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 ABSTRACT OF THE DISSERTATION 

 

Early Brain Tumor Detection by Early Glioblastoma Modeling and  

Quantum Fixed-Point MR Imaging 

 

by 

 

Shang-Lin Tsai 

Master of Science in Chemistry 

University of California, Los Angeles, 2018 

Professor Yung-Ya Lin, Chair 

 

Magnetic Resonance Imaging has been introduced for several decades; however, 

it is still difficult to distinguish the turmeric cell from the surrounding healthy cell at 

early stage due to the similarity of the micro environments. People are usually too late 

when they recognize their disease. My research goal is to model the difference in tumor 

cells’ environment and explore a new way to discover the disease. To achieve that, one of 

the fMRI technique (Blood Oxygenation Level Dependent--BOLD) together with Monte 

Carlo simulation of tumor cell and healthy cell were generated, and the results were 

comparable with in-vivo mouse model. In the second part, a new approach of quantum 

fixed-point spin dynamic was found to be profound on enhancement of contrast between 
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healthy and tumor cell in MRI. With the designed pulse sequence, the home-build active 

feedback-controlled electronic device can differentiate the almost indistinguishable 

resonance offset from tumor cell and accelerate the magnetization towards the unique 

stable fixed points. Lastly, the spin dynamic under the active feedback source and the 

spin evolution under natural damping was analyzed in order to improve the understanding 

of the fixed points and allow for better modification of pulse sequence.  
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CHAPTER 1 

1.1  INTRODUCTION 

In the past few decades, Magnetic Resonance Imaging (MRI) has become one of the 

most practical ways for medical diagnosis. The use of strong magnetic fields and low-

energy radiofrequency pulse in MRI scans through the organs inside the body and allows 

the important message such as the spin relaxation time constants (functional MRI) or 

absorption/emission spectrum (MR spectrum) to deliver back. The advantage of not 

involving toxic ionizing radiation provide a healthy way to diagnose people’s body 

condition. MRI uses the response of nuclear spins to the different magnetic field 

environments, such as tumor cell, to characterize various tissue types, providing detailed 

anatomic information. Furthermore, functional MRI (fMRI) uses the intrinsic signal-

change of NMR to develop and enhance the contrast in magnetic susceptibility such as 

cerebral blood volume mapping (CBV), position emission tomography (PET), and blood 

oxygenation level-dependent imaging (BOLD). While MRI provides extensive 

information on local tissue environment, it is hard to differentiate signals from similar 

micro conditions such as early tumor and its surrounding healthy cell. Therefore, without 

any indication of cancerous activity and specification on diagonalization, tumors usually 

remain undetected until an unstoppable growth of itself. As a result, the goal of my 

research is to set up an early-stage tumor cell model by simulating its micro condition 

and surrounding and evolving the model under the earlier found “Active Feedback 

Magnetic Resonance” to enhance the contrast of the cancer cell in MRI.   
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We presented our first model of early tumor by simulating its micro condition via 

blood oxygenation level dependent (BOLD). The paramagnetic property of 

deoxyhemoglobin particles inside the blood vessel produce a local field to its surrounding 

molecules. These induced field will constructively or destructively interact with the 

particles and shift their resonance offset. By Valable et al, it was overserved that the 

vessel density decreases together with the increase of vessel size during the early stage of 

tumor growth. Therefore, we presented the healthy cell model as nine cylinders of blood 

vessel and tumor cell model as one cylinder with corresponding vessel sizes, and the 

other parameters remained controlled. Next, we performed a Monte Carlo simulation by 

allowing thousands of spin particles to be randomly positioned and evolved under the 

given field based on the distance to the vessel. As the spins relax through transverse plane, 

the overall magnetization can be recorded, and the contrast of magnetizations from both 

health and tumor models are studied. In here, we introduced three kinds of pulse 

sequences from spin echo, spin locking, and CPMG to enhance the contrast between the 

two. We also collected the data by using three different methods: phase accumulation 

method, and methods of analytical and numerical solutions to Bloch equation. All the 

data showed strongly agreement to each other and also the in vivo experiment which was 

done by imaging over thirty mice which were orthotopically inoculated with GBM cells. 

 While it is important to have a correct model for tumor detection, the strategy of 

MRI enhancement is the goal for my research. The method of quantum fixed-point spin 

dynamics has been introduced in our group, and the experimental result showed a 

profound contrast in MR imaging. By Lenz’s law, an oscillating current in a coil will 

induce indirectly by a change of magnetic flux, and the reactionary field will act back 
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onto the sample. Using this idea, our homebuilt active feedback field electronic device 

can filter, phase shift and amplify the receiving signal to respond and control the RF 

transmission coil in novel ways. In here, we analyzed the active feedback field in a 

quantum approach. In a two spin components system, the additional active feedback field, 

which is applied 90° indirectly and perpendicular to the transverse magnetization, 

increase the total energy of original state. With the constant perturbation of the weak 

continuous wave (CW), spins even with small difference in resonance offset will 

naturally evolve to different stable fixed points or constants of motion, 

thermodynamically. Hence, the resulting difference of the magnetization can light up the 

region of interest. 

 Lastly, the dynamics en route to the fixed points can be useful for imaging 

contrast and later pulse sequence design purpose. The natural/electronic radiation 

damping of the feedback field is governed by four parameters: the strength of CW and 

active feedback field, the resonance offset, and the applied phases. The contribution of 

the four factors produce an uneven Rabi cycle, and the spins will eventually evolve to the 

fixed points or constants of motion. In addition, we have analyzed and extended the 

understanding of fixed point dynamic to uneven contribution cases and enlarge the size to 

multiple components as considering more realistic situations. 

 As for my short-term goal, the earlier tumor model will be evolved under the 

presented quantum fixed-point spin dynamic, and the idea will be further used for the 

construction of a better design of pulse sequence. As for the long, a stronger contrast 

enhancement will be enriched which leads to the development of MR medicine.   
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CHAPTER 2 

Detection of Early Glioblastoma Multiform in Orthotopic Xenograft 

Mouse Models: Numerical Simulations and In Vivo Experiments 

 

2.1 ABSTRACT 

Purpose. Investigation of blood vessel aggregation effects on MRI methods via 

simulation on early brain tumor (glioblastoma multiform) models proposed based on 

previous experimental data on vessel densities. 

Methods. Monte Carlo simulation of evolution of magnetization of diffusing 

protons by analytical solutions of the Bloch equation, phase accumulation, and numerical 

methods provided by Matlab (The Mathworks Inc.). 

Results. Degree of aggregation of blood vessels in the BOLD model is 

proportional to the relaxation speed of proton ensembles. Pulse sequences that refocus 

magnetization more frequently delay the relaxation speed. Simulation and in vivo results 

show reasonable agreements. 

Conclusion. A new BOLD model of early brain tumor is proposed and is 

validated via simulation results that display trends that agree with in vivo results 

qualitatively. 
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2.2 INTRODUCTION 

Tumor detection of early stage cancer cell still remains unclear, and it is usually 

too late when people found the disease of themselves.  Several analytical methods of 

functional magnetic resonance (fMRI), such as cerebral blood volume mapping (CBV), 

position emission tomography (PET), and blood oxygenation level-dependent imaging 

(BOLD), have been studied for decades, in which fMRI uses intrinsic signal-change of 

NMR to develop and enhance the contrast in magnetic susceptibility.  Thus we propose 

the first models for early tumor and healthy brain tissue inspired by (1) in which the 

relationship between transverse relaxation, pulse sequences used for imaging, and vessel 

distributions can be evaluated.  In this paper, Monte Carlo simulations on the proposed 

models together with in vivo BOLD imaging have been generated for both healthy and 

tumor cell via the fact that in blood vessel, paramagnetic deoxyhemoglobin produces 

local magnetic field.  These induced inhomogeneous magnetic fields around protons shift 

resonance frequencies and facilitate contrasts.  After being evaluated via both simulations 

and experiments, the models can be further revised and used to conduct quantitative 

studies in scenarios relevant to early stage brain tumor. 

      There are three parts of this research.  In the first part, a BOLD model for the 

magnetic environments of both healthy and cancer cells is proposed as infinite cylinders 

in a voxel cube by assuming that these identical voxels are periodic in the piece of brain 

we examined.  From experimental results, we define our early tumor model with the time 

frame about 15 days from the tumor cell being implanted, and it is assumed that the 

edema has not yet formed.  The model parameters were chosen from in vivo experiment 
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[2-6].  In particular, by Valable et al. [2], it was observed that the vessel density 

decreases together with the increase of vessel size during the early stage of tumor growth.  

Therefore, we present the healthy cell model as nine cylinders and tumor cell model as 

one cylinder with corresponding vessel sizes, and the other parameters remained 

controlled.  In addition, the effect of water molecules entering and exiting blood vessel 

membranes is too small to be significant, and the membranes are taken to be 

impenetrable.  

 In the second part, we present Monte Carlo simulation results of magnetization 

relaxation in the proposed model obtained via three different methods under three pulse 

sequences - spin echo (SE), CPMG, and spin locking (SL).  As shown in Figure 1, the 

relaxation of transverse magnetization of a proton depends on the dipolar field gradient 

changes as it diffuses randomly over time.  Then under this model we are able to evaluate 

the vessel density and pulse sequence dependence of relaxation through a discussion of 

the Motional Averaging Regime and the Static Dephasing Regime. 

