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The Earth’s climate warms with increasing greenhouse gases in the atmosphere. The

Southern Ocean (SO) mixed layer dampens the speed and intensity of global warming by storing

a large fraction of the anthropogenic CO2 and heat. However, the mechanisms and hence the

SO’s future capabilities to store heat and CO2 remain uncertain. This thesis aims to understand

better how atmospheric wind forcing drives mid-latitude mixed-layer variability. It focuses on the

wind forcing and swell generation under extra-tropical cyclones and links these to the large-scale

atmospheric circulation.

A supervised machine learning method is developed to characterize events in wave’s
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spectrograms of Ross Ice Shelf seismometers. The events are used to show that wave origins

under SO storms are systematically displaced compared to the highest wind speeds. This result

is further explored by extending the optimization method to multiple wave buoys in the North

Pacific to derive a common set of parameters that describe the origin and intensity of waves. The

triangulated wave source location motivates developing an idealized swell generation model that

mimics the time and spatially varying wind forcing as a 2D-Gaussian distribution that moves with

a constant speed over the ocean. It shows that the location where wind stress and wave forcing are

the strongest is not the same as the identified swell source location because non-linear wave-wave

interaction prohibits wave dispersion. The Gaussian moving wind model reveals the sensitivity

of the wave’s spectral energy and peak frequency on extreme winds under storms because they

influence the spatial gradients of the moving wind field.

Finally, an SVD decomposition of surface wind probability distributions from reanalysis

and scatterometer winds over the SO is used to link changes in the extremes of the joint wind and

stress probability density functions over the SO to the Southern Annular Mode. This reveals how

the planetary-scale circulation drives surface wind extremes through storm intensity over the SO

and suggests how the swell climate, related surface stress pattern, and mixed-layer ventilation may

change with a drifting large-scale atmospheric circulation.
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Chapter 1

Introduction

Earth’s climate is undergoing rapid but long foreseen changes (Charney Report, National

Research Council, 1979). Weather and climate began to change notably over the short period of

my life, and they will continue to respond to more and more greenhouse gases in the atmosphere

(Keeling and Keeling, 2017). This is creating tremendous pressure on the Earth’s population

to mitigate and adapt to changing weather, droughts, heatwaves, rising sea levels, and a general

shifting climate. Even though there is no doubt that the Earth’s surface temperature will continue

to rise throughout my lifetime, the International Panel for Climate Change (IPCC) identified key

factors that limit our ability to estimate the speed and path of global warming (Flato et al., 2014).

The largest uncertainty in global climate projections comes from future human behavior. Humans

have to understand that their existence is irrevocably intertwined with Earth and that only changes

in their behavior can flatten the impact of the current and future generations (Weber, 2019).

To make our path of mitigation and adaption to a changing climate the least disruptive

for us, we must improve our understanding of the Earth’s climate system and its variability in

unprecedented detail. This goes beyond understanding the climate system’s long-term response

to global warming, i.e., climate sensitivity (first done in the Charney Report and many others)

since adaptation strategies rely on accurate prediction of the internal variability on sub-seasonal
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to decadal-scales. Limiting damage from extreme weather or fire, efficient planning of renewable

power, and crop management are the most prominent areas where an improved medium-range

weather forecast is valuable.

The ocean plays a critical role in these mitigation and adaptation strategies. While the

troposphere’s decorrelation timescale generally does not exceed ten days, the ocean is a reservoir

for long-term memory and the climate system’s predictability. Because the upper 2.5 meters of

the ocean has the same heat capacity as the integrated atmospheric column, the ocean’s upper

50-100 meters can easily impact the atmospheric circulation on all timescales. It is estimated

that the upper ocean has stored about 50% of the additional heat and 90% of anthropogenic CO2

since the start of industrialization. If the ocean’s ability to damp global warming is altered a few

percent, this has notable consequences for global warming (Vaughan et al., 2013).

The global warming trend, as well as sub-seasonal to decadal variability, can be accessed

with state-of-the-art Earth System Models (CMIP models, Taylor et al., 2012; Haarsma et al.,

2016) or sub-seasonal to seasonal weather prediction models. But as these hyper-complex Earth

System Models allow us to study all kinds of feedback between the atmosphere and ocean, they

have one substantial weakness. They cannot explicitly resolve atmosphere-ocean interaction

processes because these processes are on scales orders of magnitudes smaller than the resolution

of climate or weather forecast models. They rely on parametrizations of the often turbulent,

small-scale processes, like ocean waves or turbulent heat fluxes, which then feed back on the

larger-scale (Cavaleri et al., 2012; Lorenz, 1969).

Climate models were initially designed to reproduce the general response of the sea

surface temperature to greenhouse gas changes. The models mostly agree on the energy balance

constraints of the Earth system. However, they still disagree in many fundamental aspects of

Earth’s circulation (Stroeve et al., 2012; Chang et al., 2012; Knutti and Sedláček, 2013; Masato

et al., 2013; Barnes and Polvani, 2013, 2015; Huang et al., 2020; Zappa et al., 2013; Pithan et al.,

2016; Lin et al., 2020, and many others). The discrepancies stem from the fact that the Earth
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system is inherently chaotic, so misrepresented small-scale processes lead to biases even on the

largest scales (Lorenz, 1963, 1967). Hence, our use of numerical models for predicting weather

and climate relies on accurate understanding and parametrizations of small scale processes at the

atmosphere-ocean interface.

Air-sea interaction is complex, ranges over many scales, and often involves turbulence

(sec. 1.1). And because the air-sea exchange is generally the strongest under extreme weather,

our understanding of air-sea fluxes is still hampered by limited observations. To circumvent this

problem, one can use remote constraints on air-sea exchange statistics. As I will show, these

constraints can be used to improve our understanding of remote observations and hence of the

process itself.

This thesis aims to improve our understanding of how the atmosphere and ocean interact.

It focuses on momentum transfer from the large-scale atmospheric circulation to ocean surface

waves. Chapters 2, 3 and 4 show how remote swell observations can be used to understand swell

generation better. Chapter 5 shows how angular momentum conservation can be used as boundary

conditions for air-sea interaction.

1.1 Air-Sea interaction - a double boundary layer problem

The atmosphere-ocean interface sits between the ocean and the atmospheric boundary

layer. Because there is friction between the fluids (no-slip condition), the atmosphere establishes

a mechanical boundary layer (BL), where the boundary influences the fluid motion. The

time-averaged velocity profile in the boundary layer is approximated by the "law of the wall"

(von Kármán, 1931; Garratt, 1992, first published in the Nachrichten von der Gesellschaft der

Wissenschaften zu Gottingen, 1930). This scaling law says the flow must be continuous between

zero at the wall and the outer flow above and requires a logarithmic velocity profile for neutrally

stratified turbulent flow. The turbulent flow at a high Reynolds number '4 cascades momentum
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from the atmosphere’s interior to the surface, such that the boundary layer height generally

depends on '4.

The atmospheric boundary layer (ABL) is more complex than this simple scaling law

because it is rarelt never neutrally stratified. Radiative, turbulent, and sensible heat fluxes across

the surface, as well as heat release from condensation, change the static stability of the ABL, which

affects the turbulence and hence the resulting velocity profile (Monin and Obukhov, 1954). This

changes the boundary layer turbulence’s efficiency in transporting momentum to the boundary

and other properties, like heat or moisture, away from the boundary.

These two fundamental relations – the law of the wall and its modifications due to

stratification – lead to the universally used bulk formulas that describe fluxes of heat, momentum,

and any other properties through the surface. In the most general form, they can be written as

ggg = d �� ΔDDD |ΔDDD | (1.1)

�0 = d 2? �� Δ\E |ΔDDD | (1.2)

�0 = d �, Δ@ |ΔDDD |, (1.3)

where ggg is the surface stress vector, �0 the turbulent sensible heat flux, �0 the turbulent latent

heat flux, d the density of air, DDD the wind vector, 2? the heat capacity of air, \E the virtual potential

temperature, and @ the specific humidity (Garratt, 1992). The capital delta Δ describes the finite

difference of the quantity between two reference heights. The exchange coefficients for drag �� ,

heat �� , and water vapor �, generally depend on the static stability of the boundary layer, the

surface roughness, and the wind speed (Garratt, 1992). The simplicity of these bulk flux formulae

put the complexity of the ABL in the formulation of these drag coefficients. They can be found in

every climate or weather prediction model, such that any modeled interaction between atmosphere

and ocean uses these equations.

The ocean boundary layer has a different character. The upper ocean’s '4 is generally
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smaller, but still turbulent flow. An (observable) mechanical boundary layer in the ocean develops

because the higher velocities appear at the interface rather than in the interior. Following the drag

formulas (1.1), the momentum that is advected from the atmospheric interior to the boundary

leads to stress at the interface that – in this simple framework – might push the ocean surface in

the direction of the stress (Ferrari and Wunsch, 2010, "wind work"). It results in a velocity shear

profile with decreasing velocities to the interior of the ocean, which will, with time, give rise to

Ekman dynamics (Gill, 1982, chap.9).

However, this attractive and simplified picture of momentum transfer to the ocean has

two fundamental flaws. First, the bulk flux formulas are tuned to a reference level of ten meters

above the surface, due to the World Meteorological Organization (WMO) conventions. Second,

and more importantly, the lower boundary is thought to be fixed, which means the surface does

not move or react to perturbation by surface stress. That is not what one observes when one

inspects the ocean surface. Because the ocean surface is an interface between two fluids and is

highly susceptible to perturbations from both sides, it is permanently in motion. A flat ocean only

appears when there is no wind, hence no turbulent fluxes, and the presence of wind instantaneously

generates waves at the interface.

Waves excite orbital motions that decay in both fluids away from the surface. Because the

atmosphere is so highly turbulent ('4 ≈ 104), atmospheric orbital motions are hard to observe.

Instead, ocean surface waves appear for the ABL as a roughness pattern with characteristic scales,

i.e., its wavenumber spectrum, that interact with the turbulence spectrum of the ABL.

Wave growth comes from continuous winds that transfer energy from the turbulent ABL

to the ocean. Even though wave growth is still not completely understood, it is thought to be the

result of instabilities and resonances of the surface that interact with the ABL (Phillips (1957);

Miles (1957, 1960), or chap. 3 in Janssen (2004) and chap. 12 in Kinsman (2013)). For wave

numbers lower than the spectral peak, the surface interacts with the corresponding scales of the

ABL turbulence. Because the ABL is continuously forced by the large-scale atmospheric flow,
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Figure 1.1: Schematic of wave growth and energy transfer from the atmosphere to the Ocean,
adapted from Hasselmann (1974); Hasselmann et al. (1976); Elfouhaily et al. (1997); Phillips
(1985). (a) JONSWAP spectrum for various fetch lengths with*10 = 15</B (blue lines). The
estimated equilibrium range is is shown in red shading with a characteristic slope of :5/2 (thin
red line) and the saturation range in light blue with a characteristic slope of :−3 (thin gray line).
The peak wave number : ? is indicated as a green line that migrates with longer fetch - to lower
frequencies. (b) JONSWAP spectrum for a - = 600 km fetch (black), with the estimated energy
input (8= (red), dissipation (3B (blue), and wave-wave energy flux (green).
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a resonance-like interaction between the ABL turbulence and the surface waves leads to wave

growth for short waves. This continuous growth of wave energy in the "equilibrium range" is

balanced by dissipation and interaction with waves of other scales (Phillips, 1958, Fig.1.1a,). Most

of the energy in this range is gained from the atmosphere and is directly dissipated to the ocean

(90-95%, Fig. 1.1b, blue arrow), while the rest goes into four-wave interactions (Hasselmann

and Hasselmann, 1985, Fig. 1.1b, green arrow). This wave-wave interaction leads to a flux

of wave-energy to longer wavelengths, which migrates the peak wave number to longer scales

(Fig. 1.1, short green arrows). This shift of the peak frequency by weak wave-wave interactions of

a small fraction of the total momentum flux drives the generation of swell and the growth of the

characteristic wave spectrum (Pierson and Moskowitz, 1964; Hasselmann et al., 1973; Elfouhaily

et al., 1997, Fig. 1.1a, blue lines). The shift of the wave’s peak frequency also feeds back to ABL

turbulence (Ayet et al., 2020; Zou et al., 2020).

Any significant atmosphere-ocean momentum transfer involves surface waves. The

largest proportion of the ABL momentum is likely transferred through the equilibrium range to

Reynolds-stress at the ocean surface. Other processes, like wave breaking and Stokes drift, can also

significantly affect the momentum transfer (Cavaleri et al., 2012). All processes mentioned above

depend on the frequency boundaries of the equilibrium range and hence on the wave spectrum’s

shape. The wave spectrum, in turn, is the result of prior wind forcing and hence introduces a

non-local condition to the local turbulent fluxes, via changes in the transfer coefficient.

When models calculate surface stress and other turbulent fluxes, the complex processes

outlined above are entirely parameterized in the drag coefficients �� ,�� and �, (Fairall et al.,

2003; Edson et al., 2013). Any modification of the ABL by stratification, changes in surface wave

roughness, and changes in the ABL turbulence balances modify �3 by some functional relation.

But because wave growth and associated momentum transfer introduce non-local information,

the estimation of surface fluxes from local conditions remains challenging. State-of-the-art flux

formulas can account for surface roughness changes from short waves by using wave age (2?/*10),
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assuming the wave’s response time is generally much faster than model time steps (Edson et al.,

2013). However, the effects of long waves and mature wave spectra are not considered in any

of these parametrizations. One can speculate that non-local wave conditions are important in

high and mature seas with extreme surface winds and strong fluxes of heat, momentum, and CO2

(eq.1.1 Schulz et al., 2012; Ogle et al., 2018; Tamsitt et al., 2020). Even though extreme fluxes

are modeled in flux formulas vi a squared dependence on the wind shear, there is essentially no

validation of these estimates for extreme seas, or under extra-tropical storms.

Surface waves are the source of the momentum that drives the upper ocean circulation.

However, the cascade of processes that connects the momentum dissipated by short waves, Stokes

drift, or wave breaking to the ocean circulation remains unclear. Once the momentum crosses the

interface, it somehow must end up in the much larger inertial scale, which is where most of the

energy in the wake of a storm is observed (Ferrari and Wunsch, 2008). This thesis characterizes

the scales of the surface wind and wave forcing to improve the understanding of how the surface

wave momentum interacts with the many other processes in the upper ocean (Villas Bôas et al.,

2019).

1.2 Large-scale drivers of synoptic-scale atmosphere-ocean in-

teraction and weather extremes

Strong zonal winds near the tropopause dominate the atmospheric mid-latitude flow.

Any changes in these zonal jets’ variability and position significantly impact local climate,

precipitation, and extreme weather by changing weather regimes (Held and Soden, 2006; Mitchell

et al., 1987). The jets’ variability also impacts atmosphere-ocean interaction through changes

on the synoptic scale. The statistics of the small-scale processes mentioned above (sec. 1.1) are

related to the large-scale changes in the atmosphere and ocean, which is implied in research about

atmosphere-ocean coupling. For example, "The atmospheric Bridge" (Alexander et al., 2002),
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"D-O events" (Stocker and Johnsen, 2003), trends in SAM drive trends in the SO circulation

(Thompson et al., 2000; Thompson and Solomon, 2002) and so on. However, little is known

about how larger-scale climate phenomena like the Northern or Southern Annular Mode (NAM,

SAM), El ñino, the Pacific Decadal Oscillation, and other climate indices perturb the unresolved

and under observed small scales of air-sea exchange. Hence, a better understanding of how the

mid-latitude atmospheric circulation couples with small scales at the interface may reveal how

planetary-scale phenomena drive atmosphere-ocean coupling.

1.2.1 Angular Momentum in the Atmosphere

All chapters of this thesis address the distribution and conservation of atmospheric angular

momentum (AM). Earth’s mid-latitudes are baroclinically unstable and create Rossby waves

(Eady, 1949; Phillips, 1954; Charney and Stern, 1962) that transport relative angular momentum

from the tropics to the high latitudes. That is, they transport AM in the region they are created

(Peixoto and Oort (1992), chapt. 11 and Schneider (2006), and therein). Their momentum flux

convergence leads to an excess angular momentum in mid-latitudes that has to be balanced by

surface friction; otherwise, the zonal flow would infinitely accelerate. It is convenient to analyze

the atmospheric angular momentum balance in the zonal mean because it simplifies the equations

of motions along the axis of symmetry (Andrews et al., 1987, , for example). In the absence

of form drag by topography, the instantaneous vertical integral of the Eulerian, zonal-mean

momentum equation in mid-latitudes is

m

mC
〈[D]〉 − 5 〈[E]〉 + m

mH
(〈[D] [E]〉 + 〈[D∗E∗]〉) = [FCDA], (1.4)

with D and E as zonal and meridional wind, 5 as the Coriolis parameter and FCDA as the turbulent

drag in the surface boundary layer (Andrews et al., 1987). The zonal mean is written as [·], its

deviations as (·)∗ and the vertical integral as 〈·〉. Eq. (1.4) shows that (eastward) zonal-mean
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surface drag – the mechanical force on the ocean – balances the residual of four components in

the zonal mean flow (Fig. 1.2): the acceleration of the zonal mean zonal wind, the southward

advection of planetary momentum, and the divergence of momentum fluxes either by the mean

flow or by eddies. Hence, the zonal mean mechanical work of the atmosphere on the ocean, called

surface stress or surface friction, is related to large-scale atmospheric circulation processes.

In a steady-state, and for small Rossby radius, the vertical integral of eq. 1.4 can be written

as

mH 〈[D∗E∗]〉 =
[
F̄CDA

]
, [</B2] (1.5)

where the over-bar indicates a time-mean over typical Rossby wave scales (≈ 5 days). Hence in the

time-mean and in the absence of continents, the momentum flux convergence of the atmospheric

column is the dominant source of zonal stress on the ocean surface.

In the Southern Hemisphere (SH) mid-latitudes, the ocean covers more than 99% of the

surface (35◦S to 63◦S, Fig.1.2), similar to idealized GCM circulations where no continents are

present. This is especially true for the small latitude band of Drake’s Passage, where the balances

eq. 1.4 and eq. 1.5 should be valid because there are no continents (Chapter 5).

1.3 Storms as catalysts of air-sea exchange

Mid-latitude storms funnel excess angular momentum to the synoptic-scale (Lorenz, 1955).

The synoptic scale is about 1000 km and 3−5 days and dominates the variability in mid-latitudes.

Synoptic storms are depicted using several frameworks in the literature (review in Schultz et al.,

2018), four of which are summarized here:

• Low-pressure systems: In contrast to high-pressure systems, storms are anomalies of low

surface pressure that carry warm and cold fronts. This highly descriptive view of storms
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Figure 1.2: Atmospheric momentum balance in the Southern Hemisphere. Circles with a dot
indicate strong zonal wind out of the page, while crosses show wind into the page. The blue
arrows indicate angular-momentum fluxes from areas of wave breaking (divergence, pluses) to
areas of wave generation (convergence, minuses). The green shading shows the atmospheric
column over the drake passage where eq. 1.4 would be valid. The green arrow indicates the
vertical integrated Eulerian momentum flux 5 〈[E]〉. Dashed gray lines illustrate the mountain
ranges in the latitude band.
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and their lifecycle is used in the daily weather forecast and often referred to as the Bergen

School of Meteorology (Bjerknes, 1919; Bjerknes and Solberg, 1921, 1922).

• Baroclinic eddies: With the development of a theory for the general atmospheric circulation,

storms were referred to as eddies to describe their dynamical purpose better. These eddies

must be understood in contrast to the mean flow, as they drive and balance the mean flow

(Charney, 1947; Eady, 1949). Eddy-mean flow analysis is commonly used to explain

changes in large-scale flow (Charney and Stern, 1962; Andrews and McIntyre, 1978; Edmon

et al., 1980). Because this approach only describes eddy statistics in a highly chaotic

circulation, it fails to explain individual storm strength or even their surface fields.

• Extra-tropical cyclones: Rossby-Ertel Potential Vorticity (PV) describes storms as PV

anomalies on isentropic surfaces (Namias, 1939; Hoskins et al., 1985). It allows detailed

analysis of the synoptic evolution of storms (cyclo-genesis and cyclo-lysis) in PV rather than

pressure, which directly links synoptic and mesoscale phenomena to the general circulation

(Simmons and Hoskins, 1978; Wernli et al., 2002; Schemm and Wernli, 2014, and others).

• Noise in a honey world: Because the time and spatial scales of large-scale oceanography

are much larger than storms, their impact on the ocean is supposed to average out, such

that the time and spatial mean of these "eddies" is the signal of interest. However, the

assumption that single storms have only randomized impacts on the ocean can only be held

when the ocean is modeled as a coarse-grained, large-scale flow (a "honey ocean" due to

its large viscosity). However, there is observational and modeling evidence that air-sea

coupling on the synoptic-scale has a significant non-random impact on the upper ocean

and the large-scale circulation (Schulz et al., 2012; Ogle et al., 2018; Tamsitt et al., 2020;

Giglio et al., 2017; White et al., 2017; Bharti et al., 2019).

Different communities of Earth science tend to one or the other of these mental models. This

thesis can be seen as a pledge to use them all and harvest the synergies from analyzing air-sea
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exchange from different perspectives on extra-tropical storms.

1.4 Ocean Swell as the residue of intense Air-Sea exchange

Swell waves have a unique role in linking atmospheric dynamics to upper-ocean variability.

Because strong air-sea exchange is the result of turbulent processes that are sparsely observed

(sec. 1.1), our understanding relies on remote observations that have to be interpreted with inverse

models to reconstruct statistics of air-sea exchange. This is, for example, used in scatterometry.

Swell waves can be interpreted as another remote observation of air-sea exchange because

they result from the continuous process of wave growth (Fig. 1.1). They are an encoded signal of

the momentum fluxes that depend on the wind forcing scales and are altered by interacting with

their carrying medium. After leaving its source, the wave energy spreads out and ages (measured

by frequency dispersion). When it is observed at a location far remote from its origin, the waves’

spectral shape still contains information about the source’s intensity, location, and time.

Understanding swell is much more than just predicting local surf. Swell is an observation

of intense remote air-sea exchange that shapes mixed-layer ventilation and long-term climate

trends. Changes in the swell climate may result from changes in synoptic dynamics over the ocean.

These dynamics are tied to the development of the low-level PV as well as to the large-scale flow.
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Chapter 2

Identifying ocean swell generation events

from Ross Ice Shelf seismic data

Abstract

Strong surface winds under extra-tropical cyclones exert intense surface stresses on the

ocean that lead to upper ocean mixing, intensified heat fluxes and the generation of waves, that,

over time, lead to swell waves (longer than 10 s period) that travel long distances. Because

low-frequency swell propagates faster than high-frequency swell, the frequency dependence of

swell arrival times at a measurement site can be used to infer the distance and time that the wave

has traveled from its generation site. This study presents a methodology that employs spectrograms

of ocean swell from point observations on the Ross Ice Shelf (RIS) to verify the position of high

wind speed areas over the Southern Ocean, and therefore of extra-tropical cyclones. The focus

here is on the implementation and robustness of the methodology in order to lay the groundwork

for future broad application to verify Southern Ocean storm positions from atmospheric reanalysis

data. The method developed here combines linear swell dispersion with a parametric wave model

to construct a time and frequency-dependent model of the dispersed swell arrivals in spectrograms
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of seismic observations on the RIS. A two-step optimization procedure (deep learning) of gradient

descent and Monte Carlo sampling allows detailed estimates of the parameter distributions, with

robust estimates of swell origins. Median uncertainties of swell source locations are 450 km in

radial distance and 2 hours in time. The uncertainties are derived from RIS observations and the

model, rather than an assumed distribution. This method is an example of supervised machine

learning informed by physical first principles in order to facilitate parameter interpretation in the

physical domain.

2.1 Introduction

Strong winds associated with extra-tropical cyclones act on the ocean surface and generate

surface gravity waves. These waves propagate long distances and are observed as swell (Snodgrass

et al., 1966). Long swell waves (in the range between 0.03 − 0.8 Hz) can travel across ocean

basins with minimal attenuation (Snodgrass et al., 1966). Because wave dispersion depends on

frequency, swell observed at distant locations contains information about its position and time

of generation. The idea of tracking storms using swell was first shown by Munk (1947) and by

Barber and Ursell (1948). The objective of this study is to establish a methodology to use modern

swell observations to learn about conditions at the swell’s source region as well as the travel path

of the swell.

The locationswhere swell waves originate experience intense atmosphere-ocean interaction.

Some of the strongest events occur in the Southern Ocean, where the observing system is sparse

and storm systems are not well characterized by direct observation (e.g. Bourassa et al., 2013).

Strong surface winds lead to intense air-sea fluxes of heat, momentum and CO2, with potential

implications for ocean circulation changes and the ocean uptake of anthropogenic heat and CO2

in the Southern Ocean (SO, Swart et al., 2018; Rintoul, 2018; Marshall et al., 2016; Munday and

Zhai, 2017; Gruber et al., 2019).
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Ocean swell spectra are routinely generated from autonomous wave buoy observations,

GPS sensors, or seafloor pressure sensors (Munk et al., 1963; Collard et al., 2009; Delpey et al.,

2010; O’Reilly et al., 2016), and they have also been observed by land-based seismic stations

when swell interacts with the coast (Bromirski et al., 1999). The time series of swell arrivals at an

observation site can be converted to a time evolving power spectrum, known as a spectrogram.

Each set of swell arrivals detected in a spectrogram is related to the surface wind at the storm

(Pierson and Moskowitz, 1964; Hasselmann et al., 1973; Elfouhaily et al., 1997) and can, as we

will show, be interpreted as a remote observation of the storm itself.

This study adopts a unique approach by using seismic data collected not on land, but

instead on a floating ice shelf, as part of the Ross Ice Shelf (RIS) Vibration Project (Wiens

et al., 2014; Bromirski et al., 2017). The data from the RIS allow us to compute an extensive

series of high-resolution spectrograms of surface gravity waves, similar to conventional wave

observations. We use these data as a training set to develop a new method to characterize ocean

swell observations.

Feature comparison in geophysical data is often challenging because the observations are

noisy, and the models are too simple. As we outline below, the combination of optimization and

Monte Carlo methods enables us to improve our model understanding of the data, while we use

the model to identify the relevant data. This is a “machine learning" approach that is constrained

by physical laws, with the benefit that it generates uncertainties based on the data and the model,

rather than assuming an a priori uncertainty distribution (Marone, 2018).

We present a method to compare characteristic patterns in seismic spectrograms with

a parametric model that is constrained by the physics of ocean gravity waves. We first briefly

describe the physical background that motivates the model (section 2.2) and introduce the

data set (section 2.3). Then, we introduce the governing cost function (section 2.4), the

model (section 2.5), and the data preparation (section 2.6). The actual fitting procedure is

explained in section 2.7, and its performance is shown in section 2.8 and discussed in sec-
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tion 2.9. The developed code for this analysis will be publicly available in a github repository

(https://github.com/mochell/stormy_forerunners) after completing the project.

2.2 Waves across the Pacific - physical background

Observations on the RIS record storm-induced swell events (Fig. 2.1), much like previously

reported observations along coastlines (Munk and Snodgrass, 1957; Snodgrass et al., 1966). The

gestalt of these coherent packages of swell energy is shaped by three processes:

1. The dispersion of deep water waves means longer waves travel faster, such that the longest

wave generated by a storm arrives first (Munk, 1947; Barber and Ursell, 1948; Snodgrass

et al., 1966; Gallet and Young, 2014). At any point in the ocean, an observer who records

the arrival time of waves of different frequencies can estimate both the time of origin and

the distance traveled, assuming all waves come from the same source. For continuous

observations, like those provided by the RIS seismometers, the succession of wave arrivals

results in a sloped line in the wave spectra (Fig. 2.1). The sloped line of these dispersed

wave events is an indirect measure of the radial distance to the origin of the waves.

2. The spectrogram and it’s shape are related to winds in the wave generation region. There is

extensive literature about ocean wave spectra. See for example the compendial overviews

of Massel (1996, 3.2.) or Elfouhaily et al. (1997). The most commonly used parametric

models are the Pierson-Moskowitz (here after PM) spectrum for a fully developed sea or

the Joint North Sea Wave Project (JONSWAP) spectrum (Fig. 2.2, Pierson and Moskowitz,

1964; Phillips, 1985; Hasselmann et al., 1973, 1976). Both models are possible functional

forms for this optimization problem. The advantage of the JONSWAP spectrum is that it is

more flexible and is not limited to fully developed seas. It also relates the peak frequency
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5< and the amplitude parameter U to the non-dimensional fetch -̃

5< =
3.5 6
*10

-̃−0.33, (2.1)

U = 0.033
(
5<*10
6

)0.67
= 0.076 -̃−0.22, (2.2)

with

-̃ =
6 -

*2
10
, (2.3)

where - is the fetch in meters (defined as the horizontal distance over which wave-generating

winds are able to act),*10 is the 10-meter wind speed over that area, and 6 is the acceleration

due the Earth’s gravity (Hasselmann et al., 1973). The JONSWAP relations can be inverted

to infer speed and fetch at the location of the storm from the wave spectrum parameters U

and 5<, detected at a remote location (Pierson and Moskowitz, 1964; Hasselmann et al.,

1976). Both PM and JONSWAP spectra are based on theories of wave generation by winds

(Phillips, 1957; Miles, 1957, 1960), and their only difference stems from the JONSWAP

model’s inclusion of additional parameters that vanish under the assumption of a fully

developed sea (see section 2.5, Fig. 2.2 and Massel, 1996, 3.2.).

3. When swell travels into sea ice, it can be damped or reflected (Fox and Squire, 1994; Squire,

2007; Vaughan et al., 2009). While low-frequency swell waves travel through sea-ice and

are detected in seismic records on the RIS (typical periods of about 15 seconds, Fig. 2.1

shading, Collard et al., 2009; Cathles et al., 2009; Bromirski et al., 2010; MacAyeal et al.,

2009), higher frequencies are strongly damped (periods of about 10 seconds and shorter,

Kohout et al., 2014; Collins et al., 2015; Ardhuin et al., 2016). It is hypothesized that

damping of incident swell energy by sea ice helps to maintain the overall ice shelf stability

(Squire et al., 1994/ed; MacAyeal et al., 2006; Robinson and Haskell, 1990; Lipovsky, 2018;
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Massom et al., 2018). However, a validated parametric model of sea-ice induced damping

does not exist and is therefore not included in our formulation of the model (section 2.5).

