half size, the Morse index is the number of negative modes
of the Hessian (after perturbing by a small j, and the multiplicity is the num-
ber of copies of the solution that are obtained from using the group symmetry
actions on a given solution.

these solutions, we find that

Mtrial(t) = 1 + 3 + 3t+ 3 + 3t2 + t3 = 7 + 3t+ 3t2 + t3 (10.59)

where the last entry (the one for t3) corresponds to the maximum of the energy

function at infinity. The Poincare series of the three sphere is

P (t) = 1 + t3 (10.60)

The Morse inequalities require that Mtrial(t)−P (t) = (1 + t)Q(t) where Q should

be a polynomial with positive integer coefficients. In particular we should have

that M(−1) = P (−1). This is not the case. This indicates that we are missing

critical points of the energy function. Since all the solutions above have an en-

hanced U(1) rotation symmetry, it makes sense to look for solutions with such a

rotation symmetry for more saddles. We do this graphically in Figure 10.2. In

the figure the zi have already been solved for, but the |ai| are variables.

We see from the figure that there are additional saddles that are not reflection
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Figure 10.2: Energy function at J = 0, |a3| = 0. The axis indicate |a1|, |a2|,
and the colored contours have their energy values indicated. The solid dots
indicate approximate positions for the various saddles. The solid dots in red
indicate new saddles that do not arise from collections of round fuzzy spheres.

symmetric with respect to the diagonal, nor are they on the edges of the graph.

These new saddles have index 1, and the orbit under the symmetry group produces

6 saddles in total, and no unbroken symmetry. These would add an additional 6t

to Mtrial(t). With this additional set of solutions we find that

M(t) = 1 + t3 + (1 + t)(6 + 3t) (10.61)

and now we satisfy the Morse inequalities. This means that it is consistent if these

are all the saddle points and we are not missing any.

We have not found any other saddle point numerically at J = 0. If they exist
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they should have all three |ai| 6= 0. It is possible to use this information to show

that no such saddle can exist, and not just for N = 3 but for all N .

The energy function is given by

E(J, |ai|, zi) =
J2

8N2

N∑
i=1

1

|ai|2
+

N∑
i=1

1

2
(zi + 2|ai−1|2 − 2|ai|2)2 + 2(1 + zi+1 − zi)2|ai|2

(10.62)

The equations of motion for the ai yield

J2

4N2|ai|3
= 4|ai|

(
(1 + zi+1 − zi)2 + (zi+1 − zi) + 2(−|ai−1|2 + 2|ai|2 − |ai+1|2)

)
(10.63)

Next we suppose that |ai| 6= 0 for all i at J = 0. The first term of (10.63) vanishes

and we may divide the rest by 4|ai|. We are left with

0 = (1 + zi+1 − zi)2 + (zi+1 − zi) + 2(−|ai−1|2 + 2|ai|2 − |ai+1|2) (10.64)

Summing over all i we have

0 = N +
N∑
i=1

(zi+1 − zi)2 (10.65)

Since the summation is non-negative and N is positive, we have reached a con-

tradiction. Thus |ai| = 0 for at least one i at J = 0.

The equation of motion for the zi yields.

0 = zi − 4|ai|2
(

3

2
+ zi+1 − zi

)
+ 4|ai−1|2

(
3

2
+ zi − zi−1

)
(10.66)
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Summing these equations yields a traceless condition,
∑

i zi = 0. This had to

be true because ṖZ = 0 and the trace of the matrix model is just a harmonic

oscillator.

This feature has the following implication. When we perturb away from J = 0,

the |aj|2 will be modified very slightly (at order J2), but for the one that begins

at zero |a`|2 it is different. In the kinetic term we will have a singular term, so

that the energy function will look like

E(J) ' E(0) + α|a`|2 +
J2

8N2|a`|2
(10.67)

and clearly the |a`| that minimize this are such that |a`|2 ' J/
√

8N2α. When

we plug this into the energy function we find that there is always a term linear

in J . This means that the fuzzy configuration built with our ansatz can never

be considered as a rigid body; for rigid bodies the energy goes like J2, where

the coefficient of proportionality depends on the moment of inertia. The fuzzy

configurations rotate by turning on wave-like excitations on the sphere. This is

exactly as expected for a membrane.

A presentation of the solutions found at J = 0 for 3× 3 matrices, followed as

we change J is shown in Figure 10.3. As shown in the figure, there are many phase

transitions. The one marked A corresponds to two saddles of index one and one

saddle of index 2 merging into a single saddle of index 1. This is repeated in three

different locations due to the symmetry operations. The unbroken symmetry

of the incoming saddles of index one changes from all symmetry broken to a

saddle with a Z2 symmetry unbroken. It also shows that the saddle of index
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Figure 10.3: Phase diagram of solutions as a function of J on the abscissa,
and the |ai| are plotted on the ordinate. We follow the solutions slightly per-
turbed from J = 0. Shown are the values of the |ai|. Different solutions for
|a1|, |a2|, |a3| are colored differently, but all values are shown in the same color
for the same solution. The numbers attached to saddles are the Morse index.
Phase transitions where solutions merge or end are shown as A, B, C, D. The
ones that are not marked below the maximal symmetry solution are C, D also.

one ends smoothly and without corners. Actually this is what is expected in

general: saddles should end smoothly and without corners as we pass through

critical values of J . The phase transition marked as C is inconsistent as shown:

a single saddle of index zero and a saddle of index one can not annihilate into

a saddle of index zero (this would violate the Morse inequalities). This means

that there is a solution missing. Similarly, in phase transition D, the line actually

ends. The vertical line down is an artifact of joining the numerical solutions,

and instabilities of the numerical method when the Hessian is degenerate. This

solution ending also indicates a missing solution, because of inconsistency with

the Morse inequalities. Finally, at the transition B we see that a set of three
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saddles of index zero and index one merge with the saddle with all symmetries

unbroken. Although this is in principle allowed, it is not smoothed out like in

transition A, or as one would expect from transition C once a solution is found.

We can conjecture that the solutions that correspond to the green and purple lines

in the figure actually continue to the other side. Because of the way solutions are

merging and the dihedral symmetry being restored, transition B is a multi-critical

point. It is natural to believe that the solutions that are continued end on the

other inconsistent transitions. They should have also an unbroken Z2 symmetry

each and come in three copies. Because of the unbroken Z2 symmetry, two of the

|ai| should be equal to each other. This makes it possible to guess the solutions

by looking at energy contours in a two dimensional plot where we set |a3| = |a2|

a bit after the transition at J ' 2.1. We should be looking for a BD line of

index one (it’s the only way we can cancel a solution of index zero). The green

line actually saturates the BPS inequality, and this should persist in the analytic

continuation to the right. This indicates that there should be a saddle of index

zero joining BC. This process is depicted in Figure 10.4. Once we include the

new saddles after this point, we can complete the phase diagram in Figure 10.5.

What we see from the figure is that first, there is a maximal angular momentum

after which there is only one solution, and this solution preserves the maximal

dihedral symmetry. Second, the trajectory of the maximal sphere goes through a

phase transition at a finite J before reaching this maximal angular momentum.

We have checked that after the first transition the solution stops being extremal

(BPS), even though it is a local minimum. This means that the corresponding

phase can be considered metastable from energetic considerations.
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Figure 10.4: Energy contours in |a1|, |a2| = |a3| at J = 2.1. The saddles are
hard to see. The energy contours have energies starting at E = 2.1 and spaced
at δE = 2× 10−7 showing ten contours.