 In the third part of this work, we present results of in vivo experiments.  Six-

week-old male mice were orthotopically inoculated with GBM cells, and had been 

imaged over 22 days by the relevant pulse sequences.  We then evaluate the model along 

with its implications by comparing results from simulations and experiments. 
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2.3 METHODS 

2.3.1 Early brain tumor model 

      Transverse magnetizations of diffusing protons diphase due to local field 

inhomogeneity induced by paramagnetic deoxyhemoglobin inside blood vessels.  Similar 

to the simulation in [7], our early stage tumor model where diffusion takes place consists 

of a voxel cube and inside it distributed with parallel infinite cylinders representing blood 

vessels.  The total volume of cylinders is kept constant and the cube volume is obtained 

from the blood volume fraction (BVf).  From [2], BVf is taken as 0.04 and vessel radius 

R to be �∙�	
�
√
  m to mimic early tumor environment for the RG2 model, where N is the 

number of vessels distributed inside the voxel cube.  Each infinite vessel cylinder 

contributes an induced dipolar field ω� as a component along the direction of the applied 

magnetic field B	 [1]: 

ω� = �2π∆χ�1 − Y� ��� sin"�θ� $%&'" cos�2φ� , r > R
2π∆χ�1 − Y� ��� $cos"�θ� − �.' , r < R       (1) 

where γ is the proton gyromagnetic ratio, �1 − Y� is the degree of deoxygenation of the 

blood and was taken as 0.3 [2], θ is the angle between cylinder orientation and B	, R is 

the vessel radius, r is the shortest distance to the vessel center of interest, φ is the angle 

between r̅ and the projection of the main magnetic field onto the plane perpendicular to 

the vessel orientation, and Δχ , the susceptibility difference between entirely 

deoxygenated blood and entirely oxygenated blood, assumes the value of 0.15 ppm [5]. 
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2.3.2 Monte Carlo simulation 

      To ensure the validity of simulations, two different methods were implemented to 

evolve magnetizations under SE and CPMG pulse sequence.  Initially 4000 spin 

magnetizations are randomly distributed inside the cube for method 1 and on a plane 

perpendicular to the vessels for method 2.  During random walk, each step is taken as a 

random vector on a sphere for method 1 or on a circle for method 2 with step size 

obtained from three-dimensional [8] or two-dimensional diffusions, respectively.  The 

diffusion constant D is taken as 1 ∙ 1067 cm2 s-1 [6] and time step Δt is taken as 0.05 ms.  

Small time steps make it impossible to traverse cylinders in a few steps.  The cylinders 

are assumed to be impermeable for diffusion, while its impact on BOLD signal is very 

limited [9].  Steps that penetrate cylinders are repeated until a collision-free step is 

generated.  By assuming the spatial periodicity of voxels, magnetizations that walk out of 

the voxel re-enters from the opposite side.  To study the impact of aggregation of vessels, 

simulations are repeated with uniform distributions of 1, 2, 4 and 9 cylinders.  Simulation 

results are averaged over 16 θ angles between 0 and π.  All simulations are implemented 

using Matlab (The Mathworks Inc.). 

 

2.3.3 Analytical method (Method 1) 

The Bloch equation describes the classical dynamics of nuclear magnetizations.  

Via a complete analytical solution of the Bloch equation [10], exact evolution of 

magnetizations for each step during diffusion can be obtained by applying the propagator: 
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e6;<= = e6%><=e6;?<=  (2) 

where −Γ is the Bloch equation in matrix form including T" terms, t is the time for each 

step, R> = ".BC and e6;?= is diagonalized.  Denote the direction of B	 as the z-direction.  

For SE pulse, the sign of magnetizations along x- and z-directions is inverted at TE/2.  

For CPMG pulse, the sign of magnetizations along x- and z- directions is inverted 

at τEF, 3τEF, 5τEF, … , where τEF = 8 ms.  For spin-locking pulse, a constant locking field 

of frequency 125 Hz is applied in the y-direction. 

 

2.3.4 Phase accumulation method (Method 2) 

 The phase accumulation method was followed previous works [1, 11, 12] with 

additional modification of background relaxation.  Base on the theory, at each time step, 

dt, every spin will experience different induced magnetic field which depends on its 

position (p) and undergoes a phase shift, ∆ϕ(p)= ∆ω(p)*dt.  The overall phase shift for 

one spin can be achieved by summing up individual phase which produced by each step 

of random walk over time 

Φ = ∑ ∆φ�pL�M=NFL O �   (3) 

The accumulated phase gives the information, as the rotation of spin in the complex plane.  

With additional phase factor, eiφ or cos(φ), the “signal” of the magnetization can be 

determined 
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S�θ� ≈  R∑ NSTU�V�UWXYSZ∑ NST�UWXYSZ R =  [∑ MU�\�UWXYSZ∑ M�UWXYSZ [ =  ]< s^�θ� >]  (4) 

Note that in here, the signal is calculated by the ratio of the signals, s, with and without 

phase dispersion.  Where s denotes the signal produced by individual spin, and φ0 denotes 

the phase without phase dispersion.  (We assumed φ0 = 0 here.)  Furthermore, since the 

magnetic fields follows linear superposition, the ensemble signal, S, which produced by 

total spin is simply the expectation value of the signal.  The additional weighting factor of 

sin(θ) and the flipping sign of phase for different pulse sequences are identical to 

previous method and not shown in here.  

      In addition, the signal decay here is calculated based on the average of 

constructive and destructive interference produced by the phase dispersion under the 

assumption of uniform amplitude of the signals.  Therefore, the decay rate due to 

transverse relaxation, R2, simulated, can be estimated as an exponential fitting with different 

values of TE.  

S_`aNb�TE� ≈ exp�−R",Mefgbh=Ni ∗ TE�  (5) 

The phase accumulation method assumed all of the magnetizations are on xy plane, and 

the precession frequency is depended on the homogeneous B0 magnetic field particularly.  

Therefore, the perturb field, B1 field, cannot be included in this method.  

 

2.3.5 Numerical Method 
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Method 3 uses the Bloch equation and the evolution of magnetization at each time 

point is solved by ordinary differential equation with the Matlab ode45 solver.  This 

method is used to check the convergence with method 1. 

 

2.3.6 In vivo experiments 

Six-week-old male NOD CB17-Prkdscid/IcrCr1B1tw (NOD/SCID) mice were 

obtained from BioLASCO Experimental Animal Center (BioLASCO, Taiwan) and bred 

in a specific pathogen-free room in the animal facility.  All animal procedures were in 

accordance with the regulations approved by the Institution Animal Care and Utilization 

Committee at National Taiwan University.  All operations were performed under 

anesthesia and any possible effort has been made to minimize pains/suffering of the 

mouse. For tumor implantation, each NOD/SCID mouse was anesthetized with Ketalar 

(40 mg/kg) and Rompun (15 mg/kg) and placed in a stereotactic frame for accurate 

location of implantation.  The mice were orthotopically inoculated with GBM cells (5 × 

105 cells per mouse) and used for MR imaging [13].  During the imaging acquisition, 

vital signs of the mouse under anesthesia (about 5% isoflurane induction, 2% for 

maintenance in air) was monitored.  The flow rate of isoflurane was carefully adjusted to 

maintain stable heart rate and respiratory rate. 

      In this work, all in vivo experiments were performed on a Varian INOVA 7-T 

NMR spectrometer (Varian Inc., USA) equipped with a 30-mm I.D. Varian Millipede 

micro-imaging probe and self-shielded gradient systems with a maximum strength of 100 

G cm-1 in each direction (Resonance Research Inc., USA).  Images were acquired with 
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repetition time (TR) = 7.5 s, field of view (FOV) = 2.56 cm × 2.56 cm, matrix size = 128 

× 128, zero padding = 512 × 512, and slice thickness = 0.8 mm.  For spin echo pulse 

sequence, echo time (TE) = 10, 30, 50, 70, 90 ms.  For CPMG pulse sequence, τCP = 8 ms 

(τCP is half the interval between successive 180o pulses in a CPMG sequence, τCP = TE/2).  

For spin locking pulse sequence, locking field B1 = 125 Hz.  
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2.4 RESULTS 

2.4.1 Validation of simulation methods 

Figure 1 plots the T2 versus different field distributions with constant BVf and 

details the parameters used.  Background T2 parameters in the Bloch equation are chosen 

by comparing with experimental results from Figure 3.  The results from method one and 

method two for simulating SE and CPMG pulses and method one and method three for 

simulating SL converge to within 1.5%.  Agreement between different methods indicates 

that simulations are consistent in this model. 

2.4.2 Vessel density dependence 

The relation between cylinder density and relaxation rate is summarized in Figure 

2.  The figures below the axis of cylinders are the corresponding magnetic field 

perturbations.  Cylinders are distributed such that the distance between nearest pairs 

remains constant across voxels when aligned periodically.  Vessel radius varies with the 

number of cylinders from 9*10-6 m (max at 4 micrometer) to 3*10^-6 m to maintain BVf.  

 Signals decay faster for all pulse sequences across distributions of cylinders.  

Accounts of the Static Dephasing Regime (SDR) and the Motional Averaging Regime 

(MAR) provide an explanation for this trend.  The change in T2 relaxation per cylinder, 

∆BC∆k , decreases as the density of cylinder increases for all pulse sequences, where ∆C is the 

change in the number of cylinders.  This diminution in the effect of density variation can 

be attributed to the decreasing difference in cylinder radius as discussed in Boxerman et 

al. [9].  
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2.4.3 Pulse sequence dependence (include T2* values in the caption of Fig. 1) 

To compare the effect of diffusion under different pulse sequences, background 

relaxations are set to infinity and the resulting diffusion relaxation constants T2* are 

collected in Figure 1.  The ensemble dephases the slowest with SL and the fastest with 

SE.  Frequent refocusing in CPMG and SL delays decoherence from diffusion and longer 

T2* results. 

2.4.4 Comparison of model with in vivo data 

Experimental MRI image and T2 values for injected mouse models are plotted in 

Figures 3 and 4, respectively.  From inspection of the two figures, we can see that no 

contrast is shown for SE at the early stage, while contrast is clear for the other two pulse 

sequences.  T2 values of the two tissues overlap for SE at the early stage.  This can be 

reasoned as the effect of rephasing pulses on the two tissue environments described by 

our model.  Since we cannot distinguish the two tissues under SE at the early stage, T2 

values from the other two pulse sequences are compared with simulations.  From Figure 

4, the simulation results match the experimental ones in that the normal tissue signals 

decay faster than the tumor ones.  After 15 days, contrasts are enhanced greatly for all 

pulse sequences as edema evolves and the brain magnetic environment gets drastically 

different. 
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2.5 DISCUSSION 

Most of the current papers on BOLD signal in the literature focus on improving 

the model, and yet, few of them describe the relationship with realistic early tumor 

relaxation.  In the current approach by varying vessel densities/distributions, the resulting 

difference in T2* between 1 and 9 cylinders can be ascribed to the competition between 

SDR and MAR.  Furthermore, the difference in T2* under different pulse sequences can 

be explained by the rephasing effect. 

 

2.5.1 Vessel density dependence  

From theories in [14], the Static Dephasing Regime is originally described as the 

limiting case where a particle with large interparticle distance compared to the diffusion 

distance experience nearly constant induced magnetic field during diffusion.  