The first two processes, wave dispersion and spectral shape, are used to construct our

model for the optimization procedure. The model is constrained by prior physical knowledge

about the processes that we aim to investigate. If the residual differences between model and data

share common features between multiple events, then the misfit can potentially be attributed to

physical processes that are not represented in the model, such as the attenuation due to sea ice.

Most ocean swell observations show a superposition of locally and remotely generated

waves (Rapizo et al., 2015; O’Reilly et al., 2016). In contrast, the swell spectra observed on the

RIS are only due to remotely generated waves because swell generation in the proximity of the ice

shelf is suppressed by sea ice. Even in summer, when melting may produce open water areas

close to the RIS, any locally-generated waves are shorter than the remotely-generated swell. Wave

generation at the observation site is not possible because the observations are made on the ice

shelf rather than in the ocean. The fact that RIS data highlight the impacts from remote storm

activity in the Southern Ocean makes them unique.

On the other hand, RIS seismic records may be the result of processes that are absent in

open ocean observations, such as interactions with sea ice, topography and currents, or the ice

shelf itself. The intent of this discussion of the method is to first set these additional complexities

aside and, in a second step, assess whether RIS-specific processes can explain the deviation of

the observations compared to the model function. This model function represents a physical

hypothesis for the evolving ocean wave spectra; however, we do not expect it to apply exactly in

each individual case.
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2.3 Seismic Observations in the Ross Ice Shelf

The Ross Ice Shelf Vibration Project was a field campaign carried out from October 2014

to December 2016 with the goal of recording the Ross Ice Shelf response to gravity wave impacts

for geophysical, glaciological and oceanographic purposes (Wiens et al., 2014). To investigate

the RIS response to gravity wave forcing, a network of 28 seismic stations recorded 2 years of

continuous vertical and horizontal displacements at each station (Fig. 2.3). The sampling rate was

either 100 Hz or 200 Hz depending on the instrument configurations at each station (Bromirski

et al., 2015). Data were archived in accordance with IRIS (Incorporated Research Institutions for

Seismology, www.iris.edu) standards for seismic data. The 3 stations closest to the front (DR01,

DR02 and DR03) recorded the highest amplitude response for swell waves, and are thus used for

the analysis presented in this paper, because they are expected to have the largest signal-to-noise

ratios for swell waves.

The processing is as follows. First, the 100 Hz or 200 Hz time series are averaged to 1 Hz,

because the timescales of interest (waves with frequencies less than 0.1 Hz) are perfectly resolved

by 1 Hz sampling, and the much smaller data volume makes processing more efficient.

Second, the recorded time series are corrected for the frequency-dependent response

function of the seismometer. The 1 Hz time series is deconvolved with the instrument response

function which is a cosine window ( 51 = 10−4 Hz, 52 = 2×10−4 Hz, 53 = 0.4 Hz, 54 = 0.5 Hz).

The resulting displacement time series are pre-whitened by taking the second derivative in time to

generate a time series of acceleration in m s−2. Peaks in the acceleration time series are removed

if they deviate from the mean by more than 10 standard deviations; any resulting gaps are filled

by linear interpolation. Less than 0.1% of the data are removed from the time series, and the

removals have no effect on the model estimate.

After these preliminary adjustments, a spectrogram is calculated at each station using the

1-Hz averaged time series for a shifting window discrete Fourier transformation. To calculate
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spectrograms, data are first split into segments of 20 minutes duration, with 50% overlap. Each

segment is detrended and fast Fourier transformed to produce periodograms. Spectral estimates

are computed at hourly time increments, by averaging periodograms from eleven 20-minute

segments centered around 1 hour time steps (i.e. spanning a total time period of 120 minutes),

while a Hanning window was applied to each segment. The 20-minute segment length determines

the frequency resolution with a lowest frequency of 1/1200 Hz. The resulting 2-year spectrogram

for DR01 is shown in Figure 2.1. (Spectrograms for DR02 and DR03 appear indistinguishable

from DR01.)

2.4 Cost function definition

Our next objective is to optimally fit the swell arrivals detected in the spectrograms to a

model based on the JONSWAP spectrum by adjusting the free parameters in the model. We do

this via a non-linear minimization method performed on a global cost function

Φ = �3 + �<, (2.4)

which is the sum of the data cost function �3 and the model cost function �< (known as ridge or

lasso regularization). The data cost function �3 is the sum of the squared difference between data

��� and model """ (???), with ??? being the model parameter, multiplied by the weight function FFF at

each point

�3 = ‖ (��� −""")FFF ‖2 . (2.5)
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The model cost function �< is the sum of squares of the normalized parameter values

�< =





 ???000− ???
???fff





2
, (2.6)

where ??? is a set of function parameters for optimization, ???000 represents the initial guesses of the

parameter vector, and ???fff is the corresponding prior error estimate (Appendix).

The model cost function allows us to optimize function parameters ???, while taking account

of prior estimates of uncertainty in the parameters ???f. In order to allow a wider range of parameter

values, the prior uncertainty is artificially set to be large. Too small values for ???f result in an

overweighting of the costs due to the parameters, resulting in overly conservative model behavior

that is more likely to remain close to the initial conditions. The following sections explain the

parametric model (section 2.5), and the data preparation and weight function (sec. 2.6).

2.5 Model description

The model """( ( 5 , C) is compared against the data ��� ( 5 , C) at each iteration of the mini-

mization procedure. The model has a time component ") (C) and a spectral component (( 5 ) that

are both described here. We assume a separable model "B ( 5 , C) = (( 5 )") (C).

1. The spectral part of the model (( 5 ) is based on open-ocean swell spectra of a fully developed

sea (section 2.2). The JONSWAP spectrum (Hasselmann et al., 1973; Massel, 1996, 3.2.3.2,

p. 94, eq. 3.81) is reformulated as

(( 5 ) = Û (2c 5 )−5 exp

[
−j

(
5

5<

)−4
]
WX, (2.7)

X = exp

[
−1

2

(
5 − 5<
f0 5<

)2
]
, (2.8)

where 5 is the frequency, Û the amplitude parameter in units of acceleration squared, j
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the non-dimensional stretching term (j = 5/4 in the standard JONSWAP model), 5< the

position of the peak frequency, W the measure of the height of the peak function, and f0 the

width of the peak function. We define an amplitude parameter Û = 62U such that the first

guess of Û is of order one, while the initial value of U is inferred from the data (see below).

This model reverts to the original PM-spectrum when Û and j are set to constant values

taken from JONSWAP (Hasselmann et al., 1973).

In total, there are 5 free parameters in (4.3.1) and (2.8): the conventional peak parameter 5<

and four more parameters (j, Û, W,f0) to allow for the additional complexity in the seismic

data due to the interaction with sea ice and the RIS (sec. 2.2). Other parameters of the

JONSWAP spectrum, such as*10 and -̃ are not used directly in the model (4.3.1), but can

be inferred using the estimated parameters 5< and Û in equations (2.1 - 2.3).

2. In the time domain, visual inspection of the spectrogram suggests that swell arrivals

generally have a relatively sharp leading edge (Fig. 2.4), while their decay varies (Munk

and Snodgrass, 1957). This behavior is approximated by the Γ-distribution

") (C̃) =
1

fCΓ(C̃)

( C̃ − C̃?40:
fC

)1−1
4−C̃ , (2.9)

with the Γ-function as

Γ(C̃) =
∫ ∞

0
G C̃−14−G3G, (2.10)

where C̃ ≡ (C − CBC0AC)/(C4=3 − CBC0AC) = (C − CBC0AC)/ΔC is the normalized time, with CBC0AC being

the lower left and C4=3 the upper right corner of the parallelogram (Fig. 2.4a, described in

sec. 2.6.1). The dimensionless parameter fC is set to 0.07, so that ") (C̃) in (4.3.2) has a

maximum value of order one, such that the only parameter that determines the amplitude

is Û. The term C̃?40: represents the location of the peak in time, and 1 controls the width

of the Γ-distribution; both are used for parameter optimization (section 2.7). Figure 2.5a
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illustrates ") (C̃) for default values of C̃?40: and 1 and for the maximum and minimum

values for 1, set as constraints for the optimization (Appendix).

3. The time-evolving peak frequency is expressed as a linear function that is informed by the

deep-water dispersion relation:

5?40: (C̃) = (C̃ − C̃0) < C̃ , (2.11)

where 5?40: is the peak frequency, C̃0 is the center of the non-dimensional normalized time

axis, and < C̃ is the rate of change in units of Hz. Note that 5?40: is different from the

maximum peak frequency 5<: 5?40: is peak frequency at each non-dimensional time C̃,

while 5< is the maximum of the peak frequencies, i.e. the peak frequency over the whole

event.

The rate of change < C̃ and non-dimensional initial time C̃0 are directly related to the distance

and time estimates (Snodgrass et al., 1966; Munk and Snodgrass, 1957; Barber and Ursell,

1948). The inversion of (2.11) gives a relation for C̃?40: ( 5 ), which is inserted into (4.3.2).

The Γ-distribution ") , the JONSWAP spectrum (, and the linear slope equation (2.11) yield a

two-dimensional model of swell arrivals:

"""( ( 5 , C̃) =(( 5 )") (C̃) (2.12)

=Û
2

0.7(2c)5
1

Γ(C̃) 5 5 WX
[
C̃ − 5 <−1

C + C̃0
0.07

]1−1

exp

[
−j

(
5

5<

)−4
− C̃

]
, (2.13)

with X =exp

[
−1

2

(
5 − 5<
f0 5<

)2
]
. (2.14)

Equation 4.3.4 has #E0A = 8 fitting parameters: ??? =
{
Û, j, 5<,< 5 , C̃0, 1, W,f0

}) . These parameters

are the basis for the non-linear optimization procedure described in section 2.7, and the sensitivity

of the model (4.3.4) to these parameters is shown in Figure 2.5.

24



2.6 Pre-handling the data

Achieving optimal agreement between the data and the model function requires selection

and preliminary correction of the data. This section explains how events are selected and

corrected to facilitate non-linear optimization. First, the shape (sub-section 2.6.1) and amplitude

(sub-sections 2.6.2 and 2.6.3) of individual events are used to ensure similar signal-to-noise levels.

Subsequently the model is fitted to the adjusted data, given a customized set of initial parameters,

but without further individual tuning of the model (sec. 2.7).

2.6.1 Selection procedure and masking

The vertical acceleration spectrograms from Stations DR01 to DR03 show about 250

wave events during the 2-year RIS measurement period. (Fig. 2.1 shows the full record for DR01,

and supplementary Figures S2 and S3 show the same for DR02 and DR03.) These events are

common features in the spectrograms of other stations across the RIS array (Fig. 2.3). Wave

events are strongest near the ice shelf front and decay with distance toward the interior of the shelf

(Bromirski et al., 2017).

Each event has a characteristic slope, indicating that low-frequency energy arrives before

higher frequencies (sec. 2.2). In this analysis, the slopes are identified using an interactive hand

picking procedure. An example of this is shown in Fig. 2.4a, in which the wave event (blue

shading) is identified by its low- and high-frequency limits (black dots in Fig. 2.4a) and its

estimated time-width (green dot in Fig. 2.4a).

The data mask is a parallelogram defined by three values, as follows (Fig. 2.4a, green

perimeter). The upper and lower limits are the corresponding frequencies of the black dots, and

the tilted sides are twice the temporal separation between the green point and the black middle

line. Initial parameters for slope and intersect (section 2.5) are taken from a line centered between

the left boundary and the middle line (Fig. 2.4a, red line).
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2.6.2 Data weighting

There is additional prior information about the usefulness of the data within the data mask.

High amplitudes close to the mask boundary are typically attributed to noise, while data in the

center of the domain are likely associated with the selected event. The geometry derived in the

previous section is also used to construct a data weighting function defined as

FFF = (FFF� +FFF�FFF�)/2+F 5 ;>>A , (2.15)

where FFF� is a geometrical weight that decays from 1 in the center to 0 at the boundary using

a Hanning window (Fig. 2.4a, gray contours), FFF� ( 5 , C̃) is the spatially smoothed1 data divided

by its maximum value, such that FFF� is a matrix that weights high-amplitude data points more

strongly. The minimum is F 5 ;>>A = 10−6. The total weight FFF can vary between F 5 ;>>A and

F 5 ;>>A +1 and is constructed such that data points at the boundary, especially of high amplitude,

are down-weighted, while data points in the center with high amplitudes are up-weighted. The

noise floor value F 5 ;>>A represents the general uncertainty in the data that is estimated from the

uncertainty in the spectral estimate. The uncertainty of the spectral estimate is derived from

sub-sampling described in section 2.3.

2.6.3 Noise handling

Within the parallelogram-shaped mask used to select data from the spectrogram, higher

noise levels often occur at lower frequencies (Fig. 2.4a, below 0.05 Hz and in supplementary

Figure S4). Here, noise is accounted for by fitting a noise model prior to fitting the actual model.

The noise model follows an exponential decay of the form

"= ( 5 ) = V= 4−g= 5 , (2.16)
1The data are smoothed by using a running mean with a width that is 0.2% of the size of the data matrix
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where V= and g= are free parameters. The difference between the masked data �̃ and "= defines

the noise cost function

| |Φ= | |2 =
��������( �̃��f��� −"""=

)
FFF=>8B4

��������2 , (2.17)

with �̃ as the masked acceleration spectrum, normalized by its standard deviation

f��� =

[
1

# −1

#∑
8

(
�̃8 − �̃

)2
]1/2

. (2.18)

The model weighting function FFF=>8B4 = 1−FFF� +F 5 ;>>A is the opposite of the geometric weight

from (2.15) and down-weights data points with high signal-to-noise ratios, such that (2.16) fits to

the background noise rather than the data. The noise cost function (2.17) is minimized for each

event individually using the gradient descent methods described in section 2.7. The resulting

noise-reduced data matrix

��� =
�̃��

f���
−"""= (2.19)

is used for the actual model fitting. It contains the noise-corrected and normalized data for each

event. The geometric data selection and the constructed weight function focus the non-linear

optimization on individual dispersed wave events, while down-weighting neighboring events and

the seasonally changing low-frequency noise due to sea-ice (Fig. 2.1). The data selection process

generates a collection of 250 similar events that can be well characterized by the model function

(sec. 2.4).

2.7 Non-linear fitting

The optimization method changes the parameters ??? of the model function """ to minimize

the cost function �(""" (???), ???) eq.(2.6). The smallest value of � that the method finds represents

the best fit between model and data and is only dependent on a set of parameters ???.
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2.7.1 Choice of initial values

The initial values of these parameters are either set to a standard value or are informed

by the geometrical form of the data mask (Fig. 2.4b). The first guess dispersion slope < 5 and

non-dimensional initial time C̃0 are taken from the masking procedure (red line in Fig. 2.4a), and

the peak frequency 5< is initially set to the peak frequency of the masked data. The initial 5< is

also used to calculate Û(U) from (2.2) assuming a wind speed of 10 m s−1. Other parameters

that modify the spectral shape are initialized from the JONSWAP spectrum standard values

(Hasselmann et al., 1973), which are estimated based on open ocean observations.

An overview of the sensitivity to parameter values is shown in Figure 2.5. The initial

parameters and their limits are set to physically plausible ranges (see Appendix, Table 2.1 and

Massel, 1996), such that they allow a wide range of possible values, and equally importantly, also

adjust to the noise level. In high noise cases, the model is often unrealistic and results in a poor fit

characterized by a large fractional error (sec. 2.8.1). These cases can be identified and are not

considered for further analysis (sec. 2.8.3).

2.7.2 Optimization Method and Estimations of Uncertainty

The non-linear model (eq. 4.3.4) is optimized using a two-stage fitting algorithm to

minimize the cost function � (eq. 2.6). In the first stage, the model is initialized with ???0 and

then changed using the Levenberg-Marquardt Algorithm (LM, damped least-squares, Newville

et al., 2014) to find a local minimum of the cost function. The LM algorithm calculates the

local gradient in parameter space and moves its next guess of parameters in the direction of the

gradient. The iteration terminates if the change of the cost function is small (< 10−15), if the

change in the independent variables is small, or if the number of iterations exceeds its limit defined

as 100 (=+1) =, with = being the length of ���. We used a gradient method first, rather than a

non-linear search, because of its faster convergence to a (local) minimum for a relatively smooth
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cost function.

In the second step, a Parallel Tempering Markov-Chain-Monte-Carlo (PTMCMC, Good-

man and Weare, 2010; Foreman-Mackey et al., 2013; Earl and Deem, 2005) method is used to

further minimize the cost function and to produce an a posteriori error distribution for all variables

simultaneously. This process is similar to simulated annealing, where the progress toward an

optimal solution can only be seen from the average of many iterations rather than from each single

iteration (Kirkpatrick et al., 1983). This is a powerful tool in situations in which multiple optimal

solutions could exist, as in this problem: even though one origin per wave event is assumed, the

uncertainty estimate from PTMCMC is generally capable of capturing several wave events that

arrive at the same time.

Each Markov Chain is initialized with the optimal parameters from the steepest descent

method, and its first guess is seeded from a random distribution. This chain, often called a walker,

goes through 1000 function evaluations, with two different annealing temperatures, but only every

second evaluation from the final 75% of this process contributes to the error distribution (750

function evaluations per walker). This is repeated 1000 times in a Monte Carlo sense to create a

distribution with 7.5×105 data points in the 8-parameter space.

Figure 2.6 shows two examples of co-distributions of two elements of ??? for the event in

Figure 2.4c. (All distributions are shown in Figure S1.) The distributions have clear maxima,

which are the optimal values for each parameter. We use the median (blue lines in Figure 2.6) as

the best model fit, while half the difference of the 15.87% and 84.13%-quantiles (dashed lines,

the width of one standard deviation in a normal distribution) is taken as a simple measure of

uncertainty (Newville et al., 2014). The resulting best (median) model fit is shown in Figure 2.4c.

The parameters are assumed to be uncorrelated (Appendix, Fig. S1), with their width

being sensitive to the choice of prior uncertainty values (sec. 2.4 and Appendix). However, the

co-distribution of the slope C̃0 and intersect < C̃ parameters shows a correlated error in all observed
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cases (Fig. 2.6 panel a). This distribution is converted from the C̃0-< C̃ space to initial time

C0 = C̃0 Δ) + CBC0AC , (2.20)

and radial distance

A0 =
6

4c Δ)
< C̃ , (2.21)

with ΔC = C4=3 − CBC0AC (sec. 2.5) and using the deep water dispersion relations (Barber and Ursell,

1948; Munk and Snodgrass, 1957; Snodgrass et al., 1966). The resulting distribution reveals

probabilities of wave event origin in time and radial distance and allows us to create probability

maps to quantify the likelihood of a specific origin. Figure 2.7 shows these maps of probability in

the time and radial distance space (TR-space). They are direct conversions of the observational

scatter captured by the PTMCMC method (sec. 2.7). Smaller patches in the TR-space (Fig. 2.7

bottom) correspond with very certain model estimates of events in the observed spectrogram

(Fig. 2.7 top), while larger patches in the TR space correspond with less well defined wave events.

This ambiguity between a recent nearby event and a distant event from further back in the past can

be reduced by using other dependencies in the model and by drawing on extra information about

wind events from atmospheric observations and models. The authors plan to address this in future

work.

2.8 Performance of the Optimization

2.8.1 Distribution of Fitting Parameters

To compare the eight model parameters consistently we express them as normalized

distance computed relative to the prior (sec. 2.4). Figure 2.8 shows the decomposition of the
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model cost �< (2.6) into the cost introduced by each of the eight parameters for the three front

stations. The initial cost of each parameter is zero (green line), while the median model cost of

the parameter is indicated by the black line.

The distribution of costs due to the parameter adjustment is similar for all parameters

and for all stations, with a clear maximum close to zero. Final parameter values close to the

initial value suggest that small changes in the parameters are enough to reduce �3 substantially

without introducing costs in �<. However, there are cases for all parameters where the final value

deviates from the initial value more substantially. In these cases, the costs in �< introduced by

large parameter adjustments are small compared to the reduction achieved in �3 such that the

overall cost Φ is still minimized. This must be the case because the ratio of model to data cost,

�</�3 rarely exceeds 20% for all fitted cases (Appendix Figure A1). This suggests that, based on

gradients in Φ, an efficient minimization can often be effected via small changes in the model

parameters, or sometimes through a few larger changes to a subset of parameters. Since the

gradient descent method terminates if the number of iterations exceeds its limit, it is possible that

regions of parameter space in the direction of small gradients are never explored. However, these

are sampled later by the Monte Carlo method.

Parameters that determine the radial distance and initial time are optimized during the

minimization procedure. The position of C̃0 has, in the median, a larger contribution to �< than

other parameters (Fig. 2.8a). That is, in about 85% of all cases, changes in the modeled position

were necessary to achieve minimum cost. In contrast, the model slope parameter < 5 also adjusts

(Fig. 2.8b), but introduces smaller costs, because the manual selection criteria better define its

initial values than the position of the initial time (sec. 2.6.1).

Two parameters of the JONSWAP spectrum (W and f0) also introduce noticeable model

costs (Fig. 2.8 c and d). Their initial values were manually adjusted away from the standard

JONSWAP values (Appendix Fig. A2), because trials that started with standard JONSWAP values

reduced the overall quality of the fit (larger fractional errors). In the end, neither the standard
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JONSWAP values nor the chosen initial values (Appendix) are the best choices to capture the

shape of the observed swell events well. However, an additional free parameter, j (Fig. 2.8e),

that changes the general shape of the spectrum, often remains close to its initial, theoretically

well-constrained value of 5/4 (eq. 4.3.1), as predicted by Hasselmann et al. (1973).

2.8.2 Comparing fitting performance between front stations

The optimization algorithm found 225 events during the 24-month observational period.

They occurred at each of the three “front” stations DR01, DR02 and DR03, each about 2 km away

from the ice-shelf edge (blue, orange and red dots in Fig. 2.3); common events at all three stations

are identified by similar arrival times.

The seismic stations at the RIS ice shelf front are close together (≈ 80 km separations)

compared to the distance traveled by the waves (≈ 1500 km). As a result, the incoming wave

angles and amplitudes are assumed to be uniform along the ice shelf front. However, the event

amplitudes observed at DR01 are systematically larger than at DR02 and DR03 (Fig 2.9a). The

difference in amplitude between the stations may be caused by the structure of the ice shelf, and

affected by a major rift that separates DR03 and DR01, near DR02. If the amplitude difference

were due to the incoming angle of the waves rather than ice-shelf rheology, one would expect more

randomly scattered differences between the stations, because the incident waves are expected to

come from a wider range of incident angles.

Comparison of other fitted parameters suggests that the same wave events lead to

comparable observations at the three RIS-front stations. For example, peak frequencies of common

events vary by about 0.02 Hz or less between the three stations (Fig. 2.9b). Austral summer

events, that generally have higher peak frequencies, also have a similar observed frequencies at

all three front stations. Differences between them are likely due to independent noise or local

shelf structure. Peak frequencies lower than 0.04 Hz are mainly observed at DR01, while the

same events at DR02 or DR03 rarely fall below 0.04 Hz. Reasons for this could be systematic
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differences in the ice shelf front geometry, or crevasses and rifts in the ice shelf between the

stations, which are beyond the scope of this study. Aside from this discrepancy, observations

show peak frequencies and spectral shapes similar to those in the open ocean, indicating that the

RIS response to incident waves maintains properties from the open ocean waves.

The uncertainty in the radial distance estimate, and therefore also the uncertainty in initial

time, can vary between the front stations. Figure 2.9c shows the radial distance uncertainty for all

events (defined as half the distance between the 15.87 and 84.13 percentiles of the uncertainty

distribution (sec. 2.7.2, Fig. 2.6a black dashed lines). The difference in radial distance uncertainty

between the stations is generally larger for larger uncertainties. For many events, DR02 and DR03

have smaller uncertainties than DR01. These events are often, but not always, selected by the

criterion of smallest fractional error, which is explained in the the next section (black half dots

Fig. 2.9c).

2.8.3 Measures of fit

The performance of the model optimization is assessed quantitatively using the fractional

error between data and model

4frac =
�3∑#

8 �
2
8
F2
8

, (2.22)

with �3 identifying the cost, �8 the data, and F8 the specific weight for each point. A good model

fit, i.e. low fractional errors, means that Φ is small compared to the data. The distributions

of 4frac for DR01-DR03 are shown in Figure 2.10. Events with a 4frac ≤ 0.6 are defined as

successfully fitted (gray area in Fig. 2.10a). This represents between 74% and 84% of all events

(varying between stations) considered in this analysis. Values of 4frac > 0.6 are interpreted as

unsuccessful fits and represent between 16% and 26% of all cases considered.

The signal-to-noise ratio is generally the same for all three stations (the median 4frac is
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0.43 for DR01 and DR03 and 0.37 for DR02), with a large variance between individual events

(Fig. 2.10b). For each swell event, the comparison of 4frac varies widely between stations, with

no systematic preference for one station. Higher values of 4frac correspond to a less successful

explanation of the data by the model, or higher noise levels.

Most events have a small fractional error at all stations (green area in Figure 2.10b), but

there are a number of events in which one station performs substantially better than its neighboring

stations (gray areas). To optimize the use of multiple observations, we compile a set of 208 events

taken from DR01–03 (88% of all initial events, black half dots) based on events when 4frac is

smallest. Events with a fractional error larger than 0.6 at all three stations are not considered

(upper right area in Figure 2.10b). By considering all three stations, we identify 35 additional

events that would not meet our fractional error criterion for DR01 alone. The use of the three

stations reduces the mean fractional error from 0.42 to 0.26, with the disadvantage that no common

attenuation transfer function can be determined for the events (Fig. 2.10a and Fig. 2.9a).

As shown in Fig. 2.10b, the fractional error for the same swell event varies between the

different observation sites, although differences between the three spectrograms are often difficult

to distinguish by eye. (Compare Figure 2.1 with Figure S2 and Figure S3 .) The fractional

error criterion provides a single metric for evaluating all observed events and when we adopt a

conservative threshold for the fractional error, it allows rigorous quality control of the data.

The optimization procedure identified swell arrivals at the RIS based on physical constraints

that are parameterized in the model (section 2.5). If data and model are similar, then the fractional

error is small, and we conclude that the observed event is indeed related to incident, dispersed

swell events. In contrast, a large fractional error suggests a weaker signal-to-noise ratio, implying

for example that additional processes have distorted the incident wave events, that more than

one storm is contributing to forcing the swell, or that the observed features are not generated by

dispersed swell waves.
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2.8.4 Observed storm activity and wave spectra

Figure 2.11a shows the radial distance estimate, number of storms per degree latitude,

radial uncertainty, and time uncertainty. Events with 4frac ≤ 0.6 are black (Fig. 2.9c, green area),

while the remaining events are gray. The vertical lines show one radial-distance standard deviation,

inferred from the uncertainty estimate (sec. 2.7.2), while the standard deviation in time is not

plotted because it is too small. The distributions of both radial distance and time uncertainty are

shown in Fig. 2.11c-d.

The observed RIS events suggest that storm-generated packets of surface waves arrive

at the ice shelf more than twice per week (2.3 events per week, all dots in Fig. 2.11a). In total,

208 of these events meet the criterion of a well identified/well fitted event (4frac < 0.6, section

2.7). The majority (187 events, 1.8/week) originate from the Southern Ocean, and we see no

distinct seasonality in their occurrence rate. The rest (28 events) originate from the sub-tropics

or the Northern Hemisphere in boreal winter, and are generated from tropical or extra-tropical

cyclones in the North Pacific (Cathles et al., 2009; MacAyeal et al., 2006; Bromirski et al., 2010).

The median estimated uncertainty is about 110 km in space and 2 hours in time (Fig. 2.11c and

d). These uncertainties are small enough to allow the wave events to be matched to specific high

wind speed areas under storms that are often related to fronts or warm conveyor belts (Schemm

and Wernli, 2014), as we will explain in future work.

2.9 Summary and conclusions

Ocean swell is commonly observed along coastlines and its origin is a long-standing

question in oceanography (Munk, 1947). Swell is known to be generated by strong winds

associated with extra-tropical cyclones, but the exact positions of swell generation have not been

well characterized. Areas of swell generation are hypothesized to correspond to areas of upper

ocean mixing and often of intense air-sea heat exchange. Here, instead of relying on in situ
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observations, we have developed a methodology to analyze the remote observation of ocean swell.

This can be used to infer characteristics of the swell generation region.

To assess the locations of high surface winds over the Southern Ocean we developed a

method that combines spectral analysis from time series of swell arrivals at a single point with a

parametric model optimization. The parametric model used here represents a combination of the

linearized dispersion relation and the JONSWAP spectrum. These models are based on different

descriptions of the wave source: while the inversion of the linear dispersion relation assumes

a source that is a delta function in space and time, the JONSWAP spectrum uses a wind speed

over a given length or for a given time (Munk, 1947; Hasselmann et al., 1973). Both concepts are

approximations to reality, as is their combination (eq. 4.3.4). The resulting 8-parameter model

provides a framework to describe the (point) origin and spectra of swell observed by a single point

observation.

The systematic comparison of the parametric model with the wave events allows us to

quantitatively test models of generation and propagation. It provides a framework for learning

about the underlying physical process, rather than letting the machine construct a model of the

observations without physical constraints (often referred to as unsupervised machine learning,

Nature Geoscience editorial board, 2019).

A two-stage optimization procedure is used to fit the model to the data, by exploring

the full 8-parameter space simultaneously. In our procedure, we first apply a gradient descent

method and subsequently carry out Monte Carlo sampling to ensure a) that the gradient descent

minimum is “annealed” to a globally optimal position in parameter space, and b) that there is a

well-sampled uncertainty distribution for each parameter. The uncertainty in the fitting parameters

is estimated using a simulated annealing approach (PTMCMC) that is based on the data and the

model, with no prior assumptions about the functional form of the distribution of the uncertainty.

The methodology exposes differences between events (Fig. A2) that are not obvious to the eye

(Fig. 2.1) and also allows quantitative comparison of observations of the same events at three
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observation sites (sec. 2.8.2), which can give insight into wave interactions with the ice shelf and

into differences in wave propagation to the three sites. We showed that the set of prior model

parameters is sufficient to generate well behaved model fits, with fitted model parameters adjusted

minimally. Larger parameter adjustments that introduce model costs (lasso regularization) are

only introduced for a minimization of the total costs, due to a better fit of the model. Future

work could investigate physical reasons for these extreme parameter by reinterpreting the model

function.