At the maximal angular momentum, it becomes classically unstable. The jump

from the metastable to the stable configuration is a first order transition, but at

the place where it changes from being BPS to being non-BPS, we have coexistence

of a second order phase transitions and a first order phase transition with the same

energy. This degeneracy is expected to be lifted by quantum corrections. At small

~ we expect that the phase diagram has the same structure we have shown, because

it is controlled by topological aspects of a Morse function. This is similar to the

transition found in [216], where studying spherical D-brane configurations, beyond

the maximal giant graviton there is a non-BPS metastable D-brane solution that

continues for a while with larger R-charge (this branch was first found in [72],

but the stability analysis was not done), and the family of solutions ends in a
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Figure 10.5: Full phase diagram of solutions as a function of J on the abscissa,
and the |ai| of a single solution are plotted on the ordinate.

transition that should take us to another branch. This transition should be where

the metastability is lost.

10.6 Other Examples

Our next task is to understand how to go beyond N = 3. Armed with the

information that at least one of the |ai| needs to be zero at J = 0, we can begin

by looking at saddles for smaller N and fit them into saddles for N by either

bordering by zeros, or by taking direct sums of solutions for smaller N such that

the rank adds up to N . We choose these saddles to have |ak| = 0 for the entry on

the first row at the bottom corner. These will all fit the ansatz where X+ is upper

triangular, bordering the diagonal, and with a zero in the bottom corner. This

actually always produces correct solutions at J = 0. From equation (10.66), we

find that for the values of |ai| such that |ai| = 0, zi only depends on the previous

ones, and therefore decouples from zi+1, and similarly zi+1 will be related to zi+2,
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Figure 10.6: On the left, partial phase diagram of 4× 4 solutions as a function
of J on the abscissa, and the |ai| of a single solution plotted on the ordinate
in the same color. Notice the similarity of the transitions to the ones for 3× 3
matrices in Figure 10.3. On the right, we evaluate also the zi values for the
given solution of the |ai|. The figure is not symmetric under zi → −zi which
indicates that many of the phases are not ‘parity invariant’ with respect to the
dihedral discrete symmetry group.

but not the other ones. Secondly, the equations for |ai| are trivially satisfied in this

case because of the |ai| appearing in front of it in equation (10.63). The rest of the

equations are satisfied if they were satisfied for smaller values of N . This gives us

an ample trove of solutions with which we can explore the phase diagram. This is

explicitly shown in Figure 10.6. The same structure appears qualitatively. There

is a maximal angular momentum beyond which only the trivial solution exists,

and it ends in a first order phase transition with a metastable phase. Because

there are many more solutions at J = 0 at each N (the number is bounded below

at least by twice the partitions of N), the full phase diagram is more complicated

as we increase N , and it is clear from the Morse analysis that we are missing

quite a number of saddles. Although two new solutions always exists for any N ,

the maximal fuzzy sphere and the sphere at half size, one can expect in general

that there are quite a number of intrinsically new (indecomposable) solutions that

appear at any N .

265



Adding Angular Momentum Chapter 10

10 20 30 40 50 60

-4

-2

2

4

Figure 10.7: We evaluate zi(J) for three different solutions of 10×10 matrices,
the maximal fuzzy sphere, a near maximal fuzzy sphere bordered by zero, and
a solution for a fuzzy sphere of spin 7/2⊕ 1/2.

For illustration purposes, we also show some of the solutions for 10×10 matri-

ces in Figure 10.7. This shows the procedure for building up solutions by bordering

by zero or adding up previous solutions in more detail. It is clear that the full

phase diagram is quite complicated, some of the solutions ending in first order

phase transitions, and some others ending in what appear to be multi-critical

points. Here we basically show that the problem is amenable to computer calcu-

lations. We should point out that for larger N we do not have a good strategy to

search for the intrinsically new solutions yet. The graphical method that worked

for N = 3 is unsuited for higher dimensions, as we can not visualize the data.

10.7 Large N

An interesting way to proceed to large N is the following. Since the energy

function in equation (10.41) is of nearest neighbor type, we can think of it as a

discretized integral of an energy density. Indeed, this is what the interpretation of
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the solutions as of matrix mechanics as discretized membranes indicates we should

be doing [105, 106]. With that in mind, we want to replace zi → z̃(θ) and the

same for |ai|2 → |ã|2(θ), where θ is a periodic coordinate with period one, rather

than a discrete set with N elements. We basically take i ' Nθ. Then expressions

of nearest neighbor differences get replaced by derivatives zi+1 − zi → N−1∂θz̃.

We also need to remember that the maximal fuzzy spheres are of size N when we

have N D0-branes, and we want to rescale this out of the energy. Therefore, we

write zi ' Nz(θ), and |ai|2 ' N2|a|2(θ) and
∑

i = N
∫
dθ. When we do this, we

find that

Vpot = V (|ai|, zi)→ N3

∫
dθ

[
1

2

(
z − 2∂θ|a|2

)2
+ 2 (1 + ∂θz)2 |a|2

]
(10.68)

and similarly, the terms that contain angular momentum, when we rescale J →

N3̃, give us

Ekin = N3

∫
dθ

̃2

8|a(θ)|2
(10.69)

The point is that in this rescaling, we get a common factor of N3 in front of

the energy that can be dropped to obtain a classical membrane energy which is

independent of N . The value of N can effectively be changed by changing the

periodicity of θ without changing the energy density further. We use the relation

Ntot = N
∫
dθ to convert the changing period of θ into a different value of N , and

we can always change scales by taking θ → αθ, z → αz and |a|2 → α2|a|2. The

energy function also has a Z2 symmetry where we change z → −z and θ → −θ.

The energy function is now a local integral of the functions z, a and their

derivatives. The condition to be a critical point of the effective energy is a pair of
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differential equations, one for z and one for a that come from the variational princi-

ple. A complete set of initial conditions requires specifying z(0), a2(0), ∂θz(0), ∂θa
2(0).

These can be evolved in θ, but the trajectories need to be periodic with a fixed

prescribed period (which we are choosing to be set equal to one). This effectively

quantizes the set of possible solutions so that they are discrete.

The system is translation invariant in θ and so there is a trivial one parameter

family of solutions that is obtained by translation. This becomes a U(1) sym-

metry that was only realized as a ZN quantum symmetry at finite N , and which

is spontaneously broken on most of the solutions. Because |a2| is bounded for

interesting solutions, we can always start out from a place where ∂θ|a|2 = 0.

The fuzzy spheres at zero energy appear at ̃ = 0, and are at the zeros of Vpot.

These occur at

∂θz = −1 (10.70)

∂θ|a|2 =
1

2
z (10.71)

and satisfy a first order set of equations (typical of BPS states), rather than the

usual second order equations. At finite N , the Z matrix for fuzzy spheres is the

matrix of spins in an N dimensional representation of su(2). Consecutive matrix

elements differ by 1 and so the equation for z(θ) is capturing this effect. If we start

from z = 0 at θ = 0 (so that z(θ) = −θ), and |a|2(0) = a2
max, it is straightforward

to integrate these and find that

∂θ|a|2 = −1

2
θ (10.72)
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so that

|a|2(θ) = a2
max − θ2/4 (10.73)

We hit a2(θ0) = 0 at some finite value of θ0. This is a singular point in the

differential equation system because the effective derivative term squared for z

vanishes at this point. We are allowed to have large jumps in z at this point

because there is no energy cost to it. This way we recover that the set of possible

ground states is a collection of fuzzy spheres. Quantization then requires that

each of these have an integer amount of D0 brane charge. This is reminiscent of

the LLM droplet picture [77], where quantization of the area arises from a Dirac

quantization condition. Notice that the solution can also be written as

|a|2(θ) = a2
max − z2(θ) (10.74)

which gives |a|2 + |z2| = const, as one expects from a sphere written in cylin-

drical coordinates (the additional angle is associated to the ZN → S1 rotational

invariance of the set of solutions we are considering in the large N limit).

