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Summary. It is common in the analysis of social network data to assume a census of the
networked population of interest.Often the observations are subject to partial observation due to
a known sampling or unknown missing data mechanism. However, most social network analysis
ignores the problem of missing data by including only actors with complete observations. We
address the modelling of networks with missing data, developing previous ideas in missing
data, network modelling and network sampling. We use several methods including the mean
value parameterization to show the quantitative and substantive differences between naive and
principled modelling approaches. We also develop goodness-of-fit techniques to understand
model fit better.The ideas are motivated by an analysis of a friendship network from the National
Longitudinal Study of Adolescent Health.

Keywords: Dependent data; Exponential random-graph model; Missing data; Missingness not
at random; Social networks

1. Introduction

Social network data typically consist of a set of n actors and a relational variable Yi,j, measured
on each ordered pair .i, j/, i, j = 1, : : : , n. We focus on binary relationships, for which Yi,j is a
dichotomous variable indicating the presence or absence of some relationship of interest, such
as communication or friendship. The data Y ={Yi,j}i�=j can be thought of as a graph in which
the nodes are actors and the edge set is {.i, j/ : Yi,j = 1}. We consider a case where some Yi,j
are unobserved because of out-of-design missingness. The analyses in this paper are concerned
with characterizing the structure of friendships between high school students, measured as part
of the National Longitudinal Study of Adolescent Health (Harris et al., 2003).

1.1. The National Longitudinal Study of Adolescent Health
The National Longitudinal Study of Adolescent Health is a school-based longitudinal study
of the health-related behaviours of adolescents and their outcomes in young adulthood. The
study design sampled 80 high schools and 52 middle schools from the USA, representative with
respect to region of country, urbanicity, school size, school type and ethnicity (Harris et al.,
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2003). In 1994–1995 an in-school questionnaire was administered to a nationally representative
sample of students in grades 7–12. In addition to demographic and contextual information,
each respondent was asked to nominate up to five boys and five girls within the school whom
they regarded as their best friends. Thus each student could nominate up to 10 students within
the school (Udry, 2003). This referral structure results in directed network data, where an arc or
directed tie is said to exist from node i to node j if and only if i named j a friend. We define ‘friend’
to be one of a student’s top five male or top five female friends, and we conduct all our analyses
restricting networks and models to networks that are constrained by this definition. There is
an extensive and growing literature describing and utilizing the survey—see the references of
Resnick et al. (1997) and Udry and Bearman (1998) for a bibliography and more information.

We have selected one school, school 5, for our analysis. 70 students from this school com-
pleted the friendship nominations portion of the survey. From later waves of the survey, we could
recover the sex and grade of 19 additional students who did not supply their friendship nomina-
tions in the original survey. In this section we consider the friendship nominations between these
89 students to be the focus of scientific interest. In particular we are interested in inferring the
social process that generated the observed set of friendship arcs among the 89 students. Of these,
70 reported arcs and 19 did not report arcs. Thus our data contain known arcs and non-arcs
between the 70 students who completed surveys and known arcs sent by the 70 respondents
to the 19 non-respondents. They do not include information on arcs between the 19 students
who did not complete surveys or sent by the non-respondents to the respondents. Hence of the
7832 potential nominations 19 × 88 = 1672, or 21%, were unobserved. These missing arcs due
to survey non-response constitute the missing data that we are concerned with.

The structure of the relations is usually dependent on the attributes of the actors. For exam-
ple, for most social relations the likelihood of a relationship is a function of the age, gender,
geography and race of the individuals. Homophily on attributes, or the tendency for like to share
ties with like, is a common example (McPherson et al., 2001). In the adolescent friendships in
our application, the social structure is highly dependent on class grade (grades 7–12) and sex.
In addition to exogenous attributes of the actors, relationships are influenced by endogenous
attributes such as their positions in the network (White et al., 1976). In the adolescent health
data, we are particularly interested in examining the hierarchical or egalitarian structures of the
friendship nominations, which we study by using endogenous structures.

1.2. Modelling networks with missing data
In this paper we consider the network over the set of actors to be the realization of a stochastic
process and we model the process. The statistical modelling of such processes has a long history.
Holland and Leinhardt (1981) appear to be the first to have proposed log-linear models for social
networks. Their models resulted in each dyad—by which we mean each pair of actors—having
edges independently of every other dyad. Frank and Strauss (1986) generalized to the case in
which dyads exhibit a form of Markovian dependence: two dyads are dependent, conditionally
on the rest of the graph, only when they share a node. Such exponentially parameterized random-
graph models have connections to a broad array of literatures in many fields, such as spatial
statistics, statistical exponential families and statistical physics (Geyer and Thompson, 1992).
Since that time there have been many theoretical and applied developments (Lusher et al., 2012).

The analysis of sampled or missing data in networks is special for two reasons. First, we are
often interested in models in which variables on all units of analysis are dependent. Thus, in-
stead of inference from multiple independent observations of a given process, standard network
modelling is based on a single observation of a dependent process. In this way, network mod-
elling is similar to time series modelling. When the network is only partially observed, inference
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must therefore be conducted on a single partially observed realization of the process. Second,
networks consist of two fundamental units: nodes and dyads. In our framework, we consider
the dyadic relations to be stochastic, and the simplest units of inference. Sampling and missing
data processes, however, often act on the nodes, as much network data are collected through
egocentric reporting processes (e.g. people reporting their own relations). Therefore, the units of
inference reside between the units of observation. This is the pattern that is observed in our ap-
plication, where missing friendships result from some students not completing the survey. Thus
data are missing in highly dependent blocks, where all nominations of each non-respondent are
unobserved.