Subsequently, the resulting relaxation rate will not be affected by the random walk of 

particles and will approach a static limit.  On the other extreme, the Motional Averaging 

Regime is described as the limit that relatively small particles travel longer distance 

compare to the inter-particle distance and experience a rapid change in induced magnetic 

field.  The resulting relaxation rate depends on the trajectory of each spin under random 

walk.  Here, we extend these two regimes and assume identical particle size inside the 

voxel.  As shown in Figure 1, the strength of induced inhomogeneous magnetic field is 

based on proton positions, and the largest dipolar field gradient is induced around the 

cylinders where the sign changes.  In 1-cylinder case where the radius is largest, protons 

would need on average diffuse the most steps in order to experience large gradient.  This 
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is similar to the case of SDR, and the resulting R2* will be the smallest.  For the 9-

cylinder case, the dipolar field gradient changes more frequently around each cylinder, 

and protons will only need to diffuse few steps to experience a significant change in field, 

which is more adequately described by the MAR.  In our simulation result, different 

distributions of vessels that span the two limiting regimes contribute major discrepancies 

between our tumor and healthy tissue models. 

 

2.5.2 Rephasing effect of pulse sequences 

Experimental results from Figure 2 show that CPMG and SL produce larger 

contrasts than SE between early tumor and healthy tissues.  Our model can explain this 

effect via rephasing of magnetizations under different pulses.  During diffusion, protons 

experience magnetic field gradient, which in turn dephase the ensemble by letting nuclei 

to precess at different rates.  Hence the longer the time magnetizations can freely evolve 

under a varying field, the more decoherence occurs.  When the ensemble magnetization is 

refocused by pi-y pulses, the phases are reversed back in time by reversing the order of 

fast and slow components, and decoherence is diminished along this process.  Comparing 

to the difference between late stage tumor and normal tissue environments, the difference 

between different cylinder distributions in our model of early tumor and normal tissue 

environment is quite small.  By this small variation of field environment described by our 

model, ensembles in early tumor and normal tissues gain similar decoherence after a 

large number of steps in diffusion. 
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Refocusing occurs at TE/2 for SE.  This duration is so long such that the ensemble 

dephases to a comparable extent for 1 and 9 cylinder fields.  As a result, signals for both 

fields cannot differentiate from each other after refocusing.  For CPMG, however, the 

duration time, τ, between rephasing pulses is 16 ms which is significantly shorter than SE.  

In 1-cylinder environment, the induced field is essentially constant when diffusing only a 

few steps in the short tau and the ensemble can regain coherence after the refocusing 

pulse.  For 9-cylinders where field gradient changes significantly within a few steps, and 

the effect is that magnetizations cannot restore to their original states.  Therefore, larger 

contrast is produced for CPMG.  An analogy can be established between CPMG and SL 

in that SL operates with consecutive rephasing pulses at an even shorter tau in this 

experiment.  The frequent refocusing in SL makes the difference in field distributions 

most pronounced and in turn generates the best contrast. 

 

2.5.3 Validation of the model 

The effects of vascular permeability, volume fraction dependency, susceptibility 

difference are too small in the early stage brain tumor compared to normal tissue and are 

assumed to be negligible in our model.  Truly, vessel network orientations may take 

significant role on induced magnetic field; however, the effect can be minimized by 

taking the advantage of small voxel-size compared to Martindale et al. [11].  As 

described earlier, we study the dependency of vascular size and density, and simulations 

exhibit the correct trend in relaxation rates.  Note that our experimental settings are not 

applicable for imaging tumor tissue in human body due to the high power B0 field and π 
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pulses applied, and it is not the purpose of this study.  With this high field setting, the 

contrast can be easily established in the in-vivo imaging, Figure 3.  As shown in Figure 2, 

the results from three different kinds of methods converge, and all of them produce the 

same trend, in which the 9-cylinder has higher relaxation rates than 1-cylinder due to the 

relative motional-average and static dephasing regime on the induced magnetic fields.  

We have also shown that the perturbing B1 field constrain in SL and rapid rephasing of 

magnetizations in CPMG decrease the relaxation rate, yet increase the contrast between 

models.  Hence, our research provides a clear track with fMRI sequence and early tumor 

model, and the result will be used and enhanced by later research with active feedback 

magnetic resonance. 
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2.6 CONCLUSION 

In conclusion, a model of early brain tumor based on the BOLD mechanism is 

developed from the varying vessel densities that were observed experimentally.  The 

model was illustrated using parameters typical for the early tumor environment [2-6] via 

three different approaches, producing results whose trends are consistent with 

experiments and are reasoned as a competition between two diffusing regimes.  In 

addition, this model can be applied to explain the contrast difference between early stage 

and later stage tumor for the different pulse sequences.  Finally, this model can be further 

revised by implementing features such as realistic distributions of vessel cylinder radius 

and orientations that were developed in Martindale et al. [11] to study the role of varying 

vessel densities in early stage brain tumor. 
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2.8 FIGURES 

 

Figure 1.  Z-component of the magnetic field generated by 9-cylinders (left) and 1-

cylinder (right) with the same blood volume fraction of BVf = 0.04.   
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Figure 2. Time constants of the three pulse sequences (spin echo, CPMG, and spin 

locking) for various field distributions (1-cylinder, 2-cylinders, 4-cylinders, and 9-

cylinders) with constant BVf.  For each pulse sequence, two simulation methods were 

used and the results from the two methods converged.  The background relaxation 

parameters used for spin echo, CPMG, and spin locking are 55ms, 70ms, and 65ms, 

respectively. 
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Figure 3.  Time constants of normal brain (averaged from left brain tissue) and tumor of 

spin echo (TE = 30 ms), CPMG (τCP = 8 ms), and spin locking (B1 = 125 Hz) pulse 

sequences, acquired from 1 day to 30 days after implantation of GBM cells to the right 

brain of mouse.  The linear regression of normal brain time constant (in ms): m",   nopqrst =
−5.47 × 106. × wxyz + 42.30 , m",   |}~�pqrst = 6.12 × 106" × wxyz + 57.85 , m��pqrst =
−8.62 × 106" × wxyz + 58.50.  The linear regression of tumor time constant (in ms) at 

early stage (within 15 days after implantation): m",   nopqrst = −0.35 × wxyz + 43.41 , 

m",   |}~�pqrst = −0.025 × wxyz + 63.89 , m��pqrst = 0.55 × wxyz + 64.60 . The linear 

regression of tumor time constant (in ms) at late stage (after 15 days after implantation): 

m",   nopqrst = 0.69 × wxyz + 32.77 , m",   |}~�pqrst = 0.56 × wxyz + 62.28 , m��pqrst = 1.68 ×
wxyz + 40.80. 
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Figure 4.  Development of GBM contrast in orthotopic U87MG mouse models during its 

clinical course acquired by spin echo (TE = 30 ms), CPMG (τCP = 8 ms), and spin locking 

(B1 = 125 Hz) pulse sequences.  Average time constants values of normal left brain tissue 

and tumor, respectively, are given in the time constant mappings.  Contrast-to-noise 

ratios (CNR) for each pulse sequence is directly given on each image.  At both early 

stage (within 15 days after implantation) and late stage (after 15 days after implantation), 

CPMG and spin locking show superior contrast than spin echo.  At late stage, the 

metabolic by-products from the GBM cells’ mitosis and growth increase the local 

osmotic gradient of the extracellular fluid.  This results in the ingress of fluid from the 

intravascular space to increase the T2 time constant to make GBM detectable in the spin 

echo T2-weighted images. 
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CHAPTER 3 

Quantum Fixed-Point Spin Dynamics by Active Feedback Magnetic 

Resonance for Early Cancer Imaging 

*This work is contributed by Chao-Hsiung Hsu, Jon K. Furuyama, Zhao Li, Jamie D. Walls, 

Chencai Wang, Lian-Pin Hwang and Yung-Ya Lin. (Shang-Lin Tsai, Guan Wang verified and 

revised this work) 

 

 

3.1 ABSTRACT 

The use of weak continuous wave (CW) irradiation in the presence of passive or 

active feedback fields is shown to produce unique stable fixed points (or constants of 

motion). The location of the fixed points as well as the quantum dynamics en route to the 

fixed points are investigated within a density operator framework. Applications for 

imaging contrast enhancement for early brain tumor detection are discussed and 

demonstrated. 
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3.2 INTRODUCTION 

With regards to biomedical diagnostics, magnetic resonance imaging (MRI) has a 

great advantage due to its employment of low-energy, non-ionizing radio-frequency (RF) 

radiation [1]. Unfortunately, this increase in safety and applicability comes at the expense 

of the immense specificity that is present in other imaging modalities that make use of 

ionizing radiation, such as Computed Tomography (CT) and Positron Emission 

Tomography (PET) [2]. Contrast in MRI is currently dependent on the molecular 

dynamics of differing tissues, resulting in variety of relaxation times of the signal. This 

can be very limiting when trying to differentiate between tissues or materials with only a 

slight difference in relaxation parameters, as is the case in trying to distinguish between 

early tumors and healthy tissue. The advent of early brain tumors can be marked by a 

slight shift in magnetic susceptibility. This meager shift in the local field is independent 

of molecular dynamics and is thus essentially invisible to the conventional, relaxation-

based imaging mechanisms. There has thus been an interest in the development of robust 

imaging techniques that are sensitive to the local susceptibility variations across a sample 

[3–6]. 

In this work, it is shown that the use of weak continuous wave (CW) radiation in 

the presence of the passive or active feedback fields is sensitive to the small magnetic 

susceptibility differences of a sample, producing unique and fortuitous fixed-points on 

opposite sides of the Bloch sphere. The evolution of the magnetization en route to the 

fixed points was shown to be useful in the detection of early brain tumors in mice, having 

a much improved contrast-to-noise (CNR) ratio over conventional imaging methods. 

Here we lay forth a theoretical foundation for the development of the fixed points, and 
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analyze the quantum dynamics and how they can be useful for the development of 

imaging contrast. 

The passive feedback field of radiation damping was discovered and characterized 

in the early days of NMR [7]. By Lenz’s law, an induced oscillating current in a coil will 

be met by an opposing oscillating field. This reactionary field can then act back onto the 

sample, accelerating the magnetization back towards the equilibrium +z position, 

shortening the FID. The decreased signal lifetime thus corresponds to a significantly 

broadened solvent peak in the sample spectrum, obscuring important peaks, especially in 

high-field biomolecular NMR. Feedback fields can also be generated from homebuilt 

active feedback-controlled electronic device. The device is to filter, phase shift, and 

amplify the signal from the receiver coils and then retransmit the modified signal into the 

RF transmission coil, with adjustable and programmable feedback phases and gains. The 

MR console computer can execute the active-feedback pulse sequences to control the 

trigger signal, feedback phase/gain, and the duration of the feedback fields, allowing us to 

utilize the active feedback fields in novel ways. The inherent dependence of the feedback 

field on the instantaneous state of the sample causes the evolution of the magnetization to 

be nonlinear and even chaotic [8–10]. 