The method developed here could in principle be used for any data documenting swell

arrivals and unmarred by locally-generated noise. Here we apply the approach to three seismic

stations on the RIS, which provide a dataset of well resolved swell arrivals close to one of most

active cyclone-genesis regions of the globe (Hoskins and Hodges, 2005). These point observations

allow us to identify the swell origin in space and time.

For the two years of RIS data available, the optimization method results in a catalog of

208 (self)-similar swell arrivals that can be detected in the ice shelf. In total 187 (90%) of these

swell arrivals originate from the Southern Ocean and can be used to improve the understanding

of the origin of ocean swell and its interaction with sea ice. The remaining 10% originate from

the Northern Hemisphere mid-latitudes during the boreal winter season. This is observational

evidence of the distinctly different seasonality in both hemispheres, and establishes the incidence

of swell impacts on the Ross Ice Shelf throughout the year. The uncertainties of origin in location

and time are correlated and found to be about 110 km or 2 hours, respectively (Fig. 2.11c,d),

which allows us to reduce the uncertainty of the wave origins to the scale of atmospheric surface

fronts or other features within cyclones, rather than the scales of cyclones themselves (1000 km, 5

days).

A follow-up paper will apply this method to the RIS data to verify Southern Hemisphere

storm position in atmospheric reanalysis data. Ice shelf seismic measurements, such as the RIS

data, are particularly well suited for detecting swell arrivals, because the general lack of open water
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near the seismic stations means that local wind waves are absent in the seismic data, resulting in

a relative noise-free set of swell arrivals. In addition, weaker events that might complicate the

interpretation of the swell arrivals appear to be largely attenuated when they propagate through

sea ice.

Future work could also apply the methodology to a broader network of ice-shelf seismic

stations or even to mid-latitude wave buoys, bottom pressure sensors, or even land-based seismic

stations, although further tuning would likely be needed to distinguish between locally and

remotely generated waves. The methodology is suitable for data records of any duration, ranging

from a few days to multiple years, provided that they provide sufficient temporal resolution. The

RIS time series are relatively short, and a manual procedure was used to pre-select candidate swell

arrivals. If this method were applied to longer observation periods, the manual selection could

be replaced with an automated search strategy from the catalog of available machine learning

tools (Bergen et al., 2019). Finally, by combining observations at several stations with additional

information about ocean currents or sea ice, the method could potentially be further extended to

study storm intensity and/or sinuous wave travel paths.
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Appendices

A Initial parameters and distributions

The parametric model of dispersed swell arrivals is introduced in section 2.5, and the

initial values and their prior estimated uncertainties are summarized in Table 2.1. The distribution

of the final normalized distance for each parameter as shown in Figure 2.8 is derived by using

�8 =
?80− ?

8
5 8=0;

?8f
,

where ?80 is the initial value, ?
8
5 8=0;

the final value, and ?8f the prior weight of parameter 8. ?80 and

?8f can vary from case to case (sec. 2.7.1). Figure A2 show the distributions all parameters as in

Figure 2.8 but for ?8
5 8=0;

rather then for �8.

The final model parameters are defined by the median of the Monte Carlo sampling that

results in an eight-dimensional uncertainty distribution, shown as joint PDFs for an example case

in supplementary Figure S1 and the distribution of the residual between data and model is shown

in Figure A3.
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Figure 2.1: Spectrogram of the vertical acceleration in DR01 between November 2014 and
December 2016. The spectrogram is expressed as a power spectra with a basic segment length
of 20 min. The spectral estimate at each time step is sampled from 12 of these segments.
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Table 2.1: Table of model fitting parameters, their initial conditions and priors. An initial value
of “adjusted" indicates that the initial value is inferred from the data.

Parameter initial Value (·)0 Min Max prior std (·)f
Û U62 0.01 Û0 100 Û0 0.2
5< varying 0.04 0.1 0.002
W 2 1 4 0.4
C̃0 varying -0.5 0.2 0.04
f0 0.05 0.01 0.1 0.01
< 5 varying 0.5 <0

5
2.5 <0

5
0.2

j 5/4 1 3/2 0.05
1 2.1 1.2 3 0.08
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Figure 2.2: Pierson-Moskoviz (solid lines) and JONSWAP spectra (dashed) for a variety of
fetches and wind speeds. The fetch length j and wind speed *10 are indicated (see (2.1) and
(2.3)).
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Figure 2.3: Map of the Ross Ice Shelf Vibration Project. The position of the front Stations
DR01, DR02, and DR03 are indicated by the blue, orange and red dots. Other seismic stations are
shown as green dots. The ice-shelf thickness is shown as shading. The Ice Shelf edge migrated
northward since the Ice shelf thickness was derived (Haran, 2005; Haran and Bohlander, 2014).
The front stations were about 2 km away from the ice-shelf front when the data was recorded.
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Figure 2.4: Spectrogram of a single swell event in January 2015 with the three stages of the
fitting procedure. (a) Derived spectrogram (shading, sec. 2.3). Black and green dots indicate
manually identified edge points of the parallelogram-shaped date mask (green line, section 2.6.1).
Red lines are used as the model initial condition, and gray contours indicate the data weighting
function FFF (2.15). (b) Masked data (shading, sec. 2.6.1) with initial slope (red) and model (black
contours). (c) same as (b) but with the optimized slope and model.
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Figure 2.5: Default (gray), minimum (blue) and maximum (red) model parameters with the
Γ-distribution for the shape parameter 1 in (a), the slope parameter < 5 in (b), the peak frequency
5< in (c), the peak parameter W in (d), the peak width f0 in (e) and the stretching j in (f).
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a) b)

Figure 2.6: PDFs of 4 parameters inferred in an example case using the PTMCMC algorithm.
(a) The three panels in the top left show the joint-PDF as well as the single-PDF for the slope
parameter < 5 and intersect parameter C̃0. (b) The three panels in the lower right show the
joint-PDF and single-PDFs for the peak parameter W and the amplitude parameter Û. The blue
lines indicate the median and the dashed lines the 15.87 and 84.13-percentiles.
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Figure 2.7: Seismic spectrogram in the RIS (as Figure 2.1). The lines show the optimized
dispersion slopes for events from the Southern Ocean (red, south of 30◦S) or north of it (blue).
(b) Probability maps of wave origins in radial distance and time for the same time as (a). The red
and blue lines indicate the best guess of the initial time, that is, when the lines in (a) cross the
abscissa. Each elliptic pattern in (b) is the probability distribution of the corresponding wave
event in (a). The smaller the probability patterns, the more certain the wave event origin is. The
red and blue dots between both panels show the amplitude as observed on the RIS but position
at there initial time.
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Figure 2.9: (a) Peak amplitude of data under fitted events in DR01 (blue), DR02 (orange) and
DR03 (red) against DR01. The dot sizes indicate the event amplitude. The gray lines connect
the same event in the three stations. (b) Same as (a) but for the peak frequency. (c) as (a) but for
the radial distance error. The half-black circles indicate the station with the minimal fractional
error for each case (as in Fig. 2.10b).
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Figure 2.11: (a) Estimated radial distances and initial times for 225 wave events. Black dots
are events with a fractional error 4 5 A02 <= 0.6 (208 events), while gray dots correspond to
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inferred from PTMCMC (sec. 2.7.2). (b) Histogram of numbers of storms per radial distance.
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Chapter 3

Estimating Southern Ocean storm

positions with seismic observations

Abstract

Surface winds from Southern Ocean cyclones generate large waves that travel over long

distances (> 1000 km). Wave generation regions are often co-located with enhanced air-sea

fluxes and upper ocean mixing. Ocean wave spectra contain information about storm wind speed,

fetch size, and intensity at their generation site. Two years of seismic observations from the Ross

Ice shelf, combined with modern optimization (machine learning) techniques, are used to trace

the origins of wave events in the Southern Ocean with an accuracy of ±110km and ±2h from a

hypothetical point source. The observed spectral energy attenuates within sea ice and in the ice

shelf, but retains characteristics that can be compared to parametric wave models. Comparison

with the MERRA2 and ERA5 reanalyses suggests that less than 45% of ocean swell events can

be associated with individual Southern Ocean storms, while the majority of the observed wave

events cannot be matched with Southern Ocean high wind events. The reanalysis cyclones and

winds are often displaced by about 350 km or 10 hours in MERRA2 and ERA5 compared to the
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most likely positions inferred from the seismic data. This high fraction of displaced storms in

reanalysis products over the South Pacific can be explained by the limited availability of remote

sensing observations, primarily caused by the presence of sea ice. Deviation of wave rays from

their great circle path by wave-current interactionplays a minor role.

3.1 Introduction

Southern Hemisphere extra-tropical cyclones are among the strongest cyclones on the

planet, with surface wind speeds that can exceed 35 m s−1. They establish a region of variable and

high wind speeds in the Southern Ocean storm track (Trenberth, 1991; Simmonds et al., 2003;

Hoskins and Hodges, 2005). These high winds are associated with the generation of wave events

and the regulation of heat and momentum surface fluxes, as well as biological production in the

ocean mixed layer (Miles, 1960; Bourassa et al., 2013; Smith, 2012; Arrigo et al., 2015; Gruber

et al., 2019; Carranza et al., 2018). By driving these fluxes, surface winds play an important

role in the coupled climate system. In the Southern Ocean, at least three mechanisms govern the

response of the ocean, atmosphere, and cryosphere to wind variability.

First, surface winds drive the ocean circulation either via direct surface drag, by regulating

freshwater fluxes via sea-ice advection (Abernathey et al., 2016), or by maintaining large

atmosphere-ocean temperature gradients at the Antarctic continent (Munk and Palmén, 1951;

Johnson andBryden, 1989; Kwok, 2005; Comiso et al., 2011; Holland andKwok, 2012; Abernathey

et al., 2016; Haumann et al., 2016). In many of these processes, surface winds are assumed to

exert a zonal mean force. However, within the storm track, winds are spatially heterogeneous

because they are located behind atmospheric fronts, resulting in the forcing being not consistently

zonal (Neiman and Shapiro, 1993; Neiman et al., 1993; Beare, 2007).

Second, the upper ocean influences the development of cyclones by moderating the

availability of heat and moisture. It regulates production of low-level potential vorticity and
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consequently the cyclone life cycle. Evidence suggests that regions of storm generation and decay,

as well as storm intensification, are influenced by SST gradients, sea ice, and topography (e.g.

Simmonds and Murray, 1999; Hoskins and Hodges, 2005; Lu et al., 2010; Kidston et al., 2011;

Ceppi et al., 2017).

Third, precipitation on sea ice and the Antarctic continent is driven by cyclone dynamics.

A good estimate of snowfall on the Antarctic continent is needed to understand ice sheet mass

balances in order to anticipate their future contribution to sea level rise (Shepherd et al., 2012). In

summary, understanding the variability and defining parameters of Southern Ocean cyclones is

important for understanding the coupled variability of the Southern Ocean on all time scales, and

the associated impacts on Antarctic processes.

The severe weather and difficult access to the region around Antarctica limit in situ

observations, making remote sensing techniques essential for observing surface processes.

Satellite observations produce spatially well-resolved snapshots of surface winds that allow a

detailed view of surface processes. However, the sparseness of in-situ observations in the Southern

Ocean impedes the calibration of remote sensing estimates. In particular, a lack of observations

of extra-tropical cyclones and severe weather conditions can cause biases to be largest where the

winds are strongest (Rascle et al., 2008; Ardhuin et al., 2010; Chawla et al., 2013). These biases

correspond to biases in wave climate and surface momentum fluxes (Li et al., 2013; Bourassa

et al., 2013; Bidlot et al., 2002; Cavaleri, 2009) and upper ocean mixing (Li et al., 2016). The

biases may also have an impact on the assessment of the total energy input by wind (Rascle et al.,

2008; Ferrari and Wunsch, 2010)

The lack of in situ surface wind sampling can lead to errors in reanalysis products and

wave models. For example, the addition of a single mooring at the Ocean Observatories Initiative

site in the southeast Pacific had a significant impact on the regional weather forecast produced by

the European Centre for Medium-Range Weather Forecasts (Ogle et al., 2018). Anecdotally this

suggests that Southern Hemisphere reanalysis deficiencies in representing synoptic scale variability
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could stem from lack of observations. An objective of this study is to provide a quantifiable

measure of the accuracy of Southern Ocean storm positions determined from reanalysis products,

which will allow refinement of our understanding of Southern Ocean surface processes and

improvement of Southern Ocean wind products.

This study takes advantage of two years of continuous seismic observations (Wiens et al.,

2014) collected on the Ross Ice Shelf (RIS), using a wave event identification methodology

developed for these data by Hell et al. (2019). The methodology uses spectrograms of swell

arrivals to estimate the position and time of Southern Ocean high wind events under cyclones

(described in section 3.3.1 and 3.3.2). We show here (i) that this method can be used to validate

state-of-the-art reanalysis products (sec. 3.4.1) and (ii) that swell from storms travels through

the sea ice and impacts the Ross Ice Shelf. The methodology provides a means to verify ocean

wave products and to examine both sea ice-wave interactions and the impact of ocean swell on ice

shelves (Ren and Leslie, 2014; Massom et al., 2018; Chen et al., 2018).

3.2 Southern Hemisphere Storm Tracking by Forerunners of

Swell - A Case Study

Strong wind patterns over the Southern Ocean are generated by extra-tropical cyclones.

Each storm undergoes a characteristic life cycle of generation (cyclogenesis), intensification, and

decay (cyclolysis). This life cycle is connected to the large-scale baroclinicity and to local surface

conditions, such as topography or convection (Neiman and Shapiro, 1993; Simmonds and Murray,

1999; Simmonds and Keay, 2000). Figure 3.1 shows an example of a storm life cycle, in this case

for a storm in July/August 2015 (thick black line in Fig. 3.1a). Reanalysis studies suggest that the

highest winds are often found on the equatorward side of the cyclone center (Fig. 3.1a, orange

dots, Bengtsson et al., 2009; Hodges et al., 2011), so that they move at speeds similar to those of

the cyclone centers, about 10-35 m s−1.
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Strong winds work on the ocean surface and create wind waves,that lead to the generation

of swell waves (Fig. 3.1a, shading shows significant wave height, Hasselmann et al., 1985). Swell

properties, such as amplitude and frequency, depend on the “fetch", defined to represent the area

over which winds act quasi-stationary, that is with uniform strength and duration (Fig. 3.1a, red

outlined area, Pierson and Moskowitz, 1964; Hasselmann, 1963; Barnett, 1968; Kudryavtsev

et al., 2015). The mechanisms by which winds generate waves in the fetch area are still an active

research question. However, third-generation parametric wave models are able to generate realistic

wave spectra using 10-meter or surface winds (gray arrows in Fig. 3.1a, Tolman, 2009; Chawla

et al., 2013; Cavaleri, 2009).

If far-field effects are neglected, wind speed and wind duration control the local wave field

(Phillips, 1985). Once waves travel out of their generation region, they disperse and dissipate, and

can be interpreted as a group of linear gravity waves propagating across the ocean. Wave event

spectra have characteristic peak frequencies and amplitudes that are connected to the wind speeds

and fetch in the generation region (Pierson and Moskowitz, 1964; Hasselmann, 1963). However,

the fetch over the open ocean is often weakly defined, and these semi-empirical models do not

consider the wind acting on the ocean in an irregular region that is moving and changing form.

Swell waves generated by storms can travel long distances (Munk and Snodgrass, 1957;

Snodgrass et al., 1966), and when they interact with sea ice, higher frequencies are damped, or

reflected (Fox and Squire, 1994; Squire, 2007; Vaughan et al., 2009). The remaining low-frequency

energy travels through the sea ice and is observed in seismic records from the ice shelves (Fig. 3.1

b, shading, Collard et al., 2009; Cathles et al., 2009; Bromirski et al., 2010; MacAyeal et al., 2009;

Hell et al., 2019). These seismic spectrograms show a systematic shift of peak frequency with

time (Fig. 3.1b, red line, Bromirski et al., 2010; Barber and Ursell, 1948; Munk, 1947; Snodgrass

et al., 1966), which is explained by the deep water dispersion relation of ocean swell

l2 = :6, (3.2.1)
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wherel = 2c 5 , with 5 being the frequency of the wave, : the wave number, and 6 the acceleration

due to gravity. The group velocity is frequency-dependent, meaning that longer waves travel faster.

The group velocity of the wave group is

26 =
ml

m:
=

1
2

√
6

:
=
6)

4c
=
ΔG

ΔC
, (3.2.2)

with ) as the wave period (Barber and Ursell, 1948; Munk, 1947). For an observed wave with

a given frequency, this relates the distance traveled (ΔG) and travel time (ΔC, Fig. 3.1a, red

semi-circular arcs). In other words, if one observes a wave of a given frequency and knows how

far it has propagated, then the time of origin can be inferred. Or, if one observes two waves of

different frequency and assumes they come from the same source, then both the time of origin

and the distance traveled can be estimated.

This principle can be used in combination with spectrograms of ocean waves, mostly from

wave buoys, to estimate the travel distance and time of wave generation (Munk, 1947; Barber

and Ursell, 1948; Snodgrass et al., 1966; Bromirski and Duennebier, 2002; Gallet and Young,

2014). As explained in detail below, the same phenomenon is observed in spectrograms of seismic

observations from ice shelves (Fig. 3.1b, Bromirski et al., 2010; MacAyeal et al., 2009; Cathles

et al., 2009). Seismic data from the ice shelf can be used to invert spectrogram slope to estimate

propagation time and radial distance to the origin (eq. (3.2.2), Munk, 1947; Munk et al., 1963).

Figure 3.1a shows the synoptic situation at the estimated initial time (gray line in Fig. 3.1b), and

the red semi-circular arcs provide estimates of the radial distances from the ice shelf seismic

station. Both are derived from the red dispersion slope in Figure 3.1b.

A standard assumption is that each wave event is generated at a point source and travels

undisturbed along a great circle path. This is a strong simplification (Fig. 3.1a) but works

surprisingly well (Snodgrass et al., 1966; Collard et al., 2009). In reality, swell waves are

generated by fast moving storms and can be deflected by ocean currents (Munk et al., 1963; Munk
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and Snodgrass, 1957; Gallet and Young, 2014; Ardhuin et al., 2017). These impacts will be

discussed together with other caveats of these simplifications by utilizing different conceptional

models to reveal interactive atmosphere-ocean-ice processes.

3.3 Methods

3.3.1 Seismic Data

The Ross Ice Shelf Vibration Project was a field campaign from October 2014 to December

2016 with the goal of recording the response of the Ross Ice Shelf (RIS) to gravity wave for

geophysical, glaciological and oceanographic purposes (Bromirski et al., 2015). A network of 34

seismic stations recorded 2 years of continuous 3-directional displacements at each station. The 3

front stations are used for the analyses in this paper.

Figure 3.2a shows the spectrogram of the vertical displacement at DR01 for about 2

months. The most common features are sloped lines of anomalously high wave activity in the

swell band. These are dispersed arrivals of ocean swell at the ice shelf.

3.3.2 Model Optimization

Hell et al. (2019) developed a method to catalog these dispersed swell arrivals (swell

events) using a two-stage optimization procedure. Here we give a brief overview of the model

function, the optimization method, and the uncertainty estimation.

Model Function

The model function is constructed to mimic the dispersion slope of the swell as well as its

characteristic shape in frequency and time. It is chosen because it allows an effective separation

of storm-induced signals from those that might be induced by other mechanisms (like iceberg
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calving, for example) that are also observed by the RIS seismometers. The model function has six

free parameters that determine its shape and two that determine its slope (Fig. 3.1b).

In frequency, the model function employs the JONSWAP spectrum (Hasselmann et al.,

1973), which is similar to the Pierson-Moskowitz spectrum for a fully developed sea (Pierson

and Moskowitz, 1964). The use of a parametric wave model as a functional form for the swell

arrivals has the advantage of potentially reducing the model–data misfit. It incorporates prior

physical knowledge in the optimization procedure, which is an advantage compared to other

generic “machine learning" approaches.

In the time domain, the model used the Γ-distribution to account for the sharp leading

edge of the incident wave events. Both functional forms incorporate a linear trend to account for

the change of peak frequency with time (eq. 3.2.2, Fig. 3.1b).

After a preliminary step in which each swell event is isolated, a cost function is constructed

as the difference between model and data, weighted by the geometry. In addition, lasso-

regularization is used to avoid extremes in the parameter space (Hell et al., 2019).

Optimization Method and Estimations of Uncertainty

The non-linear model is optimized using a two-stage fitting algorithm to minimize the

difference between model and data. In the first stage, the model is initialized with an initial set

of parameters, which are then refined using the Levenberg-Marquardt Algorithm (LM, damped

least-squares, Newville et al., 2014) to find a local minimum of the cost function. The LM

algorithm calculates the local cost function gradient in parameter space and moves its next guess

of parameters in the direction down the gradient.

In the second step, a Parallel Tempering Markov-Chain-Monte-Carlo (PTMCMC, Good-

man and Weare, 2010; Foreman-Mackey et al., 2013; Earl and Deem, 2005) method is used to

further minimize the cost function and produce a posterior error distribution for all variables

simultaneously. This process is similar to simulated annealing, where the progress toward an
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optimal solution can only be seen from the average of many iterations rather than from each

single iteration (Kirkpatrick et al., 1983). This is a powerful tool in situations in which multiple

optimal solutions could exist. Even though one origin per wave event is assumed, the uncertainty

estimate from PTMCMC is generally capable of capturing several wave events that arrive at the

same time. The uncertainty in parameter space is inferred by sampling the posterior probability

density using the data–model difference (a likelihood function based on an L2-norm) and a prior

distribution generated by a random walk process (Foreman-Mackey et al., 2013). The uncertainty

distributions of the two slope parameters are converted into a joint probability distribution of

radial distance and time. An overview of the resulting initial times and radial distance, as well as

the corresponding errors, are shown in Figure 3.3.

Incident wave events are observed at all three stations at the ice shelf front nearly

simultaneously, but the quality of the optimization procedure varies between the stations due to

independent noise. Hell et al. (2019) selected the best fitted model for each case between the

three front stations.Wave arrivals that have a more complex generation history, such as two swell

events observed at the same time or swell that is generated by more then one system, they have

a larger fitting error and are neglected from the analysis. (See definition of the fractional error

in the appendix.) The derived data set contains 182 incident wave events originating from the

Southern Ocean. In Fig. 3.3a, each dot represents the estimated radial distance and initial time of

an observed and successfully fitted wave event. The red bars indicate radial distance uncertainty,

and the dot diameter illustrates the observed amplitude of the events. Most of the events have

radial distances that coincide with the Southern Ocean storm track (1-2×103 km, Fig. 3.3b). The

median estimated error is about 110 km in space and 2 hours in time (Fig. 3.3c and d).

3.3.3 Cyclone detection

For cyclone tracking and surface wind fields, we use two reanalysis products: Modern-Era

Retrospective analysis for Research and Applications, Version 2 (MERRA2) and ERA5 (Modeling,
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2015a,b; Gelaro et al., 2017; European Centre For Medium-Range Weather Forecasts, 2017).

These are selected because they provide hourly fields, while many other reanalysis products

are released at 6-hour or daily time intervals. The 2 hour and 110 km uncertainties from the

optimization method imply that hourly wind fields are needed to compare with observations (Hell

et al., 2019). The two reanalysis products rely on similar sets of observations and have comparable

overall statistics (Wang et al., 2016). By using two products, we are able to assess cases in which

the representation of extra-tropical cyclones differs (Hodges et al., 2011).

In our assessment of reanalysis storm tracks, first, the reanalysis sea level pressure (SLP)

is re-gridded to a 50 km equal area grid (Equal-Area Scalable Earth Grid) EASE-Grid in the

Southern Hemisphere (Brodzik et al., 2012, 2014), and second, a cyclone detection and tracking

procedure is applied to the 1-hourly fields (Crawford and Serreze, 2016, 2017). Our algorithm

uses the evolution of SLP rather than the often used 850 hPa vorticity, but the results are expected

to be very similar (Simmonds and Keay, 2000; Hoskins and Hodges, 2002; Hodges et al., 2003;

Hoskins and Hodges, 2005; Neu et al., 2012; Simmonds and Rudeva, 2014). Compared to vorticity

tracking, this algorithm provides a more direct relation to surface winds, smoother fields, and

additional analysis fields used to identify wind fetches (next section). In previous studies, storm

tracking algorithms have typically been applied to 6-hourly or daily time steps; comparisons on a

case-by-case basis generally show good agreement between storm tracks from 1 hour and 6 hour

fields of the same reanalysis (Blender and Schubert, 2000).

At each time step the minima of sea level pressure are identified and connected to minima

in the previous time step. The resulting cyclone tracks are masked out over land or ice shelves, and

rejected if they are in the Indian or Atlantic sectors, or if they have a lifespan shorter than 24 h or

a length shorter than 100 km. All remaining cyclone tracks between October 2014 and December

2016 are shown in Figure 3.4a. Each line shows the spatial evolution of a storm track, defined as

the time-evolving location of the surface pressure minimum of an extra-tropical cyclone.

Figure 3.4b shows the distribution of storm translational velocities in the Pacific sector of
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the SO. The median translational velocity is about 11 m s−1. Based on this, we use 10 m s−1 as a

simple estimate to convert between spatial distances and time periods (sec. 3.4.1).

3.3.4 Fetch detection

Each storm has areas of strong surface winds. They are often associated with warm or

cold fronts (Doyle, 1995; Beare, 2007; Munk, 1947; Neiman and Shapiro, 1993) and found at

radial distances from the pressure minima that are roughly aligned with the largest closed contour

of sea level pressure around the local pressure minimum (Fig. 3.4c, orange dashed line, Bengtsson

et al., 2009; Hodges et al., 2011). These areas of strongest winds under a cyclone are also areas of

high surface stress (Adamson et al., 2006; Beare, 2007; Hasselmann et al., 1973), and therefore

intensified wave generation. We identified these “fetch areas” using the following procedure:

As indicated in Figure 3.4c, first the cyclone area (solid orange line) is defined as twice the

area of the last closed SLP contour (dashed orange line) for each storm track (black thick line) and

time step. Second, fetches are identified by searching for patterns that exceed the 90th-percentile

of the wind speed distribution under the cyclone area (red outline and black arrows in Fig. 3.4c).

As a practical approach to defining fetch area, only patterns larger than 16 grid points (40×103

km2) are kept and used as a practical definition of fetch areas (Fig. 3.4c, red contours). Cyclones

can have several fetches at each time step, and fetch centers are generally displaced a few hundred

kilometers from the cyclone centers (compare red dots and red cross). This pattern identification

allows us to evaluate the evolution of fetch areas under cyclones over time and to draw inferences

about reanalysis product performance on the scale of fronts rather than on the scale of cyclones.
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3.4 Results

3.4.1 Matching reanalysis storms with observations

To obtain the storm locations in the Southern Ocean from the seismic swell observations,

we examine each of the observed events and compare them to the reanalysis storm tracks.

The estimated dispersion slopes and uncertainties in observed swell arrivals are converted to

2-dimensional probability density distributions (PDF) of initial time C0 and radial distance A0

(Fig. 3.2b, Munk, 1947; Hell et al., 2019). Swell statistics inferred from the seismic data provide

direct information about wave origins (compare Fig. 3.2a and b). Smaller patches of high

probability density correspond to more certainty in wave origins. Large patches of high probability

represent either deficits in the model optimization or just larger possible regions of wave generation.

This section explains how a likelihood map of wave origins is used to determine wave generation

regions in the Southern Ocean.

To compare the derived likelihood maps with the identified fetches (sec. 3.3.4), storm

tracks and fetches are remapped in the same space as the likelihood maps. The remapping is

illustrated in Figure 3.5 with black lines showing an individual storm track and orange dots

identifying fetch area in latitude-longitude space (Fig. 3.5a,c,e) and radial-distance and time

space (Fig. 3.5b,d,f). We calculate the radial distance of each storm position and fetch area to the

observation site (blue dots on the RIS in Fig. 5a,c,e) at each time step for all storms and fetches,

such that there is one-to-one correspondence between estimated distances and reanalysis winds.

This reduces the spatial dimensions to the radial distance between the location of the storm and

the observation site on the RIS. Consequently, the red semi-circular arcs in Fig. 3.5a,c,e map to

horizontal lines in Fig. 3.5b,d,f and can be used for orientation. In a next step, the orange center

points of all tracked fetches under storms are compared to the likelihood maps (black shading in

Fig. 3.5b,d,e). Each of these fetch points 8 is matched with the observation-based probability by
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finding

?<0C2ℎ =max
{
?8 -̃8

}
∩ ?8 > 0.1%, (3.4.1)

where ?8 is the underlying probability of the fetch 8 at its time and radial distance, and -̃ = 5<*10/6

is the non-dimensional fetch as a measure of the wave generation based on the mean wind speed

over the area of strom-related high winds from reanalysis (Hasselmann et al., 1973). This is

illustrated in Figure 3.5b,d,f for MERRA2 winds (the same events for ERA5 can be found in the

Supplementary Material). For this likelihood map, the green dot is the fetch where (3.4.1) is

maximized relative to all # fetches and the orange dots also belong to this identified storm track

(black line), but occur at timesteps before or after the matched fetch. Only well-identified storm

tracks and fetches are shown (see section 3.3.4). Once identified, the time evolution of the identified

storm track and fetches can then be displayed in latitude-longitude maps (Fig. 3.5a,c,e) together

with estimated radial distances (red lines). Note that (3.4.1) does not require an identified fetch

to align with the probability maximum ?<0G . The distance between the most likely origin ?<0G

(blue cross) and the matched origin ?<0C2ℎ (green dot) is shown as a blue line in Figure 3.5b,d,f.

