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Abstract

Against Bayesianism and Corrections to Bayesianism

by

Shivaram Rao Lingamneni

Doctor of Philosophy in Logic and the Methodology of Science

University of California, Berkeley

Professor Wesley H. Holliday, Co-chair

Professor Lara Buchak, Co-chair

Subjective Bayesianism and Humean decision theory are dominant as both prescriptive and
descriptive accounts of reasoning and rational decision-making. A subsequent genre of work
within these paradigms acknowledges that the basic theories suffer from certain limitations
or unexplained paradoxes, then seeks to modify them so as to remedy the defect. I develop
arguments both against the original, “pure” paradigms and against certain attempts to
correct them, making a case for a pluralist account of knowledge and decision-making.
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Chapter 1

Introduction

Some years ago I was trying to decide whether or not to move to Harvard from
Stanford. I had bored my friends silly with endless discussion. Finally, one
of them said, “You’re one of our leading decision theorists. Maybe you should
make a list of the costs and benefits and try to roughly calculate your expected
utility.” Without thinking, I blurted out, “Come on, Sandy, this is serious.” —
Persi Diaconis [2003]

Two interrelated paradigms — subjective Bayesianism and Humean decision theory —
have had notable success as both prescriptive and descriptive accounts of reasoning and
rational decision-making. Subjective Bayesianism, as pioneered by Bruno de Finetti and
Frank Ramsey in the early 20th century, says that partial beliefs can be represented by
subjective probabilities, or credences : real numbers between 0 and 1 that measure an agent’s
subjective degree of belief in a proposition. Subjective expected utility theory, as developed
by John von Neumann, Oskar Morgenstern, and L. J. Savage in the post-war period, extends
this to decision-making by positing utilities : real numbers measuring the desirability of
an outcome to an agent, such that rational decision-making can be characterized as the
maximization of the expected value of utility, relative to the probability distribution given
by the agent’s credences. In both cases, the primary normative constraint on agents is
internal consistency: credences must obey the axioms of probability, and the construction
that produces the utility function assumes that the agent’s decisions conform to certain
axioms of consistency (such as transitivity of preferences).

A subsequent genre of philosophical work within these paradigms acknowledges that the
basic theories suffer from certain limitations or unexplained paradoxes, then seeks to modify
them so as to remedy the defect. In some cases, these revisions appear to generalize the
original framework; an example is Hájek’s suggestion that the proper primitive notion for
subjective Bayesianism is not probability simpliciter, but conditional probability. In other
cases, the theory has the form of a “second-order” correction to the original theory, such as
the Principal Principle, which modifies subjective Bayesianism by asserting a norm of cor-
respondence to a feature of objective reality (physical chance) under certain circumstances.
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Some of the motivating cases for these revisions are persuasive to me and some are not.
But the data that really interest me are not atypical paradoxes, but rather the ways in which
the theories fail to describe our ordinary reality — the everyday activities of reasoning and
decision-making. If decision theory does, in fact, provide a comprehensive account of rational
decision-making, what explains the difficulties in applying it to a job search? If Bayesian
confirmation theory accurately describes the convergence of agents to a shared conception
of the truth — if it is really a matter of eliciting priors and then bringing a shared stream
of evidence to bear on them — what explains continued resistance to scientific consensus on
questions of incredible importance?

The purpose of this work is to argue both against the original, “pure” paradigms and
against certain attempts to correct them. There is no single underlying ground for these
critiques. In some cases, I will defend the original paradigm against the proposed correction.
In others, I will argue that it is nomologically impossible for agents in our universe to
achieve the paradigmatic ideal of rationality — due to constraints posed by mathematical
and physical limits — then argue that relaxing the paradigm to allow for bounded rationality
sacrifices the advantages that made the original thesis so philosophically compelling. In a
final group of cases, I will argue that the paradigmatic ideal of rationality lacks normative
force even for idealized, unconstrained agents. The case being developed is for a wide net:
an eclectic pluralism about the representation of knowledge and about rational decision-
making, one that embraces both Bayesian and non-Bayesian foundational approaches rather
than trying to corral everything into a single framework. While the bulk of the argument is
negative, I will develop a positive proposal: a pluralist account of probability that seeks to
integrate both the frequentist and Bayesian interpretations.

I am also including some work on the philosophy of set theory. This work is thematically
connected only inasmuch as I perceive Cantorian set theory as setting a benchmark for
formal methods in philosophy in general: in its comprehensive illumination of the practice
of mathematics, it shows us a level to which other formal projects can aspire.
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Chapter 2

Against Binding

Abstract

Binding is advocated as a correction to standard Humean decision theory for three reasons:
to allow an agent to behave consistently across anticipated shifts in preferences, to resolve
paradoxes in infinite decision problems, and to resolve Newcomblike paradoxes. I argue that
binding should not be seen as a single, unifying solution to these problems. With regard to
the first issue, I claim that once we have properly distinguished shifts in preferences from
akrasia, the effect of binding is inherently to resolve conflicts in values, and to privilege one
set of values over another; thus, the binding agent cannot claim to be Humean. With regard
to infinite decision problems, I argue that there is an essential and unavoidable breakdown
of decision-theoretic concepts and methods in the infinite setting, and that we should not be
too concerned about this because of the nomological impossibility of the problems. Finally,
I argue that binding (specifically, causal decision theory augmented with binding) provides
the correct answer in all Newcomblike problems, but that this is an essentially different sense
of the term.

2.1 Introduction

A Humean decision theory is one in which consistency is the only norm on preferences. The
modern paradigm is probably the expected utility theory of Savage [1972]. Savage gives a
formal setting that models decision-making under uncertainty and states some intuitively
acceptable axioms that should normatively govern such decision-making. He then proves a
representation theorem stating that for any agent conforming to the axioms, we can construct
a probability distribution and utility function such that their actions maximize expected
utility over the distribution. Under a Humean interpretation of the Savage axioms, these
two free parameters — the subjective probability distribution and the utility function —
cover exactly the space of possibilities for normative rationality, at least within the domain
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of applicability of the axioms. All Kolmogorov-consistent probability distributions and all
utility functions are equally rational.

There are several settings for decision-making under uncertainty that seem to fall outside
the domain of applicability of the Savage axioms. For one, the Savage axioms define a
synchronic notion of rationality, and do not naturally address questions about how an agent
should behave in the face of preference changes across time. They also explicitly exclude
the possibility of modeling certain kinds of infinite decision problems. Finally, they cannot
model “Newcomblike” problems in which the state of the world, concerning which the agent
is uncertain, cannot be separated from the agent’s actions.

A concept called binding has been advanced as a conceptually unified correction to de-
cision theory that covers all of these cases. Loosely speaking, binding is the ability of an
agent to commit in advance to a course of action, then carry it out even if it is no longer
preferred or recommended in the way it was originally. My claim is that binding should
not be viewed as a single concept that unproblematically extends Humean decision theory
into all of these domains. In the diachronic preference change setting, I argue that binding
is inherently non-Humean, and furthermore that it is the wrong analysis of its motivating
cases. In the infinite setting, I argue that its role is to cover up a far-reaching breakdown
of decision-theoretic concepts, one that we should not be concerned about because there is
a deep contradiction between the cases and the nature of our physical universe. Finally, in
the Newcomblike setting, I think binding (specifically, causal decision theory with binding)
is in fact the correct response to all Newcomblike cases — but I think the sense of binding
relevant there is essentially different from the ones invoked elsewhere.

2.2 Binding and diachronic preference change

The problem

The following scenario (“Diet”) is adapted from McClennen [1997]:

It is 6 AM and Joe wishes to begin a new diet, one that must be followed strictly
(i.e., there are no health benefits from partial adherence to the diet). He has two
choices: he can purchase a day’s worth of perishable diet food and eat half of it
for breakfast, or he can eat a free meal of non-diet food. Because he wishes to
diet, Joe prefers the first option. But Joe also knows that if he diets now, then at
noon, he will face the choice between eating his remaining diet food and eating
a free non-diet meal, and his food cravings will cause him to prefer the second of
these options.

This scenario is sufficient to distinguish the three main alternatives with respect to di-
achronic preference change. The naive or myopic choice is for Joe to purchase the diet food
at 6 AM and eat it, then break his diet at noon, at which point he has neither his money
nor the health benefits from dieting. How can he avoid this outcome? The resolute choice
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is for him to buy the diet food and commit in advance to eating it at both 6 AM and noon
— this binding decision allows him to obtain the health benefits at the cost of the money.
But the sophisticated choice is for him to reason that he will inevitably defect from the diet
plan at noon, and therefore that he should eat the free meal at 6 AM as well; this lets him
keep the money, at the cost of the health benefits.

In passing, I should note that my decision to treat “binding” and “resolute choice” as
synonyms departs somewhat from the literature on preference shifts. In particular, Buchak
[2013] uses “resolute choice” in the sense just described, but reserves “binding” to mean
changing the decision problem by actually removing the future choice (in “Diet”, this might
mean Joe leaving his meal pass at home in the morning). However, it seems to me that the
distinction can be neglected in the case of ideally rational agents, by the following argument:
if a resolute choice is indeed the ideally rational action, then an ideally rational agent will
make it and follow through on it, and there will be no need for her to actually deny herself
the possibility of taking the less-preferred option. Therefore, for such an agent, “resolute
choice” in this sense subsumes or displaces “binding”. The distinction, then, is only relevant
in more psychologically realistic settings where the agent might be unable to follow through
on a resolute choice. Since my discussion will neglect psychological considerations of this
sort, I will also neglect the distinction (but I will return to the question of coercing one’s
future selves in section 2.2).

Now, it is important to distinguish the intended Humean framing of this situation from
akrasia, or the phenomenon of an agent acting against his better judgment.1 To see that this
isn’t akrasia, it suffices to notice that akrasia paradigmatically exists in the synchronic case
— at any given moment, Joe might prefer to diet, but find himself weak-willed and unable
to resist a non-diet meal. But if we take the Humean premise of this scenario seriously, what
is happening is necessarily diachronic. At 6 AM, Joe has a valid preference to diet, but at
noon, his preferences have changed and he has an equally valid preference to deviate from
the diet.

Does binding help?

At first glance, the intuition is clear that resolute and sophisticated choice are helpful to an
agent. After all, they provide the agent with additional decision-making tools — surely that
can’t be a bad thing! But this doesn’t survive scrutiny, for just as we can construct cases
where resolute choice is intuitively helpful, we can also construct cases where it is intuitively
harmful. Call this scenario “Remarriage”:2

Sam is unable to accept his mother’s remarriage. Therefore, Sam prefers not to
have any contact with her. However, Sam knows that it will soon be the holiday
season, which will provoke intense emotions in him, which will cause him to prefer

1I am grateful to Peter Epstein for this insight.
2This scenario is similar to the “Military School” scenario in Gauthier [1997].
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contacting her, reconciling with her, and accepting her decision. Sam therefore
makes a resolute choice not to contact his mother.

Intuitively, Sam is harmed by his ability to choose resolutely. And as for a scenario where
sophisticated choice intuitively harms the agent, we have this already in “Diet” itself, where
it causes Joe to abandon his diet before it even begins.

There is a simple analysis of the intuitions here. In both scenarios, we intuit that of
the two conflicting preferences exhibited by the agent, one is superior in the sense that it
better reflects the agent’s true interests or values. Resolute choice causes the agent to act
according to the initial preferences, and sophisticated choice causes him to act according
to the subsequent preferences. So if the initial preferences are inferior, resolute choice is
harmful, and vice versa. Now we have an apparent symmetry: resolute and sophisticated
choice can both help and harm. So what justifies them?

McClennen is aware of this difficulty and confronts it directly. For him, the justifications
for resolute and sophisticated choice are not rooted in their claims to help. Rather, they
are justified because they dominate myopic choice. If we look back to “Diet”, the resolute
chooser has his health and the sophisticated chooser has his money, but the myopic chooser
has neither — his diachronic inconsistency gets him the worst of both worlds. So without
taking a stance on whether Joe’s initial or subsequent preferences are superior, we still have
grounds to say that myopic choice is irrational.

Nevertheless, I think this justification of binding also fails. The problem is that this
analysis does not properly distinguish binding, as a means of avoiding myopic choice, from
the sunk cost fallacy. Again, if we take the Humean premise of “Diet” seriously, Joe’s
preference to stop dieting at noon is an all-things-considered preference — Joe has already
accounted for his past desire to diet, his ability to continue dieting at no additional expense,
and all similar considerations, and nonetheless prefers to eat the non-diet meal. It seems to
me that if Joe continues to diet despite this, he is behaving in a manner indistinguishable
from standard examples of the sunk cost fallacy, for example “Movie”:

Dave values both money and time. A new two-hour movie has been released, and
he believes he will enjoy it sufficiently to justify spending two hours to watch it
and $10 for a ticket. After one hour, Dave realizes that the movie is very bad
and will not get any better, so he has a higher expected utility from walking
out of the movie and saving the remaining hour than from finishing the movie.
Nevertheless, Dave stays until the end of the show, reasoning that otherwise he
will have wasted his investment of $10 and an hour of time.

We understand Dave’s concern for his unrecoverable sunk costs as irrational. But if
the underlying motivation for Joe’s decision to keep dieting is merely to avoid diachronic
inconsistency (instantiated by the cost he has already paid for the diet food), Joe seems to
be committing the same fallacy. The difference between Joe and Dave is that Joe actually
anticipates that he will defect from his initial plan. But when noon comes around and Joe
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actually experiences his all-things considered preference to defect, why should the existence
of this past prediction make a difference?3 I claim that the only Humean-rational action
for him is to defect, and if he does not defect, it represents a non-Humean rejection of his
present preferences in favor of his past ones.4

This gets at an asymmetry between resolute and sophisticated choice: unlike its dual
notion, sophisticated choice can still be understood as Humean. As a sophisticated chooser,
Joe can say, “My preference is to diet. But I see now that since my future self will inevitably
defect from the diet, it is therefore impossible for me to realize my preference. So I’ll abandon
the diet and save my money.” Nothing about this is non-Humean — even if it seems perverse
for Joe to reason via backwards induction against his future self, Joe is not actually denying
the validity of any preferences.

I do not think this is a reason to endorse sophisticated choice over resolute choice —
it would be absurd to recommend that one should always defer to one’s anticipated future
preferences. Rather, I think that the Humean framing of the problem is wrong. The correct
analysis of “Diet” is that Joe’s initial preference is good and his subsequent “preference” is
akratic (vice versa in “Remarriage”).

Natural notions of compromise?

Is there a natural way to perform preference reconciliation? One possibility is to choose the
preferences that one will hold for longer amounts of time, i.e., the preferences acceptable to
as many of one’s future time-slices as possible. This accords with our intuitions in “Diet”
and “Remarriage” — more of Joe’s future selves will be happy if he completes the diet, and
more of Sam’s future selves will be happy if he reconciles with his mother. But I think this
idea runs into trouble quickly. Call this scenario “Lotus”:

Odysseus prefers to return home to Ithaka. But he is presently near an island, on
which grows the lotus. Anyone who eats the lotus immediately ceases to prefer
anything other than eating more lotus, a preference which is guaranteed to be
perfectly satisfied since the supply of lotus is unlimited. In contrast, Odysseus
knows that if he returns to Ithaka, preference satisfaction among his future selves
will not be nearly so complete — he will inevitably have to deal with marital
disputes, bad weather, and all the other shortcomings of quotidian life. Therefore
Odysseus considers himself rationally obligated to stop his journey and eat the
lotus.

As Buchak (forthcoming) observes, there is a duality between personal utility theories and
utilitarianisms — one’s probability-weighted future selves are like differently sized segments

3It is plausible that Joe might have inherent disutility from exhibiting diachronic inconsistency — for
example, it may cause him social embarrassment — but if he does, it should be included explicitly as a
penalty in the problem statement.

4In McClennen’s terminology, I am claiming that Humean rationality implies endorsing the principle of
separability. Buchak [2013] calls the principle “Only Future.”
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of a population, and maximizing personal expected utility is like maximizing utility across
the population. Viewed in this light, Odysseus’s lotus-eating future self is a “utility monster”
in the sense of Nozick [1974], an entity that tyrannizes its fellows in any compromise by virtue
of its superior ability to experience preference satisfaction.

A similar problem attaches to the suggestion in Gauthier [1997] that there are situations
where some additional structure on the preferences tells us which to follow. Specifically,
Gauthier distinguishes between “proximate” preferences (loosely speaking, near-term prefer-
ences experienced when confronted with a decision) and “vanishing-point” preferences (again
loosely, long-term preferences held by the majority of one’s future selves), and suggests that
resolute choice is a way for us to act on our vanishing-point preferences when they conflict
with proximate preferences. I think that there are many cases in which an agent’s vanishing-
point preferences are superior to their proximate preferences, but I don’t think this is a
generally valid prescription for preference reconciliation (nor, I think, is Gauthier claiming
this), and again I don’t think resolute choice is the right way to model the phenomenon.
Rather, such an agent should reason that their proximate preferences are akratic because
their vanishing-point preferences reflect their true underlying values.

What is the right analysis of “Lotus”? Odysseus doesn’t see the preferences of his lotus-
eating self as equally valid with his current preferences. But there is a disanalogy with the
previous cases because the lotus eater does not necessarily seem akratic. Rather, Odysseus
seems to have an underlying system of values that deems the preferences of his current self
praiseworthy and the preferences of the lotus-eaters blameworthy. The diagnosis of akrasia
does not exhaust the possibilities for non-Humean preference reconciliation; we see from
this that there are also resolutions that refer to ethics. This is related to the argument
of Paul [2015] that when making decisions that will result in personal transformations of
sufficient magnitude (in particular, whether to have a child), we cannot simply adjudicate
among the possibilities by reflecting on our phenomenal preferences (i.e., by thinking about
what the results of our decisions would “feel like”), because phenomenal experiences are
incomparable across the transformation. In such cases, ethics may be the only way to
reconcile the preferences.

Preference shifts on neutral ground

But what if neither akrasia judgments nor ethics intervene to reconcile the preferences? In
the absence of any considerations that might transcend preference satisfaction, I think the
non-Humean can acknowledge that preference satisfaction is itself a good, and that a choice
can be the best one merely in virtue of offering more satisfaction to more of the agent’s
time-slices. Consider “Lilliput”:

Skyresh is an ambitious young citizen of Lilliput, about to enter university, after
which he intends to pursue a career in public service. In the highly partisan
society of Lilliput, official preferment may be obtained either through allegiance
to the Big-Endian Party or the Little-Endian Party; the two parties are indis-
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tinguishable, except for their views on the end at which to break a soft-boiled
egg. Right now, Skyresh strongly prefers the Big-Endian Party. However, he is
aware that his university is dominated by Little-Endians, and he predicts that
under the influence of their ideas, by graduation he will prefer them instead.
Skyresh is now faced with the option of irrevocably declaring his allegiance by
praising the Big-Endians in an editorial for his local paper (which will live on
indefinitely in Internet search results, dooming any chance of finding favor with
the Little-Endians).

Skyresh has the ability to bind himself to Little-Endianism. Should he use it? I think
it’s clear that he shouldn’t. Inasmuch as the decision for one party over the other plausibly
impacts only the preference satisfaction of his future self, without any ethical or normative
implications, it seems like his present self has no business intervening and imposing a prefer-
ence. Perhaps this constitutes a very qualified endorsement, ceteris paribus, of sophisticated
choice.

Time-slice rationality and the Sure-Thing Principle

The conclusion I drew from “Movie” — that consistency, in itself, is not a reason to suppress
a current preference that conflicts with a past one — amounts to an endorsement, at least
within the domain of preference shifts, of time-slice rationality,5 which rejects the idea of
inherently diachronic norms of rationality. At first blush, the time-slice view may seem like
an alarming concession in that it denies the force of diachronic inconsistency arguments
(such as the Dutch Book-type arguments against violations of conditionalization). But this
doesn’t imply wholesale bullet-biting with respect to all such arguments; rather, the claim
is that if there is a failure of rationality, it must in fact be synchronic. Joe’s defection from
his diet can indeed be judged irrational, but its irrationality is exactly synchronic akrasia,
the same phenomenon that might synchronically prevent him from acting on his preference
to diet.

However, this conclusion is prima facie in tension with my view on a related topic, namely,
the rationality of ambiguity aversion and the Ellsberg preferences. This is the classic case of
Ellsberg [1961]:

An urn contains 90 balls. 30 are red, and the remaining 60 are black or yellow in
some unknown proportions. You are offered a choice between two bets, I and J:
bet I pays $100 if you draw a red ball, and bet J pays $100 if you draw a black
ball. You are then offered a second choice between two bets (on a separate i.i.d.
draw from the same urn), X and Y: bet X pays $100 if you draw a red or yellow
ball, and bet Y pays $100 if you draw a black or yellow ball.

5See, among others, Hedden [2013] and Moss [2015].
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As Ellsberg observed, it is inconsistent with the axioms of expected utility maximization
to strictly prefer I to J, but also strictly prefer Y to X, i.e., to prefer the bets with known
objective probabilities. To see this, observe that without loss of generality, the agent values
$100 at 100 utiles. Then, fix any credences in P (B) and P (Y ) satisfying P (B) + P (Y ) = 2

3
.

Then E[I] < E[J ] implies P (R) · 100 < P (B) · 100 and P (R) < P (B). This in turn implies
that E[X] = P (R) · 100 + P (Y ) · 100 < P (B) · 100 + P (Y ) · 100 = E[Y ].

Given Savage’s representation theorem, any failure to maximize expected utility can be
redescribed as a violation of one of Savage’s axioms of rationality. And in this case, the
axiom violated is the “Sure-Thing Principle”, which states that when two gambles share a
“subgamble”, one’s preference between those gambles must be determined by one’s preference
between the remaining non-shared components of the gambles. In this case, X and Y share
a payoff of $100 on yellow; when this is removed, the remaining components of the gamble
are exactly I and J respectively. Therefore, one who accepts the Sure-Thing Principle and
prefers I to J must also prefer X to Y.

The Ellsberg preferences have inspired a rich literature on how to “rationalize” them,
i.e., propose a more lenient notion of rationality that is compatible with them. But Al-
Najjar and Weinstein [2009] oppose this program and argue that the preferences are in fact
irrational, because the violation of the Sure-Thing Principle gives rise to diachronic Dutch
Books. The general form of their Dutch Book cases6 is as follows: Initially, the agent chooses
between bets X and Y (so an agent with the Ellsberg preferences will choose Y). Then, the
ball is drawn and it is announced whether it is yellow. If it is, the agent receives the $100
payoff and the game is over, but if not, the remaining subgambles (now that yellow has
been excluded) ostensibly coincide with I and J. The agent is then offered the opportunity
to switch subgambles; the Ellsberg agent, who is now committed to J, will allegedly seek to
switch to I.

This appears to be a diachronic preference shift analogous to the one in “Diet”. And
therefore, the scenario admits of similar perturbations: one may add penalties at different
stages of the problem such that the agent’s choices are strictly dominated by another set of
choices, or otherwise appear unattractive. In the Humean framework of Al-Najjar and Wein-
stein, the relevant criterion is one of “regret” or “embarrassment”; when confronted with the
suboptimality of their diachronic choices, the agent should be moved through introspection
to reconsider their synchronic preferences as well.