With the advent of pulsed Fourier NMR [11], the use of a CW in both 

spectroscopy and imaging has been reserved for secondary dynamics such as decoupling 

or presaturation [12]. In other experiments, a CW is used to tilt the effective field in order 

to study relaxation behaviors in different frames of reference [13]. The constant 

perturbation of the CW coupled with the non-linear evolution resulting from the passive 

or active feedback fields would thus not be expected to produce stable fixed-points of the 
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magnetization that are not at the equilibrium +z position. While the dynamics 

surrounding both a CW and passive/active feedback fields can be modeled classically [9, 

10], the physical origin behind the fixed points is much more transparent within a density 

operator formalism. The following theory can thus be recast within the more familiar 

classical framework, but with less intuition and prediction as to the nature of the fixed 

points themselves. 
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3.3 METHODS AND RESULTS  

The Hamiltonian for a spin system in the laboratory frame can be given by 

Hˆlab(t) = Hˆ0 + HˆI (t) (1) 

where Hˆ0 and HˆI represent the static and interaction Hamiltonians, respectively. The 

static Hamiltonian is the familiar Zeeman interaction, Hˆ0 = -ћω0Iˆz, where ω0 = -γB0. 

The interaction Hamiltonian contains information regarding any resonance offset as well 

as the static excitation of the radio-frequency field 

   (2) 

where ћδω represents the resonance offset from the Larmor frequency ω0. The Rabi 

frequency ω1 [14] is proportional to the strength of the excitation field. The equation of 

motion for the density operator under a particular Hamiltonian is thus given by the 

Liouville-von Neumann equation: 

    (3) 

By simple unitary transformation, using Uˆ(t) = eiIˆzω0t, Eq. 3 can be transformed to the 

Dirac picture (or rotating frame of reference at frequency ω0) such that 

     (4) 

Where  . For the sake of brevity, the asterisks and interaction 

subscripts are dropped as the rest of the discussion is within the Dirac picture. 
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For a two-component uncoupled system, the total Hamiltonian for both spins is simply 

the sum of the individual Hamiltonians, Hˆij = Hˆi + Hˆj, where the subscript notation 

refers to tensor operators corresponding to the ith and jth spins in the Liouville space. 

These two components differ only in their resonance offset such that ∆ωij = δωi − δωj ≠ 0. 

For simplicity, assume that the offset for both components is equal in magnitude such 

that δωi = − δωj = δω. The interaction Hamiltonian for these two spins can thus be 

simplified to 

Hˆij = ћω1Iˆx,ij + ћδωIˆz,ij     (5) 

where Iˆx,ij = Iˆx,i + Iˆx,j, and Iˆz,ij = Iˆz,i − Iˆz,j. While the time evolution of the system 

under this Hamiltonian is not of any particular interest, the constants of motion (or called 

“fixed points” of the dynamics) are worth investigating, as the results are somewhat 

surprising in the presence of feedback fields. 

The constants of motion can be solved by simply setting Eq. 4 equal to zero. 

These can be seen to simply be the density matrices that commute with Hˆij. Since the 

Hamiltonian can be simply expanded as a vector in Liouville space, the constants of 

motion, ρˆij = ρˆi + ρˆj, where ρˆi/j are just the vectors that lie either parallel or anti-

parallel to Hˆi/j and are obtained via an orthogonalization process illustrated in [15]. Refer 

to the supplementary material for detailed procedure. The four physically relevant 

constants of motion are thus 

    (6) 
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where                    is the identity operator, and the ± subscript notation is used in 

reference to the sign in front of each respective Hamiltonian term. Physically, it can be 

seen that the ρˆ++ state has both components aligned with the effective field, with the ρˆ−− 

state with both components anti-parallel to the effective field. Likewise, both of the ρˆ+− 

and ρˆ−+ states have one component aligned with the effective field, and one aligned anti-

parallel. Energetically, since Eij = Tr[Hˆijρˆij], it can be seen that the ρˆ++ state is lowest 

in energy and the ρˆ−− state being the highest in energy, with both the ρˆ+− and ρˆ+− states 

in between, as would be expected. In the event that the frequency difference between the 

two components is small, it would be near impossible to selectively excite one component 

over the other, making the ρˆ+− and ρˆ−+ states practically inaccessible, and thus not very 

interesting. This is not the case, however, in the presence of feedback fields. 

In order to analyze the constants of motion in the presence of feedback fields, a 

semi-classical coupling term needs to be added to Eq. 5 for each component of the form 

 

where ωr is the strength of the passive/active feedback fields, ℜ and ℑ represent the real 

and imaginary component of 〈��s��〉���  = �m���ˆ�� + �ˆ������ , and Iˆij+ = piIˆi
+ + pjIˆj

+ with 

pi + pj = 1, where Iˆi/j
+ are the raising operators. In this particular case, pi = pj = 1/2. The 

imaginary number in Eq. 7 represents a complex rotation of  〈��s��〉���  such that the 

feedback fields is always applied 90 out of phase with total transverse magnetization, or 

that HˆFF ⊥ 〈��s��〉���. The total Hamiltonian, Hˆ′ij = Hˆij + HˆFF, for the sample thus 

becomes 
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where Iˆy,ij = Iˆy,i + Iˆy,j. It can be seen that the functional form of Eq. 7 contains pseudo-

bilinear terms such as 〈�s��〉 Iˆx,i, which differ significantly from the familiar two-spin 

coupling terms, but nonetheless represent a coupling of each spin with the rest of the 

sample. 

From Eq. 6, it can be seen that since the constants of motion align either parallel or anti-

parallel to the uncoupled Hamiltonian, then 〈�s��〉  ‖ Hˆij ⊥ HˆFF. Thus [Hˆij , HˆFF] ≠ 0 

unless HˆFF = 0, which can only be the case when 〈�s��〉  = 0. For both of the ρˆ++ and ρˆ−− 

states, it can be seen that 〈�±±� 〉 = m� ��s�� �±±�  ∝  ±ω1 ≠ 0, and so [Hˆij′ , ρˆ±±] ≠ 0 

meaning that both the ρˆ++ and ρˆ−− states are annihilated as constants of motion with the 

addition of feedback fields. This is not the case, however, with the ρˆ+− and ρˆ−+ states, 

where it can be seen that  〈�±∓� 〉 = 0 because both components are anti-parallel to each 

other, and so HˆFF = 0. Consequently, Hˆij = Hˆij′, and thus both of the anti-parallel states 

are preserved as constants of motion, since they already commute with the uncoupled 

Hamiltonian. 

Thermodynamically, the ρˆ+− and ρˆ−+ states are energetically favored over the 

ρˆ++ and ρˆ−− states, which are no longer constants of motion. From Eq. 7, it can be seen 

that for 〈�s��〉  =  0, the feedback-field term is going to be in direct competition with the 

uncoupled interaction Hamiltonian since they are applied perpendicular to each other. As 

the feedback-field term becomes larger, it begins to draw each component away from the 

uncoupled Hamiltonian, subsequently raising the total Zeeman energy of the system. 

Consequently, the system will naturally adopt the configuration that can minimize 〈�s��〉  , 
thus reducing HˆFF. When ∆pij = |pi − pj| = 0, it is easy to see that the components can 
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align to perfectly cancel each other out such that 〈�s��〉  = 0, and thus HˆFF = 0. In the event 

that each component does not have equal contribution to the feedback fields, ∆pij ≠ 0, and 

so HˆFF ≠ 0. Since HˆFF ⊥ Hˆij, the total energy for both the   states raises 

because these states are no longer aligned with the total field. 

The degree in which the ρˆ′+−  and ρˆ′−+ states shift can be quite challenging to 

determine analytically. One method could be to treat Hˆij′ = Hˆij + HˆFF in a perturbative 

sense where Hˆij is the unperturbed Hamiltonian for which we have the constants of 

motion, and HˆFF is the perturbation for which the corrections can be solved for. This 

approach is significantly complicated by the fact that the perturbation is dependent on 

many factors, including the density matrix itself. Understandably, any non-zero feedback 

fields will tilt ρˆ′+− and ρˆ′−+ away from the original axis in order to minimize the total 

energy. However, in doing so, the direction of the feedback fields will then change 

requiring ρˆ′+− and ρˆ′−+ to tip away even further from the original axis. Eventually, the 

amount of energy that the system can gain from tipping ρˆ′+−  and ρˆ′−+ will be balanced 

out by the energy cost of rotating ρˆ′+− and ρˆ′−+ away from the static field, ω1Iˆx. 

Additionally, in order to minimize 〈�s��〉 , the system could tip both components away from 

the transverse plane. Again, this comes at the cost of tipping the components away from 

ω1Iˆx, which raises the total energy of the system. Thus, there is a direct competition 

between the resonance offset, δω, the excitation field, ω1, and the feedback field, HˆFF ∝ 

∆pijωr. The orientations of ρˆ′+− and ρˆ′−+ that minimize the energy can thus be 

determined using a variational approach. 

By setting  , an approximation can be made for how much 

ρˆ′+− and ρˆ′−+ need to shift in order to minimize the total energy. This constraint ensures 
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that the reorientation of ρˆ′+− and ρˆ′−+ be dominated by the interplay between ω1 and 

∆pijωr. The constraint is reasonable because the origin of the fixed points is a direct 

consequence of mixing the excitation field and the feedback fields, and less dependent on 

the magnitude of the actual resonance offset of each component. Considering that the 

total energy is minimized when  〈�s��〉  ‖ (Hˆij + HˆFF ) along with the fact that 〈�s��〉 ⊥ HˆFF, 

by simple geometric argument one can show that the angle, θt, both ρˆ′+− and ρˆ′−+ need 

to be rotated to minimize the energy can be given as 

 

where this can be seen to only be valid for ω1 ≥ ∆pijωr. It can thus be seen that when both 

components do not contribute equally to the feedback fields, the ρˆ′+− and ρˆ′−+ states 

become 

ρˆ′±∓ ≌ eiIˆzθt ρˆ±∓ e
−iIˆzθt    (10) 

where Iˆz = Iˆz,i + Iˆz, j. In the limit that either ∆pij → 0 or ωr → 0, the orientations of the 

ρˆ′+− and ρˆ′−+  states converge to the original ρˆ+− and ρˆ−+ states as expected. While the 

anti-parallel orientations of the ρˆ+− and ρˆ−+ states originate from minimizing the total 

energy of the system, the development of these fixed-points from equilibrium is not 

trivial and requires a more in-depth analysis. 

