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Abstract

Essays on the Distribution and Effectiveness of Educational Resources
by
Julien Lafortune
Doctor of Philosophy in Economics
University of California, Berkeley

Professor Jesse Rothstein, Chair

Public schools are the foundation of the American educational system, and the public
K-12 education system is often idealized as being one of, if not the, “great equalizer” in Amer-
ican society. Despite this lofty ideal, educational resources are not equally distributed and
there are tremendous discrepancies in student outcomes, both between and within schools.
This dissertation examines the implications of such discrepancies in the provision of school
resources, both financial and otherwise.

In Chapter 1, I link data on new facility openings to administrative student and real
estate records in Los Angeles Unified School District (LAUSD) to provide new evidence on
the importance of school capital expenditures for students and neighborhoods. Since 1997,
LAUSD has built and renovated hundreds of schools as a part of the largest public school
construction project in US history. Using an event-study design that exploits variation in
the timing of new school openings, I find that spending 4 years in a new school increases test
scores by 10% of a standard deviation in math, and 5% in English-language arts. This in
part reflects non-cognitive improvements: Treated students attend four additional days per
school year and teachers report greater effort. Effects do not appear to be driven by changes
in class size, teacher composition, or peer composition, but reduced overcrowding plays a
role. House prices increase by 6% in neighborhoods that receive new schools. Real estate
capitalization is greater than program cost, implying a willingness-to-pay in the range of 1.2
to 1.6 per dollar spent.

In Chapter 2, I study the impact of post-1990 school finance reforms, during the so-called
“adequacy” era, on absolute and relative spending and achievement in low-income school
districts. Using an event study research design that exploits the apparent randomness of
reform timing, I show that reforms lead to sharp, immediate, and sustained increases in
spending in low-income school districts. Using representative samples from the National
Assessment of Educational Progress, I find that reforms cause increases in the achievement
of students in these districts, phasing in gradually over the years following the reform. The
implied effect of school resources on educational achievement is large.



In Chapter 3, I consider educational discrepancies of a different sort: tracking and the
segmentation of students into different curricular paths. In most U.S. schools, a significant
track diversion occurs in 8th grade: higher- achieving students are tracked into Algebra,
while lower-achieving students take Algebra in 9th grade or later. Using a fuzzy regression
discontinuity design around prior-year test score proficiency thresholds, I examine the impact
of tracking into Algebra in 8th grade rather than in high school. For students near the 80th
percentile in the 7th grade state math distribution, advanced track enrollment leads to large
increases in mathematics course-taking, AP course participation, and college entrance exam
scores. However, for students near the 30th percentile in the 7th grade math distribution,
advanced track enrollment is associated with large decreases in Algebra performance, with
little indication of any longer-term gains. Results show that advanced math tracking in
secondary schools has heterogeneous impacts on students based on prior math achievement.
Expanding access to advanced math courses among high-achieving but not low-achieving
students could yield large improvements in mathematics skills and college preparedness.
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Chapter 1

Do School Facilities Matter?
Measuring the Effects of Capital
Expenditures on Student and
Neighborhood Outcomes

1.1 Introduction

There has been a longstanding debate among educational policymakers and researchers
over the productivity of school spending, with little consensus as to whether and under what
circumstances increased expenditures improve student outcomes (e.g. Hanushek (2006)).
Much of the empirical literature has focused on instructional inputs, with considerably less
attention paid to the role of capital expenditures. However, capital expenditures comprise
an important component of US public school spending: in the 2013-2014 school year roughly
8% of total expenditures went towards direct capital outlays, and an additional 9% was spent
on operation and maintenance of existing facilities and equipment (McFarland et al., 2017).
Despite the magnitude of this spending, one-quarter of U.S. public schools are in fair or poor
conditionE] (Alexander and Lewis, 2014), and estimates of the funding required to address
substandard facilities conditions range in the hundreds of billions nationally (Crampton et
al. (2001); Arsen and Davis (2006); M. Filardo (2016))). Substandard facilities are thought
to be a particular problem in low-income districts, which have schools that are more likely
to be in fair or poor condition and/or rely on temporary rather than permanent buildings
(Alexander and Lewis, 2014), and on average spend 15% less on capital investments than do
high-income districts.

In this paper, we address three fundamental unanswered questions. First, do increases

L “Fair” condition means that the facility meets minimum needs, but requires frequent maintenance and
has other limitations. “Poor” means that the facility does not meet minimal requirements for normal school
operation.
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in school capital expenditures improve student outcomes? Second, how are these additional
expenditures capitalized into local real estate prices? And third, are locally-financed school
capital improvements welfare-improving, taking account of the taxes needed to pay for them?
We investigate these questions in the context of the largest public school capital construction
program in U.S. history. From 2002 to 2017, Los Angeles Unified School District (LAUSD)
constructed over 150 new schools and renovated hundreds more. Using administrative stu-
dent and property sale records, we provide precise and comprehensive estimates of the causal
impact of school facility expenditures on student outcomes and neighborhood house prices.
Finally, we use these estimates to evaluate the welfare consequences of the construction
program for LAUSD residents.

The empirical literature on capital expenditures offers little guidance with regard to these
questions. Several studies find no or imprecise effects of capital expenditures on student
achievement (see Cellini et al. (2010), Bowers and Urick (2011)), Goncalves (2015), Martorell
et al. (2016))), while others find some evidence of positive impacts on student achievement,
often only in reading and English-language arts (Welsh et al. (2012)), Neilson and Zimmerman
(2014), Hong and Zimmer (2016), Conlin and Thompson (2017)). Despite inconclusive
evidence in the literature and general skepticism among economists, resource-based capital
expenditure programs continue to be used by policymakers at the state and local level as
tools to improve schools and reduce achievement gaps.

We find robust evidence that attending newly constructed schools in LAUSD leads to
large, significant gains in cognitive and non-cognitive student outcomes. Relying on within-
student variation in the timing of exposure to new facilities, we estimate that spending four
years in a new school facility leads to a 0.1 standard deviation increase in standardized math
scores and a 0.05 standard deviation increase in English-language arts (ELA) scores. In addi-
tion, students who attend newly constructed schools attend on average four additional days
per academic year, and score 0.06 standard deviations higher on teacher-reported measures
of student effort. We provide additional evidence of smaller indirect test score and atten-
dance gains for students at existing facilities who experienced reductions in overcrowding
induced by peer outflows to newly constructed schools. These indirect effects allow us to de-
compose the relative contribution of overcrowding reductions to the observed student gains
at newly constructed schools. Examining the mechanisms through which these effects are
mediated, we conclude that the majority of the effects were due to improved facility quality,
while reduced overcrowding was also an important factor. We find no evidence that student
sorting, changes in teacher quality, changes in peer quality, or changes in teacher-pupil ratios
were contributing factors.

We find significant valuation of school quality improvements in the real estate market.
Using administrative records on property sales, we find that house prices increase by 6% in
neighborhoods that receive new school facilities. Effects accumulate in the first three years
following construction, with little evidence of anticipatory house price increases. House
prices in nearby neighborhoods are mostly unaffected, although we find some evidence of
negative house price spillovers for properties very close to, but outside new school catchment
areas. We use a simple model to assess the household valuation of a redistributive public
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education capital expenditure program. From this model, we derive an expression with
a direct difference-in-differences analogue to assess the valuation of the spending program
using relative price changes between neighborhoods. Reduced-form estimates of the change
in relative house prices imply a household willingness to pay ratio in the range of 1.2 to
1.6 per dollar spent, providing evidence that the total real estate capitalization resulting
from the program exceeds the total program cost, and that educational capital had been
under—providedﬂ

Our study contributes to a few related literatures. First, we provide precise, large-
sample estimates of student-level effects from facility improvements. We estimate direct
effects on treated students, as well as indirect effects on students who are affected by cohort-
peer outflows from existing to new school facilities. Most prior studies examine effects of
capital expenditure programs on district-level average outcomes, often finding mixed and
imprecise estimates of effects on student outcomes (Cellini et al. (2010), Martorell et al.
(2016), Hong and Zimmer (2016), Conlin and Thompson (2017), Goncalves (2015)). These
studies do not measure effects on directly treated students, and are generally underpowered
to detect modest but meaningful effects. Most school districts consist of at least several
school campuses, and thus programs to construct new schools or renovate existing ones
often only affect a subset of studentsﬂ Other studies have looked at longer-run impacts
of school construction programs that expand access to education (e.g. Duflo (2001), Duflo
(2004))), measuring the effects of more generally increasing human capital accumulation.

The study most related to ours is Neilson and Zimmerman (2014)). They examine a similar
construction boom in New Haven, Connecticut, and using student-level administrative data
find evidence of positive effects on reading but not math scores several years after school
construction. Many fewer students and schools were impacted than in the LAUSD program.
The scale of the LAUSD program allows us to carefully decompose effects and examine
specific mechanisms, such as teacher quality, student/peer sorting, class sizes, and other
school-level changes. In addition, we examine outcomes of students who experience cohort-
level peer outflows induced by new school openings, providing new evidence of indirect effects
of new facilities through reduced overcrowding at nearby existing school facilities.

Second, we contribute to the literature estimating the capitalization of school quality
in the real estate market. We provide some of the first large-sample evidence of localized
house price capitalization of dynamic changes in school quality. Much of the work in this
literature has estimated the capitalization of static differences in school quality, and thus

2The efficient choice of local public expenditures is typically defined by the “Samuelson condition”
(Samuelson, |1954)): spending levels will equate the marginal rate of transformation of the public good and
the sum of the marginal rates of substitution between numeraire consumption and the public good. Here,
a WTP ratio greater (less) than one suggests under-provision (over-provision) of local educational capital
expenditures. It is worth noting, however, that educational inputs are not pure public goods; schooling is
both excludable and subject to congestion. In Sections [1.3]and we provide a more detailed discussion of
program efficiency and welfare implications.

3See Figure for a comparison of the estimated test score effects by per-pupil spending change for
prior studies of school capital expenditures.
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does not provide direct estimates of how changes in school quality are valued in the real
estate market. Several papers, most notably Black (1999) and Bayer et al. (2007)) exploit
boundary discontinuities within narrowly defined neighborhoods to estimate the market val-
uation of school quality. Other papers have used variation across district boundaries (e.g.
Barrow (2002); Barrow and C. E. Rouse (2004))), within-district boundary changes (e.g. Ries
and Somerville (2010); Collins and Kaplan (2017)), school “report-card” grades (Figlio and
Lucas, 2004), and public reporting of teacher value-added scores (Imberman and Lovenheim,
2016)). Static differences in house prices between school zones include parental preferences
for school quality, peer quality, and racial composition; these estimates are less informative
for understanding the dynamic effects from policy changes.

A handful of recent papers provide estimates of real estate capitalization of changes
in school quality using variation induced by capital expenditure policies, generally finding
positive effects after several years (see Cellini et al. (2010); Goncalves (2015); Conlin and
Thompson (2017); Neilson and Zimmerman (2014])). We build upon these prior studies by
more precisely examining the dynamics of these changes, over both time and space. More-
over, we study a (mostly) locally funded program that was inherently redistributive: local
property taxes were raised districtwide to fund new schools in only one-third of neighbor-
hoods. We directly relate our estimates of within-district relative price changes within a
simple spatial equilibrium model, allowing us to directly assess the efficiency of program
spending.

Finally, we contribute generally to the broad literature and debate over the efficacy and
efficiency of resource-based education policies. Economists have long been skeptical of the
productivity of such investments (e.g. Hanushek (1997)), although recent studies of state-
level school finance reforms have provided evidence that broad based expenditure programs
can improve educational outcomes (e.g. Jackson et al. (2016)), Lafortune et al. (Forthcoming)),
Candelaria and Shores (2015), Hyman (Forthcoming)), labor market outcomes (Jackson et
al., 2016), and intergenerational mobility (Biasi, |2017). Our study of the LAUSD school
construction program provides additional evidence that: (1) school expenditures - even those
dedicated to capital costs - can improve student cognitive and non-cognitive outcomes; (2)
such programs can induce increases in aggregate real estate prices in excess of program cost.

There are two important caveats to these conclusions. First, as our study focuses on the
outcomes of one large district, our results may not generalize to other districts or states. How-
ever, many large, urban districts as well as smaller districts serving disadvantaged students
face consistently underfunded and worse quality facilities relative to more affluent districts
(e.g. M. W. Filardo et al. (2006])). Our study is directly applicable to these contexts. Sec-
ond, an important feature of the LAUSD program was the reduction of overcrowding and the
expansion of available school facilities. We find some evidence of larger gains for students
coming from previously overcrowded schools. Our estimates are therefore likely to represent
upper bounds on possible effects in districts with stable or declining enrollment seeking to
replace, rather than expand the school capital stock. Importantly, overcrowded school fa-
cilities are not unique to LAUSD; over 25% of California public schools are designated as
overcrowded (Rogers et al., 2009), and thus our results are relevant to many school districts
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facing similar constraints.

The paper proceeds as follows. In Section we detail the context for our study and
discuss specific details of the LAUSD program. In Section we outline a simple theoretical
framework to motivate our analysis and interpretation of house price changes. In Section
[1.4] we briefly describe each of the data sources we use. Section outlines the empirical
specifications and quasi-experimental setup we use to estimate program effects. In Section[I.6|
we present the student-level results, and discuss mechanisms and indirect effects. In Section
1.7] we present house price results, and examine potential spatial spillover effects. Section
provides a discussion of results, and an assessment of the benefits, costs, and welfare
implications of the program. Finally, in Section [1.9] we conclude with a brief summary of
results, their implications, and their generalizability.

1.2 Context of Study

LAUSD is the second largest school district in the United States, serving 747,009 students
at its peak in the 2003-2004 school year. It enrolls roughly 10% of all public K-12 students
in California. Like nearly every large urban school district in the US, it is majority-minority;,
and serves students who are much more disadvantaged than the typical US public school
student. The district itself encompasses 26 cities in total, including the City of Los Angeles,
as well as other nearby “gateway” cities and some unincorporated areas within Los Angeles
County. Some of the more affluent areas in LA County, including Beverly Hills and Santa
Monica, operate separate school districts for their residents. Relative to the rest of California,
students in LAUSD are underachieving: in 2002 the average student scored roughly 28% of
a standard deviation below the state mean in English-Language Arts (ELA) and roughly
21% of a standard deviation below the state average in math ff

As of the early 2000s, LAUSDs capital stock had fallen well below current needs. As
shown in Figure [I.T} no new schools were opened between 1975 and 1996, and the average
student attended a school that was over 60 years old in 2000. Many were in extremely poor
condition. In a 1999 review of the facilities practices of LAUSD and other California districts,
the California “Little Hoover Commission”, an independent oversight body, reprimanded the
district for gross mismanagement and noted in particular that LAUSD school facilities were
“overcrowded, uninspiring and unhealthy”, and that “Researchers have attempted to gauge
the link between the quality of school buildings and the quality of learning. In Los Angeles,
however, this link is obvious. In some classrooms, there are twice as many children as there
are desks.” (Terzian, |1999)) Classrooms were often non-functional, with broken and missing
equipment, and school facilities sometimes lacked adequate restrooms.E] Inadequate climate
control was additionally a major source of distraction; classroom temperatures upwards of 90
degrees fahrenheit were not uncommon. One teacher noted that “... we had roaches, ants,

4Scores from the CST ELA exam in grades 2-11, and the CST math exam in grades 2-7.
5For example, one high school of nearly 2000 students had only one functioning bathroom.
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an air conditioner that barely worked, no sink [...] and barely any storage for classroom
materials.” (Fuller et al., 2009)

The schools were also severely overcrowded, as the district’s enrollment had increased
roughly 10% since 1975 (Figure [1.1)). Nearly 25,000 students were bused daily to faraway
schools to relieve capacity constraints, and roughly half of students attended schools that
operated on multi-track calendars that staggered the school year to use the facility year-
round and thereby accommodate as many as 50% more students than could be served at
any single time. Even with these measures, many schools relied on lower-quality portable
classrooms, and even converted gymnasiums, libraries, and computer labs into classroom
space. This also severely limited student access to extra-curricular opportunities. Rapid
depreciation of facility condition due to continued overuse compounded these issues.

Between 1997 and 2007, voters in Los Angeles approved a series of bonds dedicating
over $27 billion in local and state funding to the construction, expansion, and renovation of
hundreds of schools. This was the largest public infrastructure program in the U.S. since
the interstate highway system (Fuller et al., |2009). The first new school was completed
in 2002, and over the next 15 years nearly 150 new school facilities were constructed in
LAUSD, totaling over $10 billion in capital expenditures. Many more schools were renovated,
modernized, or received additions that increased school capacity. By 2012, over 75,000
students attended a newly constructed school (see Figure , less than 1% of students
remained on a multi-track calendar (see Figure , overcrowding had been effectively
eliminated, and there was no longer widespread busing of students to distant schools.

After the first bond authorization in 1997, the district began by identifying overcrowded
schools and attendance areas. Designated search areas were defined for each of these loca-
tions, and construction sites were selected from within these areas primarily based on site
feasibility (e.g. size, location, accessibility), cost of acquiring land, environmental concerns,
and local community engagement. By 2001, nearly all new school sites had been identified,
although the process of acquiring land, securing adequate funding, negotiating with local
stakeholders, meeting environmental regulations, and designing and constructing schools re-
sulted in a staggered delivery of new facilities over the next decade. It is this plausibly
random variation in the timing of openings, induced primarily through idiosyncrasies in
the construction process, which we exploit to estimate the effect of new schools on student
and neighborhood outcomes. We will provide a comprehensive discussion of our empirical
approach and identification assumptions in Section

In this paper we focus on new school facilities completed between 2002 and 2012, for
which we have detailed project data matched to administrative student data. A database
of capital projects in LAUSD, including measures of project cost, size, completion timeline,
and location, was constructed from records listed publicly by the LAUSD Facilities Services
Division (FSD). The data cover all major projects and new school constructions with a
preferred site designated between 1997 and 2011 and include over 500 capital projects

6Projects not yet constructed by the end of 2011, but that were already in the planning phase, are
included.
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totaling nearly $17 billion in planned or realized spending. We restrict attention only to
large new school construction projects, defined as those that created over 100 new seats
and/or cost at least $10 million]]

Summary statistics for the new school projects are presented in Table[I.1] In total, there
were 143 new schools built as a part of 114 new school campuses. In some cases, a new
school campus comprised several new schools, either because the site was combined to house
both elementary and middle (or middle and high school students), or because magnet or
alternative schools serving the same grade levels were housed on the same campus. The
median project cost $57 million and created about 800 new student seats, with several
projects costing in the hundreds of millions of dollarsE] Projects typically took two years
to construct, and were complete roughly 5 years after the site had been designated by the
district. In total, the projects we study in our data cost $9.17 billion (roughly $6,000 per
household or $15,000 per pupil), the majority being funded from the various local bonds
that were passed in and after 1997.

Figure [1.2] shows the time series of educational spending in LAUSD relative to the other
nearby districts in LA County. Panel A shows per-pupil capital expenditures, while panel B
shows per-pupil instructional expenditures. Capital expenditures in LAUSD and in other LA
County school districts increased similarly during the 1990s, and prior to the passage of the
first school construction bond in 1997, capital expenditures were slightly lower in LAUSD
(roughly $500 per pupil) than in the rest of LA County (roughly $750 per pupil). The mag-
nitude of the program is clearly seen in panel A: expenditures rose rapidly in LAUSD during
the construction boom, to a peak of nearly $4000 per pupil in 2009. Capital expenditures
increased much less dramatically in other LA County districts until 2005, before declining to
roughly the same level in 2012 as in 1990. Conversely, instructional expenditures saw much
smaller increases during the new construction boom from 2002-2012, and the relative differ-
ence between LAUSD and other LA County schools was essentially unchanged during this
period. Overall, the sample period from 2002-2012 was marked by a large increase in capi-
tal expenditures, without a meaningful increase in instructional educational expenditures in
absolute or relative terms.

Figure |1.3| shows the attendance zones for new and existing school facilities in 2012.
As can be seen in the figure, new schools at all levels were concentrated in East Los An-
geles, where students are predominantly Hispanic and schools were previously the most
overcrowded and in need of repair. Schools in East LA serve students who are socioeconom-
ically disadvantaged; for example, the median school in the areas most heavily affected by
new school construction serves a student population where fewer than one-fifth of students
have a parent with any level of postsecondary attainment.

"We do not examine effects for the small number of projects for school campuses that already existed
in the first year of the student sample (e.g. major additions). In a few instances, students show up at a
particular new school in either the year before or after the listed completion year; we adjust the completion
year to correspond to the student administrative records in these cases.

80ne controversial high school project, the Robert F. Kennedy Community Schools, cost nearly $600
million to construct, becoming the most expensive public school ever built.
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New schools were filled quickly, typically reaching close to steady state enrollment within
2 years after construction. Students from nearby schools were reassigned based on redrawn
school assignment zones to the newly constructed schools. Switching students experienced
drastic changes in facility quality: they switched from schools that were on average 70 years
old and had substantial physical deﬁcienciesﬂ These student outflows also generated sub-
stantial changes in school environments for those students who “stayed behind” at existing
facilities. New school facilities enabled the district to reduce overcrowding and eliminate
multi-track calendar schedules at both new and nearby existing schools. Our main analyses
will focus on the students who switched to new facilities, as induced by the change in school
assignment in the year of construction completion. Here, effects are estimated relative to
a control group consisting of all other students in LAUSD, most of whom were unaffected
by peer outflows to new facilities. Later, in Section [I.06] we will use an analogous identifica-
tion strategy to examine changes in outcomes for the indirectly treated students who stayed
behind at existing schools.

1.3 Theoretical Framework

The LAUSD school construction program induced dramatic changes in the physical and
educational environment of district schools. By the end of 2012, roughly one-third of res-
idential properties within district boundaries were assigned to a school zone for a newly
constructed school facility at least one level (i.e. elementary, middle, or high school). Im-
proved school facilities can affect students in a number of ways. Reduced overcrowding and
improvements in the physical school environment can have direct effects on student learning
through reduced distractionm and improved health. Better facilities may improve student
motivation and effort, leading to indirect improvements in student learning. Improved facil-
ities may also improve teacher motivation and health, as well as help to attract and retain
higher quality teachers (e.g. Buckley et al. (2004); Uline and Tschannen-Moran (2008))). Be-
yond direct and indirect effects on student learning, educational capital investments affect
dimensions of the school environment that improve the amenity value of a school to both
students and parents. Insofar as parents value improvements in educational quality and the
physical amenities of a school campus, local real estate prices will respond to these changes.
To fully evaluate the many potential impacts induced by the construction program, we use
local changes in equilibrium housing prices to identify revealed preferences for educational
spending changes.

The school construction program was funded primarily through local bond initiatives,
which increased property taxes throughout the district to fund new school constructions

9 Among switching students, the average ratio of the cost of facility deficiencies to current replacement
value of prior schools was 0.4.

10Gtudent distraction due to externalities from disruptive peers has been proposed as a motivation for
class size effects (Lazear,|2001). Poor facility condition could cause similar disruptions that impede classroom
learning.
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only in a subset of district neighborhoods. Typical analysis of the valuation of local public
goods relates changes in real estate prices to changes in the provision and tax-price of public
goods. When educational spending increases are valued more than associated changes in
taxes, real estate prices will rise, and vice versa. Importantly, however, only a subset of
households receive additional school spending (in the form of capital spending on new school
construction), meaning that the implied valuation will necessarily be asymmetric: neighbor-
hoods that pay increased taxes but do not receive new school facilities should see prices fall,
whereas prices will rise in neighborhoods in areas that receive new facilities to the extent
that the additional spending in valued greater than the loss in consumption induced by the
tax increase. We formalize this notion by examining the comparative statics of a such a tax
and expenditure change within a simple hedonic equilibrium model, borrowing heavily from
the models presented in Brueckner (1979), Barrow and C. E. Rouse (2004) and Cellini et al.
(2010]).

We begin by assuming there are N households, who derive utility from school amenities
A;, and consumption ¢: U;(A;,c). Households can live in one of two neighborhoods: j €
{0,1}. Households in neighborhood 1 receive new school facility spending, while households
in neighborhood 0 do not. Denote the number of households in each neighborhood as IV;.
New schools are funded by a tax 7 on households, and the local government faces the budget
constraint R = 7IN. The local government spends all of the revenues in neighborhood 1, and
thus the per capita change in school funding (denoted R;) is:

Ry(7) = %7’
Ro(T) = 0

To understand how the spending policy affects the level of school amenities, it is helpful to
write the school amenity value as a function of tax expenditures: A; = A(R;(7)). Households
receive income y and face the budget constraint ¢ = y — 7 — p; where p; is the rental price of
housing. We can therefore write the household’s indirect utility function as V(A,;(R;(7)),y—
T —p;).

When neighborhood j provides higher utility than alternatives, willingness to pay for
housing there will be higher, prices will therefore be bid up. With homogeneous households,
the equilibrium market price of housing will equalize utility in all neighborhoods['] A house-
hold’s willingness to pay, or “bid”, for a given neighborhood is therefore implicitly defined
by function P; = P(7). Using the implicit function theorem, we can derive the change in
neighborhood house prices, for a marginal increase in 7:

"This is true in equilibrium because if a household would achieve higher utility elsewhere, it would
move. More generally, if we were to allow heterogeneity in preferences and/or income, the market price of a
neighborhood would be equal to the bid of the marginal consumer, and marginal households with the same
preferences and income would achieve identical utility.
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oV;
oP; o4, 0A; OR;
= ~1 1.1
or %5 0R; Ot (11)

Equation shows that the change in prices for a tax increase is a function of the
marginal rate of substitution between the educational amenity and consumption, the marginal
product of educational amenities with respect to educational expenditures, and the concen-
tration of total tax receipts spent in a given neighborhood. In neighborhood 0, where Ry = 0,

% = 0. In neighborhood 1, R; = 7‘ SO %Rl = ]]\yl . Therefore we have:
0F,
-0 _
or
v,
0P N | 34; 04 .
or N |2 OR;

Intuitively, as households in neighborhood j = 0 receive no additional educational expen-
ditures, their marginal willingness to pay is exactly equal to the negative of the tax increase.
For neighborhoods that receive the additional spending, their willingness to pay is equal to
the product of the MRS and the marginal product of educational amenities with respect to
expenditures, multiplied by the per-capita increase in expenditures, minus 1. Taking the
difference in the two price changes yields:

oV
(apl apo) N [m DA, 1.9

o "o )TN | mor,
dc

Equation shows that for a one unit increase in 7, relative prices will rise by the
concentration of spending multiplied by the marginal valuation of the additional educational
expenditures. For example, if households are evenly split between the two neighborhood
types, relative prices will rise by two times the marginal valuation of the additional expen-
ditures for households. When spending is at the efficient level, i.e. when the “Samuelson
condition” holds, the aggregate marginal rates of substitution over all households will equal
the marginal rate of transformation, and relative prices in neighborhoods that get public
investments will rise by the concentration of spending per tax dollar: (% - %) = Nﬁl
If prior spending levels were inefficiently low (i.e., if the marginal rate of transformation of
funding into amenity value was higher than the marginal rate of substitution between amenl—

ties and consumption) and educational facilities had been under-provided, (WJ / 8V])

N

be greater than one and prices will rise by greater than Ny as marginal households Value

the increase in expenditures more than the forgone consumption. Alternatively, a relative
price change of less than Nll implies that the additional spending is inefficiently high, and
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that there had been over-provision of educational facilities.lﬂ Equation therefore moti-
vates an evaluation of the efficiency of the construction program using relative price changes
between neighborhoods that received new schools and those that did not. Difference-in-
differences estimates of price changes in response to school constructions will approximate
(2) and provide a useful benchmark for evaluation of the program, which we will return to
in Section [L.8l

Changes in real estate prices are informative about the product of the MRS between
educational amenities and consumption, and the marginal product of additional capital ex-
penditures. Examining the direct impacts of capital expenditures on student outcomes allows
us to further understand 0A;/J0R;, the productivity of additional school resources. Assum-
ing all of the amenity value of new schools comes through test score improvements, estimates
of the treatment effect of attending new schools on test scores can be directly interpreted
as a (non-marginal) approximation of this marginal product. Under this assumption, a di-
rect comparison of difference-in-differences estimates of (2) and estimates of 0A;/0R; using
student data allow us to recover plausible estimates the MRS for improvements in school
quality for marginal parents. However, as discussed earlier, test scores likely only capture a
portion of the amenity value associated with new school facilities; any such estimates will
therefore represent upper bounds on the parental valuation of test score improvementsE

1.4 Data

Student data

To study the effects of increased capital expenditures on student outcomes, we use ad-
ministrative records from LAUSD from the 2002-2003 school year to the 2012-2013 school
year. Every student who attended LAUSD during this time period is included, and the data
allow for longitudinal links across years for students who remain in the district. These data
provide one record per student-year with information on student grades, test scores, demo-
graphics, attendance records, school assignment, and teacher assignmentsE Demographics
include gender, race, language spoken at home, parental education, and eligibility for free
or reduced price lunch. Students in grades 2-11 are administered the California Standards

12Qver- or under-provision of educational facilities may result from allocative inefficiencies, where the
district provides an inefficient level of facilities, or from productive inefficiencies, where the district does not
minimize costs. In this paper we will abstract from this distinction when evaluating the overall efficiency of
the expenditure program.

13Recent work using revealed preferences from school choice applications suggests no relationship between
parental school preferences and school productivity (measured by school test score value-added), once peer
quality is taken into account (Abdulkadiroglu et al.,|2017)). This need not be inconsistent with our findings:
to the extent that parents value non-test score school improvements and/or new schools are a more salient
signal of school treatment effects, increased local education expenditures would generate positive relative
price changes in equation .

For some years and grade levels, data are included from both the fall and spring semesters; we collapse
these data to the annual level for comparability.
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Test (CST) annually in math and English-language arts (ELA). In each of grades 2-7, stu-
dents take the same grade-level math exam; however, beginning in grade 8 the particular
test depends on the student’s particular math course enrollment. For the CST ELA exam,
exams do not depend on a student’s enrollment.[:g] To ensure comparability of scores across
students, we focus only on CST math scores for grades 2-7 and CST ELA scores for grades
2-11. Test scores are normalized relative to the California-wide mean and standard devia-
tion reported in the California Standardized Testing and Reporting (STAR) documentation
provided by the California Department of Education.

Total annual attendance, measured in days, is recorded for each studentE] For elemen-
tary school students, report card data contain teacher-reported measures of both achievement
and effort in different classroom subjects. These are reported on an ordinal scale from 1 to
4 for over one dozen subjects. Scores pertaining to student effort are averaged within each
student-year record to construct a “effort” index. Scores pertaining to student achievement
or proficiency are averaged within each student-year record to construct a teacher-reported
“marks” index. These indices are then normalized to have mean zero and a standard devia-
tion of one within each grade-year cell.

Data on teacher education, experience, age, and gender are available in all years, except
2009 and 2011. Teacher identifiers are also available for all years in the student data, and
teachers can be linked longitudinally using unique teacher IDs. However, teacher IDs are
scrambled between the secondary student and teacher demographic datasets, meaning that
secondary school students are less reliably linked to teacher demographic variables. In the
student data, each elementary record contains a single teacher identifier. Teacher-student
links for secondary school are constructed using student-level course data. Class size is con-
structed for elementary school students by measuring the total number of students associated
with a particular teacher ID in a given year. For students in secondary school we do not
compute class size as direct classroom identifiers are unavailable.

Summary statistics for students are presented in Table[1.2] Column 1 shows the average
demographic characteristics for all student-year observations in the sample. Column 2 reports
means for students who never attend a newly constructed school during the sample period
(i.e. “never treated”). Column 3 reports means for “always treated” students, that is, those
whose first year in the data sample is at a newly constructed school. In practice, these are
almost always kindergarten students, although this also includes students who show up in
LAUSD for the first time in other grades. Columns 4 and 5 show means for switchers and
“stayers”, respectively. The former are students who switch to a newly constructed school
at some point during the sample period, while the latter are defined as students at schools
where more than 10% of grade-year cohort switches to a newly constructed school in the
following year.

15Some students with limited English proficiency and/or individual education programs take alternative
exams. These students are excluded from all test score analyses.

6Data on absences are more frequently missing and/or inconsistent in some years, thus we limit attention
to only to total days attended when examining effects on student attendance
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Over 85% of students in LAUSD are black or hispanic, and most students speak a lan-
guage other than English at home with their parents. Students in LAUSD are also much
more socioeconomically disadvantaged than the typical California school district: over three-
quarters of students are eligible for free and reduced price lunch and do not have a parent
who attended any level of postsecondary education. Importantly, treated students who at-
tend newly constructed schools are even more likely to be black or hispanic, low-income, and
speak a language other than English at home. Comparing students who switch to new schools
against their peers who stay behind at old schools, the same pattern of selection emerges:
student switchers are slightly more likely to be low income and score more than 10% of a
standard deviation lower in both math and ELA than those students who stay behind at old
schools. This selection pattern was a deliberate feature of the construction program: new
school facilities were targeted toward neighborhoods with the most overcrowded and depreci-
ated schools, and these school zones were overwhelming located in the most underprivileged
areas of the district. Comparing the stayers and switchers shows that even within disadvan-
taged neighborhoods, new schools were located in slightly worse areas and their catchment
areas encompassed slightly lower performing and slightly more disadvantaged students.

Real estate data

To analyze the effects of increased capital expenditures on the real estate market in
Los Angeles, we use administrative records from the Los Angeles County Assessor’s Office.
Records contain information for each property in Los Angeles county, and includes data on
the three most recent sales['"] as well information on property characteristics from the most
recent assessment. Properties are matched to the assigned school district, school attendance
assignment (for elementary, middle, and high school) in each year, city, and tax rate area
(TRA). The TRA is defined as the specific geographical area within a county wherein each
parcel is subject to the same combination of taxing entities; the tax rate is therefore uniform
for all properties in a given TRA. We limit attention only to the years 1995 to 2012. Our
database of LAUSD school assignment zones is only comprehensive up to 2012; moreover,
our project database of post-2012 school constructions is also incomplete. For this reason,
we exclude the years 2013-2016 from the baseline real estate analyses, although results are
robust to including these later years/’]

We focus only on sales of residential properties with non-missing sales prices. We limit
attention to single-family residences. We exclude large parcels with greater than 1 acre
of usable area. We then drop the less than 1% of properties with missing information on
property characteristics. Data on property characteristics is available only for the most
recent assessment; we therefore drop to-be rebuilt properties (i.e. those sales with a negative
building age) to avoid biases arising from incorrect valuation of property characteristics.
This final restriction is non-trivial; roughly 2.8% of sales are excluded. Finally, we exclude

17As of April 2017, when we retrieved the data.
18See Appendix Table where we compare results using all years to pre-2013 years.
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the top 1% and bottom 1% of property sales in each year to avoid results being affected by
outliers or non-market-rate transactions[”]

Table summarizes these data. Column 1 reports means for all property sales in
the sample within LAUSD district boundaries. Column 2 restrict to only those properties
that ever reside in a new school attendance zone, while column 3 reports means for those
properties that never receive a newly constructed school facility during the sample period.
The average single-family residence in the district was $565,801 (in 2015$) during the sample
period. Comparisons of columns 2 and 3 show that new school neighborhoods are generally
negatively selected in terms of house prices: houses in new school zones sold for over $200,000
less than those in areas that did not receive new schools. Overall, after sample restrictions,
the assessor dataset covers 505,835 property sales for 350,299 unique properties, roughly one-
third of which are located in neighborhoods that received new schools during the construction
program.

1.5 Empirical Strategy

Student Outcomes

To estimate the effect of attending a newly constructed school on student outcomes we use
a generalized difference-in-differences strategy that relies on variation in the year a student
begins at a new facility. Importantly, we only observe the school a student attends and
not her actual neighborhood school assignment. Moreover, families may systematically sort
between neighborhoods based on differences in preferences for educational quality and/or
school amenities. If residential sorting or school assignment non-compliance are correlated
with underlying student-level characteristics, estimates of the effect of attending a newly
constructed school facility may suffer from selection bias. To address this, we rely only
on within-student changes in outcomes over time, controlling for a student fixed-effect to
eliminate any biases due to time-invariant differences between students who matriculate at
different schools. The key identification assumption is that the timing of student switching to
newly constructed school facilities is as good as random, after accounting for fixed differences
between students, grades, and years. This leads to a flexible event-study specification that
allows for differential effects of attending a new school for each year a student outcome is
observed:

K

Vit = Qi + Yy T 00+ Y Bt =17 + k) + € (1.3)
k=K

for an outcome y;, for student i in year t and grade g(i,t). We include fixed effects
for student (o), grade (vy43i+)), and year (J;). Here, the coeflicient §;, captures the effect

19Gee Appendix Table for a comparison of estimates with relaxed sample restrictions.
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of attending a newly constructed facility k years after the first year a student attends, ¢;.
k = 0 in a student’s first year attending a school, and thus [, estimates the effect of & + 1
years of exposure to a new facility. Effects are measured relative to year £ = —1, which is
excluded in estimation. Endpoints are binned at K = —3 and K = 3 which represent
the average of student outcome y;; three or more years prior to attending a new school, or
three or more years after first attending (i.e. after four or more years of exposure to a new
facility), respectively. Standard errors are two-way clustered by both school and student, to
account for any serial correlation within school and/or within student outcomes over time.
This design builds in placebo tests that identify violations of the identification assumption
that the timing of student switching is as good a random: for k < 0, nonzero coefficients
would be an indication of non-randomness in the timing of student switching.

Equation ((1.3) estimates the effects of attending a new school separately by year. We
can approximate the dynamics of these effects by estimating a more parametric version of
(1.3)) where we allow for a new school to have an immediate effect, and for effects to phase in
gradually over time. Imposing linearity in the growth rate of student outcomes and defining
t; =t —t¥, we can estimate the following generalized difference-in-differences specification:

Yir = @ + Yg(in) + 0 + B11(E; > 0) + BoL(; > 0) % £; + Bst; + € (1.4)

Here (3, captures the immediate effect of a new school facility in the first year a student
attends, ;. We include a linear trend in “event time”, ;, to control for any selection on
trends into schools opening in a particular year. (3 captures this selection, while 5 reflects
effects of the new school that accrue gradually over the time a student is exposed to a new
school@ As a student is repeatedly exposed to improved facilities in each year she attends
a new school, we would expect effects to cumulate and increase over time with continued
exposure: [ > 0.

Estimates from equations and are presented in Section . Event-study es-
timates from equation indicate that the parametric specification in does a good
job of capturing the dynamics of the effects on various student outcomes. Later, to more
parsimoniously examine heterogeneity, mechanisms, and robustness, we will focus on the
estimates from equation ([1.4)), and on even simpler versions that constrain 5 = 3 = 0.
In our baseline estimation we use all student-year observations in the relevant grades for a
given outcome, with the sole exception of those students who attend multiple new facilities,
who are excluded to avoid any confounds in the dynamics of estimated treatment effects.
Students who never attend new school facilities are included in the regressions as controls|
as are students who we observe at newly constructed schools in their first year in the data

20We choose K = 3 as few students attend a new school facility for more than 4 years in the data.

2IWe can directly interpret B, as an impact on the gain score, often an outcome of interest in many
studies of educational interventions.

22Event-time indicators are set to zero for these students, who contribute only to the estimation of the
year (0;) and grade (v4(;,1)) effects in the regressions.
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(e.g. students who begin elementary at a newly constructed school, or transfer from another
school district). Inclusion of the latter group of students may induce bias if students on dif-
ferent trajectories in outcome y;; sort into LAUSD to attend school at a newly constructed
facility. Furthermore, students who “stay behind” at existing school facilities and see signif-
icant changes in their school and peer environments are also included as controls. In Section
[1.6] we compare estimates where “stayers”, never treated, and always treated students are
excluded; reassuringly, results are very robust to the inclusion or exclusion of these students.