The clearest example is “naive choice”, which corresponds to the following variant of
the scenario: the agent is required to pay an initial penalty of ϵ to choose Y over X, then
allowed to switch from J to I with no penalty in the case where the ball is not yellow. The
agent consequently receives $100 - ϵ on yellow and $100 - ϵ on red; these choices are strictly
dominated by an initial decision to choose X without switching, which pays $100 on yellow
and $100 on red. I concur with the authors that this represents a failure of rationality. The

6For reasons that are unclear to me, the authors permute the colors of the original Ellsberg case — in
their paper, it is the black balls instead of the red that have fixed proportion 30

90 . My discussion will translate
their scenarios back into the original Ellsberg colors.
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authors then consider “sophisticated choice” as an alternative, in which the agent chooses X
over Y initially and then refuses to switch; they concede that this strategy avoids choosing
any strictly dominated options, but argue that it leads to new paradoxes. Even though I am
skeptical of the specific arguments they make, I also find sophisticated choice unattractive
as a response.

Here is where non-Humeanism can be put to work: the non-Humean should not be
concerned with avoiding embarrassment per se, but should rather seek the right answer to
the case — which one may then hope will not be too embarrassing. (Heuristically, one might
say that embarrassment will typically constitute defeasible evidence that an answer is wrong
— but if the right answer turns out to be embarrassing, so be it!) And it seems to me, for
reasons I will elaborate elsewhere but which are rooted in frequentism, that the right answer
in this case is to choose Y initially and then refuse to switch. Now, this appears to involve
an act of resolute choice or binding, and therefore to clash with the arguments I have just
given against binding as a response to preference shifts. In fact, Al-Najjar and Weinstein
[2009] give a different perturbation of the scenario in which this answer appears to entail the
commission of the sunk cost fallacy.

What are the intuitions behind picking Y and sticking with it? First, the agent with
Ellsberg preferences prefers to receive payoffs in the event of black-or-yellow, since this is
the event with known objective probability; if he can be manipulated into receiving a payoff
on red-or-yellow instead, then it is likely that something has gone wrong. But furthermore,
any agent in this situation (Ellsberg preferences or no) knows that if yellow balls are scarce,
then black balls must be plentiful. And if yellow balls are scarce, the agent who switches
is that much more likely to hear the announcement that the drawn ball is not yellow and
therefore to cheat himself out of benefiting from the plenitude of the black balls. (In the
worst-case scenario, there are 0 yellow balls and 60 black balls, and the switching strategy
wins with probability only 1

3
.) This suggests that the announcement that the ball was not

yellow may potentially constitute evidence that it is black rather than red — although the
precise nature and value of the evidence need to be clarified.

However, this is already enough to see that the subgamble structure alleged by Al-Najjar
and Weinstein [2009] is invalid — and that this problematizes their arguments against the
rationality of the synchronic Ellsberg preferences. The agent who has initially chosen X or Y
and then has been told that a single draw from the urn produced a non-yellow ball is not, in
fact, in the same epistemic position as an agent faced with the choice between I and J. This
is so even for a Savage-normative, fully Bayesian agent. Consider in particular the agent
who begins with the uniform prior over proportions of black and yellow balls, i.e., assigns
probability 1

61
to each hypothesis Hi that the number of yellow balls is i, for 0 ≤ i ≤ 60.

This agent initially has credences P (R) = P (B) = P (Y ) = 1
3
and is therefore indifferent

beween X and Y. But upon hearing that a non-yellow ball was drawn, she will update her
credence in P (Hi) to:

P (Hi | E) =
P (E | Hi)P (Hi)

P (E)
=

P (E | Hi)P (Hi)∑60
j=1 P (Hj)P (E | Hj)

=
90−i
90

· 1
61

2
3

(2.1)
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This shifts probability mass away from Hi where i is high, and towards Hi where i is
low — the announcement that the ball is not yellow is informative not merely about the
ball, but about the composition of the urn. Now, our Bayesian agent will also update her
credences in R and B by simple conditionalization — P ′(R) = P (R | ¬Y ) = 1

2
= P (B |

¬Y ) = P ′(B) — and will therefore remain indifferent between I and J, experiencing no
shift in preferences concerning bets on the currently drawn ball. (In contrast, her beliefs
about the next ball drawn with replacement from the same urn are P ′(R) = 1

3
, P ′(B) ≈

.39, P ′(Y ) ≈ .27.) But it is certainly conceivable that a non-Bayesian agent could update
his beliefs not merely about the urn, but about the currently drawn ball, in a way such that
black is more “likely” than it was before the announcement. Indeed, to assert that this is
irrational (by insisting that the agent’s preferences after the announcement must coincide
with their preference between I and J in the synchronic Ellsberg case) seems to presuppose
that Bayesian conditionalization is normative for belief update, and therefore to beg the
question against non-Bayesian epistemologies.

I have argued that strictly speaking, one’s preference between I and J does not commit
one to a preference at the second time-step in the diachronic Ellsberg cases. But nonetheless,
my view does in fact entail something like a preference reversal, so it behooves me to examine
in detail the diachronic case Al-Najjar and Weinstein bring against it:

Consider an urn as in the original Ellsberg case. Initially, you are offered a bet
that pays $100 on a draw of yellow, in exchange for some fixed cost s. Once
you have made your decision, the ball is drawn and it is announced whether it is
yellow. If it is yellow, you receive $100 if you paid s and nothing otherwise. If it
is not yellow, you are offered a choice between a bet that pays $100 on red and
a bet that pays $100 on black, both at no cost.

Now by dominance, any agent should consider the initial bet worthwhile at s = 0 and
not worthwhile at s = 100; by continuity, the agent must have some indifference price
0 ≤ s̄ < 100 for the bet. Suppose an agent with the Ellsberg preferences is first offered the
bet for a price lower than s̄; the authors argue that this agent will buy the bet, then choose
the payoff on black if it fails (i.e., choose Y minus the penalty s). But if the bet is offered
instead for a price higher than s̄, the agent will refuse the bet, then choose the payoff on red
(i.e., choose I). Al-Najjar and Weinstein then claim that this is an instance of the sunk cost
fallacy: the agent’s preference between black and red appears to depend on whether he has
paid for the bet on yellow, but any such cost is sunk at the time of the choice.

Again, I think it is not a necessary consequence of the Ellsberg preferences that an
agent exhibit this behavior in the diachronic case. But I will affirm the rationality of agents
that exhibit this apparent sensitivity to sunk cost. In particular, consider the following
simplified model: Ezra, a frequentist, seeks to maximize long-run winnings by buying bets
with positive expected value in money according to known objective probabilities. In the
diachronic scenario, Ezra therefore values “red” at 1

3
· 100 and the package of “yellow or

black” at 2
3
· 100; his s̄ is the difference between those two values, 100

3
. Faced with an initial
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offer of s = 40, he rejects it and chooses red. But with an offer of s = 20, he accepts and
then chooses black if it fails.

Once yellow has failed to come up, why doesn’t Ezra want to switch to red? I will
sketch an explanation now (I hope to give a full account later as part of a general theory
of iterated betting games). Recall that Ezra is modeling this bet as one in a series, and
his success criterion depends on performance over the entire series. But at the same time,
Ezra must imagine that for every bet in the series, just like for this one, he will be in a
state of non-Bayesian uncertainty as to the proportions of black and yellow balls. That is
to say, he imagines that every draw in the series will be from a fresh urn, with an unknown
proportion of balls, For reasons related to the reference class problem, Ezra is imagining that
he cannot learn anything about the proportions across distinct draws in the series — so he
must use a memoryless strategy for betting. And the memoryless strategy that switches to
red every time wins, in the worst case (where the proportion of yellow balls is always 0

90
),

with probability only 1
3
, whereas the strategy that sticks with black wins with guaranteed

probability 2
3
.

There are two lessons here. First, note that if Ezra is told that a single previous draw
from the urn was not yellow, and then has to choose between black and red on a fresh draw
with replacement from the urn, he will still choose red — in contrast to his behavior in the
diachronic scenario, where he sticks with black. It follows that his preferences, specifically his
refusal to switch, necessarily commit him to time-worm as opposed to time-slice rationality.7

This is somewhat surprising but on closer inspection it is quite natural: long-run frequency
is inherently a diachronic notion, so achieving goals defined in terms of long-run frequency
requires a diachronic notion of rationality.

The other is that the concept of sunk cost, as it appears in the economics literature,
appears to be so broad as to presuppose time-slice rationality.8 In regard to cases like
“Movie”, I affirm that it is possible to commit the sunk cost fallacy. But although Ezra’s
preferences have a whiff of the paradoxical about them, they seem to stand up to reflective
scrutiny: if they are embarrassing, they are only embarrassing by association. It therefore
falls to advocates of time-worm rationality to formulate a new definition of the sunk cost
fallacy that distinguishes the two cases. My intuition is that what Dave is doing in “Movie”
(and Ezra is not doing in the diachronic Ellsberg case) is “throwing good money after bad”
— expending new resources in pursuit of an objective that no longer makes sense. But it is
beyond the scope of the present discussion to make this rigorous.

Similarly, I am unable to formulate a definitive response to the Allais paradox based
on these principles. My intuition is that the Allais preferences (which, like the Ellsberg

7I think it is a significant result of Al-Najjar and Weinstein that this behavior cannot be modeled with
typical time-slice models of unsharp credences, such as the maximin expected utility (MMEU) of Gärdenfors
and Sahlin [1982].

8My impression is that the economics literature does not spend much time trying to define the sunk cost
fallacy as a distinct notion, instead regarding it as an elementary consequence of other theories which also
presuppose time-slice rationality. As Thaler [1980] puts it: “Economic theory implies that only incremental
costs and benefits should affect decisions. Historical costs should be irrelevant.”
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preferences, involve a violation of the Sure-Thing Principle) are rational. But there is a
similar diachronic Dutch Book against the Allais preferences, and it is more persuasive to
me than the one against the Ellsberg preferences. I leave the matter here.

2.3 Infinite decision problems

Continuing the theme of binding as an correction to standard decision theory, Arntzenius
et al. [2004] propose binding as a solution not to diachronic preference change, but to dilem-
mas that arise in the context of so-called infinite decisions — for the purposes of their
discussion, decision problems where the scenario includes an at least countably infinite num-
ber of (possibly diachronic) choices. They give six such scenarios, then argue that all are in
principle isomorphic to a proposed ur-scenario called “Satan’s Apple”. Finally, they propose
binding as the common solution to all the scenarios. To the skeptic who would prefer to
exclude infinite decisions from consideration, they offer this challenge:

For we are loath to constrain the scope of decision theory with such seemingly
ad hoc bans. And we would be unsatisfied with a resolution of the puzzles that
did not reflect their common character.

Accordingly, my reply is two-pronged. First, I will dispute the commonality of the cases
— I will attempt to dismiss three of the six cases as fallacious in ways that are orthogonal to
the question of infinite decisions. But I accept their analysis of the other three as variants on
the same prototypical “Satan’s Apple” problem. I will then reject the normative implications
of this problem for decision theory, based on the idea of nomological possibility that Shieber
[2014] invokes in the context of the Chinese Room argument. In brief, there is a deep
contradiction between infinite decision problems and the nature of the physical world we live
in; since this is the world that Bayesian decision theory attempts to model, the refusal to
consider them cannot be considered an “ad hoc ban”.

Decision agglomeration and the converse Dutch Book theorem

The core issue at stake in the six scenarios is the “agglomeration” of individual decisions
into packages. It is therefore useful to review the converse Dutch Book theorem, which
provides some guarantees relating the favorability of a package of bets to the favorability of
the individual bets:

Theorem 1 (Linearity of expectation). Let X and Y be random variables, and a ∈ R. Then:

1. For any random variable X and constant a, E[aX] = aE[x].

2. For any random variables X, Y , E[X + Y ] = E[X] +E[Y ]. (Note that X and Y need
not be independent.)
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Corollary 1. Let X1 . . . Xn be any finite sequence of random variables, and let X =
∑n

i=1Xi.
Then E[X] =

∑n
i=1 E[Xi].

Corollary 2 (Converse Dutch Book Theorem). Assume an agent bets (unconditionally or
conditionally) according to the betting prices given by a consistent subjective probability dis-
tribution P . Then there is no finite package of bets this agent will accept that results in a
sure loss (i.e., the agent is not vulnerable to finite Dutch Books).

Proof. Let c(B) denote the cost of a bet and w(B) its payoff. For an agent to buy an
unconditional bet B on X, it is necessary and sufficient that c(B) ≤ P (X)w(B), equivalently
that E[B] ≥ 0. For a conditional bet B on X given Y , it is necessary and sufficient that
c(B) ≤ P (X | Y )w(B), which is equivalent to E[B | Y ] ≥ 0, and since E[B | ¬Y ] = 0 and
E[B] = P (Y )E[B | Y ] + P (¬Y )E[B | ¬Y ] this is again equivalent to E[B] ≥ 0.

Therefore, any bet the agent will buy has nonnegative expected value. Thus, by linearity,
any package consisting of positive real-valued quantities of finitely many of these bets must
also have nonnegative expected value. However, every outcome of a Dutch Book has negative
value, so the expected value of a Dutch Book is negative — therefore such a package cannot
be a Dutch Book. □

The problem is that this result is very nearly sharp. In particular, the package of bets
cannot in general be infinite:

Theorem 2. Expectation need not be countably additive, i.e., there exist random variables
X1, X2, X3 . . ., with X =

∑∞
i=1Xi, such that E[X] ̸=

∑∞
i=1 E[Xi]. (A sufficient condition for

equality to hold is
∑∞

i=1 E[|Xi|] < ∞.)

A particularly elegant counterexample is Vann McGee’s “airtight Dutch Book”, which
Arntzenius et al. [2004] reproduce as scenario #3 (“Trouble in St. Petersburg”). The
counterexample takes the form of an infinite package of bets on the outcome of a geometric
random variable X with p = 0.5, i.e., the number of times one has to toss a fair coin before
it lands heads. Bet B1 loses $1 if the coin never lands heads, and wins $3 if it lands heads
on the first toss. Then bet B2 loses $4 if the bet lands heads on the first toss, but wins $9
if it lands heads on the second toss; bet B3 loses $10 if it lands heads on the second toss,
but wins $21 if it lands heads on the third. The bets continue in this pattern such that if
the coin lands heads on the nth toss, bet Bn wins $x dollars but Bn+1 loses $(x+1) dollars.
Thus, although each bet has positive expected value, the package leads to a sure loss of $1.

Now, Arntzenius et al. observe that probability and expected value can be eliminated
from this scenario without changing its essence. Here is their proposed ur-scenario, called
“Satan’s apple”:

Satan has cut an apple into a countably infinite number of pieces, labeled p0, p1, p2 . . ..
If Eve takes infinitely many pieces, she will be expelled from the Garden; any
outcome in which she is expelled is worse than any outcome in which she is not.
However, for any piece pt, Eve (ceteris paribus) prefers having the piece to not
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having it. During a countably infinite sequence of time-steps, at time step t Satan
offers Eve the option of taking piece pt. At each such time-step, Eve reasons that
taking the piece does not imply that she will be expelled. Moreover, whether or
not she is ultimately expelled, she prefers to have the piece; therefore, taking pt
dominates not taking it. Eve consequently takes every piece and is expelled from
the Garden.

What are we to make of this? For Arntzenius et al., binding is an ability that agents
may or may not possess. If Eve is able to bind, then at the outset of the scenario, she
should bind to a course of action where she takes some finite number of pieces and then
stops. But if Eve is unable to bind, then (at least under some additional assumptions about
her decision-making process) the outcome of expulsion is inevitable, indeed an obligation of
rationality. On their view, infinite decision problems like “Satan’s apple” demonstrate the
usefulness of binding; conversely, if an agent is unable to bind, then the agent’s failure on
“Satan’s apple” is not a failure of rationality, but merely reflects their lack of capabilities.

I agree with the authors that “Satan’s apple” represents a paradigmatic breakdown of
decision agglomeration in the infinite setting — that is to say, it exemplifies a phenomenon
where an infinite number of optimal decisions form a suboptimal package. However, their case
for binding as a unifying framework for infinite decision problems rests on the identification
of several prima facie different scenarios as instances of “Satan’s apple”. Therefore, before
disputing the validity of “Satan’s apple” as a counterexample to finite decision theory without
binding, I will address some cases where I believe the identification with “Satan’s apple” to
be spurious.

The two-envelope paradox

The two-envelope paradox has many variants, but this is the basic form as given by Broome
[1995]:

Alice shows Bob two envelopes, one blue and one red. Each envelope contains a
check for a nonzero amount of money, and the amount on one of the checks is twice
the amount on the other, but Bob doesn’t know which check is where. Initially,
Alice gives Bob the blue envelope. She then offers him the opportunity to switch
to the red envelope. Bob is an expected value maximizer and reasons as follows:
let B be the amount of money in the blue envelope. Then, with probability
1
2
, the red envelope contains 1

2
B, and with probability 1

2
, it contains 2B, so the

expected value of the red envelope is 1
2
· 1
2
B+ 1

2
·2B = 5

4
B, which is strictly greater.

Accordingly, Bob switches envelopes. Alice then offers him the opportunity to
switch back, and he reasons similarly that if the amount in the red envelope is
R, the expected value of the red envelope is 1

2
· 1
2
R + 1

2
· 2R = 5

4
R, which again

is strictly greater. Following these rationales, Bob switches indefinitely between
the two envelopes.
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Now, Arntzenius et al. [2004] suggest that in at least one version of the problem, an agent
with the ability to bind should resolve the paradox by binding to stay with the blue envelope.
But as a solution to preference cycles, binding seems perverse — surely the problem must be
that at least one of the links in the cycle is fallacious! My view is that the various versions
of the paradox rest on subtle ambiguities in the formulation and abuses of the probabilistic
formalism; when the problem is sufficiently clarified and the reasoning is corrected, the
paradox always disappears.

The main issue with the original formulation is that Bob is reasoning about B and R as
though they were random variables, in particular taking their expectation, even though no
distribution has been specified for them. Let us begin by assuming that B and R are drawn
from some joint distribution D(B,R) satisfying the constraint “B > 0, and either B = 2R
or R = 2B”. For now, let’s also assume that the expectations E[B] and E[R] under this
distribution are finite. Now, if Bob’s credences about the values are captured by a particular
distribution D — either because they are his priors, or perhaps because they have been
announced to him as the terms of a lottery — then the paradox immediately disappears.
Bob should value each envelope according to its real-valued expectation, and should switch
to the envelope with the higher expectation.

Bob might wish instead to formulate a course of action valid for any possible distribution
D. A useful comparison is with the “largest number” puzzle of Cover [1987]: Alice picks
two distinct numbers l < h in R, then flips a fair coin and reveals l on tails and h on heads.
Bob must then guess whether the revealed number is l or h. Cover describes a probabilistic
strategy for Bob such that for any distribution D(l, h) that Alice draws the numbers from,
there exists ϵ > 0 such that Bob guesses correctly with probability 1

2
+ ϵ.9 Ideally, we would

be able to derive one of these three results: either (a) for any such distribution, E[B] < E[R]
(so Bob should switch), (b) for any such distribution, E[B] = E[R] (so Bob should stay), or
(c) for any such distribution, E[B] > E[R] (so Bob should stay). That is to say, one might
hope that either the apparent symmetry of the problem gives rise to an argument that the
envelopes are equivalent, or that Bob’s informal argument for switching in one direction can
be made rigorous. But this is trivially impossible. Consider D1, which assigns probability
1 to B = 1, R = 2, and D2, which assigns probability 1 to B = 2, R = 1. Then, under D1,
E[B] < E[R], and under D2, E[B] > E[R].

However, we can derive conflicting versions of the desired relations by placing additional,
seemingly innocuous constraints on the structure of D. For example:

1. Fix a distribution on B such that B > 0 and E[B] is finite. Produce D(B,R) by
sampling a value b from the distribution, setting B = b, then flipping a fair coin and

9Bob samples a number g from a distribution supported over all of R, such as the standard normal
distribution. Let the revealed number be x; if x < g, Bob guesses that x is the lower number, and if g ≤ x,
Bob guesses that x is the higher number. In the event that g < l < h or l < h < g, this strategy succeeds
with probability 1

2 . But if l < g < h, it succeeds with probability 1 — and since the distribution was
supported over all of R, the probability that l < g < h must be some ϵ > 0; the strategy therefore succeeds
with probability 1

2 + ϵ
2 .
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setting R = 2b on heads and R = 1
2
b on tails. By linearity of expectations, the expected

value E[R] of the red envelope is 1
2
· 2B + 1

2
· 1
2
B = 5

4
E[B]. Bob should switch to the

red envelope and not switch back.

2. Fix a distribution on L such that L > 0 and E[L] is finite. Produce D(B,R) by
sampling a value l from the distribution, then flipping a fair coin and setting B =
2l, R = l on heads and B = l, R = 2l on tails. Again by linearity of expectations, the
expected value of each envelope is now 3

2
E[L]. Bob should not switch envelopes.

So these assumptions lead to conflicting, but individually non-paradoxical, recommenda-
tions. The problem is that neither of these techniques for expanding a univariate distribution
into the bivariate distribution D(B,R) is “complete”, in the sense of being capable of gen-
erating all the possible bivariate distributions. In particular, neither technique can generate
the bivariate distribution D1. It follows that in imposing the additional constraints, we have
put our thumb on the scale — it is implicit in constraint (1) that the red envelope is better
than the blue, and in (2) that they are equivalent. In the original version of the problem,
without such a constraint, the premises are too weak to derive that any particular course
of action is optimal. But even so, the paradox disappears in the sense that it demonstrably
does not follow from the premises that Bob is rationally obligated to switch envelopes once,
let alone twice.10

Finally, we must consider variants of the problem where E[B] and E[R] can be infinite.
Broome [1995] defines a specific distribution D(B,R) in the following way: the value L of
the smaller envelope is sampled from a distribution assigning P (L = 2n) = 1

3
· (2

3
)n, for all

n ∈ N. Then the distribution is extended to a bivariate distribution as in scenario (2) above.
Broome shows that this distribution has the following properties:

1. The unconditional expectations E[B] and E[R] are both infinite (alternately, unde-
fined).

2. For any value b of B, the conditional expectation E[R | B = b] is finite and strictly
greater than b. Specifically, E[R | b = 1] = 2, and for any b > 1, E[R | b = b] =
2
5
· 2b+ 3

5
· b
2
= 11

10
b. (So Bob, holding the blue envelope, might reason as follows: if he

were allowed to open it and look at the value, no matter what value he saw, he would
expect the value in the red envelope to be even higher.)

3. For any value r of R, the conditional expectation E[B | R = r] is finite and strictly
greater than r. (That is to say, the analogous property holds for the red envelope as
well.)

10Returning briefly to the “largest number” puzzle, McDonnell and Abbott [2009] analyze the performance
of a Cover-like switching strategy on a variant of the two-envelope problem with two modifications: the
assignment of sums to envelopes is randomized as in scenario 2 above, and Bob is allowed to look inside the
blue envelope before deciding whether to switch.
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Now, Broome proves that properties (2) and (3) together imply (1): this paradoxical
situation cannot arise when the expectations are finite. In response to this, Arntzenius et al.
[2004], in analyzing the problem, suggest that the only way to exclude cases like this is to
require that all utilities be bounded. And if the case is to be admitted, then they affirm that
an agent who cannot bind is rationally obligated to switch indefinitely, and an agent who
can bind should resolve the paradox through binding.

For reasons I will discuss shortly, I am sympathetic to the idea that utilities must be
bounded. However, it is not necessary to bound utilities outright to exclude the case. One
need only exclude cases where the expected values are infinite — although it is admittedly
difficult to see a principled reason for making this distinction. But even that is not necessary.
One need only reject the claim that condition (2) implies that Bob should switch envelopes.