 At equilibrium, the density matrix is given by 

    (11) 
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where P = tanh(ћγB0/kBT). Evolution of the density matrix in the appropriate frame of 

reference is governed by the Liouville-von Neumann equation as given in Eq. 4. In the 

absence of feedback fields, the solution to Eq. 4 for the Hamiltonian given in Eq. 5 is 

simply 

    (12) 

where  is just the super operator (  A = �s�̂  � �s�̂ 6�) form of 

�s����  =  ��� ����,s�  ¡¢�£ ��� ���¤,s�¥s/�£    (13) 

where Iˆx,ij′ = exp{iIˆy,ijθi/j}(Iˆx,ij)exp{−iIˆy,ijθi/j} is a rotation of the excitation field by an 

angle , and the frequency of rotation about the new excitation axis 

is . This solution is simply a rotation of each component around the 

effective field. 

Solving Eq. 4 with the Hamiltonian in Eq. 8 is not trivial. As previously discussed, 

the Hamiltonian in Eq. 8 not only varies with time, but has an explicit dependence on the 

instantaneous state of ρˆ(t), rendering the time evolution as non-linear. The propagator,  

)), dependent on the density operator at time, t′, acts for a short interval, δt, such 

that the density operator at time t = t′ + δt can be given as 

 (14) 

where t′ = t′′ + δt, until tn−1 = t0 + δt. As seen in Eq. 7 and 8, any immediate change in ρˆ(t) 

is immediately reflected in a new Hamiltonian acting on ρˆ (t + δt). This calls for the limit 

where δt → 0, requiring an infinite recursion of propagators from time t0 → t. This sort of 
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analytical consideration becomes intractable, considering the extreme sensitivity to initial 

conditions. An approximate solution for ρˆ(t) can be obtained by numerical integration of 

Eq. 4 using the Hamiltonian in Eq. 8 and initial conditions in Eq. 11. The result is shown 

in Fig. 1A. Starting from equilibrium, the expectation values for each component can be 

seen to spiral away from the other component, towards stable fixed points on opposite 

poles of the Bloch sphere. The location of these fixed points is consistent with the 

constants of motion presented in Eq. 6, and this particular orientation represents the ρˆ−+ 

state. Numerical analysis reveals that, while the ρˆ+− state is fixed, it is not stable and thus 

can only be achieved if the system starts in this specific state. The development of these 

states is understandably a result of the competition between the excitation field, and the 

feedback fields. 

In the absence of feedback fields, the effect the excitation field is to invert the 

populations of the density matrix on a time scale of τ = (2ω1)
−1, or one half of the inverse 

Rabi frequency. The populations are then inverted a second time on the same time scale, 

bringing the density matrix back to ρˆ0. In the presence of feedback fields, a different 

time scale can be predicted because population inversion requires the creation of 

coherences, 〈�s��〉, which activates Eq. 7. The net effect of Eq. 7 is to create an imbalanced 

Rabi cycle, where the feedback fields destructively interfere with the initial population 

inversion, requiring a time scale of τ1 > (2ω1)
−1, and constructively interferes with the 

second inversion, reducing the time scale to τ2 < (2ω1)
−1. 

In the presence of the δωi/jIˆz,i/j terms, the 〈�s/�� 〉 part of each component will 

acquire a phase during the initial inversion, and a negative phase during the second 

inversion of the populations. Without feedback fields, the required time to invert the 
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populations is equal, and so after one full cycle, the net acquired phase for each 

component is zero. In the presence of feedback fields, the time required for both 

inversions is different, and so it can be easily seen that the magnitude of the acquired 

phase during the first inversion will be greater than that of the second inversion, resulting 

in a net phase accumulation after one full cycle. In this example, since δωi = −δωj, it can 

be seen that there will be a net phase difference between both components after one full 

rotation. Subsequent inversion cycles allow for the process to repeat itself indefinitely 

until the total system arrives at its constant of motion, or fixed points. 

The rate at which the system evolves towards the fixed points depends on the 

extent of the imbalanced Rabi cycle. Increasing ωr with respect to ω1 creates a larger 

imbalance, allowing for a greater phase accumulation between each component for a 

given cycle. Consequently, fewer cycles are required in order for each component to 

obtain a maximum phase separation. Conversely, reducing ωr with respect to ω1 decreases 

the imbalance, diminishing the total phase accumulation for each cycle, thus increasing 

the amount of time required to reach the fixed points, as can be seen in Fig. 1B. The time 

required to reach the fixed points is inversely proportional to the imbalance in the Rabi 

cycle. Of course, in the limit that ω1 ≫ ωr, the imbalance becomes negligible, and there 

will be effectively no phase accumulation between each component. On the same note, in 

the limit that ω1 ≪ ωr, the feedback fields prevent any possible inversion, hindering any 

phase accumulation. So it can be seen that the condition that ω1 ∼ ωr must be met in order 

for the constants of motion to develop on any reasonable time scale. 

The development of the fixed points is rather straight forward in the case where 

∆pij = 0 because of the even symmetry between both components. There is a significant 
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shift in dynamics when the symmetry is broken (∆pij ≠ 0) as can be seen in Figs. 2B-D. 

The effect of simply changing pi = pj (2A) to pi = 3pj (2B) tilts the location of the fixed 

points as expected (Eq. 9). Despite the change in evolution, some of the basic principles 

in the even-symmetry case still apply. The broken symmetry is clearly displayed in the 

differing evolution of each component. The component with a greater contribution to the 

Eq. 7 is clearly the component that races towards its fixed point more rapidly, where the 

component with lesser contribution takes more time to stabilize. 

While the evolution is highly dependent on δω, ω1 ωr, and ∆pij, a simplistic model 

can be presented to provide insight behind the parameter-sensitive dynamics. The 

evolution of the entire system can be understood by simple independent analysis of each 

component. The evolution of the component with larger contribution to Eq. 7 will 

experience a feedback field that is primarily dependent on itself. As a result, its evolution 

is going to be largely independent of the lesser component, which has only a minor 

contribution to Eq. 7. The development of a stable fixed point for a singular component in 

the presence of feedback field has been previously characterized [9], and so it is expected 

that the larger component will rapidly attempt to stabilize itself in the lowest-energy 

configuration. 

The evolution for the component with lesser contribution to Eq. 7 will experience 

a different environment. Because the lesser component has only a minor contribution to 

the feedback fields, it will be predominantly influenced by the evolution of the larger 

component. Once the larger component reaches its fixed point, the feedback fields 

become largely static and so the lesser component evolves under a new effective field 

with a new effective Rabi frequency , where the diminished 
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strength of the feedback fields can be given by . Since  the imbalance 

in the Rabi cycle is not very significant, and so the lesser component requires a 

significant number of cycles in order to reach the fixed point on the opposite side of the 

Bloch sphere. This shift in fixed points in the transverse plane is in good agreement with 

the approximation set forth in Eq. 9, as shown by the solid vectors in each panel. 

As was the case when ∆pij = 0, the number of cycles required can be reduced by 

increasing ωr, as can be seen in Fig. 2C. As expected, this comes at the expense of 

rotating the fixed points further away from ω1Iˆx, again in agreement with prediction. 

Conversely, the fixed points can be tilted back towards ω1Iˆx by increasing ω1 as can be 

seen in Fig. 2D. This increase in ω1 further reduces the imbalance in the Rabi cycle, and 

consequently increases the number of required cycles before reaching the fixed points 

predicted in Eq. 9. While the model is crude, the evolution for each individual component 

can be predicted with reasonable degree of accuracy. The location of each set of fixed 

points can be manipulated with the competitive nature between ω1 and ωr, as well as the 

amount of time required to reach the fixed points. 

The joint interaction of the CW with the feedback fields would thus be expected 

to generate significant contrast between two components with only a slight difference in 

magnetic susceptibility or resonance offset, provided the CW is placed on resonance with 

the average of the two components, and ω1τr ∼ 1. The performance of using a CW with 

the active feedback circuit at 300MHz with a micro-imaging probe can be seen on the 

imaging of a mouse with an early tumor, grown on its right leg. The appearance of the 

tumor in the image (Fig. 3F) shows up much clearer than it does in the other forms of 

conventional imaging (3A-D). The supposed susceptibility difference between the healthy 
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and tumor tissues would thus be expected to be visible in a susceptibility weighted image 

(SWI), which weighs certain parts of an image by the acquired phase during a free 

evolution of the magnetization prior to acquisition. From the SWI (Fig. 3E) image, it is 

difficult to determine the location of the tumor from simply applying the phase mask. 

One explanation is because there are specific limitations in producing an effective high-

frequency filter in the creation of the SWI. Unless the change in resonance offset is rapid 

enough (constructed from high frequency components in Fourier space), any phase 

change in the magnetization runs the risk of being filtered out as background 

inhomogeneity. This can be remedied by allowing for longer evolution times to acquire 

more phase separation, at the expense of signal dephasing from  decay as well as phase 

wrapping of the magnetization, which requires additional imaging processing algorithms 

to handle the aliasing artifacts. While susceptibility information may be available from 

processing phase information, that sort of approach does not appear to be very robust as 

there are multiple concerns in the post-processing of the phase data. 
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3.4 CONCLUSION 

The dynamics surrounding the evolution of a sample in the presence of feedback 

fields has been examined for simple two-component systems. The phase difference 

between both components can be encoded into the phase of the sample magnetization, 

and measured via standard MRI techniques. Understanding the quantum dynamics and 

how to manipulate them can be useful for imaging purposes where the relaxation 

behavior of the sample destroys the long term stability of the fixed points. Despite the 

destructive nature of relaxation, the system will still evolve in such a way as to minimize 

the total energy of the system. As a result, the dynamics en route to the fixed points can 

still be useful for imaging contrast as each component is seen to repel each other because 

of the passive/active feedback fields. The use of a CW in the presence of feedback fields 

can thus be used to highlight regions or tissues with only a slight difference in magnetic 

susceptibility or resonance offset. The amplitude of the feedback fields can be arbitrarily 

set to interfere with the CW in such a way as to optimize the contrast. In vivo MR images 

from mice cancer models suggest that this new approach successfully finds early-stage 

tumors more consistently than the other conventional imaging modalities, including 

conventional susceptibility weighted imaging. 
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3.5 FIGURES 

 

FIG. 1: Simulations showing the effect of different feedback field strengths on the 

development of the constants of motion. A.) 3D trajectory (corresponding to the 3 

observables, 〈��̂ 〉, 〈�¤̂〉, and 〈�ª̂ 〉), for each of the individual components of the density 

matrix, ρˆ(t) with ω1 = 50Hz, ωr
−1 = τr = 20ms, and δωi/j = ±5Hz in radial frequency units. 