At this point, going beyond the BPS solutions, we want to change perspective

and think of the variable θ as a time coordinate, and the effective energy function

we had before as a Lagrangian whose variational principle gives some non-trivial

equations of motion. Using this change of point of view, we see that the Lagrangian

has a (repulsive towards infinity and the origin of |a|2 when j̃ 6= 0) potential of

the form

Veff ' −
1

2
|z|2 − 2|a|2 − ̃2

8|a|2
(10.75)
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there is a non-trivial curved metric

ds2 = 4(d|a|2)2 + 4|a|2dz2 (10.76)

with translation symmetry in z and a non-trivial magnetic potential associated to

the one form

A = −2zd|a|2 + 4|a|2dz (10.77)

which in these coordinates produces a constant magnetic field. Notice however,

that because the metric is curved, the magnetic field per unit normalized area

actually changes and becomes weak when |a|2 gets large. The magnetic field will

try to bend trajectories into confining circular orbits, but it has to compete with

a repulsive potential that tries to destabilize the system. Also, the metric has

a scaling symmetry where |a|2 → γ2|a|2, z → γz. The metric is also positively

curved away from |a|2 = 0, which is a singularity. If we think of the z as an angle

coordinate and the |a|2 as a radial variable, then the curvature wants to repel

geodesics from hitting |a|2 = 0.

The obvious critical point of the equations of motion where nothing moves is

at the maximum of the potential and is in unstable equilibrium. This produces a

periodic orbit for any period. Other periodic orbits need to be found by trial and

error, and once a sufficiently approximate solution of the periodicity condition is

found it is possible to zoom into it.

Particularly simple examples of this search can be performed if the solutions

are reflection symmetric under z → −z. Then the solution can be characterized

by the value of |a|2(θ0), when z(θ0) = 0, and the condition for symmetry forces
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Figure 10.8: Parametric plots of (z(θ), |a|2(θ)) for various initial conditions at
fixed value of ̃2 = 0.1. We show a BPS trajectory in purple, and examples
of scanning over parameters to find periodic trajectories in blue and red. The
fixed point is marked. The green solution which was found by scanning winds
twice around the fixed point and it is not BPS.

∂θ|a2|(θ0) = 0. We can then move the velocity of ∂θz(θ0) = ξ as a scanning

parameter. Some examples of this procedure are depicted in Figure 10.8.

When the orbit returns to z(θ1) = 0 at some later time (not necessarily the

first time around), we can then compute κ = ∂θ|a|2(θ1) from solving the equations

of motion, and as we scan over ξ we look for sign changes in κ. We can then

zoom in for the parameter ξ that solves the periodicity condition. The point of

intersection can be the same one as before or it can be different. If it is different

we double the time of this half orbit, and it becomes periodic.

It is also interesting to study the first order differential equations that arise

for states that saturate the BPS inequality at finite J . These equations are given
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by

∂θz = −1 +
̃

4|a|2
(10.78)

∂θ|a|2 =
1

2
z (10.79)

and are obtained from requiring the vanishing of the squares in equation (10.7)

after substituting our ansatz. These can in turn be derived from a variational

principle for an auxiliary Lagrangian of the form

L = q̇2 − q +
̃

4
log q (10.80)

where q = |a|2, and z plays the role of the canonical conjugate of q (namely

z = 2q̇ = pq). The effective one dimensional potential U(q) = q − ̃
4

log q is

bounded from below and goes to infinity at q → 0 and also at q → ∞, so it

produces automatically closed periodic orbits without self intersections. There is

also only one minimum at q = ̃/4.

These trajectories are interpreted geometrically as multiply wrapped tori that

wrap the same torus, where the wrapping number is the number of times we have

to go around the orbit so that the period matches the number of D0-branes.

The period of the orbit can be calculated using standard techniques as follows

Θ =

∮
dq

q̇
∝
∮
dq

z
(10.81)
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Figure 10.9: Period of an orbit as a function of |a|2max at z = 0, and at fixed ̃2 = 0.1.

The integral is over a periodic orbit characterized by the parametric equation

W = q̇2 + q − ̃

4
log(q) = z2 + q − ̃

4
log(q) (10.82)

where W is a constant of integration (the energy associated to the Lagrangian

function L). This solves for z as a function of q readily. Indeed, the parameterW

this way defines a curve with a differential, and then Θ is the period integral over

the differential. We have to be careful with this interpretation since the curve

is real analytic and not a complex curve. More general solutions for the BPS

states in the continuum limit were found in [202], and they similarly show up

with various logarithms 3.

Because U(q) has a non-trivial third derivative about the minimum, it is pos-

sible to show that the period for orbits very near the fixed point have a decreasing

period as we go away from the fixed point, and for large orbits, the period increases

again. This is depicted in Figure 10.9.

3The variable W in their work is related to q in ours, with q 'W 2.
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Since we need to fix the period to fix the number of D0-branes, while we are

allowed to vary ̃, this shows that for some values of ̃ there is more than one

non-trivial solution (the trivial fixed point orbit can have any period we want it

to). The larger solution is interpreted as a fat torus which in principle can become

very large as we decrease ̃ going smoothly to the fuzzy spheres in the limit ̃→ 0

while the small one is a thin torus that gets thinner and disappears into the trivial

solution at finite ̃.

As we increase ̃, we increase the period of the orbits near the fixed point,

as well as the minimal period. Eventually the period is too long and the BPS

solutions with the fixed period we want disappear. This behavior can already be

seen for the phase diagram of 3 × 3 matrices in Figure 10.5, where one of the

new family of minima joining transitions B, C in Figure 10.3 plays the role of the

small torus solution whereas the maximal fuzzy sphere family plays the role of the

large torus. This phenomenon can happen for any multiply wound torus in the

same way. At the transition C two BPS minima end together by joining with a

saddle and becoming a non-BPS minimum. Hence, it would not be captured by

the BPS solutions we are finding.

10.8 Topology Change

Now that we have the solutions for the matrix ansatz, even if computed nu-

merically, we can analyze the geometry of the resulting matrix configurations as

membranes using the ideas developed in Chapter 7. The main calculational tool

we use is the effective Hamiltonian (7.7). We characterize the brane probe by the
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vector ~ξ ∈ R3. Again, the effective Hamiltonian is given by

Ĥ(~ξ) =
3∑
i=1

(Xi − ξi1N×N)⊗ σi (10.83)

A zero eigenvalue occurs at ~ξ exactly when det(Ĥ(ξ)) = 0. At this place, the

determinant changes sign. We can therefore plot the level set det(Ĥ(ξ)) = 0 and

standard numerical algorithms can be used to determine this locus. Since this is

a polynomial equation in real variables, the corresponding surface is algebraic in

nature. In contrast, for the BPS solutions at large N , we get a surface that also

contains the log function in equation (10.82). In this sense, there is a measurable

finite departure from the finite N and the infinite N limit. We can think of this

procedure as measuring quantum geometry corrections to large N . The most glar-

ing one is that the rotation symmetry group of the solution is reduced from U(1)

to ZN , so the matrix solutions are lumpy, and the lumpiness is non-perturbative

in N ; we get exactly N lumps.