Many practical settings result in missing network data. In this paper, we address what is
perhaps the most common pattern: when dyads are observed through their incident nodes, and
an attempted census of network nodes fails to reach some nodes, leaving some dyads unobserved.
In human social networks including the National Longitudinal Study of Adolescent Health,
such non-observation could be due to response refusal, absence or illness. Other forms of missing
data in networks may result from non-observation of individual dyads or of nodal covariates.
Despite the general acceptance that missing data are an important problem for social network
analysis, there has been little work on inferential frameworks to treat social networks with
missing data.

Some approaches to model-based treatment of missing data in social networks have been
suggested but, because of the difficulty of the problem, they typically rely on special cases and
assumptions. Stork and Richards (1992) advocated leveraging the strong effect of reciprocity in
many networks to impute missing arcs, or directed edges, in directed networks by setting them
equal to their opposite arcs, such that, if the relation from j to i is unobserved, it is set equal to
that from i to j whenever the latter is observed. This approach is often more reasonable than
treating the arc from j to i as a known non-arc, but it is not ideal for several reasons. First,
as Stork and Richards pointed out, the approach is valid only for directed networks with very
strong reciprocity. When reciprocity is not so strong (i nominating j does not strongly predict j

nominating i), this approach may perform worse than pretending that the reciprocating arcs do
not exist. This approach also treats the newly imputed arcs as true, rather than treating them
probabilistically. In addition, this approach does not address the arcs that may originate from
the missing actors which are not reciprocated, or any arcs between missing actors.

The first model-based approach to networks with missing data was introduced by Robins et al.
(2004), who used an exponential family model with the maximum pseudolikelihood estimates
of the parameters based on treating arcs between respondents and other respondents separately
from arcs from respondents to non-respondents. This approach is most helpful if it is known that
the arc-related characteristics of non-respondents are different from those of respondents in ways
that are not captured in the terms in the model. However, it does not allow for the consideration
of network structures which span the boundary between observed and unobserved parts of the
network or allow for models that are applicable to the full populations of possible arcs. There
is also evidence that the maximum pseudolikelihood estimator performs poorly for realistic
network structures (van Duijn et al., 2009).

The most systematic treatment of missing data in networks to date has been provided by
Koskinen et al. (2013). They considered a Bayesian approach for missing tie variables and
covariates, allowing for inference based on the full posterior of the parameters, as well as
predictive inference for the unobserved parts of the network.

Our companion paper, Handcock and Gile (2010), building on Thompson and Frank (2000),
developed a likelihood-based framework for the full network modelling of networks that are
partially observed because of sampling. In this paper, we use the likelihood-based approach
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of Handcock and Gile (2010) and Koskinen et al. (2013) while focusing on broader issues of
data analysis, including goodness-of-fit diagnostics and leveraging the network data structure
to address systematic patterns of missing data.

It is also worth mentioning a related area of research: techniques for sharing social network
data that protect sensitive personal information privacy while retaining key statistical informa-
tion. Karwa et al. (2014, 2015) have developed an approach to share synthetic networks with
perturbed ties where the perturbation mechanism is carefully designed by the researcher to meet
these differential privacy goals. Their statistical techniques are similar in approach to those de-
veloped by Handcock and Gile (2010) and this paper. The problem is substantially different,
however, in that the perturbation mechanism is fully known whereas none of the data elements
are known with certainty.

Following this introduction, in Section 2, we introduce several types of missing data in social
networks. In Section 3, we review the general principles that are involved in fitting models to
social networks with missing data. Section 4 introduces the widely used and powerful exponential
family random-graph model class for networks and discusses the fitting of these models for
networks with missing data. The approaches in this section are available in the statnet R
package (Handcock et al., 2003).

Finally, we use these theoretical pieces to present an analysis of adolescent friendship data
in Section 5, including the introduction of several descriptive and diagnostic approaches for
partially observed network data. We finish with a discussion.

The code to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Missing data structures

We treat missing data as a special case of sampling in which the sampling mechanism is unknown
and outside the control of the researcher, or an out-of-design non-response mechanism. As in
Handcock and Gile (2010), we use the N-vector S to indicate the observed status of each node,
and the N ×N matrix D to represent the observed status of each directed dyad, such that

Si =
{

1 node i observed,
0 otherwise,

Dij =
{

1 relation i, j observed,
0 otherwise:

.1/

We focus on the situation where the sampling design specifies S=1 and Dij =1 for all i �= j,
i.e. the researchers intended to observe all nodes and relations. In the case of missing data,
however, the observed values of S and D are jointly determined by the sampling and missing
data mechanisms, such that Dij =0 for some i �= j. In this section, we explicitly describe several
possible missing data mechanisms.

2.1. Non-responding nodes
Often a census of the network is attempted via a complete census of the nodes followed by the
observation of all edges that are incident to each node. This is so, for example, in networks
between people where each person is asked to report her relations to all others in the network:
a sampling design corresponding to a nodal census. However, if some nodes do not respond,
many ties variables will be missing. In an undirected network in which we observe all dyads that
are incident to each observed node,
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D=S1T +1ST −SST:

For a directed network in which we observe all dyads originating at an observed node, D=S1T.
Note that both of these mappings are identical to the case of sampling that was considered in
Handcock and Gile (2010). Unlike in the case of sampling, the missing data mechanism φ is
typically unknown, even up to a model class. In the simplest case, we might consider a missing
data mechanism corresponding to a simple random sample of nodes whereby

P.D=d|Y ,ψ/=ψ1Ts.1−ψ/n−1Ts:

More complex mechanisms include functions depending on nodal characteristics or observed
network features, or those depending on unobserved features. Such missing data structures
can also result from link tracing designs, where the intention is to sample the contacts of all
previously sampled nodes, but the referral and contact process does not reach each contact.
When this structure is by design, as in partial wave link tracing samples, the data are not
missing.