And the case for this claim is weaker than it might appear. Bob is an expected utility
maximizer, so he is committed to preferring R to B in the case where E[B] and E[R] are
both real numbers and E[B] < E[R] in the standard ordering of the real numbers. Therefore,
if Bob were to open the blue envelope and see a check for $4, Bob really would be committed
to switching to the red envelope, which he would value at 2

5
· $8+ 3

5
· $2 = $4.40 — and so on

for every possible value of B. But this principle is silent in the case where the envelopes are
sealed and E[B] and E[R] are infinite; for Bob, these gambles are prima facie incomparable.
Of course, Bob is not committed to viewing all such gambles as necessarily incomparable; it
would be quite reasonable for Bob to adopt additional rules imposing a preference ordering
on at least some gambles with infinite expectation. But each such candidate rule represents
an additional commitment.

Consider the rule that says that if E[R | B = b] > b for all values of b, then R is
strictly preferable to B. Bob is committed to this rule in the finite setting, because (as
Broome proves) there the antecedent implies that E[R] > E[B]. But this is not in itself
decisive evidence for extending the rule to the infinite setting. Rather, I would argue that
the fact that the rule leads to a preference cycle is extremely strong evidence that it should
be rejected. And this phenomenon — conditions that coincide in the finite setting coming
apart in the infinite — is a familiar one. For example, for finite ordinals (that is to say,
natural numbers), ordinal height and cardinality always coincide in the sense that if a can
be mapped injectively to a proper initial segment of b, then |a| < |b| in the cardinality
ordering as well. In the infinite setting, this immediately fails; ω+1 and ω+2 have the same
cardinality, but ω+1 can be mapped injectively to a proper initial segment of ω+2 and vice
versa. But this is a reason to acknowledge that the notions of ordinal height and cardinality
can come apart, i.e., to reject the principle that an increase in ordinal height implies an
increase in cardinality — not to adopt a notion of size in which |ω + 1| < |ω + 2| < |ω + 1|.

Parenthetically, if one is committed to the idea of gambles with infinite expected value,
how should one rank them? To the best of my knowledge, this is an open problem. The
strongest candidate for a rule I can think of is dominance; it seems unproblematic to say
that strictly increasing all the payouts in a lottery makes it strictly more attractive. But it
seems plausible that under the best set of candidate rules, there will still be gambles X and
Y such that their preference ordering remains undefined. The desire to allow infinite-valued
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gambles may be in conflict with the axiom of comparability.

“Random Integers” and “Magic Dartboard”

Besides the two-envelope problem, Arntzenius et al. [2004] give two other cases whose iden-
tification with “Eve’s Apple” I wish to contest. The first is “Random Integers”:

God has created a countably infinite collection of planets P1, P2, P3 . . .. He tells
Satan and the Archangel Gabriel that He intends to choose one of them (for
some special purpose). Satan interrogates Gabriel as to his beliefs about which
planet will be chosen; Gabriel declares that God, being perfectly just, is equally
likely to choose any of the planets, and therefore that the probability of any
particular Pi being chosen is infinitesimal. Satan offers Gabriel any subset of the
bets B1, B2, B3 . . .: bet Bi wins Gabriel $ 1

2i
if Pi is not chosen, but loses him

$2 if it is. Gabriel reasons that each of these bets is favorable, since each has a
greater-than-infinitesimal chance of gain and an infinitesimal chance of loss; he
therefore takes them all. Satan then informs him that he has incurred a sure loss
of at least $1; Gabriel must lose $2 on one of the bets, but Satan’s total payout
cannot exceed

∑∞
i=1 $

1
2i
= $1.

The idea of a uniform distribution over a countably infinite set is sometimes known
as “de Finetti’s lottery” [Wenmackers and Horsten, 2013]. Under the standard Kolmogorov
formulation of probability, probabilities must be positive standard real numbers and therefore
no such distribution exists. I think that reasonable people can disagree about whether such
a distribution is metaphysically possible — the question hinges on an analysis of the pre-
theoretic concept of probability that is beyond the scope of the present discussion. But
certainly the scenario seems logically consistent.

What is missing from the argument is an account of why anyone — even an archangel —
should maximize expected value under these conditions. For example, consider a “bottom-
up” argument for expected utility maximization, such as the Savage axioms. One begins with
a set of primitive notions (“states”, “acts”, and “outcomes”, in Savage’s case) that do not
directly refer to probability. The next step is to claim that normative decision-making within
the framework of these notions must satisfy some set of axioms; finally, a representation
theorem shows that any agent satisfying those axioms is in fact maximizing expected utility
over some subjective probability distribution. If the agent’s utility is linear in money, it then
follows that the agent normatively maximizes expected value according to the distribution.
But it in fact a consequence of the Savage axioms, and of typical competing frameworks, that
this distribution will be Archimedean, i.e., that none of the agent’s subjective credences will
be infinitesimal. So the proponent of “Random Integers” as a counterargument to standard
decision theory, and of binding as a correction that can solve the problem, is not simply
in the business of extending standard decision theory, but is instead proposing a competing
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foundation — one that needs its own set of conflicting axioms, which need to be justified
vis-a-vis the standard axioms.

Alternately, consider a “top-down” argument, in which subjective probability is a primi-
tive notion and expected utility or expected value maximization is justified on its own terms.
One can then imagine taking an agent committed to maximizing real-valued expected value,
then confronting them with a scenario with infinitesimal probabilities, at which point their
commitment will extend to maximizing expected value in some extension of R that contains
infinitesimals. But this argument assumes that the intuitions and concepts of ordinary prob-
abilistic reasoning can be extended unproblematically into the infinite/infinitesimal domain
— and this is far from clear. For example, the most prominent candidate for a suitable
extension of R, the hyperreal numbers R∗, does not make rigorous the idea of dividing 1 into
a countably infinite number of equal parts that can then be added up again to make 1. In
general, countable sums of hyperreal numbers with infinitesimal parts are simply undefined.
In order to recover an analogue of the countable additivity axiom in this setting, we must
pass from ordinary countable summation to summation over the hypernatural numbers, i.e.,
a set that includes nonstandard naturals. [Wenmackers and Horsten, 2013] Some further
justification is needed for extending intuitions about expected value into this new domain.
Without that, the “Random Integers” scenario remains at best incomplete.

The final scenario given by Arntzenius et al. is “Magic Dartboard”. Its background
is a mathematical theorem proven by Sierpinski: assuming the Axiom of Choice and the
continuum hypothesis, it is possible to color every point of the unit square [0, 1]× [0, 1] ⊂ R2

either white or black such that for every horizontal line of the square, the set of white points
on it has one-dimensional Lebesgue measure 1 (i.e., the line is almost everywhere white),
and for every vertical line of the square, the set of black points on it has one-dimensional
Lebesgue measure 1 (i.e., the line is almost everywhere black).11 The scenario proceeds as
follows:

Lucy, a bookmaker, presents two agents, Hansel and Gretel, with a dartboard
colored according to the above scheme and offers them the following deal. First,
they will be separated, so that they cannot communicate with each other or
see the dartboard. Then a dart will be thrown such that it is equally likely to
land anywhere on the dartboard. Hansel and Gretel will then independently be
offered bets on the outcome of the throw. Regardless of where the dart lands,
Lucy truthfully informs Hansel that the dart has landed within a horizontal line
that is almost everywhere white; Hansel accordingly accepts a bet that pays $1
on white and -$2 on black. Similarly, she truthfully informs Gretel that the dart
has landed within a vertical line that is almost everywhere black; Gretel accepts
a bet that pays $1 on black and -$2 on white. Together, Hansel and Gretel incur
a sure loss of $1.

11The sets of black and white points over the entire square will necessarily be non-measurable according
to the two-dimensional Lebesgue measure.
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This thought experiment has two significant methodological flaws that are conceptually
unrelated to infinite decisions. First, the use of two independent agents (Hansel and Gretel)
is problematic, because it is unsurprising that two independent agents who share an initial
epistemic state can be led to different epistemic states by exposing them to different pieces
of evidence. Given this, it is no more surprising that a bookmaker can make a sure profit
from the two agents by arbitraging the difference in their betting prices. This does not seem
like it should count as a Dutch Book, that is to say, as evidence against a decision rule.

More significantly, the rule Hansel and Gretel seem to be applying — “if one’s prior
credences are P , and one is told that E is the case, then one should update to credences
P ′ such that P ′(H) = P (H | E)” — is invalid. The error has to do with individuation of
propositions: the evidence is not simply E, but the fact that one was told E. A famous case
where this distinction is relevant is the Monty Hall problem12:

Monty has three boxes, red, blue, and green; he chooses one uniformly at random
and puts a valuable prize in it, then seals them. He then offers you the box of
your choice. Once you have selected it, but before you are allowed to open it,
at least one of the remaining boxes is empty. Monty chooses a box uniformly
at random from the set of remaining empty boxes and opens it. Then he offers
you the opportunity to exchange your box for the third, as yet untouched, box.
Should you accept?

Initially, the objective distribution of the location of the prize is P (R) = P (G) = P (B) =
1
3
. Suppose that one initially selected the red box, and that Monty then reveals that the

green box is empty. It is an error of reasoning to update simply by conditioning on ¬G and
setting P ′(R) = P (R | ¬G) = 1

2
. When one conditions on the full piece of evidence, i.e.,

“I chose the red box, then Monty chose the green box and opened it, revealing that it was
empty”, it can be seen that P ′(R) is still 1

3
and one is rationally required to switch boxes.

Similarly, Hansel and Gretel should not be conditioning on the simple content of Lucy’s
announcement (“the dart landed within a vertical line that is almost everywhere black”),
but on the fact that Lucy is announcing the proposition — and since she would announce
this in any case, the announcement has no evidentiary value at all.

Arntzenius et al. give a variant of the dartboard case, motivated by the desire to eliminate
the use of nonmeasurable sets; it also avoids the two problems just described. However, it has
another significant weakness: unlike the other five scenarios, it relies essentially on the use of
an uncountable package of bets. Since on the standard Kolmogorov account of probability,
probability measures are not uncountably additive, it is unsurprising that one can construct
Dutch Books out of such packages. For example, if we return to the unit square dartboard
and consider the family of bets B(x,y) that pay $1 if the dart lands on (x, y), an agent whose
credence is uniform over the dartboard will value each such bet at $0, but the package of all
such bets at $1. This gives rise to a trivial Dutch Book, one that does not differ from the
more elaborate case given by the authors in any important respect.

12I thank Lara Buchak for pointing this out.
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Returning to the first magic dartboard: it can be seen that no open ball (i.e., the interior
of any circle, no matter how small) on the dartboard is entirely white or black; every such
ball contains uncountably many black and white points.13 This gives us a hint of a third
potential objection to the case. Not only does it require that the tip of the dart be infinitely
small, we must measure its location on the board with infinite precision: there is no nonzero
margin of error for the measurement such that we can be certain that the dart landed on
either white or black. The idea that settling such a bet requires the collection and processing
of an infinite amount of data (the infinite number of decimal places to which one must
measure the dart’s coordinates) will be the focus of my critique of the three remaining cases
and the ur-case “Satan’s apple”.

Gambles requiring infinite information

Let’s return to “Satan’s apple”. It is easy to imagine an Eve who submits her decisions in
the form of an algorithm or rule, from which Satan can independently compute or derive the
set of pieces she wishes to take. But doing so is a form of binding: announcing the algorithm
or rule binds Eve to the resulting set of actions. Let us initially grant the claim that an
Eve who cannot bind is possible — that it is possible, according to some relevant notion of
possibility, for Eve to actually make an infinite number of consecutive decisions, one for each
piece of the apple.

Two essential properties of the case must be emphasized. One is that the premises require
an infinite sequence of consecutive, i.e., non-concurrent, questions and answers. Otherwise,
Eve’s causal dominance argument is invalid: to apply it, she must be able to reason about
a well-defined set of past actions and whether an additional, logically independent, action
will cause expulsion. The second is that Satan must actually receive and process an infinite
number of those decisions. In the problem as originally formulated, he must receive each
individual decision, since each such decision determines whether Eve should be allocated
a specific piece of the apple. But even without this element, suppose that Satan ignores
some infinite subset S of the decisions. It is then possible for Satan to be unable to decide
whether Eve merits expulsion, because if she only takes a finite number of pieces from the
complement of S, the outcome logically depends on the decisions in S.

Now, in their presentation of a related case (“Rouble Trouble”), Arntzenius et al. suggest
conceiving of this process in the following way: Eve makes her first decision at 11 PM,
her second at 11:30 PM, her third at 11:45 PM, and so on. In this way, at the stroke of
midnight she will have completed an infinite number of decisions. I will argue that the sheen
of plausibility this lends to the scenario is bogus. Each decision Eve makes is a logically
independent yes/no decision, i.e., a separate bit of classical information. And within our
own physical reality, it is impossible for Eve to produce and transmit an infinite number of
bits of information within a finite amount of time. In other words, the notion of possibility

13For any such circle, the horizontal diameter of the circle has a measure 0 set of black points, and therefore
uncountably many white points. Similarly, the vertical diameter has uncountably many black points.
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under which non-binding Eve is possible is not physical or nomological possibility [Shieber,
2014], but some more lenient notion.

Arguing for this requires several different principles of physical theory. First, there is some
distance d > 0 such that if Eve and Satan are to count as independent agents, they must
be separated by at least d. On our current understanding of quantum mechanics, d is some
value on the order (10−35 meters) of the Planck length — not necessarily the Planck length
itself, but something near it. To quote Shieber [2007]: “any attempt to resolve phenomena
below this scale, as would be necessary to store information, would require so much energy
that the region being resolved would collapse into a black hole.” When we combine this with
the impossibility of superluminal signaling (transferring classical information faster than the
speed of light), we derive that each communication between Eve and Satan must take time
at least t for some t > 0, where t is on the order of the Planck time.

Could Eve get around this by encoding an infinite number of decisions within a single
transmission? The answer is no, by the Bekenstein bound [Bekenstein, 2005]; by similar
considerations in the physics of black holes, the amount of information that can be stored in
a system is bounded by a quantity proportional to the product of the its radius and its total
mass-energy. Since the amount of mass-energy available to Eve and the size of the universe
during any given time interval are both finite, no such transmission is possible. Thus, Eve
requires an infinite number of sequential transmissions to communicate her decisions. Since
there is a lower bound on the time required for each transmission, she requires an infinite
amount of time.

On the one hand, the specific argument I have made is tentative because of the absence
of a definitive theory of quantum gravity. Jordan [2017] cautions against this sort of analysis
because the idea of spatial locality itself may become problematic at the Planck scale. But
regardless of the specifics, our current understanding of quantum information theory suggests
that for several different reasons, completed infinities like the one in “Satan’s Apple” cannot
exist in nature. This is the case for the infinite precision to which one must measure the
position of the magic dart (because of Heisenberg’s uncertainty principle), and also for
any scenario like “Satan’s apple” that requires an agent to produce an infinite sequence of
decisions. It also suggests that utilities may be bounded, in principle, by the capacity of the
universe to store information.

Does this allow us to deny the relevance of infinite cases as counterexamples to standard
decision theory? Most arguments for or against decision theories, such as the axiomatic
method or Dutch Book arguments, have an a priori character. Bringing empirical facts
into the debate might feel like an intrusion. But I think this obscures the extent to which
decision theories are already tailor-made to the world we live in. An example is the use of real-
valued probabilities and utilities; I follow Feferman [2009] in regarding the real numbers R as
representing not a “uniquely determined concept”, but a sophisticated compromise between
“geometrical, arithmetical and set-theoretical notions” designed to support a fruitful pure
and applied mathematics. In other words, they already encode contingent facts about our
world, the same way that Euclidean geometry encodes contingent facts about the behavior
of space-time at the scales directly observable by human beings on Earth.
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A different physical reality might demand a quite different mathematical structure for
the representation of value and belief; in particular, agents in a physical reality that could
accommodate infinite decision problems might face unfamiliar notions of uncertainty and
scarcity. Arntzenius et al. [2004] are aware of the problem and give the following example of
an infinitary but non-probabilistic “free lunch” or “reverse Dutch book”:

Imagine friends f0, f1, f2 . . . all standing in a line. For each n, friend fn gives $n
to friend fn−1. After this process is complete, fn has given away $n and received
$(n+1). Each friend earns a profit of $1.

But since decision theories are ways of coping with uncertainty and scarcity, perhaps
it should be unsurprising that different realities might require different decision theories. I
propose the following sequel to “Random Integers”:

“Aha!” cries Satan. “You owe me at least $1!” Gabriel reflects for a moment.
“Wait — if we were able to contract these bets, that implies that mass-energy
isn’t conserved!” Gabriel produces $2 out of thin air and hands $1 to Satan,
saying “keep the change.” “What were you planning to spend this on, anyway?”
asks Gabriel. “I don’t know,” Satan mumbles with a crestfallen shrug.

2.4 Newcomblike problems

The Newcomb paradigm

Newcomb’s problem [Nozick, 1969] is canonical:

A demon has the ability to perfectly predict your actions. The demon will enter
a room and seal money in two boxes, at which point you will enter the room and
be given the choice between taking the left box only, or both the left and right
boxes. If the demon predicts that you will take only the left box, she will place
$1,000,000 in the left box and $1,000 in the right. If she predicts that you will
take both boxes, she will place $0 in the left box and $1,000 in the right.

For the purposes of this discussion, a Newcomblike problem is one that violates the
premises of Savage’s representation theorem by having states depend on acts. (In the
paradigmatic example, whether the $1,000,000 is in the first box is a state of the world,
but whether it is the case depends on the agent’s act of taking one box or two.)

The problem is commonly described as distinguishing between causal and evidential de-
cision theory (hereafter CDT and EDT). Since taking one box is associated with receiving
$1,000,000 and taking both is associated with receiving $1,000, the evidential decision theo-
rist takes one box and gets rich. But no matter what the contents of the boxes are, taking
the right box yields an additional $1,000 — therefore two-boxing is the dominant option
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at the time of the decision, and the causal decision theorist chooses it, receiving only the
smaller sum. Meanwhile, the causal decision theorist who can bind to an action will bind at
the outset to one-boxing — the predictor will then recognize this and the agent will receive
$1,000,000 after all.

Now, this problem seems to be entangled in some thorny questions related to free will.
As Aaronson [2013a] and others have observed, the setup of the scenario seems to equivocate
as to whether the agent has free will — specifically, a certain kind of libertarian free will,
the pre-analytic concept of which is something like “the ability to do otherwise”. Here is an
approximate reconstruction of this argument:

We suppose that the predictor is always accurate. When I’m in the room, the
predictor has already fixed her prediction, either that I will one-box or that I will
two-box. Suppose first that she predicted that I will one-box. Now, if I were to
two-box, her prediction would be wrong, which is a contradiction. Therefore, it
must be that I will one-box — so at this time, I in fact lack the ability to two-box.
Likewise, in the case where she has predicted where I will two-box, I don’t have
the ability to one-box. So in either case, I’m not actually making a decision; my
choice is already constrained. This contradicts the framing of the scenario as a
decision problem.

But this same objection seems to apply “one level up”, so to speak — it can be used to
attack the relevance of the problem to the debate as to whether one should adopt CDT or
EDT. The “why ain’tcha rich” argument for EDT goes something like this:

If you use CDT in Newcomb’s problem, you get $1,000. If you use EDT, you get
$1,000,000. So you should adopt EDT.

But the skeptical adherent of CDT may reply:

If I accept the premises of Newcomb’s problem, then when I’m in the room I
lack the ability to choose between one-boxing and two-boxing. So why should I
suppose that I currently have the ability to adopt EDT? By arguing as you have,
you seem to be displaying an implicit commitment to the idea that I do have this
ability. But then you owe me an explanation of why I have free will to adopt
EDT, but not to violate the premises of the Newcomb scenario.

I am sympathetic to CDT and accordingly I would like very much to dismiss Newcomb’s
problem as an argument against it. And as before, I am unimpressed by the mere metaphys-
ical possibility of the Newcomb case. In order to count against CDT, the Newcomb case
should in fact be nomologically possible in some form. But if it is nomologically possible,
then I am sympathetic to “why ain’tcha rich” as an objection to CDT — if $1,000,000 is up
for grabs, something is very wrong with a decision theory that leaves $999,000 on the table.
Can “why ain’tcha rich” be saved from the skeptic’s reply?
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In what follows, I will examine two settings in which it appears that Newcomb’s case is in
fact nomologically possible and furthermore “why ain’tcha rich” is a sound argument against
CDT, one that succeeds against the skeptic’s reply. Therefore, EDT is recommended over
CDT in these settings. But CDT with binding is recommended over CDT in them for the
same reasons — and, contrary to an argument of Meacham [2010], I will argue that CDT
with binding is recommended over all competing decision theories in Newcomblike problems.

Two common features of both settings are necessary to support this analysis. One, as in
the analysis of Burgess [2004], is common causation — the initial state of the agent (and the
world) causes both the demon’s infallible prediction and the agent’s decision. The second
is that the agent’s initial state — unlike the agent’s actual “in-room” decision, which is
causally determined — is plausibly subject to some form of libertarian control. I won’t
argue that every conceivable setting for the Newcomb problem has these features, nor that
every nomologically possible setting must have them. But since the two aforementioned
settings effectively exhaust all the possibilities I’m aware of, I hope to put the ball in the
other court — it will be for the defender of an alternate account of Newcomb cases to advance
a nomologically possible setting that provides a counterexample.

Binding as decision theory adoption

I claim that there is something special about CDT with binding — namely, it formalizes the
metatheory in which we debate which decision theories to adopt, and in which arguments
like “why ain’tcha rich” function. To see this, compare the “Smoking Lesion” argument
against EDT:14

Abigail would like to start smoking, because it is pleasurable (it has utility 10).
In Abigail’s world, smoking is highly correlated with cancer (utility −1000), but
it does not cause cancer. Rather, there is a certain brain lesion that causes both
a desire to smoke and cancer — so for an arbitrary member of the population,
P (cancer | smokes) = .9 and P (cancer | ¬smokes) = .1. Thus, according to
EDT, the utility of not smoking is P (cancer | ¬smokes) · u(cancer) = −100 and
the utility of smoking is P (cancer | smokes) · u(cancer) + u(smokes) = −890.
Abigail therefore decides not to smoke.

The problem with Abigail’s reasoning is that her decision to not to smoke is not causally
effective in reducing her risk of cancer — as Lewis [1981a] puts it, she is simply “managing
the news”. In fact, Abigail should be analyzing her situation with CDT, which tells her to
smoke via the same kind of dominance reasoning that leads to two-boxing in the Newcomb
case; since smoking has no causal influence on cancer, smoking gives her 10 additional utiles
whether or not she has cancer, so she should smoke.

14For the idea of benchmarking candidate decision theories against the two poles of Newcomb’s Problem
and “Smoking Lesion”, I am indebted to Altair [2013].
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Now, if Abigail adheres to CDT, one plausible (but not necessary) reading of her situation
is that her desire to smoke is evidence that she has the lesion and cancer, i.e., P (cancer) =
.9.15 Therefore, according to CDT, the utility of not smoking is P (cancer)·u(cancer) = −900,
and the utility of smoking is P (cancer) ·u(cancer)+u(smoking) = −890. Thus, the expected
utility under CDT of the action recommended by CDT (smoking) is much lower (−890) than
the expected utility under EDT (−100) of the action recommended by EDT (not smoking).

This is superficially parallel to Newcomb’s problem, where the CDT-utility of the CDT-
recommended action ($1000) is lower than the EDT-utility of the EDT-recommended action
($1,000,000). But the parallel breaks down because in Newcomb’s problem (at least, in
settings for Newcomb’s problem that conform to the aforementioned common-cause analysis),
adopting EDT causally leads to the million dollars — by way of causing the agent to predict
that you will one-box. But for Abigail, adopting EDT and deciding not to smoke has no
causal effect in getting her to the preferred outcome. From our privileged vantage point in
the metatheory, we can see that Abigail’s EDT-utility is fool’s gold.