The black arrows show the orientation of the fixed points, corresponding to the ρˆ−+ state, 

as predicted in Eq. 6. B.) Evolution of 〈��̂ 〉 for each component of ρˆ(t) with the same ω1 

and δωi/j as in A, with variable values for ωr. 
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FIG. 2: 2D trajectories, showing the off-diagonal terms of ρˆ(t) (corresponding to 〈��̂ 〉 and 

〈�¤̂〉, where A.) ω1 = 50Hz, ωr = 50Hz, and δωi/j = 5Hz, and pi = pj, B.) ω1 = 50Hz, ωr = 

50Hz, and δωi/j = 5Hz, and pi = 3pj, C.) ω1 = 50Hz, ωr = 75Hz, and δωi/j = 5Hz, and pi = 

3pj, D.) ω1 = 75Hz, ωr = 50Hz, and δωi/j = 5Hz, and pi = 3pj, all in radial frequency units. 

The arrows correspond to the ρˆ′−+  state as predicted by Eq. 10. 
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FIG. 3: Representative results from 5 mice. While T2 parameter images (3rd column), T2-

weighted images (4th column), and T1-Gd-weighted images (5th column) could not 

successfully locate the early brain tumor, the deoxyhemoglobin-based active-feedback 

fixed-point images (2nd column) and decay constant mapping (1st column) successfully 

highlight the early brain tumor with a close correlation with histopathology (6th column). 
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4.1 Introduction: 

 In previous works [1, 2], it was successfully shown that under the weak 

continuous wave (CW) irradiation, an additional passive feedback field of radiation 

damping will act onto the sample and produce unique stable fixed points or constant of 

motions. The magnetization of spin ensembles will evolve to these stable fixed points as 

they relax through longitudinal and transverse relaxation. The study of the dynamic of 

fixed points can enhance the contrast of magnetic resonance imaging (MRI) in two ways. 

One is allowing the almost indistinguishable signal of tumor cell to evolve to different 

fixed points with the surrounding healthy cell and enlarge the difference between the two. 

The other one is that, by application of designed pulse sequence, the reactionary feedback 

field can be used to accelerate the magnetization back to +z position which dramatically 

shorten the Free Induction Decay (FID) and improve the contrast to noise ratio (CNR). In 

addition, it has also been shown that the contrast of MRI is improved and can be used in 

early detection of tumors in mice by using these fixed-points spin dynamics [3].  

 In this work, it is mainly focus on the study of the spin dynamics of the active 

feedback field in which a better way of rf pulse can be designed later and further 

improved the contrast of MRI. For a conventional MR machine, there are three major 

controllable parameters for rf pulse which includes the intensity, position, and duration of 

the pulse. To investigate the effect of the fixed-point spin dynamic, a homebuilt active 

feedback-controlled electronic device can be used to generate, amplify and shift the 

receiving signal further control the active feedback field. There are four chapters in this 

work. In the first chapter, we discuss the physical origin of the fixed-point spin dynamic 

and the radiation damping by controlling the intensity of rf pulse. It is critical to 
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understand the effect of the strength of feedback field as it is competed with the applied 

constant field and generated the position of the fixed points. In the second chapter, we 

will turn our focus on discussing the radiation damping which produced by uneven 

components case and multiple components case. It will be shown that instead of a single 

fixed point, the magnetizations for more than two spin ensembles will perform as 

constant in motions as they evolve in magnetic resonance. In the third chapter, it is 

important for us to enlarge the number of spin ensembles to meet the realistic case. From 

the previous brain model [4], an approximation of the dipolar field or the resonance offset 

from the Larmor frequency can be summarized by Gaussian distribution. Based on the 

distribution, hundreds of spin ensembles will be generated and evolved under the active-

feedback field, and the average magnetization will be examined. In the last chapter, we 

will include the phase factor on the active feedback field and propose a new method to 

manually control the position of the fixed points. In addition to that, potential future 

applications by emulating the time-dependent radiation damping field will be discussed. 

All of the simulation results in this work are presented by numerical calculation using the 

MATLAB software (The Mathworks, Natick, Massachusetts). 
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Chapter 4.2 

4.2.1 Theory and the Energy States 

The Hamiltonian of a spin system can be given by the static and interaction 

Hamiltonian 

                                                                                           [1] 

where the static Hamiltonian is just the Zeeman interaction,  , ћ is the Planck 

constant and ω0 is the Larmor frequency. The hat symbol, ˆ, is representing the use of 

operator, and it will be drop for convenient. The interaction Hamiltonian, HI, includes the 

perturb weak-applied radio-frequency field and the contribution from resonance offset 

factor, δω. The self-diffusion factor of the spin particle is not included in this work.  

                                 «¬ =  ћ¡���6s¬®¯�°���s¬®¯�°� +  ћ±¡�ª                                                        [2] 

Under simple unitary transformation,  � �t� = �s¬®¯�° , the evolution of the density 

operator can be transformed into Dirac picture and summarized by Liouville-von 

Neumann equation 

                                          
²�∗�°�²°  =  − sћ  �«¬∗ , �∗����                                                 [3] 

where ρ represents the density operator under the Hamiltonian. The asterisk symbol 

represents the Dirac picture, and it will be dropped as rest of the discussion are within the 

picture.  

 Warren et al [5] has previous shown the unexpected dynamic of radiation 

damping for single spin system and the shifted fixed point under the application of CW 

pulse. In here, two and more spin systems will be solved simultaneously within the 

appropriate frame of reference. 
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 For two spin components with the subscript of i and j, the constants of motion can 

be easily solved by setting Eq. 3 to zero. The relevant four constants of motion can be 

determined as individual Hamiltonian vectors of two spins that lies either parallel or anti-

parallel to the total interaction Hamiltonian. Such ρ++ is the state for both components to 

be parallel to the effective field, and ρ-- is for both components to be anti-parallel to the 

field. Also, ρ+- and ρ-+ states have one component aligned parallel and one component 

aligned anti-parallel to the field. Without any additional factor, the magnetizations of 

individual spin will evolve to its lowest energy state, ρ++, such that the energy is given by 

Eij = Tr [ ρij, Hij]. Where Tr represents the Trace of the matrix. 

 

4.2.2 Feedback Field and Radiation Damping 

In the presents of the active feedback field, a semi-classical term will be added 

into the interaction Hamiltonian, and the trajectory of magnetization will be changed by 

the radiation damping. 

The radiation damping and the electronic feedback magnetic field can be model as 

a time-dependent evolution, given by 

        «³³��� = ∑  ℏ¡q�ℜ��6sµ〈��¶�〉���� �� + ℑ��6sµ〈��¶�〉�����¤�¶                       [4] 

where ωr is the strength of the passive/active feedback field, ℜ and ℑ represent the real 

and imaginary components of the term. φ is the tuning-dependent phase factor of the 

applied radiation damping, and it is assumed to be zero in this chapter. 〈��¶�〉 is the 

coupling ladder operator and is given by, 〈��¶�〉���  =  ��¶ m���¶��¶����. where pu is the 

probability of the spin component, and u is the running index of the spin components. In 
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the two spin component system (spin i and spin j), pi + pj = 1. Without any tuning phase, 

a complex rotation 〈��¶�〉 is applied such the feedback field is applied 90 degree out of 

phase or perpendicular to the total transverse magnetization, 〈��〉, which is defined as 

∑ �¶〈�¶� ���〉¶ . Using Eq. 2 and 4, the total interaction Hamiltonian can be summarized by 

«¬ ���  =  «¬���  + «³³ 

               «¬ ��� = ℏ±¡�ª + ℏ¡��� + ∑  ℏ¡q�ℜ��6sµ〈��¶�〉���� �� + ℑ��6sµ〈��¶�〉�����¤�¶             [5] 

From Eq. 5, the effective field will be controlled by three components, ω1, ωr, and 

δω. In the limit of strong radio damping, ωr ~ ω1, the feedback field will in direct 

competition with the uncoupled interaction Hamiltonian since they are applied 

perpendicular to each other. (shown in Eq. 4) In another word, the transverse 

magnetization, 〈��〉, is parallel to HI but perpendicular to HFF. Energetically, the feedback 

Hamiltonian term in Eq. 5 will raise the total energy for both ρ++ and ρ-- states, and the 

fixed points will no longer holds. However, as the feedback-field term increase, the 

system will naturally adopt the configuration that minimize the overall transverse 

magnetization, 〈��〉, and reduce HFF. The situation is different for ρ+- and ρ-+ states; with 

one spin parallel and one spin anti-parallel to each other in the transverse plane, the 

energy cause by feedback field or Eq. 4 will be cancel out by the two spins. Consequently, 

the states, ρ+- and ρ-+, are more favorable in thermodynamic perspective. Figure 1A 

shows a 3-dimensional trajectory for a two-component system with Δωij = | δωi - δωj | = 

10 Hz evolve from a static equilibrium to the fixed point. The fixed point is 

corresponding to the ρ-+ states as expected. 
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4.2.3 Role of Field Strength 

The rate for spin systems to evolve to fixed points depend on the amount of the 

imbalanced of Rabi cycle. Without feedback field, the time, τ1 = (2ω1)
-1, that is required 

to excite the magnetization away from its initial state has the same time scale as the time, 

τ2, for the magnetization to relax back. However, with the feedback field, the radiation 

damping destructively interferes with the CW field when being excited away from initial 

state, ρ0, and constructively interferes with the CW when being returned to initial state. 