2.2. Unobserved (directed) dyads
Particular dyads or directed pairs may also be unobserved, even if their incident nodes are
observed. A particularly difficult form of this pattern is when some edges are observed, but few
or no non-edges are observed. This is often so in protein interaction networks, where references
tend to report observed protein interactions, but not tests for interaction with negative results.

2.3. Partially observed nodal attributes
Often, observing a node implies observation of associated nodal covariate information, as in
self-report surveys. There is also sometimes non-response on individual items, even for observed
nodes. It is also possible that nodal covariate information is available even for nodes that are
not sampled, as in administrative databases on well-defined populations.

2.4. Boundary specification
All the examples thus far assume that the set of actors is well defined and the number of actors
in the population is known. Often it is unclear which nodes should be considered part of the
population of interest. Such cases are beyond the realm of models that are currently in standard
use, and also beyond the scope of this paper. In our analyses, we assume that we know the exact
set of nodes in the network, but that some of the dyads are unobserved.

2.5. Frameworks for analysis
We focus on two strategies for inference, which we refer to as complete-case (CC) and all obser-
vations (AO) analysis. In CC analysis, only nodes with fully observed data are considered. This
approach is also referred to as subnet analysis, as, in this case, only the subnet that is induced by
the nodes with full available information is analysed. The advantage of this approach is that is
does not require any special software for missing data. However, it ignores both the larger size
of the full network to which we wish to apply a model, as well as any additional information
that is available on the cases that are not complete. Shalizi and Rinaldo (2013) showed that
analyses based on subnetworks cannot be consistently applied to the true larger network, so
this naive approach is not statistically principled. Therefore, researchers who are interested in
finding a principled model fit for the true full network, and interested in using all available data,
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should prefer the more principled approach, which we call the AO approach. In this approach,
all available data are used in the analysis, including all observed relations, the population size
and all known nodal characteristics. The majority of our paper treats these two inferential ap-
proaches and compares the resulting model fits, as these are the approaches that are most likely
to be employed in practice.

We also include two more specialized model fits. First, for comparison, we also consider an
incomplete-case (IC) approach, which fits a model over the full known size and nodal covariates
of the network, but treating all dyads involving non-respondents as unobserved. This fit helps
us to distinguish the separate effects of the additional data and the larger network size on the
differences between CC and AO fits. Finally, we apply a differential popularity (DP) analysis to
model observed systematic differences between respondents and non-respondents in our data
directly, in partial adjustment for irregularities in the missing data process.

3. Principled likelihood inference for partially observed networks

Our development here follows the development in Handcock and Gile (2010), which followed
Little and Rubin (2002) and Thompson and Frank (2000). For most of this treatment, we
consider the case of fully observed covariates information X. Consider a parametric model for
the random relational matrix Y , depending on a parameter p-vector η and an N ×q matrix of
nodal covariates X:

Pη.Y =y|X=x/, η∈Ξ, y ∈Y.x/, .2/

where Ξ is the space of possible parameter values η and Y.x/ is the set of possible networks on
the n actors with covariates X = x. In the model-based framework, if Y and X are completely
observed, inference for η can be based on the likelihood

L[η|Yobs, X]∝Pη.Y =Yobs|X=x/:

This situation has been considered in detail in Hunter and Handcock (2006) and the references
therein. In the general case where Y may be only partially observed, we denote the observed
part of Y by Yobs = {Yij : Dij =1} and the unobserved part by Ymis = {Yij : Dij =0}; then Y =
{Yobs, Ymis}. The complete data; {Yobs, Ymis, D}, are not fully observed, and the observed data
are {Yobs, D}. Following Handcock and Gile (2010), we make the convention that undefined
numbers act as identity elements in addition and multiplication, such that Y = Yobs + Ymis.
Letting lower-case symbols represent the observed values of random variables, we letY.yobs, x/=
{v : yobs + v ∈ Y.x/} represent the set of possible values of Ymis, consistent with yobs. Then
yobs +Y.yobs, x/ is the subset of Y.x/ that is consistent with yobs.

If the missing data mechanism is missingness at random (MAR) (Rubin, 1976), in the sense
that

P.D=d|Y =y, X=x;ψ/=P.D=d|Yobs =yobs, X=x,ψ/ for all y ∈yobs +Y.yobs, x/,
.3/

and the parameters ψ and η are distinct, then the likelihood for η and ψ is

L[η,ψ|Yobs = yobs, D = dobs, X = x]∝L[ψ|D = dobs, Yobs = yobs, X = x] L[η|Yobs = yobs, X = x]

Thus likelihood-based inference forη from L[η,ψ|Yobs, D, X=x] will be the same as likelihood-
based inference for η based on L[η|Yobs, X=x]. The latter is typically easier to compute:

L[η|Yobs =yobs, X=x]∝P.Yobs =yobs|η, X=x/= ∑
v∈Y.yobs,x/

Pη.Y =yobs +v|X=x/:
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Hence we can evaluate the likelihood by just enumerating the full data likelihood over all possible
values for the missing data.

4. Exponential family random-graph models

We model the random behaviour of Y by using an exponential family random-graph model.
The standard exponential family model form is

Pη.Y =y|X=x/= exp{ηTZ.y|X=x/−κ.η, x/} y ∈Y.x/, .4/

where Z.Y/ is a p-vector of statistics, η∈Rp is a parameter vector and

exp{κ.η, x/}= ∑
u∈Y.x/

exp{ηTZ.u|X=x/}

is the normalizing constant (Barndorff-Nielsen, 1978).
A wide range of network statistics could be included in Z.y|X=x/ (Lusher et al., 2012). In the

network modelling literature these are referred to as exponential family random-graph models
(Hunter and Handcock, 2006). We allow the vector Z.y|X=x/ to include covariate information
about nodes or dyads in the network in addition to information that is derived directly from the
matrix y itself.