If (3.4.1) is not satisfied, i.e there is no probability > 0.1% assigned to any of the # wind

fetches, the fetch with the minimal distance 38 between the highest probability ?<0G and the fetch

position is selected using

min {38} , (3.4.2)

with

38 =

( [
A0(?<0G) − A0,8

]2 +
[
( C0(?<0G) − C0,8) *2

]2
)1/2

, (3.4.3)

where *2 = 10 m s−1 is an average cyclone speed estimated from the observed cyclone tracks

(sec. 3.3.3, Neu et al., 2012). Cases where condition (3.4.1) is not satisfied will be called displaced

throughout the paper, and their displacement is estimated by condition (3.4.2). Figure 3.5e,f

shows an example of an identified event of this kind. The red star identifies the fetch area using

(3.4.2), and the blue line is the calculated distance using (3.4.3). Although there are fetch areas
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within the estimated radial distance (Fig. 3.5e and f), they occur at the wrong time to explain the

seismic observations (more examples in supplementary material). Similarly, there are fetches

that occur at the right time, but not at the appropriate radial distances. This separation between

temporal and spatial displacement is only possible because of the correlated uncertainties in

radial distance and initial time (Fig. 3.5b,d,f, black contours) that are derived from the uncertainty

estimation (sec. 3.3.2). The correlated uncertainty represents the ambiguity between a wave event

originating earlier from a distance A0 and a wave event originating later from a distance A1 < A0.

A detailed description of the underlying parametric model and the error estimation procedure is

given by Hell et al. (2019).

The resulting matches between fetches and likelihood maps are shown in Figure 3.6 for

MERRA2 and in Figure S6 for ERA5. The color convention is the same as in Figure 3.5: matched

fetch positions are indicated by blue dots, positions of displaced fetches as red stars, and the

likelihood maps are in black contours with their maxima emphasized with blue crosses. The

distance between the likelihood maximum and the associated fetch is indicated by a red or blue

line respectively.

While there is a predominant radial distance from wave origins to seismic stations (about

1500 km), we do not see a systematic difference between matched and displaced events over time,

nor do we identify a difference that is associated with larger or smaller likelihood maps. The

gray dots in the background show all possible fetches that each observed event was compared

to and illustrate that even random pairs of radial distance and initial time might overlap with

estimated fetch positions. However, the physical constraints on the optimization model and the

uncertainty estimates give us confidence that the likelihood maps describe wave event origins

that have more skill than random guesses. The large number of possible point sources as wave

origins and the small fraction of observed discrete wave events shows that the concept that waves

originate from point sources is oversimplified (Munk, 1947), because many of the identified point

sources belong to the same dynamical system, i.e. separate fetches under the same storm can
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together do continuous work on the ocean surface and are jointly responsible for swell wave

generation by non-linear wave-wave interactions under the storm (Hasselmann et al., 1985). For

simplicity, we treat fetches under a storm as independent point sources at each time step, even

though we know they are not. However, this assumption of independence allows us to make a

leading-order evaluation of the reanalysis surface wind positions.

The sea-ice concentration is also remapped in the same coordinate system and is shown as

dashed (20%) and solid black lines (50%) in Figure 3.6. Visual inspection suggests that wave

origins in sea ice or near the sea ice edge are more likely to be displaced than open ocean events

(see section 3.4.2).

We also note that there are clearly cases with unrealistically distant fetches (Fig. 3.6 at

the end of March 2016 and at the end of May 2016). Reasons for this can be multi-fold. The

reanalysis winds over land instead of over the ocean would not generate swell, and therefore should

be excluded from this analysis, or the actual wind event that generated the swell simply might not

exist in the reanalysis product, perhaps because the wave origin is in the region of sea ice.

Because the estimated uncertainties and displacements are small, all cases shown in Figure

3.6 are remapped into a coordinate system centered at the probability maximum ?<0G (Figure

3.7 for fetch derived from MERRA2 and Figure 3.8 for fetch derived from ERA5). Again, dots

indicate matched cases (? > 0.1%), i.e. when the fetch identified from reanalysis is consistent

with the storm arrival at the seismic station. This includes high probability cases centered at ?<0G

and also lower probability cases that align along a 16 m s−1 line (fitted orange or green line in

Fig. 3.7 and Fig. 3.8). As a result, origins that are shifted by 15 m s−1 in space and time from ?<0G

are matched, even though they are displaced, due to the correlated uncertainties in C0 and A0. Also

note that, the estimated average shift of 16 m s−1 for matched cases is faster than the assumed

storm speed of 10 m s−1. Stars show displaced cases, identified by condition (3.4.2), in which

the time and position of the fetch origins are not consistent with the swell arrival at the seismic

stations. These cases may be similar to the consistent cases in terms of their distance to ?<0G , but
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they are judged to have physically implausible surface wind positions. This distinction between

matched and displaced events is justified by the shape of the estimated uncertainties (sec. 3.3.2,

Hell et al., 2019). An independent assessment of the spatial and temporal error would lead to a

two-dimensional Gaussian-like uncertainty. This independent error assessment would fill a much

larger area in the parameter space of Fig. 3.5 or Fig. 3.6 than a correlated error. The combined

error assessment used in this analysis provides much finer distinction between physically plausible

and implausible cases.

For MERRA2 reanalysis, 76 storm fetches are matched with seismic station swell arrivals

with a probability > 0.1%; for ERA5 85 storm fetches match. In total, of the 187 observed and

well-fitted swell arrivals, for MERRA2 41% of cases have an identified match and for ERA5 45%

of cases (Fig. 3.7 orange dots, Fig. 3.8 green dots). Half of these matched cases are separated

from the probability maximum by less than 207 km – or 5 hours – for MERRA2 or less than 170

km – or 5 hours – for ERA5. The other half of the matched cases show larger distances to the

storm center, but still are consistent with the observations, because the probabilities are correlated

in distance and time (Fig. 3.2 and Fig. 3.5).

For more than half of the events observed at the seismic stations, the position and time

cannot be linked to a high-wind area under a cyclone (110 events for MERRA2 and 105 events for

ERA5). This represents 59% of the observed events when matched to MERRA2 winds (Fig. 3.7a,

red stars) or 55% of the observed events when matched to ERA5 winds (Fig. 3.8a, green stars).

The median displacement of the set of displaced storms is about 350 km – or 10 hours – in both

observational products (Fig. 3.7b, Fig. 3.8b).

Both reanalysis products have roughly the same number of storms from which waves

could originate (3332 tracked storms in MERRA2 and 3118 tracked storms in ERA5, Fig. 3.6,

small gray dots). However, the number of storm events observed seismically is less than the total

number of south Pacific storms because not every storm generates waves that propagate toward

the Ross Sea, not every event is equally well observed, and not every event has long enough waves
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to penetrate through sea ice. Only 6% of the storm tracks identified in the reanalyses appear to

generate waves that are transmitted to the ice shelf.

Of the 187 total seismic events observed at the ice shelf, 57 (about 30% of all observed)

events can be matched to both reanalysis products, 88 (47% of all observed) events cannot

be directly associated with either MERRA2 or ERA5, and the remaining 42 observed events

(23%) are matched with a fetch in only one of the reanalysis products. We hypothesize that the

mismatches and inconsistencies between reanalysis products stem from the paucity of atmospheric

observations available to constrain the reanalyses.

3.4.2 Seasonal error dependence and the role of sea ice

A potential reason for displaced winds in the reanalysis products is summarized in Figure

3.9. The seasonal dependence of the median radial distance error 3 (eq. 3.4.3) is binned in

two-month segments (Fig. 3.9a). Distance error estimates are obtained from the distribution of the

mean error for each two-month period via bootstrapping using 105 repetitions (with replacement).

The median of 3 is highest in late austral winter (September/October) and smallest at the end of

summer (March/April, Fig. 3.9, orange and green squares). This seasonal change in the median

error is mainly due to displaced events (median of displaced events shown as stars in Fig. 3.9a)

and is mainly driven by displacement in radial distance rather than time (Fig. S7).

The seasonal variation in displaced wind events could potentially be attributed either to

seasonal change in the performance of the reanalysis products (i.e. seasonal changes in the spatial

coverage of in situ or remotely sensed surface wind measurements), or to seasonal changes in the

quality of the fitting algorithm. The seasonality in the distribution of 3 roughly follows the sea ice

extent in the Ross Sea (Fig. 3.9b), while there is no seasonal change in the quality of the model

fitting (Fig. A1). A comparison of sea-ice concentrations with the identified fetch areas suggests

that most events (up to 75%) occur over at least 20% of sea ice when the sea-ice extent is largest

(Fig. 3.9c and d).
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3.4.3 Available observations at the identified source locations

Displaced wind events in winter more likely originate from locations with sea ice (> 20%

sea ice concentration) suggesting that the reanalyses have larger surface wind biases in the presence

of sea ice, because the wind retrievals by satellite or in situ observations are impeded by the

presence of ice. Figure 3.10 shows the average number of available remote sensing observations

per grid point for each of the identified high wind speed areas of matched and displaced wind

events (microwave radiometers and scatterometers, taken from Atlas et al., 2011; Wentz et al.,

2015). If the reanalyses are constrained by one or more satellite observations per grid point, then

the fetch area is at the correct location in about 60% of the cases, but if there are essentially no

observations within the fetch area (#0 < 0.1 in Fig. 10), then the reanalysis-derived fetch area

only appears to be at the right position and time in about 15% of the matched cases, because they

have no direct constraint from remote sensing winds.

In contrast, displaced cases more frequently occur when no winds are available (23−36%

of cases, see Fig. 3.10b), though they can also occur when at least one observation is available

(34−47%). Fundamentally, these results suggest that both reanalysis products generate similar,

dynamically consistent surface winds that are not accurate enough to explain all of the observed

swell events, and that part of the challenge for the reanalysis products stems from the sparsity of

satellite observations. If there is at least one wind observation to constrain the reanalysis, then

the probability of finding a matched case is about 60% (Fig. 3.10a), though the availability of

observational constraints does not preclude the possibility of displaced cases (Fig. 3.10b).

3.4.4 Influences of ray bending and advection by currents

Another hypothesis for why the source location estimates can be displaced from the wind

areas identified in reanalyses stems from bending and advection of swell waves due to currents.

As we will show in this section, both processes are negligible for this analysis. To assess the
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deviations that ray paths might experience due to currents we used 5-day mean surface current

fields from a 1/12th degree free model run configured for the Southern Ocean State Estimate

(SOSE, Erickson et al., 2016).

Rays were propagated using the ray equations for advecting and bending surface waves

(Munk et al., 1963; Gallet and Young, 2014) from the Ross Sea northward for each of the available

488 model time steps (6 years and 8 months). Figure 3.11 top shows the ray positions for several

travel path lengths (670 km, 1600 km and 3000 km, 3330 km corresponding to the 10th, 50th,

90th and 95th-percentiles of the estimated distances from the Southern Ocean to the RIS, see

Figure 3.3b). The spread of ray positions for fixed ray length grows with the path length, but

importantly, this spread in longitude and latitude does not add to the uncertainty in radial distance.

It shortens the path length only marginally, even though the latitude-longitude positions can

change substantially.

The advection of rays by the currents is also negligible for typical current speeds * of

about 0.3 m s−1 and even for slow waves (0.1 Hz) with group velocities of about 7.8 m s−1 (3.2.2),

such that * � 26 is true most of the time (Gallet and Young, 2014). Only eddy-scale current

speeds (e.g. * ≈ 1.5 m s−1) can significantly alter the path of shorter waves. However, since

Southern Ocean eddies are small, not surprisingly the advective impact on ray paths is small

compared to ray bending in this error analysis (Rocha et al., 2015).

The two spatial dimensions are collapsed to a great circle distance by the matching analysis

(sec. 3.4.1). The analysis treats all great circle distances equally, regardless of their angle to the

station (or latitude-longitude position). Consequently, ray bending can only contribute to the

great circle distance uncertainty if it substantially changes the great circle distance for a given

path length.

The systematic over-estimation of the great circle distance when assuming great circle

paths is expressed as the radial distance error due to ray bending. It is defined as the distance

of the ray end points from the great circle distance line that has the same path length as the ray
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(Fig. 3.11, red line). The median error is proportional to the wave frequency and the ray distance

(Fig. 3.11, bottom). For the frequency range in the above analysis (0.02 to 0.1 Hz) the ray bending

effect is rather small. Even the shortest waves (≈ 0.1Hz) from the most distant Southern Ocean

storms (3300 km) have a radial distance error due to ray bending that is smaller than 4 km. This

is less than 4% of the typical uncertainty in the great circle distance estimation derived from the

RIS observations (≈ 110 km, sec. 3.3.2 and 3.3.2).

3.5 Discussion

We have demonstrated that Southern Ocean storms can be observed by seismic data on

the Ross Ice Shelf. Detailed comparisons of the observations with two reanalysis products suggest

that slightly less than half of wave events have an origin in the open ocean that is also captured by

the reanalysis product (about 41% in MERRA2 and 45% in ERA5). In the majority of cases (59%

for MERRA2, 55% for ERA5) the observed wave events have an equivalent high-wind episode in

the reanalysis that is displaced by on average about 350 km or 10 hours relative to the seismic

observations. The partitioning of the time and distance component of the displaced wind events

to these error estimates depends on the choice of the translation velocity of the storm. Here we

assume an average velocity of 10 m s−1 (sec. 3.3.3, Neu et al., 2012). However, the number of

matched storm events does not change with the choice of the translational velocity.

Detailed analysis of biases suggest errors in the representation of Southern Hemisphere

cyclones in reanalyses. The direction and timing of cyclone displacement appear to be random

(Fig. 3.7 and Fig. 3.8). The displacement length is longer in winter, likely connected to the

presence of sea ice (Fig. 3.9a and Fig. 3.6). Generally displaced events are more likely to occur

with sea ice close to the wave generation region, while the quality of the fitting model is unaffected

by sea ice (Fig. A1).

We suggest that in many cases the inaccuracy of high wind events over the Southern Ocean
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is due to lack of available wind observations that can be assimilated in the reanalysis models

(sec. 3.4.3). While satellite wind observations over the Southern Ocean are generally sparse, they

are effectively non-existent over sea ice, where no winds can be retrieved from remote sensing

observations (sec. 3.4.2, Fig. 3.6 and Meissner and Wentz, 2009). The lack of observational

constraints over or near sea ice would easily cause the resulting reanalysis to deviate from the

(under-observed) true winds.

We showed that the major impact of sea ice in this analysis is that it prohibits wind

observations, rather than distorting the observed wave event on its travel path. Sea ice attenuates

higher frequency swell (Ardhuin et al., 2016; Bates and Shapiro, 1980; Squire and Allan, 1980;

Squire, 2007; Stopa et al., 2018; Hell et al., 2019; Chen et al., 2018), while wave dispersion

changes are minor for typical mean sea ice thicknesses of about 1.5 meters in the Southern Ocean

Gyres and for periods longer than 15 seconds (Wadhams and Doble, 2009; Williams et al., 2015).

This analysis only uses the dispersion of linear deep ocean waves, so the attenuation of waves in

sea ice has no effect on the analysis, as long as wave-induced signals are detected by seismometers.

This implies that seismic data could be part of an observing system strategy for remote detection

of Southern Ocean storms by swell wave dispersion (Fig. 3.6 and Fig. 3.9c and d).

We tested the robustness of the estimated displacements against influence of ray bending

due to ocean currents and concluded that the estimated storm location/timing uncertainties are not

influenced by ray bending, because the error of the radial distance estimate due ray bending does

not exceed 4% of the typical error estimates for the great circle distance.

Additional sources of error are limitations of the cyclone detection and tracking algorithm

used here (Crawford and Serreze, 2016, 2017). Although this algorithm’s performance is

comparable to others (Crawford and Serreze, 2016), its application to 1-hourly data rather than

6-hourly data introduces more noise to the time series of SLP fields. This accentuates errors

in cyclone position and especially area, which is sensitive to interference by storms in close

proximity (Wernli and Schwierz, 2006). Since our analysis relies on the position of high wind
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speed areas close to the cyclone, rather then the cyclone center itself, this is a minor source of

error. Additionally, we accounted for the uncertainty in the storm-track position by extending the

area used to identify high wind speed fetches beyond the smallest closed SLP contour (sec. 3.3.4).

Tests of case studies did not show sensitivity of the high wind speed positions to the chosen

cyclone area past a widening factor of 2.

In addition to providing context for evaluating shortcomings in local weather forecast skill,

results of this study also have consequences for wave predictions. Wave climates across the Pacific

are influenced by remote swell from the Southern Ocean (Bromirski et al., 2013; Villas Bôas

et al., 2017), and biases in the position and timing of Southern Ocean swell generation events

directly convert to biases of swell in local swell wave forecasts (Bidlot et al., 2002).

We do not include analysis of wave direction in the parametric model (sec. 3.3.2), because

the important parameters for estimating the source locations are peak frequency and dispersion,

which are invariant along the directional spread (Delpey et al., 2010). We also do not include the

reanalysis wind direction in the matching criteria, because it is secondary to the criteria radial

distance. If reanalysis winds are biased in their position, they are also biased in direction, such

that a wind direction criterion will only further decrease the number of matched cases. In fact,

since each high wind event is treated as a point source that radiates waves in all directions, the

defined matching criterion (eq. 3.4.1) can find cases of reanalysis winds pointing away from the

Ross Ice Shelf. Given the scant number of observed cases, we decided not to further subdivide

the analysis. Thus the estimates of matched case (41% to 45%) found here should be understood

as an upper bound.

This analysis uses the concept of point sources that generate ocean swell originating from

the center of the high wind speed area (Munk, 1947). A wave event observed on the RIS is

typically a superposition of several of these point sources (Fig. 3.1 and 3.5). We used a simple

point-source conceptual model to identify a single source point as the origin of the wave energy,

though we recognize that the waves could have a more complex origin. Although the sparsity
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of wind observations is undoubtedly one challenge, a possible further explanation for the high

fraction of displaced wind events stems from the shortcomings in the point-source model, which

assumes that waves originate from the point in the center of the high winds. This model might be

justifiable when seeking a plausible pairing between observed wave events and reanalysis storms,

but it falls short in representing all of the complexity involved in the generation of swell by an

area of high wind speeds that is moving at speeds similar to the wave group velocities.

Appendices

B Seasonal dependence of the fractional error

The quality of the model fit is assessed by deriving the fractional error of the model fit.

The fractional error is defined as

4frac =
�3∑#

8 �
2
8
F2
8

, (B.1)

with �3 as a cost function based on the difference between data and model, �8 the data, and F8 the

specific weight for each point (see Hell et al., 2019). A good model fit (i.e. low fractional errors)

results in a small fractional error, while a bad model fit results in a larger fractional error. In this

paper we only use observed events with 4frac < 0.6. Figure A1 shows the seasonal change of the

fractional error and its running mean.
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Figure 3.1: Example of a Southern Ocean storm (a) in reanalysis and (b) the spectrograms
response at the ice shelf front to the same storm. (a) Synoptic situation at C0, the time when
waves under the storm start to disperse, with the thick black line as the storm track, the gray
dot as its intensity maximum, and the single gray contour as the cyclone area. The orange dots
indicate fetch centers associated with the storm track (see section 3.3.4) and the red dot is the
fetch center at C0, while the fetch area is the red contour. Small gray arrows indicate surface
winds (> 10 m s−1), blue shading shows significant wave heights (>4 m, WW3 with ECMWF
winds), the gray area illustrates the sea-ice concentration using ESA Sea Ice CCI products
(Toudal Pedersen et al., 2017). The red semi-circle illustrates the estimated radial distance
from the seismic stations (dark blue dots) using the slope of the dispersion trend in the seismic
observations in (b) and the wave’s group velocity (3.2.1) with its 95% confidence interval (thin
red semi-circles). (b) Spectrogram of the corresponding wave event in (a) during July 2015. The
shading shows the acceleration spectrum from a seismic station at the central dark blue dot in
(a), the gray contours are the fitted model (sec. 3.3.2), the red line is the estimated dispersion
slope (Hell et al., 2019), and the gray dashed line is the initial time C0.
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Figure 3.2: (a) Seismic spectrogram of the RIS response to gravity waves. The red lines show
the optimized dispersion slopes for events from the Southern Ocean. (b) Probability maps of
wave origins in radial distance and time for the same time interval as (a). Here, the red lines
indicate the best guess of initial time, that is when the lines in panel (a) are projected to cross the
0 Hz-line. Each elliptic pattern in (b) is the probability distribution of the corresponding wave
event in (a). The smaller the probability patterns, the more certain the wave event origin is. The
red dots between both plots are proportional to the estimated swell amplitudes for each event at
the initial time.
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Figure 3.3: (a) Estimated radial distances and initial times for the 182 wave events from Southern
Ocean storms. Black dots show the event radial distances and initial times, while their sizes
indicate amplitudes. The vertical red lines show two standard deviation of the uncertainty of the
initial time inferred from PTMCMC (sec. 3.3.2). (c) Histogram of radial distance error and (d)
initial time error.
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Figure 3.4: a) Storm tracks from MERRA2 between between October 2014 and December 2016
that are longer than 100 km and last longer than 4 hours in the red area. Data points near the
coast are excluded. b) Probability density function of cyclone propagation speeds in the Pacific
sector of the Southern Ocean derived from ERA5 stormtracks (green) and MERRA2 stormtracks
(orange). c) A snapshot of an extratropical cyclone with the black lines indicating individual
storm tracks in July 2015. The orange dashed contour is the outer closed sea level pressure
contour of the storm track during that highlighted time step and the solid orange contour is the
cyclone area, which is the graphically widened closed contour. Patterns of high wind speed that
exceed the wind speed 90th-percentile (≈ 16 m s−1) in this area are marked with a red outline,
and black arrows indicate the wind direction for these 90th-percentile winds. These are used to
define the fetch area. The red dot and arrow show the center and mean wind direction of these
patterns, while the red cross indicates the center of the cyclone at the chosen time step. The
shading shows the wind speed in m s−1.
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Figure 3.5: Examples of the matching procedure in latitude-longitude space (a, c and e) and
associated radial-distance and time (b, d and f) for MERRA2 winds. (a and c) The event’s storm
track is in black, and associated fetch locations are shown as orange dots, with the dots sizes
indicating the non-dimensional fetch size j̃ (sec. 3.4.1). The green dot indicates the matched fetch
location (3.4.1), as illustrated in b), and the red lines show the 0.1, 10, 50, 90, 99.9%-percentiles
of the radial estimate. (b and d) Illustration of the matching procedure with the storm track in
black, its fetches in orange, and best identified fetch in green. The distance from the identified
fetch (green dot) to the maximum likelihood ?<0G (blue cross) is shown as a blue line. The
red lines indicate the same radial distance estimates as in a) and c). Black contours show the
likelihood maps generated by Monte Carlo sampling (sec. 3.3.2). e) and f) same as a) and b) but
for a case that does not fulfill the matching condition. The best fitted fetch is shown as a red star.
Observation positions on the RIS are shown as dark blue dots with black circles in the left panels.
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Figure 3.6: All observed wave events remapped in the time and radial distance domain, with
each panel spanning about 4 months. Green dots and red stars indicate matched or displaced
fetches, respectively, and the green or red lines show the distance (3.4.3) to the probability
maximum ?<0G (light blue cross). The black stripes are the likelihood patterns as in Figure 3.5.
The black and dashed lines show the 20% and 50% SIC in the same coordinate system (data
from Toudal Pedersen et al., 2017), and the gray dots indicate the position of all possible fetches
derived from the fetch detection algorithm (sec. 3.3.4).82
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Figure 3.7: (a) Spatial and temporal bias relative to the probability maximum of matched (orange
dots) and displaced fetches (red stars). The size of the orange dots indicates the probability from
the PTMCMC with which they have been matched, and the orange line shows a least-squared fit
to all macthed cases. The gray circles are lines of constant spatial-temporal error in 500 km
/ 14 hour intervals, because a time difference of 14 hours is converted to a spatial distance of
about 500 km using an average cyclone speed of 10 m s−1, indicated by the blue line, while the
fitted slope of all matched cases (orange dots) is shown with the orange line (16 m s−1). (b)
Cumulative density function of matched (orange) and displaced (red) fetches. The median bias
of displaced fetches is about 349 km or ≈10 hours equivalently.
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Figure 3.8: Same as Figure 3.7 but for ERA5 with matched cases in light green and displaced
cases in dark green.
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Figure 3.9: (a) Seasonal dependence of the distance to the highest probability ?<0G and the
closest fetch in the open ocean (Fig. 3.7a). The orange square is the bootstrapped median of
MERRA2 and green represents the bootstrapped median of ERA5, in both cases for matched and
unmatched cases combined. The vertical lines indicate the spread of the 5% to 95% percentile
of the bootstrapped median distribution. Gray dots are the bootstrapped medians of the matched
cases, and gray stars are the bootstrapped median of displaced cases, following the convention in
Fig. 3.7 and Fig. 3.8. (b) Sea ice extent in the Ross Sea for 2014 to 2016. (c) Percentages of all
matched events in the bi-monthly period with fetches over an area with 20% sea ice concentration
or more. The numbers on the bars are the total number of events meeting this criterion, while
the vertical axis indicates their percentage. (d) same as (c) but for displaced cases
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top indicate the respective percentage, while numbers in the bar indicate the total number of
events in each category. (b) same as (a) but for displaced cases.
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Figure 3.11: (top) Rays paths for waves with a 13 second period (0.077 Hz) that propagated
through surface currents. Each ray is propagated from a point near the ice shelf edge through
a 5-day mean surface current field obtained from a 1/12th degree SOSE run (Erickson et al.,
2016). The blue dots show the end points for a given length (760, 1600, 3000, and 3300 km
from the seismic stations at the ice shelf edge), and the red circles are the great circle equivalents.
(bottom) Median deviation of the ray’s end points to the defined great circle distance.
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Chapter 4

A simple model of swell generation under

extra-tropical storms

4.1 Abstract

Storm propagate over the ocean at about 10 m s−1 for about 4 to 6 days and constantly shift

the region of high winds forcing (fetch) over the ocean. Areas of high winds are then co-located

with intense air-sea exchange of momentum. This momentum is redistributed between surface

waves that interact through linear and nonlinear processes, like wave breaking events, white

capping of shorter waves, and enhanced upper-ocean mixing. In sharp contrast, narrowly oriented

swell events can emerge in observations at distant locations, suggesting dispersed swell events

emanating from a small source location in the open ocean (Munk, 1947; Barber and Ursell, 1948;

Snodgrass et al., 1966). In this study, we unify both ideas by outlining the life cycle of open-ocean

generated swell in three stages: the generation stage of a non-linear sea state under a moving

storm, a transformation stage where the non-linear sea state transforms into linear swell waves,

and finally a propagation stage, where the waves travel as linear dispersive waves.

An extended supervised optimization method is used to estimate the displacement of the
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swell wave origin compared to the highest wind forcing. The peak period of the non-linear sea

state is estimated (Kudryavtsev et al., 2015) from reanalysis winds in the framework of a moving

storm, and can reconstruct the observed displacement.

We employ moving fetch models with either constant winds, or temporally- and spatially-

varying winds to show how the dependence of trapping and convergence of wave energy under

the moving fetch affects the resulting peak wave energy. The spatial wind gradient is the most

important for trapping and focusing wave energy in an area much smaller than the wind forcing.

A simplified two-dimensional Gaussian model explains why wave energy propagates as coherent

swell events across ocean basins.

This simple fetch model connects the large-scale space-time evolution of surface winds

under storms to swell generation. It reveals how the structure of surface winds driven by the

dynamics of low pressure systems determines the timing and amplitude of swell wave arrivals. It

also lays the groundwork for improving long-standing biases in numerical swell forecast models

and improved mid-latitude mixed-layer ventilation.

4.2 Introduction

Swell waves are long crested wave systems propagating along a well-defined direction.

They are now routinely observed with wave buoys or from satellite measurements (Snodgrass

et al., 1966; Ardhuin et al., 2009). Swells impact harbor safety, coastal floating, and beach

erosion (Wilson, 1957; Morison and Imberger, 1992; Russell, 1993; Hunt, 1961; Ferreira, SPR

2005; Enríquez et al., 2017), but also modulate the sea surface height signals and affect altimeter

measurements (SWOT, Morrow et al., 2019).

Directional swell wave properties can be estimated along coastlines, e.g. the Coastal Data

Information Program/National Data Buoy Center (CDIP/NDBC, O’Reilly et al., 2016), or from

space by Synthetic Aperture Radar images (SAR, Chapron et al., 2001) and Real Aperture Radar
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measurements (Hauser et al., 2020). Methods can then be used to back-track swell to focal points

or swell source locations, either by utilizing the deep water dispersion relation and spectrograms

observed at a point (Munk, 1947; Barber and Ursell, 1948; Snodgrass et al., 1966; Hell et al.,

2019) or by estimating the local convergence of backward trajectories of wave rays derived from

SAR-images (Collard et al., 2009; Husson et al., 2012). Both methods assume swells originate

from an idealized source point. Clearly, the definition of such a point source is ambiguous, given

typical spatial scales O(1000:<) and lifetime O(5 days) of a given storm, whose center can move

at about 10 m s−1. Note, self-similar fetch laws, originally suggested by Kitaigorodskii (1962)

assume homogeneous wind speeds, constant fetch-length or duration, and do not account for the

spatial and temporal variability of the wind forcing ("fetch laws", Hasselmann et al., 1973, 1976;

Elfouhaily et al., 1997). Accordingly, it is unclear how a continuously spatio-temporal varying

wind field generates a single wave event that seems to stem from a small source region that is at

least an order of magnitude smaller than the storm (Munk, 1947; Barber and Ursell, 1948; Hell

et al., 2020).

Synoptic-scale storms dominate the mid-latitude atmospheric circulation. Their study

is an integral part of synoptic meteorology, and hence there are ambled theories about their

dynamics and life cycle (Bjerknes, 1919; Shapiro and Keyser, 1990; Neiman and Shapiro, 1993;

Neiman et al., 1993; Schultz et al., 1998; Schemm and Wernli, 2014, review in Schultz et al.,

2018). Yet, only a few studies tried to systematically assess the impact of synoptic dynamics on

swell generation (Young et al., 1987; Doyle, 1995, 2002). In this study, we will explicitly show

how synoptic-scale dynamics can be related to swell-wave generation. This provides means to

constrain future wave climate changes and related mixed-layer variability by looking at evolving

dynamical properties of synoptic storms, rather than at the air-sea fluxes themselves. In turn, it

might allows to use swell observations as a remote tracer of atmospheric synoptic variability.