Can we formalize this metatheory? I claim that the metatheory in which we benchmark
decision theories against “why ain’tcha rich” arguments is exactly CDT— a decision theory is
recommended exactly in the cases where adopting it causally leads to the preferred outcome.
As evidence, I can adduce that this correctly describes every argument by counterexample
against a decision theory in the literature that I’m aware of:

1. As discussed above, the original Newcomb scenario, interpreted as an argument against
CDT

2. “Smoking Lesion” against EDT

3. The “World Series” scenario in Arntzenius [2007] against EDT

4. The “Evidential Blackmail”, “Counterfactual Blackmail”, and “Retro Blackmail” sce-
narios in Soares and Fallenstein [2014]

But now, we can see that CDT with binding performs at least as well as every other
decision theory. Suppose adopting decision theory D causes you to reach outcome X. Then,
CDT with binding can see that binding to the D-recommended action — at the same point
of the causal history at which D itself could have been adopted — is also causally effective
in reaching outcome X. By this “strategy-stealing” argument, CDT with binding must be
“complete” against this class of problems. No matter what your preferences are, if they can
be achieved by any decision theory, they can be achieved by CDT with binding.

What might a “why ain’tcha rich” counterexample against CDT with binding look like?
Decision scenarios seem to have a type hierarchy, in the following sense: in the original
Savage paradigm (call this the “zeroth order”), the uncertain state of the world is inde-
pendent of your acts. In the Newcomb paradigm (the “first order”), the state may depend

15This assumption is not necessary; the argument is valid for any P (cancer) > .1.
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on your act. By the strategy-stealing argument, CDT with binding should succeed against
all counterexamples at this level. To defeat it, we seemingly have to go to “second-order”
counterexamples that examine not merely the agent’s acts, but their reasons for choosing
acts:

A demon has the ability to perfectly predict your actions — and moreover, to
inspect your reasons for performing those actions. The demon will enter a room
and seal money in two boxes, at which point you will enter the room and be given
the choice between taking the left box only, or both the left and right boxes. If
the demon predicts that you will take only the left box, because you chose to do
so via EDT or for pre-theoretic reasons, she will place $1,000,000 in the left box
and $1,000 in the right. If she predicts that you will take both boxes, or you will
take one box because you chose to do so via CDT with binding, she will place $0
in the left box and $1,000 in the right.

This demon certainly seems metaphysically possible. But this seems like an unconvincing
counterexample, for two reasons. One is that it is unfair — the agent is being punished not for
anything he does, but purely for having adopted CDT with binding. Compare the response
of Lewis [1981b] and others to the original Newcomb case, that the “why ain’tcha rich”
argument against CDT is invalid because the demon simply punishes rationality (of which
CDT is the correct analysis) and rewards irrationality; therefore the rational agent cannot
hope to to succeed. Again, I think that with regard to the original first-order Newcomb
problem, this is unconvincing. But as an objection to second-order problems of this type,
it is more convincing because no matter what your decision theory is, there exists a demon
that has singled you out for this kind of punishment, based simply on who you are.

The other is that adversaries plausibly have more reasons to care about the agent’s actions
than they do to care about the agent’s reasons. A good example is the “Counterfactual
Blackmail” scenario in Soares and Fallenstein [2014], which is isomorphic to Newcomb’s
problem, but in which the “demon” has realistic motivations. I paraphrase:

You and an adversary who can predict your actions are playing the stock market.
The adversary develops a virus which will affect market operations and cause a
massive market crash, which will cost both of you $150,000,000. Once the virus
has been deployed, there is a 24-hour window in which it can be stopped; because
of the way it is programmed, the only way to stop it for you to pay the adversary
$100,000,000. But the adversary is risk-averse and will only deploy the virus if
she predicts that you will respond by paying.

To make explicit the connection to Newcomb’s problem, paying is like two-boxing: once
the virus has been deployed, paying causally saves you $50,000,000. But a precommitment to
not paying, or the adoption of a decision theory which dictates not paying, causally prevents
you from being blackmailed at all.



30

I think the force of “Counterfactual Blackmail” is that it shows a Newcomb demon with
reasonable motivations — all it cares about is money, and its acts are aimed at maximizing
its money. Consequently, the demon cares about the agent’s acts, because one of those
possible acts is giving the demon money. In contrast, the demon from our second-order
counterexample seems to be motivated by a sort of holy war against CDT with binding.
And, independently of any questions of fairness, this is less plausibly the kind of adversary
that an agent will come to face.

The AI setting

LaVictoire et al. [2013], working in the context of artificial intelligence, develop a theoretical
model in which a group of artificially intelligent agents have access to each other’s source
code. It is then possible for the agents to prove properties about each other, for example,
that an agent faced with Newcomb’s problem will one-box or that an agent faced with the
Prisoner’s Dilemma will cooperate and not defect. This gives rise to a novel strategy for
the Prisoner’s Dilemma: cooperate if and only if you can prove that your opponent will
cooperate. This strategy achieves cooperation against a variety of well-intentioned agents,
including itself, but defects against agents that are malicious or simply impenetrable to its
proof techniques. Translating this model into the context of Newcomb’s problem, we can
imagine a demon that reads an artificial agent’s source code, then puts the $1,000,000 in the
left box if and only if it can prove that the agent will one-box.

This is, then, a nomologically possible setting for Newcomblike problems. Moreover,
it satisfies the two requisite conditions in a straightforward way. The agent’s action and
the demon’s prediction both have a common cause, namely, the initial source code and state
programmed into the agent by its programmers. Moreover, there is no contradiction between
the programmer having libertarian control over the source code and the demon’s ability to
make perfect predictions, from the code, about the resulting agent.

The problem of formulating an ideal decision theory for a related model is explored in
detail by Soares and Fallenstein [2014], who consider and reject an analogue of CDT with
binding, then focus on a novel decision theory called “updateless decision theory”, or UDT.
One of their claimed counterexamples to CDT with binding is called “Retro Blackmail”, and
the idea at its core is that binding is no longer causally effective if the adversary’s prediction
starts in the agent’s causal past. For simplicity, I will translate the scenario into the language
of the original Newcomb problem:

An agent was originally programmed to obey CDT with binding, and it is evolv-
ing in a deterministic environment. It is currently faced with the Newcomb
scenario. However, the demon will make its prediction by simulating the agent
using its original source code and state — because of determinism, this predic-
tion will still be perfectly accurate. The agent reasons that binding to one-boxing
(which is how it would respond to the original Newcomb scenario) is now causally
ineffective, because making a precommitment now has no causal effect on a sim-
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ulation beginning from an earlier snapshot of itself. The agent therefore makes
no precommitment, enters the room, two-boxes according to causal reasoning,
and receives $1,000.

Meanwhile, UDT tells the agent to one-box, consequently achieving the $1,000,000. Is
this a counterexample to the strategy-stealing argument for CDT with binding? I don’t
think so, but the scenario is very informative about the argument and about the challenges
of implementing CDT with binding. Programming the agent to obey UDT (or EDT) causally
leads to one-boxing, which causally leads to the $1,000,000. Therefore, CDT with binding
can steal the strategy and pre-commit to one-boxing, but only at the same point in the causal
history at which adopting UDT would have been causally effective, namely the time of the
agent’s original programming. In order to function correctly, CDT with binding must be
able to form binding precommitments at the absolute beginning of the agent’s causal history
(in this case, the time of original programming) — or, at any rate, the earliest point in the
causal history visible to the predictor. If this is not done correctly, then the agent will be
vulnerable to “retro” scenarios where the prediction occurs prior (in the causal sense) to the
act of binding. But if it is, the act of binding will cause both the agent and every veridical
simulation of the agent to one-box, and the agent will receive $1,000,000 after all.

If we neglect the problem of logical omniscience, then there is no difficulty in imagining
the agent precomputing every causally recommended precommitment simultaneously with
the moment of its original programming. But since there are infinitely many such precom-
mitments, corresponding to the infinite space of potential Newcomblike cases, the problem
is too pressing to set aside so blithely. Fortunately, it seems that we can produce an agent
equivalent in behavior to this ideal agent, but which does not have to store an infinite number
of precommitments; instead, it will compute the same precommitments “on the fly” via lazy
evaluation. Whenever the agent is faced with a decision problem, it can reason that CDT
with binding has already precommitted it to one of the available actions, and it can compute
which action it is via causal reasoning that starts at the beginning of its own history —
it can iterate over all the precommitments and pick the one causally recommended at that
time.16 There are still many barriers to precisely specifying and implementing CDT with
binding, but hopefully this represents some measure of progress.

Is there an ideal decision theory?

One might, however, question whether a complete and coherent set of causally recommended
precommitments (alternately, a coherent decision theory that is optimal with respect to all
Newcomblike problems) is possible. Call the following scenario “Newcomb’s Angel”:

16In passing, it should be noted that the space of available acts should be augmented with probabilistic
mixed acts. Otherwise, the agent will always lose games of rock-paper-scissors to its adversaries, which will
determine its precommitment, e.g., to “scissors”, and respond with “rock”.
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An angel has the ability to perfectly predict your actions. If she encounters you,
she predicts what you would do when faced with Newcomb’s demon, then gives
you the opposite payoff: $1,000,000 if you two-box and $1,000 if you one-box.
(The kind of prediction being invoked here — unlike the kind in the original New-
comb problem — is incompatible with a definition of prediction as “knowledge
of future events”. But it is compatible with any Burgess-type common cause
setting, including the settings discussed in sections 2.4 and 2.4.)

On the one hand, Newcomb’s Angel is intuitively less persuasive as a scenario than New-
comb’s Demon. For one, the agent doesn’t seem to have the same kind of veridical informa-
tion about the situation as in the original case. Another issue is that we can construct such
an angel rewarding any behavior, including behaviors that seem uncontroversially irrational
(intransitive preferences, perhaps). Finally, as discussed previously, the demon case has
an isomorphic variant, “Counterfactual Blackmail”, where the demon-analogue has realistic
motivations. And it’s difficult to imagine such a setting for the angel.

Nonetheless, there does seem to be a dilemma here. A decision theory succeeds on
Newcomb’s Angel if and only if it fails on Newcomb’s Demon. And the strategy-stealing
argument lets CDT with binding match the performance of any such theory, but it doesn’t
choose which scenario one should succeed on. At the least, if “why ain’tcha rich” does serve
to justify a precommitment to one-boxing in the original Newcomb problem, it must be an
implicit premise of that scenario that the world isn’t populated by Newcomb angels, or that
it has fewer Newcomb angels than Newcomb demons.

Significantly, I think Newcomb’s Angel succeeds in undermining a certain argument for
one-boxing in the original problem. I paraphrase Aaronson [2013b]:

Suppose Newcomb’s demon can accurately predict whether you will one-box or
two-box, no matter how you reach your decision. Since your decision-making
process can rely on arbitrary memories and involve arbitrary thought processes
(e.g., you might decide to one-box if and only if the number of students in your
kindergarten class was odd), the demon must have, de facto, the ability to simu-
late your entire consciousness — the demon possesses the functional equivalent of
a simulated copy of you. It follows that when about to enter the demon’s room,
you should be indifferent as to whether you are your original self or the simulated
copy. Therefore, you should one-box, because if you are in fact the copy, your
one-boxing will causally lead to your counterpart receiving the $1,000,000.

For now, I will leave aside the questions about personal identity raised by this argument
— they will come into focus in section 2.4. Even if one accepts the identification between
the real-world agent and the agent as simulated by the demon, Newcomb’s Angel illustrates
that the simulated agent is unjustified in believing that his one-boxing benefits his real-world
counterpart: if an angel and not a demon is on the other side of the veil, then he is harming
his counterpart, not helping.
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A natural response is to say that the simulated agent should one-box if he believes that
his counterpart is facing the demon, and two-box otherwise. But I think this response fails.
Given that he is, after all, in a simulation, none of the agent’s evidence about the true state
of the world is trustworthy. The angel can go to arbitrarily lengths to persuade him that
he is in fact facing the demon — take him on an ersatz journey to a part of the universe
with demons and no angels, or show him a celestial war in which the demons exterminate
the angels. Moreover, the non-veridicality of these experiences has a counterpart in the
Newcomb’s Demon case: there too, the simulated agent is being deceived about an essential
aspect of the case, because money has not already been sealed in the boxes, those inside the
simulation or out of it. Once the possibility of being in a simulation is on the table, I think
the correct attitude to questions about events outside the simulation is a kind of radical
skepticism.

The brainscan setting

Meanwhile, a long-running discussion in the literature, starting with Lewis [1979] and contin-
uing notably with Burgess [2004] and Aaronson [2013a], considers a setting for the Newcomb
problem based on the idea of physical simulation of the agent. Specifically, it is consistent
with known laws of physics that Newcomb’s demon can measure a sufficiently precise physi-
cal description of the agent’s body, then use this description to simulate the agent’s actions
according to quantum mechanics. If this is in fact physically possible, then we can assume
that the demon has “black-box” or “sampling” access to arbitrarily many independent copies
of the agent. She can then predict that the agent will one-box (likewise two-box) exactly in
the cases where a sufficiently large number of independent simulations all result in the agent
picking one box.

Now, several things could go wrong with this picture. Aaronson [2013a] is interested
in the empirical possibility that such prediction will turn out to be physically impossible,
because human actions may physically depend on the measurement outcomes of uncollapsed
quantum states, which the predictor cannot simulate because copying them would violate the
no-cloning theorem. If this is so, then it is impossible to make even probabilistic predictions
about an agent’s actions via this technique. But the possibility I will be concerned with here
is that such predictions are possible, but due to physical indeterminacy they are, at least in
the worst case, probabilistic. That is to say, a series of physically accurate simulations of an
arbitrary agent may result in the agent one-boxing in some of the trials and two-boxing in
the others.

How should the demon respond to such a simulation result? Nozick’s original exposition
considers the question of an agent who decides whether to one-box or two-box by flipping
a coin (the result of which is assumed unpredictable in advance by the demon). Nozick
suggests that the demon should simply detect this and punish this agent by refusing to put
money in either box — this preserves the scenario because the strategy “flip a coin” is now
strictly dominated by other strategies and can be disregarded. Meanwhile, Aaronson has
suggested that the demon should respond by placing the $1,000,000 in the left box with
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the same probability p with which the agent one-boxes in the trials. Thus, indeterminate
decision processes form a continuum between “always one-box” and “always two-box”, but
the first of these is still the worst and the second is still the best.

This gives rise to a concrete physical characterization of what “binding” means, albeit
one that conflates it with other states. “Binding to one-boxing” implies being in a physical
state, at the time of the brainscan, that causally determines (with very high probability)
that you will one-box. Now, this characterization also plausibly describes some mental at-
titudes that we would consider distinct, for example, “having propositional attitudes that
constitute reasons to one-box”, or “evaluating the Newcomb scenario via EDT.” But, fol-
lowing Balaguer [2010], I think it’s an empirical question for neuroscience (one which can be
attacked via ambitious but scientifically grounded programs such as whole-brain emulation)
what these brain-states are, and under what circumstances people faced with a Newcomb
scenario come to be in them. Then it’s a subsequent empirical question for psychology what
mental attitudes and phenomenal experiences these brain-states correspond to.

Given this, I want to describe one possible way these investigations could turn out, a way
that would validate the intuitions of frustration that CDT-inclined people like me have with
the Newcomb problem. Of course, there is no guarantee that this will be the empirical result,
nor are these intuitions evidence for what the result will be. But it’s empirically possible
that if someone is fully informed about the scenario and models it according to Burgess’s
common-cause characterization, then the only initial brainstates which determinately lead
to one-boxing are ones where she “decides not to think”, e.g., she resolves to march into
the room with her eyes shut and grab the left box. On the other hand, if she enters the
room willing to contemplate the problem, the outcome of this deliberative process may be
physically indeterminate — she may end up one-boxing in some trials and two-boxing in
others. Under Nozick’s formulation, this will result in her receiving no money, even if she
does end up one-boxing. Under Aaronson’s, this behavior is straightforwardly seen to be
undesirable because the agent can maximize expected utility by maximizing the probability
that her initial brainstate leads to one-boxing — therefore, “deciding not to think” is causally
recommended. But regardless of whether this specific possibility seems likely, I hope that
it calls into question intuitions about the relationship of Newcomb’s problem to experiential
facts about reasoning, since we can hope for empirical research that will clarify the question.

Now we come to the claimed counterexample of Meacham [2010] against CDT with
binding:

But self-binding causal decision theorists can still end up poor. Consider a
version of the Newcomb’s case where the predictor makes her prediction before
the agent is born. The binding causal decision theorist will be unable to causally
influence the prediction, and so she will end up choosing both boxes and getting
only a thousand dollars. So even when we restrict our attention to agents who
can bind themselves, the “why ain’cha rich” argument against causal decision
theory remains.
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This scenario is recognizable as “Retro Blackmail”, translated into the brainscan setting.
But in this context, we are fully equipped to reject its premises. In particular, the scenario
implies that it is physically determined before the moment of birth whether a human will
eventually adhere to EDT or CDT (or to some other decision theory, or to neither). But this
is straightforwardly implausible. Consider, for example, a lottery for course assignments,
on which it stochastically depends whether Zeke studies decision theory during the fall
semester from a professor who advocates CDT, or in the spring semester from a professor
who advocates EDT. Thus, in the Nozick formulation, the demon will simply never award
any money.

In the Aaronson formulation, however, the questions about personal identity that have
been lurking in the background take center stage. The demon will predict you via her
probabilistic sampling access not only to the possibilities for your own actions, but also
the possible actions of other people — the people whom your embryo might have grown
into under other circumstances. What, then, should you do? The two extreme cases are
instructive: if there’s only one way you could have turned out, then everyone the demon
can sample is a copy of you, and we’re back in the original Newcomb case and you should
one-box. But if you are, as it were, one of a great multitude of possible selves — and the
reasoning of those other selves is not identifiable with yours — then it’s as though the demon
were predicting your actions via a population statistic, and because of the lack of a causal
connection between your attitudes and the outcome of the prediction, you should two-box.
(Compare, for example, a demon who knows that 95% of Oregonians are one-boxers, and
therefore seals money in the left box with probability .95. This is a probabilistically accurate
predictor, but nonetheless, as an Oregonian facing her, you should two-box.),

Between these two points lies a continuum. If you control, so to speak, more than
1,000

1,000,000
= 1

1,000
of the vote — if your decision is identifiable in a physical sense with the

decision of more than 1
1,000

of your possible selves — then your one-boxing contributes more

than $1,000 in expected value to your payoff and you should do it. But if you control less
than that, then your contribution would be too small to outweigh the certainty of $1,000,
and you should two-box. I think this is a graphic illustration of a general problem: the more
we generalize Newcomb’s Problem and generalize our decision theories to compensate, the
more we should expect difficult detours into metaphysics, in questions of both free will and
personal identity.

2.5 Conclusion

At many points in this discussion, I have disputed the value of binding as a solution to one
decision-theoretic paradox or another. But even if binding could solve all of these paradoxes,
I think that it still would not constitute a single, unified correction to decision theory —
the paradoxes have conceptually distinct grounds, and therefore inasmuch as binding can
solve them, they are solved by conceptually distinct notions of binding. Just as a genuine
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philosophical unification can illuminate philosophical data, a spurious unification can obscure
them.
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Chapter 3

Frequentism as a positivism: a
three-tiered account of probability

Abstract

I explore an alternate clarification of the idea of frequency probability, called frequency
judgment. I then distinguish three distinct senses of probability — physical chance, frequency
judgment, and subjective credence — and propose that they have a hierarchical relationship.
Finally, I claim that this three-tiered view can dissolve various paradoxes associated with
the interpretation of probability.

3.1 Introduction

Frequentism and its challenges

Frequentism means, more or less, that probabilities are ratios of successes to trials. It origi-
nates with John Venn and is arguably the first philosophically rigorous account of probability
— that is to say, it is the first account of probability to appear as an attempt to correct a
philosophically inadequate pre-theoretic view. As Alan Hájek has observed, however, it has
fallen on hard times. In part, this is because it competes with the Bayesian interpretation of
probability, in which probabilities are subjective degrees of belief. Bayesianism offers a se-
ductive unifying picture, in which epistemology and decision theory can both be grounded in
a quantitatively precise account of an agent’s attitudes and propensities. But frequentism’s
philosophical difficulties are not simply due to its being outshone by a competing view. As
Hájek has shown, frequentism itself faces a variety of vexing challenges.

Hájek reconstructs frequentism as containing two distinct conceptions of probability —
finite frequentism, in which probabilities are actual real-world ratios of successes to trials,
and hypothetical frequentism, in which they are limiting relative frequencies over an idealized
hypothetical infinite sequence of trials. In a series of two papers [1996, 2009], he shows that
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each conception is affected by numerous difficulties: in fact, each paper gives 15 distinct
objections to one of the conceptions!

In order to motivate what follows, I’ll briefly summarize what I consider the most pressing
of Hájek’s objections against each characterization. Finite frequentism is intuitively appeal-
ing because of its metaphysical parsimony; probabilities can be “read off” from the actual
history of real-world events, without the need to posit any unobservable entities. But taken
literally, it clashes with many of our important intuitions about probability. In particular,
it is a kind of operationalism about probability, and hence suffers from similar problems to
other operationalisms. If we consider probability to be defined by real-world frequency, then
we have seemingly have no way to express the idea that an observed frequency might be
aberrant, just as defining temperature to be thermometer readings leaves us with no way
to express the idea that our thermometers may be inaccurate. This problem becomes espe-
cially serious when we consider cases where the number of real-world trials is very small —
in particular, if there is only 1 trial, then the finite frequency probability must be either 0 or
1, and if there have been no trials yet, then it is undefined. Finite frequentism is in conflict
with our intuitions that actual trials constitute evidence about probability rather than its
actual substance.

Hypothetical frequentism answers this concern perfectly, but at far too high a metaphys-
ical cost. In particular, asserting the existence of an infinite sequence of trials seems to
involve an “abandonment of empiricism.” In the real world, we cannot perform an infinite
sequence of trials, so the meaning ascribed to probabilities is evidently counterfactual. Even
after granting this, what kind of counterfactual are we dealing with? If we analyze it using
a possible-world semantics, in the style of Stalnaker or Lewis, we seemingly require a possi-
ble world that (at the very least) violates the conservation of mass-energy. Why should we
believe that probabilities in this world have anything to do with ours?

Finally, the following objection is commonly advanced against both conceptions of fre-
quentism: frequentism entangles the probability of any individual event E with the question
of what will happen to other, similar events. We cannot make frequentist sense of the proba-
bility of E without assigning it to some broader reference class of events, over which we will
be able to define a ratio of successes to trials. But at this point, P (E) will be a property of
the reference class, not of E itself. This objection is already troubling, but it has even more
teeth in cases when there are multiple possible reference classes, each yielding a distinct
value of P (E), or perhaps no reference class at all. This is the so-called “reference class
problem”, and it is another, crucial sense in which frequency notions of probability diverge
from our ordinary understanding of the word.

Where to?

I am a frequentist. What sort of frequentist am I? Of the two varieties distinguished above,
I am much more sympathetic to finite frequentism; the metaphysical costs of infinite hy-
pothetical sequences are too much for me to bear. In fact, I think that finite frequentism,
properly expounded, can actually escape many of the criticisms Hájek levels at it — perhaps
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eight out of fifteen. But I cannot deny the force of Hájek’s overall arguments, and I think it
inevitable that I must give some ground. Specifically, I think an adequate analysis of prob-
ability must both seek a third way of defining frequency probability and also acknowledge
that not all probabilities are frequency probabilities. Here are some of my desiderata for
such an expanded conception:

1. It should preserve core frequentist intuitions that relative frequency is an essential
component of probability. In particular, it should not conflate probabilities that have
an intuitively acceptable frequency interpretation (e.g., the probability that a U.S.
quarter, when flipped, will land heads) with those that do not (e.g., the probability
referenced in Pascal’s wager that God exists).