In a sampling-focused companion paper, we addressed the fitting of exponential family
random-graph models for partially observed network data with an MAR structure (Handcock
and Gile, 2010) using a natural extension of this method. Consider that

L[η|Yobs =yobs|X=x]∝ exp{κ.η|yobs, x/−κ.η, x/}, .5/

where

exp{κ.η|yobs, x/}= ∑
u:u+yobs∈Y.x/

exp{ηTZ.u+yobs|X=x/}

is the normalizing constant of the conditional distribution of Ymis|Yobs, X=x:

Pη.Ymis =y|Yobs =yobs, X=x/= exp{ηTZ.y +yobs|X=x/−κ.η|yobs, x/}, y ∈Y.yobs, x/:

.6/

To find the maximum likelihood estimate (MLE), we therefore maximize an estimate of ex-
pression (5) computed as the ratio of the two normalizing constants. The exp{κ.η, x/} term is
estimated by using unconditional samples of Y , as in standard exponential family random-graph
model fits, whereas exp{κ.η|yobs, x/} is estimated by conditionally sampling from Ymis|Yobs and
X = x according to equation (6) (Geyer and Thompson, 1992; Hunter and Handcock, 2006).
This is implemented in the statnet R package (Handcock et al., 2003).

5. Analysing adolescent friendship networks

We consider four modelling approaches for the National Longitudinal Study on Adolescent
Health adolescent friendship network with missing data. We begin by describing the pattern
of missing data. We then introduce the common model that is used in all the approaches. We
next compare the approach that was presented in Section 4 with a naive approach, modelling
the subnetwork consisting of respondents only (a CC approach), and we use several methods
to estimate the magnitude of the difference between the two approaches. We illuminate both
numerical and substantive differences. We illustrate some diagnostic procedures for partially
testing the MAR assumption and introduce a third modelling approach partially correcting for
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Fig. 1. Schematic depiction of observed and unobserved arc data

the failure of the MAR assumption. We also include a fourth modelling approach to explain
some differences between the first two.

5.1. Missing data pattern
The data pattern is shown in Fig. 1. Consider a partition of respondents from non-respondents
and the corresponding 2×2 blocking of the sociomatrix, with the four blocks representing arcs
from respondents and non-respondents to respondents and non-respondents. The complete
data consist of the full sociomatrix. The first two blocks contain the observed data (the arcs that
are sent by respondents), and the second two blocks contain the unobserved data (those sent
by non-respondents).

Almost all analysis of the adolescent health network data uses the CC approach, treating
the network among the respondents only, excluding those who did not complete the survey
(Bearman et al., 2004; Harris et al., 2003), and corresponding to considering only the upper
left-hand block of Fig. 1. We can also visualize the excluded data by plotting the network both
including and excluding the non-respondents, and then plotting only the arcs to non-respondents
as in Fig. 2. For clarity, the positions of the nodes are the same in each plot.

5.2. Model specification
We specify an exponential random-graph model for the social process in which g.y, X/, the set of
network statistics, has 21 terms. The first term, named density, captures the overall tendency for
edges in the network. The corresponding sufficient statistic is the total number of arcs: Σi�=jyij.
In an exponential family random-graph model, this term has a role that is similar to the intercept
in a regression model. The next term, mutuality, captures the tendency for arcs to be reciprocated
and has sufficient statistic Σi<jyijyji. The next seven terms capture the differential tendency for
nodes of different classes to receive arcs. Grade 7 females serve as the reference category. The
additional tendency for grade 8 females to receive arcs is given by the grade 8 popularity term
with sufficient statistic ∑

i�=j

yijI.gradej =8/, .7/

where I.k/ is the indicator function taking the value 1 when k is true, and 0 otherwise. The
remainder of the grade popularity terms are defined similarly, and the male popularity term has
sufficient statistic
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(a) (b)

(c)

Grade 7
Grade 8
Grade 9
Grade 10
Grade 11
Grade 12

Fig. 2. Depiction of the data excluded by the CC analysis (the positions of the nodes are the same in each
subplot; node colour represents grade and shape represents sex (}, female): (a) all the observed data; (b)
only the relations between respondents (the data considered in a CC analysis); (c) difference between (a)
and (b) ∑

i�=j

yijI.sexj = ‘male’/: .8/

We leave the definition of the non-respondent popularity term to Section 5.5.
The sex and grade mixing terms capture the differential tendencies for arcs across sex and

grade classes, and respect the potentially asymmetrical patterns of these relations. The girl to
same grade boy term has sufficient statistic∑

i�=j

yijI.gradei =gradej, sexi = ‘female’, sexj = ‘male’/ .9/

and captures the differential tendency for female students to send arcs to males in the same
grade, against the reference of females in the same grade. The boy to same grade girl term is
similarly defined.

The remaining terms in this set capture linear functions of grade differences. For example,
the girl to older girl term has sufficient statistic∑

i�=j

yij |gradej −gradei|I.gradei < gradej, sexi = sexi = ‘female’/, .10/

such that the corresponding parameter indicates the change in tendency for arcs corresponding
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to each one-grade difference between two female students. This parameterization assumes that
each 1-year difference in grade has the same effect on friendship formation. The remainder of
the terms in this section are similarly defined.