Our goal stated at the beginning of the paper is to analyze the topology

transition from a sphere to a torus. As we discussed in Section 10.7, the topology

change at large N is instantaneous as soon as we turn on a non-zero value of the

angular momentum ̃. As seen for the BPS trajectory in Figure 10.8, this proceeds

by forming a very thin funnel between the north pole and the south pole. This

funnel represents a condensate of strings, as the picture of [112] suggests we should

have. From here we ask a few natural questions. The first one is if the topology

change is apparent as a phase transition in the bosonic set of degrees of freedom,

that is, if we have to go beyond a phase transition in Figures 10.5, 10.6, or 10.7.
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Figure 10.10: Transition from a deformed sphere to three small spheres for the
case of 3×3 matrices. The values are at J ' 1.9 and J ' 1.99 for the maximal
sphere.

The second question is if the transition is instantaneous or not. Lastly we ask

what happens also when the torus gets very thin (as suggested by the thin ring

solution in the continuum limit).

We do not find tori for either 2× 2 or 3× 3 matrices. This is shown in Figure

10.10. The transition in topology is from a single sphere to three different small

spheres. This can be understood as a transition from a membrane to a collection

of separated D0-branes that have been puffed up a little bit from having some

off-diagonal excitations, rather than pure D0-branes where the ansatz is diagonal.

Incidentally, in the trivial configuration one can show that Z commutes with X+

and X− and they actually commute with each other. This represents a collection

of separated D0-branes, because the matrices can be diagonalized simultaneously.

This is the same type of interpretation as in the BFSS matrix theory [107].
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Figure 10.11: Transition from a very distorted sphere to a very distorted tours
for 4 × 4 matrices. The values are at J ' 4.24 and J ' 4.31 for the maximal
sphere.

The topology transition depicted in Figure 10.10 occurs before any singularity

of the phase diagram in Figure 10.3 is encountered, but for the values of J given,

it is close to the transition. The same procedure for the case of 4 × 4 matrices

is depicted in Figure 10.11 where we see a sphere transitioning to a torus near

the phase transition for the maximal sphere, but before it. We saw a very similar

phase transition in Section 7.3.2. After all, the deformations there take the same

form as our ansatz here. The only difference is that the deformation is controlled

by the equations of motion. That is, the deformation is not arbitrary and these

tori are present in the phase space of the BMN matrix model.

From these examples it should be clear that as far as the bosonic degrees of

freedom are concerned, the change of topology from a sphere to a torus is smooth.

Moreover, it does not occur immediately as in the large N limit. The fermions do
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detect the topology change. The tori that are obtained this way for the maximal

sphere for such small values of N are very distorted. This should improve as we

increase N .

One could also analyze the geometry and topology in terms of the ideas of

fuzzy Riemann surfaces found in [130, 127]. For the analysis of topology, one

uses properties of the eigenvalues of Z interpreted as a Morse function. This

only works for very large N . As far as the geometry is concerned, we find that

the finite matrices for some sufficiently classical states (at sufficiently large N

again) would give rise to fuzzy approximations to (10.82) for some values of W ,

where q ' (X+X−) is interpreted as a matrix and is a normal ordered form of

the product. These solutions are not algebro-geometric in nature because of the

logarithm. In this case q and Z commute and can be thought of as classical

variables on the torus that can be constrained by an equation. Deviations from

satisfying the precise equation W = z2 + q − 1/4̃ log(q) for fixed W should then

be interpreted as “quantum corrections” in 1/N . These are not quantum due to

a non-trivial value of the Planck constant ~, but instead should be thought of

as quantum corrections to geometry due to the discrete nature of the D0-brane

charge. These corrections are due to the small size of the M-theory circle in the

DLCQ limit [217]. Here we take the DLCQ of the plane wave geometry.

10.9 Discussion

We have analyzed a particularly simple set of periodic classical solutions of the

SO(3) sector of the BMN matrix model. The solutions are periodic in time modulo
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gauge transformations. They are also required to preserve the maximal discrete

subgroup of rotations along the axis of rotation that is allowed by the discreteness

of the matrices, namely a ZN . At large N , a U(1) of rotations is recovered, so if the

solutions have a continuous limit, they go to a rotationally invariant configuration.

Not all solutions are not supersymmetric. As a consequence, the rotations that

are turned on are not a central charge of the theory. There is, however, a BPS

inequality that the solutions must satisfy, relating their energy to the angular

momentum. Some solutions saturate the inequality, and they have a simpler set

of equations that need to be satisfied.

The rigidly rotating solutions can be understood in terms of a system of alge-

braic equations. These are in one to one correspondence with critical points of an

energy function. Solutions found at zero angular momentum correspond not only

to the vacua of the matrix model, made of concentric fuzzy spheres, but also other

various unstable saddle points. These all survive when we turn on the angular

momentum. Excitating angular motion in the configurations always leads to a

term in the on-shell energy proportional to the angular momentum, rather than

starting at the square of angular momentum. This indicates that even though the

configurations are rotating rigidly, the matrix object can not be thought of as a

rigid body.

Both the finite N and large N results suggest that there is a maximal angular

momentum beyond which there is only one phase. This should scale like N3. This

phase when interpreted geometrically corresponds to the brane dissociating into

a collection of D0-branes arranged symmetrically on a circle.

The phase diagram of solutions is rather complicated in general and we found
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it very useful to use Morse theory to find all the solutions, at least for low values

of N . The full pattern for a given N has many more saddles than the ones for

smaller N . Any solution that is found for lower values of N at J = 0 can be

combined with other such solutions to build solutions at a given N for J = 0.

These becomes seeds for a family of such solutions at finite J . Moreover, for every

N there are new solutions. Some of them we are aware of, like the maximal fuzzy

sphere or a maximal fuzzy sphere at half radius. We do not have a systematic way

to search for the other ones. The parameter space grows in dimension proportional

to N making it increasingly difficult to find them. Understanding this pattern in

general should be very interesting.

At large N , the particular family of solutions we have considered reduces to

a variational problem for critical points of a local integral. The saddle point

equations reduce to finding periodic solutions of a pair of coupled second order

differential equations, while the BPS ones reduce to solving a coupled set of non-

linear first order differential equations. It is only solutions with the right period

that can be used. The period fixes the D0-brane charge of the configuration.

We also found that the topology change from a sphere to a (sometimes multiply

wound) torus happens instantaneously in the large N limit, but not so at finite

N . Here it is delayed. Moreover, the shape of the fuzzy membranes can be very

deformed from a circular torus. The effects that lead to that deformation are

suppressed at large N . It should be interesting to investigate this in more detail.

The breaking of the symmetry is due to the discretization of the D0-brane charge

into matrices. In the fuzzy geometry it is a purely classical effect. However, in the

continuum large N limit, this is supposed to arise from quantum effects that are
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responsible for the quantization of the D0-brane charge. It is often the case that

quantum effects on D-brane field theories can be captured geometrically, like beta

functions being captured by brane bending [218, 219]. In this case we find that

the discretization that appears in matrix theory introduces symmetry breaking

effects that are not apparent in the continuum limit, and they would not appear

in perturbation theory.