Indeed, the primary goal of this paper is to propose and defend a definition of frequency
probability that is both reasonably rigorous and free from paradox, in hopes that it will
enable epistemological views in which frequency probability has a privileged status.

2. It should not take a stance on the existence of physical chance (something which poses
problems for both frequentist and Bayesian accounts of probability). I think that
a proper resolution of this question rests on questions external to the philosophy of
probability, in particular on the philosophy of physics, and that consequently it is an
advantage for an account of probability to remain agnostic on the question.

3. It should not deny the validity of the Bayesian interpretation of probability outright.
As Jaynes [1985] remarked, arguing in the reverse direction:

I do not “disallow the possibility” of the frequency interpretation. Indeed,
since that interpretation exists, it would be rather hard for anyone to deny
the possibility of it. I do, however, deny the necessity of it.

Indeed, while I consider myself a frequentist, I affirm the value of Bayesian probability,
both its technical validity as a consistent interpretation of the laws of probability
and as the correct solution to certain epistemological problems such as the preface
paradox. My skepticism is confined to claims such as the following: all probabilities are
Bayesian probabilities, all knowledge is Bayesian credence, and all learning is Bayesian
conditionalization. I will say more about this later.

4. At the level of statistical practice, it should support a methodological reconciliation
between frequentist and Bayesian techniques. That is to say, it should acknowledge
that in practice both methods are effective on different problems, independently of
the philosophical debate. Kass [2011] calls this viewpoint “statistical eclecticism” and
Senn [2011] calls it “statistical pragmatism”.

5. Thus, it is necessary for it to preserve the distinction between frequentist and Bayesian
methods, that is to say, between methods that make use only of probabilities that have
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a natural frequency interpretation and those which make use of prior probabilities that
do not. Otherwise, frequentist and Bayesian methods are collapsed into a single group,
in which frequentist methods appear merely as oddly restricted Bayesian methods.

Without further ado, I will introduce an account of probability that I believe will fulfill
all these criteria. The argument will necessarily detour through many philosophical consid-
erations related to probability. The reader who is pressed for time should look at sections
3.2, 3.4, and 3.5.

Precedents for the view

The closest historical precedent I am aware of for my view is Carnap’s distinction [1945]
between two senses of probability: Probability1, which describes credence or degree of con-
firmation, and Probability2, which describes long-run relative frequency over a sequence of
trials. In particular, he makes the following parenthetical remark about Probability2 (M1

denoting a class of trials and M2 an event):

I think that, in a sense, the statement ‘c(h, e) = 2
3
’ itself may be interpreted as

stating such an estimate; it says the same as: “The best estimate on the evidence
e of the probability2 of M2 with respect to M1 is 2/3.” If somebody should like
to call this a frequency interpretation of probability, I should have no objection.

My view differs substantially from Carnap’s in almost all respects — in particular, I
will not make use of the notion of logical probability that he advocated. Nevertheless, I will
interpret this remark as Carnap’s blessing.

3.2 The theory

Three conceptually distinct interpretations of probability suffice to describe all uses of prob-
ability. They are arranged in a tiered hierarchy as follows:

1. Physical chance, if it exists. This is the only objective and metaphysically real kind of
probability.

2. Frequency judgments. Pending a more precise motivation and definition, the core idea
is this: given an event E, a frequency judgment for E is a subjective estimate of
the proportion of times E will occur over an arbitrarily large (but finite) sequence of
repeated trials. This is intended as a frequency interpretation of probability, i.e., one
that can replace finite and hypothetical frequentism.

3. Bayesian subjective probability in the sense of Ramsey and de Finetti.

Probabilities pass “downwards” along this hierarchy in the following sense:
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1. If an agent knows a physical chance (and no other relevant information), that agent is
obliged to have a frequency judgment coinciding with the physical chance.

2. If an agent has a frequency judgment (and no other relevant information), that agent
is obliged to have a Bayesian subjective probability coinciding with the frequency
judgment.

Thus, as we pass down the hierarchy, the domain of applicability of the interpretations
strictly increases. In particular, the conjunction of the two relations yields a large fragment
of (possibly all of) Lewis’s Principal Principle.

3.3 The first tier: physical chance

Lewis [1994] defines chance as “objective single-case probability”, which does an excellent
job of explaining why chance is so vexing for both frequentists and Bayesians. For one, a
chance is a probability that we intuit as being objectively real, which is at odds with radical
Bayesian subjectivist accounts in which all probabilities are agent-relative and have to do
with dispositions to act. Thus, it is typical for Bayesians to accept chances, when they exist,
as an additional constraint on belief beyond that of simple consistency, in the form of Lewis’s
Principal Principle. This principle has varying formulations, but the rough idea is that if an
agent knows the chance of an event E, and they have no other relevant information, they
should set their credence in E to be the same as the chance.

But chance is also problematic for frequentists because of the intuition that they exist
in the single case — a chance seems no less real despite only being instantiated once, or
perhaps not at all. Lewis gives the memorable example of unobtainium, a radioactive heavy
element that does not occur in nature, but can only be produced in a laboratory. One
of the isotopes, Unobtainium-366, will only be instantiated twice as atoms. The other,
Unobtainium-369, will never be instantiated at all (perhaps due to budget cuts). In the case
of Unobtainium-366, we intuit that the true half-life of the isotope (phrased equivalently in
terms of probabilities, the objective chance of decay within a particular fixed time period)
may be something quite different from anything we might generalize from our two observed
data points. In the case of the heavier isotope, we have no data points at all to go on. So
there is a conflict with any frequentism that insists that probabilities are always synonymous
with actual frequencies, or can always be straightforwardly extrapolated from them.

But this is not yet the whole story about why chance is problematic. There are two
rather different senses in which physical chance appears in accounts of probability. One
is the existence of physical theories, for example the Copenhagen and objective collapse
interpretations of quantum mechanics, in which reality itself is nondeterministic and thus
the existence of chances is a physical and metaphysical fact about the universe. But the
other is when a physical phenomenon appears, on empirical grounds, to have irreducibly
probabilistic behavior. Radioactive decay is one example, but another particularly intriguing



42

case, appearing in Hoefer [2007] and Glynn [2010], is Mendelian genetics, e.g., the probability
that two carriers of a recessive gene will have a child in whom the gene is expressed.

Thus we encounter a dispute in the literature: is the existence of physical chance com-
patible with a deterministic universe? One intuitive answer is no: if the course of events is
determined, then chance is annihilated and the chance of any individual event E is 1 if it
deterministically occurs and 0 if it does not. This was the view of Popper and Lewis and it
has continuing defenders, in particular Schaffer [2007].

However, other authors defend the idea that a deterministic universe could exhibit chance.
For example, Lewis wanted chance to supervene (in a Humean sense) on past, present, and
future spatiotemporal events, rather than existing as a distinct metaphysical property. He
accomplished this via the so-called “best-system analysis”, on which considerations such
as symmetry or extrapolations from related systems can be chancemakers beyond mere
sequences of events. Although Lewis himself believed chance to be incompatible with de-
terminism, nothing about such an analysis requires indeterminism and it can support a
compatibilist account of chance, as in Hoefer and Eagle [2011]. Glynn also defends deter-
ministic chance, but he is motivated instead by the existence of probabilistic scientific laws,
such as Mendelian genetics or statistical mechanics, that would hold even in a deterministic
universe. Thus, he is essentially making an indispensability argument; if chance is essential
to our understanding of the laws of Nature, then we are not justified in denying its existence
due to metaphysical qualms.

It follows that the question of whether chance exists is undecided. If you believe the
Copenhagen interpretation of quantum mechanics, then measuring a quantum superposition
such as

√
2
2
(|0⟩ + |1⟩) yields either 0 or 1, each with probability 1

2
, and the outcome is

not determined in any sense before the measurement. This is then a source of objective
randomness and fulfills the criteria for physical chance. If you are undecided about quantum
mechanics, but believe Glynn’s arguments about chances from laws, then there is still an
objective chance of whether two heterozygous parents will have a homozygous child. But if
you believe the de Broglie-Bohm interpretation of quantum mechanics, in which reality is
deterministic, and you also endorse Schaffer’s denial of deterministic chance, then there are
no nontrivial physical chances.

My purpose in proposing physical chance as the “highest” interpretation of probability is
not to adjudicate the question of whether chance exists, and if so, what exactly it is.1 Rather,
I am offering people with different views of chance a blank check which they can fill in with
their preferred conception. The proper interpretation of quantum mechanics is a question
for physicists and philosophers of physics; whether Glynn’s argument is correct seems to

1In passing, I do have some sympathy towards the idea of deterministic chance, in particular for micro-

physical events. For example, measuring
√
2
2 (|0⟩+ |1⟩) produces an apparently random sequence of 0s and 1s,

no matter what interpretation of quantum mechanics one favors, and there seems to be a fine case for such
a phenomenon exhibiting chance. I become increasingly skeptical as this argument is extended upwards to
macrophysical phenomena, such as genetics. I am also unimpressed with the best-system analysis as such,
which strikes me as a confusion of metaphysics with epistemology. But this is a digression from my main
argument.
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hinge, like other indispensability arguments, on deep questions about whether scientific
practice justifies scientific realism. Separating chance from other notions of probability lets
us separate these questions from the debate about what probability itself means.

3.4 The second tier: frequency judgments

My characterization of frequency probabilities will rest on two primitive notions. One is
that of a reference class: a reference class is simply a description that picks out a class of
events. In the typical case, a reference class will preferably satisfy some other criteria, for
example Salmon’s [1971] notion of homogeneity: that there is no additional criterion, or
“place selection function”, that picks out a subclass with substantially different properties.
However, my discussion here will not impose any such additional requirements. One of the
strengths of probabilistic analysis is that it can be applied to data that are not “genuinely
random” in any meaningful sense — in an extreme but instructive case, the output of a
deterministic pseudorandom number generator. If the analyst considers the data to defy a
deterministic analysis, or just that they can benefit from a probabilistic one, that is sufficient.

The second primitive notion is that of epistemically independent events; this is a kind
of pre-theoretic counterpart to the idea of mutual independence. Events are epistemically
independent when knowing the outcome of some does not does not tell us anything useful
about the outcome of any other. This is a subjective notion relative to the agent’s knowledge
and needs; in particular it is not necessary that the events, should they have objective
chances, have probabilistically mutually independent chances, or that the agent take into
account all available evidence about how the events might be related.2

Definition 1. Given an event E and a reference class R for it, an agent A’s frequency judg-
ment for E is a real number p ∈ [0, 1], representing a subjective estimate of the proportion of
times E will occur over an arbitrarily large (but finite) sequence of epistemically independent
trials in the chosen reference class R.

Having a frequency judgment of p for E is a sufficient condition to model E as being
drawn I.I.D. (independently and identically distributed) from the Bernoulli distribution with
parameter p. That is to say, in intuitive terms, we can model E in the same way as we would
model flips of a coin with bias p. This is not to say that we model E as such a coin —
this would be a circularity, since we need the definition of frequency judgment to clarify
what it means for the coin to have long-run bias! Rather, each situation has a natural
representation as a Kolmogorov-consistent probabilistic model, and the resulting models are
in fact the same.

In order for estimates of this kind to make sense, we require a clear conception of the
reference class R supporting an arbitrarily large number of trials. The motivation for this

2Strictly speaking, “epistemically independent” is an abuse of terminology because this definition con-
flates, for simplicity, the agent’s epistemic and pragmatic limitations. Compare Salmon’s relaxations of
homogeneity to “epistemic homogeneity” and “practical homogeneity”.
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is clear: we can toss a coin an arbitrary number of times to clarify the relative frequency of
heads, but we cannot repeat a one-off event such as the 2000 U.S. presidential election to
examine any probabilistic variability in its results. Looking back to our discussion of chance,
all the chance-like physical phenomena we discussed (quantum measurements, radioactive
decay, and Mendelian genetics) admit frequency judgments, even if they are excluded by a
specific account of chance. Even the decay of Unobtainium-369, the element that will never
be instantiated, admits one because we have a clear and unambiguous conception of what it
would mean to synthesize its atoms and measure the incidence of decay. Thus, the existence
of this intermediate interpretation of probability — less objective than physical chance, but
more so than Bayesian credence — should soften the blow of deciding that some chance-like
phenomena do not genuinely exhibit chance.

Invariance under averaging

There are some formal difficulties with the definition of frequency judgment. What does it
mean to have a non-integer estimate of the number of times E will occur over a integer-long
sequence of trials? And why, if frequency judgments are estimates of proportions over finite
sequences, is it possible for them to take on irrational values?3 I think the natural resolutions
of these problems succeed, but it is not entirely obvious that they succeed honestly; one might
suspect that they are parasitic on a prior, unexplained concept of probability or expected
value. So I will give a brief argument to justify that real-valued proportions are sensible as
frequency judgments.

The intuition is this. Consider someone who can give integer-valued estimates of the
number of successes over n trials, for arbitrary n. We ask him for his estimate of the number
of successes over a single trial, and he tells us either 0 or 1. Now we ask him, “if you repeated
that single trial 10 times, then averaged the number of successes over the 10 repetitions, what
would you estimate the average to be?” Because epistemic independence implies that there
is no difference between a 10-trial block and 10 1-trial blocks, he should give us his estimate
of the number of successes over 10 trials, divided by 10: this will be the first decimal digit
of his real-valued frequency judgment. We can continue this process to elicit more digits, or
we can simply ask him to “tell us the averages first,” rather than bothering with the integer
estimates. Formally:

Definition 2. Given an event E and a reference class R for it, an agent A’s frequency
judgment scheme for E is a map f : N → R, such that f(n) is a subjective estimate of
the number of times E will occur over n epistemically independent trials of R. Evidently,
f(n) ∈ [0, n] for every n.

3This is Hájek’s 14th criticism of finite frequentism. There I think it succeeds to some extent — unlike
frequency judgments, there is an essential sense in which actual frequencies are rational numbers. Of course,
one could argue for the use of real numbers there too, as an idealizing assumption that enables the use of
continuous mathematics.
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So at this point, we are considering both frequency judgments in the original sense, but
also schemes that make integer predictions for every n. But now we impose another criterion:
f should be invariant under averaging. In other words, let us say that f estimates that if
we do n trials, we will have s successes. We should also estimate that if we do 2n trials and
then divide the number of successes by 2, we should get s. In other words, we should have
f(2n)

2
= f(n).

In general, for any a ∈ N, our estimate should be invariant under averaging over a
repetitions of the trial, i.e., f(an)

a
= f(n). But this implies that f should satisfy f(an) = af(n)

for any a ∈ N. Now, fix some n and let p = f(n)
n

; clearly p is a real number in [0, 1]. For any
m ∈ N, nf(m) = f(mn) = mf(n) = mpn. Dividing by n, we get that f(m) = pm for all
m. We have shown that frequency judgment schemes that are invariant under averaging are
necessarily frequency judgments, i.e., real-valued proportions.

Mathematically speaking, this argument is trivial; its significance is that we appealed only
to a notion of averaging over arbitrary repetitions, without any circular appeal to probability
or expected value. Furthermore, I think this argument yields two important clarifications of
the idea of frequency judgment:

1. The concept of invariance under averaging gives rise to a simple notion of “long-run rel-
ative frequency” without appealing to an infinite sequence of trials. Thus the frequency
judgments interpretation appropriates some of the benefits of hypothetical frequentism
as analyzed by Hájek, without having to carry any of its metaphysical baggage.

2. If f is invariant under averaging, then f(n) = nf(1). Thus, in some sense f “views”
every individual trial as contributing a fractional success f(1) ∈ [0, 1] to the total
estimate of successes. This is what justifies modeling events that admit a frequency
judgment as I.I.D. Bernoulli trials.

A concern remains: why is it sensible for p to take on irrational values? The key is that the
reals are Archimedean, i.e., for any two reals r1, r2, we have |r1 − r2| > q for some rational
q. It follows that over a sufficiently large integer number of trials, any two distinct reals
constitute distinguishable frequency judgments; their estimates of the number of successes
will vary by at least one whole trial. For example, consider the irrational-valued frequency
judgment π

4
≈ .785398. Is this judgment identifiable with any rational-valued approximation

of it, e.g., .785? It is not, because over 100000 trials, they predict quite different things.
At this point, one might take issue with the idea that arbitrary-precision real numbers

are distinguishable in this way. Surely, at some point, the number of trials required to make
the distinction is so large that the heat death of the universe will come first? I appreciate
this concern, but I don’t think it’s specific to probability — it seems akin to the idea that
instead of modeling time as real-valued quantities of seconds, we should model it as integer
multiples of the Planck time. There may be a bound on the resolution of reality, but it is
methodologically convenient to represent it as unbounded.
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3.5 Characteristics of frequency judgments

Caveats

It is problematic to claim that frequency judgments are in fact a frequency interpretation of
probability, and I do not wish to paper over the difficulties. This conception is a substantial
retreat from the classical frequentism of Reichenbach and von Mises. In particular:

1. A frequency judgment is not “made by the world”; it is not directly derivable from
any actual past history of trials (as in the case of finite frequentism), the past and
future history of the world (as in some cases of Lewis’s supervenience account), or any
objective or universal conception of an idealized hypothetical sequence of trials (as in
the analogous case of hypothetical frequentism).

2. A frequency judgment is explicitly relative to both an agent, because it is a subjec-
tive estimate, and to a reference class. These relativizations may look like reluctant
concessions to realism, but in my opinion they are features, not bugs — they capture
essential indeterminacies that must be part of any positivist account of probability. I
will say more about both relativizations below.

3. A frequency judgment need not pertain to events that are truly “random” in any sense.
Deterministic phenomena that are too difficult to analyze with deterministic methods
(such as the operation of a pseudorandom number generator), when analyzed proba-
bilistically, can be classed at this level of the hierarchy. Thus, von Mises’s analysis of
randomness by means of the notion of Kollectiv (an idealized infinite random sequence
with certain desirable mathematical properties) is not relevant.

4. The notion of frequency judgment is intended as a conceptual analysis of probability —
it is an attempted elucidation of what is meant by statements such as “the probability
of flipping a U.S. quarter and getting heads is 1

2
,” or “the probability of a Carbon-

14 atom decaying in 5715 years is 1
2
.” It does not follow from this that an agent’s

frequency judgments are necessarily a completed totality and form a σ-algebra obeying
the Kolmogorov axioms. A frequency judgment is not necessarily part of any global
probability distribution, even one relative to a particular agent; it is created by an act
of model-building and can be revised arbitrarily in ways that do not correspond to
conditional update.

How can frequency judgments be an interpretation of probability if they do not straight-
forwardly obey the axioms? I think that the meaning of probability is prior to the
Kolmogorov formalization, and therefore that it is legitimate for there to be some ten-
sion between the meaning and the formalization — much as there is tension between
the real number system and the physical quantities whose measurements we represent
as reals. Frequency judgments can be used to build localized probabilistic models,
and each such model should obey the Kolmogorov axioms. Moreover, when frequency
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judgments about the same event appear in different localized models, they should ide-
ally agree (although a lack of agreement does not automatically prevent each model
from being useful). But it is not essential that there be meaningful global notions of
an outcome space, an event space satisfying the field axioms, etc. within which all
frequency judgments can coexist.

Relativization to reference classes

Frequency judgments are explicitly relativized to reference classes. Does this mean that
they cannot be an analysis of probability simpliciter? Concerning this question, I endorse
the argument by Hájek [2007] that in fact, every interpretation of probability is affected by
a reference class problem, and thus explicit relativization to reference classes is needed to
dissolve an intrinsic ambiguity.

I will briefly sketch Hájek’s argument as it applies to Bayesian subjective probability.
According to the most radical accounts of subjective credence, there are no constraints on
credence besides mere consistency. But intuitively, such a view is unsatisfying because it
does not enforce any kind of relationship between one’s beliefs and reality. Hájek gives the
following memorable example:

The epistemology is so spectacularly permissive that it sanctions opinions that
we would normally call ridiculous. For example, you may assign probability 0.999
to George Bush turning into a prairie dog, provided that you assign 0.001 to this
not being the case.

Thus it seems necessary to admit additional — external, evidence-based — constraints
on belief. Examples include Lewis’s Principal Principle, in which beliefs must coincide with
known chances, or Hacking’s Principle of Direct Probability, in which they must coincide
with observed relative frequencies. But external “testimony” of this kind is, by its nature,
subject to a reference class problem. Consider the following case: John is 60 years old, a
nonsmoker, and previously worked with asbestos. We have statistics for the incidence of lung
cancer in 60-year-old nonsmokers and 60-year-olds with asbestos exposure, but we have no
statistically significant data concerning the intersection of those groups.4 What should our
credence be that John will develop lung cancer? We might pick the first rate, or the second,
or try to interpolate between them, but implicit in any of these decisions is a statement
about what reference class is to be preferred.5

Hájek’s conclusion from this analysis is that we need new foundations for probability; he
considers the true primitive notion of probability to be conditional probability, where the

4Both classes aremaximal in the partial order of specificity of reference classes, but there is no statistically
robust class that is a maximum for specificity.

5Compare the classic Bayesian argument (see, among others, [Savage, 1961]) that in order to make
decisions, frequentists rely on implicit non-frequency prior probabilities, even when they claim not to have
them. The argument here is that Bayesians are implicitly making choices about the right reference class —
in cases like John’s, the choice is “smuggled in” via the Bayesian priors.
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assignment of the event to a reference class is part of the proposition being conditioned on.
That is to say, instead of considering P (A), Hájek thinks we should be looking at P (A |
A ∈ R), where R is a reference class. I think that the frequency judgments interpretation,
in which the reference class is part of the definition of (unconditional) probability, is a more
natural way of addressing this issue, and one that allows us to retain our existing foundations.
I discuss this question further in section 3.11.

Relativization to agents

The frequency judgments interpretation makes no reference to infinite sequences or possi-
ble worlds; it relies only on the conceivability of performing additional representative trials.
Thus, its closest relative in terms of metaphysical commitments is finite frequentism. But
frequency judgments are quite unlike finite frequencies in that they are agent-relative; two
different agents can have two different frequency judgments, even after they come to agree-
ment about a reference class. I will try to motivate this with a simple case study. Consider
the case of a coin that has been flipped 20 times and come up heads 13 times. Is an agent
constrained, on the basis of this data, to have any particular estimate of the proportion of
heads over a long sequence of trials? Intuitively, the answer is no; a variety of beliefs about
the coin’s long-run behavior seem perfectly well justified on the basis of the data.

The ambiguities in estimation begin with the reference class problem. One reading of
finite frequentism is we must assign P (H) to be 13

20
, the ratio of actual successes to actual

trials. This could be quite reasonable in some circumstances, e.g., if the coin seems notably
atypical in some way; however, to say that finite frequentism requires this value is to do it an
injustice. A finite frequentist might also say that the reference class provided by the sample
is deficient because of its small size, and choose instead the reference class of all coinflips,
yielding a P (H) of 1

2
, or rather, negligibly distant from 1

2
. But the spectrum of choices does

not end there.
The maximum likelihood estimate of the probability of an event E is s

n
, the ratio of

successes to trials; this is a frequentist estimator in the sense that it does not involve the use
of prior probabilities. As such, it coincides with the first reading of finite frequentism and
estimates P (H) to be 13

20
, but it would be a mistake to identify the two perspectives. Rather,

the maximum likelihood estimate is the value of P (H) under which the observed data are
most probable; this is not an ontological attribution of probability but explicitly an estimate.
As such, it competes with Bayesian estimators such as the Laplace rule of succession, which
begins with a uniform prior distribution over the coin’s biases and conditions repeatedly on
each observed flip of the coin. The resulting posterior distribution is the beta distribution
β(s + 1, n − s + 1); to get the estimate of the posterior probability, we take its expected
value, which is s+1

n+2
= 14

22
.