The imbalance Rabi cycle results in increasing the time scale of τ1 and reducing the time 

scale of τ2. In here, since both spins have a slightly resonance offset, it can be seen that 

the difference in τ1 and τ2 time scale allows a net phase accumulation after each Rabi 

cycle. Therefore, the magnetization of spins will naturally flow to the fixed points. As 

shown in Fig. 1B, increasing in ωr with constant ω1 rise the strength of feedback field and 

enlarge the imbalance of Rabi cycle. Generally, with higher ωr, there will be a greater 

phase accumulation for each Rabi cycle, and the system can evolve toward the fixed 

point at fewer rotation. Similarly, as shown in Fig. 1C, increasing in ω1 with constant ωr 

raise the number of inversion which excites magnetization away or toward the initial 

condition. Consequently, it requires more cycle to reach the fixed point. In the limit that 

radiation damping is negligible such ωr is approaching zero or ω1 is approaching infinity, 

the feedback term in Eq. 4 and 5 will generally be vanished, and the effective field for the 

two components system will be reduced to Eq. 2. As shown in Fig. 1B and C, without the 

imbalance in Rabi cycle, the fixed-points are no longer exist and the magnetization 

cannot evolve towards them. Therefore, it can be seen that the condition of ωr ~ ω1 must 

be meet for the constants of motion to develop. In Fig. 1D, increasing the difference in 
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resonance offset allows the spins rotate faster in the transverse plane, and a greater phase 

can be accumulated at each cycle. As a result, the overall time scale for the system to 

evolve to fixed points will be shorter. However, as the increasing of resonance offset be 

larger than a certain limit, a direct competition between ω1, ωr, Δp and δω will shift the 

location of fixed points away from the ρ+- or ρ-+ states, and it will be discussed in the next 

chapter. 
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Chapter 4.3 

4.3.1  Two Spin System with Uneven Contribution  

 Understanding the fixed point spin dynamics for even-component cases is useful 

to extend the idea to uneven-component cases or more realistic cases. With the difference 

in contribution between spin i and j not equal to zero (Δp = |pi – pj| ≠ 0), the energy by 

feedback field in the state ρ+- or ρ-+ will not equal to zero, and the state will no longer be 

the lowest energy state as Eq. 4 predicted. Thermodynamically, the system will evolve to 

a new fixed point with a shift of state ��6   ¸� �6�    which depends on a direct competition 

between ω1, ωr, Δp and δω. The radiation damping from Eq. 4 rotates the effective field 

away by a certain angle, θr. The degrees of rotation can then be simplified by assuming 

¹¡�"  +  �∆�¡q�"  ≫  ±¡. Despite the fact that the feedback field is perpendicular to the 

transverse magnetization, the total energy must be minimized when 〈��〉 || (HI + HFF). 

From the geometric point of view, the rotation angle can be approximate as  

                                      ¥q ≅ �x»6�  ¼ ∆½¾¿¯À E`M�ÁÀ�¯Â6∆½¾¿¯À MeL�ÁÀ�Ã =  z�»6� Ä∆½¾¿¯À¯Â Å                                [6] 

As the difference in contribution between two spins increase or the stronger the radiation 

damping is, the new fixed point will be tipped further away from its original fixed point. 

Conversely, by increasing the strength of the CW field, the tipping angle can be reduced, 

and the new fixed point will be closer to the original fixed point. 

 Fig. 2A shows the transverse projection on xy plane for a two-component system 

with different ratio of contribution to Eq. 4. The two spin ensembles have equal 

magnitude but different direction of resonance offset. i.e. δωi = 5 Hz and δωj = -5 Hz. 
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The probability for spin i and j are 75% and 25% respectively. The larger contribution of 

the i component to Eq. 4 allows the spin to evolve more likely as a single component 

system which has been previously described by Warren [5]. Or it can be understood as 

the evolution pathway of the larger contribution to the feedback field experience the field 

that is primarily depend on itself. As a result, the component that races towards its fixed 

point more rapidly. For the spin system with smaller probability to the feedback field, 

however, it will be a different story. The evolution of the spin system will be strongly 

influenced by the larger component. Since the time for the bulk component to reach its 

fixed point is relatively early, it is not sufficiently enough for the smaller component to 

reach the fixed point. Once the larger component stops evolving, the radiation damping 

created by it will then turn into a static vector, and the new effective field will be 

gradually change by the small contribution of the other spin. Consequently, as the spin 

system with smaller contribution experiences the new effective field, its own radiation 

damping will start to appears to influence its evolution path and brings the magnetization 

toward fixed point on the opposite of the Bloch sphere. Therefore, it will take more 

cycles for the spin to evolve. 

 

4.3.2  Multi Spin Systems and CW position dependent 

  The dynamics of multi spin system will generally be the extension of the uneven 

component cases. In here, we split the minor component, spin j, in the uneven case of Fig. 

2A further into two smaller components (spin j and k), and the resonance offset for the 

new minor components are separated by a few Hz. As shown in Fig. 2B, the evolution 
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path for the bulk component is almost identical to the uneven case, and the spin system 

has larger contribution to the feedback field and reaches to its fixed point in a faster rate. 

It can be seen that the two minor components will still evolve towards the opposite of 

Bloch sphere since each component has some contribution to the effective field. 

Although the coupling between two minor components evolve under strong radiation 

damping which contributed by bulk component is insignificant, the coupling effect can be 

notified after the effective field contributed by strong damping becomes constant vector. 

(or after the bulk component reaches the fixed point.) It can be understood easier by 

comparing Fig. 2B and C. Since the two minor components have different resonance 

offset, the amount of phase accumulate during each Rabi cycle will be different. The 

evolution time for each spin system to reach its fixed point will be based on a direct 

competition between ω1, ωr, Δp, δω, and relative position after the strong radiation 

damping. By taking a closer look on spin j of Fig. 2C, it can be found that the spin will 

evolve to its fixed point at first; however, as the strong contribution of feedback field 

from bulk component become a constant vector, the new effective field which 

contributed by spin j and k will bring the magnetization a little bit backward to 

accommodate and couple with spin k. Thermodynamically, the coupling between spin j 

and k will prevent these spin systems to evolve to the fixed point; instead, they will 

perform as constants of motion.  

 Another interesting point from Fig. 2C is that the position of the CW field 

contribute to a significant role in the evolution time scale. The parameters for Fig. 2C is 

identical to Fig. 2B with only a 3 Hz shift of the position of CW field to the right. As 

shown in both Fig. 2C and D, the shift of CW field will effect similarly as decreasing the 
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resonance offset of the bulk component and increasing in the minor components. As 

shown previously, the decrease in resonance offset reduce the amount of phase to 

accumulate at each Rabi cycle. Therefore, the bulk component will need more time to 

reach to its fixed point. However, for the minor components, the larger resonance offset 

allows them to evolve to their fixed points or constants of motion at faster rate. The 

overall evolution times for all three spin systems can be reduced by a shift of CW field as 

shown in Fig. 2D. Conversely, by controlling the position of CW field, it is possible to 

increase the evolution time of one spin system and decrease the other kinds of spin 

systems, and it is possible to enlarge the contrast between the two. 
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Chapter 4.4 

4.4.1  Multi Spin Systems and Spin Distribution 

 Multi spin systems will be considered as a more practical way to realistic situation, 

and the average spin dynamics will be recognized as a representation of all. From 

previous study [6], it was found that the tumor tissue will have a slightly different micro 

condition than the surrounding healthy cells. In particular, as brain cancer, multi form of 

glioblastoma, grow, the surrounding blood vessel density will drop, and the size of blood 

vessel will increase. One of the well-known functional MRI method, Blood Oxygenation 

Level Dependent (BOLD), uses the relative distance between hydrogen particle and 

blood vessel to determine the relative resonance offset of the particle. Since the 

deoxyhemoglobin inside the blood vessel is paramagnetic and able to generate a local 

field to the surrounding particles, the induced local field will act constructively or 

destructively to these hydrogen particles and differentiate their resonance offset. By 

simulating thousands of particles, the distribution of the resonance offset can be 

approximated by a Gaussian distribution.  

In here, 201 spin ensembles are simulated with the resonance offset from -100 to 

100 Hz, and the spin dynamic of the multi spin system is summarized by averaging each 

spin components with the corresponding weighting factor from the Gaussian distribution. 

As shown in Fig. 3A, the fact of having both positive and negative resonance offset spin 

components balance out the magnetization in x-direction since each spin component will 

flow to either side of Bloch sphere. However, it can be easily seen that the average spin 

system reaches a constant of motion after evolving through a certain numbers of cycles. 
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From the BOLD model, it is known that the resonance offset distribution for tumor cell is 

different than the healthy one. Here, we propose four different kinds of distributions of 

the dipolar field and study the effect of changing the position of CW field as shown in 

Fig. 3B. The results are presented in Fig. 3C and D. The constant of motion is defined as 

the degree of fluctuation in all directions of the magnetizations stop changing in 

magnitude. As predict in section 4.2.3, the spin system with broader resonance offset 

distribution (i.e. larger standard deviation (SD)) has a greater phase accumulation during 

each Rabi cycle, and it is able to evolve to the constant of motion at shorter time. 

Conversely, the spin system with narrower resonance offset distribution generally need to 

rotate more cycle before reaching to its constant of motion since the amount of phase 

accumulate in 1 cycle is small. For example, the spin system with the distribution, SD = 

50 Hz, can reach to its constant of motion at about 0.2 second, but the one with SD = 2 

Hz will need over 0.5 second.  

Similar to section 4.3.2, the position of the CW field is also considered with the 

case of multiple spin systems. In Fig. 3D, the CW field for a spin system with normal 

distribution (SD = 18 Hz) will be placed in center (blue), 10 Hz to the left (orange), and 

30 Hz to the left (green) respectively. As the CW field move away from the center, the 

dipolar field for each spin component increase; thus, the evolution time to the constant of 

motion will be shorter. The presence of the imbalance field distribution also rotates the 

location of the constants of motion away in an angle which is described by Eq. 6. In the 

strong resonance offset case, the tipping angle cannot described by the equation since the 

original assumption,  ¹¡�"  +  �∆�¡q�"  ≫  ±¡,  breaks. The new tipping angle will be 

based on the direct competition between ω1, ωr, Δp and δω. 
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Chapter 4.5 

4.5.1 Time Dependent Fixed Points 

 Previously, the phase, φ, of the active feedback source was set to 0 for the 

purpose to understand the spin dynamic; in here, the controllable phase factor will open a 

new page for the ability to dynamically control the location of the fixed point in real time. 