This study thus aims to reevaluate the conceptual idea from Munk 1947 to demonstrate

how swell originates from a relatively small source area generated by a moving storm. We will
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first apply a supervised machine learning procedure to estimate a source location and likelihood

map from buoy observations (Chapter2 and sec. 4.4) and then estimate the same source location

for the associated wind field under the moving storm, following fetch-law constraints recast

in a Lagrangian model (Kudryavtsev et al., 2015, sec. 4.5). Based on these findings, we use

idealized models of moving constant or continuous wind to characterize the different regime

of extra-tropical storms and the resulting waves (sec. 4.6). Finally, we show how swell events

are constrained by the scales of the storm (sec. 4.7) and put wave events derived from idealized

models in the context of observed storm statistics (sec. 4.8).

4.3 Methods

4.3.1 Focal Point Identification

The swell focal points are derived by estimating the slopes of the peak swell arrivals in

multiple wave-buoy stations simultaneously. We extend the algorithm from Chapter 2, originally

developed for a single wave event, to multiple stations in order to find the location of their common

swell source. In the following, we outline the conceptual idea of the optimization, while Appendix

C describes further details.

Data and Model function

Initially, the data in each wave buoy observation are treated independently. Each of

the chosen wave buoys (CDIP 166, CDIP 179, CDIP 029, CDIP 067, CDIP 106) samples

the directional wave spectrum in 30-minute averages. The wave buoy spectrograms and their

directional information are retrieved from the CDIP datawell (Behrens et al., 2019). Local swell

maxima are identified in the spectrograms by averaging over the first three frequency bins whose

spectral amplitude exceeds 4−1. This results in a time series of the amplitude of the longest swell

waves that is sensitive to the amplitude and frequency slope of the swell and. This time series is
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band-pass filtered for timescales between 18 hours and 7.5 days using a Lanczos filter to retain

variability that is mainly related to atmospheric synoptic scales. Examples of the identified swell

maxima, also called swell forerunners, are shown in figure 4.1b to e (black dots).

The incident directions of the swell forerunners are used to weight the observed spec-

trograms. The separately stored directional components of the wave spectrum �\ (\, 5 , C) are

use to create a weight for the omnidirectional spectral amplitude �0<? ( 5 , C) (here, 5 is the wave

frequency and C is time). Frequency bands with wave energy in the same direction as the swell

forerunners have a weight of one, while frequency bands that contain energy from a different

direction have a weight close to zero. This selects wave energy in a ±15◦-angle around the peak

direction of the swell forerunners and filters out secondary swell systems or locally generated

higher frequency waves if they come from a different direction.

The second step of the data preparation identifies events and isolates them for the

optimization procedure. The initial dispersion slope of each swell event is estimated by the

difference between the prior identified local maxima (Fig. 4.1b to e, black dots) and a local maxima

on a frequency band that is 0.01Hz higher compared to the prior identified local maximum. This

slope between the two local maxima on different frequency bands is used to select and initialize

each wave event following Chapter 2.

The pre-identified single wave events are then used to fit a model of swell arrival to each

case individual (Chapter 2). The model is defined in frequency 5 by the standard JONSWAP

spectrum

(( 5 ) =
U( 6

2

(2c 5 )5
exp

[
−5

4

(
5

5<

)−4
]
WX,

U( = 0.076
(
5< *

3.5 6

)2/3
,

X = exp

[
−1

2

(
5 − 5<
f( 5<

)2
]
, (4.3.1)
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with 5< as the peak frequency of the spectra, f( = 0.07 for 5 ≤ 5< and f( = 0.09 for 5 > 5<, and

W?0A as the amplitude of the peak-enhancement factor (Hasselmann et al., 1973). In time, the

model is defined as a form of a j2- or Erlang distribution such that

 (C̃, C̃<) =
C̃<

f 
4−C̃< ,

C̃< =
C̃ − C̃0 + 5 <C

f 
, (4.3.2)

where C̃ is the non-dimensional time, the relative time of the selected data divided by its

time span ΔC, C̃0 is the non-dimensional initial time, <C is the slope of the peak frequency in

the spectrogram in units of Hz−1, and f a parameter that controls the width of the distribution

(Chapter 2).

The attenuation of the swell along the travel path � is modeled with a simple exponential

decay that does not depend on direction (Ardhuin et al., 2009). Since the decay only depends

on the distance traveled along a great circle path A0, it is directly related to the spectral slope <C

(Munk, 1947). Hence, the attenuation model is defined as

�(<C , `) = 4G?
(
−` 6 <C ΔC

4c

)
, (4.3.3)

where ` ≈ 3.7 ±0.2 10−7 m−1 (Jiang et al., 2016). This simple attenuation model allows the

spectral power at the origin to be estimated from the observed swell spectrogram alone, assuming

that distortions by other processes are small.

The 2-dimensional model function for the individual events """ : is then defined as

""" : (C̃, 5 ) = �(<C , `)  (C̃, C̃0,<C ,f ) (( 5 ,*, 5<, W?0A), (4.3.4)

where  ̃ (C̃) =  (C̃)/max( ) is the peak-normalized time component such that the amplitude of
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""" : is solely defined by the initial spectral power of ( and the attenuation �. The to-be-optimized

parameters are summarized as

®? : = {<C , `, C̃0,*, 5<, W?0A ,fC}. (4.3.5)

Those parameters are optimized using a gradient-descent method with a regularized cost function

and the uncertainty of the optimization is estimate using a Monte-Carlo method (Newville et al.,

2014; Foreman-Mackey et al., 2013). This procedure follows Chapter 2 and the differences

described in Appendix C.

The fitting of """ : to the pre-identified swell events at five stations between the year 2014

to 2018 resulted in about 77 successfully fitted wave events per station per year. After quality

control, only about 56% of these cases can be bundled to sets of observed events with a common

source (Appendix C).

Multiple-stations cost function

The individual model fits provided estimates of the time C0 when each wave event was

generated (sec. 4.3.1). These times were used to pair up wave events between the five stations

(Appendix C.2), which resulted in 31 sets of swell events that had a common C0 from all five

stations. Many other events are distorted by noise at the station or the wave ray refraction on their

path through the ocean (Gallet and Young, 2014; Villas Bôas and Young, 2020).

The sets of swell event observations were then used to reassess the model parameters by

adding the constraint of a common source. Hence, the optimization problem was reformulated in

terms of parameters describing a common swell event from a single location

®?< = {_, q, C}, (4.3.6)

with the longitude _, latitude q, and time C define the source location. The slope parameter <C
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and attenuation ` at each station : were calculated based on the common source position. Other

parameters of the model """ : were set to the five-station mean of the individual fitted parameters

and do not vary during the multi-station optimization. This reduces the search space of the

optimization procedure and allows for faster optimization. Alternatively, the parameter space ®?<

could have been extended with parameters that describe the spectral shape as well, but the larger

parameter space required larger computational efforts. Here we focused on the source location

and time, which only requires changes of the dispersion slope, timing, and amplitude.

The parameters for each station ®?: ( ®?<) are calculated at each function evaluation of the

multi-station optimization. The cost function for the multi-station optimization is defined as

�< =
∑
:

F:4AA∑
8F

8
4AA

�: , (4.3.7)

where F:4AA is a measure of the fit derived from the prior fitting procedure and �: is the regularized

cost function for each individual event : (eq.C.2). A F: = 1 expresses a perfect model fit, while

a F: = 0 would describe a complete failure of the optimization at the individual station. The

weighting emphasizes station data with a high signal-to-noise ratio rather than uncorrelated noisy

data that might appear in some cases. This methodology can be easily extended to incorporate

more data from other observations.

The parameters ®?< are not regularized to allow a more unbiased search of the source

location. However, the search space is limited to the North Pacific (20◦N-60◦N, 140◦E-120◦ W)

and ±2 days around the 5-station mean of the individual fits.

The sets of matched observations are used to explore the multi-station cost function with

two independent methods. The first method is a brute-force sampling in the 3-dimensional

parameter space of ???< and creates a time-varying map of model fit using eq. C.3. This map can

be interpreted as a likelihood of wave origin in space and time (sec. 4.4). The second method

uses simplicial homology global optimization (SHGO, Endres et al., 2018) followed by the dual
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annealing method (DA, Tsallis, 1988; Tsallis and Stariolo, 1996; Xiang et al., 1997). Both methods

are developed for fast convergence to the global optimum of the relatively complex cost-function.

4.3.2 Fetch laws in a moving frame of reference

The peak circle frequency l? of a wave spectrum that is generated over a certain duration

) or distance 3 by a wind of constant speed D is conventionally described by the so-called spatial

or temporal "fetch relations"

l
space
?

D

6
= 2U

(
3 6

D2

)@
, (4.3.8)

ltime
?

D

6
= 2UC

(
) 6

D

)@C
, (4.3.9)

where D is the 10-m wind speed, 6 is the gravity acceleration, 2U, 2UC , @, and @C are constants

defined in Appendix D. For the situation of wave growth, self-similar laws relate the resulting

wave energy � , significant wave height �B, or peak period )?, and read

� 62

D4 =
�2
B 6

2

16 D4 = 24

(
3 6

D2

) ?
∼ D 6

2

2 l3
?

, (4.3.10)

where 24 is a constant (Kudryavtsev et al., 2015; Hasselmann et al., 1976). The energy of the

generated wave field � travels with the group velocity of deep water waves 26 = m:l? =
√
6/:/2,

such that the wave fields will travel faster for a longer fetch 3 or for longer forcing time C.

The wind’s movement under the storm must be taken into account to describe waves

generated by the wind fetch under the storm. Here we formulate the swell wave generation in

a Lagrangian frame of reference, i.e., the frame of a moving fetch (sec. 4.5, Kudryavtsev et al.,

2015). We start with the Eulerian wave growth equation from Hasselmann et al. (1976) that
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describes the evolution of the spectral peak l? of a non-linear sea

ml?

mC
+ 2?6

ml?

mG
=

(6
D

)2
q(U), (4.3.11)

with the peak group velocity 2?6 = 6/2 l?, the wave age U = D/2??, the ratio of the 10-m wind

speed D and phase velocity of the spectral peak 2?? = 6/l?. The source term is defined as

q(U) = 1
2
@ 2

1/@
U U−1/@ (4.3.12)

with 10.4 < 2U < 22.7, and @ ∈ {−3/10;−1/4;−3/14} for very young, growing and mature seas

respectively.

The wave growth equation (4.3.11) is transformed in a Lagrangian frame of reference –

the frame of the storm – that moves with a translational velocity + , such that

mCl? + (26 −+) m-l? =
(6
D

)2
q(U). (4.3.13)

where - = G −+C is the along-wind coordinate in the moving reference frame. This equation

describes the evolution of a growing sea in the moving frame of reference with the coordinates

(-, C), while the forcing function q(D,l?) is still a function of the local wind speed D(-, C). It is a

non-linear 1st-order partial differential equation and is solved using the method of characteristics

with various levels of complexity of D (sec. 4.5.1 and 4.6).

4.3.3 Surface wind and storm track data

The 10-meter winds and sea level pressure (SLP) fields are taken from the hourly ERA5

analysis on a 0.25 ◦-grid (European Centre for Medium-Range Weather Forecasts fifth-generation

reanalysis for the global climate and weather , CDS). However, the storm tracks are derived from

6-hourly ERA-interim SLP fields (Dee et al., 2011). They are identified from the SLP data in both
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hemispheres using the algorithm detailed in Murray and Simmonds (1991). Only storm tracks are

used that last at least 24 hours, travel for a minimum of 300 km, and exceed at least a pressure

gradient of two ℎ%0/Latitude2. The remaining storm track statistics are derived separately for the

four seasons and both hemispheres outside of ±10◦ N/S.

4.4 Observed Swell Origins compared to wind observations

Optimizing the parameters ???< on the cost function �< is a triangulation for a common

source in longitude, latitude, and time. It means that the cost function can be directly interpreted as

a likelihood of wave origin in space and time. Figure 4.2 illustrates this for observations between

the 4th and 8th of January 2016. Both optimization methods – SHGO/DA and brute-force –

suggest a source location south of Ocean Station Papa (CDIP 166) in the early morning of January

4th, 2016 (green hexagon in Fig. 4.2a,b). Both locations are similar, especially compared to the

resolution of typical wind data (25 km).

Even though both methods return the same location, they lead to somewhat different

interpretations. The global SHGO/DA optimization returns a single glocal optimum, which agrees

with the assumption of a common wave source. In contrast, the brute force method can be directly

interpreted as a likelihood map of swell origins, which, in principle, can resolve multiple sources.

Hence it is less precise then SHGO/DA (compare grey shadings in Fig. 4.2a,b), but it resolves a

larger parameter space more effectively.

The brute force method also shows a shift of the most-likely swell origin with time. The

black dots in figure 4.2a are the local likelihood maxima at several measurement times: their

progression in space is a temporal track of the most likely swell origin.

This is another advantage of the less precise but faster brute force method: Even though

the SHGO and brute force methods explore the same cost function, the track of cost function

minima from the brute force sampling extends the idea of a single-point source to a progression
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of point sources, and hence allows tracking the swell source. It reveals that a single point source

location is a too simple model for the swell origin (Munk, 1947) and that the global minimum

(Fig. 4.2, green hexagon) may be interpreted as the center of a progression of origin points. This

track of origin points comes from an ensemble of similar good fits to a linear inverse model that

allows some physical interpretation. Note that a reconstruction of the observed swell arrivals by a

superposition of swell source points using fetch laws and Green’s functions might be possible, but

it will still fall short in describing the non-linear dynamics leading to one coherent swell event

(sec. 4.6).

The optimization of the multi-station cost function is difficult due to local wind swell or

wave-current interaction distorting the observations at one or more wave buoys. A weak signal-to-

noise ratio can lead to no meaningful results and a failure of the model fitting. The individual

parametric wave models for this source location are compared to the respective observations in

figure 4.2 c to g. The parametric model captures the observed dispersion slopes in four out of

five cases. The comparison of the model with CDIP 106 data, close to Hawaii, (Fig. 4.2e and

Fig. 4.2b red dot) indicates modeled wave arrival about one day later and further away than the

observation. Hence, the observed wave event at Hawaii could (i) result from a closer source than

the best model fit suggests or (ii) still be related to the same storm system, but the waves arriving

in Hawaii have a different effective fetch than the waves observed further north.

The estimated source locations are compared to reanalysis winds to analyze the occurrence

of swell source locations that are neither point sources nor large areas relative to the size of the

wind forcing. As an example, figure 4.3 shows the wind speed (shading) and direction (arrows)

as well as negative sea-level pressure (SLP) anomalies (purple), at the reanalysis time closest

to the time of most likely wave origin for the situation analysed above (Fig. 4.2). As the storm

propagates eastward, its associated highest surface winds (fetch) move eastward as well (red area

at 45◦Nand 150◦W); and with it, the most likely wave origin. However, the moving wave origin is

systematically ahead of the highest wind speeds (Fig. 4.3a,b,c). This systematic displacement of
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the wave origin, estimated from observations (sec. 4.3.1), to the highest wind forcing, estimated

from reanalysis, stems from the process of swell generation by a moving fetch. Because the

fetch is moving in the same direction as wave energy, wave growth can continue longer than

under a stationary fetch, such that frequency dispersion is delayed. This delicate balance between

wave growth, storm velocity, propagation speed of wave energy, and onset of wave dispersion is

explored in the next sections.

4.5 Swell wave generation by a moving fetch

The systematic displacement between the area of high wind speed (fetch) and the swell

origin suggests the following picture of wave growth under a moving storm (Fig. 4.4). A

low-pressure system L that moves with a translational velocity + has a fetch on its equatorward

side, which moves roughly at the same speed as the storm (Fig. 4.4 gray shading). This fetch

normally sits behind the cold front of an extra-tropical cyclone and is closely related to the cyclone

life-cycle.

The propagation of the fetch (Fig. 4.4 orange arrows) is aligned with its dominant wind

direction (Fig. 4.4 blue arrows), and hence, it is also in the same direction as the dominant waves.

The source locations estimated in section 4.4 suggests a relatively small area that is situated ahead

of the highest wind speeds, close to the storm’s cold front (Fig. 4.4 green dot). The backward

triangulation method selects this area because it utilizes linear wave dispersion, which means

that wave energy radiates away from the source location (Fig. 4.4 gray arrows). In turn, the wave

energy must have propagated as a non-linear wave field before it reached the identified source

location.

The following subsections explain the processes in the frame of a moving storm (Fig. 4.4)

and are based on an idealized storm representation from Kudryavtsev et al. (2015). The discussion

will show how the observed source location and observed swell height depend on the parameters
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of the storm and explain why the source location is displaced compared to the highest wind

forcing.

4.5.1 Computing waves from realistic moving winds

Using reanalysis winds, the observed swell source location can be reconstructed in the

Lagrangian frame of the storm. To derive the along-track forcing from the gridded wind product

(ERA5), we estimate the path of maximum wave generation from the track of most-likely wave

origins (Fig. 4.3 black dots). A least-square line fit to the track of wave origin creates a transect

between the points A and B, figure 4.3. This transect is used to derive along- and across-wind

observations averaged over a swath width of about 440:<. The time evolution of the along- and

across-track velocities between A and B together with the source-location estimates are shown in

figure 4.5 a and b.

The area of most likely wave origin can be displaced in space and time compared to the

highest wind speeds (Fig. 4.5 green contours). The along-track winds peak around day 2 of

the relative time axis, but the most likely origin is at day three and further east than the highest

wind speed. It is co-located with the sign change of the across-track winds (Fig. 4.5b). Hence,

stationary fetch laws that relate the local wind duration or fetch length to the created wave field

do not explain this observation. Instead, this displacement between the wind energy input and

the triangulated wave source location suggests some spatial and temporal delay between both

processes.

The observed wind data are transformed into the moving frame of reference to understand

wave generation under a moving storm. In a first step, the translational speed + is estimated from

the along-track velocity data using a least-square fit (Fig. 4.5 a black line). In a second step, the

estimated translational velocity + = 14.1m s−1 is used to shift the wind data such that it shows the

along-track winds in a moving frame of reference (Fig. 4.6a). The same transformation is applied

to the estimated source locations (Fig. 4.6a, green contours).
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In the moving frame of reference, the estimated swell source position is at a similar

position to that at the highest wind speed, but it is delayed by about one day Fig. 4.6a). This

delay can be explained by solving the evolution equation of the peak frequency for a growing

sea in the moving frame of reference (eq.4.3.13). It is forced with the transformed Lagrangian

wind field and solved numerically using the method of characteristics (Appendix D). They are

initialized from a sea at rest ()? ≈ 0.1 sec), where the local winds are zero (D = 0). The resulting

characteristic curves are paths of wave energy that propagate in the moving frame of reference

(Fig. 4.6b). Their energy increases as they propagate because l? decreases (indicated by the line

thickness).

The waves are small at first, which means l? will be large. A large peak frequency

suggests a slow group velocity 26 = m:l? likely smaller than the fetch’s translational velocity

+ . The initially generated wave energy at any position in the wind fetch travels backward in the

reference frame of the storm (Fig. 4.6c, black contours). Some wave energy eventually will leave

the storm in the rear even though it travels in the same direction as the storm (Fig. 4.6b black

contours on the left). However, most of the wave energy will remain under the storm and continue

to grow. The peak frequency will then decrease over time, which leads to a faster propagation

of the wave energy and a gradual reduction of the difference between + and 26. It results in an

upward bending of the ray-paths in the moving framework (Fig. 4.6b, black curves).

If the winds are strong enough and/or the moving fetch is sufficiently large, wave growth

continues to accelerate the propagation speed under the storm until the group velocity equals the

storm’s translational speed (26 =+). In this situation, wave energy propagated at the same speed

as its forcing, such that the wave energy remain (trapped) under the storm (sec.4.6.1). Because

the wind continues to supply energy to wave growth, the wave’s energy will eventually be faster

than the moving fetch (26 > +). Now, the wave energy propagates to the front of the moving fetch.

This process of wave growth and acceleration of the group velocity ends when the wind

forcing decreases or wave creation at high frequencies (l > l?) no longer drives non-linear
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wave-wave interactions (Hasselmann and Hasselmann, 1985). When the non-linear wave-wave

interactions decay, the wave energies in each frequency band of the wave spectrum start to

propagate at their own group speed 26 (l). While active wind forcing prevents the wave energy

from dispersing due to maintenance of a non-linear sea-state, the lack of wind forcing let the

energy flux from wave-wave interactions decay. So, the wave’s energy begins to propagate as

linear waves. As we show and discuss below, the area where the wave-wave interaction decays

and become insignificant is the source location identified by the triangulation (sec. 4.4).

4.6 Simple models of swell generation

To help understand the growth of wave energy spectra under a moving fetch and the

observed source location of swell, we compare moving fetch models of different complexity. This

analysis reveals how the parameters of the storm are related to wave event energy and shape.

4.6.1 Constant, finite moving wind models

The simplest model that describes wave growth in a moving frame is to consider constant

wind D under a storm of length !, steadily moving with constant translational velocity + , during

a forcing time ) . Constant winds mean a constant forcing q(D,l?) (eq. 4.3.13), such that one

can seek an analytic solution for l? (Appendix D). Figure 4.7 shows the characteristic curves

of wave energy derived from eq. (4.3.13) with constant forcing. The characteristic curves - (C)

describe the growing wave energy position as it passes through the forcing field. The slopes of

characteristics are related to the relative speed of peak wave frequency in the moving frame of

reference by
m

mC
- ∝ (26 −+).

The initial wave energy is small and slow, and propagates backward in the moving frame of

reference (Fig. 4.7a day 0 to 1). Even though these young seas propagate slower than the storm,
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their energy continues to grow. The peak frequency decreases, so the group velocity of the peak

wave energy increases eq. (4.3.10). Eventually, the peak wave energy travels at the same speed

as the storm (+ = 26, Fig. 4.7, dashed back lines). The time since the onset of the wind and the

distance the storm has moved until 26 =+ are given by

g2A8C =
2)C

6
D−@ +1+ 1

@ , (4.6.1)

-2A8C =
@2)C

6
D2

( D
+

) 1
@

, (4.6.2)

where 2)C = 2.7× 105 and @ < 0 are constants that describe the efficiency of wave growth and

depends on the sea state (Appendix D). The timescale g2A8C and length scale -2A8C are necessary

conditions for the growth of large waves, corresponding to the lower limits to trap wave energy

under the storm. Both scales also mark a region in the rear of the storm in which waves are

generated but left behind. In this region the trapping condition is not fulfilled (Fig. 4.7, light blue

characteristics near the origin).

Comparing different storm scales shows that the trapping conditions g2A8C and -2A8C depend

on the characteristic scales of the storm (Fig. 4.7a to c). On the one hand, stronger winds decrease

g2A8C (Fig. 4.7a,b, dashed black line) and -2A8C (Fig. 4.7a,b black axes), while on the other hand

faster propagating storms increase both scales (eq. 4.6.1 and eq. 4.6.2).

Since the trapping conditions depend on the wind forcing and the storm’s velocity, both

also influence the location and amplitude of the largest wave energy. Trapped wave energy will

continue to grow under the storm and will eventually travel faster than the moving fetch (26 > +).

This leads to wave energy that propagates forward from the rear of the storm to the front (Fig. 4.7,

dark blue curves C2A8C). It further accelerate and gain wave energy, until reaching the edge of the

moving wind fetch.

The longest path is the path that gains the most wave energy and is determined by the

storm’s scales (Fig. 4.7, dark blue lines). For constant forcing over a finite length and time, the
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largest resulting wave energies can be either limited by the storm’s length-scale ("fetch-limited“,

Fig. 4.7a), or by the storm’s timescale ("time-limited“, Fig. 4.7b). Hence, the location where the

largest wave-energy should occur is either where the wave energy propagates out of the wind

forcing at the front of the storm (Fig. 4.7a, green dot), or where the wind forcing stops before

the path of longest wave forcing reaches the storms front (Fig. 4.7b, green dot). In both cases,

there is more than one characteristic curve that generates the largest possible wave energy. Either

because there is more than one curve that can describe the longest path (time-limited, Fig. 4.7b),

or because the duration of the wind forcing is long enough such that the wave generation under the

storm is in equilibrium with the constant forcing (fetch-limited, Fig. 4.7a and c, Appendix D.3).

Note, equilibrium fetch conditions are often observed for tropical cyclones (Fig. 4.7c, Kudryavtsev

et al., 2015) where the resulting group-velocity of the emitted wave field can be calculated by

solving eq. (4.3.13) for 26 assuming a constant peak frequency (eq. D.3).

The effect of changes in the length, speed, and wind forcing on the largest generated group

velocity is shown in figure 4.8. For the observed ranges of wind speeds and scales of extra-tropical

storms, the fetches can be either time or length limited (Fig. 4.8c), while there is a sharp transition

between both types (Fig. 4.8a, black line). This constant-wind model is thus able to outline the

general dynamics of swell generation under a moving fetch, but fails to explain why there is an

observed single origin of waves rather than a line of origins with the same amplitude (Fig. 4.7a,b).

In the next section, we relax the requirement of constant winds to account for the fact that real

wind forcing smoothly varies over space and time.

4.6.2 Gaussian moving wind model

To model varying winds D(-, C), the time and spatially varying properties are described

by a double-Gaussian that mimics the life cycle of the storm. This model will be shown to explain

how the storm’s wave energy is focused at a location significantly smaller than the fetch (Fig. 4.6,

green shading).
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The double-Gaussian wind model is defined by a wind speed maximum in the center of

the fetch D<0G , a 95%-width, and a 95%-duration. These measures correspond to the 95%-extent

of a Gaussian curve, which is about ±2 times the standard deviation. Solutions of eq. (4.3.13)

for two extra-tropical storms with Gaussian winds are shown in figure 4.9 a and d. A storm

with a 95%-fetch-width of 1000 km, a 95%-duration of 3.6 days and D<0G = 10 m s−1shows

characteristic curves similar to the fetch-limited case of constant winds (Fig. 4.9a, Fig. 4.7a). The

major difference compared to the constant wind case is that the curves converge and cross near the

storm’s leading edge at the end of the storm’s lifecycle (Fig. 4.9a, day 2.5-3). The convergence of

characteristic curves in a focus area appears due to spatial gradients in the Gaussian wind-forcing.

It does not appear with constant wind forcing by a Heaviside function (sec. 4.6.1). Hence, any

fetch that is continuous but has a local wind maximum will have spatial gradients and will focus

characteristic curves from different parts of the moving fetch.

The convergence of the characteristic curves indicates a focusing of wave energy, with the

superposition of wave trains and the formation of a caustic. The method of characteristics provides

separate solutions to the PDE on each curve. However, it does not capture the convergence or

crossing of wave energy and subsequent sea state responses. Hence, the appearance of a caustic

can be interpreted in the following way: The convergence and crossing of curves indicate that sea

states with different generation histories (different paths of integration) propagate to the focal area

and locally enhance the wave energy spectrum. Enhanced wave energy will lead to increased

dissipation and more active non-linear wave-wave interactions (Phillips, 1958; Hasselmann and

Hasselmann, 1985), i.e. the convergence of wave energy can add as another forcing term to eq.

(4.3.13). Hence, the largest estimated wave energies on the characteristic curves (Fig. 4.9b, light

blue to red curves) are likely lower estimates, because independent curve solutions do not cover

the expected enhanced dissipation and non-linear wave-wave interactions due to wave energy

convergence. Further analysis of this critical situation for swell generation remains for further

studies. Nevertheless, the proposed model is sufficient to explain the governing relations between
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the fetch scales and the moving storm, although it might have a systematic bias to lower wave

energies or higher peak wave frequencies.

This convergence of wave energy, or focal points, is directly sensitive to gradients of the

wind field. In the Gaussian wind model, spatial gradients are proportional to the ratio of D<0G and

the 95%-width. Figure 4.9d shows a moving fetch with the same parameters as in figure 4.9a, but

for a weaker peak wind speed and hence a weaker spatial gradient. Compared to strong wind

conditions, the location where the characteristic curves cross under weak winds is more delayed

(Fig. 4.9d,a). Also, the resulting group velocities are lower for a lower peak wind speed because

the trapping condition 26 = + is reached later compared to the strong wind case (Fig. 4.9d, e).

This is one example of how the storm’s parameters can impact the generated peak period. The

impact of other parameters is described in section 4.7.

The largest generated wave group velocity 26 depends on the wave energy’s integration

path under the moving forcing field. This is especially important during the storm’s decay, where

the sea state is mature while the wind forcing is relatively weak (Fig. 4.9 after day 2). Old seas are

normally identified by the wave age (U = 2 26/D10), and figure 4.9 c and f shows the wave age for

the chosen characteristic curves in panels a and d. The wave age remains small ("young") as long

as the wind forcing increases inline with the wave energy. However, once the wave energy passes

the location of the peak wind speed, the wave age rapidly increases. Wage age can capture the

difference between a growing and established sea, but in this simple model it fails to describe the

advancing sea state during wave growth, because the winds and sea state increase simultaneously

(Fig. 4.9 c,f day 0 to 2, or 2.5).

The Gaussian moving wind model reconstructs the observed focal point for the case study

used in section 4.4. By matching the scales of the observed Lagrangian wind field (+ = 14.1m

s−1, D<0G = 22m s−1, a 95%-duration of 4 days and 95%-width of 2800km), the largest generated

wave energy along a characteristic curve appears at a similar and location as the observed focal

point (compare Fig. 4.10 with Fig. 4.6 green dot and area). This shows that a Gaussian moving
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fetch is a simple but useful model of swell generation.

4.7 Characteristic scales of extra-tropical Storms shape wave

events

Here we describe how changes in the scales of extra-tropical cyclone can shift the focal

point of wave energy convergence, create different peak group speeds 26, and be related to wave

energies. As before, we calculate characteristic curves using eq. (4.3.13), but now for various

combinations of storm sizes, duration, speeds, and wind forcing. For each set of boundary

conditions, we take the largest resulting group velocities to test the sensitivity of 26 on the storm

scales. Because the characteristic curves overlap, and their wave energies merge (sec. 4.6.2), the

largest 26 from a single curve is likely an underestimation of the actual 26. However, it is still a

good tracer to show changes in the dynamic regime.

Comparisons of the peak velocity D<0G and translation velocity + for typical scales of

extra-tropical cyclones are shown in figure 4.11a (95%-width and -duration are 1000:< and

3.5 days, Eady, 1949, see below). The two cases from 4.9 are indicated by black triangles and

illustrate how changes in the peak wind speed lead to different peak wave energies. Higher peak

velocities or faster-moving storms lead to higher group velocities (Fig. 4.11a green shading).

However, if the storms move too fast, wave growth is limited because trapping of wave energy

is weaker or does not appear at all (Kudryavtsev et al., 2015, Fig. 4.11a, to right of the dashed

black line). No trapping appears for fast storms with relatively weak winds, which is probably

uncommon for the observed characteristic storm scales (sec. 4.8).