Since the rule of succession is derived from a uniform prior over the coin’s biases, a
different Bayesian might use a different prior. For example, using a prior that clusters most
of the probability mass around 1

2
, such as β(n, n) for large n, will produce an estimate

arbitrarily close to 1
2
. But on a different note entirely, another frequentist might start with a
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null hypothesis that the coin is fair, i.e., P (H) = 1
2
, then compute the p-value of the observed

data to be 0.26 and accept the null hypothesis, retaining the estimate of 1
2
.

None of these answers is prima facie unreasonable — even though they differ considerably
in methods and assumptions, they are all legitimate attempts to answer the question, “if
this coin is flipped a large number of times, what proportion of the flips will be heads?” I
am therefore rejecting Carnap’s suggestion that there should in general be a best estimate
of long-run frequency from the data. We will have to live with a multiplicity of frequency
judgments, because room must be left for legitimate differences of opinion on the basis of
data.

Frequentism as a positivism

Given all this, why are frequency judgments still a frequency interpretation of probability? I
think they preserve the content of frequentism in two important senses. First, their definition
depends essentially on the notion of repeated trial. If there is no conception of a reference
class of trials, then there can be no frequency judgment. Thus, the definition reflects the
intuition that there is no way to make frequentist sense of probability claims about one-off
events.

More crucially, even though frequency judgments are not objective, they are directly
falsifiable from empirical data. Consider the example in the previous section: on the basis
of observing 13 heads over 20 trials, we considered a range of different frequency judgments
about P (H) to be valid. But no matter what value we chose, we have a clear conception
of how to further clarify the question: we need to flip the coin more times and apply some
statistical test that can differentiate between the different judgments.

For example, consider the case of someone whose frequency judgment for P (H) is 2
5
. If

we go on to flip the coin 1000 times and get 484 heads, then (using the normal approximation
to the binomial) our observed result is 5.42 standard deviations from the mean of 400 heads
predicted by their hypothesis, which yields a p-value on the order of 10−8. This is so highly
improbable that we may consider the frequency judgment of 2

5
to have been falsified. This

is not to say that the much-maligned p-value test is the gold standard for the falsification of
frequency judgments; likelihood ratio tests can be used to achieve the same results. If two
agents can consense on a reference class for E, they can settle whose frequency judgment for
P (E) is correct. (See the appendix on more details on how this consensus can be reached,
in particular between a frequentist and a Bayesian agent.)

This explains the intuition that frequency probabilities are objective. If there is a large,
robust body of trials for an event E (such as coin flipping), then any frequency judgment
that is not extremely close to the observed finite frequency is already falsified. Thus, for
events such as “a flipped U.S. quarter will land heads”, our expected frequency judgment
(in this case 1

2
) is very nearly objective.

How essential are repeated trials to this idea of probabilistic falsification? Indeed, it
is possible for a Bayesian probability for a one-off event to be falsified, in the cases when
that probability is very large or very small. For example, if an agent makes the subjective
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probability assignment P (E) = .00001, and then E in fact comes to pass, then the agent’s
assignment has been falsified in much the same sense as we discussed above. But if E is
one-off, an credence like P (E) = 0.5 that is far away from any acceptable threshold of
significance cannot be falsified. The event E will either occur or fail to occur, but neither of
these will be statistically significant. Such a Bayesian credence lacks any empirical content.

In this sense, the definition of frequency judgment is an attempt to recover the purely
positivist content of frequentism. The metaphysical aspect of frequentism, in which proba-
bilities are inherently real and objective, has been deferred to the level of chance. Inasmuch
as Bayesian credences are purely matters of personal opinion, without empirical content,
they are also deferred to another level.

3.6 Status of the frequentist-Bayesian debate

Frequency judgments and the error-statistical approach

At this point, it is appropriate to verify that despite the apparent concessions to subjectivity
in the definition of frequency judgments, they still preserve essential elements of frequentism.
In particular, can they properly distinguish the probabilities used in frequentist statistical
methods from the non-frequency probabilities used in Bayesian methods? As it turns out,
the frequency judgments interpretation correctly interprets the frequentism of the error-
statistical paradigm of statistical inference. A canonical example [Mayo and Spanos, 2011] is
classical significance testing. A p-value of .05 means we estimate that if the null hypothesis
were true and we repeated the experiment, .05 of the experiments would exhibit results
as extreme as the one observed. This is straightforwardly a frequency judgment. Other
methods utilizing test statistics, such as chi-squared testing, follow this pattern; the test
statistic is computed from the data and then an estimate is given for the proportion of
experiments (given the null hypothesis) that would exhibit correspondingly extreme values
of the statistic. With confidence intervals, the frequency judgment attaches to the procedure
of deriving the interval: a 90% confidence interval is associated with the estimate that if we
repeatedly sampled and computed the confidence interval, 90% of the resulting intervals
would contain the true value of the parameter.

In contrast, Bayesian methods in general allow the use of probabilities that have no
frequency interpretation. For example, a prior probability for a hypothesis will not have one
in general; rather it will represent epistemic uncertainty about the truth of the hypothesis.
Of course, there are settings in which the prior in a Bayesian method may be interpretable
as a frequency judgment. Consider someone with three coins, with biases 1

4
, 1
2
, 3
4
, who draws

one of‘ them at random from an urn, flips it 10 times, and observes 6 heads. The agent
can begin with a uniform prior distribution that assigns probability 1

3
to each coin, then use

Bayes’ rule to obtain posterior probabilities as to which coin he has. In this case, his prior is
in fact a frequency judgment (“over a long sequence of urn drawings, each coin will be drawn
1
3
of the time”), and thus his posteriors are also frequency judgments (“over a long sequence
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of drawing coins from the urn and flipping them ten times, of the times I see 6 heads, ≈ 0.558
of them will be because I drew the 1

2
-coin”). But the method would be equally applicable if

the prior reflected only the agent’s subjective degrees of belief in which coin he had.

Objectivity

My claim is that frequency judgments capture the objectively verifiable fragment of proba-
bility — but not that they are actually objective, or are a prescription for objectivity. As
we have seen, data do not uniquely determine a frequency judgment. Moreover, although
frequency judgments are in principle subject to probabilistic falsification, there is no objec-
tive threshold of evidence at which this falsification takes place, and therefore there is no
objective guarantee of when it will occur in practice. Even after two agents with different
frequency judgments agree on a reference class of trials, it is possible for one or both of
them to insist on an unreasonably high evidentiary standard for the falsification of their
judgment. Moreover, this unreasonableness is interpretable in both frequentist and Bayesian
frameworks. For a frequentist, it might look like the requirement of an unreasonable p-value
(for example, p = 10−6 instead of the more usual p = .05 or .01) to reject her initial frequency
judgment. For a Bayesian, it might look like a prior distribution placing an unreasonable
amount of probability mass on or near her initial frequency judgment.

Instead, the proposed distinction is this: frequency judgments are the only case for
probability in which we have a clear method of settling questions about the accuracy of a
fractional-valued probability. This is because the only thing that can fix the value of such a
probability is a frequency. This will become important when considering how the frequency
judgments interpretation applies to problem cases for Bayesian credence, such as Sleeping
Beauty (section 3.11) and White’s Coin Puzzle (section 3.11).

Calibration

To remedy this, the literature on Bayesianism proposes the notion of calibration: a Bayesian
agent is calibrated if 1

2
of the events he assigns credence 1

2
to come to pass, and so on.6 Cali-

bration does seem to restore empirical content to single-case subjective probability assertions
— intuitively, given a one-off event E, a subjective declaration that P (E) = 1

2
is more em-

pirically justified coming from an agent with a strong history of calibration than from one
without one. The problem is that calibration, as a norm on subjective agents, represents a
substantial compromise of the Bayesian view, so much so that it cannot be taken to save the
original notion of subjective probability from these criticisms.

Firstly, as Seidenfeld [1985] observes, calibration is straightforwardly dependent on a no-
tion of frequency probability, and what that notion is requires explication. In what sense
are we to interpret the statement that 1

2
of the events will come to pass? Seidenfeld consid-

6To solve the problem of sparseness, it is common to discretize or “bucket” the credences, e.g., by
including also the events which were assigned credences in [.45, .55].



52

ers finite-frequentist (“1
2
of these events have historically come to pass”) and hypothetical-

frequentist (“the long-run relative frequency of these events coming to pass is 1
2
”) readings

of this claim and rejects them, for reasons akin to the difficulties Hájek sees with these
interpretations in general.7

Can we make sense of calibration under the tiered interpretation? In fact, an assertion
of calibration has a straightforward interpretation as a frequency judgment: the agent is
taking the class of events she assigns subjective probability 1

2
to be a reference class, and

then making a frequency judgment of 1
2
for that class. This is an empirical assertion, subject

to confirmation or disconfirmation in the manner discussed in the previous section. However,
this notion of confirmation is a property not of the single case, but of the class of predictions
as a whole. Just as before, any individual event E will either occur or not occur, but neither
validates the prediction P (E) = 1

2
until the occurrence or non-occurrence of other, separate

events is considered.
Secondly, just as calibration inherits the problems of definition that affect frequency

probability, it also inherits a reference class problem. For example, van Fraassen [1983]
gives the following surefire technique to achieve calibration: make 10 predictions, on any
subject, with probability 1

6
. Then, roll a fair die 1000 times, predicting an outcome of 1

each time with probability 1
6
. At the end of this, you will (with high objective probability)

be calibrated, in the sense that almost exactly 1
6
of your predictions with probability 1

6
will

have come true. But clearly your ability to make calibrated predictions about the die says
nothing about your predictive ability in general — it is unreasonable to place the original
10 predictions and the subsequent 1000 in the same reference class.

To combine both of these objections, recall that we characterized frequency judgments
as capturing precisely the cases in which probability assertions were subject to falsification.
Does the notion of calibration successfully extend this to all cases? It does not. Let E be
a single-case event, to which Alice assigns PA(E) = 0.95 and Bob PB(E) = 0.05. Whether
E occurs or fails to occur, both are perfectly consistent with both Alice and Bob being
calibrated. It is sufficient for Alice to predict PA(Ai) = 0.95 for a sequence of events Ai of
her choice having relative frequency of success 0.95, and for Bob to do likewise for a different
sequence of events Bi of his choice. And the form of this disagreement is precisely that of
a reference class ambiguity — Alice classes E with the Ai, and Bob classes E with the Bi,
and their predictions are vindicated exactly inasmuch as those decisions are accepted.

All of these difficulties have a common theme: calibration, as a norm, entangles individual
subjective probability assertions with the facts about a larger class of events. Thus it cannot

7Seidenfeld also cites a theorem by Dawid [1982], which asserts that according to a Bayesian agent’s
own subjective probability distribution, she will necessarily achieve long-run calibration with probability 1.
This is a consequence of the Law of Large Numbers — compare the observation that if a coin is in fact fair,
even after an initial sequence of 999 heads and 1 tail, the relative frequency of heads will still converge in
the limit to 1

2 with probability 1. Dawid and Seidenfeld take this to mean that the idea of calibration is
either trivialized or inexpressible under a strict Bayesian interpretation of probability. But see new work
by Sherrilyn Roush for an account of Bayesianism in which calibration is a nontrivial norm on subjective
probability.
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be taken to provide empirical content for single-case probability assertions. And inasmuch
as this empirical content does in fact exist, my claim is that it is captured exactly by the
notion of frequency judgment: it is no more and no less than the ability to define an arbitrary
reference class and make a relative frequency assertion about it.

Convergence theorems

Now is the time to discuss a common argument in defense of Bayesian probabilities: the
existence of convergence theorems that demonstrate the “swamping of priors” in the face of
shared evidence. These theorems use different hypotheses to reach different conclusions, but
the common theme is that they show that agents with different subjective prior distributions
will converge on the same subjective posterior distribution, given a suitable stream of shared
evidence. Thus, the apparent subjectivity of Bayesian probability is only “temporary”, and
in the long run Bayesian probabilities enjoy the same claim to objectivity as frequency
probabilities.

My reading of the convergence results surveyed by Earman [1992] is that they fall into
three categories. In the first category, we have results showing that given a long sequence of
i.i.d. trials of an event E, Bayesian agents beginning with different priors will all converge
on the same posterior probability for E, which will also be the limiting relative frequency of
E. As I see it, results of this kind (I conjecture one in the appendix) support the privileged
status of frequency probabilities, rather than undermining it; it is precisely because E can
be subjected to repeated trial that the agents can come to agree about it. These theorems
are straightforwardly inapplicable to Bayesian probabilities for purely single-case events E.

A second category is exemplified by the likelihood ratio convergence theorem (LRTC)
proven by Hawthorne [2011]. Results of this kind show that Bayesian agents beginning
with different priors for a hypothesis H will converge on the same extremal-valued (0 or 1)
posterior probabilities for H — that is to say, come to agree about its truth or falsehood— as
long as they are given a shared stream of differentiating evidence in the form of likelihoods,
which are probabilities of the form P (E | H), i.e., probabilities of observing evidence given
the truth of the hypothesis. Thus, these results form the foundation of Bayesian confirmation
theory as an account of scientific progress — they purportedly allow us to understand the
empirical confirmation and disconfirmation of scientific hypotheses as the convergence of
Bayesian posterior probabilities.

At first blush, these results challenge the exclusive claim of frequency judgments to
objectivity — consensus is reached about P (H) even if no reference class of trials can be
associated with the hypothesis H. However, upon further inspection, the import of the
challenge is diminished. First, it should be noted that the fractional-valued prior probabilities
(e.g., P (H) = .15) are not actually confirmed or disconfirmed themselves; they are merely
stepping-stones to integer-valued posterior probabilities representing truth or falsehood (e.g.,
P (H) = 0). In this sense, the theorems only show agreement for the kind of probabilities
that Carnap would call Probability1, as opposed to Probability2.
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Furthermore, these results leave the following question unanswered: why should the
agents agree about the likelihoods? As Hawthorne points out, it is in fact a typical feature
of scientific discourse that scientists agree on the evidential import of experimental results.
But we can distinguish two sources for these shared (Hawthorne calls them “intersubjective”)
likelihoods. One possible source is from statistical analysis of experimental data, in which
case the likelihoods have a frequency interpretation — they are the frequency of observing
the data E when repeating the experiment, assuming that the hypothesis H is true. In
this case, the objectivity can again be seen to originate in a frequency judgment. The other
possibility is that rather than originating in statistics, they represent subjective appraisals of
the evidentiary value of data — one of Hawthorne’s examples is how the similarity between
the coastlines of Africa and South America confirms the theory of continental drift. In
cases such as this, I consider that Bayesian probability does nothing to explain why different
agents should agree, even approximately, on any quantification of the evidentiary value.8 The
invocation of “likelihood” in cases like this seems to me to be only a metaphor for the strength
of evidence, having little to do with the corresponding statistical notion. In this sense,
Bayesian confirmation theory does not improve on non-quantitative accounts of scientific
consensus, e.g., “a scientific hypothesis is accepted once it is favored by a preponderance of
evidence.”

Finally, Earman describes convergence theorems based on Doob’s martingale conver-
gence theorem, which similarly show convergence to integer-valued posterior probabilities,
but without even the requirement of shared likelihoods. Instead, the accumulation of shared
evidence is represented through the technical device of an increasing filtration over the prob-
ability space of events. As in the previous case, I consider that the burden is on Bayesians
to say exactly what kind of shared evidence, if not frequency probability, this abstraction is
modeling. Until this is specified, the import of these theorems is metaphorical rather than
substantive.

The likelihood principle

In the previous section, I claimed that likelihoods are frequency probabilities of the form
P (E | H). But this is is not always strictly true — and the cases in which it isn’t are at the
core of a significant controversy in the philosophy of statistics, namely the debate over the
likelihood principle. Consider the following case [Royall, 2004]: a coin is flipped 20 times and
we observe 13 heads. Let Hθ be the hypothesis that the coin’s bias is θ, for some 0 ≤ θ ≤ 1.
What is P (E | Hθ)? Over the reference class of trials of the form “flip a coin 20 times”, the
frequency probability of observing 13 heads is

(
20
13

)
θ13(1− θ)7 = 77520 · θ13(1− θ)7. But over

8Indeed, we see something like this in the argument between the stereotypical evolutionist and the stereo-
typical creationist. The evolutionist sees the fossil record, cosmic background radiation, etc. as evidence
against creationism, while the creationist sees them as evidence of the creator’s subtlety. The Bayesian
confirmation theorist can rightly dismiss this as a pathological breakdown of scientific discourse — but the
apparatus of subjectivist Bayesianism does nothing to explain why the discourse breaks down in this case
and not in others.
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the reference class of trials of the form “flip a coin repeatedly until 13 heads are observed”, the
frequency probability of having to do 20 trials is

(
19
12

)
θ13(1−θ)7 = 50388·θ13(1−θ)7. It follows

that a large class of error-statistical methods that work directly with P (E | Hθ), including
p-value testing and confidence intervals, cannot interpret the data until it is decided which
reference class to use — and the decision has the potential to change statistical insignificance
into significance or vice versa. Another way to put it is that the interpretation of the data
depends on a counterfactual question about the experimental procedure: if the experimenter
had observed 13 heads over 18 flips, would she have stopped or continued flipping?

The intuition that these considerations should be irrelevant to the evidential meaning
of the observation itself — which seems to consist simply of the 13 heads and the 7 tails
— motivates the use of likelihood-ratio testing to interpret the data. In particular, given
two candidate biases θ and τ , P (E|Hθ)

P (E|Hτ )
is well-defined independently of the procedure that

generated E, because the constant factor divides out out of the expression. This also mo-
tivates the idea that the evidence is summarized by the function θ13(1− θ)7, that is to say,
P (E | Hθ) up to a constant factor. This is called the likelihood function. The likelihood
principle states that the likelihood function must be a complete description of the evidence.
As discussed previously, likelihood-ratio testing satisfies the principle while p-value testing
violates it. Moreover, a wide class of Bayesian methods satisfy the principle — intuitively,
because Bayesians are interested in P (H | E) = P (E|H)P (H)

P (E)
, and when P (E) is expanded

as a sum over alternate hypotheses
∑

H′ P (E | H ′), any constant factor associated with
P (E | H) divides out of the expression. Thus, the intuitive plausibility of the likelihood
principle is sometimes advanced as a justification for the use of Bayesian, as opposed to clas-
sical, statistics. Meanwhile, some frequentists (notably Mayo [2010]) reject the likelihood
principle, and a small group of likelihoodists (notably Royall [2004]) support methods which
satisfy the principle, but which are non-Bayesian in the sense that they do not make use of
prior distributions.

Does the frequency judgments interpretation imply a commitment to frequencies over
likelihoods, and thus the denial of the likelihood principle? My hope is that it succeeds in
remaining agnostic about the question. Likelihoods have evidential import precisely because
they are informative about frequencies — frequency probabilities are directly proportional
to likelihoods, and ratios of likelihoods are ratios of frequencies.

3.7 The third tier: Bayesian probability

I will use the term “probabilism” to describe the following view:

1. Uncertain knowledge and belief can (at least some of the time) be modeled by proba-
bilities (“credences”, “Bayesian personal probabilities”).

2. These credences can (at least some of the time) be measured by an agent’s disposition
to act or bet.
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3. Credences ideally satisfy the Kolmogorov axioms of probabilistic consistency.

4. The desirability of this consistency is demonstrated by the Dutch Book argument.

According to this definition, I consider myself a probabilist. It seems perverse to me to try
and dispense entirely with the idea of real-valued credence — at the very least, I really do have
propensities to bet on a variety of uncertain events that have no frequency interpretation,
and Bayesian subjective probability can assist me in pricing those bets. Moreover, inasmuch
as there is any kind of precision to my uncertain knowledge and belief, I am more sympathetic
to classical probabilism as a representation of that uncertainty than I am to other formal
techniques in knowledge representation, for example the AGM axioms. And it seems to me
that this system provides the most natural resolution of various problems related to partial
belief, such as the preface paradox. Hence the three-tiered interpretation accords a place to
Bayesian credences, defined in the standard way according to the Bayesian literature.

By contrast, I will use the term “Bayesian subjectivism” to denote the following expansion
of the view:

1. An agent has at all times credences for all uncertain propositions, representing implicit
dispositions to act, and forming a completed σ-algebra that is consistent according to
the Kolmogorov axioms of probability.

2. All knowledge can be assimilated to this framework, and all learning can be described
as conditional update.

I disagree intensely with this view.9 As a frequentist, I am perpetually surprised by the
insistence of Bayesian authors that I have credences for propositions I have never considered,
that I should elevate my unfounded hunches and gut instincts to the level of formalized
belief, or that I should apply the principle of indifference and believe completely uncertain
propositions to degree 1

2
. When confronted with dispositional or gambling analyses, which

allege that my credence can be measured by my propensity to bet, my response is that there
are many propositions on which I would simply refuse to bet, or deny that I have a precise
indifference price for a bet. And indeed, the rationality of this response is being defended
increasingly in the literature, under the heading of “imprecise” or “unsharp” credence — see
Elga [2010] or Joyce [2010] for arguments that there are situations in which precise credences
are unobtainable or unjustifiable.

Nor is the difficulty of eliciting precise credences the only foundational difficulty with
the Bayesian view. The intuition that Bayesian subjectivism as an account of all uncertain
reasoning represents an inherently unfeasible ideal, even at the aspirational level, is supported
by both philosophical and mathematical evidence. Examples include Garber’s observation
[1983] that taking the position literally implies the existence of a unified language for all of

9Binmore [2006], who has a similarly skeptical perspective, uses “Bayesian” to describe moderate views
of the first type and “Bayesianite” for the second.
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science (the project the logical positivists failed to complete), or Paris’s proof [1994] that
testing probabilistic beliefs for consistency is NP-complete.

However, as in the case of physical chance, a variety of conceptions of Bayesian probability
are enabled by the three-tiered interpretation. In particular, if you are a traditional Bayesian,
then you have Bayesian credences for a very wide range of propositions. Some of your
credences also happen to be frequency judgments, and some of those in turn happen to
be chances, but these distinctions are not of central importance to you. But the three-
tiered view also enables a much more skeptical attitude to Bayesian probability, one that
is identifiable with the skepticism of traditional frequentism: credences that have frequency
interpretations can take on definite values while credences that have no such interpretation
are unsharp or remain in a state of suspended judgment.

3.8 The transfer principles

I claimed that probabilities from the first tier transfer to the second, and from the second
to the third, the conjunction of these constituting a fragment of the Principal Principle.
However, I suspect that no one will be especially interested in contesting this aspect of
my argument — Bayesians already endorse the Principal Principle, and frequentists find it
perfectly acceptable to bet according to frequency ratios. So the purpose of my discussion
will be as much to clarify the underlying notions as to prove the principles.

Claim 1. Let E be an event. If an agent can assign E to a reference class R, she knows a
physical chance p for events in the class R, and she has no other relevant information, she
is obliged to have a frequency judgment of p for E and R.

This is more or less trivial. If we know that a class of events exhibits chance, then we
can model sequences of those events as I.I.D. draws from the relevant distribution.

Claim 2. Let E be an event. If an agent has a frequency judgment p for E (by virtue of
associating it with an unambiguous reference class R), and no other relevant information,
he is obliged to have a Bayesian subjective probability of p for E.