Real Estate Capitalization

As expected due to the design of the construction program detailed in Section [I.2] the
location of the new schools is negatively selected: areas that received new schools had lower
house prices, lower average incomes and educational attainment, and lower student test
scores. However, conditional on a neighborhood receiving a new school, the timing of new
school constructions is plausibly exogenous relative to any underlying neighborhood char-
acteristics or trends. Thus, parallel to our estimation of student effects, we estimate house
price effects of the program in a dynamic setting by examining changes in school quality
induced by new constructions, relying on variation in the exact timing of completion.

Specifically, we compare changes in house prices over time in neighborhoods that re-
ceived new schools, relying on variation in the exact year of school construction between
these neighborhoods, and controlling for neighborhood effects to account for any time in-
variant neighborhood characteristics. Changes in prices reflect the present discounted value
of current and future benefits of new schools to households. Thus, we estimate the mean dif-
ference in house prices before and after construction with following difference-in-differences
specification:

ln(Pm) = Qj(5) + (515 + ﬁNj(i),t + Xz/tr + €t (15)

where Nji: = 1[NewSchool Zone;;); = 1] is an indicator for a property sale occurring in
a new school attendance zone, after the date of the new school opening, for a given property
i in neighborhood j(7) that is sold at time t. X/, is a vector of property characteristics that
includes the number of bathrooms, the number of bedrooms, building square footage, square
footage squared, building age, age squared, effective age, effective age squared, usable lot
area, usable lot area squared, an indicator for the specific tax rate area, and an indicator
for number of sales observed in the data for specific parcel. a;(;) and d; are fixed effects for
neighborhood and year, respectively.

We define neighborhoods as the elementary-middle-high school assignment triplet in the
2000-2001 academic year, prior to the construction of any new facilitiesF_gl In all house price
specifications, standard errors are clustered by neighborhood. Baseline specifications include
only those parcels that are ever assigned to the attendance zone of a newly constructed school.

23See Figure for a map of these neighborhoods.
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As long as the exact timing of school construction within the set of receiving neighborhoods
is uncorrelated with time-varying neighborhood trends, estimation of equation will
yield an unbiased estimation of 3. In addition, we estimate specifications that also include
“never-treated” properties as controls, and specifications that control for year-by-high school
zone fixed effects 7] to flexibly account for differential trends in house prices between local
areas.

If capitalization occurs prior to construction due to anticipatory effects,lﬁ neighborhood
house prices may diverge prior to construction between those soon to receive new schools
and those receiving new schools in later years. Conversely, initial uncertainty by parents as
to the quality of a new school could lead to house price effects that gradually cumulate post-
completion. Thus, we also estimate more flexible event-study models, akin to equation (|1.3)),
that estimate the difference in house prices relative to the year prior to building occupancy:

K
In(Py) = cjiy + 0+ > Bl(t =1t + k) + X/ T + ey (1.6)
k=K

In these non-parametric event study models, 5, measures the effect of receiving a new
school in year t k years after construction (or prior, where k < 0). Effects are measured
relative to year k = —1, which is excluded in estimation. We focus on a ten-year window,
binning endpoints at & = —6 and K = 3, which represent average house prices six or more
years prior to construction or three or more years after the year of construction, respectively.

In equations and , identification of 5 assumes that trends in house prices are
uncorrelated with the exact timing of school construction, conditional on property-specific
controls and controls for time-invariant differences between neighborhoods. This assumption
could be potentially violated if unobserved differences in the characteristics of those proper-
ties sold in a given year are correlated with the timing of switching; for example, if houses
with positive unobserved characteristics are more likely to be sold within a given neighbor-
hood post-construction than pre-construction. To account for this potential source of bias,
we can estimate equation (1.5) with property fixed effects, controlling for time-invariant
unobserved differences between individual properties:

In(Pit) = o + o + BNjgiye + €t (1.7)

In equation (|1.7]), estimation of 3 relies only on properties with repeat sales in the sample
window. Repeat sales indices are commonly used in papers estimating dynamic capitaliza-
tion in real estate prices (e.g. Figlio and Lucas (2004)) to account for unobserved differences
in property and neighborhood characteristics. In practice, estimates of § are very similar in

24Here we use the high school zones from the 2004 school year, the year before the first new high school
construction.
25Recall: new school locations were announced on average 5 years prior to school completion.
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both equations and , implying that differences unobserved property characteristics
are uncorrelated with timing of construction and do not drive the estimated results. We find
little evidence of differential house price trends in the years prior to school construction.
Moreover, effects accrue quickly, typically within 2 or 3 years following construction. There-
fore, we emphasize the simple linear differences-in-differences estimate of S from equation

[3).

1.6 Student Results

Student achievement

Table [1.4] reports estimates of equation for math (columns 1-3) and ELA (columns
4-6) standardized test scores. Cumulative four-year test score effects estimates are reported
in row 4. In columns 1 and 4, a simple one-parameter specification is reported where only the
change in the slope of student growth is included (1(#; > 0) *#;). Here, the estimate on s is
0.029 (SE 0.007) for math and 0.019 (SE 0.004) for ELA, implying that for each additional
year a student attends a newly constructed school facility her test score increases by 3% and
2% of a standard deviation in math and ELA, respectively. The implied test score effect for
a student who attends a new school for four years is 0.086 (SE 0.021) for math and 0.058
(SE 0.011) for ELA. Columns 2 and 4 add in indicators for attending a newly constructed
school (1(#; > 0)). Student achievement declines in the first year of attending a new school,
although these coefficients are small and insignificant for both math and ELA test scores.
Notably, the coefficient on the slope of student growth (5;) and the implied 4-year test score
effect are essentially unchanged. Columns 3 and 6 add in a linear trend in student event
time. The coefficient on the linear trend is marginally significant for math, and statistically
significant for ELA. However, these coefficients are both minuscule: less than one-half of
one percent of a standard deviation per year in both math and ELA. More importantly,
the inclusion of the linear trend in the specification does little to affect the magnitude or
statistical significance of the coefficient on the change in trend, while the total implied 4-year
effect declines somewhat due to initial effects (1) that are slightly more negative.

Figure reports estimates of the event study coefficients, i, from equation for
both math and ELA test scores. Standard errors are two-way clustered by both school and
student. Time k = —1 is excluded; all effects are relative to the year before a student begins
attending a new school facility. Panel A reports estimated coefficients on standardized math
scores. There is little indication that students who switch to new schools have rising (or
falling) scores relative to other students prior to the switch. Then, in the first year at a new
school, there is a small but significant decrease of 3.8% of a standard deviation. This decline
is short-lived, however: scores increase nearly linearly with each successive year a student
attends school in a newly constructed facility, relative to other students who did not switch
to a new school. After four or more years of attending a newly constructed school, students
score 10% (SE 2.6%) of a standard deviation higher. Estimates for standardized ELA tests,
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reported in panel B, are quite similar. Students who attend a new facility for 4 or more
years score 5.2% (SE 1.4%) of a standard deviation higher in ELA. For both math and ELA
scores, the event-study figures indicate that the parametric specification in equation
fits the data quite well: after an initial decline in the year a student transitions to a new
facility, test scores gradually increase, roughly linearly in years of exposure.

Both event study and linear difference-in-differences specifications show that student test
score gains accumulate gradually, after a slight decline in student performance in the year
of the switch. This pattern of gradual improvement is different from many other educa-
tional interventions considered in the literature, where effects tend to fade out over time.
Improvements in school facility quality are not a one-time intervention, however: students
are continuously exposed to improved facility conditions for every year in which they attend
a given school. We would therefore expect that achievement gains accumulate over time with
additional years of exposure?| even in the absence of initial disruption effects due to student-
level switching costﬂ or school-level inefficiencies in the first few years post-construction.

Student non-cognitive effects

Table reports analogous estimates for attendance (columns 1-3) and effort (columns
4-6). Unlike test score outcomes, which measure a stock of accumulated knowledge, student
effort is a flow, and thus we would expect effects to occur immediately rather than accrue
over time with continued exposure. For this reason, in columns 1 and 4 we begin with
one-parameter specifications where only the coefficient for mean difference in the outcome
post matriculation at a new facility (1(#; > 0)) included. Columns 2 and 5 add a phase-in
coefficient (1(f; > 0) * ¢;), and columns 3 and 6 include a linear trend in student event-
time. For student attendance, estimates in columns 1-3 imply that most of the effect occurs
immediately upon switching to a new school. In column 1, the estimate of f; is 3.97 (S.E.
0.55), meaning that student attendance increases by 4 days per year at newly constructed
schools. Adding the phase-in coefficient in column 2 picks up some of this effect, reducing
the coefficient on (; slightly. Column 3 adds in a linear trend in event-time, which does
little to affect the estimates of 3 and (. Estimates in columns 4-6 show a similar pattern
for teacher-reported student effort, which increases immediately upon a student’s switch to
a new school. In column 1, the point estimate is 0.061 (SE 0.017), implying a 6% of a
standard deviation increase in student effort at new schools. In columns 5 and 6 estimates

26The closest analogue is perhaps the STAR class size experiment, in which treated students were assigned
to small classes for up to four consecutive years. In STAR, the treatment effects grew after the first year,
like here, but at a slower rate. We see no sign here that the treatment effect is concentrated in the first year.

?"Event study estimates for non-facility related student switches are reported in Figure [L.16} Estimates
suggest that “normal” switches are associated with disruption effects of similar magnitudes, which fade out
over time. Importantly, these switches are not associated with any short or long run student test score
improvements. These findings are consistent with results in Hanushek, Kain, et al. (2004), who find evidence
of short-run disruption effects with no-long run gains for students who switch schools within-district.
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of the pre- and post-trends (5 and [33) are both small and insignificant, and the inclusion
of these coefficients has little impact on estimates of f;.

Figure [1.5| reports event study estimates for student attendance and teacher-reported
effort. Panel A shows the change in annual days attended for students who switch to new
schools. Upon switching to a new school, students attend an additional three days per year.
In the second year a student attends a new school facility, this jumps to seven days. The effect
tapers off somewhat in subsequent years, although after four or more years of attending a
new school facility, students attend on average more than four additional days per academic
year. Again, as with the student cognitive test score effects, there is no indication of a
prior trend in student attendance in the years prior to switching to a new school facility; if
anything, attendance appears to be declining slightly, although this trend is minuscule and
insignificant - a decline in annual attendance of less than one-third of a day per year in the
three years prior to switching.

Panel B shows the effect of switching to a new school facility on teacher-reported student
effort for elementary students. Upon matriculation into a new school facility, student effort
increases by greater than 6% of standard deviation.@ As with attendance effects, the esti-
mated increase in effort occurs immediately upon switch with no indication of an increasing
trend in effort in the years prior to switching. This effect remains roughly constant with
additional years of exposure, and is statistically significant for the first three years a student
attends a newly constructed facility. After 4 or more years of exposure to new elementary
school facilities, the estimated effect on effort is slightly smaller, around 5% of a standard
deviation, and no longer statistically significant. Notably, two years before attending a new
facility, effort marks are roughly 3% of a standard deviation higher than in the year prior
to attending a new facility, which is significant at the 10% level. Of all baseline event-study
estimates, this is the only estimated pre-effect that is marginally significant, providing ad-
ditional justification for the identification assumption that the timing of student switching
is as good as random.

Robustness to sample treatment

Baseline estimates from one-parameter models for cognitive and non-cognitive outcomes
in Tables and (columns 1 and 4) are reported in Table for different sample
definitions, varying the set of students used as the control group for students switching
to new schools. As test score effects reflect the cumulative impact of multiple years of
exposure to new schools, we compare one-parameter estimates of the phase-in coefficients
(B2) from models where we constrain 5 = 53 = 0. Reassuringly, implied cumulative 4-year
effects from parametric estimates in columns 1 and 4 of Table are indeed very similar
to point estimates reported in Figure for students who attended new schools for four or

28Figureaulso reports similar event-study estimates for teacher-reported student grades (in elementary
school). Effects are noisier and insignificant, but suggest improvements of similar magnitude in report card
grades only after the first year at a new school, which is qualitatively consistent with the observed patterns
for test score effects.
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more years. On the other hand, as we expect the flow of student effort and attendance to
increase immediately upon matriculation to a new school, we report one-parameter estimates
of the mean difference post-new school matriculation (f;) from models where we constrain
P2 = B3 =0.

Column 1 repeats baseline estimates reported in Tables and [L.5] Column 2 excludes
students who stay behind at existing schools when 10% or more of their cohort switches to a
new school. Estimated coefficients for ELA and days attended are only slightly larger, while
estimates for math and effort standardized scores are essentially identical | In column 3, we
drop all students who never attend new schools, using only “ever-treated” students. If stu-
dents who switch to new schools are systematically different from those who do not, inclusion
of never-treated students as controls may induce bias (though our inclusion of student fixed
effects would absorb differences in outcome levels). However, this does not appear to be the
case, as estimates are nearly identical for all outcomes. Column 4 further excludes students
who appear in the data sample in their first year at a new school. Inclusion of these “always
treated” students could be problematic if new school constructions systematically induce
students of different ability to enter LAUSD, perhaps from private schools or from outside
the district. As shown in column 4, estimated treatment effects are, if anything, slightly
larger when only switching students are included in the estimation sample, implying effects
are not generated by a resorting of students entering LAUSD to attend newly constructed
school facilities.

In column 5, we restrict the sample to include a balanced panel of students in event time.
As discussed in Section ELA test scores are recorded for students in grades 2-11, and
attendance is measured for all grades. Math test scores are only included for grades 2-7, and
effort marks are only measured in elementary school (grades KG-5). Thus, for math and
effort we include students who have outcome data both one year before and one year after
switching to a new school facility. For ELA and attendance we need not be as restrictive,
and use a balanced panel of students with non-missing outcomes both 2 years before and
after switching to a new facility. Estimated treatment effects in column 5 are less precise,
as expected given the reduction in sample size, but point estimates are if anything slightly
larger than those in columns 1-4. Results are robust to these sample permutations, and we
therefore conclude that baseline estimates including all students are not biased by differential
sample selection in event time.

Mechanisms

The pattern of estimated student effects provides consistent evidence that cognitive and
non-cognitive student outcomes improved at new school facilities. Are these improvements
due to the increased facility quality itself, or due to other changes in the school environment

9Tn Sectionwe specifically examine indirect effects on these students, finding evidence of small positive
effects on ELA scores and attendance. Since these students make up only a small fraction of the overall
“never treated” group in baseline regressions, we would therefore expect the magnitude of differences between
columns 1 and 2 to be very small in the presence of small indirect effects.



CHAPTER 1. DO SCHOOL FACILITIES MATTER? 22

associated with new school constructions? A thorough understanding of the mechanisms
underlying student gains is important if the LAUSD construction program is to inform
school capital expenditure decisions in other districts and institutional contexts. In this
section we detail several facility and non-facility related changes associated with new school
facilities (Figure|l.6|and Table . We examine heterogeneity in the results by prior school
conditions to test whether these changes are systematically related to the observed student
gains (Table [1.7) [

We find little evidence that changes in class size, peer quality, or teacher quality at newly
constructed schools can explain student improvements. In fact, we find that moving to a
new school is associated with slightly larger class sizes and slightly lower teacher and peer
quality. We do find that switching to a new school is associated with large reductions in
overcrowding and increases in total instructional days. We find suggestive evidence that
student gains are larger for students who switched from schools that were on multi-track
calendars, for students who switched from more overcrowded schools, and for students who
came from schools with a high share of portable classroom buildings. We find inconclusive
evidence that students gains are larger for those coming from older or more deteriorated
facilities, although the magnitude of these prior differences is small relative to the total
change in facility quality for switching students.

Peer Composition

If students who switch to newly constructed school facilities are exposed to higher quality
peers, changes in peer quality could explain some of the observed effects. As discussed
earlier and shown in Table [1.2] students who attend newly constructed schools are more
disadvantaged relative to students in the rest of LAUSD. However, new schools could offer
better peer groups than do other schools in nearby neighborhoods. This could occur if new
school boundaries were drawn within receiving neighborhoods in a such a way as to increase
the concentration of more advantaged students at new school facilities. In addition, insofar
as parents have some discretion to override school residential assignment, one might expect
that higher-SES parents from outside redrawn boundaries would be more likely to petition
to enroll their children in at schools with new and improved facilities. However, empirically,
this does not appear to be the case. Panel A of Figure [1.6| shows event study estimates of
peer quality, measured as the school (leave-out) mean predicted test score.ﬂ Average peer
predicted scores fall significantly upon switching to a new school, and after 4 years at a new
school average peer predicted scores are (insignificantly) below their level prior to switching.
Columns 5 and 6 of Table report estimates of the average peer differences associated
with switching to a new school. Column 5 shows the change in school proportion black and

30Note: results in Table are estimated using only switching students; baseline estimates correspond
to those presented in column 3 of Table

31Predicted scores are generated at the student-year level from a regression of contemporaneous ELA
test scores on a vector of demographic characteristics. Leave-out mean school-year predicted scores are then
computed for each student-year observation.
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hispanic, while column 6 reports the mean difference in peer predicted scores. Estimates
show that students who switch to new facilities attend more segregated schools, with a 2.7
percentage point higher share of black and/or hispanic students. Consistent with Figure
panel A, peer predicted scores are on average 2.4% of a standard deviation lower.

Class size

Panel B of Figure|l.6[reports event study estimates for elementary school students where
class size is the dependent variable. At new schools, class sizes were actually somewhat
larger: class sizes increased by less than one-half of a student per teacher.@ Column 4 of
Table reports analogous difference-in-differences estimates of the change in class size at
new schools. On average, teachers at new schools taught classes with 0.31 more students
per teacher. The magnitude of this difference, however, is quite small; roughly speaking,
the district was approximately able to maintain similar pupil-teacher ratios at new school
facilities by transferring teachers to new facilities in roughly equal proportion to students.

Multi-track calendar

One of the stated goals of the LAUSD school construction program was to eliminate the
use of multi-track academic calendars that required schools to continuously operate year-
round. Schools on multi-track calendars operate year-round and divide the students and
staff into separate tracks, which are staggered throughout the school year in an effort to
increase overall facility capacity. Moreover, in LAUSD, students at multi-track schools often
had fewer instructional days per academic yearﬁ

Before the construction program, half of LAUSD students attended multi-track schools.
By reducing overcrowding in neighborhood schools, district officials were able to begin new
schools on traditional two-semester calendars, as well as convert existing schools from multi-
track back to traditional calendars. Column 1, panel A of Table[I.12]and panel C of Figure[I.6
report difference-in-differences and event study estimates of the likelihood of being exposed
to a multi-track calendar. Switching to a new school was accompanied by a 27 percentage
point reduction in the likelihood that a student was exposed to a multi-track calendar. This
conversion also meant that many students in new schools experienced additional instructional
days: as reported in panel D of Figure (and column 2 of Table students switching to
a new school had on average nearly 2 additional instructional days per year, relative to the
prior year at an existing school. Taking the baseline estimate of 4 additional days attended
per year from Table [I.5 this implies that almost half of the observed attendance effect is
mechanically due to a change in school calendar.

32Tn fact, due to budget cuts in California during the Great Recession, LAUSD laid off roughly 25% of
teachers between the 2008 and 2010 school years, increasing class sizes across the district, particularly in
grades K-3.

33Many of the year-round district schools operated on a multi-track calendar known as “Concept 6,
which increased school capacity by up to 50% but at the cost of 17 instructional days (out of 180). The loss
in instructional days was made up by increased instructional time per day.
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Student gains at new schools may be driven by increased instructional days and the
conversion back to traditional two-semester calendars. To examine this, we estimate separate
treatment effects by prior school calendar schedule (multi- or single-track) for each main
outcome variable. Rows 2 and 3 (panel 2) of Table report estimated effects for students
who switched from a school on a multi-track calendar or a single-track calendar, respectively.
Results show that student test scores and effort effects are larger for students who switched
from multi-tracked schools, yet none of these differences are statistically significant. For
attendance, gains are larger for those students who came from multi-track schools, and
the difference in highly significant (p < 0.01). As previously mentioned, this is driven
largely by mechanical changes in the total number of instructional daysff] However, the
overall attendance effect is not entirely due to the calendar change: even those students who
switched from single-track schools and saw no increase in total instructional days attended
2.7 additional days of school per year after switching to a newly constructed school. It is
worth noting that students switching from schools on multi-track calendars also faced greater
overcrowding and worse facility conditions on average than those coming from single track
schools; these differences are therefore likely to represent an upper bound on the effect of
converting from a year-round multi-track calendar school back to a traditional two-semester
calendar.

Overcrowding

Students who switched to new schools also experienced reduced overcrowding, which
was another primary motivation of the district construction program. Panels 3 and 4 of
Table present heterogeneity in estimated effects by two measures of overcrowding, where
treatment effects are split by whether a student is above or below the median among treated
students on either measure in the year prior to switching to a new school facility. The
first measure, the number of students per square foot of classroom space, gives a direct
measure of the physical classroom capacity of a school. The second, the share of permanent
classrooms, measures the extent to which portable classrooms are used to accommodate a
school’s student population. Portable facilities are also often of much worse quality, and have
less functionality than traditional classroom space. The share of classrooms in permanent
vs portable structures therefore relates both to the level of overcrowding of a school, and the
underlying facility quality.

Results split by prior SQFT per pupil indicate mixed and generally insignificant dif-
ferences: gains are larger for ELA and attendance when coming from more crowded prior
schools (i.e. a low SQFT per pupil), but smaller for math and effort scores. Only the dif-
ference in attendance is statistically significant; gains are large and significant for students
coming from either above or below median overcrowded schools for all but ELA scores. Es-
timates split by the share of permanent classrooms show a more consistent pattern: effects
for students coming from schools with a low share of permanent classroom structures are

34For students switching from multi- to single-track calendar schools, the average gain in total attended
days was approximately 4 days per year.
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larger for all outcome measures, and the differences in ELA and effort scores are statistically
significant. In fact, estimates for math, ELA, and effort scores are statistically insignificant
for students who came from schools with relatively more permanent classroom space. This
pattern of results suggests that reductions in overcrowding are important but alone do not
fully explain observed test score gains: there are few systematic differences by prior SQFT
per pupil, while differences by the prior share of permanent classrooms additionally reflect
fundamental improvements in facility quality beyond overcrowding.

Facility Condition

New school constructions induced drastic changes in the facility quality for students who
switched. Students who switched to new schools came from a school that was, on average,
70 years old (panel A, Table and had substantial deficiencies. Results split by the
share of permanent classrooms provided indirect evidence that observed student gains were
larger for students switching from schools that were of poor quality. In panels 5 and 6 of
Table we examine heterogeneity in treatment effects by the age and physical condition
(measured by FC]ED of a student’s prior school. Results indicate that all student effects are
larger for students switching from older schools, although these differences are insignificant.
Student test score and effort effects are very similar between students switching from schools
in above or below median condition, and the differences are insignificant. Only for student
attendance is the difference significant; students switching from schools in relatively better
condition (low FCI) actually saw larger attendance gains.

With the exception of estimates by the share of permanent classrooms, results presented
in Table provide inconclusive evidence of heterogeneity in student effects by prior facility
quality. This does not necessarily imply that facility quality improvements themselves were
not important: the variation in facility improvements within treated students is small relative
to the change experienced for any student switching to a new school. Moreover, these
variables are imperfect proxies for “true” facility quality, which we cannot directly quantify.

Overall, estimates in Table suggest reductions in overcrowding and multi-track cal-
endars may explain up to half of observed student effects. Later, in Section [1.6[ we will
examine students who stayed behind at existing school facilities and experienced significant
peer outflows. These students experience very similar reductions in overcrowding and multi-
track calendars, yet for these students we find much smaller effects, and only for ELA and
attendance. Thus, taken together with results presented here, we argue that at least half of
the observed test score effects for switching students are therefore attributable to the direct
improvement in the physical school environment.

35Recall: the FCI is the ratio of deficiencies to current replacement value. An FCI close to zero indicates
a facility is in good physical condition, whereas an FCI of greater than one indicates that a facility has
deteriorated to the point where the total cost of deficiencies is greater than the total replacement cost of the
facility.
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Teacher quality

Student gains at new schools could in part be due to systematic differences in teacher
quality. New school facilities provide improved working environments for teachers, and these
amenities could attract better quality teachers to these schools from either within or outside
the district’y) Due to budget cuts following the Great Recession, the district effectively
stopped hiring new teachers: prior to 2009, roughly 10% of the teachers in LAUSD in any
given year were new entrants, while afterwards this decreased to 4% or less. Even for those
new facilities that opened before this reduction in teacher hiring, the teaching staff was
composed of greater than 80% existing teachers who switched from elsewhere in the district.
Following the reduction in teacher hiring, schools opening in 2009 or later this proportion
increased to over 90%. Thus, any differences in the quality of new teachers is unlikely to
explain a large share of the observed effects. However, new facilities may have attracted
relatively better teachers from within the district. Improved non-wage amenities at new
school facilities could have led to sorting of higher quality teachers into new schools. On the
other hand, priority for intra-district teacher transfers within LAUSD was allocated using
a tenure-based point system, which may not be systematically correlated with underlying
teacher quality (broadly defined).

Systematic teacher resorting would imply that student gains at new schools came at
the expense of students at existing schools; any within-district resorting of existing teachers
would be zero-sum in aggregate. To empirically assess whether differential sorting of higher
quality teachers into new school facilities explains any of the observed student gains, we
compare differences in teacher observables and test score value-added in Table[I1.§] Panel A
reports differences in teacher observables at new schools. Students who switch to new school
facilities have teachers who are, on average, less experienced, younger, and slightly more likely
to have a masters degree. Students at new school facilities are also 5.4 percentage points
more likely to have a new teacher in either math or ELA. Observable teacher characteristics,
however, are generally not highly correlated with test-score based measures of quality. Thus,
in panel B, we examine differences in test score value-added for teachers at new schools”]

Standard value-added models can confound school and teacher effects. For example, new
school facilities could generate improvements in student attentiveness and/or teacher pro-
ductivity, both of which would result in gains in estimated teacher valued-added. However,
student gains resulting from school improvements would reflect improvements resulting from
the new facility itself, and not from variation in underlying (prior) teacher quality. Thus, to
directly assess whether teacher resorting explains any of the student gains, we focus specifi-
cally on switching teachers, for whom we have an estimate of value-added based on student

36Complementarities between facility quality and teacher effort and/or performance could also result
in improved teacher productivity at new schools. Unfortunately, we cannot directly assess this using our
data, as any such improvements could not be separately distinguished from general school- or student-level
improvements.

37See Appendix B for an explanation of how teacher value-added scores are calculated at the teacher-year
level.
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test score observations from their prior, existing school facilities.

For these switching teachers, we compute the student-weighted average of prior value-
added scores, using only data from years a teacher taught at an existing school facility.
Specifically, we define VA?M‘”" =5 %VAjt, where VA, is the estimated value-added for
teacher j in year ¢, n;; is the number of student observations for contributing to teacher;j’s
value-added score in year t, and n; is the total number of students taught by teacher j
(prior to switching to a newly constructed facility). For each student-year observation, we
assign the mean prior value-added score, averaged over all teachers in a given school—yearm
Columns 1 and 2 of panel B report difference-in-differences estimates of the change in mean
prior value-added for students attending newly constructed school facilities. Results indicate
that students who switched to new schools experienced teachers with lower test-score value-
added scores than prior to switching. The point estimates are for both math and ELA are
small, although the estimate is more negative and statistically significant for ELA.

We find little evidence of positive restoring of existing teachers into new schools, but
it could still be the case that the new teachers hired into new schools were of differential
quality. We cannot directly compare contemporaneous value-added scores of new teachers
at new and existing schools, as this would confound student gains due to school-level facility
improvements with improvements in new teacher quality. However, under the assumption
that new facilities affect novice and experienced teachers identically, we can assess the qual-
ity of new teachers by testing whether the school-level gap in value-added scores between
new and existing teachers is larger or smaller at new facilities. We can decompose the esti-
mated teacher effect to include the true teacher effect, a new-school specific shock, and an
unobserved error term{?’

VA = e + Ost + 0t

Insofar as the effect of a new school in a given year, 6, is constant for all teachers, we can
use the gap between experienced and novice teachers at new schools to difference out the
any differential new school effects at the school by year level:

VAS = VAL - VA"

— ﬁé\tfew o ﬁﬁld + ﬁst
We therefore assign each student the difference between the school-year average value-added
of new teachers and existing teachers. A positive school-level gap between new and existing
teachers would indicate that the new teachers at a school have higher value-added than the

38Results are nearly identical if we instead assign a student the prior value-added score of her specific
teacher in a given year.

39Tn Appendix B teacher-year value-added is defined as the average residual from a regression of student
test scores on polynomials in lagged test scores, demographic variables, and school variables: VA;; =7 1)
where vyt = Y1 — oy (i) — X5
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existing teachers, and vice-versa. Thus, holding existing teacher quality constant, if new
teachers hired into new facilities are of higher quality, we would expect a positive coefficient
on the gap.

Columns 3 and 4 report these estimates, where the dependent variable is the school-
year mean gap in value-added between novice and experienced teachers, V_ASGtAP. The point
estimate for math is small, negative, and insignificant. For ELA, the point estimate is
positive and of larger magnitude, but insignificant. Given that we find evidence of negative
sorting of existing teachers on value-added (ﬁjOtld < 0 in columns 1-2), the difference in point
estimates between columns 1 and 3 and columns 2 and 4 would need to be positive to support
an interpretation that newly hired teachers were of higher quality at new facilities. As the
estimated coefficients in columns 3 and 4 are small and noisily estimated we do not report
a formal test of these differences. Results from Table panel B therefore provide little
evidence that newly hired teachers were of higher quality at new schools.

Overall, the evidence presented in Table reveals that systematic differences in teacher
quality cannot account for observed student test score gains. As the overwhelming majority
of students at new schools were taught by existing teachers, point estimates from columns 1
and 2 of panel B imply that student test score gains at new schools would have been roughly
15% larger in math and 50% larger in ELA had teacher quality remained constant. The
upper bound of the 95% confidence interval for the math effect can rule out positive teacher
sorting explaining more than 30% of the total effect from column 1 of Table[1.4]l In the longer-
run, it is still possible that higher-quality facilities could attract and retain better teachers,
although further research is necessary to determine if this channel to improve teacher quality
is empirically relevant.

Effects on staying students

Students who switched to new school facilities were not the only students to experi-
ence significant school-level changes: student switches to new facilities induced cohort-level
outflows from existing facilities. Those students who stayed behind experienced reductions
in overcrowding, conversion from year-round multi-track calendars back to traditional two-
semester calendars, and changes in peer composition, but not improvements in facility qual-
ity. Thus, examining the effects of new facility openings on the outcomes of students who
stayed behind at existing facilities can shed light on the relative importance of crowding vs
direct facility quality effects in producing the aforementioned estimated impacts on students
at new schools.

We define “stayers” to be students for whom 10% or more of their school-grade cohort
switched to a newly constructed school facility[lY] We then define event-time analogously for
these students: year “0” is the year in which a school cohort experienced a large outflow
induced by a nearby new school construction. We estimate effects for these students using

40 Appendix Figure reports analogous event study estimates using a 20% threshold. This reduces the
sample considerably, but results are robust to alternative thresholds.
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the same event study methodology for the main student effects presented in equations
and ; because these cohort outflows were induced by new facilities, estimates rely on
the same variation in the timing of construction between different students.

Panel B of Table presents estimates of the changes staying students experienced after
they experienced a cohort outflow, analogous to estimates for switching students presented
in panel A. Students who switched to new schools are excluded from estimation; estimates
are relative to a control group of students in the same grade and year who have yet to
experience a cohort outflow shock, and never-treated students who experienced no significant
peer outflow. Results indicate that stayers experienced a significant decline in multi-track
calendar usage and a significant increase in the total number of instructional days per year.
Both staying and switching students experienced a roughly equivalent decline in multi-track
calendars, while staying students actually experienced a slightly larger increase in the total
number of instructional days than switching students (2.3 days vs 1.7 days). Class sizes
decreased slightly for students who stay behind, by about one-third of a student per teacher.
Though significant, the magnitude of the effect is negligible["f] Columns 5 and 6 report
changes in the average peer group. Consistent with the fact that switching students were
slightly more disadvantaged and lower-scoring than staying students, stayers see reductions
in peer minority shares and increases in predicted scores of peers due to cohort outflows
to new facilities. Taken together, these results suggest that small indirect effects would be
likely, even in the absence of facility improvements, due to the reductions in overcrowding,
increase in instructional days, improved peer quality, and slightly decreased class size.

Figure shows event-study estimates of cognitive and non-cognitive outcomes for stay-
ers. Stayers see small increases in math (panel A) and ELA (panel B) test scores, although
the math effects show some indication of a pre-trend prior to the year of the cohort outflow
to a new facility. The increase in days attended (panel C) is immediate and significant -
students attend roughly 4 more days relative to the year prior to the cohort outflow. As
was the case for switching students, much of this increase derives from the reduced use of
multi-track schedules in stayers’ schools. Panel D shows estimates for standardized effort
scores, for which the point estimates are all very close to zero and insignificant.

Parametric versions of the estimates corresponding to equation are reported in Table
1.10] For each outcome, both one- and three-parameter estimates are shown. Columns 1
and 2 report estimates for math test scores. Estimates in column 1 show no change in test
score growth in the years following the cohort outflow, while estimates in column 2 show
that once pre-existing trends are included, there is a small effect immediate effect that fades
out within the following year. For ELA (columns 3 and 4), the pattern is different, and the
parametric estimates more closely align with the event study estimates. Column 3 shows an
0.01 standard deviation increase in ELA test score growth in the years following the cohort
outflow. However, once the post indicator and trend variable are included in column 4, all of
the effect loads onto the post coefficient, with no ensuing growth or fade-out of effects. This

4INote that the effect is similar in (absolute) magnitude to the increased class size documented for
switching students in panel A.
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pattern of cognitive effects differs from that of students attending new schools: effects accrue
immediately, and either fade out (math), or remain constant (ELA). Columns 5 and 6 report
estimates for days attended. Stayers see a roughly 3.5 day increase in days attended, which
is robust to the inclusion of trend variables. Comparing these estimates to the estimated 2.3
day increase in total instructional days from column 2 of Table Panel B implies that
roughly two-thirds of the attendance effect is mechanically driven by increased number of
days. Columns 7 and 8 show no effects on teacher-reported effort.

Taken together, these results are suggestive of positive indirect effects induced by peer
outflows to new school facilities, but only for ELA test scoreg™| and total days attended[™]
Attendance effects are mostly driven by an increase in the total number of instructional days,
and the residual non-mechanical effect is roughly half the size as for switching students (1.3
vs 2.3 additional days). These indirect effects are likely driven by reductions in overcrowding,
improved peer quality, and the switch from multi-track calendars to traditional schedules.

The small magnitude of effects relative to baseline effects on switching students implies
that reductions in multi-track calendars and overcrowding alone cannot explain the bulk of
baseline effects, as these changes were similar for students who stayed behind at existing
schools. Moreover, other notable changes in the school environment (peers, class sizes, and
teachers) all went against finding positive test score effects. This supports the conclusion
that direct facility quality effects — e.g. Increased concentration due to reduced distractions
from inadequate heating, cooling, or other aspects of the physical environment — account for
a substantial portion of the new school effect seen earlier.

1.7 Real estate capitalization

Next, we turn to the analysis of the impact of new school openings on local housing prices.
In Table we present difference-in-differences estimates corresponding to equations
and , while in Figure we report event study estimates corresponding to equation
(1.6). Panel A of Table reports estimates of the effect of new school constructions on
house prices. Columns 1-5 report estimates using fixed effects for school zone and property-
specific control variables, which corresponds to the specification in equation . Columns
6 and 7 report estimates of equation (|1.7]) using property fixed effects.

Column 1 reports estimates using all properties in LAUSD and basic year and neighbor-
hood effects. The point estimate is negative and insignificant, which indicates that neigh-
borhoods in areas that did not receive new schools saw, if anything, larger increases in house
prices during the sample period. However, using uniform year effects for all of LAUSD may

42McMullen and K. E. Rouse (2012) also find that reading, but not math test scores are adversely affected
by school facility overcrowding and congestion.

43Note that this is consistent with the evidence reported in Table which showed only small increases
in the ELA and attendance estimates when the stayers were excluded from the control group (column (2)).
Given that stayers represent a small fraction of the control group, we would expect that the inclusion of
stayers in baseline regressions only produces a small downward bias in the presence of small positive indirect
effects.
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confound the effects of differential price trends and shocks in different areas of the city and
surrounding areas. Recall that the new schools are concentrated in East LA, where baseline
prices were low and poverty rates high relative to the rest of the district. For example, if
house prices in more affluent areas were already growing at a higher rate than those in less
affluent areas (where the new schools were mainly built), difference-in-differences estimates
of the effects of new schools could be biased downwards. Rather than impose parametric
trends for each neighborhood, in column 2 we substitute year effects for year-by-high school
zonﬂ effects to more flexibly account for any differential local house price trends or changes.
The point estimate flips sign and is statistically significant, implying that house prices rise
6.0% (SE 1.8%) post construction in neighborhoods that receive new schools, relative to
nearby property sales in the same year within the same initial high school attendance area.

Properties that are very far from new school zones are included as “never-treated” controls
in columns 1 and 2, and even with the inclusion of year-by high school zone effects we may
still be worried about bias from the inclusion of these properties. To account for this, in
column 3 we drop “never-treated” properties further than one kilometer from a new school
zone, and in column 4 we further restrict the sample to only those properties that ever
receive a new school[P] Results in columns 2 and 3 are nearly identical, and the estimated
coefficient drops slightly to 4.4% (SE 1.1%) in column 4. Column 5 substitutes year effects
for the year-by-high school zone effects introduced in column 2 — now unnecessary as we
have limited the control group to properties near the new schools — and the point estimate
increases slightly to 5.5% (SE 1.5%).

To address additional concerns that within-neighborhood difference-in-differences results
may be biased by fixed unobserved property-level differences, we rely on repeat sales and
estimate effects within-property, using property fixed effects to account for any such differ-
ences. Columns 6 and 7 report estimates analogous to columns 4 and 5 using property fixed
effects; property controls and neighborhood fixed effects are excluded. Here, variation comes
only from properties sold multiple times during the sample window, resulting in a sample size
reduction of nearly half. In column 6, estimation includes year-by-high school zone effects,
while column 7 shows estimates where only year-specific effects are included. Estimated
effects are very similar to analogous neighborhood fixed effects estimates in columns 4 and
5. Overall, estimates imply that house prices increase by roughly 4-6% post-construction in
new school attendance areas.

Difference-in-differences coefficients correspond only to the mean difference in house
prices pre vs post construction. Pre-existing differential trends between neighborhoods in
the same initial high school zone could still induce bias, even with the inclusion of flexible
year-by-high school zone effects. More importantly, difference-in-differences estimates ob-

44Recall, here we define school zones using pre construction boundaries from 2000, to eliminate concerns
over endogenous new school attendance boundary formation. Reassuringly, this distinction makes no quan-
titative difference, as results are nearly identical when post construction boundaries are used instead (Table
panel B).

*°By restricting to these properties, identification is coming solely off variation in the timing of when a
specific neighborhood receives a new school facility.
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scure the dynamics of effects, which could result in downward bias if capitalization occurs
gradually, and/or in anticipation of construction. New school locations were announced on
average b years before completion: real estate capitalization may occur in advance of school
completion insofar as parents and other homebuyers are forward-looking and are able to an-
ticipate whether a given property falls within the school assignment zone for the new school.
On the other hand, initial uncertainty by parents in the actual improvements generated by a
new school may lead to more gradual capitalization post-construction, as the quality of the
new school is revealed.