The fetch and duration also affect the wave energy generation (Fig. 4.11b). For typical but

constant translation velocities and peak wind speeds, the wave energy increases when the storm is

larger or lasts longer. However, more persistent storms are more effective at creating larger wave

energies than larger storms. For example, changing in the storm size by 20% to about 1200 km
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has a weaker effect than changing the storm’s duration by one day. The importance of the storm’s

duration is again due to the trapping condition (sec. 4.6.1) because trapping will always occur if

the storm lasts long enough.

4.8 Storm track variability drives changes in wave events

Here we relate the wave energies from Gaussian wind models to statistics of the storm

track speeds and lifetime (Fig. 4.12). The wave energies are described in terms of the largest

generated peak period. The peak period is proportional to the energy of the generated wave event,

as it would be observed at a wave buoy (eq. 4.3.10).

Northern Hemisphere (NH) storms are generally smaller in area and faster in winter than

in summer (Fig. 4.12a,b blue and red contours). Changes in both these parameters only result

in a difference of 0.5 m s−1or a given peak velocity and scale of D<0G = 10 m s−1, and 1000

km (Fig. 4.12a red and blue dot). Changes in storm’s speeds and sizes are thus not enough to

explain the observed seasonal difference in peak periods for North Pacific, or North Atlantic

storms. Observed differences likely stem from seasonal changes in peak wind velocities D<0G

(Fig. 4.12b). Changes in the peak velocity D<0G have indeed a larger effect on the peak period than

the storm’s size since more intense wave growth leads to earlier wave energy trapping (compare

Fig. 4.12a and b, Fig. 4.11b, sec. 4.6.1). Hence, the peak velocity is an important parameter for

the generation of large waves.

The Southern Hemisphere (SH) shows larger variability of the storm’s lifetime than the

NH (Fig. 4.12c and d). Austral summer storms appear to last between 3 and 5 days and propagate

between 8 and 10 m s−1 (Fig. 4.12c red contours and dot). In contrast, austral winter storms are

generally more variable, faster, and shorter living (Fig. 4.12c blue contours and red dot). This

results in a seasonal difference of 1.3 sec for the typical peak periods, which is more than double

the NH difference. It means that even if there is no change in the storm’s peak velocity, austral
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summer storms will generate larger wave events than austral winter storms. However, since the

wind variability and peak velocities over the SO are mainly driven by the Southern Annular mode

(SAM, Chapter 5), changes in the peak wind speeds might have a larger effect on the variability of

the generated wave events than the storm’s size or speed.

4.9 Summary: A life-cycle of a swell wave

Swell waves are the residual of intense wave generation under tropical and extra-tropical

storms. Here we have used standard wave buoy observations of ocean swell in the eastern Pacific

to identify the storm system that generated wave events. We have used a 2-dimensional parametric

swell propagation model that is a combination of standard swell spectra, a prescribed time decay,

and the deep water wave dispersion (sec.4.3.1). This model is optimized on data from five wave

buoy stations simultaneously to triangulate a source location using two different optimization

methods. While a search for a global minimum provides a single source location as the inversion

the linearly dispersed swell arrivals suggests, a brute-force sampling of the cost function returns a

progression of likely origin points in space and time (Fig. 4.2). This progression – or track – of

estimated wave origins is used to sample the wind forcing field along its major axis (Fig. 4.2).

This along-track wind forcing is transformed to the frame of reference of the moving storm, and

we showed that the estimated swell source location is systematically displaced compared to the

strongest winds.

This displacement of the most likely wave origin can be explained by solving the evolution

equation of wave growth in the frame of the moving storm (Hasselmann et al., 1976; Kudryavtsev

et al., 2015). The swell origin is displaced because wave energy in the different frequency bands

is coupled through non-linear wave-wave interaction during wave growth, prohibiting frequency

dispersion. Frequency dispersion starts once the wind forcing and the wave-wave interaction

decay. Hence the swell life-cycle can be described in three stages:
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• Stage 1: Wave growth under a moving fetch

Starting from a sea at rest, wind forcing creates short waves that drive wave-wave interaction

and wave growth. The wave-wave interactions lead to a continuous decrease of the peak

frequency l?, while the total wave’s energy (�B) increases. An actively growing wave field

means that the wave energies in different frequency bands are strongly coupled through

wave-wave interactions, and this coupling prohibits frequency dispersion. The energy of

the non-linear sea state travels with the group velocity of l?, such that a reduction of l?

leads to an acceleration of the non-linear sea.

Because the wave energy and the wind forcing propagate and move, wave generation over the

open ocean must be understood in the reference frame of the storm (Fig. 4.4, Kudryavtsev

et al., 2015). The initial peak group velocity is slower than the velocity of the moving

storm, such that that the wave energy propagates to the rear of the storm. However, as the

wave energy continues to grow, its peak frequency decreases, accelerating the associated

group velocity. Eventually, the wave energy will propagate with the same speed as the wind

forcing, such that the wave energy is trapped under the storm (sec. 4.6.1). The wave growth

will only decay if the wave energy leaves the storm at the leading edge or when then wind

forcing reduces (fetch- or time-limited, Fig. 4.7). The trapping condition generally depends

on the ratio of the wind speed and the translation velocity, such that wave energy is more

easily trapped if the translation velocity of the storm is small or the forcing wind speed is

high (sec. 4.6.1, eq. 4.6.2).

• Stage 2: Decay of non-linear Terms

Once the wind forcing decays, the steep non-linear sea decays as well. Less wind forcing

leads to weaker and eventuelly negligible wave-wave interaction, and a transformation

to a more linear sea. The timescale on which the non-linear terms in the wave-action

111



equation decay is about three hours (eq.F.1, Zakharov and Badulin, 2011; Zakharov et al.,

2019). During this time, the wave field transforms from a non-linear sea state (steep wave

spectrum) to a dominantly linear sea state (flatter wave spectrum). However, because the

wave field still propagates during this relaxation time, the location where the wave spectrum

is dominantly linear is different from the location where the wind was acting on growing

waves. This relaxation time largely explains the displacement between the detected origin

of swell and the wind forcing (Fig. 4.6).

Note that the non-linear terms decay faster for higher frequencies than for lower frequencies.

Compared to longer waves, shorter waves are earlier dominantly linear, which implies that

they also disperse earlier. This frequency dependence explains the identified track of wave

origins (Fig. 4.3).

• Stage 3: Linear Propagation

Once the wave field is linear, the wave energy in each frequency band propagates following

deep water waves’ dispersion relation. From this point on, the travel distance and energy

attenuation are proportional to the amount of dispersion, which in turn is the difference in

the arrival time between waves of different frequencies (Barber and Ursell, 1948; Munk,

1947). Hence radial distance and attenuation can be estimated by the dispersion slope

eq.(4.3.3).

4.10 Discussion and Conclusion

Swell wave generation from extra-tropical storms is a long-standing problem of oceanog-

raphy (Munk, 1947). Here, we have represented a comprehensive explanation of why swell seem

to originate from a location that is not the same as the wind forcing. Ocean swell systems result
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from a three-stage process of wave growth, relaxation of the non-linear terms, and linear swell

propagation (sec. 4.9). The transition between the growth and decay of waves is the reason for the

displacement of an observable swell-source location and the area of the strongest wind energy

input (Fig. 4.4). During wave growth, spectral wave energy fluxes prohibit frequency dispersion.

Once the wind forcing decays, the wave-energy flux decays as well, and the individual waves

become linear. The wave energy in the different frequency bands is now uncoupled and can travel

as dispersive linear deep water waves.

We employed a double-Gaussian model of wind forcing by a moving storm. The model

assumes that the storm and its cold sector travel with a constant translation velocity. This simplifies

the problem but can still capture the main life-cycle of an extra-tropical cyclone (Neiman and

Shapiro, 1993; Neiman et al., 1993). In reality, the storm’s speed or the speed of the fetch might

also change with time. However, for our demonstrative purpose, a double-Gaussian model of

constant speed is a sufficient minimal model to reproduce the observed source location (Fig. 4.10).

This analysis then provides original means to connect observed swell events to dynamically

parameters of storms. It confirms that swell can be used as a remote observation of storms over

the open ocean. Furthermore, because areas of intense swell generation under storms are areas of

intense heat fluxes (Schulz et al., 2012; Ogle et al., 2018; Tamsitt et al., 2020), swell is also a

marker of intense air-sea interaction.

The Gaussian wind model is used to explain how observed swell events (Fig. 4.1) are

related to the scale of the moving fetch (Fig. 4.11 and Fig. 4.12). Four parameters characterize the

moving fetch; its translation velocity+ , its length-scale along the peak wind direction (95%-width),

its lifetime (95%-duration), and its peak wind speed D<0G . All of them are determined by synoptic

dynamics. Processes that influence the cyclone’s intensity may also influence the shape, amplitude,

and peak period of the observed swell events (Fig. 4.12). This links the current and future swell

wave climate to common diagnostics of extra-tropical storms (Schultz et al., 2018; Hoskins et al.,

1985; Schemm and Wernli, 2014) and their statistics (Charney, 1947; Eady, 1949; Andrews and
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McIntyre, 1976; Bengtsson et al., 2006; Mbengue and Schneider, 2016; Shaw et al., 2016, and

others)

The idealized model of a moving fetch suggests that wave events are most sensitive to the

peak wind speed D<0G because wind speed determines the spatial gradient of the wind forcing

and hence the scales for trapping wave energy (sec. 4.6.1, Fig. 4.11 and Fig. 4.12). A stronger

spatial wind gradient leads to more efficient trapping of the wave energy, which leads to larger

swell waves. At the leading edge of the moving frame, the spatial wind gradient is related to

the complex dynamics at the storm’s cold front. The Gaussian wind model (sec. 4.6.2) may not

capture this small-scale wind gradient near the cold front well, but it can be easily extended by

introducing non-Gaussian corrections to the spatial wind distribution.

A moving fetch with any non-constant winds will have spatial wind gradients leading to

convergence of wave energy (sec. 4.6.2). A convergence of the characteristic curves from different

regions of the moving fetch can create a focal area, indicated by crossing characteristics (Fig. 4.9).

Even though we did not analyze these hot-spots in detail, we conclude that they must correspond to

intense non-linear sea states. The convergence of wave energy may lead to additional dissipation

and/or additional wave-wave interaction, which intensifies swell wave growth and peak frequency

down-shifts. The convergence of additional wave energy might act as an additional forcing term

(eq. 4.3.13), to which the equilibrium range can adjust rather quickly. This means that these

locations also correspond to enhanced breaking regions over which part of the wave energy is

dissipated in the upper ocean, and hence is where the storm fetch excites the largest stress on the

ocean. Accordingly, we can speculate that the location of the strongest winds may not necessarily

be the place of largest momentum transfers nor the observable origin of swell (see above).

Reanalysis products have known biases in their representation of wind extremes (Gille,

2005; Hell et al., submitted to Jclim). Wind extremes in the mid-latitudes occur under storms and

are represented in the Gaussian model as the peak wind speed. The sensitivity of the resulting

swell peak period to the peak wind speed (sec. 4.7) indicates that biases in wind extremes likely
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cause biases in wave models by altering the processes of wave growth. Errors in the peak wind

speed of a few meters per second change the spatial wind gradients, alter the location of the

highest energy convergence, and the location where the swell energy starts to travel as linear

waves. It would mean that wave models can be improved by proving mid-latitude surface wind

distributions in reanalysis.

Air-sea fluxes of heat, momentum, and CO2 are parameterized by the standard bulk flux

formula (Fairall et al., 2003; Edson et al., 2013). The wave field contribution to these fluxes is

often described by wave age U = 2D/2?6 . Our analysis suggests that wave age at many locations

under a moving storm cannot be explained by local parameters alone (Fig. 4.9, c, f). Because the

local wave energy results from the moving wind fetch, its group velocity 2?6 is constrained by the

wind forcing the wave energy was exposed to before. It introduces a non-local condition on the

momentum transfer between the atmosphere and ocean. This means that feedbacks between the

wave spectrum and the turbulent spectrum of the atmosphere (Ayet et al., 2020; Zou et al., 2020),

often parametrized by wave-age (Edson et al., 2013), can only capture this non-local condition

when the wave spectra are simulated rather than assumed. Or, alternatively, the wave spectrum

should be characterized by metrics additional to wave age.

Appendices

C Optimization Procedure

C.1 Initial optimization

The model function """ : eq. (4.3.4) depends on 7 parameters

®? = {<C , C̃0,*, 5?40: , W?0A ,fC , `}) , (C.1)
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that are optimized to find the best fit of the model to the data ���::: . The cost function for a single

wave event at station : is adapted from (Chapter 2) such that

�: =


 (���: −""" : )FFF:



2 +




 ???000− ???

???fff





2
, (C.2)

where ???000 is the initial guess of the parameters derived from the data, and ???fff is the priors

of the model parameters taken from (Chapter 2). The data weighting function FFF: describes

double-Gaussian weight around the center of the event such that noise at the corner of the data is

excluded (Fig. 4.2 dark shading in b to f, section.2.6.d).

The cost function is optimized with three-stage optimization procedure. An initial

semi-random ‘basinhopping’ search finds the minimal cost varying only < 5 and C̃0 to determine

the best model slope that goes through the pre-identified forerunner point (Wales and Doye,

1997). In a second step, the cost function is minimized by varying all parameters using the

Levenberg-Marquardt Algorithm (Newville et al., 2014, LM, damped least-squares, ) and finally,

a posteriori error distribution is derived with a Parallel Tempering Markov-Chain-Monte-Carlo

(PTMCMC, Goodman and Weare, 2010; Foreman-Mackey et al., 2013; Earl and Deem, 2005).

C.2 Identifying and optimizing common swell source

To derive the initial swell spectra and common source location we combine the identified

and fitted wave event in all five wave buoys. The initial time estimates and their uncertainty

estimates for the year 2016 are shown in Figure 4.13. Blue lines are two-standard deviation

uncertainty ranges around estimated initial times that pass a quality criterion of good model

fit (Chapter 2), while light green lines show the initial time uncertainties that do not pass this

criterion. Red blocks indicate time ranges where two or more initial time estimates overlap. These

events are used to triangulate the source locations in the north pacific (longitude and latitude)

from the radial distance estimates of the identified overlapping subset. Figure 4.2 illustrates that
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by far not all initial time estimates are good enough and the not all initial time estimates coincide.

To account for this, the triangulated location and time from the identified subset of wave buoys

are used to re-select data from the not identified wave buoys by forward propagating the model

" and estimating the slope and model shape at the buoy location. The the now selected data in

the additional wave buoys is fed in to the parameter estimation described in Appendix C.1. This

results in five data array from each wave buoy that likely contain observations from the same swell

event.

Using this procedure, only about 7.5 events per year are well observed at 2 ot more wave

buoys, while about 50-70 event per year are identified in each wave buoy. That low matching rate

is a) due to an insufficient initial detection algorithm based on the forerunners of swell (sec. 4.3.1),

b) noise by local wind swell at buoy locations, c) deflection of waves by currents, and finally d)

the fact that not all wave events cover the north pacific such that they are detected by multiple

wave buoys.

The multi-station cost function is than defined as the sum of the individual costfunctions

(4.3.7) weighted by the fit of the prior individual fits. The weight for each station : is defined as

F:4AA = 1−


 (���: −""" : )FFF:



2

���:FFF:


2 , (C.3)

where FFF is again the geometric weight of the event (Fig. 4.2 dark shading in b to f, (section 2.6.d).

This allows emphasis data at stations with clear wave arrivals versus stations with more noise.

The fractional error 4 5 , as a measure of misfit between the data and model, is defined as

4 5 =
�<∑#

8 (�8 F8)2
. (C.4)
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D Solution of the advection equation in the (-, C) plane

D.1 Stationary solution

In the following, we solve the advection equation (eq. 4.3.13, Kudryavtsev et al., 2015), for

stationary winds D; and a constant advection speed+ along a characteristic line (C (B), - (B), 26 (B)),

with initial conditions C0, - (C0) and 26 (C0)) at B = 0. The set of equations to be solved is

3C
3B
= 1 (D.1)

3l?

3B
=

( 6
D

)2
q(U) (D.2)

3-
3B
= 26 −+, (D.3)

where the peak period l? is related to the peak group velocity via the deep water dispersion

relation

26 =
1
2
6

l?
.

Equation (D.1) reduces to B = C − C0 and hence gives the characteristic coordinate as a

function of time. Equation (D.2) is the temporal fetch relation, as mentioned in Kudryavtsev et al.

(2015), which reads in dimensional coordinates

l? (C) = 2UC
6

D

(6
D

)@C
(C − C0)@C +�l, (D.4)

where

@C = @/(1+ @), 2UC =
[
2

1/@
U

1+ @
2

]@/(1+@)
, (D.5)

and �l is an integration constant. Note that, for the values of @ following (Kudryavtsev et al.,

2015), @C is negative and is respectively −3/7, −1/3, −3/11.
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Equation (D.2) can also be solved for the group velocity 26, and yields

26 (C) = (2)C )@CD
(6
D

)−@C
(C − C0)−@C + 26 (C0). (D.6)

with 2)C = 21+@−1/@2−1/@
U (1+ @)−2−@ (−@)1+@ = 2.7×105.

Finally, the position - along the characteristic reads, from equation D.3

- (C) = 1
−@C +1

(2)C )@CD
(6
D

)−@C
(C − C0)−@C+1 + (C − C0) [26 (C0) −+] + - (C0). (D.7)

D.2 Trajectory of waves generated at the beginning of the storm

Waves that are generated at the beginning of the storm (C0 = 0) follow characteristic

curves with initial conditions - (0) = -0 and 26 (0) = 0. This assumes there is no prior significant

background sea.

For those waves, it is interesting to find -2A8C , the initial position of waves below which

they escape the cyclone. The time C2A8C at which their group velocity matches the speed of the

cyclone is computed from equation (D.6) as

+ = (2)C )@CD
(6
D

)−@C
C
−@C
2A8C
, (D.8)

which yields

C2A8C = 2
)
C

( D
+

)1/@C D

6
, (D.9)

C2A8C =
2)C

6
D−@ +1+ 1

@ . (D.10)

At C2A8C , waves that have started at -2A8C should be exactly at the rear boundary of the storm, i.e. at
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- = 0. From equation (D.7), this then yields

-2A8C =
−1
−@C +1

(2)C )@CD
(6
D

)−@C
C
−@C+1
2A8C

+ C2A8C +, (D.11)

-2A8C =
2)C

6
D

1+ 1
@C +

1− 1
@C

[
@C

1− @C

]
, (D.12)

-2A8C =
2)C @

6
D2

( D
+

) 1
@

. (D.13)

Waves such that -0 > -2A8C will eventually move faster than the storm (trapped waves) and have

all the same group velocity at a given time C, following the temporal fetch law eq. (D.6).

D.3 Waves generated after C2A8C

After C2A8C is reached, thewaves start to propagate to the front of the storm. The characteristic

-2A8C is the dominant characteristic that starts at the rear of the storm and propagates forward,

because it’s speed is faster than the storm translation velocity + . For times C > C2A8C the dominant

characteristic -2A8C non-stationary processes occur and the sea continues to grow, but this time

with a significantly developed background sea (which is left behind by the dominant waves as

they propagate to the upwind edge of the storm). Similarly to before, within the time C2A8C , some

waves are going to be left behind the storm, and others are going to remain under the storm and

move forward. Waves need to reach the translation velocity + to be trapped and continue to grow.

A simplified view of this process is to assume that this region is described by characteristics

starting in the rear of the storm (- (C0) = 0) at times C0 > C2A8C with an initial group velocity matching

that of the storm 26 (C0) =+ . This assumption only considers the fastest waves at the rear of the

storm.

In this region (C > C2A8C and - < - (C |-2A8C ,0,0), all waves are generated at - = 0 with

the group velocity 26 = + . With a stationary wind forcing, all waves at a given - are the same.
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Eq.(4.3.11) can be written as time invariant such that

ml?

mC
+ 2?6

ml?

mG
=

(6
D

)2
q(U), (D.14)

or in the moving framework with eq. (4.3.13)

(26 −+)m-l? =
(6
D

)2
q(U), (D.15)

which is the case considered in appendix A2 (equation A13) in Kudryavtsev et al. (2015). This

equation can be solved for 26 with the boundary conditions 26 (0) =+ and yields

(
D

226

)1/@ [
1+ @− +

26

]
− @

( D
2+

)1/@
= (1+ @)21/@

U

-6

D2 . (D.16)

E Non-linear energy flux in a wind sea

We consider deep water waves of wavenumber : and angular frequency l =
√
6: .

Longuet-Higgins (1976) computed simplified expressions of the rate of change of energy density

due to wave-wave interactions assuming that the non-linear interactions occur for neigbouring

wavenumbers. He considered the simplified situations of a narrow spectrum

((:1, :2) = (0 exp{−:2
? [(1/2)%(: ? − :1)2 +&:2

2]}.

Longuet-Higgins (1976) found that the contributions are concentrated around the wavenumber : ?

and are independent of its shape

mq(: ?,0)
mC

= −34l?:6
?(

3
0Δ:1Δ:2, (E.1)

and (0Δ:1Δ:2 ∝ <B0 (where msa is the mean square wave amplitude).
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F Non-linear relaxation timescale

When the moving fetch edge is reached, the non-linear terms in the wave action equation

start to decay. The characteristic time scale for the decay and for the wave spectrum travel linear

wave is

)2 '
1

l?`
4 =

)?

2c :4
? � (l?, D)2

=
6

� (l?, D)2 l9
?

, (F.1)

with `2 = � l4
?/62 = � :2 is the average wave steepness, and � the total spectral power (like

the total variance of the data), estimated using JONSWAP parameters (Zakharov et al., 2019;

Zakharov, 2010).
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a) b)

c)

d)

e)

Figure 4.1: a) Example synoptic situation on February 2nd, 2016 with the surface wind speed
(shading) and native anomalies of SLP in dark blue with 5hPa increments. The arrows in
indicate the surface wind direction and intensity. The position of the used CDIP wave buoy
stations (CDIP029, CDIP067, CDIP106, CDIP166) are shown as colored dots. Their observed
spectrograms between mid January and mid February 2016 are shown in panel b to e.

123



180° 160°W 140°W 120°W
15°N

30°N

45°N

a) Brute Force Method

180° 160°W 140°W 120°W

b) SHGO

01/03 01/06

 

0.04

 

0.06

 

0.08

 

c) CDIP 166 | weight 0.17

01/07

d) CDIP 179 | weight 0.21

01/03 01/06

e) CDIP 029 | weight 0.22

01/04 01/07

 

0.04

 

0.06

 

0.08

 

f) CDIP 067 | weight 0.17

01/04

g) CDIP 106 | weight 0.23

0   15   30   
Spectral Density m2 Hz 1

best fit on 2016-01-04T06:29:56 | efrac = 0.48

Figure 4.2: Fitting results for the case study in January 2016. (a) Synoptic situation for the time
of minimal cost (January 4th 2016) for the same station as in Fig. 4.1. The colored circles show
the best fitted great-circle distanced for the respective stations. They correspond to the sloped
lines in panel c to g. The green dot shows the position of the minimal cost between the five
station on January 4th 2016 at 06:00 UTC using eq. 4.3.7 and the brute-force method (sec. 4.3.1).
The black dots show the minimal costs for time steps prior or after the identified minimal cost
time-step. The gray shading shows the regions indicates an fractional error 4 5 ≤ 0.4. (b) Same
as (a) but for the global minimal cost using the SHGO/DA method. The fitted parametric models
""": are compared to the station data ���: in panel (c) to (g), while the colors indicate the different
stations. The gray shadings in panel (c) to (g) illustrate the weighting FFF: on the data.
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Synoptic Situation on 2016-01-04T06

Figure 4.3: Same as Figure 4.2 a but now compared to the reanalysis winds. (red shading and
black arrows). The color intervals are the same as in figure 4.1). The dark blue lines indicate
negative SLP anomalies in 5 hPa intervals. The black dots are most likely wave origin for each
timestep, and the green dot is the most likely origin point of all time steps. The black line
between the points A and B is the least-square fit to the black dots and is used to transect the
wind data.
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Figure 4.4: A moving fetch embedded in an Northern Hemisphere extra-tropical cycle. The
cyclones center L is adjacent by a warm and cold front (thick gray lines with half circles or
triangles). The moving fetch is located behind the cold front (gray shading with blue arrows)
and moves with the same translational velocity V as the cyclone center L (orange arrows) to the
bottom right. The green dot indicated the source location of swell as it can be triangulated from
wave-buoy observations. Swell waves radiate away from this theoretical source location (small
gray arrows).
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Figure 4.5: Transect along the track of most likely origins between the points A and B in
figure 4.3. a) Along-track winds (red-blue shading), areas of 4 5 ≤ 0.4 (green contours), most
likely origin (green dot). The estimated translational velocity along the transect is shown as
black line. b) same as a) but for the across track velocity.
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a) b)

Figure 4.6: Transect between point A and B in the moving frame of reference. a) Same as
figure 4.5a but in the moving frame of reference. The black line Fig. 4.5 is a vertical line at in the
moving frame of reference. b) Same as a) but with characteristic curves of l? using eq. 4.3.13
and the method of characteristics.
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Figure 4.7: Idealized models of constant wind under a moving fetch. a) characteristics for
typical scales of an extra tropical cyclone (+= 14 m s−1, D= 25 m s−1, duration )= 5 days,
length-scale = 1000 km). The characteristic with lowest l? and the highest wave energy (longest
characteristic) is in dark blue with its exit location marked as green dot. The green line indicates
exit locations that have the same l? value as the green dot. Gray-blue line show characteristics
that develop after g2A8C (dashed black line) but result in smaller wave energy than the longest
characteristic. Gray lines indicate characteristics that start at C0 but don’t grow as long as the
longest characteristic and also result in smaller wave energy. The thickness of the characteristic
curves is proportional to l−1

? . b) Same as a) but for a fetch with D= 18 m s−1. c) Same as a) but
for typical scales of a tropical cyclone (+= 10 m s−1, D= 30 m s−1, duration )= 1.2 days, length
scale = 200 km, same parameters as in Kudryavtsev et al. (2015)).
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Figure 4.8: a) Travel time of the longest characteristic divided by the fetch duration of 5 days for
constant moving winds with+= 14 m s−1. Time-limited fetches are in red shading, length-limited
fetches are with blue shading. The black line shows parameters where the travel time is equal
the duration and the green line indicates the parameter space in b). b) Group velocity of the
longest characteristic for a fetches length of != 1000 km and a translational speed of += 14 m
s−1. The trapping condition (26 =+) is shown as dashed black line.
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Figure 4.9: Characteristics from double-Gaussian winds in the moving frame of reference. a)
double-Gaussian wind forcing (gray shading) with characteristic curves (colored lines). The
wind forcing is defined by a 95%-width of 1000 km, a 95%-duration of 3.6 days, a translational
velocity += 10 m s−1nd peak wind speed. D<0G= 20m s−1. The dashed black line is the
95%-extension of the wind field. b) Group velocity along the characteristics (colors same as in
a). The translational velocity += 10 m s−1s shown as black dashed line. c) Same as in b) but for
wave age U = 226/D10. The dashed-dotted and dashed line indicate U=1 or 10 respectively. d) to
f) as as a) to c) but for peak wind speed D<0G=10 m s−1.
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Figure 4.10: Same as figure 4.9 a but for the scale estimated in figure 4.6 (95%-width = 2800
km, 95%-duration = 4 days, D<0G= 22 m s−1, and += 14.1 m s−1.) The characteristic with the
highest wave energy is marked as blue line with green hexagon indicating its final location. The
dashed black line is the 95%-boundary of the forcing field.
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Figure 4.11: Largest final group velocity of a characteristic in the double-Gaussian model. a)
Group velocities for varying translational velocity + and peak wind speed D<0G . The local
maximum group velocity (dashed black line) separates fetch- and time-limited cases. Case 1 and
2 from figure 4.9 are shown as upward- and downward pointing triangles and the observational
case from sec. 4.4 (Fig. 4.10) is shown as red dot. The cases shown in panel b) are here
represented as blue dot. b) Same as a) but for changes in the 95%-width and 95%-duration. Here
the parameter space from a) is indicated as green dot and the observational case from section 4.4
as red dot.
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Figure 4.12: Largest occurring peak period )?40: for double-Gaussian winds of different
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Figure 4.13: Simplified time series for one year of fitted initial times uncertainty estimates.
Each green or dark blue line shows C0±2 fC0 for events identified at one of the stations. Green
bars indicate events that have fractional error 4 5 < 0.4, while blue bars are events with 4 5 ≥ 0.4.
The red areas show time spans where at least 3 or more events have overlapping estimated initial
times.
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Chapter 5

Time-varying empirical probability

densities of Southern Ocean surface winds:

Leading modes linked to SAM, the annual

cycle, and product biases

Abstract

Southern Ocean (SO) surface winds are essential for ventilating the upper ocean by

bringing heat and CO2 to the ocean interior. Observations demonstrate that the SO is primarily

ventilated during short, but extreme events that drive intense turbulent atmosphere-ocean fluxes.

SO surface winds are related to the Southern Annular Mode (SAM), but the SAM’s impact on

short-term wind events that drive upper-ocean mixing remains unclear.

In this study, observed time-varying 5-day probability density functions (PDFs) of ERA5

surface winds and stress over the SO are used in a singular value decomposition to derive a

linearly independent set of empirical basis functions. The leading order modes of wind and stress
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(72% of the total variance) are highly correlated with a standard SAM index (A = 0.82) and show

how SAM drives cyclone intensity and, in turn, extreme winds. This suggests that southerly and

less westerly winds are more frequent during short and distinct negative SAM phases and that

strong westerly winds during positive SAM are likely insufficient to drive mixed-layer ventilation.

The second mode describes seasonal changes in the wind variance (16% of the total variance)

that are uncorrelated with the first mode. The analysis produces similar results when repeated

using 5-day PDFs from a suite of scatterometer products. Differences between wind product

PDFs resemble the leading order variability of the PDFs. Together, these results demonstrate the

strong link between surface stress and the leading modes of atmospheric variability, suggesting

that empirical modes can serve as a novel pathway for understanding biases and variability of

surface stress PDFs.