It should also be interesting to understand supersymmetry breaking effects

better in these solutions and in particular the corrections due to zero point energy.

This depends on the full theory, as we found that the SO(3) BMN system of

classical equations arises in various different contexts. Such answers depend on

the context.

Another interesting possibility to examine is that the SO(3) sector of the BMN

matrix model is also part of the description of the discrete lightcone quantization of

the membrane in the Penrose limit of AdS4×S7 [60], or its orbifolds. In particular,

one can consider the ABJM model [220] in the appropriate sector that takes us to

the Penrose limit. The natural candidates to consider are D0-brane states, which

are dual to monopole operators. The spectrum of fluctuations around such objects

have been analyzed in [221, 222, 223, 224] and they have many fluctuations that

are supersymmetric and saturate the BPS bound. It should be interesting to try

to turn on rotations in AdS4 for such states and see if the extremal solutions we

have found can be mapped to them at weak coupling as well. This should help

to understand how the D0-brane theory of the matrix model and the ABJM field

theory in the presence of monopole states are related to each other.
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Conclusions

Locality and geometry must appear as exact concepts in the classical limit of

a quantum theory of gravity. As evident by the existence of black holes and

singularities in the classical theory, it is not clear that these notions appear at

all in the quantum theory. Gauge / gravity duality is a powerful tool that allows

us to use the gauge theory as a probe of locality and geometry in the gravity

theory. We explored both locality and geometry in the planar limit of AdS / CFT

correspondence and through the classical dynamics of large N gauged matrix

models.

In the context of AdS / CFT, we explored the physics of open strings stretched

between giant gravitons. We explained how to build the operators dual to giant

gravitons and their stringy excitations. To make connections with the classical

sigma model, the giant graviton operators were delocalized using a collective co-

ordinate. The delocalized giants have indefinite angular momentum, or R-charge,

and can be seen as a coherent state of giant gravitons with definite R-charge. The

collective coordinate can be mapped to its dual position on the S5 in the string

theory. Open strings ending these giants have a description in terms of Cuntz os-
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cillator chains. The dynamics of the open string / giant graviton system is given

by the one-loop dilatation operator to leading order which becomes a Hamiltonian

like operator for the Cuntz system. Taking coherent states of the Cuntz chains,

we were able to build the ground state of the Cuntz Hamiltonian explicitly and

find its energy. Going to second order in perturbation, or to three-loop order in

the gauge theory, we were able to find the first order correction to the ground

state and the second order correction to the energy. We found that the energy of

the open string was consistent with a fully relativistic dispersion relation to third

order in the ’t Hooft coupling.

We believe the dispersion relation to hold to all orders in perturbation theory

due to the existence of a central charge extension of the supersymmetry algebra

left unbroken by the giant graviton system. The central charge is given exactly

by the distance between the giant gravitons and plays the role of the mass of the

open string ground state. In particular, the open string is like a W boson on the

Coulomb branch of the N = 4 SYM theory living on the worldvolume of the giant

gravitons. The open string is revealing how locality and geometry arise on the

worldvolume of the giant graviton.

We then asked what are the geometric duals of β deformations of N = 4

SYM? We answered this question by extending the open string dispersion relation

for β = 0 to arbitrary β using integrability arguments. The base case is β = 0

and describes how the gauge theory is dual to string theory on an AdS5 × S5

background. For nonzero β, the dual geometric background changes based on the

number theoretic properties of β.

Matrix models gave us a different perspective on how geometry is realized in
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gauge / gravity duality. Were able to extract two dimensional surfaces embedded

in three dimensional space given three Hermitian matrices even at finite N . These

surfaces are closed and oriented. We found that the membranes behave like D2-

branes by showing that these surfaces carry the information of a line bundle on

them with a connection.

We then studied thermalization in the classical evolution of matrix models.

For a particular set of initial conditions, we were able to generate a microcanon-

ical ensemble of thermal matrix configurations. We measured the temperature,

made tests of the virial theorem, and analyzed their power spectra. We found N -

independent hydrodynamic behavior for the power spectra of various observables

and large N factorization for correlators. We argued that the thermal matrix

configurations were holographically dual to black holes and develops tools to de-

termine where the horizon may lie.

Lastly, we added angular momentum to classical configurations of the matrix

models and studied their topologies using our own techniques for generating sur-

faces from matrices. We found that transitions from spheres to tori were smooth

as we increased the angular momentum. Studying the thermalization of these

matrix models in the presence of angular momentum is work in progress, but we

plan to understand how dynamics affect the topology encoded in these classical

thermal configurations.

We have only scratched the surface when it comes to understanding how lo-

cality and geometry arise in the context gauge theories. We specifically looked at

emerging strings and branes and clearly, there is still a great deal of work to be

done.
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Appendix A

Conventions and Relations for
the Lie Algebra of U(N)

We use the following conventions for the generators of U(N). These are the same

as those used in [29].

Tr(TATB) = δAB, (TA)αβ(TA)γδ = δαδδ
γ
β (A.1)

where A, B run from 1 to N2 and repeated indices indicate summation. These

relations can be used to prove the fusion / fission rules

Tr(ATA)Tr(BTA) = Tr(AB), Tr(ATABTA) = Tr(A)Tr(B) (A.2)

The following relations are relevant to computing the order N2 boundary contri-

bution to the two loop Hamiltonian. If W is a field in the SYM then we may

expand it as X = XATA and its derivative as ∂X = TA∂XA . Using this fact and
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the relations

(∂Z)abdet(Z − λ) = det(Z − λ)

(
1

Z − λ

)a
b

(A.3)

(∂Z)ab

(
1

Z − λ

)c
d

= −
(

1

Z − λ

)a
d

(
1

Z − λ

)c
b

(A.4)

we have the following fusion / fission rules

Tr(A∂Z)det(Z − λ) = det(Z − λ)Tr

(
A

1

Z − λ

)
(A.5)

Tr(A∂Z)Tr

(
B

1

Z − λ

)
= −Tr

(
A

1

Z − λ
B

1

Z − λ

)
(A.6)

Tr

(
A∂ZB

1

Z − λ

)
= −Tr

(
A

1

Z − λ

)
Tr

(
B

1

Z − λ

)
(A.7)

where it is assumed that A and B are independent of Z.

When computing the boundary terms at two loop order, we need to collect

terms into a derivative with respect to λ so that we then pull down its conjugate.

In order to do this we need the relations

∂λ

[
det(Z − λ)Tr

(
1

Z − λ
A

)]
=

det(Z − λ)

[
Tr

(
1

(Z − λ)2
A

)
− Tr

(
1

Z − λ

)
Tr

(
1

Z − λ
A

)]
(A.8)

∂2
λ

[
det(Z − λ)Tr

(
1

Z − λ
A

)]
=

det(Z − λ)

[
2Tr

(
1

(Z − λ)3
A

)
− 2Tr

(
1

Z − λ

)
Tr

(
1

(Z − λ)2
A

)
−
[
Tr

(
1

(Z − λ)2

)
− Tr

(
1

Z − λ

)
Tr

(
1

Z − λ

)]
Tr

(
1

Z − λ
A

)]
(A.9)
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where A is a matrix that does not depend on λ.
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Appendix B

Cuntz Algebra and Hamiltonians

B.1 Cuntz Oscillators

The Cuntz algebra is a q-deformation of the harmonic oscillator algebra in the

limit q → 0. One has a lowering operator a and a raising operator a†. There is a

zero occupation state |0〉 satisfying a |0〉 = 0. The defining relations are

aa† = I, a†a = I − P0 (B.1)

and lead to the commutation relation

[a, a†] = P0 (B.2)

with P0 the projection onto the zero occupation state. Higher occupation states

are obtained by acting with the raising operator, |n〉 = (a†)n |0〉. The commutation

relation (3.14) implies the simple action of the ladder operators

a† |n〉 = |n+ 1〉 , a |n〉 = |n− 1〉 (B.3)

288



Cuntz Algebra and Hamiltonians Chapter B

with n > 0 for the second relation. Negative occupation numbers are not allowed.