To account for flexibly for any dynamics in the timing of capitalization effects, in Figure
[1.§ we report event study estimates of the effects of new school constructions, corresponding
to the specification in equation . In panel A, estimation includes only those properties
ever within any new school zone and year-by-high school fixed effects, corresponding to the
specification in column 4 of panel A of Table [I.1I0} In panel B, we include all never-treated
properties in LAUSD as controls, corresponding to column 2. Effects are estimated relative
to the year before school occupancy, which is omitted from the regression. Results in both
panels of Figure [1.§| show little sign of pre-existing trends or dynamic anticipatory effects
pre-construction: all estimated pre-construction effects are practically zero. Capitalization
occurs somewhat gradually upon completion, with nearly all of the effect coming in the first
two years after school completion, before stabilizing after three or more years. Three or more
years after the new school construction, house prices in the new school attendance areas were
7% higher, slightly larger than the point estimates presented in Table

As discussed in Section|[1.6] schools that experienced large student outflows to new schools
saw significant reductions in overcrowding and multi-track calendar utilization, and small but
significant increases in the share of more advantaged students. Students at these schools also
experienced gains in ELA scores and attendance. To what extent were these gains at existing
“sending” schools capitalized into local house prices? In panel B of Table [1.10] we report
difference-in-differences estimates where treatment is similarly defined for existing “sending”
schools that experienced student outflows to newly constructed facilities.lﬂ Specifications in
columns 1 and 2 correspond to those in columns 1 and 2 of panel A; specifications in columns
3-6 correspond to those in columns 4-7 in panel A. Overall, results provide little indication
that house prices increased in the sending school neighborhoods. In column 1 the coefficient
is positive and significant, but this result is not robust to the inclusion of year-by-high school
zone effects in column 2, nor the exclusion of never-treated properties in columns 3-6. These
results suggest that (a) parental valuation of new schools is driven by non-test score/amenity
improvements at new schools, independent of the school calendar or level of overcrowding,
and/or (b) improvements in school quality due to reductions in overcrowding and multi-
track calendar utilization are less salient to prospective homebuyers, who may instead rely
on school facility condition as a signal for underlying school quality.

46“Sending” schools are defined as schools that have a non-trivial share (greater than 10%) of student
enrollment that experienced a substantial cohort outflow to a newly constructed school. The treatment year
for sending schools is analogously defined as the treatment year for stayers; i.e. the year in which the peer
outflow occurred.
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By neighborhood price

While new school quality was similar across treated neighborhoods["| the tax price of the
new facilities faced by district residents was greater in areas with higher property Valuesffl
Later, in Section we use the estimated house price effect for a welfare calculation,
applying the coefficient to the mean home value in LAUSD. But insofar as home prices
capitalize local investment, one might expect larger percentage effects on prices in low-price
neighborhoods than in high-price neighborhoods. If so, applying the average percentage
treatment effect to the average house price could overstate the aggregate impact. Empirically
this does not appear to be the case. In Figure [1.9] we report heterogeneity in estimated
treatment effects by neighborhood prior mean house prices. We define neighborhood prior
mean house prices as the average house price in a neighborhood over all pre-treatment
years in the sample, 1995-2001. Estimates of § from equation are shown interacted
with $100,000 bins of neighborhood prior mean house pricesfi_g] With the exception of the
$500,000 -$600,000 bin, all effects are similar and statistically significant, providing little
evidence of smaller estimated treatment effects in areas with higher property values.

Local boundary and spillover effects

Increased demand for neighborhoods receiving new schools could have differential ef-
fects on house prices near the boundaries of new school neighborhoods. School assignment
boundaries do not stay constant in perpetuity, and due to uncertainty over future bound-
ary locations, capitalization effects may be smaller near the boundaries within new school
zones. In addition, if home buyers substitute housing in existing school zones for housing
purchases in new school zones, prices could decline in other LAUSD neighborhoods. On the
other hand, new school constructions and changing neighborhood composition could lead
to spillovers that increase house prices both within and near new school zones. Prices in
nearby neighborhoods that did not receive new schools could increase due to positive ex-
ternalities from neighborhood upgrading (e.g. Hornbeck and Keniston (2017)). Moreover,
new schools could act as a direct amenity that generates positive benefits (e.g. increased
park/playground space) both within and outside the actual attendance areas. Estimates in
Figure and Table assess the extent to which the effect of new school constructions
varies by distance to the attendance boundary, and whether new schools generate spillover
effects beyond the attendance zone.

Table reports estimates of treatment effects by distance to the school attendance
boundary. Column 1 repeats baseline estimates from column 2 of Table [1.10| panel A. In

4"In conversations with district officials, it was stated that much of the variation in project cost was due
to site-specific acquisition expenses, and not systematic differences in new facility quality.

48Unlike in the model presented in Section which assumed a constant lump sum tax for all households,
property owners in higher-priced areas contributed a greater dollar amount towards district bond revenues.

49Note: the $100K bin includes a small number of properties in neighborhoods with mean house prices
below $100K; the $600K bin includes properties in all neighborhoods with mean house prices greater than
$600K in 1995-2001.
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column 2, we add a coefficient for distance from the boundary (in kilometers) and distance
to the boundary interacted the treatment dummy. Both added coefficients are small and
insignificant, and do little to affect the point estimate on the treatment indicator in the
first row. Column 3 adds an indicator for being within 2 kilometers of a new school zone,
after completion. For these properties, we assign the treatment date of the nearest new
school construction. Effects are estimated relative to properties greater than 2 kilometers
from any new school boundary. The estimated effect on properties just outside the new
school’s attendance zone is -1.3% (SE 1.0%) and insignificant. These estimates provide little
evidence of substitution patterns that indicate decreased demand for housing in existing
school attendance zones within 2 kilometers of a new school zone, nor that new school zones
generate positive spillovers in nearby neighborhoods, as would be expected if new schools
induced general neighborhood amenity upgrading. Column 4 adds in controls for distance
and the interactions with the treatment indicators. Here the treatment dummy for being
outside the zone is highly negative and significant, while the interaction with distance is
positive and significant, implying a large negative effect on house prices immediately after
crossing a new school attendance boundary that fades out within 1 kilometer outside the
boundary.

Figure|1.10| provides a non-linear visualization of the pattern reported in column 4. Each
point represents a difference-in-differences treatment effect estimate interacted with distance
to the new school attendance zone boundary, in 400 meter bins. Properties with positive
distance are located within new school boundaries, while those with negative distance are
in school zones where the residential assignment is to an existing school. Results indicate
that within the new school zones, capitalization is roughly constant at approximately 5% for
all distance bins. We find no evidence of smaller effects closer to the boundary. Properties
within 400 meters but outside of the boundary actually see statistically significant declines
in house prices of 4.9% (SE 1.7%) post-construction, providing suggestive evidence of neg-
ative spillovers for properties that are “unlucky” enough to fall just outside the new school
zone. These negative spillover effects quickly diminish however; point estimates for distances
greater than 1.2 km are positive, though insignificant, consistent with the findings from Table
[I.11} This pattern is consistent with cross-neighborhood substitution within very narrowly
defined markets, wherein demand for properties located marginally outside the new school
zones decreases for prospective homebuyers searching within the vicinity a new school.

1.8 Welfare Analysis

Thus far we have shown that new school constructions in LAUSD generated large stu-
dent cognitive and non-cognitive gains. These improvements in school quality - physical and
educational - were capitalized into the real estate market, as properties in new school atten-
dance areas saw large and significant increases in prices post construction. In this section we
use our estimated price effects to compute the implied willingness-to-pay for residents who
received new schools. As outlined in Section the magnitude of difference-in-differences
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estimates of the relative price change induced by new school constructions provides a bench-
mark to assess the economic efficiency of the spending program. One-third of households in
LAUSD reside in a new school attendance zone. Thus, if the estimated relative price change
is less than the per household cost of the program, multiplied by three, then we can infer that
homebuyers value the new schools less than the cost of building them, and therefore that
using taxpayer money to build new schools reduced welfare. Conversely, if the estimated
price change exceeds this we can infer that the additional expenditures were valued in excess
of the total program cost by homebuyers.

This computation relies on strong assumptions. Most notably, we assume that the ob-
served price change affects all household units in LAUSD, although we only estimate on the
subsample of single-unit properties that sold during the sample window. According to the
2005-2009 American Community Survey (ACS), there are 1.52 million non-vacant housing
units in LAUSD. The total cost of the program was $9.17 billion, meaning that the average
cost to a housing unit of the program is approximately $6,045 in present value. During
the treatment period from 2002-2012, the average sale price (within-sample) of properties
in zones that received new schools was $494,650. Using the estimates in Table panel
A, this implies a price change in the range of $21,765 to $29,679, where the preferred es-
timates from column 2 using all properties in LAUSD are the upper bound of that range.
Comparing this to the program cost per housing unit in a new school attendance zone,
3 % $6,045 = $18, 135, implies a willingness-to-pay ratio in the range of 1.2 to 1.64.@ Put
differently, each additional dollar of capital expenditures by the district generated 1.2 to 1.64
additional dollars in the real estate market. These results suggest that the value to families
of the school capital expenditure program was greater than the program cost, implying the
program raised welfare.

The real estate valuation of the program incorporates the market valuation of all potential
benefits generated by the new school program, beyond simply the effects related to increased
academic performance of students. However, many studies of educational interventions rely
on extrapolations of test score effects to assess a program’s efficiency. Using the estimates
presented in Chetty, John N Friedman, et al. (2011)), we can project forward the gain in
future earnings from the observed test score gains. Chetty et al. use experimental variation
in classroom quality to estimate that a 0.1 standard deviation increase in test scores’]| leads
to a 1.3% increase in earnings at age 27. To extrapolate our estimates forward, we first
compute the present discounted value of future earnings for future cohorts:

56
PD‘/cohort = Nc Z

Ey
S (L 0)

50Using instead the average price over all properties in the treatment period, as suggested by the model
in Section would increase this WTP ratio by roughly 33%, to a range of 1.62 to 2.21.

51Notably, this is for kindergarten scores. However, non-experimental estimates in the same paper show
that the correlation between test scores and earnings grows with age, suggesting that these effects may
underestimate the effects of improvements in later grades.
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where F, = earnings gain at each age, which we compute under the assumption of a constant
percentage gain of 1.3% per 0.1 SD increase in test scores, using age-earnings profiles from the
March CPSE The average elementary school student is 11 years old, therefore we discount
forward 16 years to age 27, and count benefits until retirement at age 67. From our data,
roughly 16% of students entering elementary school, 13% of students entering middle school,
and 25% of students entering high school in LAUSD were in a newly constructed school
facility. Plugging this in and using the estimated effects on math test scores, assuming a 3%
discount rate, yields a present discounted value of future earnings per cohort of $150 million.
From our facilities data, we estimate that a brand new facility would take roughly 35 years
to depreciate to the mean condition of existing facilities in LAUSD. Assuming the effects
are constant for this 35 year horizon and discounting the earnings of future cohorts implies
a gain in future earnings of $3.8 billion in present discounted value. The total program cost
was $9.17 billion, implying that the gain in future earnings from test score improvements
covers roughly 40% of the total program cost.@

Real estate capitalization greatly exceeds the estimated increases in future earnings from
test score improvements, providing strong evidence that parental valuation of educational
expenditures exceeds benefits captured by test scores alone@ New schools also generated
improvements in student non-cognitive outcomes, improvements in school safety and health,
and allowed for increased access to extra-curricular opportunities, among many other bene-
fits. While test score improvements provide a useful benchmark for interpreting the efficiency
of educational interventions, they are likely to severely understate the true benefits of capital
infrastructure investments.

1.9 Conclusion

In this paper we provide robust and comprehensive estimates of the effects of educa-
tional capital investments on student outcomes and neighborhood house prices. To date,
the literature on the effects of school capital investments has been mixed and inconclusive;
many prior studies are underpowered to detect modest effects, often relying on district-level
average outcomes to study the impacts of capital expenditure programs that impact only
a subset of students (Figure . Studying the largest school construction program in
US history, we provide robust new evidence that school facility investments lead to mod-
est, gradual improvements in student test scores, large immediate improvements in student
attendance, and significant improvements in student effort. New facilities also generated

52We compute the age-earnings profiles using data from 2012-2016, and use the average earnings, including
those with zero earnings. This follows the procedure in Chetty, John N Friedman, et al. (2011), but may
overstate impacts if earnings of LAUSD students are below average over the life cycle.

53Here we are not counting any indirect improvements for students who stayed behind at existing schools.
Including these would slightly increase aggregate future earnings gains, but would not change the qualitative
conclusion that future earnings gains from test score improvements do not cover total program costs.

54 Appendix Figure plots school-level test score treatment effects against school-level house price
effects, showing little systematic relationship between the two in both math and ELA.
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indirect improvements for students elsewhere in the district who did not attend new facil-
ities, but nonetheless saw improvements in their school environments due to peer outflows
to new facilities. Reductions in overcrowding and the elimination of “multi-track” academic
calendars only account for some of the observed gains, implying that capital improvements
themselves were responsible for student gains beyond reductions in congestion.

New school constructions induced large increases in neighborhood house prices upon com-
pletion, implying significant parental valuation of improvements in school quality, generally
defined. House prices increased substantially in areas that received new schools, although
we find no evidence of similar price increases in existing school zones that sent students to
new schools and experienced corresponding reductions in overcrowding. Overall, house price
estimates imply that the total real estate capitalization exceeded program cost, and sug-
gest an implied willingness-to-pay on behalf of district residents of 1.2 to 1.6 for one dollar
of per-household school capital investment. Willingness-to-pay estimates provide evidence
that prior capital spending had been inefficiently low in the distinct, and that the targeted
program to improve facilities for the most disadvantaged students in the district generated
aggregate welfare increases in the district. These findings are especially relevant for large,
urban districts and other districts serving low-income students with a history of facilities
underinvestment, and imply that policies to improve school capital can be productive and
efficient uses of public funding.
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1.10 Figures

Figure 1.1: School construction and enrollment, LAUSD 1940-2012
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Notes: Solid blue line depicts student enrollment by year (left axis) and dashed green line depicts the number
of new school facilities opened in a given year (right axis). Shaded area from 2002-2012 shows the treatment period
covered in the main analysis. The number of new school openings only includes facilities still open in 2008, and is
computed as the minimum age over all buildings that comprise a given school. Historical student enrollment data
were obtained from the California Department of Education.
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Figure 1.2: Spending per pupil, LAUSD vs LA County
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Notes: Panel A shows per-pupil capital expenditures and panel B shows per-pupil instructional expenditures.
Expenditures are expressed in real 2013 dollars. In both panels, the expenditures for LAUSD (solid blue line) and the
student-weighted average of all other LA County public school districts (dashed green line) are shown. The shaded area
from 2002-2012 shows the treatment period covered in the main analysis. Expenditure data were from the National
Center for Education Statistics (NCES) annual census of school districts and from the Census of Governments.
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Figure 1.3: LAUSD school attendance zones, 2012
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Notes: Figure displays school attendance boundaries for elementary schools (panel A), middle schools (panel
B), and high schools (panel C) in LAUSD in 2012. Shaded areas in red denote attendance zones that correspond to
schools newly constructed during the sample period from 2002-2012.
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Figure 1.4: Test score effects
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Notes: Figures shows estimated coefficients from event study regressions following equation . Dependent
variables are standardized math test scores for students in grades 2-7 (panel A) and standardized english-
language arts test scores for students in grades 2-11 (panel B). Test scores are standardized relative to the
statewide mean and standard deviation for each year-grade-subject exam. The shaded areas denote 95%
confidence intervals for the estimated coefficients. Specifications include fixed effects for student, year, and
grade. Standard errors are two-way clustered by school and student.



CHAPTER 1. DO SCHOOL FACILITIES MATTER? 42

Figure 1.5: Non-cognitive effects
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Notes: Figures show estimated coefficients from event study regressions following equation . Dependent
variables are annual days attended (panel A) and standardized teacher-reported effort scores for students
in grades K-5 (panel B). The shaded areas denote 95% confidence intervals for the estimated coefficients.
Specifications include fixed effects for student, year, and grade. Standard errors are two-way clustered by
school and student.
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Figure 1.6: School effects
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Notes: Figures show estimated coefficients from event study regressions following equation . Dependent
variables are leave-out school mean predicted test scores (panel A), class size for students in grades K-5
(panel B), multi-track calendar status (panel C), and total instructional days for a given school-year (panel
D). The shaded areas denote 95% confidence intervals for the estimated coefficients. Specifications include
fixed effects for student, year, and grade. Standard errors are two-way clustered by school and student.
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Figure 1.7: Student effects: Stayers
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Notes: Figures show estimated coefficients from event study regressions following equation for students that
had 10% or more of their school-grade cohort exit to a newly constructed school. Event time is centered relative
to the year of the peer outflow. Dependent variables are standardized math test scores for students in grades 2-7
(panel A), standardized english-language arts test scores for students in grades 2-11 (panel B), annual days attended
(panel C), and standardized teacher-reported effort scores for students in grades K-5 (panel D). The shaded areas
denote 95% confidence intervals for the estimated coefficients. Specifications include fixed effects for student, year,
and grade. Standard errors are two-way clustered by school and student.
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Figure 1.8: House price effects
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(b) House prices: All LAUSD

Notes: Figures show estimated coefficients from event-study regressions following equation . Dependent
variable in both panels is the In(sale price). In panel A, only properties that are ever in a new school
attendance zone are included in the estimation, corresponding to baseline estimates presented in column 4 of
Table[[.10] In panel B, all properties in LAUSD in the data sample are included in estimation, corresponding
to baseline estimates presented in column 2 of Table Specifications include property-specific controls,
year-by-high school zone fixed effects, neighborhood fixed effects, and month fixed effects. Standard errors
are clustered by neighborhood.
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Figure 1.9: Heterogeneity: By neighborhood mean prior house prices
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Notes: Figure shows estimated coefficients from a difference-in-differences regression based on equation ,
where the treatment indicator is interacted with indicators for $100,000 bins of prior neighborhood average prices.
Bin 1 also includes average neighborhood house prices less than $100K, while bin 6 includes all neighborhoods with
average house prices above $600K; all other bins only include a $100K range. Prior neighborhood average house
prices are calculated using data from pre-construction property sales from 1995-2001. All properties in LAUSD in
the data sample are included in estimation, corresponding to baseline estimates presented in column 2 of Table [[LI0]
All specifications include property-specific controls, year-by-high school zone fixed effects, neighborhood fixed effects,
and month fixed effects. Standard errors are clustered by neighborhood.
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Figure 1.10: Spillovers: Effects by distance to school attendance boundary
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Notes: Figure shows estimated coefficients from a difference-in-differences regression based on equation ,
where the treatment indicator is interacted with indicators for 400 meter bins of distance to the new school attendance
zone in 2012. Properties with positive (negative) distance are inside (outside) the new school attendance zones.
Properties outside the attendance zone and within 2 km of a new school attendance zone are assigned the construction
date corresponding to the nearest new school attendance zone boundary. Each point reports the estimated coefficient
for the treatment indicator interacted with the corresponding distance bin. Points are located at the midpoint of
each distance bin (i.e. the estimate at 200m corresponds to the 0-400m distance bin). All properties in LAUSD in
the data sample are included in estimation, corresponding to baseline estimates presented in column 2 of Table [[LI0]
Specifications include property-specific controls, year-by-high school zone fixed effects, neighborhood fixed effects,
and month fixed effects. Standard errors are clustered by neighborhood.
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1.11 Tables

Table 1.1: Summary statistics, new school projects

Mean  Median  Min Max
Total cost (million USD) 81.9 56.5 11.1 578.7
New student seats 1,050 800 162 3,440
New classrooms 40.3 32 6 130
Building SQFT 100,585 70,115 12,507 391,840
Completion year 2008 2008 2002 2012
Site designation to completion (yrs) 5.18 5 2 9
Construction to completion (yrs) 2.11 2 1 5
New School Codes 1.25 1 1 5
Total New School Campuses 114
Total New School Codes 143

Notes: Table reports summary statistics for new school project data, at the project level.

48
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Table 1.2: Summary statistics, LAUSD student data

All LAUSD Never Treated Always Treated Switchers  Stayers

Free/reduced-price lunch 0.82 0.80 0.93 0.95 0.91
Hispanic 0.73 0.71 0.85 0.89 0.83
Black 0.11 0.11 0.05 0.05 0.07
White 0.09 0.10 0.03 0.02 0.05
Asian 0.04 0.04 0.04 0.02 0.03
Parent: any college 0.26 0.27 0.23 0.16 0.21
English spoken at home 0.32 0.34 0.27 0.17 0.21
Predicted test score -0.26 -0.24 -0.29 -0.40 -0.34
Math score (¢t = —1) -0.35 -0.19
ELA score (t = —1) -0.52 -0.37
Days attended (t = —1) 156.73 155.37
N student-years 7,284,175 6,471,912 108,611 703,652 1,307,071

Notes: Table reports summary statistics for LAUSD student data, at the student-year level.
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Table 1.3: Summary statistics, LA County assessor data

All LAUSD New School Zones Existing School Zones

Sale price (20159%) 565,801 416,509 636,010
Building SQFT 1,664 1,539 1,722
Number of bedrooms 2.9 2.9 2.8
Number of bathrooms 2.2 2.1 2.3
Building age 44 45 44
Effective age 39 40 39
Useable lot SQFT 5,238 5,704 5,018
N property sales 505,835 161,795 344,040
N properties 350,299 115,247 235,052

Notes: Table reports summary statistics for LA County Assessor data, at the property sale level.
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Table 1.4: Student effects, cognitive

Math Score ELA Score
(1) (2) (3) (4) (5) (6)

New School * Trend ~ 0.029**  0.034™*  0.031**  0.019**  0.020™*  0.017***
(0.007)  (0.008)  (0.008)  (0.004)  (0.004)  (0.004)

New School -0.021 -0.028 -0.003 -0.014
(0.017)  (0.017) (0.008)  (0.009)
(0.002) (0.002)

Cumul. 4yr Effect  0.086**  0.080***  0.064***  0.058"*  0.058"*  0.037**
(0.021)  (0.022)  (0.024)  (0.011)  (0.011)  (0.012)

Grade FEs X X X X X X
Year FEs X X X X X X
Stu FEs X X X X X X

N student-years 2,935,156 2,935,156 2,935,156 4,716,377 4,716,377 4,716,377
N students 735,811 735,811 735,811 971,568 971,568 971,568
N treated students 87,132 87,132 87,132 99,685 99,685 99,685
N treated schools 78 78 78 126 126 126
R2 0.82 0.82 0.82 0.84 0.84 0.84

Notes: Table reports estimates of parametric event study models corresponding to equation . Columns 1
and 4 include only the coefficient for the change in growth (82); 81 and B3 are constrained to be zero. Columns 2 and
5 include coefficients for both the immediate effect (51) and the change in growth (82); 83 is constrained to be zero.
Columns 3 and 6 include all coefficients, corresponding exactly to the specification in equation . Row 4 reports
the implied cumulative test score effect after four years, equal to 352 in columns 1 and 4, and 1 + 382 in columns
2-3 and 5-6. Dependent variable is the standardized math test score (grades 2-7) in columns 1-3. In columns 4-6 the
dependent variable is the standardized ELA test score (grades 2-11). Specifications include fixed effects for student,
year, and grade. Standard errors are two-way clustered by school and student.
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Table 1.5: Student effects, non-cognitive

Days Attended Effort Score
(1) (2) (3) (4) (5) (6)
New School 3.973*** 3.398*** 3.314*** 0.061*** 0.063*** 0.056***
(0.551) (0.599) (0.633) (0.017) (0.017) (0.018)
New School * Trend 0.777* 0.745** -0.002 -0.008
(0.196) (0.204) (0.012) (0.013)
Trend 0.036 0.006
(0.085) (0.004)
Grade FEs X X X X X X
Year FEs X X X X X X
Stu FEs X X X X X X
N student-years 5,350,867 5,350,867 5,350,867 1,924,572 1,924,572 1,924,572
N students 1,121,933 1,121,933 1,121,933 552,855 552,855 552,855
N treated students 116,947 116,947 116,947 71,636 71,636 71,636
N treated schools 143 143 143 75 75 75
R2 0.51 0.51 0.51 0.63 0.63 0.63

Notes: Table reports estimates of parametric event study models corresponding to equation . Columns 1 and
4 include only the coefficient for the immediate new school effect (81); B2 and B3 are constrained to be zero. Columns
2 and 5 include coefficients for both the immediate effect (51) and the change in growth (52); 83 is constrained to be
zero. Columns 3 and 6 include all coefficients, corresponding exactly to the specification in equation . Dependent
variable is the annual days attended in columns 1-3. In columns 4-6 the dependent variable is the standardized average
teacher-reported effort score (grades K-5). Specifications include fixed effects for student, year, and grade. Standard
errors are two-way clustered by school and student.
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Table 1.6: Student effects, robustness

Baseline No Stayers Only Treated Only Switchers Balanced

ELA Score
New School * Trend 0.019*** 0.022*** 0.018*** 0.016*** 0.027*
(0.004) (0.004) (0.005) (0.005) (0.014)
Math Score
New School * Trend 0.029*** 0.029*** 0.034*** 0.035*** 0.059*
(0.007) (0.007) (0.011) (0.012) (0.033)
Days Attended
New School 3.97*** 4.33*** 4.02%** 4.43*** 8.54***
(0.55) (0.57) (0.78) (0.79) (1.65)
Effort Score
New School 0.061*** 0.061*** 0.077*** 0.089*** 0.045
(0.017) (0.017) (0.024) (0.027) (0.060)

Notes: Table reports estimates of parametric event study models corresponding one-parameter versions of equa-
tion . Panels A and B include only the coefficient for the change in growth (82); 51 and (3 are constrained to be
zero. Panels C and D include only the coefficient for the immediate new school effect (81); B2 and B3 are constrained
to be zero. Dependent variables are standardized english-language arts test scores (panel A), standardized math test
scores (panel B), annual days attended (panel C), and standardized average teacher-reported effort scores (panel D).
Estimates in column 1 repeat baseline one-parameter estimates from columns 1 and 4 of Tables and Column
2 excludes “staying” students that had 10% or more of their school-grade cohort exit to a newly constructed school.
Column 3 excludes never-treated students. Column 4 restricts estimation only to those students observed at an
existing school prior to attending a school at a new facility. Column 5 restricts to a balanced sample with 5 years of
data in panels A and C, or 3 years of data in panels B and D. Specifications include fixed effects for student, year,
and grade. Standard errors are two-way clustered by school and student.
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Table 1.7: Student effects heterogeneity, mechanisms

Math ELA Attendance Effort

Pooled (switchers only) 0.035***  0.016*** 4.432%* 0.089***
(0.012)  (0.005) (0.789) (0.027)

By multi-track:

Multi track 0.039***  0.017*** 8.214*** 0.097***
(0.014) (0.006) (0.788) (0.029)

Single track 0.019 0.011* 2.741%** 0.042
(0.013) (0.006) (0.728) (0.031)

p-value 0.15 0.37 0.00 0.11

By prior SQFT pp:

Low prior SQFT pp 0.031**  0.017*** 6.254*** 0.071***
(0.013) (0.006) (0.744) (0.027)

High prior SQFT pp 0.037** 0.007 4.668*** 0.098***
(0.017) (0.006) (0.797) (0.033)

p-value 0.66 0.15 0.03 0.43

By share permanent classrooms:

Low share permanent 0.038***  0.019*** 6.133*** 0.092***
(0.013)  (0.005) (0.666) (0.024)

High share permanent 0.020 0.003 4.955%** -0.013
(0.018)  (0.007) (0.903) (0.044)

p-value 0.29 0.02 0.14 0.01

By prior building age:

Below median age 0.026**  0.013** 5.625%** 0.075**
(0.013) (0.005) (0.647) (0.032)

Above median age 0.045***  0.017** 6.095*** 0.092***
(0.017) (0.007) (0.863) (0.035)

p-value 0.23 0.53 0.52 0.68

By prior building FCI:

Low FCI 0.030*  0.016*** 6.806™** 0.125**
(0.018) (0.006) (0.922) (0.052)

High FCI 0.035**  0.013** 4.910*** 0.068**
(0.014) (0.006) (0.632) (0.027)

p-value 0.78 0.79 0.02 0.29

Notes: Table reports estimates of one parameter event study models. Dependent variables are ELA scores
(column 1), math scores (column 2), annual days attended (column 3), and standardized teacher-reported effort
scores (column 4). Panel A repeats one-parameter estimates from column 4 of Table Panel B reports estimates
of coefficients interacted with prior school multi-track status. Remaining panels show coefficients on the interactions
for being below or above the median in terms of prior school SQFT per pupil (panel C), prior school share permanent
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classrooms (panel D), prior school age (panel E), and prior school FCI (panel F). Specifications include fixed effects
for student, year, and grade. Standard errors are two-way clustered by school and student.

Table 1.8: Teacher changes at new schools
(a) Demographics

(1) (2) (3) (4)
Age Experience =~ MA+ Pr(New)

New School -3.289***  _2.659*** 0.042***  0.054***
(0.336) (0.227) (0.012) (0.005)

Grade FEs X X X X
Year FEs X X X X
Stu FEs X X X X

N student-years 3,935,106 3,927,063 3,931,757 5,902,165
N students 926,501 925,300 926,203 1,140,815
N treated students 108,323 108,124 108,252 121,887
N treated schools 137 137 137 143
R2 0.32 0.36 0.28 0.29

(b) Value-added

VA: Average (pre-switch) VA: Novice/Experienced gap
(1) (2) (3) (4)

Math ELA Math ELA
New School -0.005 -0.010** -0.003 0.015

(0.007) (0.004) (0.012) (0.012)
Grade FEs X X X X
Year FEs X X X X
Stu FEs X X X X
N student-years 2,443,716 4,265,444 1,267,199 2,347,897
N students 689,206 955,346 432,813 672,731
N treated students 82,315 94,956 60,155 75,073
N treated schools 69 119 54 83
R2 0.61 0.56 0.38 0.33

Notes: Table reports estimates of difference-in-differences models corresponding one-parameter versions of equa-
tion , where only the coefficient for the immediate new school effect (51) is included; 82 and B3 are constrained to
be zero. In panel A, dependent variables are teacher age (column 1), teacher years experience (column 2), an indicator
for having a masters degree or higher (column 3), and an indicator for having a new teacher in either math or ELA
(column 4). Panel B reports estimates where dependent variables are school-year averages of teacher value-added:
in columns 1 and 2 dependent variables are average value-added scores based on prior-year observations at existing
school facilities in math and ELA, respectively. In columns 3 and 4 dependent variables are the school year gap
in mean value-added between novice and experienced teachers in math and ELA, respectively. See Appendix B for
further detail on computation of value-added measures. All specifications include fixed effects for student, year, and
grade. Standard errors are two-way clustered by school and student.
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Table 1.9: Student effects, “staying” students

Math ELA Days Attended Effort
(1) (2) (3) (4) (5) (6) (7) (8)
Post*Trend: -0.001 -0.013**  0.009*** -0.001 0.212 -0.013
(0.006) (0.006) (0.003) (0.003) (0.183) (0.012)
Post 0.014 0.014** 3.653***  3.049*** 0.007 -0.018
(0.012) (0.007) (0.494) (0.652) (0.021) (0.021)
Trend 0.010*** 0.006*** 0.125 0.015***
(0.003) (0.002) (0.107) (0.004)
Gr FEs X X X X X X X X
Yr FEs X X X X X X X X
Stu FEs X X X X X X X X
N stu-yrs 2,562,332 2,562,332 4,161,767 4,161,767 4,729,758 4,729,758 1,650,087 1,650,087
N stu 654,687 654,687 883,676 883,676 1,019,337 1,019,337 480,544 480,544
N trt stu 144,220 144,220 164,644 164,644 171,870 171,870 109,717 109,717
N trt coh 22,753 22,753 28,795 28,795 34,530 34,530 19,221 19,221
R2 0.82 0.82 0.84 0.84 0.52 0.52 0.63 0.63

Notes: Table reports estimates of parametric event study models corresponding to equation , for students
that had 10% or more of their school-grade cohort exit to a newly constructed school. Event time is centered relative
to the year of the peer outflow. Columns 1 and 2 include only the coefficient for the change in growth (82); f1 and
B3 are constrained to be zero. Columns 5 and 7 include coefficients only the coefficient for the immediate effect (81);
(B2) and B3 are constrained to be zero. Columns 2, 4, 6, and 8 include all coefficients, corresponding exactly to
the specification in equation . Dependent variable is the standardized math test score (grades 2-7) in columns
1-2, the standardized ELA test score (grades 2-11) in columns 3-4, annual days attended in columns 5-6, and the
standardized average teacher-reported effort score in columns 7-8. All specifications include fixed effects for student,
year, and grade. Standard errors are two-way clustered by school and student.
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Table 1.10: House price effects

(a) New school zones

o7

Neighborhood Fixed Effects

Repeat Sales

(1) (2) (3) (4) (5) (6) (7)
New School -0.011  0.060*** 0.059*** 0.044*** 0.055*** 0.045*** 0.059***
(0.014)  (0.018)  (0.016)  (0.011)  (0.015)  (0.013) (0.016)
Yr FEs X X X
Yr-HSZ FEs X X X X
Month FEs X X X X X X X
Sch Zone FEs X X X X X
Prop Controls X X X X X
Prop FEs X X
New Sch Zones X X X X X X X
w/in 1km X
All LAUSD X X
Number of sales 505,781 505,781 255481 161,775 161,782 87,523 87,551
R2 .81 .82 .79 .78 .75 91 9
(b) “Stayers” school zones
Neighborhood Fixed Effects Repeat Sales
(1) (2) (3) (4) (5) (6)
Post: School 0.042***  -0.008 0.023 -0.009  -0.010 -0.014
(0.012)  (0.017) (0.018) (0.019) (0.031) (0.025)
Yr FEs X X X
Yr-HSZ FEs X X X
Month FEs X X X X X X
Sch Zone FEs X X X X
Prop Controls X X X X
Prop FEs X X
All LAUSD X X
Number of sales 343,997 343,997 180,504 180,504 107,458 107,458
R2 .82 .83 .82 81 .93 .93

Notes: Tables report estimates from difference-in-differences regressions following equations and .
Dependent variable is the In(sale price). In panel A the coefficient of interest is an indicator for being in a new school
zone, whereas in panel B it is an indicator for being in an existing school zone that was affected by student outflows
to a new school. In panel A, columns 1-5 include neighborhood fixed effects and property specific controls; columns
6-7 include property fixed effects. Columns 1, 5, and 7 report estimates using year effects; remaining columns include
year-by-high school zone fixed effects. Columns 1-2 include all properties in LAUSD. Column 3 restricts the sample to
only properties within a new school zone or within a 1km of a new school zone. Columns 4-7 include only properties
within a new school zone by 2012: “never-treated” properties are excluded. In panel B, properties in new school zones
are excluded from estimation; columns 1-4 report estimates corresponding to equation , with neighborhood fixed
effects and property specific controls. Columns 5-6 show estimates with property fixed effects. Columns 1, 4, and 6 of
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panel B include year effects, while remaining columns include year-by-high school zone effects. Columns 1-2 include
all properties in LAUSD, while columns 3-6 restrict the sample to only those properties in school zones affected by
student outflows. All specifications include month effects. Standard errors are clustered by neighborhood.