5.1 Introduction

The Southern Ocean (SO) governs the global ocean uptake of anthropogenic heat and

CO2 (Gnanadesikan, 1999; Gruber et al., 2019; Swart et al., 2018), and projections of future

climate change depend on our of understanding SO ventilation (Sabine et al., 2004; Soloviev and

Lukas, 2013; Boé et al., 2009; Flato et al., 2014; Kuhlbrodt and Gregory, 2012), trends in water

mass transformation (Roemmich et al., 2015; Haumann et al., 2016), and mode water formation

(Hanawa and Talley, 2001; Naveira Garabato et al., 2009; Holte et al., 2012; Gao et al., 2018;

Cerovečki et al., 2019). Changes in the SO mixed layer are largely driven by a combination of

surface stresses and atmosphere-ocean heat fluxes that together ventilate the upper ocean through

stirring and mixing, with the ventilation being largest where surface winds and associated fluxes

of momentum and heat are strongest.

The strong link between surface winds and ventilation of the SOmixed layer (ML) suggests

that the Southern Annular Mode (SAM), as the leading-order mode of the Southern Hemisphere
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atmospheric variability (Thompson and Wallace, 2000), impacts long-term mixed-layer changes

(Meijers et al., 2019; Cerovečki et al., 2019). However, it remains unclear how large-scale

month-to-month atmospheric variability drives short-term intense wind events under storms

(Risien and Chelton, 2008; Lin et al., 2018). This paper explores how short-term wind and

stress variability relate to SAM, how they vary in time, and how well they are represented in

observational products.

SO flux buoy observations suggest that only a few episodic wind extremes per year are

responsible for most ventilation and deepening of the mixed layer (Schulz et al., 2012; Ogle et al.,

2018; Tamsitt et al., 2020), and similar intermittent effects emerge in other regions as well (Giglio

et al., 2017). The strength of mixing is also sensitive to the ocean mixed-layer stratification, but

intense mixing will nearly always require strong surface winds that persist over multiple hours,

and therefore that correspond to storms extending over hundreds of kilometers (except in deep

water formation regions where buoyancy forcing plays a central role). For most of the mid-latitude

oceans, rare high-wind (or high-stress) events initiate highly non-linear processes that transfer

energy from the wind-generated waves to the upper ocean (Phillips, 1985) and eventually to the

large-scale flow through near-inertial oscillations, the Ekman spiral, and currents (Cavaleri et al.,

2012).

Extremes in Southern Ocean surface winds are difficult to observe. The severe weather

and lack of access to the region around Antarctica limit in-situ observations and make remote

sensing the dominant technique to record surface winds. Satellite scatterometers observe surface

capillary waves (cm-scale surface roughness) that are used to estimate the local 10-meter surface

winds (Atlas et al., 2011). However, the sparseness of in-situ SO observations has impeded the

calibration of remote sensing estimates for high wind speeds (Bourassa et al., 2019). In particular,

a lack of observations of extreme winds under cyclones and gaps in our knowledge of air-sea

coupling under severe conditions make biases potentially largest where the winds are strongest

(Rascle et al., 2008; Ardhuin et al., 2010; Chawla et al., 2013). These biases might correspond

138



to differences between assimilated atmospheric reanalysis models (Wen et al., 2019; Ramon

et al., 2019; McDonald and Cairns, 2020), or between estimates of heat and momentum fluxes to

the ocean (Li et al., 2013; Bourassa et al., 2013; Bidlot et al., 2002; Cavaleri, 2009; Yagi and

Kutsuwada, 2020) and subsequent biases in ocean forcing or upper-ocean mixing (Li et al., 2016;

Taboada et al., 2019). All of these processes affect the assessment of the total wind energy input

to the ocean (Rascle et al., 2008; Ferrari and Wunsch, 2010).

Given the difficulties in observing surface winds, how certain can we be about surface

stresses? Momentum transfer to the upper ocean relies on a variety of non-linear processes that

are driven by instabilities (surface wave growth, wave-wave interaction, conversion of near-inertial

waves) and often involve turbulence (e.g. Phillips, 1957;Miles, 1960; Hasselmann and Hasselmann,

1985; Asselin and Young, 2020). A common way to parameterize the transfer of wind energy to

the ocean is by calculating a surface stress vector ggg using the standard drag formula

ggg = d0 �3 |u10 | u10, (5.1.1)

where d0 is the density of air, and u10 is the 10-meter wind speed. The drag coefficient �3

depends on wind speed |u10 |, the ocean’s sea state (surface wave spectrum), and the stratification

of the atmospheric boundary layer (Fairall et al., 2003; Edson et al., 2013). Independent of the

complex physics included in �3 , the surface stress has at least a quadratic dependence on the wind

speed magnitude |u10 |.

The goal of this study is to characterize the surface wind and stress over the SO in light of

the complex relations between the surface stress and wind vector. We will use the time-varying

probability density functions (PDFs) of surface stress and wind to understand their relation without

assuming particular shapes.

Surface winds on typical atmosphere model scales (daily timescales and O(100 km) length

scales) are often characterized entirely by their mean and standard deviation. Hence, they are
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approximated as Gaussian distributions that represent averaged quantities of the model output

which are used as ocean forcing. Gaussian-distributed wind components are then used to derive

a Weibull distribution (a family of distributions that includes the Rayleigh distribution) for the

surface wind speed, which is commonly used to model subsequent air-sea fluxes (Wentz et al.,

1984; Wanninkhof, 1992, 2014; Monahan, 2006a). However, a number of studies have shown that

surface stress depends on more than just the mean surface wind vector and its standard deviation

(e.g. Monahan, 2006a; Ponte and Rosen, 2004; Monahan, 2008). These studies showed that

higher order moments of the joint surface wind PDF must be known to derive a joint PDF of

surface stress. Hence, the question arises of how to account for the deviations from Gaussian

distributed winds, especially over the Southern Ocean, where winds regularly violate the Gaussian

assumption (Wanninkhof et al., 2002; Tuller and Brett, 1984; Pavia and O’Brien, 1986).

With the need for improved seasonal and climate predictions and more available compu-

tational power, the spatial and temporal resolution of weather and climate models continues to

increase (Delworth et al., 2012; Small et al., 2014; Haarsma et al., 2016; Mizuta et al., 2017). As

computational capabilities improve, models explicitly resolve more non-linear surface processes

and enhance the non-Gaussianity of surface variables, such that they have begun to advance

beyond the assumption of Gaussian distributed surface variables (Blein et al., 2020, and references

therein). Unsurprisingly, atmosphere-ocean interaction and related model biases have been

identified as one of the biggest challenges in long-range weather forecast and climate models

(White et al., 2017; Huang et al., 2020; Lin et al., 2020). In order to better represent highly

non-linear fluxes, parametrizations of bulk air-sea fluxes need to account for the non-Gaussianity

of variables at high spatial resolution (Wanninkhof, 1992; Wanninkhof et al., 2002; Edson et al.,

2013).

In this paper, we represent surface wind variability as a probability density function (PDF)

to understand its physical drivers on timescales longer than five days. We also use time-varying

PDFs to learn about SO surface wind biases and the occurrence of extreme surface stress. First,
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we derive time-varying PDFs from reanalysis and scatterometer data (sec. 5.2.1) and than apply

a Principal Component Analysis (PCA, sec. 5.2.3) to decompose the PDFs into their leading

modes. Second, we show the close relation of the leading modes in zonal wind and stress to

the SAM (sec. 5.3). Third, we represent the zonal and meridional co-variability in the surface

wind and stress as the superposition of a few patterns that are driven by changes in the strength

of extratropical cyclones, their frontal structure and the seasonal cycle (sec. 5.4). Fourth, we

show how the leading modes map into the climatological wind biases (sec. 5.5) and how surface

wind extremes can be understood with respect to these climatological biases (sec. 5.6). Although

correlation is not causation, we discuss how correlation analysis can be used to understand

non-linear surface processes and their drivers in the broader context of the SO surface climate

(sec. 5.7.1).

5.2 Methods

5.2.1 Time-varying PDFs of Southern Ocean wind and stress

The 10-meter surface winds (D10 and E10) and surface stresses (gG and gH) from the ERA5

reanalysis (European Centre for Medium-Range Weather Forecasts fifth generation reanalysis

for the global climate and weather, , CDS) between 55◦S and 63◦S are used to derive robust,

empirical time-evolving probability densities functions (PDFs) in the Southern Hemisphere (SH)

between 1979 and 2017. The latitude limits are chosen such that the wind patterns and fronts

over the ocean are solely driven by extra-tropical storms, rather than by flow around topography

or sub-tropical dynamics (Fig. 5.1a,b). The same analysis for a broader latitude range leads to

similar results, albeit with increased noise levels (Appendix A, Gille, 2005).

Without any prior averaging, the hourly and 0.25◦ data are divided into 5-day chunks

starting on 1 January each year. (Leap years have a 6-day chunk at the end of February.) Five-day

chunks are selected in order to capture the characteristic time scale of baroclinic wave activity
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(Blackmon, 1976; Wallace et al., 1988; Randel and Held, 1991). The 5.4×106 data points in each

block (1440 longitudes × 31 latitudes × 120 hours) are used to derive joint histograms of winds

and stresses (u and ggg) in the zonal and meridional directions for every 5-day period between 1979

and 2018 (see example PDFs in Fig. 5.2). Histograms of only the zonal or meridional components

are derived from the joint histograms by summing in the respective orthogonal direction. All

histograms are then represented as probability density functions (PDFs) � (u, C) by dividing by

the bin width and the total number of data points used in the respective 5-day mean.

Figure 5.3 shows the resulting time-varying PDFs for 5-day increments of zonal wind

and stress. For the SO, zonal wind PDFs have a non-zero mean, with a long tail on the negative

side of the PDF that can be diagnosed from negative skewness (Fig. 5.3a). The variability of the

zonal wind variability is echoed by similar variability patterns in the zonal wind stress (Fig. 5.3b).

Increases in the mean zonal wind are associated with extreme zonal stresses, and weak zonal

winds coincide with exceptionally weak zonal stress (September and December in Fig. 5.3). This

co-varying behavior will be further analyzed in sections 5.3 and 5.4.

We also derive surface wind PDFs using three additional Southern Ocean surface wind

products. The CCMPv2 (Cross-Calibrated Multi-Platform version 2.0) winds provide 6-hourly

fields on a 0.25◦-grid. They blend ERA-Interim winds with all available wind observations to

produce a gridded product: observational gaps between scatterometer swaths are filled with winds

from ERA-Interim (Wentz et al., 2015). For this study, data points between these swaths are

ignored, and CCMPv2 data are used only if they are informed by one or more observation.

In addition to the blended winds, we also analyze two Level 3 (L3) wind products that are

based on the Advanced Scatterometer (ASCAT) aboard the European Meteorological Operational

Satellites (METOP), METOP-A, METOP-B, and METOP-C. Remote Sensing Systems (RSS)

provides ASCAT winds on a 0.25◦ grid for ascending and descending swaths. We treat these as

quasi-twice-daily observations (Ricciardulli and Wentz, Apri, 2016). Similarly, Global Ocean

L3 METOP-A winds from CMEMS (Copernicus Marine Environment Monitoring Service) are
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also provided twice-daily at 0.25◦ grid spacing (based on the Royal Netherlands Meteorological

Institute, KNMI, Driesenaar et al., 2019). Time-evolving PDFs for 5-day bins are derived for the

three scatterometer wind products in the same way as for ERA5. CCMPv2, RSS ASCAT and

METOP-A ASCAT each provide 4−13% as many data points as provided by ERA5, with large

seasonal variability due to sea ice cover (Satellite products have a spatial coverage 50−85% per

5-days compared to ERA5, Appendix B, Fig. B1).

5.2.2 Effective Degrees of Freedom

The data from ERA5 and scatterometer products are spatially and temporally correlated,

such that the effective degrees of freedom (DOF) are much less than the number of data points

used to establish each 5-day-distribution. This effect is illustrated in Fig. 5.2, where we compare

ERA5 PDFs derived from a single time step (1 hour, dashed black lines), five days (solid black

lines) and the climatology (gray shading). We see that the 5-day PDFs are smooth compared to the

1-day PDFs. The effective DOF is calculated by estimating the spatial and temporal decorrelation

scales in ERA5 (Appendix B). The effective DOF for the zonal wind D10 is 175 and for the

meridional wind E10 1070. The e-folding scales are 2.4 days, 1100 km in the zonal and 40 km in

the meridional direction for D10 and 1.4 days, 130 km in the zonal and 40km in the meridional

direction for E10 (Fig. B1). These characteristic scales suggest that we can assume each 5-day

PDF to be a robust estimate, which implies that differences between successive PDFs are due to

changes in physical drivers, rather than uncertainties in the estimate of the PDF.

The 5-day joint PDFs have more noise than their meridional or zonal projections because

the same number of effective DOF as in the one-dimensional PDFs is now spread over the squared

number of spatial data points (Fig. 5.2c).
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5.2.3 Principal Component Analysis of time-varying PDFs

To derive the covariance between the time-varying PDFs, the PDFs of zonal wind ��� (D10, C)

and stress ��� (gG , C) for ERA5, CCMPv2, RSS ASCAT and METOP-A ASCAT are decomposed

into their leading-order modes using singular value decomposition (��� =***����) ). The probability

variation patterns ��� (empirical orthogonal functions, EOFs) are multiplied by the singular values

from �, so that they have units of probability density. The columns of*** (principal components,

PCs) are unit vectors that specify the time variability of the EOF.

The PDFs of wind and stress are either decomposed from their one dimensional PDFs in

the zonal or meridional direction, or from their joint PDFs. The following analysis focuses on the

leading modes in the zonal direction as well as the leading modes from the joint PDFs, because

the other decompositions mainly express the same variability (Fig. 5.4). The cross-correlation

between PCs of all decompositions can be found in the supplementary material.

The first three EOFs of the zonal and meridional wind PDFs are very similar for all four

wind products (Fig. 5.5, higher modes are in the supplementary material). The first three EOFs

explain similar fractions of the total variance, and in these cases the fraction of variance explained

exceeds a null-hypothesis threshold defined by decomposing Gaussian noise, implying that the

EOF has more structure than we would expect to see if the signal were simply Gaussian white

noise (Fig. 5.5g, h; Preisendorfer N-test, Preisendorfer and Mobley, 1988; von Storch and Zwiers,

1999, chap. 13).

Note that relative to ERA5, the spatial coverage and amount of data vary between the

scatterometer wind products from a minimum of 30% for METOP-A ASCAT in austral winter

to about 85% in austral summer in CCMPv2, and the effective DOF of the scatterometer winds

are substantially less than for ERA5 (Appendix B). Despite the varying effective DOF, the

decomposition of all scatterometer wind products appears to be robust, even for the joint PDFs

which have a weaker signal-to-noise ratio (Fig. 5.2c and sec. 5.2.1). Hence, the analysis in

section 5.3 and 5.4 focuses on ERA5 because it provides a complete dataset of surface winds and
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stresses with the highest signal-to-noise ratio. Equivalent statements can also be derived from the

scatterometer data, although the climatologies of the scatterometer fields differ relative to ERA5,

as outlined in section 5.5.

5.3 Zonal Wind and Stress Co-Variability and its Relation to

SAM

In this section we show that the leading modes of surface stresses, and therefore the ocean’s

forcing, are tightly linked to the leading modes in the zonal wind. In particular, the first two PCs

of wind and stress are nearly identical, and explain 90% of the variance of each variable.

Figure 5.6a,b compares the first three EOFs of the zonal wind and zonal stress from

ERA5 with the climatological PDFs. The 1st zonal wind EOF (D10 EOF1, 72% of variance) is

asymmetric around the median of the PDF. Positive values of the PC1 time series are associated

with less frequent weak zonal winds (around zero) and more frequent zonal wind speeds exceeding

10 m s−1(Fig. 5.6a, dark blue line). Since the zonal wind PDFs are in general skewed, the range

over which the 1st EOF reduces the zonal wind PDF (-10 to 5 m s−1 is larger than the range

over which the EOF enhances winds (5 to 15 m s−1 Fig. 5.6a). This asymmetry is even more

pronounced in the 1st EOF of zonal stress (gG EOF1 in Fig. 5.6b, correlation coefficient r(D10 PC1,

gG PC1)= 0.94). A positive value of the stress PC1 reduces the stress PDF’s peak (positive, but

close to zero), increases the likelihood of extreme eastward stresses, but decreases the likelihood

of westward stresses. Hence, the leading EOFs can be interpreted as shifting the center of the

zonal wind PDF, accompanied by asymmetric flattening of the double exponential zonal stress

PDF.

The 2nd EOFs of the zonal wind and stress are both symmetric around the median of the

PDF (Fig. 5.6a and b, dotted gray lines), indicating fluctuations in wind or stress variance. This

mode shows that increases in the likelihood of winds being concentrated near the PDF’s center
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are accompanied by a symmetric reduction in the likelihood of winds occurring in the tails of the

PDF, and vice versa. The PCs of the second EOFs are also well correlated between wind and

wind stress (correlation coefficient r=0.92, Fig. 5.6d) but only explain about 18% of the overall

variance in probability density. The PCs of 3rd EOFs explain even less variance in probability

density (< 5%) and are close to the noise level (sec. 5.2).

Figure 5.6c,d shows the PCs of the leading two EOFs in the zonal wind and zonal stress for

15 years. The similarity between the wind and stress PCs suggests that the zonal stress variability

can be solely explained by zonal wind. The first two PCs of gG together explain 92% of the

variance and are explained by the first two PCs of D10. This is surprising since stress depends

not only on zonal winds but also on meridional winds and non-linear boundary layer processes

that are represented through the drag coefficient (eq. 5.1.1). The role of the meridional wind

component is further explored in section 5.4. In Fig. 5.6a,b, a shift of the zonal wind maximum

by 5 m s−1 (+1 D10 PC1) leads to a 30% reduction in the likelihood of wind stresses around ±2

hPa around the peak and a 50% increase in the likelihood of stresses larger than 10 hPa (green

dashed line in Fig. 5.6b, eq. 5.1.1). The close relationship between the 1st PCs of D10 and gG also

appears in their power spectra (Fig. 5.7a, blue and red line): the leading PCs of zonal wind and

stress are indistinguishable on timescales between 250 days and one month, with a distinct peak at

the semi-annual cycle.

The first PCs of wind and stress exhibit strong year-to-year variability, but extreme zonal

stresses are more frequent during short events in austral winter (March to October) and less

frequent in austral summer (December and January). This variability is coherent with the SAM

with zero phase lag on all scales between four years and a month except on the seasonal and

semi-seasonal cycle (Fig. 5.7b,c, the correlation coefficient of D10 PC1 and SAM = 0.82). This

coherence extends to significant poleward trends in D10 PC1 and gG PC1 similar to the observed

poleward trends for SAM (about 0.054±10−5 PC1/decade, p-value = 0.001, in line with Thompson

et al. (2000); Thompson and Solomon (2002); Lin et al. (2018)). Here, SAM is defined as the
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leading-order mode of the 5-day-mean zonal-mean zonal wind in the SH extra-tropics (Thompson

and Wallace, 2000; Thompson and Woodworth, 2013). Hence, long-term trends in the surface

stress PDFs are related to trends in the zonal mean wind. The coherence between PC1 and SAM

implies a relationship between local wind probabilities (represented by the PDFs) and larger-scale

zonal mean winds (represented by SAM). The weaker coherence at the semi-annual and annual

frequencies is an artifact of the conventional definition of SAM, which removes annual-cycle

variability before the SVD decomposition (Appendix C).

The 2nd PC of the D10 and gG PDFs show regular seasonal cycles, which are, by construction,

linearly independent of the variability in the 1st PCs (Fig. 5.6d, and a Fig. 5.7a, dashed blue

and dashed red line). The seasonal cycle is the variance mode (EOF2 in Fig. 5.6a,b) , which

implies that the seasonal atmospheric circulation is weaker than its month-to-month or year-to-year

variability (Trenberth, 1991). In other words, in the latitude band of the Drake Passage, the

seasonal cycle affects the variance of the winds more than it affects the mean of the zonal winds.

5.4 Synoptic Variability in the Joint Wind and Stress Decom-

positions

In this section, we extend the analysis of the zonal wind and stress co-variability to include

the meridional component. This allows us to represent a significant fraction of variance with a

small number of functions, which also reveals the synoptic-scale drivers of the variance. Figure

5.8 shows the first two EOFs of the joint surface winds (u EOF1 and u EOF2 in c and d) and

the joint surface stress (ggg EOF1 and ggg EOF2 in f and g), as well as the projected means in the

meridional and zonal directions (a,b,e,h,i and j). The first two modes of the joint surface winds

show the same patterns as the one-dimensional decomposition, but they explain less variance

(together 58% of the total variance). A smaller fraction of explained variance is not surprising

since the joint decompositions have to represent the variance for the square of the number of grid
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points compared to the one-dimensional decomposition.

The 1st joint wind mode (u EOF1) combines the variability of the D10 EOF1 and E10

EOF2 (41% variance explained, r(ggg PC1, D10 PC1)=0.99, r(ggg PC1, E10 PC2)=0.68). The zonal

and meridional means show the same patterns as the related one-dimensional decompositions.

This similarity in patterns suggests that wind shifts in the zonal direction dominate the joint PDF,

meaning that SAM variability also dominates the joint PDF.

In addition to enhancing zonal winds, the SAM mode of the joint EOF corresponds to a

poleward shift of the meridional wind maximum (E10 EOF2, compare Fig. 5.8a with Fig. 5.5a,

and Fig. 5.8e and Fig. 5.5d). This co-variability of both wind components is a representation

of the structure and variability of extra-tropical cyclones. Since the joint PDFs are a reduced

representation of the maps of surface winds (Fig. 5.1), the PDF shape and variability also represent

the synoptic variability of surface wind or even sea level pressure. The joint PDF measures the

intensity of the cyclone fronts, and hence the intensity of the cyclones themselves. This is possible

because extra-tropical storms are inherently asymmetric, and their dynamics are linked to their

frontal systems (Shapiro and Keyser, 1990; Neiman and Shapiro, 1993; Schemm and Wernli,

2014).

The cyclones’ imprint on the surface winds is characterized by intensified winds in the

cyclone cold sectors that shift the PDF maximum toward more frequent stronger westerlies

(Fig. 5.9, horizontal red arrows). The stronger westerlies are accompanied by intense, but narrow

southward flow ahead of the cold front (low-level jet, Fig. 5.9 curved red arrow). These cold-front

winds add the southward inclination of the dipole pattern of the joint PDF (Fig. 5.8c, green dot).

The surface winds on both sides of the cold front imprint on the 1st EOFs for both wind and

stress. While the joint wind PDF’s maximum shifts along a diagonal through the PDF’s median

(Fig. 5.8c black dot), the joint wind stress PDF weakens at the peak and is enhanced mainly in the

southeastward direction (Fig. 5.8f and g, orange and green dots, note the non-linear color-scale).

At times when the 1st principal component is positive, the EOFs indicate less equatorward flow
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and less weak zonal wind regimes, as typically appears in the wake of an eastward propagating

storm (weakening of the blue arrows in Fig. 5.9 correspond to orange dot in Fig. 5.8c).

The leading mode of the joint PDF can be understood as a measure of the cyclone activity

in the latitude limits of Drake Passage. Cyclone activity is highly coherent with SAM (Fig. 5.7b

blue line, power spectra of u PC1 and D10 PC1 are indistinguishable, see supplementary material).

A positive SAM with anomalously intense extra-tropical storms (Fig. 5.9, red arrows) projects

onto the leading mode of the joint wind and the joint stress PDF (Fig. 5.8f, note the non-linear

color scale, corr(u PC1, ggg PC1)=0.81). In contrast, a negative SAM leads to anomalously weak

cyclone activity and enhanced equatorward flow (Fig. 5.9, blue arrows). Since the latitude limits

of Drake Passage capture the southward, barotropic shift of the tropospheric zonal mean zonal

winds, the leading wind PDF mode can also be interpreted as a shift of the storm track around its

climatological position (Lorenz and Hartmann, 2001).

The 2nd joint wind mode has a more circular structure and captures changes in the width

of the joint PDF (Fig. 5.8, explained variance 16%). The projections of the u EOF2 on the

zonal and meridional axes are similar to the D10 EOF2 and E10 EOF1 (Fig. 5.5b,c, r(u PC2, D10

PC2)=0.73, r(u PC2, E10 PC1)=0.81), though they contain variance due to processes other than

storm intensity driven by SAM.

The 2nd mode of the joint wind PDF also leads to a dipole in the joint stress PDF

(r(ggg PC2, u PC2)=0.84). The dipole structure arises because the 2nd joint wind EOF is not

precisely symmetric. Nevertheless, the 2nd joint stress mode is confined around ±3 hPa, which

illustrates again how changes in the wind variance alone are not responsible for extreme surface

stresses. Higher-order modes are not judged to be statistically different from what we would

expect to find by computing EOFs of Gaussian noise and are not explored here (Fig. 5.10).
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5.5 Biases in Reanalysis and scatterometer products

The leading order modes of the surface wind PDFs provide a framework for interpreting

differences between surface wind products. Figure 5.11 shows climatologies of meridional and

zonal wind PDFs derived from ERA5 (1979 to 2017), CCMPv2 (1978 to 2017), RSSASCAT (2007

to 2016) and METOP-A ASCAT (2007 to 2016). The log-scaling exposes velocity differences of

up to 30% at a probability density level (for |D | > 20m s−1 Fig. 5.11a,b). Alternatively, this is

expressed as a probability density change for a given velocity compared to ERA5 (Fig. 5.11c,d).

While ERA5 and METOP-A ASCAT have narrower tails that rarely exceed 30 m s−1in the zonal

direction and 25 m s−1in the meridional direction, CCMPv2 and RSS ASCAT estimate velocities

up to 40 m s−1in the zonal direction and 33 m s−1in the meridional direction for a probability

density level of 10−7. (In the Drake Passage latitude band, a density level of 10−7 corresponds to

an area of about two km2 having a particular wind value.) That is, CCMPv2 and RSS ASCAT

exceed extremes winds of 25 m s−130 to 100 times more often than does ERA5 (Fig. 5.11c,d).

Biases near the PDF centers fall into two simple patterns that approximately match the

leading EOFs for the PDFs of D10 and E10 (compare Fig. 5.11e,f with Fig. 5.5a,b). Here we show

the difference of METOP-A ASCAT, CCMPv2, and RSS ASCAT to ERA5 to emphasize these

anomaly patterns. For the zonal wind, three scatterometer products have PDFs that are higher

around 10 m s−1and lower around zero compared to ERA5. Since the node point of this dipole

sits at the median of the ERA5 PDF (Fig. 5.11e, dashed gray line), this pattern is associated with

a shift in the maxima of the PDFs (sec. 5.3) and leads to a difference in the PDF means, medians,

and standard deviations (Fig. 5.12a).

A different behavior appears in the meridional direction (Fig. 5.11b,d,f). The scatterometer

PDFs show a symmetric difference relative to ERA5 and CCMPv2, with fewer winds around zero

and more winds at about ±10 m s−1. This widening of the PDF implies a difference in variance

(sec. 5.3). However, these biases are not well captured by the variance metric because biases in
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the center may be partly compensated by biases in the tails such that changes in variances are

rather small (Fig. 5.12b dashed lines). As an alternative to the metrics provided by mean and

variance, the climatological bias pattern in Fig. 5.11f is better understood as resembling the E10

PC1 (Fig. 5.5b). This approach works well for both ASCAT products – despite the spikes around

zero for RSS ASCAT – but less well for CCMPv2 (Fig. 5.11f). This analysis shows that differences

between scatterometer-based products and model-based winds (ERA5) are systematic and similar

to the signatures of SAM-related wind variability (sec. 5.3 and 5.4) and suggests that biases reveal

differences in the assumptions made in the dynamical model (ERA5) and assumptions made to

derive the scatterometer winds.

5.6 Leading modes of extreme winds

Informed by the differences between PDFs for different wind products, we can now

investigate the leading modes for extremes of the D10 and E10 wind PDFs. Figure 5.13 shows the

leading zonal and meridional EOFs as in Figure 5.5, but now added to their respective climatology

(gray shading for ERA5 and METOP-A ASCAT, blue shading for CCMPv2 and RSS ASCAT).

To emphasize the changes in the PDF tails, in Fig. 5.13a,b we show only values outside ±20 m

s−1on a log scale. In this scaling, anomalies relative to the climatology are not area equivalent,

and negative deviations appear larger than positive deviations.

The 1st D10 EOFs extend to extreme wind conditions. An increase in D10 PC1 corresponds

to a shift in the D10 EOF1 maximum, which co-varies with an increase in the extreme zonal winds

(compare Fig. 5.6a and Fig. 5.13a). This correlation is generally stronger for ASCAT-based wind

products than for ERA5 or CCMPv2, such that an increase in PC1 by one standard deviation

means a doubling in the likelihood of extreme wind velocities in the 1st EOF from RSS ASCAT,

but less in other products (Fig. 5.13a).

The 1st E10 EOF is more consistent for all of the wind products. A typical narrowing of
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the E10 PDF leads to a reduction by a factor of 3 to 5 in the occurrence of velocities in the tails

(Fig. 5.5b and Fig. 5.13b). However, extremes in the 2nd and higher EOFS of E10 or D10 are not as

coherent as the 1st EOFs and are not further analyzed here.

We note that here the SVD decomposes the covariances of very different scales and must

be treated with caution. The SVD is an axis rotation along the most common mode of variability

in the covariance matrix and these axes (EOFs) are mainly defined by fluctuations in the PDF

centers (O(10−2)), while small fluctuations in the tails (O(10−6)) only marginally contribute to

the modes of the covariance matrix.

To test the robustness of the modal decomposition, we re-derive the SVD for the log-PDFs

log[� (D, C)]. Use of the log enhances the variability of the tail compared to fluctuations in the

center. The overall shape of the leading-order modes remains robust under a log-weighting for all

wind products but with less explained variance for the first modes (supplementary material). The

enhancement of extreme winds in the D10 EOF1, as observed in Fig. 5.13, also remains robust,

while changes in the E10 EOF1 are not.

5.7 Discussion

5.7.1 Large-scale circulation establishes surface winds and stress PDFs

As we showed in section 5.3, the first two modes of both the one-dimensional and joint

surface wind PDFs resemble the leading modes in surface stress (Fig. 5.4 and 5.6). These two

modes trace changes in the conversion of excess atmospheric angular momentum to surface

momentum fluxes, without explicitly resolving the cascade of processes involved in converting

atmospheric momentum to stress.