We can extend these Cuntz oscillators to act on individual sites of our multi-

occupation number states by defining ai = I⊗
i−1 ⊗ a ⊗ I⊗k−i and likewise for a†i

and the projection operator P0i. We now have the commutation relation

[ai, a
†
j] = δijP0i (B.4)

A generic state in the occupation number basis is represented as

|n1, n2, . . . , nk〉k = (a†1)n1 · · · (a†k)
nk |0〉k (B.5)

Coherent states can be build from a set of complex numbers {zi}ki=1 that satisfy

ai |z1, . . . , zk〉 = zi |z1, . . . , zk〉 (B.6)

For a single Cuntz oscillator we have a |z〉 = z |z〉 for some complex number z.

Solving for |z〉 yields

|z〉 = Nz

∞∑
n=0

zn(a†)n |0〉 (B.7)

Normalizing the coherent states gives the normalization factor

Nz =
1√

1− |z|2
(B.8)

If we want to the coherent states to have finite norm, then z should lie in the

complex unit disk. The state |z1, . . . , zk〉 is obtained by tensoring the single Cuntz

coherent states with appropriate collective coordinate.
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Because aa† = I, all operators can (and should) naturally be written as linear

combinations of objects in normal ordered form Ŝkn = (a†)kan. It is easy to show

that

Ŝnn = (a†)nan = 1−
n−1∑
m=0

Pm (B.9)

where Pm is the projector onto the state with occupation number m. The occu-

pation number operator is given by

N̂ =
∞∑
n=1

Ŝnn = N̂ † (B.10)

One has [N̂i, a
†
i ] = a†i and consequently N̂i |n1, . . . , nk〉k = ni |n1, . . . , nk〉k.

B.2 Closed Cuntz Hamiltonians

For closed Cuntz chains, the Cuntz operators are cyclically identified, ai ≡

ai+k. The Hamiltonians for the closed Cuntz chain are given up to order λ3 by

Hclosed =
∞∑
`=0

(
λ

4π2

)`
Hclosed,` (B.11)

Hclosed,0 = N̂ + k (B.12)

Hclosed,1 =
1

2

k∑
i=1

(a†i+1 − a
†
i )(ai+1 − ai) (B.13)

Hclosed,2 = −1

8

k∑
i=1

(a†i+1 − a
†
i )

2(ai+1 − ai)2

+ (a†i+1 − 2a†i + a†i−1)P0i(ai+1 − 2ai + ai−1) (B.14)
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Hclosed,3 =
1

16

k∑
i=1

(a†i+1 − a
†
i )

3(ai+1 − ai)3 + vi†aMabP0iv
i
b

+ (a†i+2 − 3a†i+1 + 3a†i − a
†
i−1)P0i+1P0i(ai+2 − 3ai+1 + 3ai − ai−1)

(B.15)

where

via = (ai+1ai+1, ai+1ai, ai+1ai−1, aiai, aiai−1, ai−1ai−1) (B.16)

Mab =



4 −8 2 2 0 0

−8 15 −3 −3 −1 0

2 −3 1 1 −3 2

2 −3 1 1 −3 2

0 −1 −3 −3 15 −8

0 0 2 2 −8 4


(B.17)

B.3 Open Cuntz Hamiltonians

The Hamiltonians for the open Cuntz chain are given up to order λ3 by

Hopen =
∞∑
`=0

(
λ

4π2

)`
Hopen,` (B.18)

Hopen,0 = k + 1 (B.19)

Hopen,1 =
1

2

k∑
i=0

(a†i+1 − a
†
i )(ai+1 − ai) (B.20)

Hopen,2 = −1

8

k∑
i=0

(a†i+1 − a
†
i )

2(ai+1 − ai)2

− 1

8

k∑
i=1

(a†i+1 − 2a†i + a†i−1)P0i(ai+1 − 2ai + ai−1) (B.21)
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Hopen,3 =
1

16

k∑
i=0

(a†i+1 − a
†
i )

3(ai+1 − ai)3 +
1

16

k∑
i=1

vi†aMabP0iv
i
b

+
1

16

k−1∑
i=1

(a†i+2 − 3a†i+1 + 3a†i − a
†
i−1)P0i+1P0i(ai+2 − 3ai+1 + 3ai − ai−1)

(B.22)

where

via = (ai+1ai+1, ai+1ai, ai+1ai−1, aiai, aiai−1, ai−1ai−1) (B.23)

Mab =



4 −8 2 2 0 0

−8 15 −3 −3 −1 0

2 −3 1 1 −3 2

2 −3 1 1 −3 2

0 −1 −3 −3 15 −8

0 0 2 2 −8 4


(B.24)

and the operators a0, a†0, ak+1, a†k+1 are ordinary c-numbers

a0 = ξ1, a†0 = ξ̄1, ak+1 = ξ2, a†k+1 = ξ̄2 (B.25)
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Proof of First Order Ground
State Correction

Here we show that (4.59) solves (4.53). One has

(Hopen,0 − E(0)
0 )
∣∣Ω(1)

〉
=

1

8
(∆z)2

k∑
i=0

(A
(1)†
i+1 − A

(1)†
i )(A

(1)
i+1 − A

(1)
i )

(
k∑
j=1

∞∑
n=2

zn−2
j A

(n)†
j

∣∣Ω(0)
〉)

(C.1)

= −1

8
(∆z)2

k∑
i=1

k∑
j=1

∞∑
n=2

zn−2
j (A

(1)†
i+1 − 2A

(1)†
i + A

(1)†
i−1 )AiA

(n)†
j

∣∣Ω(0)
〉

(C.2)

= −1

8
(∆z)2

k∑
i=1

k∑
j=1

∞∑
n=2

zn−2
j (A

(1)†
i+1 − 2A

(1)†
i + A

(1)†
i−1 )

× (A
(n)†
j Ai + δijA

(n−1)†
j P0j)

∣∣Ω(0)
〉

(C.3)

= −1

8
(∆z)2

k∑
j=1

∞∑
n=2

zn−2
j (A

(1)†
j+1 − 2A

(1)†
j + A

(1)†
j−1)A

(n−1)†
j (1− zja†j)

∣∣Ω(0)
〉

(C.4)

= −1

8
(∆z)2

k∑
j=1

(
∞∑
n=1

zn−1
j (A

(1)†
j+1 − 2A

(1)†
j + A

(1)†
j−1)A

(n)†
j

∣∣Ω(0)
〉
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−
∞∑
n=2

zn−1
j (A

(1)†
j+1 − 2A

(1)†
j + A

(1)†
j−1)A

(n)†
j

∣∣Ω(0)
〉)

(C.5)

= −1

8
(∆z)2

k∑
j=1

(A
(1)†
j+1 − 2A

(1)†
j + A

(1)†
j−1)A

(1)†
j

∣∣Ω(0)
〉

(C.6)

=
1

4
(∆z)2

(
k∑
j=1

A
(2)†
j −

k−1∑
j=1

A
(1)†
j A

(1)†
j+1 −

k∑
j=1

z̄jA
(1)†
j

)∣∣Ω(0)
〉

(C.7)

= −(Hopen,1 − E(1)
1 )
∣∣Ω(0)

〉
(C.8)

To go from (C.6) to (C.7) we used the relation A
(1)†
j A

(1)†
j = A

(2)†
j − z̄A(1)†

j .
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Appendix D

BFSS and BMN model
conventions

The BFSS and BMN matrix models are systems of gauged quantum mechanics.