Table 1.11: House price effects, by distance to school assignment zone boundary

(1) (2) (3) (4)

New School: inside zone 0.060*** 0.061*** 0.054**  0.051***
(0.018)  (0.018)  (0.017)  (0.018)
Distance to boundary 0.019 0.017
(0.014) (0.013)
Inside zone * dist to boundary -0.005 -0.004
(0.010) (0.010)
New School: outside w/in 2km -0.013  -0.046"*
(0.010)  (0.017)
Outside w/in 2km * dist to boundary 0.035**
(0.014)
Yr-HSZ FEs X X X X
Month FEs X X X X
Sch Zone FEs X X X X
Prop Controls X X X X
New Sch Zones X X X X
All LAUSD X X X X
Number of sales 505,781 505,781 505,781 505,781
R2 .82 .82 .82 .82

Notes: Table reports estimated coefficients from difference-in-differences regressions based off of equation (1.5)).
Dependent variable is the In(sale price). Column 1 repeats baseline estimates reported in column 2 of Table
Column 2 adds coefficients for property-level distance to the school assignment boundary and the interaction between
distance to the boundary and the new school zone treatment variable. Column 3 includes an additional treatment
variable for properties outside but within 2km of the new school attendance zone, where the completion date assigned
to these properties corresponds to that of the nearest new school attendance zone. Column 4 combines columns 2 and
3, and adds an interaction with distance to the boundary for properties outside but within 2km of the new school zone.
All properties in LAUSD in the data sample are included in estimation. All specifications include property-specific
controls, year-by-high school zone fixed effects, neighborhood fixed effects, and month fixed effects. Standard errors
are clustered by neighborhood.
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1.12 Appendix Tables and Figures

Appendix Figures:

Figure 1.11: Student effects comparison from capital expenditure literature

3 T
w
O 27 i T
Q
9 -
@© Hong &
S Zimmer Neilson &
b 1 [t (2016) Zimmerman @
w - (2014) Lafortune &
o Cellini Schénholzer
8 Martorell e? ;EI (2017)
(%)) et al. (2010)
g oBONl S
|_
-1 1
T T T T T
0 20000 40000 60000 80000

Construction cost, per pupil

€ Math Effect: Only Treated ® ELA Effect: Only Treated
¢ Math Effect: District Avg o ELA Effect: District Avg

Notes: Figure plots estimated coefficients from related papers in economics evaluating the effects of school capital
expenditures (y axis) against per-pupil expenditures in each study (x axis). Blue diamond shaped markers denote
math test score estimates whereas red circular markers denote English / Language Arts test score estimates (both in
standard deviation units). Solid markers denote estimates on directly treated students from Neilson and Zimmerman
(2015) and Lafortune and Schonholzer (2017), 4 years after school construction or student occupancy, respectively.
For these studies, construction cost is calculated per treated pupil. Hollow markers denote estimates from studies
examining district average test scores after passage of a capital construction bond, where construction cost per pupil
is the average over all students in the district. For these studies, estimates 6 years after bond passage are reported.
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Figure 1.12: Students at newly constructed schools
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Notes: Figure shows time series of total new seats (from new construction project database) and the number
of students attending newly constructed school facilities (from the student microdata).
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Figure 1.13: School age and multi-track calendars in LAUSD
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Notes: Figure reports proportion of students attending a school on a multi-track calendar, by year.
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Figure 1.14: Grade of switch to new school facilities
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Notes: Figure shows grade of switch for students switching to new facilities. Y-axis reports number of
students.
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Figure 1.15: Event study estimates, teacher-reported marks
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Notes: Figure shows estimated coefficients from event study regressions following equation . Dependent
variable is the standardized teacher-reported marks (averaged over all subjects) for students in grades K-5.
The shaded areas denote 95% confidence intervals for the estimated coefficients. Specifications include fixed
effects for student, year, and grade. Standard errors are two-way clustered by school and student.
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Figure 1.16: Student switching, non-new facility related
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Notes: Figures show estimated coefficients from event study regressions following equation , for students
who switch schools for reasons unrelated to new school facilities. Dependent variables are standardized math
test scores for students in grades 2-7 (panel A) and standardized english-language arts test scores for students
in grades 2-11 (panel B). Test scores are standardized relative to the statewide mean and standard deviation
for each year-grade-subject exam. The shaded areas denote 95% confidence intervals for the estimated
coefficients. Specifications include fixed effects for student, year, and grade. Standard errors are two-way
clustered by school and student.
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Figure 1.17: Student effects: Stayers, 20% cohort exit threshold
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Notes: Figures show estimated coefficients from event study regressions following equation , for students
that had 20% or more of their school-grade cohort exit to a newly constructed school. Figures are analogous
to Figure with the threshold for “stayers” raised from 10% to 20% of a student’s cohort. Event time
is centered relative to the year of the peer outflow. Dependent variables are standardized math test scores
for students in grades 2-7 (panel A), standardized english-language arts test scores for students in grades
2-11 (panel B), annual days attended (panel C), and standardized teacher-reported effort scores for students
in grades K-5 (panel D). The shaded areas denote 95% confidence intervals for the estimated coeflicients.
Specifications include fixed effects for student, year, and grade. Standard errors are two-way clustered by
school and student.
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Figure 1.18: Neighborhood boundaries in LAUSD, based on 2000 school zones
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Notes: Figure shows school assignment zone triplets in LAUSD using 2000 assignment boundaries, which
are used to define neighborhoods in the estimation of real estate effects. Solid lines denote neighborhood
boundaries. Fach gray dot represents one property from the LA County Assessor data.
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Figure 1.19: Spillovers: Effects by distance to new school
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Notes: Figure shows estimated coefficients from a difference-in-differences regression based on equation
7 where the treatment indicator is interacted with indicators for 400 meter bins of distance to the new
school in 2012. Each point reports the estimated coefficient for the treatment indicator interacted with the
corresponding distance bin. Points are located at the midpoint of each distance bin (i.e. the estimate at
200m corresponds to the 0-400m distance bin). All properties in LAUSD in the data sample are included in
estimation, corresponding to baseline estimates presented in column 2 of Table Specifications include
property-specific controls, year-by-high school zone fixed effects, neighborhood fixed effects, and month fixed
effects. Standard errors are clustered by neighborhood.
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Figure 1.20: Correlation between house price and test score effects
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Notes: Figures show scatterplots of estimated school-level test score gains in math (panel A) and ELA (panel
B) against estimated house price effects in the corresponding school attendance zone. The solid line in each
figure displays the bivariate regression line. Points and regression lines are weighted by the product of the
inverse sampling variances of the estimated test score gain and the estimated house price change for a given
school. The size of each point is proportional to the weight. In panel A the point estimate on the regression
line is 0.28 (SE 0.29) and in panel B the point estimate is -0.22 (SE 0.30).
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Appendix Tables

Table 1.12: School-level changes

(a) Switching students

Calendar School Peers
(1) (2) (3) (4) (5) (6)
Multi-track Max days Age Stu/tch  Peers: Bl/Hisp Peers: pred

New School -0.267*** 1.762***  -71.086™**  0.312*** 0.027*** -0.024***

(0.029) (0.262)  (L.132)  (0.084) (0.004) (0.006)
Grade FEs X X X X X X
Year FEs X X X X X X
Stu FEs X X X X X X
N stu-years 6,601,535 5,898,902 6,519,509 3,155,009 6,594,053 4,601,340
N stu 1,224,566 1,186,057 1,217,043 779,669 1,222,196 939,620
N treated stu 122,172 120,164 122,112 96,526 122,043 97,856
N treated sch 143 140 143 79 143 126
R2 0.68 0.51 0.79 0.75 0.88 0.85

(b) Staying students

Calendar School Peers
(1) (2) (3) (4) (5) (6)

Multiple Max days Age Stu/tch  Peers: Bl/Hisp Peers: pred
Post: Stayers -0.249***  2.305*** 1.572 -0.278** -0.016*** 0.022%**

(0.027) (0.304) (1.074) (0.123) (0.003) (0.004)
Grade FEs X X X X X X
Year FEs X X X X X X
Stu FEs X X X X X X
N stu-years 5,837,507 5,214,065 5,759,302 2,737,469 5,830,319 4,053,776
N stu 1,119,399 1,081,590 1,111,323 686,610 1,117,171 853,479
N treated stu 178,022 176,086 177,607 132,170 177,847 161,177
N treated sch 801 791 752 500 802 787
R2 0.70 0.53 0.68 0.75 0.88 0.85

Notes: Table reports estimates of difference-in-differences models corresponding one-parameter versions of equa-
tion , where only the coefficient for the immediate new school effect (1) is included; B2 and B3 are constrained
to be zero. Dependent variables are multi-track status in a given school-year (column 1), total instructional days in
a given school-year (column 2), school age (column 3), class size (i.e. pupils per teacher) for students in grades K-5
(column 4), school leave-out mean proportion black and/or hispanic (column 5), and school leave-out mean predicted
test scores (column 6). Panel A reports estimates for students attending new school facilities. Panel B reports anal-
ogous estimates for staying students: here 31 is an indicator for having experienced a 10% or greater school-grade
cohort exit to a newly constructed school. Specifications include fixed effects for student, year, and grade. Standard
errors are two-way clustered by school and student.
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Table 1.13: Teacher changes at existing schools

(a) Demographics

(1) (2) (3) (4)

Age Experience MA-+ Pr(New)
Post: Stayers 1117 0.768*** 0.007 -0.000

(0.248) (0.182) (0.010) (0.004)

Grade FEs X X X X
Year FEs X X X X
Stu FEs X X X X
N student-years 3,935,106 3,927,063 3,931,757 5,902,165
N students 926,501 925,300 926,203 1,140,815
N treated students 156,306 156,183 156,282 176,213
N treated schools 797 797 797 802
R2 0.32 0.35 0.28 0.29

(b) Value-added

VAM: Average (pre-switch) VAM: Experienced/Novice gap

(1) (2) (3) (4)

Math ELA Math ELA
Post: Stayers -0.009 0.002 -0.007 0.016

(0.007) (0.003) (0.022) (0.014)
Grade FEs X X X X
Year FEs X X X X
Stu FEs X X X X
N student-years 2,175,273 3,722,137 1,267,199 2,347,897
N students 640,572 887,238 432,813 672,731
N treated students 132,846 156,769 104,810 134,051
N treated schools 609 785 585 731
R2 0.33 0.35 0.38 0.33

Notes: Table reports estimates of difference-in-differences models corresponding one-parameter versions of equa-
tion , for students that had 10% or more of their school-grade cohort exit to a newly constructed school. Only
the coefficient for having experienced a 10% or greater school-grade cohort exit is included (51); B2 and B3 are con-
strained to be zero. In panel A, dependent variables are teacher age (column 1), teacher years experience (column
2), an indicator for having a masters degree or higher (column 3), and an indicator for having a new teacher in either
math or ELA (column 4). Panel B reports estimates where dependent variables are school-year averages of teacher
value-added: in columns 1 and 2 dependent variables are average value-added scores based on prior-year observations
at existing school facilities in math and ELA, respectively. In columns 3 and 4 dependent variables are the school
year gap in mean value-added between novice and experienced teachers in math and ELA, respectively. See Appendix
B for further detail on computation of teacher value-added. All specifications include fixed effects for student, year,
and grade. Standard errors are two-way clustered by school and student.
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Table 1.14: Student effects, heterogeneity

Math ELA Attendance  Effort

Pooled 0.020%*  0.019***  3.973**  0.061***
(0.007)  (0.004)  (0.551)  (0.017)

By Sex:
Female 0.036***  0.025*** 3.823*** 0.073***
(0.007)  (0.004) (0.547) (0.018)
Male 0.022***  0.014*** 4.131% 0.053***
(0.007)  (0.004) (0.567) (0.019)
p-value 0.00 0.00 0.04 0.19
By parental education:
No college 0.029***  0.021*** 4.284** 0.050***
(0.007)  (0.004) (0.598) (0.017)
Any college 0.026*** 0.014*** 3.278*** 0.107***
(0.010)  (0.004) (0.494) (0.023)
p-value 0.69 0.03 0.00 0.00
By school level:
Elementary 0.028***  0.017*** 1.608*** 0.061***
(0.007)  (0.004) (0.333) (0.017)
Middle 0.038 -0.002 3.368***
(0.026)  (0.007) (0.526)
High 0.030*** 5.464***
(0.007) (1.055)
p-value 0.72 0.00 0.00
By grade of switch:
Reg (KG,G6,G9) 0.019**  0.018*** 5.305*** 0.040
(0.009)  (0.004) (0.643) (0.025)
Irregular 0.038***  0.022*** 1.976*** 0.071%**
(0.009)  (0.005) (0.532) (0.020)
p-value 0.08 0.49 0.00 0.31

Notes: Table reports estimates of parametric event study models corresponding one-parameter versions of equa-
tion . Columns 1 and 2 include only the coefficient for the change in growth (82); 81 and B3 are constrained
to be zero. Columns 3 and 4 include only the coefficient for the immediate new school effect (81); B2 and B3 are
constrained to be zero. Dependent variables are standardized english-language arts test scores (column 1), stan-
dardized math test scores (column 2), annual days attended (column 3), and standardized average teacher-reported
effort scores (column 4). Panel A repeats baseline one-parameter estimates from columns 1 and 4 of Tables and
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The remaining panels report estimates of coefficients interacted with student gender (panel A), parental educa-
tion (panel B), school level (panel C), and whether a student switched in a typical (KG, G6, G9) or atypical grade
(panel D). P-values for the test of equality of the coefficient(s) are reported in the third row of each panel. Specifi-
cations include fixed effects for student, year, and grade. Standard errors are two-way clustered by school and student.

Table 1.15: House price effects, by school level

(1) (2) (3) (4) ()

New Elementary 0.051%** 0.026*
(0.015) (0.014)
New Middle 0.031 0.003
(0.023) (0.016)
New High 0.071**  0.065**
(0.030)  (0.029)
Only New Elementary 0.065***
(0.021)
Only New Middle 0.008
(0.018)
Only New High 0.072**
(0.034)
p, Elem effects =0 .00063 .064 .0027
p, Mid effects =0 A8 .87 .66
p, HS effects =0 .019 .027 .034
p, All effects =0 .04 .0036
p, All effects equal A7 024
Yr-HSZ FEs X X X X X
Month FEs X X X X X
Sch Zone FEs X X X X X
Prop Controls X X X X X
All LAUSD X X X X X
Number of sales 381,407 374,915 480,967 505,781 471,528
R2 .83 .83 .82 .82 .83

Notes: Table reports estimated coefficients from difference-in-differences regressions by school level, based off of
equation . Columns 1, 2, and 3 report estimates of the effects of new elementary, new middle, and new high
schools, respectively. Properties in new school zones for schools at the other two levels are excluded from the control
group in estimation in columns 1-3 (i.e. column 1 excludes properties that received new middle and/or new high
school zones but not elementary schools from the control group). Column 4 includes coefficients for all three school
levels. Column 5 restricts estimation to include only those properties in the attendance area of a single new school
level. P-values for the tests that the effect at each level equals zero are included, as are p-values for the omnibus
hypothesis tests that effects for all levels are equal to zero and that effects for all levels are equal. All specifications
include property-specific controls, year-by-high school zone fixed effects, neighborhood fixed effects, and month fixed
effects. Standard errors are clustered by neighborhood.
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Table 1.16: House price effects, using post-2012 data or post-construction neighborhood
definitions

(a) Including post-2012 data

Neighborhood Fixed Effects Repeat Sales
(1) (2) (3) (4) (5) (6) (7)
New School -0.021*  0.053*** 0.049*** 0.034** 0.049*** 0.043*** 0.046***
(0.013)  (0.015)  (0.013)  (0.011) (0.013) (0.012) (0.014)
Yr FEs X X X
Yr-HSZ FEs X X X X
Month FEs X X X X X X X
Sch Zone FEs X X X X X
Prop Controls X X X X X
Prop FEs X X
New Sch Zones X X X X X X X
w/in 1km X
All LAUSD X X
Number of sales 593,414 593,414 298507 188,222 188,229 114,519 114,542
R2 81 .82 .79 7 .74 91 9
(b) Neighborhoods based on 2012 boundaries
Neighborhood Fixed Effects Repeat Sales
(1) (2) (3) (4) (5) (6) (7)
New School -0.010  0.068*** 0.067*** 0.046*** 0.055*** 0.045*** 0.059***
(0.014)  (0.019)  (0.017)  (0.013)  (0.016)  (0.014)  (0.017)
Yr FEs X X X
Yr-HSZ FEs X X X X
Month FEs X X X X X X X
Sch Zone FEs X X X X X
Prop Controls X X X X X
Prop FEs X X
New Sch Zones X X X X X X X
w/in 1km
All LAUSD X X
Number of sales 505,795 505,779 255481 161,773 161,779 87,523 87,551
R2 .81 .82 .8 .78 .75 91 .9

Notes: Table reports estimates from difference-in-differences regressions following equations and . Panel
A includes additional data from 2013-2015, while panel B uses neighborhood effects based on 2012 school assignment
zones in lieu of 2000 school zones. Dependent variable is the In(sale price). Columns 1-5 report estimates from
equation , including neighborhood effects and property specific controls. Columns 6 and 7 report estimates from
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equation , including property fixed effects. Columns 1, 5, and 7 report estimates using year effects; the remaining
columns include year-by-high school zone effects. In columns 1 and 2, all properties in LAUSD in the data sample
are included. Column 3 restricts the sample to include only properties within a new school zone or within a 1km of a
new school zone (by 2012). Columns 4-7 include only properties within a new school zone by 2012; “never-treated”
properties are excluded. All specifications include month effects. Standard errors are clustered by neighborhood.

Table 1.17: House price effects, robustness to sample restrictions

Relaxing sample restrictions for:

(1) (2) (3) (4) (5)

Baseline Price outliers Renovated/torn-down Large/multi-unit Non-residential

New School 0.060*** 0.088*** 0.056*** 0.058*** 0.048***
(0.018) (0.028) (0.020) (0.018) (0.014)
Yr FEs
Yr-HSZ FEs X X X X X
Month FEs X X X X X
Sch Zone FEs X X X X X
Prop Controls X X X X X
Baseline sample X X X X X
Price outliers X
Renovated X
Large/multi-unit X X
Non-residential X
Number of sales 505,780 512,577 525,469 513,039 625,632
R2 .82 .75 .75 .8 .72

Notes: Table reports estimated coefficients from difference-in-differences regressions corresponding to estimates
of equation . Dependent variable is the In(sale price). Column 1 repeats baseline estimates presented in Table
panel A column 2. Column 2 makes no restriction on sale price, including the top and bottom 1% of sales based
on price. Column 3 relaxes the restriction on renovated and/or torn-down properties, including these properties with
an additional indicator variable for having been renovated and/or torn-down in the controls. Column 4 includes
large properties, with greater than one acre of space. Column 5 includes non-residential properties. All specifications
include neighborhood fixed effects, property specific controls, and month fixed effects. Standard errors are clustered
by neighborhood.
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1.13 Appendix: Computing Teacher Value-Added

To estimate teacher value-added scores, we use a subsample of students for which the
following criteria are met: (1) Student-year observations have non-missing test scores and
are currently in grades 3-7 in math, and 3-11 in ELA; value-added scores are not computed
for grade 2 teachers so as to have at least one prior score for a student; (2) Student-year
observations have non-missing teacher assignment;E] (3) Student-year observations are in
classrooms with at least 7 students. Consider the following data-generating process for test
scores, closely following Kane and Staiger (2008) and Chetty, John N. Friedman, et al.
(2014)):

Yit = O g(it) T X0+ vy (1.8)

Vit = (i)t T Eit

where y;; is student i’s test score in a given subject in year t, ¢(7,t) denotes a student’s
grade in a given year, j(i,t) denotes a student’s teacher in a given year, and X, is a vector
of controls. Here, (4, is a teacher’s effect on student test scores in year ¢ and €;( ),
captures unobserved error in test scores unrelated to teacher quality.

To compute value-added for a given teacher-year, we estimate equation , and then
compute the average residual within each teacher-year cell: VA;; = 7. Unlike many prior
studies, we do not use an Empirical Bayes or similar procedure to “shrink” these noisy
estimates of value-added, as we will only use these measures as dependent variables and are
therefore less concerned about measurement error (and potentially more concerned about
biased estimates) [’

In estimation, X/, includes third-degree polynomials in lagged student test scores (for
both subjects), demographics (race, gender, parental education, free/reduced-price lunch
status, limited English status), class size (only available for elementary students), and school-
level variables (school leave-out means of the share black/hispanic, share with any parental
postsecondary education, share who speak English at home, and the share eligible for free or
reduced-price lunch). We do not include school fixed effects in estimation, meaning estimated
teacher effects are relative to all other teachers within LAUSD.

1.14 Appendix: Treatment Effect Heterogeneity

Student Effects: Heterogeneity

Heterogeneity in estimated student effects is presented in Table [1.14 Row 1 reports
pooled estimates using the entire sample, which correspond to baseline estimates presented in

5Nearly every student in K-5 has a non-missing assignment; teacher IDs in later grades were assigned to
a student-subject pair based on the teacher associated with a student’s math and/or ELA class

56See Jacob and Rothstein (2016) for a more detailed discussion of potential problems using estimated
posterior means of student test scores as dependent variables in regression models.
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column 1 of Table[I.4] In the remaining rows, the one-parameter treatment effect coefficients
are interacted with student demographic and other characteristics’’] Estimated cognitive
effects are nearly twice as large for girls than boys, and the differences are statistically
significant (p < 0.01) for both math and ELA. Effects on student effort are also larger for
girls, although the magnitude of the difference is smaller and not significant. The pattern is
the opposite for attendance, as effects on the number of days attended are larger for boys
than girls, although the magnitude of the difference is small. These differences suggest that
substandard classroom facilities may inhibit girls’ learning more than boys, although the
mechanisms underlying this difference are unclear.

When results are split by level of parental education, a mixed picture emerges. Estimated
effects on math scores, ELA scores, and attendance are larger for students with parents who
did not attend any level of postsecondary education, although the difference in math scores
is small and insignificant. For student effort, estimated effects are over twice as large for
students with parents who have any level of postsecondary education than for those whose
parents have a high school education or less. Overall, the results provide little evidence that
improvements in school facilities systematically benefit students from lower socio-economic
backgrounds[®| Recall however, as shown in Table[1.2] that there is little variation in socio-
economic status in LAUSD: nearly 90% of treated students are eligible for free or reduced-
price lunch and less than one-fifth have parents with any level of post-secondary education.

Table also shows estimates split by school level. Cognitive effects are insignificant
for students who attend new middle schools, although for math, the difference between ele-
mentary and middle school effects is insignificant. For ELA, effects are large and significant
in both elementary and high school, and are essentially zero for students who switch to a
new middle school. For attendance, a clear pattern emerges: effects increase monotonically
with school level, and are the largest for students in new high schools. Insofar as student
motivation is impacted by new facilities and drives changes in student attendance, we would
expect effects to grow with grade level as older students have greater autonomy over atten-
dance decisions than younger students, whose daily attendance is more directly dictated by
parental influence.

Finally, estimated effects are also split by whether a student switches schools during a
“regular” grade transition (KG, G6, G9) or switches to a new school in another grade. “Ir-
regular” grade transitions in off-grades occurred immediately following school construction,
when students were transferred between schools to fill enrollment at the new school. Overall,
effects are similar for both types of switching students, with only a large and significant dif-
ference in estimated attendance gains. Estimated effects on cognitive outcomes and student
effort are somewhat larger for initial switchers who switch during an irregular grade transi-
tion, although only the difference in math scores is statistically significant at the 10% level.
For student attendance, effects are significantly larger (5.2 days vs 1.9 days) for regular grade

57Note that this constrains grade and year effects to be equivalent for each group, as opposed to running
separate regressions or also interacting fixed effects with demographic indicators.

58 Analogous breakdowns by race and free lunch status (not reported) show only small and insignificant
differences.
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switchers. Students switching at a typical grade transition are mostly switching in grades 6
and 9, which explains most of the difference in days attended, as attendance gains are larger
for middle and high school students than elementary school switchers[”

Real Estate Effects: By School Level

Estimates reported in Table and Figure|[l.§include properties that received multiple
new schools. The average treated property in the sample was in the school attendance area of
1.1 new school constructions, implying the the effect of receiving a single school (elementary,
middle or high) would be 9% lower than the baseline estimates, roughly a 5.5% increase in
house prices per new school construction using baseline estimates from column 2. In Table
1.15| we report house price effects separately by school level. Results indicate that effects
are largest for new elementary and high schools, although we cannot statistically reject
differences in estimated coefficients in all specifications. Qualitatively, results are consistent
with student effect heterogeneity reported in Table [1.14] which provided evidence that test
score effects were larger and more significant for newly constructed elementary and high
school than for new middle schools. As middle schools represent the shortest duration of
student attendance (3 years, vs 4 for high school and up to 6 for elementary), it is unsurprising
that the effects may be smaller.

59Gee Figure for the distribution of student switching grades to new schools.
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Chapter 2

School Finance Reform and the
Distribution of Student Achievement

2.1 Introduction

Economists have long been skeptical of resource-based education policies, based in part on
observational studies showing small or zero effects of additional funding (see, e.g., Coleman
et al. (1966), Hanushek (1986)), Hanushek (2006))[[| Hanushek, for example, writes: “Simply
providing more funding or a different distribution of funding is unlikely to improve student
achievement (even though it may affect the tax burdens of school financing across the citizens
of a state)” (Hanushek (1997), p. 153). Accordingly, recent policy discussions have focused
on ways to improve the productivity of existing inputs rather than on changes in school
resource levels.

Nevertheless, states have continued to implement aggressive resource-based policies, aimed
in part at reducing achievement gaps. Figure [2.1] shows the evolution of average revenues
per pupil, in 2013 dollars, in the lowest- and highest-income school districts in each state
(defined as the bottom and top fifths of the states district-level mean household income
distribution).ﬂ Between 1990 and 2012, real per-pupil revenues rose by roughly 30 percent
in the highest-income districts, and by over 50 percent in the lowest-income districts. Thus,
while low-income districts collected about 20 percent less than high-income districts in 1990,
they have been in rough parity since around 2001.

Much of this change came via reforms to state education funding formulas, many im-
plemented in response to court orders. Figure shows revenues of low-income districts
relative to high-income districts, each defined as in Figure [2.1} separately for the 26 states

!There are also observational (Card and Krueger, 1992a)) and experimental (Krueger (1999); Dynarski et
al. (2013)) studies pointing to positive school resource effects. There is no consensus about how to reconcile
these (see, e.g., Burtless (1996)); Hanushek (2003); Krueger (2003)).

2Hawaii and the District of Columbia are excluded. Districts are weighted by log enrollment in computing
state quintile means, which are then averaged without weights in Figure We discuss data sources and
definitions in Section
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that have implementedor at least been ordered to implement by courtsschool finance reforms
since 1990 and for 23 states that have not. Growth in low-income districts relative revenues
has been more than twice as rapid in the former states than in the latter.

There are two primary types of school finance reforms (SFRs). In the 1970s and 1980s,
SFRs were primarily “equity” reforms, aimed at reducing resource disparities across districts.
Since 1990, the pace of reforms has quickened, and most have been adequacy reforms, aimed
at achieving sufficient funding in low income districts regardless of implications for equityf]

SFRs are arguably the most substantial national policy effort aimed at promoting equality
of educational opportunity since the turn away from school desegregation in the 1980s. But
there is little evidence about their effects on student achievement. What evidence there
is derives from non-representative data on students who took the SAT college entrance
exam (Card and Payne, 2002); from long-run outcomes measured in the relatively small
Panel Study of Income Dynamics sample (Jackson et al., |2016); or from case studies of
individual reforms (Guryan (2001); Clark (2003); Hyman (Forthcoming))[f| These studies
primarily examine pre-1990, equity-based SFRs, and generally find positive effects on student
outcomes. But funding levels were much higher by 1990 than earlier, and the most severe
inequities in school resources had been addressed. Thus, there may have been less scope for
more recent, adequacy-based SFRs to benefit students.

The impacts of SFRs on student achievement are closely related to the impact of addi-
tional resources. The literature regarding whether “money matters” in education (Hanushek
(1986), Hanushek (2003); Hanushek (2006]); Card and Krueger (1992al)); Burtless (1996))) is
contentious and does not offer clear guidance. State funding formulas are the main policy
tool available to address inequities in academic outcomes, so funding shifts deriving from
changes in these formulas are the most policy-relevant variation in school resources.

We provide the first evidence from nationally representative data regarding the impact
of SFRs on student achievement. We exploit little-used data from the National Assess-
ment of Educational Progress (NAEP), also known as “the Nations Report Card.” State-
representative samples of 100,000-200,000 students in the fourth and eighth grades have
taken math and reading tests every two to four years since 1990. Importantly, the tests have
been uniform across states and over time, facilitating comparisons.

We use the NAEP data to construct a state-by-year panel of relative achievement in low-
income school districts, covering 1990 to 2011. Conveniently, the beginning of our NAEP
panel coincides with the onset of the adequacy era of school finance, which dates to the 1990
Kentucky Education Reform Act (KERA).

To distinguish the causal impacts of SFRs from other potential determinants of spending
and test score trends, we use an event study framework, taking advantage of plausibly random

3Studies of the implications of SFRs for school finance, mostly examining equity reforms, include S. E.
Murray et al. (1998); Card and Payne (2002)); Hanushek and Lindseth (2009); Berry and Wysong (2012);
Ladd and Fiske (2015))); Sands (2015]).

4Cascio, Gordon, et al. (2013) and Cascio and Reber (2013) examine the introduction of federal Title I
funding to low-income schools via the 1965 Elementary and Secondary Education Act.
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variation in the location and timing of post-1990 SFRSH We find no sign of systematic
changes in either funding or test scores in the period leading up to a reform, supporting
our assumption that reform timing is exogenous. Following reforms, we document sharp
increases in state revenues, with larger increases in low-income districts and smaller but
still positive increases in high-income districtsﬁ These changes occur quickly after reform
events, persist for many years, and are not offset by reductions in local revenues. Absolute
and relative funding in low-income districts rises by approximately $1,200 and $700 per
pupil per year, respectively. We find that, on average, schools use the additional funds on
instructional spending, to reduce class size, and for capital outlays.

We also find clear changes in achievement trends following events. These cumulate over
subsequent years: Ten years after a reform, relative achievement of students in low-income
districts has risen by roughly 0.1 standard deviation, approximately one-fifth of the baseline
gap between high- and low-income districts. The implied impact is between 0.12 and 0.24
standard deviations per $1,000 per pupil in annual spending. This is at least twice the
impact per dollar that is implied by the Tennessee Project STAR class size experiment.m
Given existing estimates of the relationship between test scores and students subsequent
earnings, our results imply that a $1 increase in funding to low-income school districts will
raise students eventual earnings by more than $1 in present value.

Nevertheless, we find no discernible effect of reforms on statewide achievement gaps
between high- and low-income students or between minority and white students. This is not
inconsistent with our results on the impacts on scores in low-income districts, nor does it
indicate that only the high-income students in those districts benefit. Rather, we show that
low-income and minority students are not very highly concentrated in school districts with
low mean incomes. As a result, SFRs lead to only small increases in the funding to which the
average low-income or minority student is exposed. Thus, while our analysis suggests that
finance reforms can be quite effective at reducing between-district inequities, other policy
tools aimed at closing within-district achievement gaps will be needed to address overall
equity concerns.

5A simple long-difference analysis of test score gaps between low-income and high-income districts, similar
to the analysis of finance in Figure shows that gaps have shrunken in states that implemented reforms
relative to states that have not. See Figure in the Appendix.

6 Anecdotally, legislators facing court orders to increase funding to low-income districts often respond by
increasing overall funding, as a way of disguising the resulting redistribution. Reforms are associated with
sharp increases in total state education expenditures and tax collections.

TSTAR raised costs by about 30% in K-3, and raised early grade test scores by 0.17 SDs (Krueger (1999);
Krueger (2003); Krueger and Whitmore (2001)). Current spending per pupil in Tennessee is around $9,000,
so comparable proportional class size reductions would cost around $2,700 per pupil per year. The implied
effect is thus around 0.06 SDs per $1,000 per (early elementary) pupil per year.
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2.2 School Finance Reforms’

Historically, American public schools were locally managed and financed primarily via
local property taxes. As school districts vary widely in both their tax bases and their voters
willingness to tax themselves to fund schools, this meant that school spending and quality
varied substantially across districts.

In the 1960s, a group of legal scholars argued that local school finance violates federal
and state constitutional provisions that guarantee equal access to public services (see, e.g.,
Krueger and Whitmore (1967); Horowitz (1965)); Kirp (1968]); and Coons et al. (1970)).
Advocates brought and won suits in many states demanding more equitable school finance
systems; in other states, legislatures acted without court decisions, often to stave off potential
rulings | The resulting finance regimes often involved substantial increases in state transfers
to districts with low property tax bases. An extensive “fiscal federalism” literature examines
the effects of these reforms on the distribution of school funding (see, e.g., S. E. Murray
et al. (1998); Card and Payne (2002)); Hanushek and Lindseth (2009); Corcoran and Evans
(2015))).

We focus on a second wave of finance reforms, which began with a 1989 Kentucky Supreme
Court ruling that the state constitution, which as in many other states dictates an efficient
system of public schools, requires that “[e]ach child, every child, must be provided with
an equal opportunity to have an adequate education” (Rose v. Council for Better Educa-
tz’oan_U]; emphasis in original). The Court emphasized that equal funding was not sufficient,
and articulated a standard closer to equality of outcomes for students in low-income dis-
tricts (“sufficient levels of academic or vocational skills to enable public school students to
compete favorably with their counterparts in surrounding states, in academics or in the job
market”). The Kentucky legislature responded with the Kentucky Education Reform Act
of 1990 (KERA), which revamped the states educational finance, governance, and curricu-
lum. Clark (2003) and Flanagan and S. Murray (2004)) find KERA substantially increased
spending in low-income districts.

Since 1990, courts in many other states have found adequacy requirements in their own
constitutions. In many cases reforms have aimed at higher spending in low-income than
in high-income districts, to compensate for the out-of-school disadvantages that low-income
students face[]]

We have attempted to identify all major SFRs between 1990 and 2011. We began with
lists of court-ordered reforms compiled by Corcoran and Evans (2015) and Jackson et al.

80ur discussion here draws heavily on Koski and Hahnel (2015).

9The U.S. Supreme Court held in 1973 that education is not a fundamental right under the U.S. Consti-
tution (San Antonio Independent School District v. Rodriguez, 411 US 1, 1973). Subsequent suits focused
on state constitutions, which often mandate adequate and/or equitable systems of public education.

10790 SW 2d 186. Rose was not the first adequacy ruling, but earlier rulings attracted less attention.

1A small industry has developed to calculate the spending level needed to satisfy an adequacy standard.
See, e.g., Downes and Stiefel (2015) and Duncombe and Yinger (2015)). Sims (2011a) and Corcoran and
Evans (2015) contrast fiscal effects of adequacy and equity reforms. Each relies on a sample ending in 2002,
early in the adequacy era.
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(2016). We supplemented these with our own research into case histories, and updated
them through 2011. We also tabulated major legislative SFRs. In some important cases
(e.g., Colorado, California), legislatures reformed finance systems without prior court deci-
sions, often to forestall adverse judgments in threatened or ongoing lawsuits. Our primary
analyses include these, though we also present results that focus exclusively on court orders.
Some of the reforms were accompanied by governance, curriculum, or accountability changes,
though our assessment is that these additional changes were typically not very important or
impactful.

Appendix Table presents a complete list of our events and compares it to those used
in other studies. We identify a total of 64 school finance reform events in 26 states between
1990 and 2011]1—_2] 39 (61 percent) involve court orders; the remainder are legislative actions
without a major court order in the same year. States with events are quite geographically
diverse, though reforms are rare in the Deep South and upper Midwest.

18 states had multiple events in our period. These were generally closely spaced: 60
percent were three or fewer years apart. In these cases, we suspect that only one generated
a major change in the states finance rules and that others were procedural steps (e.g., court
orders that were disregarded or legislation changes that were later found inadequate). Our
analytical strategy is built with this idea in mind, though our results are robust to alternative
models of the impact of multiple reform events in the same state.

2.3 Analytic Approach

To identify the causal effect of school finance reforms, we leverage variation in the timing
of reform events in an event-study framework. Our strategy is based on the idea that states
without events in a particular year form a useful counterfactual for states that do have events
in that year, after accounting for fixed differences between the states and for common time
effects. The key assumption is that the exact timing of events is as good as random. We
think this is plausible, given the idiosyncrasies of judicial processes. An attractive feature
of our approach is that it builds in placebo tests that should identify likely violations of this
assumption.

Our simplest event study specification models events as permanent, immediate shifts in
outcomes relative to other states:

Qst = 55 ‘I— Rt ‘I— ]].[t > t:]ﬁjump + €st (21)

Here, 6, represents some summary of the distribution of funding or achievement in state
s in year t. We discuss our particular measures below. ¢, and x; represent state and year
effects, respectively. ¢¥ is the date on which state ss event occurred. (For now, we assume
that each state has just one event; this term is set to zero for states without events.) The
coefficient estimate 837%™ represents the change in the outcome following the event. In all of

120ur panel excludes the 1989 Rose decision but includes KERA, the legislatures response in 1990.
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our analyses, we use standard errors that are clustered at the state level to allow for arbitrary
dependence of €4 across t within s.

SFRs may not affect 6, immediately, but may develop more gradually. This is particu-
larly true for student achievement outcomes, as the achievement of a student in year t likely
depends in part on the quality of the schooling she received in prior years. In addition, if
event timing is non-random, states with events may diverge from states without events even
before the date of the event. To accommodate these ideas, we add two trend terms to ([2.1):

O = 65 + Ky + L[t > £2]479P 4+ L[t > £5)(t — t3) PR 4 (¢ — 1) B + ey (2.2)

prhasein captures delayed event effects and represents the annual change in outcomes in
state s after ¢, relative to the same state prior to the event. 3"? which is identified
from changes in s relative to other states in years prior to ¢¥, represents a falsification test:
prend £ () would indicate that event timing is meaningfully non-random.

We also estimate non-parametric models that do not constrain the phase-in and prior
trend effects to be linear:

est:53+/€t+ Z ﬂ[t:t:—FT]ﬁT—i—ﬁst (23)

Here, (3, represents the effect of an event in year ¢* on outcomes r years later (or previously,
for r < 0). These effects are measured relative to year r = 0, which is excluded. We censor
r at k., = —5, so f_5 represents average outcomes five or more years prior to an event,
relative to those in the event year.

Comparisons of the parametric and non-parametric estimates indicate that the simple
specification does a good job of capturing dynamics in finances and student achievement
surrounding events, though the post-event “jump” is sometimes spread out over a few years
following the event. In only one of the specifications that we estimate do we reject the null
hypothesis that the pre-event coefficients ("¢ in and {f_g, ..., 1} in ) are all
zero, and in this case it appears to be an idiosyncratic blip in a single 5_,. coefficient (see
Figure below). This supports our identifying assumption.

When we examine finance outcomes, all of the post-event effect appears to be nearly
immediate, so we focus on the simpler specification (2.1). By contrast, in our student
achievement analysis, the “jump” is never distinguishable from zero, and all of the effect that
we estimate operates through the SPtes¢ coefficient. We thus emphasize specifications that
allow for a phase-in effect but no post-event jump. In each case, these simple specifications
fit the non-parametric results quite well.

Our event study methodology is a form of difference-in-differences (DD). The identifying
assumption is that without finance reforms, outcomes would have moved in parallel in treated
and untreated states. While we view this as plausible, it may not be correct (Hanushek et
al. (1996a), Hanushek et al. (1996b)). We can weaken the assumption by shifting our focus
from the absolute level of test scores to the relative scores of different students in the same
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states. Given the emphasis in adequacy rulings on districts serving disadvantaged students,
a natural contrast is between students in high- and low-income districts. When we use as a
dependent variable the gap in test scores between low-income and high-income districts in
a state, the event study strategy is robust to arbitrary state-by-year shocks to achievement,
so long as they have similar effects on districts at different income levels. The identifying
assumption is that the relative outcomes of low-income districts would have followed parallel
trends across states in the absence of SFRs.

We consider two measures of relative outcomes in low-income districts. First, we use
the gap between districts in the top and bottom quintiles of the state income distribution.
These quintile gaps can be noisy, in part because they discard information on the middle 60
percent of districts. We thus emphasize a second measure, the slope of district-level outcomes
with respect to log average income across all districts in the state[®] A more negative
slope corresponds to higher relative outcomes in low-income districts. For both finance and
achievement outcomes, the slope and quintile gaps are highly (negatively) correlated, and
all of our results are robust to the choice of relative outcome measure.

Event Studies with Multiple Events

Many states had multiple events (court orders or legislation) over our period. Unfortu-
nately, there is no accepted strategy for conducting event studies with multiple events per
unit. Our primary estimates are based on a single event in each state. The intuition here is
that when states have multiple events, they often represent jockeying between the legislature
and the courts with only minor changes in school finance until the legislature finally enacts
a major reform, and then continued jockeying afterward as advocates continue to push for
additional changes. To identify the most consequential reform, we use data on state aid to
districts to identify a regime change in the progressivity of a states finance system, relying
on methods for the identification of change points in time series data (e.g., Bai (1997)); see
also Card, Mas, et al. (2008)). We then use that as the date of the event for our analyses of
student achievement.

Specifically, let 6, be our slope measure of the progressivity of state aid. For each state
and each potential event date t7 — that is, each year that we observe a major court order or
legislative change we estimate a time series regression using as the only explanatory variable
an indicator for observations after that date:

O =+ 1t > ik + €x (2.4)

We select the event date that yields the largest t statistic for s or, equivalently, the
smallest mean squared error for this time series regression['] We treat the selected date as

13Specifically, we regress district-level spending per pupil or mean achievement on log mean income, con-
trolling for log enrollment. The regression is estimated separately for each state and year, and in achievement
models for each subject and grade. The district log income coefficients are used as 84 for subsequent analyses
at the state-year-(subject-grade) level. See the Appendix for further detail.

14We restrict attention to t for which the estimated s has the expected sign.
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the single event in state s.

Bai (1997)) shows that if there really is a structural break in the time series (with a
non-zero true x) this method is super-consistent for the location of the break, permitting
inference regarding « to treat its location as known. However, in the event that there is no
structural break (i.e., that each court order and legislative change in the state was ineffective,
with k = 0), our method will nevertheless pick one of the potential events. This could lead us
to overstate the effect of a true reform on the progressivity of state aid. Our main outcome,
however, is student achievement, and we do not use achievement data in selecting events.
Thus, the potential inclusion of some non-reforms in our event study analysis might lead us
to understate the effect of a true SFR on student achievement, since our estimates would
combine the effects of true reforms with those of spurious non-events.

We also present estimates from two additional approaches to multiple events. One in-
cludes all events, without judgment about their relative importance. To implement this
approach, we create a separate copy of the time series for the state for each apparent event,
using a different value of ¢¥ for each copy. We then stack the copies, replacing the state
effects in equations (2.1)-(2-3) with state-by-event effects[™| In Monte Carlo simulations (see
Appendix), this method works well to identify the average effect of events both when each
event has the same effect and when only one event in a state has a non-zero effect. Our
final approach follows the prior literaturewhich generally emphasizes simple specifications
analogous to by focusing on the initial court order in each state, even if this was not im-
plemented for many years. Here, we treat states without court orders as untreated, though
in some cases they saw legislative reforms. Results are extremely similar across all three
methods. Accordingly, we do not view multiple events as a major issue in practice.

2.4 Data

Our analysis draws on data from several sources. We begin with our database of state
SFR events, discussed above. We merge this to district-level finance data, from the National
Center for Education Statistics (NCES) annual census of school districts and the Census
of Governments; mean household income by district from the 1990 Census; and the NAEP
achievement measures, aggregated to the district-year level.

The district finance data report enrollment, revenues and expenditures annually for each
local education agency[" We convert all dollar figures to 2013 dollars per pupil, and ex-
clude very small districts and those with highly volatile enrollment or implausible per-pupil
funding. Details are in the appendix.