The transitivity terms are a measure of hierarchy or equality in social networks. Having
captured the hierarchical tendencies across sex and grade in the sex and grade mixing terms,
here we consider the transitivity effects within sex and grade only. The transitive same sex and
grade term is based on transitive triad structures. If arcs are sent in a hierarchical manner, then
if B names A (making A above B), and C names B (making B above C), then the triad is likely
to be completed in a transitive manner with C naming A, since by transitivity A would be above
C. The sufficient statistic capturing this structure is∑

i�=j �=k

yijyjkyikI.gradei =gradej =gradek, sexi = sexj = sexk/: .11/

Similarly, a cyclical triad structure is indicative of an egalitarian relational structure. Here, B
→ A and C → B make A, B and C about equal, making cyclical triadic completion (A → C)
likely. These structures are captured with sufficient statistic∑

i�=j �=k

yijyjkykiI.gradei =gradej =gradek, sexi = sexj = sexk/: .12/

The final term, isolation, captures the tendency for some nodes to receive no friendship nom-
inations, beyond what would be expected given the rest of the terms in the model. This term is
based on the sufficient statistic ∑

i

I
(∑

j

yji =0
)
: .13/

We estimate the MLE of the parameters of this model conditionally on the restriction in the
data that no node may nominate more than five female friends or five male friends.

5.3. Model fit
The parameter estimates under the AO approach are summarized in the second and sixth
columns of Table 1. All terms are nominally significant at the 0.01-level except the terms cap-
turing the differential popularity by grade and sex, and the terms comparing cross-sex and
within-sex popularity within the same grade. Ninth and 10th graders and males do show nom-
inally significant differences in popularity at the 0.05-level. This fit supports several scientific
hypotheses about the social mechanisms giving rise to this observed network.

First, friendship arcs are reciprocated at a higher rate than we would expect at random given
the other terms in the model. With regard to grade, ninth and 10th graders receive significantly
fewer friendship nominations than the reference seventh graders, although this finding is weaker
than the others.

Males receive within-sex nominations at a nominally higher rate than females. Both males and
females seem less likely to nominate friends outside their grades, with the chance of nomination
decreasing with the number of class years. Looking at the effect sizes for the sex and grade
mixing terms together, we note that, although not significant, boys show a stronger aversion to
sending cross-sex nominations within grade. We also see that both sexes appear more likely to
nominate older (higher grade) rather than younger (lower grade) friends. This effect is stronger
in males, with a particularly strong prohibition against males nominating younger males as
friends.

The positive significant transitive triad and negative significant cyclical triad terms suggest
that friendship arcs within sex and grade tend to form in a hierarchical manner, rather than in
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Table 1. Estimated coefficients and standard errors for the parameters of the model fits under the AO, CC,
DP and IC approaches

Results for the following approaches:

AO CC DP IC AO CC DP IC
standard standard standard standard

error error error error

Density −1.929 −1.557 −1.901 −1.923 0.19† 0.19† 0.19† 0.20†
Mutuality 1.728 1.963 1.726 1.854 0.19† 0.20† 0.19† 0.21†

Sex and grade factors
Grade 8 popularity −0.161 −0.218 −0.144 −0.402 0.12 0.12 0.12 0.15‡
Grade 9 popularity −0.301 −0.330 −0.324 −0.353 0.14§ 0.14§ 0.14§ 0.16§
Grade 10 popularity −0.318 −0.277 −0.303 −0.374 0.14§ 0.14§ 0.14§ 0.16§
Grade 11 popularity −0.043 −0.033 0.027 −0.042 0.17 0.18 0.18 0.24
Grade 12 popularity −0.095 0.062 −0.010 −0.175 0.16 0.17 0.16 0.20
Male popularity 0.407 0.461 0.452 0.504 0.16§ 0.16‡ 0.16‡ 0.21§

Sex and grade mixing
Non-respondent popularity — — −0.313 — — — 0.12‡ —
Girl to same grade boy 0.193 0.001 0.175 0.074 0.21 0.23 0.22 0.29
Boy to same grade girl −0.217 −0.155 −0.231 −0.078 0.22 0.23 0.21 0.25
Girl to older girl −0.956 −0.959 −0.962 −1.115 0.16† 0.18† 0.16† 0.23†
Girl to younger girl −1.318 −1.308 −1.334 −1.340 0.21† 0.21† 0.21† 0.25†
Girl to older boy −0.901 −1.066 −0.906 −1.069 0.14† 0.17† 0.14† 0.20†
Girl to younger boy −1.326 −1.375 −1.339 −1.894 0.22† 0.23† 0.22† 0.38†
Boy to older boy −0.876 −1.137 −0.885 −0.943 0.15† 0.21† 0.15† 0.22†
Boy to younger boy −1.789 −2.082 −1.807 −2.696 0.33† 0.40† 0.33† 0.71†
Boy to older girl −0.680 −0.521 −0.683 −0.533 0.14† 0.14† 0.14† 0.16†
Boy to younger girl −1.114 −1.048 −1.125 −0.959 0.17† 0.17† 0.17† 0.17†

Transitivity
Transitive same sex and grade 0.502 0.502 0.497 0.477 0.05† 0.06† 0.05† 0.05†
Cyclical same sex and grade −0.913 −0.995 −0.891 −0.865 0.18† 0.20† 0.18† 0.21†

Isolation 2.664 3.059 2.355 3.617 0.90† 0.62† 0.94† 0.71†

†p< 0:001.
‡p< 0:01.
§p< 0:05.

an egalitarian regime. This finding is probably the most scientifically interesting of the processes
supported by this model.

Finally, arcs are clustered to produce more nodes receiving no friendship nominations than
we would expect from the rest of the terms in the model.