Each has nine bosonic matrices φi and sixteen component spinors Ψ transforming

in the adjoint of U(N). There is also a non-dynamical u(N) valued gauge con-

nection A0. Their actions listed here are taken from [60, 129, 135] using a mix of

conventions:

SBMN = SBFSS + Smass (D.1)

SBFSS =
1

g2

∫
dtTr

[
9∑
j=1

1

2(2R)
(D0φ

j)2 +
i

2
Ψ†D0Ψ +

(2R)

4

9∑
j,k=1

[φj, φk]2

+
9∑
j=1

1

2
(2R)(Ψ†γj[φj,Ψ])

]
(D.2)

Smass =

∫
dtTr

[
1

2(2R)

(
−
(µ

3

)2
3∑
j=1

(φj)2 −
(µ

6

)2
9∑
j=4

(φj)2

)

− i
2

(µ
4

)
Ψ†γ123Ψ− iµ

3

3∑
j,k,l=1

εjklφ
jφkφl

]
(D.3)
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where D0φ
i = ∂tφ

i − i[At, φi] is the covariant derivative with respect to A0. The

γi... are the nine dimensional gamma matrices. The U(N) gauge symmetry is

generated by

G = i
9∑
i=1

[φi, D0φ
i] + 2{Ψ†α,Ψα} (D.4)

where D0φ
i is the momentum conjugate to φi. The fermion representation we

choose to work in is not explicitly real, and so we use Ψ† instead of ΨT (see

Appendix E).

For the purposes of this thesis, it is convenient to rescale the mass µ by three

µ→ 3µ′ and then the fields and time to remove the mass scale µ′ and the length

scale R from the action via

φ→ µ′

2R
φ, Ψ→

(
µ′

2R

)3/2

Ψ, t→ t

µ′
(D.5)

The action becomes

SBMN = SBFSS + Smass (D.6)

SBFSS =
1

g2

∫
dtTr

[
9∑
j=1

1

2
(D0φ

j)2 +
i

2
Ψ†D0Ψ +

1

4

9∑
j,k=1

[φj, φk]2

+
9∑
j=1

1

2
(Ψ†γj[φj,Ψ])

]
(D.7)

Smass =
1

g2

∫
dtTr

[
1

2

(
−

3∑
j=1

(φj)2 − 1

4

9∑
j=4

(φj)2

)

− i
2

(
3

4

)
Ψ†γ123Ψ− i

3∑
j,k,l=1

εjklφ
jφkφl

]
(D.8)
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with

1

g2
=

µ′3

(2R)3
(D.9)

In the A0 = 0 gauge, the covariant time derivatives become ordinary time

derivatives. Relabel the φj by XI . Define X i = φi for i = 1, 2, 3 and Y a = φa for

a = 1, . . . , 6. The bosonic action takes the form

SB =
1

2g2

∫
dtTr

[
(Ẋ i)2 + (Ẏ a)2 − (X i)2 − 1

4
(Y a)2 − 2iεijkX

iXjXk − 1

2
[XI , XJ ]2

]
(D.10)

The fermionic action becomes

SF =
1

g2

∫
dtTr

[
i

2
Ψ†Ψ̇− i

2

(
3

4

)
Ψ†γ123Ψ +

1

2
Ψ†γI [XI ,Ψ]

]
(D.11)

This is how the action is written in [135].

297



Appendix E

Fermion Decomposition

This section comes from Appendix A of reference [129]. Decompose the sixteen

component spinor as

SO(16)→ SO(6)⊗ SO(3) ' SU(4)⊗ SU(2)

16→ (4⊗ 2)⊕ (4̄⊗ 2̄)

Ψ→ ψIα, ψ
†Jβ (E.1)

where I, J are fundamental SU(4) indices and α, β are fundamental SU(2) indices.

The spinors obey the reality condition

(ψ†)Iα = ψ̃Iα (E.2)

which allow us to write the spinors in the stacked form

Ψ→

 ψIα

εαβψ
†Iβ

 (E.3)
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The matrices gaIJ are introduced to relate the inner product of SU(4) to the vector

of SO(6) which satisfy

ga(g†)b + gb(g†)a = 2δab (E.4)

The gamma matrices are then written as

γi =

−σi ⊗ 1 0

0 σi ⊗ I

 , γa =

 0 1⊗ ga

1⊗ (ga)† 0

 (E.5)

The terms in the Lagrangian then decompose as

i

2
Ψ†D0Ψ→ iψ†IαD0ψIα (E.6)

i

2
Ψ†γ123Ψ→ ψ†IαψIα (E.7)

1

2
Ψ†γi[X i,Ψ]→ −ψ†Iασiβα [X i, ψIβ] (E.8)

1

2
Ψ†γa[Xa,Ψ]→ 1

2
εαβψ

†IαgaIJ [Y a, ψ†Jβ]− 1

2
εαβψIα(g†)aIJ [Y a, ψJβ] (E.9)

The fermionic part of the action (in the At = 0 gauge) may then be written as

SF =
1

g2

∫
dtTr

[
iψ†Iαψ̇Iα −

3

4
ψ†IαψIα − ψ†Iασiβα [X i, ψIβ]

+
1

2
εαβψ

†IαgaIJ [Y a, ψ†Jβ]− 1

2
εαβψIα(g†)aIJ [Y a, ψJβ]

]
(E.10)

Notice that the coupling to the X variables uses just the Pauli matrices after this

decomposition. Also, a ψ spinor is always paired with its conjugate. If we perform

orbifolds that are chiral, this structure remains, but the other mass terms that do

not preserve four dimensional chirality might be eliminated.
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Appendix F

Fermionic Modes Between
Displaced Fuzzy Spheres

For the calculations of Section 7.4 we want to consider computing fermionic modes

between two fuzzy spheres in the BMN matrix model that have been displaced as

described in [135]. We want to restrict to a chiral projection of the modes between

two such fuzzy spheres. We will first set up some conventions for the fermionic

modes of a single fuzzy sphere. Then we work with the more general problem.

F.1 Diagonal Fermionic Modes

This section is essentially a repeat of Section 5.2 of [129] using the conventions

of [135].