The first mode is mainly an eastward shift of the zonal wind probability maximum that

leads to more frequent extreme zonal stresses (Fig. 5.6a,b). This shift in the PDF is more complex

than a shift of a Gaussian distribution. Southern Ocean zonal surface winds are negatively skewed
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and limited in their extremes due to the non-linear relation of surface drag (eq. 5.1.1), and this

shift in the PDF maximum does not imply a proportional increase in the PDF’s extreme quantile.

Instead, the higher-order dependence of surface stress on wind leads to changes in the mean,

skewness, and kurtosis; this is captured in the 1st EOF (PC1 D10 and PC1 ggg in Fig. 5.14). Changes

in the variance, however, are mainly captured in the 2nd EOF (PC2 D10 in Fig. 5.14).

The EOF decomposition of the time-varying joint PDF adds a meridional component

to dominantly zonal wind and stress variability. As the zonal wind maximum increases in the

leading order mode, the meridional component shifts southward (Fig. 5.8c,e). This joint mode is

highly coherent with SAM (Thompson and Woodworth, 2013; Thompson and Barnes, 2014) and

is created by changes in the storm activity in the latitudes of Drake Passage, which are equivalent

to a shift in the storm track position over the SO (Lorenz and Hartmann, 2001). One explanation

for the appearance of the meridional wind component in EOF1 is because its associated Coriolis

acceleration balances the effect of friction on the zonal surface wind (Limpasuvan and Hartmann,

2000).

This analysis underscores the fact that SAM and zonal statistics of storm activity have

similar variability on timescales between five days and four years. While SAM describes the

variability of angular momentum-flux convergence in the mid-latitude upper troposphere, extra-

tropical cyclones are the dominant mechanism to remove angular momentum from these latitudes

(sec. 5.3; Lorenz, 1967; Hartmann and Lo, 1998; Schneider, 2006). Hence, there is a direct

dynamical link between upper level wave breaking and the surface stress PDF that is shaped by

storms (sec. 5.3 and 5.4). The steady-state leading-order atmospheric zonal momentum balance

in mid-latitudes can be written as

mH

∫ ∞

0
�[D∗E∗] 3I = [�̃], (5.7.1)

where [D∗E∗] is the zonal-mean eddy-momentum flux in the atmosphere, [�] is the zonal mean
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surface drag, and ˜(·) indicates the average over a 5-day interval (see e.g. Chapter 11 of Peixoto

and Oort, 1992; Edmon et al., 1980). This illustrates that the zonal mean zonal surface drag in the

latitude limits of Drake Passage is the result of the atmospheric zonal momentum balance, and, as

we showed in section 5.3, the zonal mean surface drag in each 5-day interval can be written as

[�̃] ' ḡG + %�1gG (C)
∞∑

8=−∞
gG (8) �$�1gG (8),

which implies that

mH

∫ ∞

0
�[D∗E∗] 3I ' ḡG + %�1gG (C)

∫ ∞

−∞
�$�1gG 3gG , (5.7.2)

where ḡG is the climatological zonal surface stress and gG (8) is the surface stress for bin-index 8 of

the PDF. Equation 5.7.2 describes how the vertical integral of the momentum-flux convergence

in mid-latitudes is balanced by the climatological eastward stress and its 1st EOF. Since the

momentum flux convergence is the result of irreversible Rossby wave breaking, its short-term

variability is mainly balanced by adjusting the amplitude of the 1st EOF of the zonal surface stress

PDF. Changes in the momentum flux convergence are captured by SAM, and hence SAM can be

described as rescaled variability of the 1st PC of zonal stress and wind (section 5.3). Since the

zonal momentum equation on a rotating sphere essentially describes the conservation of angular

momentum, an exact version of (5.7.2) would follow the form of a Fokker-Plank equation (Risken,

1996) and describe a closed balance between the atmospheric angular momentum and the zonal

surface stress PDFs. In addition, g in equation (5.7.2) depends on �3 in equation (5.1.1), which

indicates the critical role of �3 in shaping the surface wind and stress PDF (Fairall et al., 2003,

and references therein) as well as the relation of the eddy-driven jet to surface drag (Mbengue and

Woollings, 2019).

The strong coherence between SAM and the leading mode of surface stress and wind

reveals how SAM relates to extreme winds within synoptic-scale systems (Claud et al., 2009;
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Booth et al., 2010). A positive SAM increases the probability of wind patterns that are associated

with fronts under storms (Fig. 5.9, red arrows). Extreme zonal winds and stresses behind and

stronger southward stress ahead of the cold front lead to the southeastward shift of the maximum

in u EOF1 and ggg EOF1 (Fig. 5.6a,b and Fig. 5.8c,f). In turn, a negative SAM is associated with

fewer extreme westerly winds (or even no predominant westerly winds) and instead enhanced

equatorward winds and stresses from the southwest, due to a shift of the cyclone centers into or

out of Drake Passage latitudes. This SAM-mode alters the wind and stress PDFs following an

EOF pattern that also extends to the tails of the PDF (sec. 5.6, Sampe and Xie, 2007; Lin et al.,

2018).

The second mode of variability is linearly independent of the first mode by construction.

It describes symmetric widening and contraction of the PDF, indicating a periodic change of

variance without changing the mean (Fig. 5.5b, Fig. 5.6, Fig. 5.14). This mode explains about 18%

of the zonal and 53% of the meridional wind variability, mainly due to annual and semi-annual

changes in the PDF variance (Fig. 5.7a, Fig. 5.14). This mode is concentrated around the PDF’s

center with little or no influence on extreme winds and only mild impact on extreme stresses

(Fig. 5.8d,g).

We have shown that SAM variability and trend represent more complex changes of

the atmospheric forcing than just changes in the mean winds and stress. This provides a new

perspective on the observed increase of eddy activity in the SO that is accompanied by only weak

changes in the SO zonal transport (“eddy saturation”, e.g. Hallberg and Gnanadesikan, 2006;

Meredith and Hogg, 2006; Böning et al., 2008). While changes in the mean zonal wind stress,

i.e. a trend in SAM, may change the larger-scale SO baroclinicity and subsequent mesoscale

eddy activity (Thompson and Solomon, 2002; Meredith et al., 2012), section 5.3 and 5.6 show

that trends in SAM also have a significant impact on extreme stress statistics. Extreme, localized

wind stress under storms (sec.5.4 and 5.75.7.2) can imply stronger wind-stress curls leading to

localized strengthened Ekman pumping (e.g. O’Neill et al., 2003, 2005), which then interact with
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the mesoscale eddy field. In addition, extreme winds under storms also enhance near-inertial

oscillations in the upper ocean (Pollard, 1980; Thomson and Huggett, 1981; Gill, 1984; D’Asaro

et al., 1995) and can possibly provide energy for the mesoscale eddy field (Xie and Vanneste,

2015; Asselin and Young, 2020). Hence, we speculate that a positive SAM trend could increase

upper-ocean mesoscale activity by increasing wind extremes, in addition to increasing the mean

wind speed and subsequent balances of the larger-scale baroclinicity.

5.7.2 Interpreting the leading-order mode as a dominant mode of SO

atmosphere-ocean interaction

The empirical decomposition of surface wind and stress into two leading modes leads us

to ask which mode is responsible for strong air-sea heat and property fluxes associated with SO

mixed-layer ventilation events (Schulz et al., 2012; Ogle et al., 2018; Tamsitt et al., 2020) and

marine cold-air outbreaks (Bracegirdle and Kolstad, 2010; Papritz et al., 2015; Fletcher et al.,

2016). While SO mixed-layer ventilation is observed to be driven by extreme turbulent heat fluxes

that often coincide with equatorward winds advecting cold air from the south (Tamsitt et al.,

2020; Ogawa and Spengler, 2019; Song, 2020), the same process, described as a marine cold-air

outbreak, leads to atmospheric boundary layer deepening (Grossman and Betts, 1990; Brümmer,

1996; Renfrew and Moore, 1999) and affects the synoptic scale circulation (Papritz and Pfahl,

2016).

Equatorward winds occur during a negative SAM mode (Fig. 5.8c,e, and Fig. 5.5d) and

also during a negative variance mode (increasing variance, Fig. 5.8d,e, and Fig. 5.5b). Both

modes, or their superposition, could capture events that create strong air-sea fluxes associated

with mixed-layer ventilation and marine cold-air outbreaks. While the variance mode has a

dominant seasonal cycle, as observed in the mixed-layer ventilation (dashed orange-red line in

Fig. 5.7, Tamsitt et al., 2020), SAM explains 67% of the wind variance (Fig. 5.4) and 33% of

stress variance (not shown).
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We suggest that SO mixed-layer ventilation is a result of the superposition of SAM and

oceanographic preconditions such that enhanced equatorward winds during negative SAM are

likely to be conducive to increased turbulent heat fluxes by winter cold air advection (sec. 5.4,

Fig. 5.9). This mechanism is plausible even when taking into account observed long-term trends

of SO ventilation and heat content (Gille, 2008; Sallée et al., 2010), SAM-like variations in SO

mixed-layer depths (Cerovečki et al., 2019; Meijers et al., 2019), and the long-term trend to a

more positive SAM with more westerly wind extremes in the Drake Passage latitudes (Thompson

et al., 2000; Thompson and Solomon, 2002; Lin et al., 2018). Because mixed-layer ventilation

relies on additional limiting factors like seasonal changes in the meridional surface temperature

gradient, local insolation, and mixed-layer stratification, it is likely that the northward advection

of cold polar air during negative SAM modes is more effective in winter when thermodynamic

preconditioning favors mixed-layer ventilation. This is in agreement with observed mixed-layer

ventilation and marine cold-air outbreak events that occur preferentially in austral winter (Papritz

et al., 2015; Fletcher et al., 2016; Tamsitt et al., 2020): even if SAM has no dominant seasonality

(Fig. 5.7a) and a small, long-term trend to more positive values, its negative phase is likely the

important contributor to trends in highly non-linear atmosphere-ocean interaction. We hypothesize

that exceptionally strong westerly winds (positive SAM) are not enough to drive deep mixed-layer

ventilation, because they are not the only factor in determining ocean ventilation and they are also

not observed as the dominant mechanism to perturb the atmospheric boundary layer.

Even though we do not explicitly analyze atmosphere-ocean heat fluxes in this study, the

oceanic and atmospheric processes outlined above suggest that equatorward winds are important

for the evolution of both boundary layers and for the exchange of heat and CO2. SAM controls the

statistics of equatorward winds, but it can only control the statistics of intensified atmosphere-ocean

fluxes if the ocean stratification is responsive to the atmospheric forcing.
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5.7.3 Dynamic drivers of climatological biases

The leading modes of zonal and meridional winds resemble climatological biases between

ERA5, CCMPv2, RSS ASCAT and METOP-A ASCAT (sec. 5.5). These biases also extend to the

PDF’s extremes (Fig. 5.11, Gille, 2005). The probability of velocities larger than ±20 m s−1s

about 100 times higher for CCMPv2 and RSS ASCAT than for ERA5 and METOP-A ASCAT.

These climatological biases also appear in the extremes of the leading EOFs (sec. 5.6). We

found more extreme wind events during positive SAM in RSS ASCAT products than in ERA5 or

METOP-A ASCAT climatology. However, SVD results from the PDF tails must be treated with

caution because extreme values are the least certain portion of a PDF given the rarity of extreme

events, and the covariance is largely determined by the PDF’s centers (sec. 5.6 and Appendix B).

These results agree with recent central-moment-based (Monahan, 2006a) validations of

reanalysis surface winds in which ERA5 winds show systematic biases compared to ASCAT

and wave-buoy observations (Yagi and Kutsuwada, 2020; Rivas et al., 2019). Additionally, the

analysis in section 5.5 hints at reasons why reanalysis surface winds differ (Taboada et al., 2019;

Wen et al., 2019; McDonald and Cairns, 2020): since biases in surface wind PDFs resemble

the leading mode of atmospheric angular-momentum flux convergence (sec. 5.7.1), differences

between wind products, whether from reanalyses or scatterometers, might arise from errors in the

parametrization of boundary layer turbulence or wind retrieval algorithms, errors in representing

mesoscale processes associated with cold fronts (Blein et al., 2020), or large-scale biases in the

reanalysis momentum budget (Pithan et al., 2016).

The high correlation of the large-scale flow and surface wind biases can potentially

improve surface wind products and subsequently surface wave models (Wentz et al., 2015; Ribal

and Young, 2019; Trindade et al., 2020; Allen et al., 2020). Spectral wave models rely on accurate

surface winds and are particularly sensitive to surface wind extremes (Cavaleri, 1994; Cardone

et al., 1996; Ponce and Ocampo-Torres, 1998; Feng et al., 2006; Durrant et al., 2013; Stopa and

Cheung, 2014; Janssen and Bidlot, 2018; Osinski and Radtke, 2020). Due to the biases described
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above and deficits in the momentum balance of Atmospheric Circulations Models (Pithan et al.,

2016), wave hindcast models are commonly tuned to wave buoy observations by adjusting high

surface wind speeds. This practice cannot be applied in “free-running” surface wave models as

part of a coupled climate model (Li et al., 2016; Bourassa et al., 2019), because biases in the

model mean state of other model components hinder direct validation with in-situ observations.

At the same time including surface wave models in a coupled model framework might improve

estimates of �3 , which plays a critical role in shaping the surface stress PDF (sec. 5.7.1 and Edson

et al., 2013) and the large-scale atmospheric flow (Mbengue and Woollings, 2019).

5.8 Conclusion

Southern Ocean surface winds play an important role in ventilating the upper ocean,

mainly due to short, extreme events of atmosphere-ocean interaction. This study has investigated

a statistical representation of surface wind and stress PDFs that connects large-scale modes of

atmospheric variability with short-term processes at the atmosphere-ocean interface.

We have derived leading modes of variability of PDFs of surface winds and stresses

between 55◦S and 63◦S using four wind products (ERA5, CCMPv2, RSS ASCAT, METOP-A

ASCAT). After calculating time-varying PDFs from all available data points in longitude and

latitude in 5-day chunks, we use an SVD of the zonal, meridional, or joint PDF. The first two

modes of the zonal or meridional wind together explain 90% to 92% of the total variance, while

the first three modes of the joint wind SVD explain about 65% of the total variance. These

decompositions are robust between the wind products, despite differences in their degrees of

freedom (sec. 5.2.3 and Appendix B).

The first two PCs of the surface stress PDFs explain an equivalent or greater fraction

of variance than the first two PCs of the wind PDFs (Fig. 5.6 and Fig. 5.10) and the temporal

variability of the leading wind stress modes (PC1 and PC2) is nearly identical (sec. 5.3). This
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surprising co-variability occurs despite the different noise levels in their SVDs (Fig. 5.6). They

appear because the variance of the joint stress PDFs is the square of the variance of the joint

surface wind PDFs.

We would like to put the result in the broader context of atmosphere-ocean coupling:

• PDFs, used in place of mean quantities, are a cornerstone of stochastic climate modeling

(Hasselmann, 1976). Here we have expanded on this idea, but, instead of creating PDFs

for large ensembles (Kay et al., 2015; Maher et al., 2019; Deser et al., 2020; Reimann

and von Storch, 2020), we have assumed that the governing processes are ergodic in the

latitudes of Drake Passage and over short time-periods. This has allowed us to derive a

time-evolving PDF from a single realization of the winds (here ERA5 reanalysis or direct

scatterometer winds). The leading order variability of the wind PDFs can then be analyzed

using an SVD and compared to other models or wind-products. We choose a standard SVD

in order to reduce the complexity of the PDF variability to a set of linearly independent

lower-dimensional EOFs, although other forms of modal decomposition might be similarly

illuminating. We have shown that EOFs of surface variables offer an efficient way of

capturing larger-scale modes of atmospheric variability (SAM) that can be described as

stochastic processes (“zonal index”, Robinson, 2000; Vallis et al., 2004)).

• We showed that assuming Gaussian distributions as a basis for surface wind is insufficient

(also shown by Monahan, 2008). This assumption is usually made when wind speed

is modeled as a Weibull distribution, which can be derived from independent Gaussian

distributions in D and E, with a non-zero mean wind (Hennessey, 1977; Justus et al., 1978;

Monahan, 2007). Deviation from the Weibull distribution can be captured by higher-order

moments (Monahan, 2006b), but their relations require many degrees of freedom to be

well constrained. The SVD of time-varying PDFs used here needs fewer degrees of

freedom per time interval to constrain the PDF tails (Fig. 5.13 and sec. 5.2.2), and the

superposition of a few modes explains most of the variance, even when the variance is
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non-stationary and non-symmetric. These leading modes also suggest physical drivers of

the PDF shape (eq. 5.7.2). Tracing these physical drivers using just the time-varying mean

or variance is often possible, but central moment estimates mix several signals and hinder

the interpretation of physical mechanisms (Fig. 5.14).

• SVDs of surface wind PDFs connect scales of upper-level Rossby wave breaking (SAM,

O(106 m)) with surface winds on the O(104 m) scales resolved through scatterometer

retrievals. This means that scatterometer observations over the SO can be directly related to

the large-scale flow of the atmospheric interior (as shown for a two-layer model in George

et al., 2019). In addition to validating cyclone intensities in general circulation models

and reanalysis, scatterometer winds provide an independent constraint on the atmospheric

angular momentum balance on short timescales.

• SVDs of the surface stress PDFs often show a higher signal-to-noise ratio (S/N) then

surface winds because they have a steeper decay in the eigenvalues (for example, Fig. 5.10).

Given that the leading modes of wind and stress capture the same underlying process, the

S/N ratio in the commonly analyzed surface winds is likely weaker than in surface stress

because of their square relationship (5.1.1). Since scatterometers observe surface capillary

waves, which are more closely related to surface stress than to surface winds, we would

expect that capillary wave roughness has an even higher S/N than found in this analysis.

The initial S/N from capillary wave roughness is reduced when converting to 10-meter

winds, and only partly recovered again when 10-meter winds are converted to stress, due to

assumptions about the lower 10 meters of the atmosphere, surface waves, and temporal or

spatial averaging.

We demonstrated that retaining the full PDFs of variables, rather than reducing them to

the moments of the PDF, can be a useful tool to understand the physical processes likely to govern

wind variability. This approach is especially relevant when observing variables near the surface

161



because they are often the result of non-linear processes that create non-Gaussian distributions.

Any kind of spatial or temporal averaging will tend to reduce the number of fluctuations in the

PDF tails. Because averaging involves summing multiple independent values, through the central

limit theorem, it leads to more Gaussian-like distributions. Even the hourly, 0.25◦ wind and

stress data used here are an approximation to the PDF that would arise from instantaneous point

observations. The time and spatial scales that would be required for a sufficient PDF are related

to the scales at which momentum is transferred to the ocean. This scale is described by the

adjustment timescale of the equilibrium range of the surface wave spectrum (Phillips, 1985).
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Appendices

G Analysis of the larger SO

In order to test the robustness of the Drake Passage PDFs, the joint PDFs of surface wind

and stress are rederived for 25◦S to 65◦S to cover the larger SO. Figure A1 compares the EOFs

derived for the latitudes of Drake Passage (55◦S to 63◦S, black) with EOFs from the SO (red).

The figure also shows the EOF decomposition for CCMPv2 winds for the larger SO latitude range.
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The first PCs for the larger SO 5-day records explain less variance than do PCs for the

Drake Passage latitude band, but the leading order EOFs have the same shapes in both cases

(Fig. A1). A higher noise level and hence less explained variance leads to weaker EOF amplitudes

that are less well separated (Fig. A1d). The PCs of the leading modes derived for the SO correlate

well with the PCs of the leading modes derived for Drake Passage when the SVDs are performed

in one direction only (Fig. A2). The joint PDFs correlate less well, due to the different noise

levels and more subtropical wind regimes and/or coastal winds in the large SO case. The larger

SO includes additional processes and result in more Gaussian like primary modes (Fig. A2 right

panels).

H Effective sample size

The effective sample size is estimated by calculating the e-folding scales in longitude,

latitude and time from zonal and meridional winds in the latitudes of Drake Passage (55◦S to

63◦S). The ERA5 data are provided on an hourly 0.25◦-grid such that the autocorrelation function

d38< in the zonal and time directions can be robustly estimated using a fast Fourier transform. In

the meridional direction, we use lagged autocorrelation (Fig. B1a-c). After deriving d38< for D10

and E10 separately in all three dimensions, the effective number of degrees of freedom #eff is

calculated by correcting the number of grid points per 5-day period # = 5,356,800 with

#eff = # W(dD10) W(dE10) W(dC8<4), (H.1)

with

W(d38<) =
#

1+2 median[∑=−1
1

(
1− :

=
)
)
d38< (:), =]

, (H.2)

where : is the lag of the auto-correlation function (von Storch and Zwiers, 1999, Chapter 6). We

take the median of the PDF of all possible auto-correlation lengths = to have an estimate that is
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less dependent on the truncation of d38<.

The number of data points differs between the products because the spatial coverage and

time steps differ. To calculate #eff for CCMPv2, RSS A-SCAT, and METOP-A ASCAT, we

adjust # and dC8<4 (:). The auto-correlation dC8<4 is adjusted by a factor of 1/6 for the 6-hourly

CCMPv2 data and by a factor of 1/12 for the twice-daily RSS A-SCAT and METOP-A ASCAT

data. Fig. B1d shows the effective DOF for D10 and E10 as well as their spatial coverage as a

function of time for all four data products (ERA5 is assumed to provide 100% coverage. The D10

and E10 DOF have a fixed ratio of about 6.)

I Southern Annular Mode

The Southern Annular Mode (SAM) is derived from hourly zonal mean ERA5 zonal wind

data that are averaged to 5-day-means (, CDS). We closely follow Thompson and Woodworth

(2013) by first deriving the seasonal anomalies for each 5-day period between 1000 hPa and 50

hPa from 1979 to 2017 at each gridpoint. The seasonal anomalies are weighted by the square root

of the cosine of latitude and by mass, while the latter is estimated from the pressure levels prior to

performing the SVD (Thompson and Wallace, 2000). Figure C1 shows the results of the SVD of

the zonally averaged zonal wind. The leading-order mode of this decomposition is defined as the

Southern Annular Mode (SAM) in this study. SAM derived from geopotential heights rather from

zonal winds leads to a nearly identical mode of of variability, and for this study we chose to use

zonal wind, because of its direct relation to the zonal momentum equation.
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Figure 5.1: (a) Surface wind stress magnitude over the Southern Ocean on 19 July 2000. Data
from the Drake Passage range are in red shading. (b) Zonal surface winds (D10) for the same
date as in (a).
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Figure 5.2: (a) Zonal wind PDFs for the 1-hour time step shown in Figure 5.1b (dashed black
line), 5-days including this time step (thin black line with filled gray area), and the climatology
(thick black line, white shading). The background coloring corresponds to the color scale in
Figure 5.1b. (b) Same as (a) but for the meridional wind component. (c) The corresponding
joint wind PDFs for a 5-day timestep.
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Figure 5.3: (a) One year of time-varying zonal wind PDFs. Each pixel indicates the probability
of wind occurring in a 0.5 m s−1-wind interval within 5 days. The black dashed lines indicate
the PDF mean. The blue lines in the sub-panel show the higher moments of the PDF: variance
(m2s−2), skewness (unitless) and excess kurtosis (unitless). The variance is rescaled by a factor
of 0.02. (b) same as (a) but for zonal stress. In this case the variance (Pa2) is re-scaled by 10−5 .
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Figure 5.4: Squared correlations (explained variances) between leading PCs and the Southern
Annular Mode (SAM). Modes in the green boxes are used in sections 5.3 and 5.4, namely the
1st PCs of the D10 decomposition (D10 PC1), the joint wind decomposition (u PC1), the D10
decomposition (E10 PC1) and the 2nd PC of the joint wind decomposition (u PC2). Modes where
most of the variance is explained by D10 PC1 are marked with blue (upper half) and modes where
most of the variance is explained by E10 PC1 are in red (lower half). The explained variance
shared with SAM is shown in orange in the most right column. Only explained variances larger
than 0.5 are indicated.
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Figure 5.5: First three leading EOFs of zonal wind (a,c,e) and meridional wind (b,d,f) for
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variance explained by a decomposition of Gaussian noise (Preisendorfer N-test).
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Figure 5.6: Leading EOFs for (a) zonal wind and (b) stress. The climatology is indicated in
black, the median with dashed gray lines, and the 10 hPa line as green dashed line. (c) PCs of
the 1st mode of zonal wind (D10 PC1, blue) and the 1st mode of zonal stress (gG PC1, red). (d)
Same as (c) but for the 2nd mode (D10 PC2 and gG PC2).

170



Figure 5.7: (a) Power spectra of D10 PC1 (blue), D10 PC2 (dashed blue), gG PC1 (red), gG PC2
(dashed dark red), E10 PC1 (orange-red dashed), and SAM (green). (b) Coherence of D10 PC1
(blue) and gG PC1 (red) with SAM as defined in Appendix C. (c) Coherence phase of D10 PC1
and gG PC1 with SAM. Shadings in (b) and (c) indicate ±1 standard deviation of the estimated
coherence or phase respectively (Bendat and Piersol, 2010). Power spectra and co-spectra are
estimated using a Welch’s overlapping segment method with a segment length of 8 years (584
data points) with a Hanning window on the detrended data. The resulting lines are smoothed
with a Lanczos filter of 2×10−3 days−1 window length.
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Figure 5.8: First two EOFs of the joint PDFs of wind (c and d) and stress (f and g) and their
projections. (a and b) Meridional mean of the 1st (blue) and 2nd (blue dashed) joint wind EOFs.
(e) Zonal mean of the 1st and 2nd joint wind EOFs. (h) Zonal mean of the 1st (red) and 2nd (red
dashed) joint stress EOFs. (i and j) Meridional mean of the 1st and 2nd joint stress EOFs. The
orange and green dots in (c) and (f) indicate the maximum and minimum of the respective EOF.
The shading for stress modes is adjusted following a (·)1/4-scale.
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Figure 5.9: Schematic of SH surface winds in the moving frame of an extra-tropical cyclone.
Strong westerly winds behind the cold front and along-front winds ahead of the cold front (in
red) are enhanced during positive SAM phase. Southeasterly winds not associated with the cold
front (in blue) are enhanced during negative SAM. Light gray lines show idealized sea level
pressure lines, and the orange arrow indicates the average travel direction of the cyclone.
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Figure 5.10: Explained variances for the joint wind PDF in (blue) and the joint stress PDF in
(red) on a log scale. The orange and light blue lines show the 95% levels for the joint stress and
wind estimated from the Preisendorfer and Mobley (1988) N-test after 1000 repetitions.

173



10 2

10 1

100

101

102

103

-30 -20 -10 0 10 20 30 40
Zonal Wind (m/s)

10 7

10 6

10 5

10 4

10 3

10 2

De
ns

ity

a) Zonal Wind Distributions

ERA5
METOP-A ASCAT
CCMPv2
RSS ASCAT 10 2

10 1

100

101

102

103

Ar
ea

 (1
03

km
2 )

-30 -20 -10 0 10 20 30
Meridional Wind (m/s)

10 7

10 6

10 5

10 4

10 3

10 2

b) Meridional Wind Distributions

-30 -20 -10 0 10 20 30 40

10 1

100

101

102

103

104

De
ns

ity
 R

at
io

 (1
.e

+0
)

c) Distribution Ratios
METOP-A ASCAT / ERA5
CCMP / ERA5
RSS ASCAT / ERA5
ERA5 / ERA5

-30 -20 -10 0 10 20 30

10 1

100

101

102

103

104

d) Distribution Ratios
METOP-A ASCAT / ERA5
CCMP / ERA5
RSS ASCAT / ERA5

150

100

50

0

50

100

150

-30 -20 -10 0 10 20 30 40
Zonal Wind (m/s)

-80

-40

0

40

80

De
ns

ity
 A

no
m

al
y 

(1
.e

-4
)

e) Distribution Anomalies
METOP-A ASCAT - ERA5
CCMP - ERA5
RSS ASCAT - ERA5

150

100

50

0

50

100

150

Ar
ea

 A
no

m
al

y 
(1

03
km

2 )

-30 -20 -10 0 10 20 30
Meridional Wind (m/s)

-80

-40

0

40

80

f) Distribution Anomalies

Figure 5.11: PDFs of (a) zonal and (b) meridional wind between 55◦S and 63◦S derived from
ERA5 reanalysis (black), observationally constrained CCMPv2 winds (blue), METOP-A ASCAT
(green), and RSS ASCAT scatterometer winds (orange) with log scaling. The scaling on the
right ordinate is the area equivalent for a given probability density in 103 km2. (c) and (d), same
as (a) and (b) but shown as ratio compared to the ERA5 PDF. (e) and (f) same as (a) and (b) but
shown as difference to the ERA5 PDF for zonal and meridional wind respectively.
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Figure 5.12: Zonal wind (a) and meridional wind (b) statistics as box-and-whisker plot for
ERA5 (gray), CCMPv2 (blue), METOP-A ASCAT (orange), and RSS ASCAT (green). The
boxes indicate the limits of the 1st and 3rd quartile surrounding the medians (horizontal black
lines), and the whiskers indicate the 1% and 99% quantiles. The colored dots are the mean
centered between the range of ± 1 standard deviation (dashed lines between triangles).
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shown on a log scale. Data between ±21 m s−1 are masked out to emphasize the variability in
the tails.
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Figure 5.15: (a to f) Leading three EOFs of zonal surface wind and stress derived from data in
the latitude range of Drake Passage (55◦S and 63◦S) using ERA5 (black) and for the SO (25◦S
and 65◦S, red for ERA5 and blue for CCMPv2). (g,h) Explained variances for surface wind and
stress with the significance levels derived as in Figure 5.5.
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Figure 5.17: Auto-correlations and time-scales for zonal (red dashed dotted) and meridional
wind (light blue) in (a) zonal and (b) meridional direction, as well as (c) time. (d) Effective
degrees of freedom (DOF) and coverage for ERA5 (black), CCMPv2 (blue), ASCAT (red) and
METOP-A ASCAT (orange).
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Figure 5.18: Southern Annular Mode decomposition. (a) 1st EOF of the zonal mean zonal
wind between 20◦S to 90◦S in the troposphere. (b) Example of the corresponding 1st PC, (c)
explained variance for each mode.
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