The third and seventh columns of Table 1 present the corresponding CC model fit. It is of
interest to compare the AO and CC models. The question here is the effect of erroneously using
the CC model when the full network model is of interest. A natural way to compare the models
is the Kullback–Leibler divergence of the CC model from the AO model when both are used
to model the CC subnetwork. Specifically, we can consider the probability distribution that the
AO model for the full network places over the CC network dyads, PηAO.YCC|X/, and use it to
compute the Kullback–Leibler divergence:

EηAO

[
log

{
PηAO.YCC|X/

PηCC.YCC|X/

}]
.14/
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where PηAO is the AO model for the full network, PηCC is the CC model for the CC subnetwork
and YCC is the set of dyads from the full network in the CC subnetwork. The method to compute
this divergence is given in Appendix A. The value of the divergence is 159. The large magnitude of
this divergence indicates that the AO and CC models are substantially different representations
of the CC subnetwork (Cover and Thomas, 2006).

Because the AO and CC approaches fit models to different networks, with different sets of
nodes, we know from Shalizi and Rinaldo (2013) that a direct comparison of the natural par-
ameters of the two approaches is not valid: the interpretations of coefficients are different in
different node set contexts. Nonetheless, researchers often draw substantive conclusions based
on the magnitudes and significances of model coefficients, so it is of interest to compare the
conclusions that might be drawn by researchers using one approach or the other. At first glance,
a comparison of the model fits in Table 1 reveals striking similarities between the natural param-
eters for these two approaches. The fits find nearly identical patterns of statistical significance.
A researcher basing conclusions on the sign and significance of individual model terms would
draw nearly the same conclusions from either of these fits. That said, there are also notable dif-
ferences in the magnitudes of coefficients. In particular, the CC fit reflects a greater popularity of
12th graders, and a greater tendency for students to receive no arcs. It also suggests a tendency
for girls to send fewer arcs to same grade boys and fewer arcs to older boys. The CC fit suggests
that boys are more likely to send arcs to same grade girls, less likely to send arcs to older or
younger boys and more likely to send arcs to older girls. The interpretation of these effects is
complicated by the many terms in the model. If the CC fit reflects higher overall popularity of
12th graders, do lesser estimates for terms for arcs sent to older students merely reflect that this
has already been captured by the 12th-grade popularity term?

We can better compare the marginal effects of the two fits by comparing the mean value
parameterizations of the two fits, as presented in Table 2.

The mean value parameterization provides an alternative to the natural parameterization of
the exponential family random-graph model. The mean value parameters are given by

μ.η/=Eη[g.y, X/] .15/

(Handcock, 2003).
This parameterization puts the coefficients on the scale of the network statistics rather than

on the conditional log-odds scale of the natural parameters. Looking at the mean value param-
eters provides a sense of the implications of the model fit for the network statistics. Although
we assume that both models are intended to model the structure of the full network of 89
nodes, there is no principled way to apply the CC fit directly to the larger network (Shalizi and
Rinaldo, 2013). We therefore compare the models on the basis of their mean value parameteriza-
tions applied to the portion of the network for which they each provide valid probability models:
the subnetwork of 70 respondents. For the AO fit, these values are determined by marginaliz-
ing over the rest of the network. This puts both fits on the same scale to allow meaningful
comparisons.

Table 2 shows the MLEs of the mean value parameters. To begin with, the expected number
of arcs demonstrates that the CC fit implies about 7% more arcs (394) than the AO fit (367), and
21% more reciprocated arcs (94 versus 77). The mean value parameters of other model terms
support conclusions that are suggested by the natural parameters. Under the CC fit, 12th graders
receive more arcs (7% more), and more students receive no friendship nominations (almost twice
as many). Differences in rates of cross-sex nominations within grade are not large. The weighted
sum of arcs from girls to older boys is lower (9%). The weighted sums of arcs from boys to older
and younger boys are reduced (15% and 4% respectively), and those to older girls are increased
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Table 2. Estimated mean value parameters and standard errors for the model fits under the AO, CC, DP
and IC approaches

Results for the following approaches:

AO CC DP IC AO CC DP IC
standard standard standard standard

error error error error

Density† 7.606 8.158 8.134 7.245 0.34 0.41 0.34 0.36
Mutuality 77.453 93.990 86.485 77.168 7.84 9.00 8.19 7.95

Sex and grade factors
Grade 8 popularity 90.895 92.070 96.585 72.062 9.19 10.44 9.36 9.81
Grade 9 popularity 67.230 71.994 69.218 66.624 8.71 9.67 8.62 9.24
Grade 10 popularity 55.296 61.975 59.456 53.841 8.08 9.78 8.20 8.64
Grade 11 popularity 47.571 57.913 55.296 47.946 6.44 7.24 6.79 6.46
Grade 12 popularity 33.789 36.097 38.175 32.159 5.67 7.81 5.91 5.92
Male popularity 182.424 200.999 198.345 172.386 10.41 12.06 10.64 10.72

Sex and grade mixing
Girl to same grade boy 57.373 59.055 60.687 57.111 5.88 6.27 5.95 6.00
Boy to same grade girl 39.111 42.027 41.133 40.263 5.25 5.47 5.27 5.30
Girl to older girl 21.021 22.017 22.358 16.073 5.99 6.25 6.15 5.08
Girl to younger girl 15.069 16.040 15.501 14.223 4.64 4.81 4.72 4.45
Girl to older boy 38.211 34.954 41.820 32.316 7.75 7.17 8.03 6.94
Girl to younger boy 16.595 19.992 17.771 9.316 4.53 4.99 4.63 3.23
Boy to older boy 21.301 18.046 23.371 19.534 6.07 5.16 6.30 5.72
Boy to younger boy 6.212 5.992 6.704 2.347 2.73 2.60 2.81 1.58
Boy to older girl 29.558 40.000 31.683 33.661 6.95 8.62 7.17 7.84
Boy to younger girl 22.542 24.019 23.258 24.964 5.77 6.05 5.85 6.26

Transitivity
Transitive same sex and 153.144 216.549 186.802 153.131 40.72 50.47 45.75 39.45

grade
Cyclical same sex and 35.247 54.847 45.497 36.800 11.09 14.93 13.16 11.10

grade

Isolation 2.065 3.991 1.341 4.184 1.36 1.88 1.11 1.88

†The density coefficient is in the percentages of possible ties.