We construct student achievement measures from the restricted-use “State NAEP” mi-
crodata. The state NAEP began in 1990, with 42 states participating. It has been admin-

15Results are unchanged when data are reweighted to offset the overrepresentation of states with multiple
events.

16Census data are available in 1989-90 and 1991-92, and annually since 1994-95. We use samples from
the Census Bureaus Annual Survey of Government Finances for 1992-93 and 1993-94.
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istered roughly every two years since. Since 2003, all states have participated in 4th and
8th grade assessments in math and reading in every odd-numbered year['”| Table shows
the schedule. Tests are administered to around 100,000 students (more in later years) in
each subject-grade-year. These consist of representative samples of about 3,500 students per
state, spread across about 140 schools in 80 districts.

The NAEP uses a consistent scoring scale across years for each subject and grade in order
to permit time-series comparisons. We standardize scores to have mean zero and standard
deviation one in the first year that the test was given for the grade and subject, but allow
both the mean and variance to evolve afterward. We then aggregate to the district-year-
grade-subject level and merge to the district finance and demographics dataEg]

Table presents district-level summary statistics, pooling data from 1990-2011. The
rightmost columns show means for districts in the top (Q5) and bottom (Q1) quintiles by
average family income in each state.

2.5 Finance Reforms and School Finance

We begin our empirical analysis by documenting the implications of SFR events for school
finance. We use the approach discussed in Section to select a single SFR event that best
explains the time series of the state aid log district income slope in each state.

Figure [2.3] graphs event study results for state transfers per pupil in the lowest-income
(Q1) quintile of districts. We present several plots of this basic form. The solid line repre-
sents estimates from the non-parametric event study specification (2.3), while dotted lines
show pointwise 95 percent confidence intervals. The dashed line shows the parametric spec-
ification . There is a small upward trend in state revenues prior to the finance reform
events, but this is not statistically significant in either the parametric or the nonparametric
specification. Following reforms, state revenues increase substantially, by roughly $1,300 in
the 4th post-event year. Though out-year estimates are noisy, impacts appear to persist
through the end of our sample. Figure repeats the same analyses for the highest income
(Qb) districts. Estimated changes in funding following reforms are much smaller here; while
the nonparametric post-event effects are jointly significant, the parametric estimates are not
and in any event the magnitudes are quite small.

We report coefficients from our parametric specifications for state revenues in the lowest
and highest income districts in columns 1 and 2 of Table 2.3} column 3 shows estimates
for average revenues across all districts for comparison. In Panel A, we report the simple
specification , while Panel B adds the pre-event and post-event trends from specification
(2.2)). (It is these that are shown in Figures and ) The former indicates that average
state funding rises by $1,225 following events in first quintile districts and by $527 (not

17"The NAEP also tests 12th graders, but samples are smaller, and other subjects.

18The pre-2000 NAEP data do not use the same district codes as the CCD. We are grateful to Bruce
Kaplan, Kate Pashley, and Fatih Unlu for their assistance in locating the crosswalk from the older NAEP
data to schools and districts.
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significant) in fifth quintile districts. The upward trends preceding events seen in Figures
and are reflected in the point estimates in Panel B, but are small and not distinguishable
from zero. Similarly, point estimates indicate that the post-event jumps fade slightly over
subsequent years, but these trends are again small and insignificant.

Panels C and D of Table [2.3| repeat the specifications from Panels A and B, this time
taking total district revenues, inclusive of state aid and other revenues, as the dependent
variable. These are quite similar to those for state revenues in both low- and high-income
districts. There is no indication that declines in local revenues offset increases in state
funding in low income districts, nor in (panel D) of pre-trends or erosion of initial impacts.
The more flexible nonparametric specifications (Appendix Figure are also similar.

In additional analyses of state budgets (Appendix Table , we have found no indica-
tion that growth in educational spending following events crowds out state spending on other
programs; rather, SFRs are associated with increases in state tax collections large enough
to fully fund the increase in state transfers to districts.

As noted above, our analysis of student achievement impacts of SFRs focuses on contrasts
between low- and high-income districts, to abstract from unrelated shocks to overall average
achievement that might be correlated with the timing of these reforms. Columns 4 and 5
of Table show estimates for these contrasts, first using the difference in funding between
bottom- and top-quintile districts (column 4) and then the slope of funding with respect to
log district income (column 5; this is shown graphically in Figure . Using each measure,
we see sharp increases in relative state funding for low-income districts following events that
show no sign of eroding thereafter. In no case is there any sign of a pre-event trend that
would suggest a violation of our quasi-random timing assumption, nor is there any sign that
increased progressivity of state aid is offset by local revenues.ﬂ

Table makes clear that SFRs are associated with large increases in funding in low-
income school districts. A natural question is how the additional funds are spent. Table
2.4] presents event-study coefficients from our simple model for per-pupil revenues and
spending in various categories. There is no apparent impact of SFRs on local or federal
revenues. We see substantial impacts of SFRs on average instructional spending, both overall
and in Q1 districts (columns 2 and 3). We also see effects on teachers per pupil and total
teacher salaries but not on average teacher pay, suggesting that districts use additional
funds to reduce class size.@ Finally, we see large effects on non-instructional expenditures,
particularly capital outlays.

Columns 4 and 5 show results for relative spending in low-income districts. Little of the
increase in relative funding goes to instructional expenditures, while roughly half goes to
capital spending. The capital spending effect is not surprising; many lawsuits specifically

19When we estimate specifications similar to the closely related analysis of earlier SFRs in Card and Payne
(2002) (Appendix Table , estimated SFR effects are slightly larger but imprecise, and well within the
earlier confidence intervals. Where Card and Payne find that total revenues rise by about $0.50 per extra
$1 in state aid, our estimates indicate much more stickiness for the recent reforms.

20Using a different research design, Sims (2011b) finds effects of SFRs on teacher pay.
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concern dreadful conditions in low-income schools, and SFR remedies often created funds to
support renovation of schools in poor shape ]

2.6 Finance Reforms and District-level Student
Achievement

The above results establish that reform events are associated with sharp, immediate im-
provements in the progressivity of school finance, with absolute and relative revenue increases
in low-income school districts. We now turn to our main analysis, examining the effect of
SFRs on student achievement.

Where the 6, school finance measures formed a state-by-year panel, for test scores we
have two additional dimensions: Grade and subject. We replace the year fixed effects (x;)
in (2.1)-(2.3) with subject-grade-year effects. These capture any differences in tests between
administrations, as well as changes in student performance by grade and/or subject that
are common across states. To avoid confounding from state-level shocks, we focus on triple-
difference specifications that use the achievement gap between low- and high-income districts
as the dependent variable.

Sharp, permanent changes in funding, if used productively, should increase the flow
of educational services. Achievement is cumulative, so these services are unlikely to have
immediate impacts on test scores, but should raise scores gradually as students are exposed
for longer. Effects should grow at least until students have been exposed to the new funding
levels for their entire careers. They may even continue to grow beyond this point. For
example, consider a state that responds to a court order by creating a new permanent facility
to fund several school renovation and construction projects each year. Initially, only a few
students benefit, but over time growing shares of students are exposed to funded projects.
Insofar as better facilities promote student learning, achievement effects would continue to
grow until several years after the last project is complete, potentially decades after the initial
policy change. We thus emphasize the phase-in coefficient from equation as the primary
measure of SFR effects on test scores.

Figure presents our event-study analysis of the slope of achievement with respect to
district income. Recall that improvements in the relative achievement of students in low-
income districts reduce this slope. As before, we present non-parametric results (equation
(2.3))) as a solid line and estimates of our three-parameter model (equation (2.2))) as a dashed
line. As before, there is no indication of a differential trend in reform states prior to events.
Following events, the non-parametric series does not react immediately, but begins trending
noticeably downward starting in about the fifth post-event year (though the immediate trend

2INeilson and Zimmerman (2014) find that school reconstruction causes increases in student achievement.
Cellini et al. (2010]) and Martorell et al. (2016]) fail to find significant effects, but each study is under-powered
to detect effects of plausible magnitude.
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break encoded in fits the data nearly as well). The downward trend continues through
the end of our sample

Table presents the parametric estimates. We begin in Column 1 with our three-
parameter model, as shown in Figure [2.6f The estimated pre-event trend is essentially
zero and the post-event jump is also small, but the post-event change in trend is large
and statistically significant. Column 2 presents a specification that discards the other two
coefficients. Results are quite similar. The estimated change in the slope is -0.010 per
year. This implies that each year after an event, a district with log mean income one unit
(about two-thirds) below the state average sees its scores rise relative to the state average by
0.010 standard deviations, accumulating to 0.10 SDs over ten years. This is quantitatively
meaningful on average in our sample the slope of test scores with respect to log income is
0.96 so SFRs reduce this gradient by approximately one-tenth within ten years.

As discussed above, the pattern of gradually growing effects in Figure [2.6] is consistent
with a view of achievement as a stock reflecting accumulated past input flows. The pattern
deviates from expectations in one respect, however: There is no indication that the phase-
in of the effect slows five or nine years after the event, when the 4th and 8th graders,
respectively, will have attended school solely in the post-event period.@ This may reflect the
use of some additional funds for durable investments, as discussed above. We do not have
enough precision, however, to rule out a flattening of the effect at the expected time.

Figures and present estimated test score impacts for the lowest- and highest-
income districts, respectively. The effects on the income gradient are driven by dramatic
increases in test scores in the lowest-income districts Y| In higher-income districts, there is
little sign of a systematic post-event change. Parametric estimates are shown in Columns 3
and 4 of Table 2.5} Column 5 shows that the impact of events on the test score gap between
bottom- and top-quintile districts is 0.008 SDs per year, or 0.013 SDs in the more flexible
model (column 6). The gap in mean log incomes between the top and bottom quintiles
averages (.65, so the quintile point estimate is a bit larger than what we obtain for our
income slope measure in columns 1-2. Our earlier finance analyses also indicated larger
effects for quintile gaps than for slopes.

Table presents estimates separately by subject and grade. We cannot reject the null
hypothesis of equal effects across each dimension. Appendix Figure presents estimates
of the phase-in coefficient for all five quintiles. Only the first quintile effect is large or
distinguishable from zero. The ratio of test score effects to spending effects is larger at the
bottom of the income distribution, consistent with the idea that funding is more productive
in low-income districts, but equal ratios cannot be ruled out.

22The sawtooth pattern at the end of the sample likely reflects the biannual NAEP testing schedule.

23We have estimated separate non-parametric models for 4th and 8th grade scores. Both sets of effects
grow roughly linearly through the end of our panels. See Lafortune et al. (2016]), Appendix Figure 4.

24For the lowest-income districts (Figure 7 we can reject the null hypothesis of zero pre-event effects.
This is driven by a temporary drop two years prior to events. A similar, though statistically insignificant,
blip is apparent for high-income districts in Figure @ There is no sign of systematic pre-event trends.
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Robustness

Table presents estimates of our key specifications from our two alternative approaches
to event multiplicity. Column 1 repeats the estimates from our preferred approach from
Tables [2.3] and 2.5l In Column 2, we include all identified events, creating separate panels
for each; in Column 3, we focus only on the first court order in each state. Results are
similar to those from our main specifications, though the initial court order approach yields
less precise, insignificant estimates of finance effects in panel B.

One potential explanation for the achievement impacts that we identify is that they
reflect changes in population stratification rather than changes in educational production.
SFRs that flatten the gradient of school funding with respect to district income and that
reduce the local share of school finance reduce the value of living in a high-income district,
and may lead some high-income families to relocate to previously low-income districts. This
could lead to rising achievement in these districts with no change in school effectiveness.

We assess this possibility in three ways. First, we have tested whether between-district
income gaps narrow in the years following SFRs. We have found no evidence for thisdistrict
log incomes in 2011 are highly correlated with those in 1990, and there is no sign that gaps
narrow in states that had reforms relative to those that didnt. Second, we have conducted
event study analyses, parallel to those for test scores, for district income or the district
non-white or free- or reduced-price lunch eligible share (Appendix Table [2.12)). In only one
specificationfor the between-quintile gap in the free lunch sharedo we find evidence that the
demographic composition of (initially) low-income districts changes following SFRs. This
result is not robust, and is small relative to the test score impacts that we estimate.

Third, we decompose test scores into two components, and estimate separate SFR effects
on each. Specifically, we estimate an individual-level regression of test scores on student
demographic characteristics, pooling NAEP data across years for each grade-subject pair
and including year fixed effects. We then construct separate achievement-log district income
gradients from the fitted values (excluding the fixed effects) for this regression, representing
student characteristics that would be affected by SFRs only through changes in sorting, and
from the residuals. We find no evidence that reforms affect the demographic component of
our test score progressivity measures, supporting our interpretation that our results primarily
reflect changes in educational production in low-income school districts (see Appendix Table
2.15)).

As a final robustness exercise, we have tested whether the SFR effect on achievement is
sensitive to including controls for the presence of a school accountability policy in a state,
or whether the SFR effect varies with school accountability. We found evidence for neither.
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2.7 Finance Reforms and Statewide Achievement
Gaps

The final topic that we investigate is whether finance reforms closed overall test score
gaps between high- and low-achieving, minority and white, or low-income and non-low-
income students in a state. These are perhaps better measures than our slopes and quintile
gaps of the overall effectiveness of a states educational system at delivering equitable, ade-
quate services to disadvantaged students (Card and Krueger (1992b)); Krueger and Whitmore
(2001))). However, because most inequality is within districts, changes in the distribution of
resources across districts may not be well enough targeted to meaningfully close these gaps.

Table presents estimates of effects on mean test scores across different subgroups of
interest. The first panel shows a DD estimate of the effect on mean (pooled) test scores. The
point estimate (not significant) implies a smaller impact per dollar than do our between-
district contrasts, though we cannot rule out comparable effect sizes. In any event, our
research design is more credible for outcome disparities than for the level of outcomes, as the
latter would be confounded by unobserved shocks to average outcomes in a state that are
correlated with the timing of school finance reforms ((Hanushek et al. (1996a)), Hanushek et
al. (1996Db)). For example, if SFRs follow negative shocks to mean student achievement, this
effect would be downward-biased. Another interpretation is that the marginal productivity
of revenues is in fact higher in low-income districts.

The second panel shows impacts on the standard deviation or interquartile range of
achievement within states, while the third and fourth panels present results by race and
income, respectively. There is no discernible effect on achievement gaps by race or income
or on the overall dispersion of test scores. Point estimates are all roughly a full order of
magnitude smaller than the earlier estimates for district-level progressivity of mean scores.

Appendix Tables and resolve the discrepancy. While non-white, low-income,
and low-scoring students are more likely than their white, higher-income, and higher-scoring
peers to attend school in low-income school districts, the differences are not very large.
Roughly one-quarter of non-white and low-scoring students, and one-third of low-income
students, live in first-quintile districts, while about 10 percent of each live in fifth-quintile
districts (Appendix Table . This leaves little room for SFRs to substantially affect
the relative resources to which the typical minority, low income, or low scoring student is
exposed.

To assess this more carefully, we assigned each student the mean revenues for his/her
district and estimated event study models for the black-white, income, or test score gap
in these imputed revenues. Results, in Appendix Table 2.14] indicate that finance events
raise relative per-pupil revenues in the average black students school district by only $195
(S.E. 164), decrease relative per-pupil revenues in the average low-income students district
by $33 (S.E. 219), and raise relative per-pupil revenues in the average low-scoring students
district by $193 (S.E. 101). Even if funding was much more productive than the average
effect implied by our analysis, the funding changes seen here would still not be enough to
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yield effects on black or low-income students average test scores large enough to detect with
our research design. Thus, while reforms aimed at low-income districts appear to have been
successful at raising resources and outcomes in these districts, we conclude that within-
district changesin the distribution of funding or in other policies that reduce achievement
gapswould be necessary to have dramatic impacts on the average low-income, minority, or
low-scoring student.

2.8 Discussion

After desegregation, school finance reform is perhaps the most important education policy
change in the United States in the last half century. But while the effects of the early reforms
on school finance have been well studied, there is little evidence about the finance effects
of more recent “adequacy” reforms or about the effects of any of these reforms on student
achievement. Our study presents new evidence on each of these questions.

We find that state-level school finance reforms enacted during the adequacy era markedly
increased the progressivity of school spending. They did not accomplish this by “leveling
down” school funding, but rather by increasing spending across the board, with larger in-
creases in low-income districts. Schools used these additional funds to increase instructional
spending, reduce class size, and for capital outlays. Using nationally representative data
on student achievement, we find that these reforms were productive: Reforms increased the
absolute and relative achievement of students in low-income districts.

Some SFRs were accompanied by other policy changese.g., new curricula, accountability
provisions, or new prekindergarten programsthat may have contributed to the achievement
effects, though our impression is that for the typical reform the main change was in fundingﬁ
We thus interpret our estimates as reflecting the productivity of additional resources, though
other interpretations cannot be ruled out.

The different time patterns of impacts on resources and on student outcomes, combined
with the cumulative nature of the latter, prevents a simple instrumental variables interpre-
tation of the reduced-form coefficients in terms of the achievement effect per dollar spent it
is not clear which years revenues are relevant to the accumulated achievement of students
tested r years after an event. To assess the magnitude of the impacts we estimate, we focus
on estimated effects on student achievement ten years after an event. Because effects on
school resources are stable in the years following events, these can be interpreted as the
impact of a change in resources for every year of a students career (through 8th grade). Nev-
ertheless, the focus on the » = 10 estimate is arbitrary. We would obtain larger estimates

25We used our event-study framework to estimate the association of SFRs with changes in state account-
ability policy, using various measures of accountability rules, and found no relationship. We also investigated
specifications that allowed for interactions between finance reform events and the accountability regime, but
found no evidence for this either. We are not aware of a systematic classification of other aspects of state
policy that might have been affected by SFRs.
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of the achievement effect per dollar if we used impacts more than ten years after events, or
smaller effects with a shorter window.

Our preferred estimates, based on the gradient of student achievement with respect to
district income, indicate that an SFR raises achievement in a district with log average income
one point below the state mean, relative to a district at the mean, by 0.1 standard deviations
after ten years. Our finance estimates indicate that this district saw an increase in relative
state aid of $622 per pupil for each of those ten years, and an increase in total revenues of
$424 per pupil.

An increase of $424 per pupil in spending each year from kindergarten through grade
8, discounted to the students kindergarten year using a 3 percent rate, corresponds to a
present discounted cost of $3,400. Chetty, John N Friedman, et al. (2011) estimate that a
0.1 standard deviation increase in kindergarten test scores translates into increased earnings
in adulthood with present value of $5,350 per pupil. This implies a benefit-cost ratio of 1.5,
even when only earnings impacts are counted as beneﬁtsﬁ]

This ratio is not wholly robust. Our quintile analysis shows larger revenue effects, im-
plying a benefit-cost ratio below one, while the Jackson et al. (2016)) study of the effects of
earlier finance reforms on students adult outcomes implies much larger benefits per dollar
than does our calculation. Thus, although these sorts of calculations are quite imprecise, the
evidence appears to indicate that the spending enabled by finance reforms was cost-effective,
even without accounting for beneficial distributional effects.

It is important to note that our research design is poorly suited to identifying the optimal
allocation of school resources across expenditure categories, or to testing whether actual
allocations are close to optimal. It allows us only to say that the average finance reformwhich
we interpret to involve roughly unconstrained increases in resources, though in some cases
the additional funds were earmarked for particular programs or tied to other reformsled to
a productive (though perhaps not maximally productive) use of the funds.

Our results thus show that money can and does matter in education, and complement
similar results for the long-run impacts of school finance reforms from Jackson et al. (2016]).
School finance reforms are blunt tools, and some critics (Hoxby (2001); Hanushek (2006))
have argued that they will be offset by changes in district or voter choices over tax rates
or that funds will be spent so inefficiently as to be wasted. Our results do not support
these claims. Courts and legislatures can evidently force improvements in school quality for
students in low-income districts.

But there is an important caveat to this conclusion. As we discuss in Section [2.7], the
average low-income student does not live in a particularly low-income district, so is not
well targeted by a transfer of resources to the latter. Thus, we find that finance reforms
reduced achievement gaps between high- and low-income school districts but did not have
detectable effects on resource or achievement gaps between high- and low-income (or white

26The earnings effects of increases in Sth grade test scores are likely larger than those of increases in
Kindergarten scores, so using estimates of the latter biases our benefit calculation downward. We do not
count the cost of increased spending in grades 9-12, as we have no way to capture its benefits.
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and black) students. Attacking these gaps would require policies aimed at the distribution of
achievement within school districts, something that was generally not a focus of the reforms

that we study.

2.9 Figures

Figure 2.1: Mean revenues per pupil for highest and lowest income school districts, 1990-2012
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Notes: Highest (lowest) income districts are those in the top (bottom) 20% of their states’ district-level
distributions of mean household income in 1990, and are labeled as “Q5” and “Q1”, respectively. See
appendix for details of quintile classifications. Revenues are expressed in real 2013 dollars. Districts are
averaged within states, weighing by log district enrollment; states are then averaged without weights. Hawaii
and the District of Columbia are excluded.



CHAPTER 2. SCHOOL FINANCE REFORM 95

Figure 2.2: Gap in revenues per pupil between lowest and highest income districts, by state
finance reform status, 1990-2012
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Notes: See notes to Figure [2.1] Finance reform states are those with school finance reforms between 1990
and 2011, as listed in Appendix Table Al. Lines show unweighted best linear fit to time series.
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Figure 2.3: Event study estimates of effects of school finance reforms on mean state revenues
in lowest income districts
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Notes: Figure displays coefficients from event study regressions. Dependent variables are mean state revenues
in the lowest income quintile of districts, measured in 2013 dollars per pupil. Dashed lines show the three-
parameter parametric model (equation ) Solid lines shows the non-parametric model (equation )7
with the event year (indicated as 0) as the excluded category; dotted lines represent 95% confidence intervals.
Estimates for the parametric models are reported in Table column 2, Panels B and C. The p value for
the omnibus hypothesis test of zero pre-event effects in the non-parametric model in is 0.53; the p-value for
zero post-event effect is <0.001. In the parametric model, the p-value for the hypothesis that the pre-event
trend is zero is 0.24; for the test that the post-event jump and change in trend is zero it is 0.01. Standard
errors are clustered at the state level.
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Figure 2.4: Event study estimates of effects of school finance reforms on mean state revenues
in highest income districts
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Notes: Figure displays coefficients from event study regressions. Dependent variables are mean state revenues
in the highest income quintile of districts, measured in 2013 dollars per pupil. Dashed lines show the three-
parameter parametric model (equation ) Solid lines shows the non-parametric model (equation )7
with the event year (indicated as 0) as the excluded category; dotted lines represent 95% confidence intervals.
Estimates for the parametric models are reported in Table column 2, Panels B and C. The p value for
the omnibus hypothesis test of zero pre-event effects in the non-parametric model is 0.41; the p-value for
zero post-event effect is <0.001. In the parametric model, the p-value for the hypothesis that the pre-event
trend is zero is 0.21; for the test that the post-event jump and change in trend is zero it is 0.30. Standard
errors are clustered at the state level.
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Figure 2.5: Event study estimates of effects of school finance reforms on progressivity of
state revenues
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Notes: Figure displays coefficients from event study regressions. Dependent variable is the slope of state
per-pupil revenues (in 2013%$) with respect to log mean family income, controlling for log enrollment and
district type. Dashed lines show the three-parameter parametric model (equation ) Solid lines shows
the non-parametric model (equation (2.3))), with the event year (indicated as 0) as the excluded category;
dotted lines represent 95% confidence intervals. Estimates for the parametric models are reported in Table
Panels A and B, columns 5. The p-value for the omnibus hypothesis tests of zero pre-event effects in
the non-parametric model is 0.73; the p-value for zero post-event effect is <0.001. In the parametric model,
the p-value for the hypothesis that the pre-event trend is zero is 0.67; for the test that the post-event jump
and change in trend is zero it is 0.05. Standard errors are clustered at the state level.
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Figure 2.6: Event study estimates of effects of school finance reforms on progressivity of test
scores
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Notes: Figure displays coefficients from event study regressions. Dependent variable is the slope of mean
test scores with respect to log mean family income, controlling for log enrollment. Dashed lines show the
three-parameter parametric model (equation ) Solid lines shows the non-parametric model (equation
(2.3))), with the event year (indicated as 0) as the excluded category; dotted lines represent 95% confidence
intervals. Both event study regressions include state and subject-grade-year fixed effects. Estimates for the
parametric models are reported in Table Column 1. The p-value for the omnibus hypothesis test of zero
pre-event effects in the non-parametric model is 0.43; the p-value for zero post-event effect is <0.001. In the
parametric model, the p-value for the hypothesis that the pre-event trend is zero is 0.80; for the test that
the post-event jump and change in trend is zero it is 0.02. Standard errors are clustered at the state level.
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Figure 2.7: Event study estimates of effects of school finance reforms on mean test scores in
lowest income school districts
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Notes: Figure displays coefficients from event study regressions. Dependent variables are mean test scores
for students at districts in the bottom quintile of the state’s distribution of 1990 district mean household
incomes. Dashed lines show the three-parameter parametric model (equation ) Solid lines shows the
non-parametric model (equation (2.3)), with the event year (indicated as 0) as the excluded category; dotted
lines represent 95% confidence intervals. Both regressions include state and subject-grade-year fixed effects.
The p-value for the omnibus hypothesis test of zero pre-event effects in the non-parametric model is 0.01;
the p-value for zero post-event effect is <0.001. In the parametric model, the p-value for the hypothesis that
the pre-event trend is zero is 0.86; for the test that the post-event jump and change in trend is zero it is
0.01. Standard errors are clustered at the state level.
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Figure 2.8: Event study estimates of effects of school finance reforms on mean test scores in
highest income school districts
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Notes: Figure displays coefficients from event study regressions. Dependent variables are mean test scores
for students at districts in the top quintile of the state’s distribution of 1990 district mean household in-
comes. Dashed lines show the three-parameter parametric model (equation (2.2))). Solid lines shows the
non-parametric model (equation (2.3)), with the event year (indicated as 0) as the excluded category; dotted
lines represent 95% confidence intervals. Both regressions include state and subject-grade-year fixed effects.
The p-value for the omnibus hypothesis test of zero pre-event effects in the non-parametric model is 0.02;
the p-value for zero post-event effect is <0.001. In the parametric model, the p-value for the hypothesis that
the pre-event trend is zero is 0.15; for the test that the post-event jump and change in trend is zero it is
0.25. Standard errors are clustered at the state level.



CHAPTER 2. SCHOOL FINANCE REFORM 102
2.10 Tables

Table 2.1: NAEP Testing Years

Year Subjects and grades covered Number of Number of

Math G4 Math G8 Reading G4 Reading G8 States Students
1990 X 38 97,900
1992 X X X 42 321,120
1994 X 41 104,890
1996 X X 45 228,980
1998 X X 41 206,810
2000 X X 42 201,110
2002 X X 51 270,230
2003 X X X X 51 691,360
2005 X X X X 51 674,420
2007 X X X X 51 711,360
2009 X X X X 51 775,060
2011 X X X X 51 749,250

Notes: In final column, students are cumulated across all tested subjects and grades, and rounded to
the nearest 10.
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Table 2.2: Summary statistics (district-year panel)

Overall Mean by subgroup

N Mean SD Q1 Q5
Enrollment 229,386 67,523 181,811 13,537 31,403
Log(mean income, 1990) 223,334 10.53  .2935  10.21 10.9
Total revenue p.p. 229,386 11,087 3,489 10,809 11,871
State 229,386 5,135 2,291 6,371 4,003
Local 229,386 5,094 3,273 3,258 7,349
Federal 229,386  858.2 641.4 1,180 518.4
Expenditures p.p. 229,386 11,264 3,685 10,837 12,116
Instructional 229,386 5,845 1,953 5,659 6,167
Non-instructional 229,386 5,419 2,221 5,178 5,949
NAEP scores 49,867  .2559 4578  .02925 .5884

103

Notes: Table reports summary statistics at the district by year level, weighted by district enrollment for
the financial variables and by the sum of the student weights for the mean NAEP score.
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Table 2.3: Event study estimates of effects of school finance reforms on revenues per pupil

Q1 Q5  All districts  Q1-Q5 difference  Slope
A: State revenue (1 parameter)
Post Event 1,225*** 527 912** 711+ -622%**
(343)  (378) (359) (316) (223)
B: State revenue (3 parameter)
Post Event 954*** 351 672** 606*** -522**
(302)  (325) (320) (231) (209)
Trend 60 72 68 -10 -11
(50) (56) (50) (25) (25)
Post Event * Yrs Elapsed -40 -84 -61 42 -5
(70) (61) (60) (36) (21)
C: Total revenue (1 parameter)
Post Event 1,233***  H44** §29*** 701** -424
(370)  (277) (302) (309) (304)
D: Total revenue (3 parameter)
Post Event 1,164  471* 839*** 696+ -469**
(287)  (277)  (269) (243) (233)
Trend 16 9 9 9 -25
(39) (32) (32) (24) (45)
Post Event * Yrs Elapsed -11 2 -17 -14 53
(70) (41) (52) (44) (61)
Observations 1,078 1,076 1,078 1,076 1,078

Notes: Table reports estimates of the parametric event study models, equations (panels A and C)
and (panels B and D). In columns 1-3, dependent variables are mean state (panels A and B) or total
(panels C and D) revenues per pupil, weighting districts by their log enrollment; each is computed separately
for each state and year. In columns 1 and 2, means are computed over the bottom and top, respectively,
quintiles of the states’ district 1990 mean household income distributions; in column 3 means are computed
over all districts in each state. In column 4, the dependent variable is the gap in state (panels A and B) or
total (panels C and D) revenues per pupil between districts in the bottom and top quintiles of the states’
district 1990 mean household income distributions. In column 5, the dependent variable is the coefficient
from a district-level regression of the state (panels A and B) or total (panels C and D) per-pupil revenue
measure on the log of the district’s 1990 mean household income, controlling for district log enrollment and
district type (elementary / secondary / unified) and weighting by the district’s average log enrollment over
time. Event study regressions include state and year fixed effects, and are unweighted. Standard errors are
clustered at the state level.
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Table 2.4: Event study estimates of effects of school finance reforms on components of district
finance

Mean of depvar Mean Q1 Mean QI1-Q5 Mean  Slope

Revenue Effects:

Total revenue 11,593 829*** 1,233*** 701** -424
(302) (370) (309) (304)
State revenue 5,449 912** 1,225%** 711** -622%**
(359) (343) (316) (223)
Local revenue 5,238 -146 -126 -126 90
(307) (233) (235) (339)
Federal revenue 907 63 134 116 34
(83) (143) (116) (33)
Expenditure Effects:
Total expenditures 11,595 907*** 1,377 753** -449
(290) (367) (309) (309)
Current instructional exp. 6,000 443*** 604*** 243* -161
(134) (155) (127) (208)
Teacher salaries 4+ benefits 5,533 339** 449*** 143 -103
(153) (169) (117) (189)
Mean teacher salary 63,321 -30 170 508 -247
(1,016)  (1,052) (932) (1,127)
Pupil teacher ratio 15.50 -0.59***  -0.65*** 0.03 0.20
(0.19)  (0.19) (0.20) (0.17)
Non-instructional exp 5,595 464** 773 511** -232
(186) (257) (235) (176)
Student support 3,426 221** 299** 100 -81
(102) (119) (83) (88)
Total capital outlays 1,076 272%* 486*** 369** -87
(114) (177) (181) (78)
Other current exp. 431.0 7.9 9.2 -2.5 -2.9
(12.4) (14.5) (13.3) (12.1)

Notes: Each entry in columns 2-5 represents the coefficient from a separate event study regression, using
the one-parameter specification in equation . Dependent variables are constructed from district-level
finance summaries indicated by row headings and expressed in per-pupil terms; means across districts are
reported in column 1. Specifications correspond to columns 1 and 2 of Table panels A (column 2) and B
(column 3), and Table 2.4] panels A (column 4) and B (column 5). See notes to Tables[2.3|and[2.4] Standard
errors are clustered at the state level.
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Table 2.5: Event study estimates of effects of school finance reforms on student achievement

Slopes Q1 Q5 Q1-Q5
(1) (2) (3) (4) (5) (6)

Post Event * Yrs Elapsed -0.011"* -0.010** 0.007** -0.001 ~ 0.008"* 0.013**
(0.004)  (0.003) (0.003) (0.003) (0.004) (0.006)

Trend 0.001 -0.006
(0.003) (0.005)
Post Event 0.001 0.011
(0.023) (0.024)
Observations 1498 1498 1509 1506 1504 1504
p, total event effect=0 0.02 0.01 0.02 0.69 0.04 0.07
State FEs X X X X X X
Sub-gr-yr FEs X X X X X X

Notes: Each column represents a separate event study regression, using specification and, in columns
2-5, constraining /%P = Btrend — (), Dependent variable in columns 1-2 is the slope of test scores with re-
spect to log mean 1990 income in the district, using NAEP weights and controlling for log district enrollment.
In columns 3-4, dependent variable is the weighted mean score in districts in the bottom or top quintile,
respectively, of the state district-level income distribution. In columns 5-6, dependent variable is the differ-
ence between the bottom and top quintiles. All are computed separately for each state-year-subject-grade
cell with available data. All event study specifications include state and subject-grade-year fixed effects, and
are weighted by the inverse squared standard error of the dependent variable. p-values for total event effect
in columns 1 and 6 test the hypothesis that the /%P and gPhesem coefficients are both zero; in columns
2-5, the p-value is for the hypothesis that gPPs¢i" = (, with 479%™ constrained to zero. Standard errors are
clustered at the state level.



CHAPTER 2. SCHOOL FINANCE REFORM 107

Table 2.6: Event study estimates of effects of school finance reforms on student achievement
by subject and grade

Test Score Slope  Q1-Q5 Mean

Pooled -0.010*** 0.008**
(0.003) (0.004)
By Subject:
Math -0.012*** 0.007*
(0.003) (0.004)
Reading -0.006 0.009**
(0.005) (0.004)
Difference -0.006 -0.002
p-value 0.09 0.46
By Grade:
G4 -0.010** 0.009*
(0.005) (0.005)
G8 -0.010** 0.007*
(0.004) (0.004)
Difference 0.000 0.001
p-value 0.93 0.72

Notes: First row repeats specifications from Table 2.5 columns 2 and 5. See notes to that table for
details. Subsequent models restrict the event study sample to slope and quintile gaps computed in specific
subjects or grades. Difference entries report the difference in coefficients between math and reading or grade
4 and grade 8 specifications, with p-values for the hypothesis that the event study coefficient is equal in the
two subsamples. Standard errors are clustered at the state level.
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Table 2.7: Sensitivity of event study estimates to the treatment of states with multiple events

Selected Events All events (stacked) Initial court events

Panel A: Gradients

State revenue p.p. -622%** -479** -432*
(223) (160) (222)
Total revenue p.p. -424 -197 -399
(304) (269) (292)
NAEP scores -0.010*** -0.009*** -0.009***
(0.003) (0.003) (0.003)
Panel B: Q1-Q5 differences
State revenue p.p. 711 463* 516
(316) (191) (354)
Total revenue p.p. 701** 448* o84
(309) (195) (398)
NAEP scores 0.008** 0.011* 0.008**
(0.004) (0.004) (0.004)

Notes: Column 1 repeats estimates of the one-parameter parametric event study models from Table
columns 1 and 3, and Table columns 2 and 5. See notes to those tables for details. In column 2,
each potential event in each state is included, with a separate copy of the state’s finance or test score panel
for each event. Event study specification is modified to include state-by-event (-by-grade-by-subject) fixed
effects. Column 3 returns to the single-event specification, but uses the first post-1990 court order in each
state as its event; states without judicial events are treated as not having finance reforms. Standard errors
are clustered at the state level.
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Table 2.8: Event study estimates for mean NAEP scores by subgroup

Post Event * Yrs Elapsed

Overall mean 0.004 (0.003)

Spread of distribution:

Std Dev. -0.000 (0.001)
25th percentile 0.004 (0.003)
75th percentile 0.003 (0.002)
P75 - P25 -0.001 (0.002)
By race:

Black 0.001 (0.003)
White 0.004* (0.003)
White - black 0.002 (0.002)
By free lunch status:

Free lunch 0.001 (0.003)
No free lunch 0.004 (0.003)
No free lunch - free lunch gap -0.000 (0.002)

Notes: Table reports event study specifications, using equation with 7vmP and gPhesein constrained
to zero. Dependent variables are the indicated summaries of the state-level student achievement distribution:
The mean score; the standard deviation of scores; the 25th and 75th percentile scores; the interquartile range;
mean scores for black and white students, respectively; the white-black mean score gap; mean scores for
free/reduced-price lunch and non-free/reduced-price lunch students; and the gap between these. Standard
errors are clustered at the state level.
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2.11 Appendix Tables and Figures

Appendix Figures

Figure 2.9: Geographic distribution of post-1989 school finance events

l:l No Event
I Fost-1990

Reform
Event

Notes: Map indicates states that had school finance reform events, as listed in Appendix Table between
1990 and 2011.
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Figure 2.10: Gap in average test scores between lowest and highest income districts, by state

finance reform status, 1990-2011
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Notes: Lowest (Q1) and highest (Q5) income districts are defined as in Figure NAEP observations
in districts in each quintile are averaged, using NAEP sampling weights and separately for each grade and
subject tested, and the Q1-Q5 difference is computed for each state. State-grade-subject Q1-Q5 differences

are averaged separately for each group of states, weight

ing by the harmonic mean of the sum of the student

weights in Q1 and Q5 districts. Lines show best linear fit to the time series.
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Figure 2.11: Event study estimates of effects of school finance reforms on mean total revenues
in lowest and highest income districts
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Notes: Figure displays coefficients from event study regressions. Dependent variables are mean total revenues
per pupil (panel A), mean total revenues per pupil in the lowest income quintile of districts (panel B), mean
total revenues per pupil in the highest income quintile of districts (panel C), and the difference in mean
total revenues per pupil between districts in the bottom and top income quintile in the state (panel D),
all measured in 2013 dollars per pupil. Dashed lines show the three-parameter parametric model (equation
([2:2)). Solid lines shows the non-parametric model (equation (2.3)), with the event year (indicated as 0) as
the excluded category; dotted lines represent 95% confidence intervals. Estimates for the parametric models
are reported in Table 3, panel D, columns 1-4. p values for omnibus hypothesis tests of zero pre-event effects
in the non-parametric model in panels A-D are 0.15, 0.40, 0.74, and 0.86, respectively; p-values for zero
post-event effects are <0.001 in all panels. In the parametric model, the p-values for the hypothesis that
the pre-event trend is zero are 0.79, 0.68, 0.78, and 0.72; for the test that the post-event jump and change
in trend is zero they are 0.01, <0.001, 0.22, and 0.01.
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Figure 2.12: Event study estimates for total revenues and test scores by district income

group

1500 2000

1000
Il

Revenue effects

500

.05

10-year NAEP effects
0

-.05

-1

-
-
-
-
-

2

3

District Income Quintile

’ ——m®—- Finance Beta: Tot Rev

(a) Total revenue

3
District Income Quintile

[—— NAEP Beta

|

(b) NAEP

Notes: Figure shows event study estimates from one-parameter parametric models for mean revenues and
mean test scores in each quintile. Estimates for quintiles 1 and 5 are shown in Table panel C, columns
1-2, and Table columns 3 and 4. 95% confidence intervals shown by dotted lines. Standard errors are

clustered at the state level.
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Appendix Tables