Similar to the discussion in section 4.3.1, the imbalance contribution of two spin systems 

increases the energy of the ρ+- or ρ-+ states, and the system will adopt to a new state to 

reduce the overall energy which depends on ω1, ωr, Δp, δω. With the additional phase 

factor, from Eq. 4, the phase joins the competition to reduce overall energy. The rotation 

angle which tips the fixed point away will no longer be Eq. 6 and will be given by a 

geometric approach 

                                                 ¥q =  Æ¸z6� ÇÈ¯ÂC6�∆½¾¿¯À E`M�µ��C
¯Â É                                              [7] 

In general, as the phase approach to zero, it can be seen that Eq. 7 will converge 

to Eq. 6. Also, by setting φ = π/2, Eq. 7 will lead to a zero-degree rotation of the tipping 

angle, θr = 0, and the system will be assumed to evolve to the fixed point identical to the 

one without spin contribution difference (fixed points in Fig. 1A). However, as discussed 

in section 4.2.3, the radiation damping is controlled by ω1, ωr, Δp, δω. with additional 

phase factor. Trivially, allowing ω1 to approach to infinity or ωr to approach to zero will 

destroy the radiation damping and leads to no fixed point as can be seen in Eq. 4. 

Similarly, setting φ = π/2, the feedback field will be parallel to the transverse 
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magnetization, and it cannot produce an imbalanced Rabi cycle, which is needed to reach 

the fixed points. 

 The story of the above approach tells that the system cannot reach to a certain 

fixed points because the factor of ω1, ωr or φ all have the effect of minimizing the 

imbalanced Rabi cycle. However, our team proposed a two-step time-dependent fixed-

point scheme which has the ability to move the fixed points to any desire location after 

the initial fixed point has been reached. As shown in Fig. 4A, step 1 occurs when the spin 

system evolves to its fixed points with no phase factor. Once the system has reached to 

the fixed points, a gradual perturbation of the values of ω1, ωr or φ can be made. Since 

the perturbation is infinitesimally small, the system can reach to a new fixed points 

gradually without the needed of strong imbalanced Rabi cycle. In our case (step 2), 

immediately after the system reach to its fixed points, φ is gradually increased to φ = π/2 

together with gradually increasing ω1. From Eq. 7, it can be seen that the rotation angle, 

θr, of the new fixed-points is slowly decrease to zero, and eventually, the system will 

rotate to the state which is similar to the one without contribution difference. As a result, 

the study of fixed points dynamics allows the system to evolve and follow in a specific 

trajectory to any desire positions in Bloch sphere. 

 

4.5.2 Self Nutation 

 Self nutation refers as the case that the system can be designed to evolve towards 

fixed points along the ± z axes by controlling the active feedback source. Despite the fact 

that the natural radiation damping will be active whenever Eq. 4 is not equal to zero, the 
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active feedback device has the advantage to control on and off of the feedback field and 

ability to control the phase to rotate to the magnetization in any desired direction. 

 In here, a two-step time-dependent fixed-point scheme is performed as shown in 

Fig. 4C. For a two spin system with opposite sign of resonance offset and different 

contribution, a preparatory 90° pulse brings both magnetizations to the +x direction.  

Without any feedback field, spins are allowed to freely evolve on transverse plane for a 

certain time period, τ1. Then, the feedback field is applied onto the system by activating 

the feedback device. With the controlled phase (here φ = 100), the feedback signal is 

applied directly between both components, and the spins are deviated from the transverse 

plane and evolved in the opposite directions along the z-axis. It can be seen that the 

trajectories depend heavily on both τ1 and φ. Also, the evolution time to reach the fixed 

points is sensitive to the specific phase angle of the applied feedback signal, as shown in 

Fig. 4D.   
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4.6  Conclusion 

 In this work, we first introduce the dynamics of magnetization evolutions for two-

spin systems under the presence of the feedback field, and we gradually include the 

contribution factor and talk about the continuous multi-spins systems. Despite the nature 

of relaxation, the contribution of feedback field will change the total energy for every 

states, and the spins will eventually evolve to a new fixed points to minimize energy, 

Eq.4. As a result, even for a very small difference in resonance offset can allow the 

system to flow to the opposite sides of the Bloch Sphere and create a sufficient contrast 

for imaging. Furthermore, we have shown that by using our new proposed two-step time-

dependent fixed-point scheme, the location of fixed points can be governed in a way to 

maximize the contrast of MRI. In particular, the controllable phase factor by our active 

feedback device allows the magnetizations flow toward ±z direction. Therefore, the 

dynamics en route, which is controlled by ω1, ωr and φ, to the fixed points, thus become 

an important task for the future pulse sequence design. As our goal in this paper is to 

summarize those factors, we can show the development of stable fixed points can open a 

new page in future MRI technique. 
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4.7  Figures 

 

 

FIG. 1. A.) 3-dimensional trajectory for a two-component system, where the resonance 

offset Δωij = 10 Hz. The position of continuous wave is set to be at the center where δωi 

= - δωj = 5 Hz. The strength of CW and feedback field are set to be ω1 = ωr = -50 Hz. All 

input variables are needed to convert into angular frequency for accuracy. B.) Feedback 

field dependent with adjustable ωr = -50 (blue), -25 (orange), -12.5 (magenta), and 

approximate to 0 (green) Hz. C.) Continuous wave field (CW) dependent with ω1 = -50 

(blue), -150 (orange), -350 (magenta), and approaching infinity (green) Hz. D.) 

Difference in resonance offset dependent with Δω = 2 (magenta), 10 (blue), 50 (orange), 

and 200 (green) Hz. 

1A 1B 

1C 1D 
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FIG. 2. A.) Transverse projection on xy plane for a two-component system with different 

ratio of contribution to Eq. 4. Δωij = 10 Hz, ω1 = ωr = -50 Hz. The CW field is placed on 

the center with δωi = - δωj = 5 Hz, and the ratio of contribution between i, j spins are 3:1 

respectively. B.) Transverse projection on xy plane for a three-component. ω1 = ωr = -50 

Hz. The CW field is placed on the center with δωi = 5 Hz, δωj = -4 Hz, and δωk = -6 Hz 

and the ratio of contribution are 6:1:1 respectively. The difference between the bulk 

component and the average of the two minor components is 10 Hz apart as 2A. C.) A 

similar setup as part B with 3Hz shift of position of CW field to the right. The new 

resonance offset is thus δωi = 2 Hz, δωj = -7 Hz, and δωk = -9 Hz. D.) A comparison of x 

component magnetizations on i and j spin between part B (solid blue) and C (dash green). 

 

2A 2B 

2D 2C 
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FIG. 3. A.) 3-dimensional trajectory for an average of 201 spin ensembles from δω = -

100 to 100 Hz with probability equal to Gaussian distribution with standard deviation 

(SD) equal to 18 Hz. B.) A summary of the probability distribution chart. Three Gaussian 

distributions with standard deviation (SD) equal to 18 Hz (blue), 2 Hz (orange), and 50 

Hz (yellow). 10 Hz shift of CW field to the left (purple), 30 Hz shift to the left (green) of 

Gaussian distribution with SD = 18 Hz.  Also, a uniform distribution equals 1.896% 

between ± 26.32 Hz is shown as (cyan) C.) A time evolution of y component of 

magnetization with different kinds of distribution. D.) 3-dimensional trajectory from 

average of 201 spin ensembles with different positions of CW field. SD = 18 Hz (CW 

position at center for blue, -10 Hz for orange, and -30 for green.) 

 

3A 3B 

3C 3D 
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FIG. 4. Transverse projection of the two-step evolution for the system δωi = - δωj = 5 Hz 

with the ratio of contribution of 4:1. ω1 = -50 Hz and ωr = -80 Hz. A.) step 1 is a simple 

application for a system in the presence of radiation damping to evolve to the fixed-points. 

B.) The second step involves the slowly increment of active feedback phase φ, from 0 to 

Ê/2, and gradual increase of the strength of CW to -200 Hz. This figure demonstrates the 

theoretical ability to control the location of the fixed points in real time. C.) A self-

nutation experiment starts from a 90° pulse followed by a free evolution time, τ1. As the 

two spins have different resonance offset, the magnetization of individual spin will 

precess away from each other. The Feedback signal is then turned on with a specific 

phase, φ, such that the feedback field is applied between both components. These two 

spins will evolve in opposite directions towards ± z directions. The parameters are set as 

4A 4B 

4C 4D 
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δωi = - δωj = -5 Hz with the ratio of contribution of 3:1. ω1 = -20 Hz. The phase of active 

feedback source will be turned on after τ1 = 50ms, and φ is chosen to be 100°. D.) 110°. 

The self-nutation experiment shows the capability for controlling the evolution of spin 

dynamic under active feedback source, and the dramatic reduction of relaxation time to ± 

z directions. 
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CHAPTER 5 

 

Conclusion and Future Outlook 

 

 During my two years Master Degree study in Department of Scholar Program in 

Chemistry, I set my goal to advance the understanding of tumor detection on its early 

stage. With the help from my mentor, professor Yung-Ya Lin, and others, I chose my 

path to specialize in biophysical chemistry to extend my knowledge on identifying 

diseases, especially by using Magnetic Resonance Imaging (MRI). In particular, based on 

the commonly used fMRI method (blood oxygenation level dependent), we (my group 

member and I) defined the model of one of the most dangerous brain tumor, 

Glioblastoma Multiform, by its aggregation effect during the early stage. Via Monte 

Carlo simulations from three different kinds of pulse sequences, the resulting relaxation 

constants of our tumor model showed good agreement with the in vivo experimental 

results. We concluded the difference in relaxation time constants between the tumor cell 

and its surrounding is partially reasoned as a competition between two diffusing regimes: 

Static Dephasing Regime (SDR) and the Motional Averaging Regime (MAR). Secondly, 

we proposed an enhancement method of MRI signal by introducing the use of the active 

feedback field. With the homebuilt electronic device to retransmit the phase factor back 

to the system based on the receiving signal, the feedback field will increase the energy of 

its original state, and the system will naturally evolve into a new state or fixed points, 

thermodynamically. Therefore, by using the CW field, the regions with a slight difference 
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in magnetic susceptibility can be highlighted in MRI. Lastly, we proposed a detail spin 

dynamics of the active feedback field. The evolutions of multi spin-system and unbalance 

spin-system can be further understand as more realistic cases. Furthermore, we presented 

the possibility of using two-step time dependent active feedback field to control the 

locations of fixed points and enhance the MRI signals. 

 With the strong foundation of the spin dynamics under active feedback field, I 

feel more confident on my goal which is the enhancement of tumor detection. Thus, for 

my short term research direction, I will incorporate the model of early brain tumor cell 

and the evolution under active feedback field to simulate a more realistic spin system and 

to develop a better pulse sequence for tumor detection. As for my long term goal, I will 

extend the use of the spin dynamics to different kinds of tumors other than glioblastoma 

multiform to target the existence and locations of the lesions. Finally, with the well-

define tumor-detection method, I believed varied MR Nano medicines can be developed 

and helped millions of people. 

 

 