(35%). Unexpectedly, the number of transitive and cyclical triads within sex and grade are
substantially higher in the CC fit (41% and 56% respectively), although the natural parameter
estimates for these terms were nearly identical. Since these terms are focused on arcs within sex
and grade, the observed differences are likely to be due to greater concentration of arcs within
sex and grade for the CC fit. This phenomenon is consistent with the relatively higher rate of
sex–grade homophilous arcs from respondents to respondents, as opposed to from respondents
to non-respondents. Fig. 3 compares the proportion of observed in-arcs received from outside
one’s own sex and grade for respondents and non-respondents of the same sex and grade. Note
that, for six of the eight sex–grades with non-respondents, non-respondents received a higher
proportion of nominations from outside their own sex and grade. The greatest exception to this
pattern is 12th-grade girls, for whom non-respondents receive a lower proportion of nominations
from outside their sex and grade than their respondent counterparts. This is consistent with the
increased rate of ‘boy to older girl’ nominations, and the decreased rate of most other arc types
across sex and grade under the CC fit.
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Fig. 3. Mean proportion of nominations received from outside sex and grade, by sex and grade

The AO approach relies on two types of information that are not used in the CC approach:
the full size of the network, and the additional data in the arcs sent to non-respondents. To help
to distinguish the effects of these two differences, we fit the same model to a network of size
89×89 with only the respondents-to-respondents block observed. The fifth and ninth columns
of Table 1 present the resulting fit, which we refer to as the IC fit. A naive reading of Shalizi and
Rinaldo (2013) may suggest that the parameters for the full network cannot be estimated by
applying the model to the subnetwork data alone. As we see, the parameter estimates are close
to the AO case (that uses the full observed data and the same model). The same is true for the
mean value parameters given in the fifth column of Table 2. These are useful as they indicate that
the uncertainty in the mean value parameter estimates for the isolates is large. The Kullback–
Leibler divergence of the IC model from the AO model when both are used to model the CC
subnetwork is 8:4. As the corresponding divergence for the CC model is 159, this indicates that
the IC fit is much closer to the AO fit than the CC fit for the CC subnetwork. This suggests that
much of the difference between the AO and CC fits is due to the assumed size of the full network.

5.4. Goodness of fit
Hunter et al. (2008) presented a method for evaluating the fit of network models, based on
network statistics that are not modelled directly. They proposed comparing the distribution of
selected statistics of substantive interest (e.g. the degree distribution and shortest path length
distribution) with their observed values. They drew a sample of networks from the model that
is specified by the MLE and compared the observed with the sampled distribution of statistics
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Fig. 4. Goodness-of-fit diagnostic plots for the AO model fit ( , mean proportions from conditional
simulations under the model fit; , distributions of proportions across unconditional simulations; , middle
95% of the simulated distributions): (a) out-degree; (b) in-degree; (c) geodesic distance

via boxplots. The closer the observed statistics are to the middle of the sample distributions, the
better the fit of the model. We extend this approach to networks that are modelled with missing
data.

When the model includes missing data, we are still interested in the features of the full network,
but it is only partially observed. For this reason, we estimate the reference distribution as the
network statistics based on simulations of the unobserved data conditional on the observed data
under the MLE. The means of these values are taken as the reference distribution, depicted with
a full line in Fig. 4. Boxplots representing the distribution under the model are then added on
the basis of unconditional simulations under the MLE, as in the fully observed data case. Fig. 4
depicts three such plots for the AO model fit. This model reproduces the in-degree distribution
quite well. It smooths some jaggedness in the out-degree distribution. Also, it recovers the
distribution of mean minimum geodesic distances, or the minimum number of arcs between each



516 K. J. Gile and M. S. Handcock

pair of nodes, fairly well, although it slightly underestimates these distances. Corresponding
plots for the CC and DP (to be introduced in the next section) fits are very similar to these.

5.5. Addressing the missingness at random assumption
Such goodness-of-fit analyses can also be conducted on other statistics. In particular, we may
be interested in systematic differences between respondents and non-respondents, as related to
the MAR assumption.

Consider the partition of respondents from non-respondents and the corresponding four
blocks representing arcs from respondents and non-respondents to respondents and non-
respondents given in Fig. 1. We have observed the first two blocks, the arcs sent by respondents,
and these observations provide a basis for comparing the respondents and non-respondents.

Each model implies expected densities in each of the four blocks, which can be estimated
by drawing unconditional samples from the model and averaging the resulting densities. If the
non-respondents were equally likely to be any of the 89 students, the expected densities of all
four blocks would be the same. The block densities are different in the two observed blocks.
Respondents nominate other respondents with density 0:082 and non-respondents with density
only 0:062, reflecting different in-degrees between respondents and non-respondents. In theory,
it is possible that this is due to the different compositions of nodal covariates among respondents
and non-respondents. If these nodal covariates are the only difference between respondents and
non-respondents (i.e. a grade 12 boy respondent behaves the same as a grade 12 boy non-
respondent), and, if we have accounted for the network features that are related to these nodal
covariates, then this constitutes data missing at random, as in equation (3), and the AO modelling
approach is valid.

The expected block densities resulting from the AO fit are represented in Fig. 5(b). These
densities do not reflect the DP of non-respondents in the observed network. Thus, this result
constitutes the failure of the MAR assumption. There are systematic differences between the
respondents and non-respondents, beyond what can be explained by the observed data.