Appendix Table Al
Complete Event List, 1990-2011

Table 2.9: Complete Event List

Lafortune, Jackson, Corcoran
Rothstein & Johnson
State Year Event . & Evans
Schanzenbach & Persico (2015)
(2016) (2016)
Alabama 1993  Alabama Coalition for Equity (ACE) v. X
Hunt; Harper v. Hunt
Alaska 1999 Kasayulie v. State of Alaska Court X
Arizona 1994  Roosevelt v. Bishop Court X
1997  Hullv. Albrecht Court X
1998  Hull v. Albrecht Court X
2007  Flores v. Arizona X
Arkansas 1994  Lake View v. Arkansas Court X
1995 Approved Equitable School Finance Bill n/a
Plan (Acts 917, 916, and 1194)
2002 Lake View v. Huckabee Court X X
2005 Lake View v. Huckabee Court X X
2007  Various acts resulting from Master's Bill n/a
Report findings
California 1998 Leroy F. Greene School Facilities Act Bill n/a
of 1998
2004 Senate Bill 6, Senate Bill 550, Bill n/a
Assembly Bill 1550, Assembly Bill
2727, and Assembly Bill 3001
Colorado 2000 Bill 181; Various Other Acts Bill n/a
Connecticut 1995  Sheffv. O’Neill X
2010 Coalition for justice in Education X n/a
Funding, Inc. v. Rell
Idaho 1993 Idaho Schools for Equal Educational Court
Opportunity v. Evans (ISEEO)
1994 Senate Bill 1560 Bill n/a
1998 Idaho Schools for Equal Educational X
Opportunity v. State (ISEEO 11I)
2005 Idaho Schools for Equal Educational Court X
Opportunity v. Evans (ISEEO V)
Indiana 2011 HB 1001 (P1229) Bill n/a

(continued)
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Appendix Table Al (continued)
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State Year Event LRS (2016) JJP (2016) CE (2015)
Kansas 1992 The School District Finance and Bill n/a
Quiality Performance Act
2005 Montoy v. State; Montoy v. State Both X X
funding increases
Kentucky (1989) Rose v. Council for Better Education, Court X X
Inc.
1990 Kentucky Education Reform Act (HB Bill n/a
940)
Maryland 1996 Bradford v. Maryland State Board of Court
Education
2002 Bridge to Excellence in Public Schools Bill n/a
Act (BTE) (Senate Bill 856)
2005 Bradford v. Maryland State Board of X (upheld)
Education
Massachusets 1993  McDuffy v. Secretary of the Executive Both X X
Office of Education; Massachusetts
Education Reform Act
Michigan 1997 Durant v. State of Michigan X
Missouri 1993 Committee for Educational Equality v. Both X
State of Missouri; Outstanding
Schools Act (S.B. 380)
2005 Senate Bill 287 Bill n/a
Montana 1993  House Bill 667 Bill X
2005 Columbia Falls Elementary School v. Court X X
State
2007 M.C.A. § 20-9-309 Bill n/a
2008 Montana Quality Education Coalition X n/a
v. Montana
New Hampshire 1993  Claremont New Hampshire v. Gregg Court X
1997 Claremont School District v. Governor Court X X
1998  Opinion of the Justices--School X
Financing (Claremont Ill)
1999 Claremont v. Governor (Claremont Both X X
I1); RSA chapter 193-E
2000 Opinion of the Justices--School X
Financing (Claremont VI)
2002 Claremont School District v. Governor Court X
2006  Londonderry School District v. New
Hampshire
2008 SB539 Bill n/a

(continued)
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Appendix Table Al (continued)

State Year Event LRS (2016) JJP (2016) CE (2015)
New Jersey 1990 The Quality Education Act; Abbot v. Both X X
Burke
1991 Abbott v. Burke X
1994  Abbott v. Burke Court X X
1996 Comprehensive Educational Bill n/a
Improvement and Financing Act of
1996
1997  Special Master's Report; Abbott v. Bill X
Burke
1998 Abbott v. Burke Court X
2000 Abbott v. Burke Court
2008 The School Funding Reform Act of Bill n/a
2008
New Mexico 1998  Zuni School District v. State X
1999  Zuni School District v. State Court
2001  Deficiencies Corrections Program; Bill n/a
Public School Capital Outlay Act
New York 2003  Campaign for Fiscal Equity, Inc. v. Court X X
State
2006 Campaign for Fiscal Equity, Inc. v. Court X
State
2007  Education Budget and Reform Act Bill n/a
North Carolina 1997 Leandro v. State Court X
2004 Hoke County Board of Education v. Court X X
State
North Dakota 2007 SB 2200 Bill n/a
Ohio 1997 DeRolph v. Ohio Court X X
2000 DeRolph v. Ohio; Increased school Both X X
funding (see 93 Ohio St.3d 309 )
2001 DeRolph v. Ohio X
2002  DeRolph v. Ohio Court X X
Oregon 2009 Pendleton School District 16R v. State X n/a
South Carolina 2005  Abbeville County School District v. X

(continued)

State
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Appendix Table Al (continued)
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State Year Event LRS (2016) JJP (2016) CE (2015)
Tennessee 1992 The Education Improvement Act Bill n/a
1993 Tennessee Small School Systems v. Court X X
McWherter
1995 Tennessee Small School Systems v. Court X X
McWherter
2002 Tennessee Small School Systems v. Court X X
McWherter
Texas 1991 Edgewood Independent School Court X X
District v. Kirby
1992  Carrolton-Farmers Branch ISD v. Court X X
Edgewood Independent School
District
1993  Senate Bill 7 Bill n/a
2004  West Orange-Cove ISD v. Nelson X
2005 West Orange-Cove Consolidated ISD X
v. Neeley
Vermont 1997 Brighamv. State Court X X
2003 Revisions to Act 68; H.480 Bill n/a
Washington 1991 Seattle Il X
2007 Federal Way School District v. State X
2010 McCleary v. State Court n/a n/a
West Virginia 1995 Tomblin v. Gainer Court X
Wyoming 1995 Campbell County School District v. Court X X
State
1997 The Wyoming Comprehensive Bill n/a
Assessment System; The Education
Resource Block Grant Model
2001 Campbell Il; Recalibration of the MAP Bill X n/a

model

Notes: Table lists all events included in any of the Lafortune-Rothstein-Schanzenbach (2016); Jackson-
Johnson-Persico (2016); or Corcoran-Evans (2015) event lists, from 1990 onward. Xs indicate events
that appear in the relevant event list; n/a indicates events that were out of scope for the relevant

list, either because they were too recent or because it included only court cases and not legislative
events. In Lafortune et al. column, events are classified as "court," "bill," or "both"; rows without an
entry are not included in our event database but are included in one of the comparison samples.

Bold years indicate the single event per state selected by our algorithm (see text). Appendix D

discusses discrepancies between Lafortune et al. and Jackson et al. lists.
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Table 2.10: Event studies for state budgets

Per capita Per pupil

Tax revenues:

Total revenues 235 2,736
(258) (2,044)

Expenditures:

General expenditures 290* 2,536*
(138) (1,505)

Education expenditures 114 1,029
(70) (643)

General expenditures (less education) 176 1,508
(90) (977)

Health + welfare expenditures 73 514
(49) (457)

General expenditures (less education, health, welfare) 103 993
(77) (700)

Notes: Table shows estimates from the one-parameter event study specification (equation ({2.1])) for state
budgetary aggregates. State and year fixed effects are included. Standard errors are clustered at the state
level.
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Table 2.11: Comparison to Card-Payne

State revenues (per capita) Total revenues (per capita)
1977-1992 1990-2012 (LRS) 1977-1992 1990-2012 (LRS)
(CP) (CP)

Long diff Long diff Event study Long diff Long diff Event study

Court Ruling:

Upheld -0.81 0.20
(0.67) (0.52)
Unconstitutional — -1.89*** -1.10**
(0.62) (0.48)
Selected Events:
Post Event -2.06 -2.25%* -2.44 -1.61
(2.24) (0.89) (4.73) (2.38)

Notes: This table shows results using slopes from a regression of per capita state or total funding on
district mean household income (note: district mean income here is in levels, not logs). Columns 1 and 4 are
from table 4 of Card and Payne (2002) and show the long difference from 1977-1992 in the level-level slope
coefficient. In columns 2 and 5, we replicate the Card and Payne specification using data from 1990 and 2012.
Columns 3 and 6 show estimated effects from the one parameter event study specification (equation )
where level-level per capita slope coefficients are the dependent variables. Standard errors are clustered at

the state level.
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Table 2.12: Event study for log income, race, free lunch

(a) Income gradients

Log mean income Minority share Free lunch share
(1) (2) (3) (4) (5) (6)
Post Event * Yrs Elapsed -0.0010 0.0008 0.0021 0.0017 0.0058 0.0089
(0.0029) (0.0040) (0.0013) (0.0015) (0.0064) (0.0071)
Trend -0.0026 0.0008 -0.0023
(0.0042) (0.0008) (0.0031)
Post Event 0.0193 -0.0042 -0.0247
(0.0368) (0.0051) (0.0293)
Observations 147 147 1046 1046 958 958
p(post-event=post-event*trend=0) 0.72 0.87 0.10 0.51 0.37 0.42
State FEs X X X X X X
Yr FEs X X X X X X

(b) Q1-Q5 difference

Log mean income Minority share Free lunch share
(1) (2) (3) (4) (5) (6)
Post Event * Yrs Elapsed -0.0017  -0.0008 -0.0012  -0.0016 -0.0035* -0.0051**
(0.0029)  (0.0035) (0.0018) (0.0020) (0.0019)  (0.0024)
Trend -0.0004 0.0003 0.0018
(0.0035) (0.0016) (0.0021)
Post Event -0.0073 0.0034 -0.0050
(0.0290) (0.0085) (0.0154)
Observations 145 145 1045 1045 962 962
p(post-event=post-event*trend=0) 0.55 0.95 0.49 0.72 0.08 0.07
State FEs X X X X X X
Yr FEs X X X X X X

Notes: Table presents event study specifications where the dependent variable is the slope of the indicated
demographic characteristic with respect to the district’s 1990 log mean household income (panel A) or the
gap between the average for districts in the bottom and top quintiles of the 1990 income distribution (panel
B). Minority share and free lunch share are available annually from the Common Core of Data (though
missing in some states and some years); log mean income is available from the Census in 1990 and 2000
and from the American Community Survey in 2007-11 (coded as 2011). Standard errors are clustered at the

state level.
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Table 2.13: Stratification of race, FRL, & achievement, by quintile

Ql Q2 Q3 Q4 Q5
Black 024 024 024 0.17 0.11
Black/Hispanic 024 023 024 0.17 0.11
White 0.20 0.20 0.18 0.20 0.22
Free/reduced-price lunch 0.32 0.23 0.20 0.15 0.09
25th pctl or below (NAEP) 0.27 0.21 0.22 0.17 0.13
75th pctl or above (NAEP) 0.14 0.15 0.17 0.22 0.32

121

Note: Table shows fraction of students of various groups in districts in various quintiles of the state’s
district income distribution. Each row sums to 1. Racial and free lunch shares are computed using CCD
district-level data for the year 1994. The distribution of high- and low-achieving students is based on the

2003 NAEP data, which is the first year of comprehensive data for all grades and subjects.
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Table 2.14: Event studies for district-mean resource gaps by race, FRL, & achievement

Black/White Free Lunch 25th/75th Pctl (NAEP)
St. Rev Tot. Rev St. Rev Tot. Rev St. Rev Tot. Rev

Post Event 196 195 -32 -33 143 193*

(160) (164) (193) (219) (141) (101)
Observations 1047 1047 938 938 1509 1509
State FEs X X X X X X
Yr FEs X X X X
Sub-gr-yr FEs X X

Note: In columns 1 and 2, the dependent variable in event study specifications is the average per-pupil
revenue in the district attended by the average black student, less that in the district attended by the
average white student in the same state. In columns 3 and 4, analogous revenue gaps are constructed for
free/reduced-price lunch and non-free/reduced-price lunch students. In columns 5 and 6, analogous revenue
gaps are constructed for students scoring at or below the 25th percentile in the NAEP, and students scoring
at or above the 75th percentile in the NAEP. The Post Event coefficient shows the estimated event effect from
parametric event study model without controlling for prior trends. State and year fixed effects are included
in columns 1-4. State and grade-subject-year fixed effects are included in columns 5 and 6. Standard errors
are clustered at the state level.
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Table 2.15: Impacts of student sorting on student achievement results

Q1-Q5 difference  Slope

Baseline Estimates 0.008** -0.010***
(0.004) (0.003)

Decomposition 1: Common covariates

Predicted score 0.003 -0.003
(0.004) (0.004)

Residual score 0.005** -0.007**
(0.002) (0.003)

Decomposition 2: Richer covariates

Predicted score 0.004 -0.004
(0.004) (0.003)

Residual score 0.004* -0.006***
(0.002) (0.002)

Notes: First row repeats estimates from Table columns 2 and 5. In subsequent rows, dependent
variables are modified. We estimate student-level regressions of NAEP scores on student demographic
characteristics, with year fixed effects, then compute predicted and residual test scores. We compute separate
slopes with respect to district income and quintile gaps for the predicted and residual test scores, and
estimate separate event study regressions for each. In decomposition 1, student demographic characteristics
are race/ethnicity and gender, along with school means (in the NAEP sample) of each. Decomposition 2
adds indicators for students whose parent is a college graduate and for free or reduced-price lunch receipt,
along with indicators for NAEP samples where these variables are unavailable and school means of each.
Standard errors are clustered at the state level.
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Table 2.16: Multiple events robustness: Monte Carlo simulations

First event All events (stacked)

DGP 1: Constant event effect
Post coefficient 0.789 0.577

DGP 2: Only one event
Post coefficient 0.788 0.577

Notes: Table reports estimates of average post-event “jump” coefficient from Monte Carlo simulations
using the empirical distribution of event dates, in which some states had multiple school finance reform
events. Column 1 shows estimates from event study models estimated using only the first event in a state.
Column 2 shows estimates using all events in a state, stacking panels and adding a joint state-panel copy
fixed effect (see Table column 2). In both columns, estimates are from parametric event study models
with a single coefficient (equation ) Row 1 shows estimates from a simulated DGP where every event
in a state has a constant effect. Row 2 shows estimates from a DGP where only one event (randomly chosen
within state) has an effect. In both DGPs the total event effect over all events within a state is equal to 1.
All DGPs include i.i.d. error terms and are simulated 5000 times.
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Chapter 3

The Heterogenous Effects of
Advanced Math Tracking: Evidence
from North Carolina

3.1 Introduction

Numerous studies have demonstrated the importance of strong math skills on individual
and societal outcomes (e.g. Hanushek and Woessmann (2015)); Ritchie and Bates (2013);
Weinberger (2014)). Considerable attention has been devoted to improving the math perfor-
mance of US students, in particular because American students fare poorly in international
comparisons of math skills (Gurria, [2016]) and the fraction that go on to purse majors in
science, technology, engineering, and math (STEM) (National Science Board, 2010). Still,
both educational practitioners and policymakers have often struggled to devise policies that
improve students’ math preparation and eventual matriculation into STEM fields.

Policies to improve the rigor of mathematical education in U.S. schools often focus on
the mathematics course sequences students are exposed to; of particular consequence is
the separation of students into distinct math curricular tracks in secondary schools. In
nearly all U.S. middle and high schools, assignment of students into mathematics courses
relies on tracking: the practice of sorting students into different classrooms based on prior
achievement, career intentions, or other objectives. Unlike in many other countries, in which
students are tracked into different schools at different ages based on perceived ability or career
aspirations, tracking in U.S. public schools is done primarily within-school, with students
grouped by ability into courses that differ in rigor and/or curriculumE]

For most students, the most important divergence in the math curriculum occurs in 8th
grade: the highest achieving students are placed in Algebra I, while the rest take another
year of math before encountering Algebra I in 9th grade (or sometimes later on in high
school). Students who complete Algebra I in 8th grade will generally be on track to complete

1See Betts (2011)) for an overview of the literature on both within- and between-school tracking regimes.
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introductory calculus by the end of high school. For these reasons, 8th grade Algebra is
sometimes referred to as a gateway class for selective higher education (e.g. Adelman (2006]);
Loveless (2013)). Nationally, partitions in the 8th grade math curriculum between students
of different ability levels have become ubiquitous: pre-high school exposure to Algebra and
other advanced math courseg?] has gone from 16% in 1990 to 47% in 2011. During the same
two-decade span, the proportion of students in a basic math course in 8th grade fell from
81% to 48% (Loveless, 2013).

Many individual states and districts have emphasized policies to expand pre-high school
exposure to Algebra, with some embracing policies to shift all students into early Algebra,
often referred to as the “Algebra for all movement”. However, other districts have gone
against this trend (e.g. the “detracking” movement of the 1980s; see Burris and Garrity
(2008))), often due to concerns over underrepresentation of minority and disadvantaged stu-
dents in advanced tracks, as well as potential negative effects in lower tracks due to the
removal of high-ability peersﬁ

In this paper I contribute new evidence on the heterogenous impacts of early Algebra en-
rollment for students at different points in the mathematics achievement distribution. Using
administrative data from all public K-12 schools in North Carolina, I leverage discontinu-
ities in the propensity to be tracked into 8th grade Algebra around prior year state exam
proficiency thresholds to provide credible evidence on the causal impacts of these tracking
decisions on student test scores, course enrollments, college entrance exams, and post-high
school intentions. Students who score higher on their 7th grade math exams are more likely
to enroll in Algebra in 8th grade, and there is evidence of small, precisely estimated dis-
continuities in this relationship near the state proficiency thresholds. Students crossing the
threshold from “level III” to “level IV” (near the 80th percentile in the state grade 7 math
distribution) are 5 percentage points (10 percent) more likely to enroll in Algebra in 8th
grade rather than later in high school. Regression discontinuity (RD) estimates around this
proficiency cutoff indicate that early Algebra is associated with large increases in the mathe-
matics and advanced course-taking, college entrance exam scores, and intentions to major in
a STEM field post-graduation. Effects on 4-year college intentions are large, but imprecisely
estimated.

For students around the 30th percentile in 7th grade math, there is a smaller 3.5 per-
centage point (50 percent) discontinuity in the propensity to enroll in 8th grade Algebra
crossing the threshold from “level I1” to “level II1”. Notably, this threshold is the cutoff for
proficiency in 7th grade math, which is often widely reported and relevant for both state
and national educational accountability systems. However, for these students, RD estimates
indicate that early Algebra acceleration is associated with losses, rather than gains. Initial

2Data are from the NAEP 8th grade math assessment. “Advanced math” courses refer to Algebra I,
Algebra II, Geometry, and 2-year Algebra courses. See Loveless (2013) for further detail.

3For example, in 2015 San Francisco Unified School District began requiring that all 8th graders enroll
in the same math course and delay Algebra I until 9th grade, partially due to equity concerns over the
separation students of different achievement or preparation. (https://ww2.kqed.org/news/2015/07/22/
san-francisco-middle-schools-no-longer-teaching-Algebra-1/)


https://ww2.kqed.org/news/2015/07/22/san-francisco-middle-schools-no-longer-teaching-Algebra-1/
https://ww2.kqed.org/news/2015/07/22/san-francisco-middle-schools-no-longer-teaching-Algebra-1/
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8th grade test score effects are negative, with estimates of less than —1 SDs for the effect
of 8th grade Algebra acceleration on sdtandardized 8th grade math and Algebra I exams.
After an initial deleterious effect on achievement, I find no evidence of end-of-high school
gains in college entrance exams, mathematics course completion, and 4 year and/or STEM
major intentions post-graduation. The heterogeneous RD estimates suggest that early Alge-
bra tracking has vastly different effects based on a student’s initial mathematics preparation
and achievement. Models estimated using observational variation in the timing of Algebra
enrollment closely match RD estimates when the effect of early Algebra tracking is allowed
to vary by prior achievement quantiles, suggesting that: (1) estimates of average effects
mask important heterogeneity in the effects of secondary school mathematics tracking by
students’ initial ability and preparation, and (2) selection biases are likely small once effects
are allowed to vary by prior ability and controls for prior ability are included.

Importantly, these findings can reconcile differences in the prior literature on the effects
of Algebra tracking. To this point, the empirical literature on the student-level effects of
early Algebra has been mixed and inconclusive. Much of this literature has focused on
either targeted district expansions or average (equilibrium) effects nationally that typically
consider students at very different margins in the mathematics achievement distribution.
Most studies of district-level expansions consider policies that encourage Algebra enrollment
among more academically marginal students, and tend to find negative or null effects on test
score outcomes, with only modest effects on later advanced math track persistence (Domina,
Penner, et al. (2012), Domina, McEachin, et al. (2015), Clotfelter et al. (2015)), Dougherty et
al. (2017), McEachin et al. (2017))). On the other hand, studies using observational designs on
nationally representative datasets tend to find more positive or null effects (Stein et al. (2011));
Aughinbaugh (2012)), where the average student who enrolls in early Algebra is of much
higher prior ability. Using multiple discontinuities around prior year test score proficiency
levels I am able to show that high ability students see large benefits from early Algebra
acceleration, whereas low ability students are adversely affected. I then show that simple
models relying on observational variation in Algebra tracking can replicate this pattern of
heterogeneity and appear to have minimal selection bias, once the effect of early Algebra
tracking is allowed to vary with prior achievement. Taken together, these results suggest that
much of the conflicting evidence in the literature on Algebra and secondary school math
tracking can be attributed to differences in the mathematics preparation of the students
under consideration.

This paper also provides new evidence linking secondary school Algebra tracking decisions
to scores on college entrance exams (ACT and SAT) and post-high school college enrollment
and major intentions. Prior studies of Algebra tracking using quasi-experimental variation
have been unable to examine outcomes to the end of high school or consider effects on post-
high school intentions and college readiness. Tracking decisions made in 8th grade affect
course placements, rigor, peer quality, and teacher quality throughout high school, and thus
one would expect that the effects of such a course diversion would accumulate through the
end of high school. T am able to follow several cohorts of students across nearly all public
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school districtd] in North Carolina through the end of high school, and find that for high-
ability students, 8th grade Algebra acceleration has large effects on STEM major intentions
and ACT and SAT exam scores.

The findings in this paper have important implications for mathematics tracking policy.
Targeted efforts to expand access to the advanced math curriculum among high-achieving
students could lead to large improvements in mathematics skills and college preparedness
by the end of high school. This is not an insignificant margin: only about half of students
in the upper quartile of the 7th grade math distribution are accelerated into Algebra in
8th grade. Conditional on prior test scores, these discrepancies in advanced math tracking
among high-achieving students shows little correlation with race or student income levels
(based on free/reduced-price lunch eligibility), but there exist large gaps in propensity to
enroll in 8th grade Algebra and advanced high school courses based on parental education
levels. Students with more educated parents are considerably more likely to be selected into
advanced math tracks in 8th grade and in high school, even among high-achieving students
in top of the test score distribution. On the other hand, early placement into Algebra
and advanced math courses could harm, rather than help, low-achieving and marginally
prepared students. Though few marginally proficient students enroll in advanced 8th grade
Algebra (less than 5% in North Carolina), many district-level expansion policies are targeted
specifically at this margin '] Efforts to increase mathematics skills among this subpopulation
of students may be better better targeted towards additional remedial, or “double-dose”
mathematics curriculum (Cortes and Goodman (2014)); Taylor (2014)).

There are three important caveats worth highlighting. First, in this paper I do not
consider the general equilibrium effects of changes in tracking policies. Estimates are specific
to marginal students, who are nudged into different 8th grade math tracks under an existing
educational policy regime. Targeted policies to expand access among certain students could
also have spillover effects on students who are not tracked into advanced courses, perhaps due
to changing peer and teacher quality in the both the tracked and non-tracked classrooms
Second, estimates in this paper are specific to cohorts that attended public schools in North
Carolina as a part of 7th grade cohorts in 2006 to 2011[] 8th grade Algebra participation
expanded moderately during this time, especially in North Carolina, where participation had
been slightly lower than in other states. Third, the evidence in this paper provides causal
estimates of the impact of curricular acceleration in 8th grade, holding constant earlier
educational inputs. Policies that aim to accelerate mathematics curriculum, particularly for

4A small number of students are excluded from main analyses, mainly those from small schools and
districts with only enough student enrollment for one 8th grade classroom. See Section for further detail
on sample constriction.

SFor example, the recent targeted expansion in Wake County, NC (Dougherty et al., 2017) set its cutoff
around the 20th percentile in the 6th grade math distribution.

6 Although changing peer and teacher composition between tracks could lead to aggregate effects that
differ from those implied by the estimates in this paper, existing evidence suggests that these spillovers are
likely to be small (Card and Giuliano, |2016]).

"Expected/on-time graduation for these cohorts was from 2011 to 2016.
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low-achieving students, may well have more positive effects with additional preparation or
other alterations in the earlier curriculum (e.g. Dougherty et al. (2017)).

The rest of the paper proceeds as follows. In Section I provide brief context on
the potential implications 8th grade Algebra acceleration, and review the prior literature
examining Algebra tracking and student outcomes. In Section [3.3]T discuss the data sources,
sample selection, and test score proficiency levels in North Carolina. Section outlines the
empirical specification and Regression Discontinuity assumptions. RD estimates are reported
in Section [3.5] and Section considers the heterogeneity in these estimates, comparing RD
LATESs to OLS estimates from more ubiquitous selection on observables models. Finally, in
Section [3.7] I discuss the implications of these results for tracking policy decisions and future
areas of research.

3.2 Context and Background on 8th Grade Algebra

Early acceleration into Algebra in 8th grade may affect student learning and later course-
taking decisions for a number of reasons. For students with a sufficient mastery of prior,
lower-order mathematical skills, early access to Algebra allows for more instructional time for
higher order topics. In the typical mathematics course sequence in US public high schools,
only students who have completed Algebra prior to enrolling in high school are on track
to reach calculus by the end of high school (taking only one math course per year). To
the extent that skills in Algebra, calculus, and other higher-order mathematics topics are
important for later college and labor market outcomes, early Algebra acceleration could be
highly beneficial. In North Carolina public schools, students who take Algebra in 8th grade
rather than in high school are on average more likely to enroll in Calculus (35% vs 4%),
score higher on average on ACT math (23.5 vs 17.7 points) and more likely to intend to
enroll in a 4 year college post-graduation (73% vs 34%) | Yet students who enroll in 8th
grade Algebra are positively selected: the average 8th grade Algebra student scores near the
80th percentile in 7th grade math, while the average student who is not tracked into 8th
grade Algebra scores near the 40th percentile in 7th grade math. Figure reports Calculus
enrollment rates and 4-year college intentions for 8th-grade Algebra takers and non-takers,
conditional on prior, grade 7, math test scores. Throughout most of the prior test score
distribution, the gap in end of high school outcomes between takers and non-takers is large
and remarkably similar. This is suggestive of a positive causal effect, although endogeneity
in the selection into 8th grade Algebra may still bias this comparison.

Indeed, prior research using observational variation in Algebra timing in nationally repre-
sentative survey datasets tends to show strong positive associations between pre-high school
exposure to Algebra and academic outcomes (Smith (1996)); Gamoran and Hannigan (2000));
Stein et al. (2011))) and, more generally, between the rigor of secondary school mathematics
curriculum and post-secondary outcomes (Aughinbaugh, 2012). Moreover, besides direct
curricular benefits, the timing of Algebra course-taking has important effects on the peers

8See Section for a description of the data and sample restrictions.
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and teachers a student is exposed to both in 8th grade, and throughout high school. Students
who are tracked into early Algebra share classrooms with higher ability peers, and Smith
(1996) argues that early access to Algebra may also “socialize” students into taking further
mathematics classes in high school.

On the other hand, if students are insufficiently prepared for a more rigorous math cur-
riculum in 8th grade, such an acceleration may not be beneficial, and could even be harmful.
Positive effects documented in observational studies likely suffer from selection bias, as stu-
dents who are tracked into early Algebra are on average much higher-achieving and from more
socio-economically advantaged backgrounds. Clotfelter et al. (2015)) address these selection
concerns using variation induced by district-level expansions in 8th grade Algebra access at
two large North Carolina school districts. They find large negative effects on performance
in Algebra and subsequent math courses, particularly among low-achieving students. While
the effects of such large expansions may differ in the short run due to transition costs and
may also confound differences in teacher quality, the authors only attribute a small fraction
of the negative effects they document to these dimensions. Dougherty et al. (2017) study a
similar, but more explicitly targeted, district expansion in 8th grade Algebra that affected
low-achieving students near the 20th percentile in prior math ability in Wake County, North
Carolina. Using an RD design around a test score index cutoff they find evidence of more
positive effects, with increased mathematics course-taking and no significant effects on ini-
tial test scores. They also find large positive effects on a college readiness exam in 10th
grade, and eventual college intentions among students who took the college readiness exam.
Similarly, Domina, Penner, et al. (2012)) use policy variation in one California school district
and find that the expansion was associated with lower academic performance among lower-
level students, although the policy change increased the odds that these students enrolled in
higher-level math courses.

Clotfelter et al. (2012) argue that much of this discrepancy between the generally positive
effects found in observational studies, and the more mixed effects documented in studies of
district expansions is due to selection bias: “Once this selection bias is eliminated, the
remaining causal effect of accelerating the conventional first course of Algebra into earlier
grades, in the absence of other changes in the math curriculum, is for most students decidedly
harmful.” Yet the existing literature has provided little direct evidence as to the causal effect
of the Algebra tracking decision on high-achieving students, who make up the majority of
students who are placed into advanced the advanced math sequence in 8th grade’| In the
paper most similar to this one, McEachin et al. (2017) use an RD design to provide evidence
of the effect of 8th grade Algebra at schools with different test score cutoffs, but focus
primarily on heterogeneity in the effects of early Algebra by school-level factors, rather
than student-level preparedness or ability. The diversion of 8th graders into different math
tracks represents the single largest tracking decision in most U.S. public schools, and has
implications for the rest of the high school mathematics curriculum. Given the potential

9The median Sth grade Algebra student in North Carolina was near the 80th percentile in the 7th grade
math distribution from 2006-2011, the years under consideration in this study. See Figure
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for negative spillover effects and increased educational inequality resulting from tracking
decisions, estimates of the total, end-of-high school effect of 8th grade Algebra tracking for
students with different levels of prior mathematics skills is crucial for the design of policies
that aim to more optimally track students and/or raise mathematics skills among students
more generally.

3.3 Data

North Carolina Public School Records

To examine student track assignment and later student outcomes, I use administrative
student records from the North Carolina Education Research Data Center. These records
contain data for all K-12 students in North Carolina public schools (including public charter
schools). The data span the period from 1997-2016 and include transcripts, test scores, and
some demographic information for all public school students in North Carolina. Students
are linked across both schools and districts, and over time, as long as they are in a North
Carolina public school. Students who move out of state or transfer to a private school
are not followed in the data. All students in grades 3-8 are tested annually in both math
and reading; students in grades 5 and 8 are additionally tested in science. Demographic
information is limited to gender, race/ethnicity, free lunch status, disability /exceptionality
status, and parental education. These data are available for all years with the exception of
the parental education data, which was only collected until 2006. Given the panel nature of
the data, this means that I have information on parental education for all students in more
recent cohorts who had at least completed grade 3 in a North Carolina public school prior
to the 2007 school year.

In North Carolina, there are no comprehensive high school exams. Instead, there are
some standardized “End of Course” (EOC) exams on specific subjects in place of final
exams. Students who in enroll in Algebra I in any grade - whether in middle or high school
- are required to take the state EOC exam for Algebra I. I assign students as having taken
Algebra in 8th grade if they have a test score on the Algebra I EOC exam in their 8th grade
year. Students who drop out of the class in the first 20 days are exempted from the exam;
after this point, the state mandates that every student maintains enrollment in the class
and participates in the EOC exam upon completion of the course. Algebra 1 test scores are
available from 1997 until 2013. I only use data on the first Algebra I exam taken for each
student.

Comprehensive high school transcript data are available in this dataset beginning in 2006,
and provide information on course enrollment and grades for all students in grades 9-12. The
transcript data also include course classification codes that indicate the level of the course
(honors, advanced, AP, etc) in addition to the exact subject. Beginning in the 2012-2013
school year, every 11th grade public school student in North Carolina was required to take
the ACT college readiness assessment. Data on ACT composite scores, as well as subject
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level subscores are available for all 11th grade students from 2013-2015. Similar data on the
SAT scores of students are also available beginning in 2009, although only about one-third
of North Carolina high school students take the SAT exam. Students who take the SAT
also report their intended college major, which I use to determine whether or not a student
intends to pursue a STEM major in postsecondary school. Upon graduation, every North
Carolina high school student also fills out an exit survey, which includes a description of
post-high school college intentions.

Test Score Proficiency Levels

North Carolina “End of Grade” (EOG) exams are administered in both math and reading
for grades 3-8, and for science in grades 5 and 8. Scores on these tests are reported in two
forms: (1) A “scale” score, which is on a numerical scale with a range of roughly 50 points
depending on the exam and year (2) A proficiency test score “level”, which ranges from 1
to 4 for years prior to 2013 (in 2013 the state added a fifth proficiency level). the specifics
of each score level vary by exam type, year, and grade, but in general, level I corresponds to
a “limited command” of the material, level II corresponds to a “partial command”, level III
corresponds to “solid command”, and level IV corresponds to “superior command” H

The numerical scale of standardized test scores is not consistent across all years. For the
years 2006-2012, the 7th grade math scale scores are on a consistently normed scale from 332
to 383 points. Prior years’ scores are scaled differently, and the range and scaling within each
proficiency level is neither consistent nor directly comparable with later years. Similarly, in
2013, the exam structure and scoring were changed again and a fifth proficiency level was
added, preventing like comparisons with earlier exam years and proficiency cutoffs. 2006 also
served as a norming year for the new exam, in which baseline scores were constructed from
which later years’ scores could be compared. Exam scores in this year were not reported
until late in the fall of the following school year, meaning that 2006 test scores were unable
to be used in course enrollment decisions in the first semester of the 2006-2007 school year.
For these reasons, I include only those students who took the 7th grade math exam for the
first time between 2007 and 2012

For each exam form, a student’s score is determined by converting the raw number of
correct responses to a developmental scale score that enables direct comparisons across exam
forms and years. The distribution of scaled test scores is shown in Figure[3.2] As can be seen
in the figure, there are discrete mass points in the test score distribution. Due to rounding
in the conversion from raw to scaled scores, two raw scores in the middle of the distribution
sometimes correspond to the same scale score on certain exam formsH The aggregation
of scores exam forms therefore generates the observed spikes in the scale score distribution.

10Gee Appendix Figure for a sample North Carolina EOG student exam report.

1 The fact that 2006 scores were only reported after course selection had taken place in the following
school year generates a useful first stage placebo test, to be discussed in further detail in Section

12Gee Appendix Figure for an example of the rounding from NC test score technical documentation.
Unfortunately, the exam form number is not reported in the student test score data.
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Importantly, these are artifacts of rounding error, rather than an indication of systematic
sorting of students to different test score thresholds. Concerns over the validity of the RD
design with a non-smooth test score distribution will be discussed later in Section

Sample Selection

The primary sample begins with students who took the 7th grade EOG math exam in
the five-year period from 2007-2011. [ Students with missing test scores in grade 7 are
excluded. Prior year test scores are available for the large majority of these students, as long
as they had been enrolled in a NC public school and had a valid exam score. Where scores
from grades 3 to 6 are used as controls, these scores are standardized within test year, grade,
and subject to have a mean 0 and standard deviation of 1. Students who have missing test
scores in earlier years are imputed the mean value 0 and assigned a dummy equal to one
for missing test scores in that subject-grade combination. Likewise, students with missing
demographic data are not excluded, but where demographic controls are used these students
are assigned to zero for the relevant category and assigned a dummy equal to one for having
missing demographic information.

A small number of students are excluded from the primary estimation sample. First,
students who enroll in Algebra prior to 7th grade (only about 2%) are dropped. Next,
students with missing or implausible/incorrect school codes (e.g. school codes with only 1
student per year) are excluded. Only schools with enough students to have two classrooms
per year (schools with 40 or more students per 8th grade cohort-year on average). Roughly
4.5% of students are at schools this small. Finally, less than 0.5% of students are in schools
that enroll no 8th graders in Algebra, and these students are excluded from the main sample.
With these restrictions, I am left with a sample of 430,127 students spanning five 7th grade
cohorts in 532 North Carolina public middle schools.

Summary statistics for the estimation sample are presented in Table[3.1] 29% of students
during this period enroll in Algebra in 8th grade. Of the remaining students who do not
take Algebra until high school, most enroll in 9th grade, with less than 2.5% of students
taking Algebra in 10th grade or later. Mean standardized test scores in 6th and 7th grades
are slightly greater than zero, indicative of a slight positive selection of students into the
sample relative to the entire NC population, due to the aforementioned sample restrictions.
Students in the sample are predominately white, although 27% are black, and an additional
9% are listed as Hispanic. 46% of students have parents with a high school diploma or less;
while about 29% of students have at least one parent who graduated college. The average 8th
grade cohort size is 210 students. In 9th grade, roughly 23% of students take an advanced
math class of some sort (e.g. Honors, AC, AP), and only 13% of North Carolina students
reach calculus by the end of high school. Just under half of high school graduates report the

13Recall, the 2006 exam is excluded due to being a norming year in which scores were reported only later
in the following year; the 2012 exam year is excluded as this cohort cannot be followed until the end of high
school (on-time graduation for students who took the 2012 7th grade EOG exams was in 2017, and the final
year in the data sample is 2016).
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intention to attend a 4-year college post-high school; about one-quarter of SAT test takers
report intending to pursue a STEM major once in college.

3.4 Empirical Strategy

The prior literature has identified two potential issues when attempting to estimate the
causal effect of 8th grade Algebra tracking on both short and long-run student outcomes.
The first and most notable is selection bias. Students are not randomly assigned into Al-
gebra in 8th grade, and even conditional on prior test scores and available socio-economic
background variables, students who are selected into higher level math may differ in un-
observed characteristics that may affect outcomes of interest. A priori, one would expect
that, on average, such selection issues introduce a positive bias in estimates that rely on
observational variation. Second, and more subtle, is the issue of prior mathematics ability
and the potential for heterogeneity in the true effect. More able or more high-achieving
students are likely better prepared for the demands of an accelerated math curriculum and
the more rigorous mathematics courses that follow in high school. One would expect that
the effects of 8th grade Algebra acceleration, both initially and in the longer-run, could be
very different for students with different baseline levels of mathematics skill.

In this paper I will attempt to address both of these concerns using a regression dis-
continuity design around prior-year test score proficiency cutoffs. As discussed in Section
[3.3, North Carolina EOG test scores are reported as a scaled score, as well as a proficiency
level ranging from I to IV. To the extent that test score proficiency levels provide additional
information about student achievement or potential for success in future advanced classes,
there may be discontinuities in the the propensity to enroll in 8th grade Algebra around
these thresholds. These discontinuities provide opportunities for credible identification of
causal effects at different points in the student ability distribution.

Figure shows the mean proportion enrolled in Algebra in 8th grade, by prior-year,
7th grade math test scores, for students who score close to the level IV (panel (a)) and
level I1I (panel (b)) thresholds[™| Dashed vertical lines indicate proficiency threshold cutoffs.
Panel (a) zooms into a 10-point window around the level IV proficiency threshold, which
corresponds to near the 80th percentile in the 7th grade math test score distribution. A
simple linear trend is fit separately on both sides of the cutoff, indicated by the solid line. The
figure seems to suggest a small, but notable 5 percentage point discontinuity in the propensity
to enroll in 8th grade Algebra around the level IV proficiency thresholdr_g] Panel (b) displays
the analogous means by prior test score and estimated linear fit for the 10-point window

14See Panel (a) of Appendix Figure[3.7/for the mean 8th grade algebra enrollment by 7th grade test scores
over the entire distribution of test scores.