The argument for this is as follows: let the agent consider how to buy and sell bets for
a sequence of n events in the reference class R, for n arbitrarily large. He estimates that
a proportion p of these events will come true. Therefore, the fair price for the sequence of
bets is pn; any higher and if he buys the bets at that price, he will lose money according to
his estimate, any lower and he will lose money by selling them. But since R is epistemically
homogeneous for the agent, and in particular he has no information that distinguishes E
from the other events, each individual bet must have the same price. Thus, his fair price for
a bet on E is pn

n
= p. □

This argument should not be taken too literally, since it neglects (among other decision-
theoretic issues) the possibility of nonlinear utility in money. Rather, it illustrates the rela-
tionship between frequency judgments and Bayesian credences within some “normal domain
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of applicability” for the latter, in which credence and betting behavior do not significantly
come apart. It might be more accurate to say that inasmuch as the agent can be said to
have a degree of belief in E — and, as Eriksson and Hájek [2007] show, the precise meaning
of this is remarkably difficult to pin down — it should be p. However, in a behavioral or
decision-theoretic sense, this should not obligate the agent to maximize expected value or
utility with respect to p, rather the agent should be at liberty to be risk-averse, or even to
act according to a worst-case rule such as maximinimization.10

How much of the Principal Principle have we recovered? We have it for any event that
has a chance and belongs to a reference class. This captures most conventional uses of PP,
for example the radioactive decay of atoms (even Unobtainium). But we have seemingly
failed to recover it in the case of one-off events. For example, what happens when we have
come to understand an inherently unique macrophysical phenomenon as possessing a chance
of p? We cannot have a frequency judgment about it, so on the basis of the reasoning here
we are not constrained to have a credence of p in it.

This is a genuine problem and I cannot resolve it entirely here — a solution would
seemingly require a detailed analysis of the meaning of chance. As a last resort I can simply
defer to an existing justification of PP that doesn’t go through frequency judgments. But here
is a brief sketch in defense of the full PP on the basis of the frequency judgments view. PP
is inherently a principle of epistemology, not metaphysics, because it describes a constraint
on credences (which are necessarily an epistemic notion). Therefore it is appropriate to ask
how we would actually come to know the value of this one-off macrophysical chance — we
couldn’t have learned it from observed frequency data. The most natural answer seems to
be that we would learn it via a theoretical model in which the overall macrophysical chance
supervened on microphysical chances. And then this model would provide the basis for a
frequency interpretation of the chance: over the reference class of situations satisfying the
initial conditions of the model, the desired event would come to pass in some proportion p of
the situations. This doesn’t exhaust all possible methods by which we could come to know
p, but I hope it fills in a good portion of the gap.

Finally, notice the qualifications in the second principle: the reference class must be
unambiguous, and there must be no other relevant information. The second of these re-
quirements corresponds to the requirement of admissibility commonly associated with the
Principal Principle; if you have information about an individual event that informs you about
it beyond the background chance of success or failure, then PP is not applicable. (A simple
example: you are playing poker and your opponent is trying to complete a flush. You know
that the objective chance of this occurring is low, but you have seen him exhibit a “tell”, for
example, the widening of the eyes in excitement. Your credence that he has a flush should
increase to a value higher than that dictated by the PP.) There is a sophisticated literature
on when exactly PP is admissible, and I have no particular stance on the issue. Indeed, my
view is that both qualifications are features and not bugs. When admissibility is debatable

10See Buchak [2013] for a general decision rule, separating belief and betting behavior according to a
subjective risk function, of which risk aversion, risk seeking, and maximinimization are special cases.
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or the reference class is ambiguous, there is no fact of the matter about what should be
believed.

3.9 Populations, direct inference, and the Principle of

Indifference

White [2009] calls the second transfer principle “Frequency-Credence”. He claims that it
implies the generalized Principle of Indifference, i.e., the rule that if you are faced with
n mutually exclusive alternatives and have no information to distinguish them, you should
assume a credence of 1

n
for each one. An especially revealing case is an individual proposition

q concerning which you have no relevant information: since exactly one of {q,¬q} is true,
the Principle of Indifference indicates that you should assign P (q) = P (¬q) = 0.5. Such a
principle is of course anathema to frequentists, since it is applicable in cases when there is no
possible frequency interpretation of P (q). Thus, White’s purpose is to show that frequentist
squeamishness about the Principle of Indifference is incoherent. Here is his statement of
Frequency-Credence:

Claim 3. If (i) I know that a is an F , (ii) I know that freq(G | F ) = x (the proportion
of F s that are G), and (iii) I have no further evidence bearing on whether a is a G, then
P (a is a G) = x.

and here is his proof (≃ denoting epistemic indistinguishability):

Let F = {p1, p2, . . . , pn} be any set of disjoint and exhaustive possibilities
such that p1 ≃ p2 ≃ . . . pn. Let G be the set of true propositions. For any pi, (i)
I know that pi is an F ; (ii) I know that freq(G | F ) = 1

n
(exactly one member of

the partition {p1, p2, . . . pn} is true); and (iii) I have no further evidence bearing
on whether pi is G (I am ignorant concerning the pi, with no reason to suppose
that one is true rather than another). Hence by FC, P (pi is a G) = 1

n
, i.e.,

P (pi is true) =
1
n
, so P (pi) =

1
n
. □

White challenges opponents of the Principle of Indifference to identify a restriction of
Frequency-Credence that disallows this proof. Fortunately, the frequency judgments inter-
pretation and the second transfer principle qualify as just such a restriction. Moreover, the
precise way in which they block the conclusion reveals some interesting information.

Everything hangs on the following assertion in the proof: that freq(G | F ) = 1
n
. For

White, this is just the observation that exactly one of the possibilities p1 . . . pn is true, i.e.,
it is the finite frequency of true propositions among the available possibilities. But for the
second transfer principle to apply, this must constitute a genuine frequency judgment, and
without a reference class and a conception of repeated trial, a frequency judgment cannot
exist. In particular, if the alternatives are q and ¬q for a single-case proposition q with no
obvious notion of trial (“God exists”, “Chilperic I of France reigned before Charibert I”), no
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frequency judgment will be supported, and there is no obligation to set P (q) = P (¬q) = 0.5;
rather it is perfectly reasonable to be in a state of suspended judgment, or to have an unsharp
credence interval.

There is a subtlety here because the principle of indifference can indeed be a source
of legitimate frequency judgments. If for some genuine reference class of repeated trials,
each trial has the same n mutually exclusive outcomes, then it can be perfectly legitimate
to estimate a priori the long-run frequency of each one as 1

n
.11 This estimation may not

be justified or accurate, but that doesn’t matter; as discussed previously, what matters is
the possibility of confirming or disconfirming the judgment from empirical data. But even
in this case, we do not recover the principle of indifference as an obligation, merely as an
option. There is no obligation to formulate frequency judgments in the absence of evidence
— dispositional betting arguments try to elicit credences in this way, but obviously this
doesn’t go through for frequency judgments.

Direct inference

There is another subtlety: observed finite frequencies are not necessarily frequency judg-
ments! Consider the following scenario, discussed by Levi [1977] and Kyburg [1977]: of
the 8.3 million Swedes, 90% of them are Protestants. Petersen is a Swede. What should
our credence be that Petersen is a Protestant? Intuitively, there seems to be a frequency
probability that P (Petersen is a Protestant) = 0.9. Arguments of this form — going from
relative frequency in a population to a credence — are called direct inferences or statistical
syllogisms, and they are a significant aspect of our probabilistic reasoning. But if we try to
phrase this as a frequency judgment, we encounter problems. The Swedes are not a reference
class of events, and there is no obvious notion of repeated trial at work.

The situation seems analogous to the case of {q,¬q}. The intuition that we should have
a credence of 0.9 is seemingly grounded in the idea that Petersen is one of the 8.3 million
Swedes, and we are indifferent as to which one he is. But if we allow unrestricted reason-
ing of this kind, then it will apply to the two propositions {q,¬q} as well, and White’s
challenge will succeed after all — we will have conceded that making use of frequency
probabilities implies a generalized principle of indifference. Can we save the intuition that
P (Petersen is a Protestant) = 0.9 without conceding P (q) = P (¬q) = 0.5?

Here is a case that may clarify what the frequency judgments interpretation says about
this kind of reasoning. You are a contestant on a game show; a prize is behind exactly one of
three closed doors, and you must choose which one to open. What should your credence be
that the prize is behind the left door? Whatever this credence is, if it is to be associated with
a frequency judgment, it must be possible to clarify it with respect to the long-run behavior
of repeated trials. The natural conception of repeated trial here is that we would play the
game repeatedly and measure the proportion of times that the prize is behind the left door.

11In a Bayesian framework, this would be an uninformative prior, or indifference prior, over the n alter-
natives.
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And it is not clear that any particular frequency judgment is supported about this reference
class of trials — we might imagine that the show host has a bias towards one of the doors in
particular. Considerations like this support a view in which your credence that the prize is
behind the left door is indeterminate or unsharp, or in which you suspend judgment about
the question. Contrast this with the following claim: if you flip a fair coin with three sides
and use the result to decide which door to choose, you have a frequency judgment of 1

3
that

this procedure will yield the correct door, regardless of any bias the host might have. In this
case, a frequency judgment is fully supported, because the reference class is clear (flips of
the coin) and its properties are unambiguous, and there is a convincing case that the second
transfer principle obligates you to have a credence of 1

3
.12

However, it seems natural that we should wish the credence of 1
3
to be available at least

as an option for the rational agent faced with the original problem, and to be able to make
sense of this under the frequency judgments interpretation. I think this is possible via the
following expedient: we construct a model of the show in which the host selects the prize
door via a coin flip. Acknowledging that this model, like any model, may not be true, we
can use it to support a frequency judgment of 1

3
for each door. Returning to our original

problem, we can adopt a model in which the process by which we encounter Swedes is a
chance process, analogous to a lottery in which we are equally likely to draw any individual
Swede. This model then supports a frequency judgment of .9 for Protestants and a credence
of .9 that Petersen is one.

This technique — modeling unknown processes as chance processes — is the general idea
of how direct inference is supported under the frequency judgments interpretation. Does
it, as White alleges, imply a generalized principle of indifference? As discussed above, even
when the technique is applicable, it is not obligatory; the option of suspending judgment
(or having an unsharp credence) is left open. Moreover, the technique seems to get at
an important distinction between two kinds of indifference. It applies straightforwardly to
situations where one is indifferent between individuals (prize doors, Swedes), but not to
situations where one is indifferent between propositions (which king reigned first). Indeed,
to interpret the second kind of indifference within our framework, we would seemingly have
to talk about an indifference between possible worlds, and of a chance process deciding which
one we live in. At this point we have regressed to the kind of reasoning decried by C. S. Peirce,
of imagining that “universes [are] as plenty as blackberries” and we can “put a quantity of
them in a bag, shake well them up, [and] draw out a sample.” This kind of reasoning is
not frequentist and therefore it is appropriate that we cannot understand it on frequentist
terms.

12This distinction is closely related to the Ellsberg paradox, and to the decision-theoretic and economic
notions of ambiguity aversion and Knightian uncertainty.
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3.10 Hájek’s objections to frequentism

As I understand the frequency judgments interpretation, it avoids the bulk of Hájek’s ob-
jections simply by failing to be a frequentism in the classical sense of the term. Let F.n
denote his nth objection to finite frequentism, and H.n his nth objection to hypothetical
frequentism. It seems to me that most of his objections are straightforwardly dismissed by
one or more of the following concessions:

1. Not constraining frequency probabilities to be actual finite frequencies. This obviates
objections F.2, F.5, F.6, F.8, and F.12-15.

2. Not considering frequency probabilities to be determined by hypothetical infinite se-
quences of trials. This obviates objections H.1-6, H.8-9, and H.13-14.

3. Acknowledging the possible existence of physical chance. This answers objections F.3,
F.7, F.9, F.11, H.7, and H.10,

4. Acknowledging the legitimacy of Bayesian subjective probabilities. This answers ob-
jections F.10 and H.10.

Of the remaining objections: Hájek himself has subsequently repudiated F.1, which criti-
cizes finite frequentism on the grounds that it admits a reference class problem. As discussed
in section 3.5, Hájek now considers the reference class problem to affect every interpretation
of probability, and I fully concur. I take H.11 (which concerns paradoxes associated with
uncountable event spaces) to affect the Kolmogorov formalization of probability itself rather
than frequentism specifically. H.15, which says that frequency interpretations cannot make
sense of infinitesimal probabilities, I take to be a feature and not a bug.

The two remaining objections, F.4 and H.12, have a common theme — they say that
frequentism cannot make sense of propensity probabilities. This is a serious issue that the
three-tiered interpretation does not entirely address. In particular, here is Hájek’s thought
experiment from H.12:

Consider a man repeatedly throwing darts at a dartboard, who can either hit
or miss the bull’s eye. As he practices, he gets better; his probability of a hit
increases: P (hit on (n + 1)th trial) > P (hit on nth trial). Hence, the trials are
not identically distributed. [...] And he remembers his successes and is fairly
good at repeating them immediately afterwards: P (hit on (n+1)th trial | hit on
nth trial) > P (hit on (n+ 1)th trial). Hence, the trials are not independent.

Intuitively, all of these probability statements are meaningful, objective statements about the
properties of the man (or of the dart-throwing process as a whole). Yet by their nature, we
have difficulty in understanding them as statements about relative frequencies over sequences
of independent and identically distributed trials. Hájek is unimpressed with the reply that in
order to obtain a frequency interpretation of these probabilities, we should “freeze the dart-
thrower’s skill level before a given throw” and then consider hypothetical repeated throws by
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the frozen player. On one level, this notion of “freezing“ involves an appeal to a nonphysical
counterfactual. On another, relative frequencies seem irrelevant to the intuition that the
thrower has, before each throw, some single-case propensity to hit or miss the target. The
intuition here is analogous to the case of chance, except that there is no clear way to interpret
the dart-throwing system as subject to physical chance.

I can see no way for the three-tiered interpretation other than to resolutely bite this bullet.
That is to say, the three-tiered interpretation does not make rigorous the idea of propensity
probabilities that are not chances. For example, consider the example in Levi [1977] of
a glass bottle being struck with a hammer. Intuitively, we can assign a fractional-valued
probability to the event “the bottle breaks into 10 pieces”, even though by definition the
bottle can only be struck once. However, the three-tiered interpretation can only interpret
such a probability in one of two ways. Firstly, it can be interpreted from the “top down”,
as a chance, by identifying the probability with a chance posited by an underlying physical
theory. As discussed in section 3.3, depending on one’s preferred account of chance, this
number may represent either a measurement of physical indeterminism in the system, or it
may merely be an indispensable methodological posit. Alternately, the probability can be
interpreted from the “bottom up” as a frequency judgment, as a statement about what would
happen to the class of similar bottles when struck by similar hammers in similar ways. In
this I am agreeing with von Mises, who held that we cannot make sense of such single-case
assertions as “the probability that John will die in the next 5 years is 10%.”

In defense of this refusal with respect to Hájek’s dart-thrower, I can only say this: the
only way we were able to formulate this model in the first place was to observe the behavior
of multiple dart-throwers, and thus to reason about reference classes of darts players in
specific situations (e.g., immediately after hitting the bulls-eye). Furthermore, how would
we confirm the applicability of this model to any specific player? It seems that we would do
so via some sort of calibration test — and, as discussed in section 3.6, calibration is always
implicitly or explicitly dependent on some notion of frequency probability.

3.11 Advantages of the tiered interpretation

Statistical pragmatism

As discussed in section 3.6 and subsequently, the frequency judgments interpretation accu-
rately describes the distinction made in traditional frequentist statistics between the fre-
quency probabilities that attach to trials and procedures and the non-frequency probabil-
ities that describe confirmation of hypotheses. Thus, the three-tiered interpretation (with
frequency judgments as its middle tier) is a suitable foundation for statistical pragmatism
[Senn, 2011], i.e., for a worldview in which frequentist and Bayesian methods coexist. In
order to admit the use of Bayesian methods, the three-tiered interpretation acknowledges
the existence of non-frequentist prior probabilities. But it also formally distinguishes the
probabilities used by properly frequentist methods from those used by Bayesian methods;
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if it did not, frequentist methods would appear simply to be peculiarly defective Bayesian
methods. Methodologically, the three-tiered interpretation is a reconciliation between the
paradigms but not a capitulation.

Cromwell’s rule

A notorious problem for subjectivist Bayesianism is the difficulty associated with assigning
probabilities of 0 or 1. Let’s say you assign P (A) = 0. Then for any B, P (A | B) = P (A∩B)

P (B)
≤

P (A)
P (B)

= 0
P (B)

= 0, so you can never revise P (A) by conditioning on new information. The case

for P (A) = 1 is analogous, as is the situation when standard conditionalization is replaced
by Jeffrey conditionalization.

Thus, according to many interpretations, a strict Bayesian should never assign a prob-
ability of 0 to an event, no matter how unlikely; Lindley calls this requirement Cromwell’s
rule. But frequency judgments are not affected by this problem, because they can be revised
arbitrarily. Perhaps the clearest example is the case of estimating the bias of a coin, where
we admit a third event besides heads and tails: it is physically possible that the coin might
come to rest on its edge, or that the outcome of the flip might remain undetermined in some
other way. A strict Bayesian is apparently committed to having prior probabilities for all of
these events — and fixing P (H) = P (T ) = 0.5 entails a violation of Cromwell’s rule, since no
probability mass is left over for them.13 But under the frequency judgments interpretation,
there is no difficulty associated with revising a probability from zero to a nonzero value.

Perhaps questions of this kind are artificial, unrelated to genuine concerns of statistical
practice? On the contrary, they seem to correspond to actual methodological difficulties that
arise when adopting a strictly Bayesian perspective. Gelman and Shalizi [2012] describe how
a rigidly Bayesian outlook can be harmful in statistical practice. Since “fundamentally, the
Bayesian agent is limited by the fact that its beliefs always remain within the support of
its prior [i.e., the hypotheses to which the prior assigns nonzero probability]”, it is difficult
to make sense of processes like model checking or model revision, in which a model can be
judged inadequate on its own merits, even before a suitable replacement has been found.
They instead join Box [1980] and others in advocating a picture where individual Bayesian
models are subjected to a non-Bayesian process of validation and revision. Dawid [1982],
whose calibration theorem suggests a similar difficulty with the Bayesian agent being able
to recognize his or her own fallibility, is led also to an endorsement of Box. The point is not
that these statisticians are betraying Bayesianism, it is that their pragmatic interpretation
of Bayesian statistical methodology bears little resemblance to the worldview of the formal
epistemologist who endorses Bayesian confirmation theory.

13One standard technique for dealing with this is to leave a small amount of mass over for a “catch-all”
hypothesis, which is a disjunction over all seen and unseen alternate hypotheses. See Fitelson and Thomason
[2008] for an argument that this is false to scientific practice.
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Foundations of conditional probability

Bayesian probability proves its worth in dissolving paradoxes associated with partial belief.
Yet it is affected by its own set of paradoxes. I believe that the tiered interpretation, in
its capacity as a relaxation of strict Bayesian discipline, can dissolve some of these as well
— most notably, those in which Bayesian conditionalization is expected to subsume all
probabilistic model-building.

Hájek [2007] gives the following paradox. An urn has 90 red balls and 10 white balls.
Intuitively, P(Joe draws a white ball from the urn | Joe draws a ball from the urn) = .1.
But in the standard Kolmogorov interpretation of probability, conditional probability is not
a primitive notion but a derived notion, so in order for this statement to be true, we must
have P(Joe draws a ball and it is white) / P(Joe draws a ball) = .1. But neither one of these
unconditional probabilities appears well-defined on the basis of our assumptions. As Hájek
asks, “Who is Joe anyway?”

Hájek’s solution is to suggest that conditional probability is the true primitive notion and
that we should consider alternate (non-Kolmogorov) formulations of probability that elevate
it to its rightful place as such. But this seems to miss the mark. In particular, even though
P(Joe draws a white ball | Joe draws a ball) is well-defined, P(Joe draws a white ball | Bill
flips a coin) is not. Moreover, we can recover unconditional probability from conditional
probability, for example by conditioning on independent events (e.g., P(Joe draws a white
ball | a distant radium atom decays)) or on tautologies (e.g., P(Joe draws a white ball |
p ∨ ¬p)). It seems that conditionalization is orthogonal to the true problem: when does a
situation support a probabilistic analysis?

Under the tiered interpretation of probability, this problem is confronted directly and
admits a natural resolution. The fact that Joe is drawing a ball from the urn provides
enough information to support a model and a frequency judgement: it calls into existence a
probabilistic model in which we have an extremely simple event space: “Joe draws a white
ball” or “Joe draws a red ball”. In this model, the value from our intuition appears as
an unconditional probability: P(Joe draws a white ball) = .1. Saying this is no more and
no less than saying that if Joe repeatedly draws balls from the urn with replacement, the
natural estimate of the proportion of white balls is .1. In general, the process of assigning an
event E to a reference class and then identifying P (E) with the frequency judgment for that
class is a more natural description of our probabilistic model-building than a strict Bayesian
conditioning view.

Hájek’s other paradox in the article, that of conditioning on events of probability zero,
admits a similar resolution. Hájek has us consider a random variableX uniformly distributed
on [0, 1]. Intuitively, P (X = 1

4
| X = 1

4
∨X = 3

4
) equals 1

2
. But if we expand this using the

standard definition of conditional probability, we get
P (X= 1

4
)

P (X= 1
4
∨X= 3

4
)
= 0

0
, which is undefined.

Once again, the problem seems to be that we are taking an unnecessarily narrow view
of the model-building process. It is natural that we should try to transform a continuous
distribution into a discrete one by setting P (X = a) = f(a), where f is the density function,
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and renormalizing — this has a natural interpretation as the outcome of considering P (|X−
a| < ϵ) for smaller and smaller values of ϵ.14 When applied to Hájek’s uniform distribution,
with a ranging over {1

4
, 1
2
}, this yields the expected answer P (X = 1

4
) = P (X = 3

4
) = 1

2
. It

should not be considered problematic that this model transformation cannot be interpreted
as a conditional update.

Sleeping Beauty

The Sleeping Beauty Paradox, popularized by Elga [2000], goes as follows. A fair coin, i.e.,
one that lands heads with an objective probability of 1

2
, is flipped on Sunday, and then

Beauty is put to sleep. If it lands heads, Beauty is awakened on Monday, interviewed, his
memory is wiped and he is put back to sleep. If it lands tails, this is done once on Monday
and once on Tuesday. Beauty has just awoken. What should his credence be that the coin
landed heads? The “halfer” position is that since the coin is fair, P (H) must equal 1

2
. But

if the experiment is repeated many times, only 1
3
of Beauty’s awakenings will be because the

coin landed heads — hence the “thirder” position that P (H) = 1
3
. Which of these is the

correct credence?
Sleeping Beauty is a vexing problem for Bayesian epistemologists and has generated a

rich literature. But, as Halpern [2004] observed, the paradox is immediately dissolved by a
frequentist analysis: it is a pure instance of reference class ambiguity. If Beauty analyzes his
situation using the reference class of all coinflips, then the probability of a head is 1

2
. If he

analyzes it instead using the reference class of all awakenings, the probability of a head is 1
3
.

Under the tiered interpretation, there are thus two possible frequency judgments, one with
value 1

2
and one with value 1

3
. But since the reference class is ambiguous, neither one passes

down to become a credence. For a frequentist (or anyone who is free to suspend judgment
about credences), the problem is simply one of vagueness.