Note that testing the MAR assumption typically requires outside information, such as an
expensive follow-up study of non-respondents. Because the primary units of inference (directed
dyads) are nested between the primary units of observation (nodes), however, often the avail-
able data include information about non-respondents, such as the in-arcs that they receive from
respondents. In this way, the missing data structure is similar to that of longitudinal data with
partial non-response. In such a case, we may first measure any systematic differences between
respondents and non-respondents. A common approach to improving inference is then to in-
clude additional parameters capturing differences between respondents and non-respondents,
as per the mixture model approach that was advocated by Little, Rubin and others (Little, 1995;
Little and Rubin, 2002) and, in many cases, requiring the collection of additional data. Robins
et al. (2004) applied a variant of this approach when they used separate model terms for arcs
sent to respondents and to non-respondents.

Our approach here is less extreme. Unlike Robins et al. (2004), we use a network model with
most terms applying to the full N ×N relational matrix Y , thereby leveraging the information in
the observed portion to infer features of the unobserved portion. However, we also introduce a
term capturing the observed systematic difference between respondents and non-respondents:
their tendency to receive friendship nominations. We refer to this term as non-respondent popu-
larity and use the sufficient statistic ∑

i�=j

yijI.Sj =0/: .16/
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Fig. 5. Percentage of possible arcs in each of four blocks in (a) observed data and expected under (b) AO
and (c) DP model fits

The resulting model fit is in the fourth and eighth columns of Table 1 (natural parameterization)
and Table 2 (mean value parameterization). We see that the term is negative and significant,
indicating a significant difference between the two subgroups. The other parameter estimates are
not significantly different in this new model fit, although Fig. 5(c) illustrates that the observed
densities of ties to respondents and non-respondents are reproduced almost exactly. Thus we
have successfully accounted for one feature of data that are not missing at random, although it
is clear that there may be other non-MAR features that we have not addressed.

6. Discussion

In this paper we provide an analysis of the mechanisms governing friendship formation
between students in a US high school. We find that friendship nominations are often mutual
and more likely to occur between students of the same grade and sex. We find that friendships
within sex and grade show patterns of hierarchical structure, and also that there is a tendency
for some students to receive no friendship nominations, at a higher rate than we would expect
at random.

Through this analysis, we offer an exposition of methodology for the modelling of networks
with missing data, expanding on previous work in missing data, network modelling and network
sampling. We primarily treat the MAR case but also introduce a framework for treatment of
some limited instances of data not missing at random. We show that, under these conditions,
available software can be used to analyse networks that are partially observed because of out-
of-design missing data mechanisms.

The analysis also illustrates some specific points. The first is that only analysing the CCs can
lead to different conclusions from those by analysing all the observations. Comparing the CC
fit treating respondents only and the IC fit, using the same data but respecting the true network
size and nodal composition illustrates the practical implications of Shalizi and Rinaldo (2013),
showing that the subnetwork model fit differs considerably from the full network fit, even using
identical dyadic data. The further differences between the IC and AO fits illustrate the effect of
ignoring the information in observed ties to non-respondents. We also show that the overall fit
to the data is improved by extending the model to represent differences between respondents
and non-respondents.

We illustrate extensions of existing network analysis techniques to the missing data setting. In
particular, we apply the mean value parameterization to study differences between modelling
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approaches to the same data. We also extend the goodness-of-fit techniques of Hunter et al.
(2008) to understand models fitted to partially observed data better.

We find that it is typically worthwhile to retain as much information as possible from the data.
This is unsurprising but often not obvious in the network setting. The CC approach, discarding
all information about nodes with only partially available information, is straightforward to im-
plement and seems an attractive alternative. However, we have shown that, in principle and in
practice, it is possible and natural to work with models for the full network, using all observed
data, even when some data might be missing. As with any missing data situation, it is helpful
wherever possible to retain any information that is available on the full sampling frame, includ-
ing non-respondents. In this paper, we have retained two types of data on non-respondents:
exogenously available covariate data and friendship nominations received.

It is also sometimes possible to improve model fit by capturing observable differences between
respondents and non-respondents. We have illustrated one such effect in our DP model fit. It
is important to remember, however, that missing data are, by definition, beyond the control of
researchers and often follow unpredictable patterns. In many cases, valid inference may require
further study of non-response patterns, or sensitivity analysis.
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Appendix A: Computational procedure for Kullback–Leibler divergence

This appendix details the estimation procedure of Section 5. A natural way to compare the network
models is the Kullback–Leibler divergence. In Section 5 we use it to compare the CC model with the AO
model when both are used to model the CC subnetwork. Specifically, we can consider the probability
distribution that the AO model for the full network places over the CC network dyads, PηAO .YCC|X/, and
use it to compute the Kullback–Leibler divergence:

EηAO

[
log

{
PηAO .YCC|X/

PηCC .YCC|X/

}]

where PηAO is the AO model for the full network, PηCC is the CC model for the CC subnetwork and YCC is
the set of dyads from the full network in the CC subnetwork. From equations (4) and (5):

log{PηAO .YCC|x/}=κ.ηAO|YCC, x/−κ.ηAO, x/,

log{PηCC .YCC|x/}=ηT
CCZ.YCC|x/−κCC.ηCC, x/

so the Kullback–Leibler divergence is

EηAO [κ.ηAO|YCC, x/−ηT
CCZ.YCC|x/]+κCC.ηCC, x/−κ.ηAO, x/:

The first term is computed by generating full networks from the AO model and then the conditional nor-
malizing constants for each of their CC subnetworks. We provide the statnet code for this computation
as it is of general interest for modelling networks with missing data.
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