The SU(4) indices are dropped as they do not come into play at all during

the following calculation. We take the following conventions for the spherical

harmonics and the angular momentum generators:

[L3, Ylm] = mYlm [L3, Y †lm] = −mY †lm (F.1)
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[L+, Ylm] = Λlm
− Ylm+1 [L+, Y †lm] = −Λlm

+ Y †lm−1 (F.2)

[L−, Ylm] = Λlm
+ Ylm−1 [L−, Y †lm] = −Λlm

− Y
†
lm+1 (F.3)

where L± = L1±iL2. The spherical harmonics are normalized such that Tr(Y †lmYl′m′) =

1
2
δll′δmm′ . The constants Λ`m

± are defined as

Λlm
+ =

√
(l +m)(l −m+ 1), Λlm

− =
√

(l −m)(l +m+ 1) (F.4)

Λl−l
+ = 0, Λll

− = 0, Λlm+1
+ = Λlm

− (F.5)

We expand the fermions as

ψα =
∑
lm

ψlmα Ylm (F.6)

The potential in the presence of the bosonic VEV’s becomes

VF −
3

4
Tr(ψ†αψα)

= Tr
[
ψ†ασiβα [Li, ψIβ]

]
= Tr

[
ψ†+

(
[L3, ψ+] + [L−, ψ−]

)
+ ψ†−

(
[L+, ψ+]− [L3, ψ−]

)]
= Tr

[
ψ†+

∑
lm

(
mψlm+ Ylm + Λlm

+ ψlm− Ylm−1

)
+ψ†−

∑
lm

(
Λlm
− ψ

lm
+ Ylm+1 −mψlm− Ylm

)]

=
1

2

∑
lmm′

[
ψ†lm

′

+

(
mψlm+ δm′m + Λlm

+ ψlm− δm′m−1

)
+ψ†lm

′

−
(
Λlm
− ψ

lm
+ δm′m+1 −mψlm− δm′m

)]
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=
1

2

∑
lmm′

(
ψ†lm

′

+ ψ†lm
′

−

) m Λlm
+ δm′m−1

Λlm
− δm′m+1 −m


ψlm+
ψlm−

 (F.7)

The eigenvalues of the matrix plus 3/4 give the mass spectrum. Note that −l ≤

m, m′ ≤ l. The δ’s tell us that this matrix has 2l two by two blocks and two one

by one blocks where m, m′ = l and m, m′ = −l. Each of the one by one blocks

yield the eigenvalue l. The 2l two by two blocks can be parametrized according

to m from −l to l − 1. They are given by

 m Λlm+1
+

Λlm
− −(m+ 1)

 =

 m Λlm
−

Λlm
− −(m+ 1)

 (F.8)

The eigenvalues are given by the characteristic equation

0 = (m− λ)(−m− 1− λ)− (l −m)(l +m+ 1) = (λ− l)(λ+ l + 1)

Thus the eigenvalues are l and −(l + 1). This means that the mass spectrum is

M = 3/4 + l with degeneracy of 2l + 2 and M = −(l + 1/4) with degeneracy 2l.

Note that there are two more positive eigenvalues than negative eigenvalues.
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F.2 Off-diagonal modes

Here we follow the procedure of the previous section and that in [135]. Expand

the off diagonal modes in fuzzy monopole harmonics

ψα =
∑
lm

 0 δψlmα Ylm

(δψ̃lmα )Y †lm 0

 (F.9)

The following commutators are necessary

[X3, ψα] =
∑
lm

 0 δψlmα [L3, Ylm]

(δψ̃lmα )[L3, Y †lm] 0


+ b


0 0

0 1

 ,

 0 δψlmα Ylm

(δψ̃lmα )Y †lm 0




=
∑
lm

 0 (m− b)δψlmα Ylm

−(m− b)(δψ̃lmα )Y †lm 0

 (F.10)

[X+, ψα] =
∑
lm

 0 δψlmα [L+, Ylm]

(δψ̃lmα )[L+, Y †lm] 0


=
∑
lm

 0 Λlm
− δψ

lm
α Ylm+1

−Λlm
+ (δψ̃lmα )Y †lm−1 0

 (F.11)

[X−, ψα] =
∑
lm

 0 δψlmα [L−, Ylm]

(δψ̃lmα )[L−, Y †lm] 0


=
∑
lm

 0 Λlm
+ δψlmα Ylm−1

−Λlm
− (δψ̃lmα )Y †lm+1 0

 (F.12)
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Substituting these expressions into the potential, taking the chiral projection and

finally taking the trace we have

VF −
3

4
Tr(ψ†αψα) =

(
ψ†+lm

′
ψ†−lm

′

) m− b Λlm
+ δm′m−1

Λlm
− δm′m+1 −(m− b)


ψlm+
ψlm−


(F.13)

This essentially produces the same matrix system as for the diagonal modes except

with different diagonal elements. Also, half spin objects are allowed as when we

decompose into the tensor product we can get different spins. There is a one by

one block with λ = l − b, another with λ = l + b, and 2l two by two blocks. The

matrix for these blocks is m− b Λlm
−

Λlm
− −(m+ 1− b)

 (F.14)

with −l ≤ m ≤ l − 1. The eigenvalues λ satisfy

0 = −(m− b− λ)(m+ 1− b+ λ)− (l −m)(l +m− 1)

= λ2 + λ− l(l + 1)− b(b− 1) + 2mb (F.15)

Solving for λ gives

λ = −1

2
±
√

(l −m)(l +m+ 1) + (b−m− 1/2)2 (F.16)
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Thus the full modes are with −l ≤ m ≤ l − 1 (each with degeneracy two):

m =
1

4
±
√

(l −m)(l +m+ 1) + (b−m− 1/2)2 (F.17)

We also have two other modes corresponding to the one by one blocks of the mass

matrix: m = 3/4 + l± b. These yield zero modes for the right value of b. That is,

we have zero modes when

b = ±(l + 3/4) (F.18)

for the modes with the greatest angular momentum in the z direction for a given

value of `. These zero modes are correlated with the modes that become tachyonic

for bosons in the same type of configurations found in [135]. They are objects of

maximal spin fixing `.
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Appendix G

Measuring the Temperature

Here we derive the relation between the temperature of a system with constraints

and the second moments of its degrees of freedom. Consider a system with 2D

degrees of freedom ~x, ~p with the standard kinetic energy, potential V (~x), and

k constraints Ci(~x, ~p) = 0 with each Ci linear in the momenta. The canonical

partition function is given by

Z =

∫
dDxdDp

k∏
i=1

δ(Ci(~x, ~p)) exp

[
−β
(

1

2
|~p|2 + V (~x)

)]
(G.1)

We scale the momenta by a parameter
√
γ and then rescale the δ functions by the

inverse of that parameter. Since the constraints are linear in the momenta

Z = γ(D−k)/2

∫
dDxdDp

k∏
i=1

δ(Ci(~x, ~p)) exp
[
−β
(γ

2
|~p|2 + V (~x)

)]
(G.2)
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The partition function is independent of γ since all we have done is rescaled the

momenta. Differentiating we have

0 =
∂Z
∂γ

=
D − k

2γ
γ(D−k)/2

∫
dDxdDp

k∏
i=1

δ(Ci(~x, ~p)) exp
[
−β
(γ

2
|~p|2 + V (~x)

)]
− β

2
γ(D−k)/2

∫
dDxdDp |~p|2

k∏
i=1

δ(Ci(~x, ~p)) exp
[
−β
(γ

2
|~p|2 + V (~x)

)]
(G.3)

Letting γ = 1 we have

0 =
D − k

2
Z − β

2
Z〈|~p|2〉 ⇒ (D − k)T = 〈|~p|2〉 (G.4)

In order to measure the temperature properly, we must subtract off the number

of constraints from the degrees of freedom.
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