15The strong upward slope in the relationship between 8th grade Algebra enrollment and 7th grade test
scores makes the (small) discontinuities more difficult to see visually. Appendix Figurereports analogous
figures where the propensity to enroll in 8th grade Algebra is de-trended with respect to prior-year test scores;
discontinuities are more visually apparent in these more zoomed-in figures.
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around both sides of the level III proficiency threshold. Around the level III proficiency
threshold (roughly the 30th percentile in 7th grade math test score distribution), there is a
smaller, approximately 3.5 percentage point discontinuity in 8th grade Algebra enrollment.
Note that in Panel (b), the sample is restricted to only include the half of students at schools
with above median 8th grade Algebra enrollment. At schools with below-median enrollment
of students into Algebra I the proportion of 8th grade students enrolled in Algebra I is nearly
zero. For this reason all analyses around the level 111 proficiency threshold will include only
those students at schools with above median total enrollment in 8th grade Algebram

Discontinuities in the probability of enrollment in 8th grade Algebra around these pro-
ficiency levels imply that students and/or schools use information from these proficiency
levels independently from the underlying scale scores to determine enrollment in 8th grade
Algebra. This could be due to explicit school policies, differences in course recommendations
by school counselors based on test score levels, or perhaps differences in student and parent
beliefs about a students ability inferred from test score levels. Anecdotal evidence suggests
that many districts have proficiency level requirements for enrollment in certain advanced
classes and give recommendations to students and parents based on the proficiency levels
the student achieved on prior year exams.ﬂ This is not necessarily the case for all schools
and districts in the state, as assignment rules vary significantly by district, school, and even
year. Some schools have no formal requirements, while others may rely on earlier test scores,
especially those that begin math curriculum tracking before grade 8. For example, the Wake
County School District assigns students to Algebra I using a predicted probability of success
derived from multiple years of prior grades and test scores before grade 7 (Dougherty et al.,
2017)@ Rather than attempting to identify a specific subset of districts and/or schools
that use test score proficiency levels in Algebra assignment, I remain agnostic about the
specific policies in any given school and instead identify the average effect over all schools
and districts that meet the sampling criteria outlined in Section [3.3

Scoring on either side of the threshold is a matter of getting one more or one fewer
question correct on the 7th grade math exam. For students sufficiently close to the test
score level threshold, achievement of a given proficiency level is effectively randomly assigned.
Treating these proficiency levels as assignment rules for 8th grade Algebra with imperfect

6Panel (b) of Appendix Figure compares 8th grade Algebra propensity near the level III proficiency
thresholds for schools with above and below median total 8th grade Algebra enrollment. As can be seen in
the figure, schools below the median in Algebra enrollment enroll only about 1% of students near the level
3 threshold in 8th grade Algebra, with no discontinuous relationship, compared to 7% enrolled at schools
with above median participation.

17 Conversations with staff members from several school districts in North Carolina indicated that prior test
scores and specifically prior proficiency levels are sometimes used in 8th grade math curriculum assignment.
These are typically not strict cutoffs, as there are other assignment criteria besides prior year test scores.
Notably, some districts made explicit mention of the importance of “parent advocates” in the assignment
process.

18Reassuringly, in Wake County School District there exist no discontinuities in 8th grade Algebra enroll-
ment around prior proficiency cutoffs, as expected given that their algorithm relies on the scale scores and
not proficiency levels.



CHAPTER 3. HETEROGENOUS EFFECTS OF ADVANCED MATH TRACKING 136

compliance motivates the use of a (fuzzy) regression discontinuity (RD) design. This design
will identify the effect of early enrollment in Algebra for students around each proficiency
level threshold, when there are discontinuities in the relationship between 7th grade math
scores and 8th grade Algebra enrollment. For this design to yield unbiased causal estimates
of the local average treatment effect (LATE), students must not be able to systematically
sort or alter their test score to land on either side of the proficiency threshold. As will
be further discussed in Section [3.4] exams are scored and scaled by statewide committee
separately for each subject, grade, and year, yielding no scope for precise manipulation by
any student. Furthermore, dedicated parents need not rely on high test scores to get their
children to enroll in 8th grade Algebra: nearly half of students below the cutoff still enroll
in Algebra 17

First Stage Estimates

To estimate the potential discontinuities in Algebra assignment around prior-year profi-
ciency thresholds I use local linear regressions that allow for a different slope with respect
to test scores on both sides of the proficiency cutoffs:

Here, i denotes student, and #; denotes a student’s grade 7 math test score, in the
reported scaled units. Z; = 1[#; > p| is an indicator for crossing the relevant proficiency
threshold, p. The dependent variable, A; is an indicator for enrollment in Algebra in 8th
grade. Estimates of equation are shown in column (1) of Table [3.2] panels (a) and
(b), which correspond to the first stage estimates displayed in Figure , respectively. Both
regressions are estimated using data only within a small bandwidth of 5 scale score points on
either side of the threshold, for which the linear approximation appears to fit the data quite
Well.m Estimates of equation (3.1 show that there is a marginally significant discontinuity
of 5.0 (SE 2.7) percentage points at the level IV proficiency cutoff. Even at the lower level 111
threshold, where less than 10 percent track into Algebra in 8th grade, gaining an additional
point and crossing into the 3rd proficiency level is associated with a statistically significant
3.4 (SE 1.5) percentage point greater propensity to enroll in Algebra in 8th grade.

These estimates pool data across cohorts and schools, and do not adjust for differences
in student demographics or prior student achievement. Columns (2) and (3) of Table
add in fixed effects for cohort (a,) and school (¢s), respectively:

Aics = Q¢ + ¢s + 6Zz'cs + (SOQics + 5192'05 * Zis + €ics (32)

19Within-school estimates of discontinuities across proficiency thresholds yield only a handful of small
(mostly charter) schools in which state proficiency thresholds appear to be binding for course selection.

20For small bandwidths, estimated discontinuities are quite similar. However, nonlinearities in the overall
distribution lead to increasing bias from using larger bandwidths with a linear fit. See Appendix Figure [3.13
for a comparison of first stage estimates by bandwidth.
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Point estimates are largely unchanged across these different specifications at both profi-
ciency thresholds, but standard errors decrease substantially with the addition of fixed effects
for cohort and school. In particular, the addition of cohort fixed effects markedly improves
the precision of the estimates of 5. Why is this the case? Overall participation in 8th grade
Algebra had been increasing both nationally and in North Carolina during this time period,
meaning that the propensity for a given student to be tracked into early Algebra differed
between different cohorts, even conditional on prior test scores. For this reason, allowing for
a different intercept within each cohort reduces noise and improves the estimation of these
discontinuities. In column (4) controls for prior test scores and for student-level demographic
characteristics are added. Reassuringly, first stage estimates for both discontinuities are very
robust to the inclusion of these controls.

Potential Threats to Identification

Estimates in Table imply that students, parents, and/or school staff use the infor-
mation in proficiency thresholds in the assignment process for Algebra in 8th grade. Im-
portantly, the validity of the RD approach relies on the (untestable) assumption of local
randomization around these thresholds (e.g. Lee and Lemieux 2010). Put differently, we
must have that the “treatment” of early Algebra enrollment is as good as randomly assigned
around the threshold in order for a causal interpretation of RD estimates. There a two
notable potential threats to identification inherent to this particular setting: (1) systematic
sorting of students around the thresholds, and (2) spurious discontinuities, perhaps due to
functional form assumptions.

If students are able to manipulate test scores in such a manner as to systematically sort
around the proficiency thresholds, the assumption of local randomization would be violated.
Figure plots the distribution of 7th grade test scores, and there are notable mass points
in the middle of the distribution, between the level III and level IV proficiency thresholds.
Importantly, these mass points are not directly to the right of either threshold, indicating
that this bunching is not the result of systematic sorting to end up on the “right side” of the
cutoffs; however, there is one notable mass point just before the level IV cutoft. As mentioned
earlier, these mass points are are artifacts of rounding error in the scaling process in which
raw test scores (the total number correct) are converted into the reported and student-
normed scale’]] The exact mappings are determined each year by a statewide committee
as exams are scored, after they have been taken, and vary between exam forms and years.
Thus, despite the non-smooth distribution in prior scaled test scores, any systematic sorting
of students around any particular score threshold would be nearly impossible in practice.
Moreover, student selection into advanced math courses is determined by more than test
scores, and proficiency cutoffs are not binding in the assignment process: to the left of the
level IV cutoff, 40% of students still enroll in 8th grade Algebra (Figure [3.3)). To the extent
that students, parents, or school staff want to influence assignment into advanced courses,

21See Appendix Figure
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precise test score manipulation would not only be essentially impossible, but it would be
unnecessary.

Appendix Table provides an additional test for sorting and violations of local ran-
domization. Under local randomization, there should be no discontinuous differences in
baseline, predetermined student characteristics across either threshold. In both panels of
Table , estimates of § from equation are shown where the dependent variables are
predetermined student characteristics. In the first row, an index of the predicted probability
of 8th grade Algebra enrollment is included; this measure is constructed from the predicted
values of a regression of A;.s on all available student demographic and prior-test score char-
acteristics. Reassuringly, the predicted index shows no significant difference across either
threshold. While most individual characteristics show no significant discontinuities across
the threshold, there are a small number that are, in fact, statistically significant. Still, in ev-
ery instance these estimated discontinuities are of an incredibly small magnitude, and often
of a different sign. While these differences do not appear to indicate any notable violations
of local randomization, I nonetheless include controls for each of these characteristics in all
baseline RD estimates”]

Other potential threats to the validity of the RD design stem from the inherent functional
form assumptions. One might be concerned that the discontinuity in 8th grade Algebra
enrollment around the level 11T / level IV proficiency threshold is spuriously driven by the
spike in prior test score distribution right before the level IV cutoff, if the discrete change in
true “ability” is not constant with each scale score point increment. However, if this were the
case, one would expect to find similar discontinuities around the other mass points elsewhere
in the prior score distribution. Appendix Figure plots estimated discontinuities at each
scale score within 5 points above or below the level 111 and level IV proficiency thresholds. As
can be seen in the figures, there are no sign of discontinuities near these other mass points.
Moreover, the estimated discontinuities for both thresholds are only large and significant at
the actual proficiency thresholds; if the discontinuities were driven by bias from a misspecified
functional form, we would expect other spurious discontinuities at other test scores, which
we see no evidence of &

Finally, Appendix Figure provides additional evidence that the discontinuities are
indeed non-spurious, and not artifacts of functional form or other assumptions. The figure
plots estimated coefficients for the level III and level IV cutoff separately by year. In panel
(a), for the level IV cutoff, the coefficients are all roughly 4-5 percentage points and do not
vary significantly for all years after 2006. Notably, there is no discontinuity in 2006, as the
point estimate is close to zero and insignificant. This is not a blip: as mentioned earlier,

22 As would be expected given the estimates in Table estimates are robust to the inclusion or exclusion
of controls. See Appendix Tables [3.12] [3.13] [3.14] and [3.15] which report results from models estimated
without controls.

23Estimates in Appendix Figure are still statistically significant when the cutoff is erroneously set just
above or below the true proficiency threshold. This is to be expected: misspecification of the true location of
a discontinuity using a linear functional form will result in attenuation of the discontinuity, as the specified
discontinuity point gets further from the “true” discontinuity.
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state exams were updated in 2006 and the 2006 population served as a norming reference
for students in all subsequent years. Exam scores were not released to students or schools
until October, well after the beginning of the academic year and after course assignments
had already been determined. Prior exam scores for this cohort were thus not known at the
time of 8th grade math assignment; only in those exam years where scores were available
prior to course assignment does there exist a discontinuity in 8th grade Algebra enrollment
around the level IV proficiency threshold. The pattern is indeed similar for estimates near
the level IIT cutoff in panel (b). Here, the estimate is again insignificant and near zero in
2006, and positive and similar in magnitude in all other years, with the exception of the
2009 grade 7 cohort. To my knowledge, there is no reason that the 2009 exam year differed
with respect for 8th grade Algebra assignment for students around the level III but not the
level IV threshold, so this is possibly just a blip in the data. For this reason, the 2009 grade
7 cohort is still included in all baseline estimates.

Baseline Specification

To estimate the effect of 8th grade Algebra enrollment on later outcomes I build on the
specification in equation . Local linear regressions are estimated within a narrow win-
dow around both proficiency thresholds, separately for the level IIT and level IV thresholds.
The first stage and reduced form equations give the raw discontinuities in 8th grade Alge-
bra enrollment and the outcome of interest, respectively, from crossing a given proficiency
threshold:

Aics = aSS + Qfs + BFSZics + 55892'03 + 5fsgics * Zics + Xz{CSFFS + Echi ( .
Y;jcs - O‘E{F + ¢5RF + ﬁRFZiCS + 5(1;{F9ics + 5{{}?92’05 * Zics + Xz{CSFRF _I' 65;5 (34)

Here ¢ denotes student, ¢ denotes cohort, and s denotes school. Again, the running
variable, 0;.,, is the student’s 7th grade math score. Enrollment in Algebra in 8th grade is
denoted by A;.s. As mentioned in Section [3.4] controls are included in all baseline estimates.
Xise includes controls for prior test scores (grade 3 to grade 6), race, gender, free lunch
status, limited english proficiency (LEP) status, and parental education. To account for
any differences in the relationship between 7th grade math scores and 8th grade Algebra
tracking across schools and cohorts, school and cohort fixed effects are included. Following
the convention of Lee and Lemieux (2010)), the “Local Average Treatment Effect” (LATE)
(Angrist et al., [1996) of tracking into 8th grade Algebra can be estimated via local linear
regressions in the following Two-Stage-Least-Squares (2SLS) system, using an indicator for
reaching a particular 7th grade math proficiency threshold p, Z;s = 1[0;.s > pl|, as an
instrument for early enrollment in Algebra, A;.:

Aics - O-/SS + ¢§S + BFSZics + 5559@5 + 5%:801‘05 * Zics + Xz',csFFS + efci ()
}/;cs = O + ¢s + /EAiCS + 50‘91'03 + 5101'03 * Zics + Xz{csr + €ics (35)
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As with the first stage estimates reported in Table estimated LATESs from this 2SLS
system are estimated within a small window of 5 points on either side of the proficiency
cutoff. I report estimates from local linear regressions in a tight bandwidth around the profi-
ciency thresholds, where the linear function fits the data quite well (Figure . Results are
generally robust to alternative choices of bandwidth or the use of IK “optimal” bandwidths
(Imbens and Kalyanaraman, 2012)@ As the Tth grade scale scores are discrete and there are
differences in scaling across years, I follow the advice of Lee and Card (2008) and two-way
cluster standard errors by scale score-by-exam year, and by school.

3.5 Results

Short-Run Test Score Outcomes

Much of the prior literature on Algebra acceleration has found negative impacts on ini-
tial performance in Algebra and on standardized 8th grade test scores. Table presents
estimates of the effect of 8th grade Algebra enrollment on standardized 8th grade test scores,
as well as state-standardized EOC test scores in Algebra and English. Columns (1) and (2)
report the mean of the dependent variable, just before the level IIT and level IV thresholds,
respectively. In column (3) reports the mean (OLS) effect, from a regression using obser-
vational variation in 8th grade Algebra participation and controls from all prior test score
from grade 3 to grade 7 in math, reading, and science, as well as controls for demographics.
Columns (4) and (5) report the reduced form (equation (3.4])) and 2SLS estimates (equation
(3.5)) for the level III threshold; Columns (5) and (6) repeat the same for the level IV thresh-
old. OLS results suggest positive effects of 8th grade Algebra on 8th grade test scores, 9th
grade English 1 test scores, but no effect on Algebra test scores.ﬁ However, these estimates
are likely biased by positive selection, even conditional on prior test scores, and mask any
potential heterogeneity in the causal effect for students of differing ability.

Indeed, the 2SLS estimates at both discontinuities differ from the OLS estimates. At the
level 11T discontinuity, the effect of early Algebra acceleration is extremely negative. Students
score 1.23 SDs (SE 0.47) lower in Algebra®, and 1.18 SDs (SE 0.31) lower in 8th grade math.
Point estimates for reading in 8th grade, and English in 9th grade are also large and negative,
but imprecisely estimated. Students who cross the level III threshold are only marginally

24Baseline estimates are shown for a bandwidth of 5 scale score points, although results are robust to
different choices of bandwidth. See Appendix Figures Including higher order polynomials
in the running variable and using a larger bandwidth produces estimates that are qualitatively similar, but
very imprecise.

25The Algebra I EOC is taken at the end of the year by all students who enrolled in Algebra, in any
grade. For students who took the exam multiple times (typically if the course was failed initially and then
retaken), only the first exam score is used. For students who enroll in 8th grade Algebra, both the Algebra
I EOC exam and the G8 Math EOG exams are taken at the end of the year.

26Reduced form figures for Algebra I exam scores near the level III threshold are shown in panel (a) of

Appendix Figures and
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proficient in 7th grade math, and near the 30th percentile overall within the state. That the
effect for these students is highly negative is therefore not surprising and entirely consistent
with the aforementioned literature that has examined district-level expansions among low-
achieving students: students who are only marginally proficient at their grade level are
ill-prepared for early acceleration. Moreover, these students are generally very near or at
the bottom of the achievement distribution within their class, which could be detrimental
relative to the counterfactual of being towards the middle or top of the distribution in a
less-advanced classroom.

For students at the level IV margin, the effects are quite different. Panel (a) of Figure
reports the reduced form relationship between grade 7 math scores and Algebra test
scores, and shows little evidence of any sizable discontinuity in Algebra test scores across
the level IV threshold.E] Indeed, 2SLS estimates for Algebra, 8th grade math, and 8th
grade reading standardized exams are small and insignificant. Importantly, this is not a
“null” effect; students are getting essentially the same achievement a year earlier, despite
the curricular intensification. In addition, there is a large and significant effect on 9th grade
English test scores (0.37 SDs, SE 0.18). This effect seems a bit puzzling, given that the 8th
grade Algebra acceleration only initially affects the math curriculum. However, advanced-
track course taking at many schools is highly correlated across subjects, as many students
who take advanced courses in one subject are tracked into advanced courses in other subjects
as well. Indeed, evidence in Table appears to reconcile this somewhat: not only does
8th grade Algebra enrollment increase the likelihood of enrolling in an advanced 9th grade
math course, but it also is associated with a 13 percentage point (SE 5.9) enrollment in an
advanced English course.

Tracking Persistence and Course Outcomes

For high-ability students, early Algebra has no discernible positive or negative short-run
effect on test score outcomes, while for low-ability students, early acceleration appears to
be especially detrimental to standardized math test scores. However, the goal of 8th grade
math acceleration is not to maximize 8th and 9th grade test scores, but rather to increase
overall mathematics skills and preparation through the end of high school. Table|3.4] presents
evidence on the effects of 8th grade Algebra enrollment on subsequent course trajectories in
high school. Students at the level III threshold are 31 percentage points (SE 8) more likely
to enroll in an advanced math course in 9th grade, relative to a baseline mean of 2% just
below the threshold. On the other hand, higher-achieving students near the level IV cutoff
are 64 percentage points (SE 6) more likely to enroll in an advanced math class, and 13
percentage points (SE 5.9) more likely to enroll in an advanced English course in 9th grade.

27As the strong upward slopes in the relationships between the outcomes of interest and 7th grade test
scores make small discontinuities difficult to see visually, reduced form figures in Figure |3.4| are “zoomed-in”
by de-trending the outcomes with respect to prior-year test scores. “Raw” reduced form figures for the level
IV threshold are reported in Appendix Figure
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Upon completion of Algebra, the typical high school course trajectory is Geometry, Alge-
bra II, Pre-Calculus (sometimes referred to as Analysis) and finally Calculus, although the
order of Geometry and Algebra II is sometimes reversed. Thus, for students who enroll in
Algebra in 8th grade and stay “on track”, a student will have completed both Geometry and
Algebra II by grade 10, Pre-Calculus by grade 11, and Calculus by grade 12. Columns 3-5
provide estimates of this track persistence. For low-achieving students, there appears to be
only modest persistence in the advanced mathematics track in 9th and 10th grade, with no
significant effects by 11th and 12th grade. They are 39 percentage points (SE 18) more likely
to have completed both Geometry and Algebra II by grade 10, but effects on Pre-Calculus
and Calculus in grades 11 and 12 are small and insignificant. Conversely, for high-achieving
students, the mathematics course pipeline appears to have much less leakage. Students are 61
percentage points (SE 8) more likely to make it through Geometry and Algebra II by grade
10 and 54 percentage points (SE 8) more likely to have made it to Pre-Calculus. By the end
of high school, 8th grade Algebra enrollment is associated with a 41 percentage point (SE 9)
increase in Calculus enrollment, relative to a baseline of only 15% just below the threshold.
These effects for high-achieving students are illustrated graphically in Figure , panel (a).
High-achieving students also take more difficult versions of these courses: the effect on total
number of AP courses taken is positive and significant, although the effect is less than one
(0.35 additional AP math courses, SE 0.14). Effects on non-math AP courses are similar
in magnitude, but imprecise and insignificant. Overall, for high-achieving students near the
80th percentile, early acceleration into Algebra appears to be highly beneficial for increasing
both the rigor and the overall mathematics preparation through the entirety of high school.
Low-achieving students see a slight initial increase in mathematics enrollment in 9th and
10th grades in Geometry and Algebra II, but by 11th grade, low-achieving students who
were tracked into early Algebra were no more likely to remain on the advanced math track
than their similarly low-scoring peers who were not accelerated in 8th grade.

College Entrance Exams

Table and panel (b) of Figure report estimates for ACT and SAT exam scores.
Beginning in 2013, all North Carolina 11th graders in public schools took the ACT as a
part of the standard course of study. Conversely, participation in the SAT is selected, and
only about one-third of North Carolina high school students took the SAT during the sample
window, with most taking the exam in 11th or 12th grade. While this creates the potential for
selection bias, I find no differences in the propensity to take the SAT from 8th grade Algebra
acceleration for students near either proficiency margin in 2SLS estimates. Moreover, for
high-achieving students near the level IV threshold results on both the ACT and SAT are
very similar. For these students early Algebra acceleration is associated with very large
gains on both college entrance exams, particularly on the math subsections, on the order of
roughly 0.4 to 0.5 SDs (Figure [3.5] panel b).

I find little evidence of any positive effects on either ACT or SAT scores for low-achieving
students near the level III proficiency threshold. With the exception of ACT Science, for
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which the estimated effect is quite large and marginally significant, estimated effects are
statistically insignificant and very imprecisely estimated. For most outcomes I cannot rule
out large effects, although the lack of a long-run college entrance exam effect for low-achieving
students from early Algebra acceleration is perhaps to be expected: as shown in Tables
and [3.4], these students experienced large initial declines in math performance, and saw only
a modest increase in their likelihood to remain on the advanced math track through only
9th and 10th grade.

For students at the level IV threshold, the estimates indicate that college entrance exam
performance was significantly improved by early Algebra. Early Algebra is associated with
gain of 2.97 points on the ACT Math subsection (SE 0.71), and a total gain 2.53 points
(SE 0.89) on the overall composite. The ACT is scored on a scale from 1 to 36, and the
typical standard deviation is around 6 points, meaning that this increase corresponds to
roughly a 0.5 SD effect on math, and a 0.4 SD effect overall. The overall composite score
gain comes no only through the increase in math, but from marginally significant increases in
ACT English/Writing and Reading, and a smaller positive but insignificant increase in ACT
Science. On the SAT, math scores increase by 48.7 points (SE 14.9), verbal scores by 42.8
points (SE 17.4), and writing scores by 75.8 points (SE 7.8). These effects are consistent with
ACT estimates and indicate that early Algebra is associated with roughly 0.5 SD increases on
Math subsections of college entrance exams, with large gains onto other non-math sections as
well. Why would early Algebra be associated with gains on non-math subsections? Recall in
Table [3.4] that students were also more likely to be enrolled in advanced English in 9th grade,
and saw large gains on 9th grade English exams as well. In addition to overall curricular
rigor increasing, peer effects may also be important, as students who are consistently enrolled
in advanced courses in high school are surrounded by peers of overall higher quality.

End-of-High School Outcomes

Table reports estimates for end-of-high school outcomes, including graduation, high
school GPA, and post-high school college enrollment and major intentions. A student’s GPA
is measured at the end of high school, and is scaled on the standard 0 to 4 scaleF_g] College
enrollment intentions are collected from a student survey at the time of graduation. STEM
major intentions are computed using information from a survey collected at the time of SAT
taking, only available for the subsample of students who took the SAT during high school.

For students at both proficiency thresholds, the overall effect on the probability of high
school graduation is small and insignificant. While passing Algebra is typically a graduation
requirement, the timing of Algebra enrollment, whether in 8th or 9th grade, or even later, ap-
pears to have little impact on this margin of high school completion. Low-achieving students
who were accelerated in 8th grade see no higher or lower GPAs by the end of high school,
and report no greater intentions to enroll in either 2 or 4 year postsecondary institutions, nor

28Some high schools assign higher GPA marks for equivalent grades in advanced or honors versions of
certain courses. Here I use an “unweighted” GPA where the mapping between course grade and GPA marks
is consistent between courses of any given level.
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to pursue a STEM major post graduation. Similarly, high-achieving students accelerated in
8th grade see no effect on GPA, but this is not necessarily a null effect: equivalent grades in
higher level, more rigorous courses is indicative of positive gains in both mathematics and
overall academic skills. Recall that these students generally persisted on the advanced math
track, with over 40% reaching calculus by the end of high school, and many enrolling in AP
versions of math courses.

Estimates for students near the level IV threshold on both 2 and 4 year college inten-
tions variables are large but insignificant. Point estimates appear to indicate a substitution
between 2 and 4-year college, though effects are imprecise: the point estimate on 4-year
college intentions is 17 percentage points (SE 12), with the estimated effect on 2-year college
intentions nearly equal and opposite, -15 percentage points (SE 13). Notably, the margin
for improvement in college enrollment for high-achieving math students is somewhat small.
Approximately 84% of these students intended to enroll in college post graduation, with
two-thirds stating the intention to pursue a 4-year postsecondary degree. On the other
hand, relatively few students at this margin plan on pursuing STEM majors. The effect of
early Algebra on STEM intentions is substantial. Estimates indicate a 33 percentage point
increase (SE 13) in postsecondary STEM intentions, relative to a baseline mean of 23% just

below the level IV threshold.

Heterogeneity: Student-level

Overall, 8th grade Algebra acceleration leads to large gains in mathematics course-taking
and college entrance exams among high-achieving students, with little indication of any
negative short-run test score effects. Low-achieving students, conversely, experience large
initial test score losses and limited mathematics track persistence, with little evidence of any
end of high school gains (or losses). How did these effects at both prior test score margins
vary by student Characteristicsﬂ Tables and report heterogeneity in 2SLS estimates
at the level IV and level IIT margins, respectively. Each column reports 2SLS estimates from
equation (3.5)) where A;. is interacted with student characteristics, and is instrumented with
Z;.s interacted with student Characteristicsm

Table [3.7] shows some indication heterogeneity in effects for high-achieving students by
gender, race, free-lunch eligibility, and parental education, although most differences are
small in magnitude. ACT Math and STEM major effects are larger for boys than girls,
although advanced math effects are slightly larger for girls. Black and Hispanic students
saw larger gains in 9th grade advanced math propensity, ACT math scores, and in 4 year

29 Additional estimates of heterogeneity in 2SLS effects by school and district characteristics are reported
in Appendix Tables and @}

30Here, estimates are produced from interactions in the pooled model, which restricts the coefficients on
the trends in the running variable (1, d2) and the included covariates (T') to be equal for all students, while
allowing for g to vary. Heterogeneous effects could also be estimated by running models separately for each
category, which would allow for all coefficients to vary by student demographic subcategory. Results are
very similar from either approach.
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college intentions. When split more directly by student socioeconomic status, estimates
indicate that more advantaged students generally see larger gains, with larger effects on
most outcomes for non-free lunch students and students of college graduates, particularly in
course-taking (both advanced in 9th grade and calculus by 12th grade).

For low-achieving students, heterogeneity by student demographic subgroup is somewhat
consistent with that for high-achievers. Table|3.8|shows that persistence into advanced math
in 9th grade is larger for girls than boys, and is larger among non-free lunch students and
students with college educated parents. Similarly, the negative effects on initial Algebra test
scores are worse for Black and Hispanic students, and for students with non-college educated
parents, although that difference is not statistically significant (p = 0.11). Still, the mag-
nitude of these differences is only small overall; the evidence across subgroups consistently
indicates that accelerated students near the level III threshold fared poorly on initial test
scores and saw little to no improvements in course-taking, college entrance exam scores, or
postsecondary intentions.

The final panel of both Tables and shows results split by 6th grade math achieve-
ment level. In Table the results for high-achieving 7th graders are split by whether a
student was high-achieving (level IV) in grade 6 math or not. In Table , results are split
by whether a student was middle or high-achieving (levels 3 or 4) in grade 6 or not. Given
that test scores are noisy measures of student ability, heterogeneity by earlier achievement
can provide an additional test of heterogeneity in the effect of early Algebra by mathematics
ability. Results in both tables reflect the general pattern of results reported thus far. Among
high-achieving students in 7th grade, those who were also high-achieving in grade 6 math
saw even larger gains in course taking and ACT math scores; among low-achieving students
in 7th grade, those who were also low-achieving in grade 6 math experienced larger initial
losses in test scores, and slightly worse persistence, although these differences are not statis-
tically significant. Still, the magnitude of these differences is small (and often statistically
insignificant) relative to the difference between pooled estimates of the effects at the level
[T and level IV thresholds.

3.6 Comparing RD and Observational LATEs

Estimates of the causal effect of 8th grade Algebra acceleration for students at different
7th grade test score proficiency threshold indicate substantial heterogeneity in the effect by
prior achievement. Moreover, as indicated in Tables[3.3] [3.4], 3.5, and [3.6] estimates also tend
to differ substantially from OLS estimates using observational variation. For low-achieving
students, RD estimates around the level III threshold are consistent with the idea that
observational estimates of 8th grade Algebra acceleration suffer from positive selection bias.
For high-achieving students, however, the pattern is reversed: RD estimates at the level IV
threshold are generally much larger than the observational estimates, most notably for effects
on ACT and SAT scores, pre-calculus and calculus enrollment, and STEM major intentions.
These observational estimates, as with most reported in the prior literature, are estimates of
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effects pooled over the entire distribution of student ability among 8th grade Algebra takers.
Even in the absence of selection bias, pooled observational estimates mask any heterogeneity
in the effects, and differences between observational and quasi-experimental estimates may
derive from differences in prior student ability among the population studied.

Figure plots estimated LATEs from Tables [3.3] [3.4] [3.5], and at both the level
ITT and level IV proficiency thresholds, as well as estimates using observational variation,
allowing the effect to vary non-parametrically by decile of 7th grade math achievement.
Specifically, I estimate:

Yzcs = O + ¢s + Z BdAzcs zcs — + Z 5d]l ics + X;CSF + €ics (36)

Here, 0%, denotes a student’s 7th grade math score decile. Xics includes controls for all
other test scores from grades 3-6 in math, science, and reading, as well as grade 7 reading
scores and demographic background variables. As in equation , cohort (a.) and school
(¢s) fixed effects are included. Figure [3.6|plots each of the (3;’s, along with the RD estimates
for the level III and level IV thresholds, which are nearest the 30th and 80th percentiles,
respectively.

Results presented in Figure indicate that there is substantial heterogeneity in obser-
vational estimates of the effect of 8th grade Algebra by prior achievement decile. For most
outcomes, RD estimates at both discontinuities are similar to the analogous (; estimated in
equation (3.6). Early acceleration into Algebra in 8th grade is beneficial across a number
of test score, course-taking, and post-high school outcomes for students in the upper half
of the distribution, and in the top deciles in particular. For students below 50th percentile,
however, early Algebra appears to be less beneficial. Observational estimates indicate neg-
ative impacts for these students on initial Algebra test scores, and the RD estimate from
the level III threshold is even more negative than the corresponding OLS estimate. The
positive benefits of early Algebra on ACT scores and calculus enrollment only appear among
students in the top half of the distribution, and in both of these cases RD estimates at
the 80th percentile are actually larger than the corresponding OLS estimate. Overall, both
observational and RD estimates in this paper indicate that the effects of 8th grade Algebra
depend crucially on the mathematics ability and level of preparation of the student.

3.7 Conclusion

The timing of a student’s first exposure to Algebra remains the most important and con-
sequential mathematics curricular divergence in US public K-12 education. Students who are
accelerated into Algebra in 8th grade generally experience a more rigorous math curriculum,
are on track to reach calculus by the end of high school, and are in classrooms with higher
ability peers on average. Often referred to as a “gateway” into selective high education,

31Relative to all North Carolina 7th graders tested during the sample period.
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efforts to increase mathematics skills and college preparation in secondary schools often fo-
cus on the timing of a student’s enrollment in Algebra. Despite this importance, the prior
literature on the effects of 8th grade Algebra on student outcomes has been mixed and in-
conclusive. The best available evidence to date comes from studies using quasi-experimental
variation, but most only examine one or a small number of districts, and to date have been
unable to follow students through the end of high school or examine effects on college readi-
ness and post-high school college and major decisions. In this paper I provide credible new
estimates of heterogeneous causal effects of 8th grade Algebra acceleration using adminis-
trative data from nearly all North Carolina public school students from the 2007-2011 7th
grade cohorts.

RD estimates from two discontinuities near the 30th and 80th percentile in the 7Tth grade
math test score distribution provide evidence of large positive impacts for high-achieving
students, but large negative effects for low-achieving students. Low-achieving students see
large initial math test score losses, with little persistence on the advanced math track in high
school, and no evidence of end-of-high school gains. For high-achieving students, early Alge-
bra causes no detrimental achievement effect initially, and leads to large gains in mathematics
course taking and rigor through high school. By the end of high school, high-achieving 7th
graders with earlier exposure to Algebra see improvements in college entrance exam scores
and intentions to pursue a STEM major post-high school. Evidence on the college enrollment
margin is imprecise and less conclusive, but suggestive of substitution away from 2-year and
into 4-year postsecondary institutions. The estimated heterogeneity in the impacts of Alge-
bra acceleration in this paper can reconcile much of the conflicting evidence in the literature,
which can be attributed to differences in the mathematics preparation of the students under
consideration in a particular study.

Access to early Algebra among high-achieving students is surprisingly low: only about
half of students in the top quartile of 7th grade math achievement enroll in Algebra in
8th grade. Efforts to expand access to Algebra among such well-prepared, high-achieving
students could yield large improvements in mathematics skills, college preparedness, and
eventual STEM major enrollment. However, the findings of this paper suggest caution if
these efforts are targeted to students with lower mathematics ability and preparation: for
such students, early Algebra will be less beneficial and may even be counterproductive.
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3.8 Figures

Figure 3.1: End of HS Outcomes by G7 Math Score and G8 Algebra
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Notes: Figure shows the proportion of students who take Calculus in high school (panel a) or intend to go
to a 4-year college (panel b) for a given grade 7 math test score. Blue circles (red diamonds) indicate the
proportion at a given test score conditional on taking Algebra in 9th grade or later (in 8th grade). Horizontal
dashed lines report the mean of the outcome for all students, by Algebra enrollment timing. Vertical dashed
lines report the mean 7th grade test score for all students, by Algebra enrollment timing.
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Figure 3.2: G7 Math Score Distribution
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(b) By 8th Grade Algebra
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Notes: Panel (a) reports the distribution of 7th grade math test scores. Panel (b) reports the distribution
of Tth grade math scores for students who enroll in 8th grade Algebra (black outline) and for students who
enroll in Algebra in grade 9 or later (solid gray). Dashed vertical lines indicate state proficiency thresholds.
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Figure 3.3: First Stage Figures
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Notes: Figure shows the proportion of students who enroll in 8th grade algebra by grade 7 test score. Panel
(a) restricts to 7th grade math test scores within a 5-point window on either side of the level IV proficiency
threshold; panel (b) restricts to 7th grade scores within a 5-point window on either side of the level III
proficiency threshold. Solid lines report the linear fit to the data on either side of the thresholds in both
panels.
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Figure 3.4: Reduced Form: Level IV Threshold (De-trended)
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Notes: Figure reports reduced form relationship between grade 7 test scores and Algebra 1 test score (panel
a), 9th grade advanced math (panel b), ACT math scores (panel c¢), and STEM major intention (panel d)
within a 5-point window on either side of the level IV proficiency threshold. Variables on the y-axis are
de-trended with respect to a linear trend in 7th grade test scores below the level IV threshold. Solid lines
report the linear fit to the data on either side of the threshold in all panels.



CHAPTER 3. HETEROGENOUS EFFECTS OF ADVANCED MATH TRACKING 152

Figure 3.5: RD Estimates: Level IV Threshold
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Notes: Figure reports estimates of 5 from equation at the level IV threshold for course-pipeline and
end-of-high school outcomes (panel a), and test score outcomes (panel b). Outcomes in panel a are reported
in percentage point units; outcomes in panel b are reported in test score standard deviation units. See
Section [3.5]in the text for greater detail.
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Figure 3.6: LATEs by Prior Test Score Decile
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Notes: Figure plots estimates of 8 from equation at both the level III and level IV thresholds, and
estimates of 84 from equation 7 for Algebra 1 test score (panel a), 9th grade advanced math (panel b),
Calculus enrollment (panel ¢), ACT math scores (panel d), 4-year college intentions (panel e) and STEM
major intentions (panel f). See Section in the text for greater detail.
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3.9 Tables

Table 3.1: Summary Statistics

mean sd

G8 Algebra I 0.29  (0.46)

Prior Scores:

G7 math score (scale) 360.14  (9.13)

G6 math score (std) 0.06  (0.95)
G7 read score (std) 0.07  (0.95)
Demographics:

Black 0.27  (0.44)
Hispanic 0.09  (0.29)
Asian 0.02  (0.15)
Female 0.51  (0.50)
Free/reduced lunch 0.38  (0.49)
Parent HS dropout 0.08  (0.28)
Parent HS grad 0.38  (0.49)
Parent some college 0.24  (0.43)
Parent college grad 0.29  (0.46)
School/District:

G8 cohort size 209.50 (81.94)

School fraction G8 Algl 0.29  (0.15)
District fraction G8 Algl  0.29 (0.13)

Selected Outcomes:

Alg 1 Score 0.30  (0.93)
Adv Math G9 0.23  (0.42)
Take Calculus 0.13  (0.34)
College Intent: 4yr 0.46  (0.50)
STEM Major Intent 0.23  (0.42)
ACT Math 1947 (4.61)
Observations 430127

Notes: Table reports summary statistics for the main estimation sample, at the student-level. See Section
in the text for greater detail.
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Table 3.2: First Stage Results
(a) Level IV Cutoff
(1) (2) (3) (4)

Above L3 Threshold  0.050*  0.049"* 0.047***  0.044""
(0.027)  (0.006)  (0.002)  (0.003)

N 148795 148795 148795 148795
F-statistic 3.36 79.04 581.87  168.32
Sch FEs X X
Cohort FEs X X X
Controls X
Clust by Score X X X X
Clust by Sch X X

(b) Level IIT Cutoff

(1) (2) (3) (4)
Above L2 Threshold 0.034**  0.034* 0.033*** 0.035"
(0.015)  (0.010)  (0.010)  (0.011)

N 65884 65884 65884 65884
F-statistic 5.13 12.41 10.43 11.16
Sch FEs X X
Cohort FEs X X X
Controls X
Clust by Score X X X X
Clust by Sch X X

Notes: Table reports first stage estimates of 5 from equations , , and . Panel (a) reports
estimates of the level IV first stage discontinuity, while panel (b) reports estimates of the level III first stage
discontinuity. Column (1) corresponds to equation (3.1, and column (2) adds cohort fixed effects, column
(3) adds school fixed effects (equation (3.2)), and column 4 adds controls (equation (3.3)). Standard errors
are two-way clustered by school and test score-by-exam year. See Section in the text for greater detail.
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Table 3.3: Results: “Short-run” Outcomes

Mean of Depvar ~ OLS  Level 2/3 Cutoff Level 3/4 Cutoff

L2/3 L3/4 RF 2SLS RF 2SLS
Math:
G8 Math Score -0.53 0.53  0.08** -0.04"* -1.18**  0.00 0.10
(0.01)  (0.01)  (0.31) (0.00)  (0.08)
Algebra 1 Score -0.26 0.70 -0.01  -0.04** -1.23**  0.01 0.15
(0.01)  (0.01)  (0.47) (0.01) (0.22)
English/Reading:

G8 Reading Score  -0.46 046  0.03** -001  -0.35  0.00  0.11
(0.00)  (0.01)  (0.24) (0.01)  (0.12)
G9 English Score  -0.12  0.69  0.05* -0.01  -0.48 0.02*  0.37*
(0.00)  (0.01)  (0.37) (0.01)  (0.18)

Notes: Table reports estimates of the effect of 8th grade Algebra on 8th and 9th grade test score outcomes.
Dependent variables are test scores in 8th grade math (row 1), Algebra I (row 2), 8th grade reading (row 3),
and 9th grade English (row 4). Columns (1) and (2) report the mean of the dependent variable within 2 scale
score points below the 7th grade level III and level IV proficiency levels, respectively. Column (3) reports
estimates of the effect using observational variation in 8th grade Algebra enrollment using the entire sample.
Columns (4) and (6) report reduced form estimates of S%F from local linear regressions corresponding to
equation . Columns (5) and (7) report RD estimates of 8 using 2SLS, corresponding to equation .
Columns (4) and (5) correspond to the level III threshold; columns (6) and (7) correspond to the level IV
threshold. All RF and 2SLS effects are estimated within a bandwidth of 5 scale score points around the
relevant proficiency threshold. Standard errors are two-way clustered by school and test score-by-exam year.
See Sections [3.4] and [3.5] in the text for greater detail.
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Table 3.4: Results: Course Progression Outcomes

Mean of Depvar ~ OLS  Level 2/3 Cutoff Level 3/4 Cutoff

L2/3 L3/4 RF 2SLS RF 2SLS

Advanced, G9:
Adv Math G9 0.02 0.33 0.56*** 0.0  0.31**  0.03"* 0.64™**
(0.01) (0.01)  (0.08) (0.00)  (0.06)
Adv Reading G9 0.17 0.60 0.20*  0.00 0.14 0.01*  0.13*

(0.01) (0.01) (0.15)  (0.00)  (0.06)

Mathematics Pipeline:

Alg 2/Geom by G10 0.07 0.47 0.63*  0.01 0.39*  0.03**  0.61**
(0.01) (0.01)  (0.18) (0.00)  (0.08)
Pre-Calc by G11 0.03 0.31 0.35™* 0.00 0.11 0.02***  0.54™
(0.01) (0.00)  (0.12) (0.00)  (0.08)
Calculus by G12 0.01 0.15 0.20*  -0.00 -0.07  0.02** 041"

(0.01) (0.00) (0.06)  (0.01)  (0.09)

AP Course-Taking:

Number AP (Math) 0.01 0.21 0.28** -0.00 -0.01 0.02**  0.35*
(0.01)  (0.00)  (0.06)  (0.01) (0.14)
Number AP (Non-Math) 0.18 0.82  0.41** 0.03* 0.74 0.02 0.46
(0.02) (0.01) (0.54)  (0.02)  (0.41)

Notes: Table reports estimates of the effect of 8th grade Algebra on high school course-taking outcomes.
Dependent variables are enrollment in 9th grade advanced math (row 1), advanced reading (row 2), Algebra
2 and Geometry by grade 10 (row 3), Pre-Calculus by grade 11 (row 4), Calculus by grade 12 (row 5), total
number of AP math classes (row 6), and total number of non-math AP classes (row 7). Columns (1) and (2)
report the mean of the dependent variable within 2 scale score points below the 7th grade level III and level
IV proficiency levels, respectively. Column (3) reports estimates of the effect using observational variation in
8th grade Algebra enrollment using the entire sample. Columns (4) and (6) report reduced form estimates of
BRE from local linear regressions corresponding to equation (3.4). Columns (5) and (7) report RD estimates
of 3 using 2SLS, corresponding to equation (3.5). Columns (4) and (5) correspond to the level III threshold;
columns (6) and (7) correspond to the level IV threshold. All RF and 2SLS effects are estimated within a
bandwidth of 5 scale score points around the relevant proficiency threshold. Standard errors are two-way
clustered by school and test score-by-exam year. See Sections and in the text for greater detail.
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Table 3.5: Results: ACT and SAT

(a) Short-Run

Mean of Depvar ~ OLS  Level 2/3 Cutoff Level 3/4 Cutoff
L2/3 L3/4 RF  2SLS  RF  2SLS

ACT:

ACT Composite 1510 2020  1.39**  0.05  2.89  0.11%* 253
(0.04) (0.07) (3.72)  (0.04)  (0.89)

ACT Math 16.10  20.80  1.62** -0.02  -1.12  0.13*** 2.97"
(0.04) (0.06) (3.33)  (0.03)  (0.71)
ACT Science 1550 2010 1.24** 0.5  843* 007  1.65

(0.04)  (0.08) (4.21)  (0.05) (1.19)
ACT Eng/Writing 1290 1820  1.26** 0.03 192 007" 167
(0.03)  (0.08) (4.30)  (0.04)  (0.92)
ACT Reading 15.10 2030  1.33** 001 068  0.13*  3.03"
(0.04) (0.10) (5.29)  (0.07)  (1.67)

SAT:

Took SAT 0.19 0.35 0.04***  -0.00 -0.06 -0.00 -0.00
(0.00) (0.01) (0.37)  (0.01)  (0.27)

SAT Math 400.00 514.00 15.52***  0.92 15.94 2.04***  48.72%**
(0.65) (1.87) (31.71) (0.72) (14.88)

SAT Verbal 402.00 497.00 8717  -2.72 -47.07 1.80**  42.84**
(0.59)  (1.91) (36.95) (0.91) (17.41)

SAT Writing 386.00 472.00 13.39"** -0.41 -7.17 318" 7H.77*

(0.67) (1.23) (15.40) (0.62) (7.83)

Notes: Table reports estimates of the effect of 8th grade Algebra on college entrance exam scores.
Dependent variables are test scores on the ACT composite (row 1), ACT math (row 2), ACT science (row
3), ACT English/writing (row 4), ACT reading (row 5), SAT math (row 7), SAT verbal (row 8), SAT
writing (row 9), and an indicator for taking the SAT (row 6). Columns (1) and (2) report the mean of the
dependent variable within 2 scale score points below the 7th grade level III and level IV proficiency levels,
respectively. Column (3) reports estimates of the effect using observational variation in 8th grade Algebra
enrollment using the entire sample. Columns (4) and (6) report reduced form estimates of 3% from local
linear regressions corresponding to equation . Columns (5) and (7) report RD estimates of /3 using
2SLS, corresponding to equation (3.5). Columns (4) and (5) correspond to the level III threshold; columns
(6) and (7) correspond to the level IV threshold. All RF and 2SLS effects are estimated within a bandwidth
of 5 scale score points around the relevant proficiency threshold. Standard errors are two-way clustered by
school and test score-by-exam year. See Sections and in the text for greater detail.
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Table 3.6: Results: End of High School

Mean of Depvar ~ OLS  Level 2/3 Cutoff Level 3/4 Cutoff

L2/3 L3/4 RF 2SLS RF 2SLS

End of High School:
Graduated 0.82 0.91 0.00 0.00 0.05 -0.00 -0.06
(0.00) (0.01) (0.24)  (0.00)  (0.06)
GPA (unweighted) 2.40 3.10 0.13***  0.00 0.12 -0.00 -0.02

(0.00) (0.01) (0.22)  (0.01) (0.13)

Post-High School:

College Intent: 2yr 053 033 -0.10"* 0.00 013  -001 -0.15
(0.00) (0.01) (0.25) (0.01) (0.13)
College Intent: 4yr 027 057 0.2 -0.00 -008 001  0.17
(0.00) (0.00) (0.13)  (0.01) (0.12)
STEM Major Intent 017 023 002 -0.01 -0.10 0.01** 0.33*

(0.00) (0.01) (0.22)  (0.01) (0.13)

Notes: Table reports estimates of the effect of 8th grade Algebra on end-of-high school outcomes. De-
pendent variables are indicators for graduation (row 1), 2-year college intentions (row 3), 4-year college
intentions (row 4), STEM major intentions (row 5), and cumulative, unweighted high school GPA (row 2).
Columns (1) and (2) report the mean of the dependent variable within 2 scale score points below the 7th
grade level III and level IV proficiency levels, respectively. Column (3) reports estimates of the effect using
observational variation in 8th grade Algebra enrollment using the entire sample. Columns (4) and (6) report
reduced form estimates of S from local linear regressions corresponding to equation . Columns (5)
and (7) report RD estimates of 8 using 2SLS, corresponding to equation . Columns (4) and (5) corre-
spond to the level III threshold; columns (6) and (7) correspond to the level IV threshold. All RF and 2SLS
effects are estimated within a bandwidth of 5 scale score points around the relevant proficiency threshold.
Standard errors are two-way clustered by school and test score-by-exam year. See Sections and in
the text for greater detail.
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Table 3.7: Heterogeneity by Student Characteristics (Level IV)

Alg 1 Score  Adv Math G9 Calculus ACT Math 4yr Coll Intent STEM Intent

By gender:
Boys 0.13 0.62"** 0.42*** 3.25"** 0.18 0.37***
(0.23) (0.05) (0.09) (0.73) (0.12) (0.13)
Girls 0.16 0.66™*" 0.39"** 2.63"*" 0.15 0.27**
(0.22) (0.06) (0.10) (0.70) (0.12) (0.12)
P-value 0.26 0.01 0.33 0.00 0.09 0.00
By race:
Black/Hispanic 0.15 0.65"** 0.41*** 3.08"** 0.19 0.33**
(0.22) (0.06) (0.09) (0.70) (0.12) (0.13)
White/Asian/Other 0.10 0.59"** 0.41*** 2.30"" 0.01 0.33"*
(0.22) (0.06) (0.09) (0.75) (0.12) (0.14)
P-value 0.13 0.01 0.99 0.00 0.00 0.90
By FRL status:
FRL 0.09 0.56™** 0.19 2.55™** 0.12 0.29**
(0.25) (0.07) (0.14) (0.78) (0.12) (0.11)
No FRL 0.05 0.69™** 0.27** 3.10™** 0.21* 0.24**
(0.25) (0.07) (0.12) (0.66) (0.12) (0.10)
P-value 0.32 0.00 0.06 0.03 0.01 0.34
By parental education:
Parent: No college 0.21 0.60™** 0.36"** 3.26"*" 0.20 0.26™
(0.15) (0.08) (0.10) (0.79) (0.13) (0.14)
Parent: college grad 0.25" 0.69™** 0.44*** 3.51"* 0.20 0.24*
(0.15) (0.08) (0.11) (0.74) (0.13) (0.15)
P-value 0.12 0.00 0.00 0.26 0.93 0.73
By G6 Math Level:
Low/Mid G6 Math 0.15 0.57"** 0.31%** 2477 0.14 0.35"*
(0.24) (0.06) (0.11) (0.65) (0.12) (0.14)
High G6 Math 0.18 0.63"** 0.38%** 2.83™** 0.16 0.33**
(0.23) (0.06) (0.11) (0.63) (0.11) (0.13)
P-value 0.10 0.00 0.00 0.00 0.15 0.37

Notes: Table reports heterogeneity in level IV 2SLS effects for selected outcomes from Tables
and Each panel reports estimates of 8 from equation interacted with student characteristics.
The p-value on the difference between the coefficients is reported in the final row of each panel. Standard
errors are two-way clustered by school and test score-by-exam year. See Section [3.5]in the text for greater
detail.
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Table 3.8: Heterogeneity by Student Characteristics (Level I1I)

Alg 1 Score  Adv Math G9 Calculus ACT Math 4yr Coll Intent STEM Intent

By gender:
Boys -1.28" 0.25"** -0.10 -0.97 -0.24* -0.04
(0.54) (0.09) (0.08) (4.14) (0.13) (0.24)
Girls -1.217* 0.34*** -0.06 -1.16 0.00 -0.13
(0.43) (0.08) (0.06) (3.10) (0.12) (0.21)
P-value 0.59 0.00 0.29 0.87 0.00 0.36
By race:
Black/Hispanic -1.38"** 0.31"** -0.12 0.43 -0.11 -0.12
(0.53) (0.10) (0.08) (3.98) (0.16) (0.26)
White/Asian/Other -1.12%* 0.30"** -0.05 -2.21 -0.06 -0.08
(0.44) (0.08) (0.06) (3.35) (0.11) (0.18)
P-value 0.09 0.76 0.07 0.00 0.49 0.74
By FRL status:
FRL -1.81 0.24 -0.86™* -6.06 0.02 1.20
(1.44) (0.22) (0.41) (6.44) (0.36) (1.08)
No FRL -1.70 0.30" -0.61 -2.29 0.27 0.75
(1.14) (0.18) (0.40) (5.29) (0.31) (0.87)
P-value 0.76 0.24 0.04 0.01 0.00 0.25
By parental education:
Parent: No college -1.54* 0.23"* -0.10 -2.59 -0.42 -0.22
(0.48) (0.10) (0.07) (3.40) (0.26) (0.24)
Parent: college grad -1.17 0.37*** 0.05 0.18 0.05 -0.17
(0.31) (0.08) (0.05) (2.63) (0.21) (0.18)
P-value 0.11 0.01 0.00 0.01 0.00 0.56
By G6 Math Level:
Low G6 Math -1.48"* 0.28"** -0.08 -3.12 -0.22 -0.04
(0.55) (0.10) (0.07) (3.39) (0.18) (0.23)
Mid/High G6 Math -1.15™ 0.32™** -0.06 -1.03 -0.05 -0.02
(0.40) (0.07) (0.07) (2.63) (0.14) (0.23)
P-value 0.10 0.31 0.34 0.06 0.02 0.73

Notes: Table reports heterogeneity in level III 2SLS effects for selected outcomes from Tables
and Each panel reports estimates of 8 from equation interacted with student characteristics.
The p-value on the difference between the coefficients is reported in the final row of each panel. Standard
errors are two-way clustered by school and test score-by-exam year. See Section [3.5]in the text for greater
detail.
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3.10 Appendix Tables and Figures

Appendix Figures

Figure 3.7: G7 Math Scores and G8 Algebra
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(b) By school proportion enrolled in G8 algebra
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Notes: Figure shows the proportion of students who enroll in 8th grade algebra by grade 7 test score. Panel
(a) shows proportions for all 7th grade math test score values. Panel (b) reports these proportions, split
by whether a student’s school was above (red dot) or below (blue dot) the statewide school-level median
proportion of students enrolled in 8th grade Algebra. Dashed vertical lines indicate state proficiency cutoffs.
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Figure 3.8: First Stage, by Cutoff Location (Placebo)

(a) Level IV Cutoff

First Stage Estimates, by scale score
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(b) Level III Cutoff
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Notes: Figure reports estimates of 5 from equation where the proficiency cutoff is incorrectly placed at
different scale score values. Panel (a) reports estimates near the level IV threshold; the estimate at a score
of 367 corresponds to first stage estimate from column (4) of Table 3, panel (a). Panel (b) reports estimates
near the level III threshold; the estimate at a score of 355 corresponds to first stage estimate from column
(4) of Table 3, panel (b). Standard errors are two-way clustered by school and test score-by-exam year.
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Figure 3.9: First Stage, By Exam Year

(a) Level 3/4 Cutoff
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Notes: Figure reports estimates of 8 from equation (3.3)) separately by exam year. Panel (a) shows estimates
for the level IV threshold, and panel (b) shows estimates for the level III threshold. Standard errors are
two-way clustered by school and test score-by-exam year. See Section [3.4] and in the text for greater
detail.
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Figure 3.10: Reduced Form: Level III (De-trended)
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Notes: Figure reports reduced form relationship between grade 7 test scores and Algebra 1 test score (panel
a), 9th grade advanced math (panel b), ACT math scores (panel c¢), and STEM major intention (panel d)
within a 5-point window on either side of the level III proficiency threshold. Variables on the y-axis are
de-trended with respect to a linear trend in 7th grade test scores below the level III threshold. Solid lines
report the linear fit to the data on either side of the threshold in all panels.
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Figure 3.11: Reduced Form: Level III (Raw)
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Notes: Figure reports reduced form relationship between grade 7 test scores and Algebra 1 test score (panel
a), 9th grade advanced math (panel b), ACT math scores (panel c¢), and STEM major intention (panel d)
within a 5-point window on either side of the level III proficiency threshold. Solid lines report the linear fit
to the data on either side of the threshold in all panels.
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Figure 3.12: Reduced Form: Level IV (Raw)
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Notes: Figure reports reduced form relationship between grade 7 test scores and Algebra 1 test score (panel
a), 9th grade advanced math (panel b), ACT math scores (panel c¢), and STEM major intention (panel d)
within a 5-point window on either side of the level IV proficiency threshold. Solid lines report the linear fit
to the data on either side of the threshold in all panels.
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Figure 3.13: First Stage, By BW

(a) Level IV Cutoff

Results by Bandwidth: First stage (L 3/4)
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Notes: Figure reports first stage estimates of 8 from equation for different choices of bandwidth. Panel
(a) reports estimates for the level IV proficiency threshold; panel (b) reports estimates for the level IIT
proficiency threshold. The dashed vertical line indicates the baseline bandwidth used in the main estimates.
Standard errors are two-way clustered by school and test score-by-exam year. See Section [3.4]in the text for

greater detail.
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Figure 3.14: Results by BW: Level IV
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Notes: Figure reports 2SLS estimates of S from equation for different choices of bandwidth around the
level IV threshold.. Dependent variables are Algebra 1 test score (panel a), 9th grade advanced math (panel
b), ACT math scores (panel ¢), and STEM major intention (panel d). The dashed vertical line indicates the
optimal IK bandwidth. Standard errors are two-way clustered by school and test score-by-exam year. See

Section [34] in the text for greater detail.
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Figure 3.15: Results by BW: Level III
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Notes: Figure reports 2SLS estimates of S from equation for different choices of bandwidth around the
level I1I threshold.. Dependent variables are Algebra 1 test score (panel a), 9th grade advanced math (panel
b), ACT math scores (panel ¢), and STEM major intention (panel d). The dashed vertical line indicates the
optimal IK bandwidth. Standard errors are two-way clustered by school and test score-by-exam year. See

Section [34] in the text for greater detail.
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Figure 3.16: First Stage Figures - Detrended

(a) Level IV Cutoft
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Notes: Figure shows the (de-trended) proportion of students who enroll in 8th grade algebra by grade 7 test
score. Panel (a) restricts to 7th grade math test scores within a 5-point window on either side of the level
IV proficiency threshold; panel (b) restricts to 7th grade scores within a 5-point window on either side of the
level IIT proficiency threshold. 8th grade Algebra enrollment (y-axis) is de-trended with respect to a linear
trend in 7th grade test scores below the level IV threshold (panel a) or level III threshold (panel b). Solid
lines report the linear fit to the data on either side of the thresholds in both panels.
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Figure 3.17: North Carolina Test Score Scaling and Rounding

Grade 7 Form K Grade 7 Form L

Score EAP SD Score SE Score EAP SD Score SE
0 -2.10 0.52 332 5 0 -2.17 0.53 332 5
1 -2.06 0.53 333 5 1 -2.12 0.53 332 5
2 -2.01 0.53 333 5 2 -2.06 0.54 333 5
3 -1.95 0.54 334 5 3 -2.00 0.54 333 5
4 -1.90 0.54 334 6 4 -1.94 0.55 334 6
5 -1.83 0.55 335 6 5 -1.86 0.55 335 6
6 -1.76 0.55 336 6 6 -1.78 0.55 336 [
7 -1.68 0.55 337 6 7 -1.69 0.55 336 6
8 -1.60 0.55 337 6 8 -1.60 0.55 337 6
9 -1.51 0.55 338 6 9 -1.50 0.55 338 6
10 -1.41 0.55 339 6 10 -1.39 0.54 340 6
11 -1.30 0.54 340 6 11 -1.27 0.53 341 5
12 -1.18 0.53 342 5 12 -1.15 0.52 342 5
13 -1.06 0.51 343 5 13 -1.03 0.50 343 5
14 -0.94 0.49 344 5 14 -0.91 0.48 344 5
15 -0.82 0.47 345 5 15 -0.78 0.45 346 5
16 -0.70 0.44 347 4 16 -0.66 0.42 347 4
17 -0.58 0.41 348 4 17 -0.55 0.40 348 4
18 -0.46 0.38 349 4 18 -0.44 0.37 349 4
19 -0.35 0.36 350 4 19 -0.33 0.35 350 4
20 -0.25 0.33 351 3 20 -0.24 0.33 351 3
21 -0.16 0.31 352 3 21 -0.14 0.31 352 3
22 -0.06 0.30 353 3 22 -0.05 0.29 353 3
23 0.02 0.28 354 3 23 0.03 0.28 354 3
24 0.11 0.27 355 3 24 0.11 0.27 355 3
25 0.19 0.26 356 3 25 0.19 0.26 356 3
26 0.27 0.25 356 3 26 0.27 0.25 356 3
27 0.34 0.25 357 3 27 0.34 0.24 357 2

Notes: Figure shows the mapping between raw number correct (“score” in column 1) and scale score (“score”
in column 4) for the 7th grade math exam in 2008, forms K (left panel) and L (right panel). Solid red boxes
outline examples where rounding in scaling process converts two raw scores to the same scale score value.
Source: North Carolina Mathematics Tests: Edition 3 Technical Report, June 2008.
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Figure 3.18: North Carolina Test Score Report Sample

North Carolina End-of-Grade Test Student
Regular Test Administration Spring Grade Level 8
Individual Student Report School Name

Public Schools of North Carolina

System Name

@ Reading Scale Score

Achievement Level
\Y

@ Mathematics Scale Score

370 368 \Y
@ This student scored at or above Met State Gateway © This student scored at or above Met State Gateway
91 for Reading . 82 for Mathematics
ercent of students who took the ercent of students who took the
P YES " YES

test during the norming year (2008).

Reading Developmental Scale Score

330 340 350 360 370 380 330 340 350 360 370 380
®) achievement Lovets || i [ ]V (B) Achievement Levels L Jnlm W
Student d:l Student E.:l
School — | School ——
System + 3 System ——O—
State 2008 + } @ State 2006 —_—0—

Students performing at this level consistently perform in a superior man-
ner clearly beyond that required to be proficient at grade level work.

Students performing at Level IV demonstrate a highly proficient applica-

test during the norming year (2006).

Mathematics Developmental Scale Score

Students performing at this level consistently perform in a superior man-
ner clearly beyond that required to be proficient at grade level work.

Students performing at Level IV show a high level of understanding,

compute accurately, and respond consistently with appropriate answers
or procedures. They demonstrate flexibility by using a variety of
problem-solving strategies.

tion of reading comprehension skills required in the North Carolina Stan-
dard Course of Study at grade eight. Students make inferences and pre-

dictions, summarize information, generate questions and ideas, cite
entirrac iead svaluiata nrnhleme and cnlitinne and detarmine imnar-

Notes: Figure shows a sample score report for a hypothetical 8th grade student in North Carolina.

173
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Appendix Tables

Table 3.9: Covariate Balance

(a) Level IV Cutoff (b) Level IIT Cutoff
Above L3  P-Value Above L2 P-Value

Predicted Pr(G8 Alg) 0.003 0.108 Predicted Pr(G8 Alg) -0.003 0.269
(0.002) (0.002)

Black -0.001 0.638 Black 0.008 0.210
(0.003) (0.006)

Hispanic -0.001 0.695 Hispanic 0.006 0.300
(0.002) (0.006)

Asian 0.001 0.703 Asian 0.002 0.364
(0.001) (0.002)

Female -0.002 0.716 Female 0.001 0.951
(0.005) (0.008)

Free/Reduced Lunch -0.003 0.468 Free/Reduced Lunch 0.023*** 0.003
(0.005) (0.007)

Parent: College Grad 0.013*** 0.002 Parent: College Grad 0.005 0.469
(0.004) (0.006)

Parent: Some College -0.007 0.226 Parent: Some College -0.015" 0.063
(0.006) (0.008)

Parent: HS Grad -0.002 0.657 Parent: HS Grad 0.010 0.160
(0.005) (0.007)

Parent: HS Dropout -0.003 0.119 Parent: HS Dropout 0.000 0.912
(0.002) (0.004)

G7: Reading Score 0.001 0.833 GT7: Reading Score -0.003 0.772
(0.006) (0.011)

G6: Math Score 0.012** 0.017 G6: Math Score -0.014 0.171
(0.005) (0.010)

G6: Reading Score 0.005 0.395 G6: Reading Score -0.026* 0.055
(0.006) (0.013)

G5: Math Score 0.006 0.193 G5: Math Score -0.016 0.137
(0.005) (0.010)

G5: Reading Score -0.004 0.567 G5: Reading Score -0.023 0.148
(0.007) (0.016)

Gb: Science Score -0.017 0.506 Gb5: Science Score -0.024 0.522
(0.025) (0.037)

G4: Math Score 0.003 0.688 G4: Math Score 0.009 0.534
(0.006) (0.014)

G4: Reading Score 0.005 0.526 G4: Reading Score 0.002 0.907
(0.007) (0.015)

G3: Math Score 0.006 0.153 G3: Math Score -0.021 0.187
(0.004) (0.015)

G3: Reading Score 0.004 0.550 G3: Reading Score -0.031" 0.087
(0.007) (0.018)

Limited English Proficient -0.000 0.885 Limited English Proficient 0.004 0.404
(0.001) (0.004)

Notes: Table reports estimated discontinuities in selected prior test score and demographic outcomes at
the level IV (panel a) and level IIT (panel b) thresholds. Estimates are from regressions analogous to equation
(3.2), with pre-treatment variables as the dependent variable. Each row an presents estimate from a single
regression. In the first row in both panels the dependent variables are predicted values from a regression of
8th grade Algebra enrollment on all available pre-treatment variables. Standard errors are two-way clustered
by school and test score-by-exam year. See Section [3.4]in the text for greater detail.
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Table 3.10: Heterogeneity: School/District (Level IV)

Alg1 Adv Math G9 Calculus ACT Math 4yr Coll Intent STEM Intent

By School Poverty:

Sch: High Pov 0.15 0.63"** 0.40*** 3.04*** 0.17 0.30***
(0.22) (0.06) (0.09) (0.69) (0.12) (0.12)

Sch: Low Pov 0.14 0.66™* 0.43*** 2.78"** 0.16 0.37"*
(0.23) (0.06) (0.10) (0.78) (0.12) (0.14)

P-value 0.78 0.36 0.20 0.26 0.47 0.08

By Sch Achievement:

Sch: Low Ach 0.08 0.65"** 0.45** 2.66** 0.13 0.37"**
(0.21) (0.05) (0.09) (0.69) (0.11) (0.13)

Sch: High Ach 0.18 0.63"** 0.39*** 3.14%* 0.18 0.31**
(0.23) (0.06) (0.10) (0.73) (0.12) (0.13)

P-value 0.01 0.49 0.05 0.03 0.01 0.07

By School G8 Algebra Prop:

Sch: Low Prop Alg 0.10 0.63"* 0.40™** 275" 0.17 0.31*"
(0.21) (0.06) (0.09) (0.70) (0.11) (0.12)
Sch: High Prop Alg 0.22 0.67* 0.42*** 3.21" 0.16 0.35""
(0.24) (0.06) (0.09) (0.71) (0.13) (0.14)
P-value 0.01 0.15 0.63 0.03 0.51 0.20

By District Size:

Dist: Small 0.14 0.63"** 0.42%** 2.88"** 0.18 0.35***
(0.22) (0.06) (0.10) (0.72) (0.12) (0.13)

Dist: Large 0.16 0.66™* 0.39*** 3.07"* 0.15 0.29**
(0.22) (0.06) (0.09) (0.70) (0.12) (0.12)

P-value 0.51 0.19 0.49 0.33 0.08 0.04

Notes: Table reports heterogeneity in level IV 2SLS effects for selected outcomes from Tables
and Each panel reports estimates of S from equation interacted with school and district
characteristics. The p-value on the difference between the coefficients is reported in the final row of each
panel. Standard errors are two-way clustered by school and test score-by-exam year.
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Table 3.11: Heterogeneity: School/District (Level I1I)

Alg 1 Adv Math G9 Calculus ACT Math 4yr Coll Intent STEM Intent

By School Poverty:

Sch: High Pov -1.417 0.24** -0.12 0.70 -0.00 -0.09
(0.60) (0.11) (0.08) (5.17) (0.17) (0.32)
Sch: Low Pov 1,147 0.34%** -0.05 -1.66 -0.13 -0.10
(0.42) (0.08) (0.06) (2.93) (0.11) (0.16)
P-value 0.25 0.05 0.18 0.31 0.20 0.94

By Sch Achievement:

Sch: Low Ach 1147 0.34%** -0.05 -1.02 -0.10 -0.09
(0.45) (0.08) (0.06) (3.60) (0.11) (0.17)
Sch: High Ach -1.62** 0.17 -0.20 0.55 -0.00 -0.13
(0.76) (0.14) (0.12) (8.23) (0.20) (0.40)
P-value 0.18 0.02 0.07 0.74 0.40 0.86

By District Size:

Dist: Small -1.43* 0.30"** -0.26** -1.37 -0.18 -0.01
(0.63) (0.10) (0.12) (3.63) (0.18) (0.35)

Dist: Large -1.18*** 0.31%* -0.07 -1.09 -0.06 -0.09
(0.44) (0.08) (0.07) (3.28) (0.12) (0.22)

P-value 0.37 0.92 0.01 0.62 0.20 0.61

Notes: Table reports heterogeneity in level III 2SLS effects for selected outcomes from Tables
and Each panel reports estimates of § from equation interacted with school and district
characteristics. The p-value on the difference between the coefficients is reported in the final row of each
panel. Standard errors are two-way clustered by school and test score-by-exam year.
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Table 3.12: Results: “Short-run” Outcomes (No Controls)

Mean of Depvar ~ OLS Level 2/3 Cutoff  Level 3/4 Cutoff

L2/3 L3/ RF 2SLS RF 2SLS

Math Scores:
G8 Math Score -0.53 0.53 0.08***  -0.05*** -1.37*** 0.01**  0.19**
(0.01) (0.01) (0.41) (0.00) (0.09)
Algebra 1 Score -0.26 0.70 -0.01  -0.05™**  -1.39** 0.01 0.22

(0.01)  (0.01)  (0.55) (0.01) (0.22)

English/Reading Scores:

G8 Reading Score -0.46 0.46 0.03*** -0.02 -0.69 0.01 0.14
(0.00) (0.01) (0.46) (0.01) (0.13)
G9 English Score -0.12 0.69 0.05%** -0.02 -0.56 0.02**  0.36™*

(0.00)  (0.01)  (0.44)  (0.01)  (0.18)

Notes: Table reports estimates of the effect of 8th grade Algebra on 8th and 9th grade test score
outcomes, without controls. Dependent variables are test scores in 8th grade math (row 1), Algebra I (row
2), 8th grade reading (row 3), and 9th grade English (row 4). Columns (1) and (2) report the mean of the
dependent variable within 2 scale score points below the 7th grade level III and level IV proficiency levels,
respectively. Column (3) reports estimates of the effect using observational variation in 8th grade Algebra
enrollment using the entire sample. Columns (4) and (6) report reduced form estimates of S%F from local
linear regressions corresponding to equation (excluding control variables). Columns (5) and (7) report
RD estimates of 8 using 2SLS, corresponding to equation (excluding control variables). Columns (4)
and (5) correspond to the level III threshold; columns (6) and (7) correspond to the level IV threshold. All
RF and 2SLS effects are estimated within a bandwidth of 5 scale score points around the relevant proficiency
threshold. Standard errors are two-way clustered by school and test score-by-exam year. See Sections (3.4
and in the text for greater detail.
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Table 3.13: Results: Course Progression (No Controls)

Mean of Depvar ~ OLS  Level 2/3 Cutoff Level 3/4 Cutoff

L2/3 L3/4 RF 2SLS RF 2SLS

Advanced, G9:
Adv Math G9 0.02 0.33 0.56***  0.01*  0.30"** 0.03*** 0.67***
(0.01) (0.01) (0.08) (0.00) (0.05)
Adv Reading G9 0.17 0.60 0.20%** 0.00 0.06 0.01**  0.15**

(0.01)  (0.01) (0.16)  (0.00)  (0.07)

Mathematics Pipeline:

Alg 2/Geom by G10 007 047 063 001 039 0.03** 0.63**
(0.01)  (0.01)  (0.19)  (0.00)  (0.09)
Pre-Calc by G11 003 031 035" 000 011  0.03"* 0.56"*
(0.01)  (0.00) (0.11)  (0.00)  (0.09)
Calculus by G12 001 015  0.20%* -0.00* -0.07 0.02** 0.42"*

(0.01)  (0.00) (0.06) (0.01)  (0.08)

AP Course-Taking:

Number AP (Math) 0.01 0.21 0.28***  -0.00 -0.01 0.02**  0.39***
(0.01)  (0.00)  (0.06) (0.01)  (0.13)

Number AP (Non-Math) 0.18 0.82 0.41***  0.03*** 0.82 0.03 0.64
(0.02)  (0.01) (0.56)  (0.02)  (0.41)

Notes: Table reports estimates of the effect of 8th grade Algebra on high school course-taking outcomes,
without controls. Dependent variables are enrollment in 9th grade advanced math (row 1), advanced reading
(row 2), Algebra 2 and Geometry by grade 10 (row 3), Pre-Calculus by grade 11 (row 4), Calculus by grade
12 (row 5), total number of AP math classes (row 6), and total number of non-math AP classes (row 7).
Columns (1) and (2) report the mean of the dependent variable within 2 scale score points below the 7th
grade level IIT and level IV proficiency levels, respectively. Column (3) reports estimates of the effect using
observational variation in 8th grade Algebra enrollment using the entire sample. Columns (4) and (6) report
reduced form estimates of BT from local linear regressions corresponding to equation (excluding
control variables). Columns (5) and (7) report RD estimates of 8 using 2SLS, corresponding to equation
(3-5) (excluding control variables). Columns (4) and (5) correspond to the level III threshold; columns (6)
and (7) correspond to the level IV threshold. All RF and 2SLS effects are estimated within a bandwidth
of 5 scale score points around the relevant proficiency threshold. Standard errors are two-way clustered by
school and test score-by-exam year. See Sections [3.4] and [3.5] in the text for greater detail.
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Table 3.14: Results: ACT and SAT (No Controls)

Mean of Depvar OLS Level 2/3 Cutoff  Level 3/4 Cutoff
L2/3 L3/4 RF  2SLS  RF  2SLS

ACT:

ACT Composite 1510 20.20  1.39***  0.09 459  0.14**  3.11%*
(0.04)  (0.07) (3.45)  (0.04)  (0.98)

ACT Math 16.10  20.80  1.62**  -0.01  -0.37  0.16"*  3.42°*
(0.04)  (0.05) (2.80)  (0.04)  (0.79)
ACT Science 1550 2010  1.24** 018  9.32**  0.10*  2.13*

(0.04)  (0.08) (4.08)  (0.05)  (1.16)
ACT Eng/Writing  12.90 1820  1.26**  0.08  3.97  0.12°*  2.44*
(0.03)  (0.07) (3.91)  (0.04)  (1.03)
ACT Reading 1510 2030  1.33™*  0.07 371  0.17**  3.67*
(0.04)  (0.09) (4.93)  (0.07)  (1.76)

SAT:

Took SAT 0.19 0.35 0.04***  -0.00 -0.10 0.00 0.03
(0.00)  (0.01) (0.45)  (0.01)  (0.31)

SAT Math 400.00 514.00 15.52*** 1.01 17.87 2.29%**  52.37**
(0.65) (2.10) (36.73)  (0.87) (16.09)

SAT Verbal 402.00 497.00  8.71*** -2.59 -45.68 2.12* 48.67**
(0.59)  (1.89) (39.45) (1.11)  (22.05)

SAT Writing 386.00 472.00 13.39*** -0.64 -11.25 3.29%**  75.36***

(0.67)  (1.79) (31.54) (0.78)  (15.11)

Notes: Table reports estimates of the effect of 8th grade Algebra on college entrance exam scores, without
controls. Dependent variables are test scores on the ACT composite (row 1), ACT math (row 2), ACT science
(row 3), ACT English/writing (row 4), ACT reading (row 5), SAT math (row 7), SAT verbal (row 8), SAT
writing (row 9), and an indicator for taking the SAT (row 6). Columns (1) and (2) report the mean of the
dependent variable within 2 scale score points below the 7th grade level III and level IV proficiency levels,
respectively. Column (3) reports estimates of the effect using observational variation in 8th grade Algebra
enrollment using the entire sample. Columns (4) and (6) report reduced form estimates of 3% from local
linear regressions corresponding to equation (excluding control variables). Columns (5) and (7) report
RD estimates of 8 using 2SLS, corresponding to equation (excluding control variables). Columns (4)
and (5) correspond to the level IIT threshold; columns (6) and (7) correspond to the level IV threshold. All
RF and 2SLS effects are estimated within a bandwidth of 5 scale score points around the relevant proficiency
threshold. Standard errors are two-way clustered by school and test score-by-exam year. See Sections [3.4
and in the text for greater detail.
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Table 3.15: Results: End of High School (No Controls)

Mean of Depvar ~ OLS  Level 2/3 Cutoff Level 3/4 Cutoff

L2/3 L3/ RF 2SLS RF 2SLS

End of High School:
Graduated 0.82 0.91 0.00 -0.00 -0.00 -0.00 -0.05
(0.00)  (0.01) (0.23) (0.00)  (0.06)
GPA (unweighted) 2.40 3.10 0.13***  0.00 0.13 0.00 0.07

(0.00) (0.01) (0.28)  (0.01) (0.12)

Post-High School:

College Intent: 2yr 0.53 0.33 -0.10***  0.01 0.17 -0.01 -0.18
(0.00) (0.01) (0.25) (0.01) (0.12)
College Intent: 4yr 0.27 0.57 0.12***  -0.00 -0.13 0.01* 0.20*
(0.00)  (0.00) (0.12) (0.01) (0.12)
STEM Major Intent 0.17 0.23 0.02**  -0.01 -0.11 0.01***  0.33***

(0.00)  (0.01) (0.22)  (0.01)  (0.13)

Notes: Table reports estimates of the effect of 8th grade Algebra on end-of-high school outcomes, without
controls. Dependent variables are indicators for graduation (row 1), 2-year college intentions (row 3), 4-year
college intentions (row 4), STEM major intentions (row 5), and cumulative, unweighted high school GPA
(row 2). Columns (1) and (2) report the mean of the dependent variable within 2 scale score points below
the 7th grade level III and level IV proficiency levels, respectively. Column (3) reports estimates of the
effect using observational variation in 8th grade Algebra enrollment using the entire sample. Columns (4)
and (6) report reduced form estimates of S%F from local linear regressions corresponding to equation
(excluding control variables). Columns (5) and (7) report RD estimates of § using 2SLS, corresponding
to equation (excluding control variables). Columns (4) and (5) correspond to the level IIT threshold;
columns (6) and (7) correspond to the level IV threshold. All RF and 2SLS effects are estimated within a
bandwidth of 5 scale score points around the relevant proficiency threshold. Standard errors are two-way
clustered by school and test score-by-exam year. See Sections [3.4] and [3.5]in the text for greater detail.
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