This seems unsatisfying. After the frequentist throws up his hands in this way, how
should he bet? As Halpern shows, the fact is that there exist Dutch Books against both
“halver” and “thirder” agents, but they are not true Dutch Books: they rely on the ability of
the bookie to vary the number of bets that are bought and sold according to the number of
awakenings. Therefore the ideal betting behavior is not fixed, but depends on the capabilities
of the adversary.

Beauty has genuine probabilistic knowledge about his situation: over the long run, half
of all fair coin tosses are heads, and a third of his awakenings are because the coin landed
heads. And he can, in fact, use this knowledge to buy and sell bets on H. For example,
Beauty can buy and sell bets on heads on Sunday, and the fair price for those bets will
be 1

2
. And if Beauty has an assurance that the exact same bets on heads will be on offer

every time he wakes up (perhaps they are sold from a tamper-proof vending machine in the
laboratory), the fair price for those bets will be 1

3
. What Beauty cannot safely do is fix a

single indifference price and then buy and sell bets at that price, i.e., act in accordance with

14The relevant topic in analysis is known as “disintegration of measure”.
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the traditional operational definition of credence. Beauty can have probabilistic knowledge
about H without having a credence.15

White’s coin puzzle

White [2009] is committed to the Principle of Indifference, in particular as an alternative to
the suspension of judgment about credences. His thought experiment of the “coin puzzle”
is intended to show that suspension of judgment is unsatisfactory. As with the previous
discussion of White in section 3.9, the onus is on the frequentist to reply.

You haven’t a clue as to whether q. But you know that I know whether
q. I agree to write “q” on one side of a fair coin, and “¬q” on the other, with
whichever one is true going on the heads side (I paint over the coin so that you
can’t see which sides are heads and tails). We toss the coin and observe that it
happens to land on “q”.

Let P denote your credence function before seeing the flip, and P ′ your credence function
afterwards. Let H denote the event that the coin lands heads. White notes that the following
statements are jointly inconsistent:

1. P (q) is indeterminate, i.e., before seeing the flip, you have no precise credence that q.
(One natural formalization of this is to say that P (q) is interval-valued, e.g., P (q) =
[0, 1]. This can be read as “my credence in q is somewhere between 0 and 1.”)

2. P (H) = 1
2
, i.e., before seeing the flip, you have a precise credence of 1

2
that the coin

will land heads.

3. P ′(q) = P ′(H). This should be true because after seeing the flip, q is true if and only
if the coin landed heads.

4. P (q) = P ′(q). This should be true because seeing the flip provided no information
about whether q is in fact true. (Note that this would be false for a biased coin.)

5. P (H) = P ′(H). This should be true because seeing the flip provided no information
about whether the coin landed heads. (Note that this would be false if you had mean-
ingful information about p, in particular a a sharp credence of anything other than
1
2
.)

Put these together and we derive P (q) = P ′(q) = P ′(H) = P (H) = 1
2
, contradicting

claim 1. White’s conclusion is to deny that 1 is rationally permissible — rather, we should
begin with a sharp credence of P (q) = 1

2
via the Principle of Indifference. What should the

15I believe that Beauty will be protected against a variety of adversaries by having an unsharp credence
interval of [ 13 ,

1
2 ], but formulating and proving this is beyond the scope of this paper.
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proponent of unsharp credences do instead? Joyce [2010] moves instead to deny claim 5 and
set P ′(H) to equal P (q). Paradoxically, this causes an dilation of your credence in P (H) —
your P (H) was precisely 1

2
but your P ′(H) has become unsharp or interval-valued. Seeing

the coin land has apparently reduced your knowledge!
My response to the coin puzzle is to affirm Joyce’s view and accept dilation, combined

with the rule (maximin expected utility) given by Gärdenfors and Sahlin [1982] for betting
on unsharp credences. According to this view, the correct action for an unsharp agent with
credence interval P (q) = [0, 1] is as follows: before seeing the outcome of the flip, it is
permissible to buy and sell bets on H for 0.5, to buy bets on p for prices ≤ 0, and to sell
bets on p for prices ≥ 1. After the outcome of the flip has been revealed, your betting
behavior for H should dilate to match your behavior for p. But, on my view, it is only your
credences that dilate — your frequency judgment that P (H) = 1

2
is exactly the fragment of

your knowledge that is not destroyed by seeing the p-side of the coin come up.
This is the “conservative betting” behavior that White discusses and rejects. His argu-

ment against it uses a scenario of long-run betting on repeated instances of the coin puzzle,
with a series of coin flips heads i and a different unknown proposition pi each time:

On each toss you are offered a bet at 1:2 [i.e., for a price of 1
3
] on heads i once

you see the coin land pi or ¬pi. Since your credence in heads i is mushy at this
point you turn down all such bets. Meanwhile Sarah is looking on but makes
a point of covering her eyes when the coin is tossed. Since she doesn’t learn
whether the coin landed pi her credence in heads i remains sharply 1

2
and so takes

every bet [....] Sure enough, she makes a killing.

This hinges on an ambiguity in how exactly the bets are being offered. If you know for
certain that the bets will be offered, i.e., if you have a commitment from your bookmaker
to sell the bets, then that is equivalent to the bets being offered before the coin is tossed,
and you are justified in buying them. But if your bookmaker can choose whether or not to
offer the bet each time, you would be very ill-advised to buy them, since he can then offer
them exactly in the cases when he knows that ¬pi, and you will lose your $1

3
every time!

This is exactly the situation that unsharp credences are intended to prevent: if you suspend
judgment and refuse to bet, you can’t be taken advantage of. And once the pi or ¬pi side
of the coin has been revealed, you can be taken advantage of by someone who knows the
truth about pi, so you should stop buying and selling bets.16 But what has changed is your
betting behavior about H, not your knowledge about H. Your knowledge is exactly your
frequency judgment and it remains intact.17

The coin puzzle is a powerful illustration of the following fact: knowledge about proba-
bility, the intuitive idea of “credence”, and betting behavior can all come apart. Thus, it is

16There is, however, no need to revoke or cancel any existing bets, as White alleges in a subsequent
thought experiment.

17Ultimately, the optimal long-run betting behavior in the iterated coin game has a characterization in
terms of frequencies that outruns even the characterization given here based on MMEU. I hope to discuss
this in more detail in a companion paper.
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only paradoxical under interpretations of probability in which they are synonymous, or in
which their synonymity is taken to be an ideal. My hope is that the three-tiered interpreta-
tion can distinguish them in a natural way, and in a way that affirms the core intuitions of
frequentism.
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Appendix: towards a convergence theorem for

frequency judgments

My objective here is to conjecture a convergence theorem that, if true, would offer a distinc-
tive kind of philosophical evidence for the claim given in section 3.5: that given a sequence
of repeated trials of an event, two agents can eventually come to agreement about their
frequency judgment for that event, even if they have different Bayesian priors, or if one is a
frequentist and the other a Bayesian.

Why is this conjecture distinctive? It is not a hypothesis of the theorem that there exists
a true limiting relative frequency for an event E, nor that Nature can promise us a stream
of likelihoods that will differentiate E from its negation. Rather, it is a methodological
assumption of the participants in the debate that repeated trials of E can be modeled as i.i.d.
draws from a single distribution. The conjecture then says that they can agree in advance
to perform some number of trials, and as long as they continue to accept this assumption
after the trials have been performed, they will come to agreement in their fractional-valued
frequency judgments for E. (There is an interesting question about what happens when the
outcomes of trials undermine this assumption — for example, if they exhibit large blocks of
E’s followed by large blocks of E’s — but that is outside the scope of the result.)

Intuitively, any statistical method based on likelihoods should exhibit this convergence
property. However, different formalizations run into different formal difficulties. For example,
consider two agents with distinct frequency judgments a < b for E. Intuitively, these two
judgments can be differentiated by likelihood — if the observed relative frequency of E comes
out closer to a than to b, the likelihood of this observation is higher given the hypothesis
that a is the correct relative frequency, so the evidence supports a. But in fact, there exists p
with a < p < b such if the true frequency of E is p, the hypotheses P (E) = a and P (E) = b
will be indistinguishable by likelihood ratio testing — a and b will be equally bad estimates
of the true value p.18 Therefore, we cannot formulate the theorem in terms of agreement for

18In fact p is given by ln(1−b)−ln(1−a)
ln a−ln b+ln(1−b)−ln(1−a) .
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point estimates.
A natural alternative is to consider interval estimates — we want to show that the

frequentist and Bayesian interval estimates will converge to each other, and moreover will
shrink so as to falsify either one or both of the agents’ original frequency judgments.

Conjecture 1. Fix an event E, an initial point estimate pf of P (E), and a Bayesian prior
τ (possibly satisfying some additional conditions) over possible values of P (E) with mean
E[τ ] = pb. Fix a confidence level γ. Then there exists n such that after n i.i.d. trials of E, the
frequentist binomial γ-confidence interval [fl, fh] for P (E) and the γ-credible interval [bl, bh]
for P (E) given by Bayes-Laplace estimation with τ as the prior will satisfy the following
properties:

1. (Agreement.) [fl, fh] ∩ [bl, bh] ̸= ∅.

2. (Falsification.) At most one of pf and pb is in [fl, fh] ∪ [bl, bh].
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Chapter 4

Computational complexity theory and
the normativity of rationality

Abstract

Interpreted literally, Humean decision theories entail a variety of rational obligations re-
lated to consistency — not only to be consistent oneself, but to distinguish consistency
from inconsistency. Given fairly modest hypotheses from computational complexity theory
(specifically, the existence of one-way functions), I derive stark limitations on the possibility
of meeting these obligations. In particular, a physically realizable agent can generate in-
stances of decision problems, together with their solutions, such that no physically realizable
adversary can improve on random guessing in solving them. I argue that these results fatally
problematize the concept of rational obligation, and discuss the remaining possibilities for a
computationally relativized theory of rationality.

4.1 Introduction

The argument I propose to make is fairly simple. On widely accepted Humean decision-
theoretic accounts of individual rationality, such as the Savage axioms, an agent may be in
a position such that they are rationally obligated to choose a specific action in response. In
other words, the correct choice of action is logically determined by the axioms of rationality,
which are putatively normative; an agent who chooses incorrectly is violating a norm of
rationality. Yet under our best available mathematical and physical accounts of computation
— specifically, the so-called extended Church-Turing thesis — it will not, in general, be
possible for agents existing in our physical universe to make these optimal choices. For this
would require the agent to be able to solve problems that are, according to those models
of computation, intractable. But “ought” must imply “can”; therefore, the accounts of
rationality cannot be normative in the way they claim.
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This is, on its face, a straightforward argument — but it also appears vulnerable to
straightforward objections. For Bayesians have long been aware of the problems that com-
putational concerns pose for theories of ideal rationality. There is an extensive literature
on them (under the headings of “the problem of old evidence” and “the problem of logical
omniscience”) and they are not generally considered fatal to the project of characterizing
ideal rationality in Bayesian terms. How, then, does my proposed critique differ from others
that have been advanced?

In brief, I think the computational critique can be sharpened, perhaps paradoxically, by
considering easier computational problems — problems that are computable, in the sense
of computability theory, but not tractable, in the sense of computational complexity the-
ory. This approach yields three principal benefits. First, it undermines a metaphor that
is persuasive in the computability setting — the metaphor of incrementally approaching
ideal rationality. Second, it shows clearly how computational issues are not separable from
decision-theoretic formalisms, but emerge from them naturally: we will see how, under
popular decision-theoretic frameworks, intractability arises immediately in a class of simple
betting games. Finally, an unproven but widely believed asymmetry in the laws of compu-
tation gives us instrumental reasons to take the problem seriously. Unlike the problems that
inspired the classical literature on logical omniscience, we have a clear picture of how an
adversary — not an oracle or Newcomblike demon with unbounded computational power,
but limited in the same ways as the agent — can easily generate problem instances that the
Humean agent cannot solve.

Making this argument equires borrowing heavy machinery from computational complex-
ity theory. (The machinery is so powerful, in fact, that the main results here follow readily
from well-known theorems: the Cook-Levin and Goldreich-Levin theorems.) These tech-
niques have not yet become commonplace in analytic philosophy in the way that logical and
probabilistic methods have become the basic toolkit for formal epistemologists. So part of
what I am arguing here — following the suggestion of Aaronson [2011] — is that they deserve
to be. Computational complexity theory can inform the practice of epistemology because
it provides a rigorous way of thinking about thinking — specifically, thinking about the
cost of thinking — that transcends any particulars of human cognition or the technological
augmentation thereof.

4.2 A class of decision problems

The following scenario is adapted from Elga [2010]. Fix a propositional atom A: this propo-
sition may be true or false, and you may have arbitrary knowledge concerning its truth value
(perhaps you know A, or you know ¬A, or you have a Bayesian subjective probability esti-

mate P (A) =
√
2
2
, or you have some other kind of knowledge about it, or you know nothing

at all). You are offered two bets concerning A, B1 and B2 — you may take either, none,
or both. B1 costs $1 and pays $3 if A is true, and B2 costs $1 and pays $3 if A is false.
Elga argues that on any reasonable theory of rational obligations (barring a few pathologies,
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such as being indifferent to money) it is an obligation of rationality that you must accept
at least one of the two bets. This is because accepting no bets yields $0 and is therefore
dominated by accepting both bets, which yields a certain $1, no matter the truth value of
A. You might have reason to accept exactly one bet — for example, you might know that
¬A, and therefore accept exactly B2 — but accepting no bets is irrational.

This argument is extremely persuasive and I think it sets out a clear baseline: if there
are such things as rational obligations, this is one. The question I am interested in is,
where then do these obligations end? Let us now introduce an extended class of Elga-like
problems. Consider a setting in which there are n total propositional atoms, p1, p2 . . . pn.
We now consider a “book” consisting of m bets; each bet Bi costs $1 and pays $(m + 1) if
a formula qi1 ∧ qi2 ∧ qi3 is true, where each qij is a literal, i.e. either a propositional atom or
its negation. For example, B4 might pay out on p3 ∧ ¬p6 ∧ ¬p9. As before, the agent may
select any subset of the bets, including the empty set.

Now, on a typical theory of normative rationality, many different preferences over these
bets will be permissible, depending on the subjective attitudes of the agent. For example, it is
compatible with the Savage axioms for an agent to have linear utility in money and to adopt
the uninformative prior over the pi, that is, to consider them mutually independent, each
with probability P (pi) =

1
2
. In this case, the agent’s Savage-rational betting behavior is very

simple: each bet independently contributes an expected utility of (m+1) · 1
8
+(−1) · 7

8
= m−6

8
,

and in the case where m > 6 it is rationally obligatory to accept every bet (indeed, for large
m they are quite a good deal).

The problem that concerns me is this: according to some theories of rationality, an agent
may have attitudes on which it is not rationally permissible to evaluate the bets indepen-
dently — rather, the agent may have a rational obligation to consider their interrelationship.
For the bets as constructed have the following property: they yield a sure profit exactly in
the case where the formula:

F =
∨

1≤i≤m

(qi1 ∧ qi2 ∧ qi3) (4.1)

is a propositional validity (i.e., is true under every possible truth assignment to the atoms
pi). To see this, suppose first that the formula is false: then every clause of it is false and
every bet loses, so accepting any nonempty subset of the bets yields a loss. Conversely, if the
formula is true, then at least one clause of it is true; when all the bets are bought together,
the bet corresponding to the true clause yields proceeds of m+1, relative to an outlay of m
to buy all the bets.1

Now, on many Humean accounts of rationality, an agent may be rationally obligated to
buy a nonempty set of bets if and only if they yield a sure profit. The agent’s reasons may
be pragmatic or epistemic; an example of each will make the situation clear. Consider first
a Savage-rational agent (one guided by the norm of expected utility maximization, or EUM)
with the uninformative prior over the Pi, but the following utility function in money:

1This is the sense in which these betting books extend the Elga case: the Elga case corresponds to the
simpler propositional valiidity (A) ∨ (¬A).
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u(x) =

{
x if x ≥ 0

x−m3 · 2n if x < 0
(4.2)

This utility function is free of obvious pathologies (for example, it is monotonic upwards
in money).2 But it is constructed such that if F is not a propositional validity, the expected
utility of any nonempty subset of bets is negative. To see this, note that if F is not a
propositional validity, the probability that it is false is at least 1

2n
, i.e. the probability

mass assigned to a single non-satisfying truth valuation by the agent’s uninformative prior.
Meanwhile, the maximum yield from any subset of bets is at most m(m + 1), which is
smaller than m3 for sufficiently large m. So the possibility of losing even $1 “swamps,” in
expectation, the positive utility from even the largest possible profit. So if F is not a validity,
the agent has a rational obligation not to buy any bets, but if F is a validity, the agent has
an obligation to buy some nonempty subset of bets.3

Alternately, consider the “maximin expected utility” (MMEU) framework of Gärdenfors
and Sahlin [1982]. Eliding details which are not relevant to our case, MMEU is a Humean
framework that relaxes Bayesian constraints on knowledge representation to allow “unsharp”
credences, for example, interval-valued credences P (A) = [l, h] that are interpreted as “my
credence in A is somewhere between l and h.” Then, each action can be valued according to
its minimal expected utility, i.e. the minimum value of its expected utility across all sharp
credences possible under the unsharp credence constraints. For example, if P (A) = [.4, .7]
and the agent has linear utility in money, a bet that pays $1 on A has an indifference price
of $0.4, and a bet that pays $1 on ¬A has an indifference price of $0.3.

Consider an agent who adheres to MMEU and has linear utility in money, but whose
interval-valued credence in each pi is [0, 1]. If F is a propositional validity, then there is a
rational obligation to accept a nonempty subset of bets (the full package of bets yields a profit
of at least $1, so 1 is a lower bound on the minimum expected utility of the whole package;
buying no bets has a minimum expected utility of 0 and is therefore disallowed). But if F
is not a propositional validity, then there is at least one non-satisfying assignment S, and
the space of possible credences includes one that assigns probability 1 to that assignment.
Therefore, for any nonempty package of bets, its minimum expected utility is at most its
expected utility under S, which is −m. This entails a rational obligation to accept no bets.

One may object to the use of extremal credences here. “Cromwell’s Rule”, so-called,
states that agents should never assign (sharp, real-valued) credences of 0 to any event that
is logically possible, because such credences cannot be updated by conditionalization.4 An
extension of the rule to interval-valued credences might rule out credences of the form [0, 1].

2As defined, it is discontinuous; however, one may substitute any continuous or C∞ function that agrees
with it on integer values of x, since in this scenario only integer amounts of money are possible.

3The full set of bets will have positive expected utility; however, the agent’s obligation may apply to
some proper subset of the bets, since a proper subset of the clauses may form a propositional validity in
isolation.

4Bayes’ rule implies that if P (A) = 0, P (A | B) = 0 for any B — so no matter what evidence the agent
is presented with, they are unable to change their mind.
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But the appeal to such credences is inessential to the argument, because interval endpoints
sufficiently close to 0 and 1 will also exhibit the problem. It suffices to choose ϵ satisfying

0 < ϵ < 1−
(

1

1 + 1
m

) 1
n

(4.3)

and then to replace [0, 1] with [ϵ, 1− ϵ]; see Section 4.9 for a proof.
The potential obligation of rationality we have identified — the ability to recognize

propositional validities — appears modest. But according to our best understanding of
physical computation, it is too great to bear. To understand why, it is necessary to introduce
some notions from computational complexity theory.

4.3 Computational complexity theory

Unlike recursion (or “computability”) theory, in which the main objects of study are problems
that cannot be solved by any computer, computational complexity theory studies the relative
hardnesses of problems that computers can solve. Speaking very loosely, the problems we are
ordinarily accustomed to solving with computers (arithmetical operations, sorting, shortest
paths in maps, etc.), are in the complexity class P, meaning that they can be solved within
a time that is polynomial in the size of the input.

There is a natural class of prima facie harder problems, known as NP. Intuitively, prob-
lems in NP have the following form: they can be computed by an algorithm that “guesses” a
solution from an exponential search space, then verifies it in polynomial time. The canonical
problem of this type is SAT, or Boolean satisfiability: the question of whether a formula of
propositional logic is true under some assignment of truth values to the atoms. Checking
whether a particular assignment satisfies the formula is easy (i.e., polynomial-time), but
given n atoms, there are 2n possible assignments overall — thus, the brute-force solution to
SAT requires time at least exponential in the size of the input. P is clearly contained in
NP. Although it is strongly suspected that in fact P ̸= NP, this has not been proven; it is
considered one of the major unsolved problems in contemporary mathematics.

The “hardest” problems in NP are called NP-complete. Their defining characteristic is
that every problem in NP is reducible to them, so if any of them were discovered to be
in P, it would imply P = NP. (Specifically, for any NP-complete problem Q, there is a
polynomial-time many-one reduction, or Karp reduction, from any problem in NP to Q.)
Problems outside NP may be NP-hard, intuitively, at least as hard as NP-complete problems.
(Formally, Q is NP-hard if there is a polynomial-time Turing reduction, or Cook reduction,
from any problem in NP to Q.)

SAT is NP-complete. It has subproblems called k-SAT that are also NP-complete:

Theorem 3 (Cook-Levin, Karp). A literal is a propositional formula of the form a or ¬a,
i.e., a positive or negated atom. Let a k-ary disjunction be a disjunction of k literals; likewise
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for k-ary conjunctions. For k ≥ 3, the problem k-SAT of determining the satisfiability of
conjunctions of k-ary disjunctions is NP-complete.

I will idiosyncratically refer to the problem of deciding whether a propositional formula
is a tautology as VAL (for “validity”). The specific form of VAL where the formulae are
disjunctions of 3-ary conjunctions of literals (by analogy with 3SAT) will be called 3VAL.
VAL and 3VAL are unlikely to be in NP (they naturally fall in the class co-NP instead), but
since they are the complement problems of SAT and 3SAT, they are as hard:

Proposition 1. VAL and 3VAL are NP-hard, and any lower bounds on the running time
of SAT and 3SAT (respectively) apply to them as well.

Proof. Assume a lower bound Ω(f(n)) for 3SAT, but an asymptotically faster algorithm
for 3VAL that is O(g(n)) (i.e. with g(n) = ω(f(n))). Take an instance of 3SAT of the form:

(a ∨ b ∨ ¬c) ∧ (¬b ∨ d ∨ e) . . .

and compute its negation:

(¬a ∧ ¬b ∧ c) ∨ (b ∧ ¬d ∧ ¬e) . . .

Apply the algorithm for 3VAL, then invert the answer (a formula is satisfiable iff its negation
is not a validity). The transformation is polynomial-time, so this is a Cook reduction from
3SAT to 3VAL. Moreover, the transformed formula has the same number of variables and
clauses as the original, and we invoked the algorithm exactly once, so we have an O(g(n))
algorithm for 3SAT, contradicting the lower bound.

The proof for SAT and VAL is similar. □
What, then, is known about time lower bounds on SAT and 3SAT? Here the exponential

time hypothesis of Impagliazzo and Paturi [2001] is relevant. It has various forms, but in
general it says that the hardest NP-complete problems cannot be solved in subexponential
time, i.e., 2o(n). For example, O(2

√
n) is considered subexponential under this definition, but

O((
√
2)n) = O(20.5n) ∈ 2O(n) is not, even though both are asymptotically faster than O(2n).

As with P ̸= NP, the ETH is unproven but widely believed.

Conjecture 2 (Exponential time hypothesis). For each k, let sk be the infimum (greatest
lower bound) of the set of reals {δ | k-SAT is solvable in O(2δn)}. For k ≥ 3, sk > 0.

We have known upper bounds on s3, the best due to Moser and Scheder [2010]:

Theorem 4. 3-SAT is solvable in O((4
3
+ ϵ)n) ≈ O(20.416n), for arbitrarily small ϵ > 0.

Consequently, s3 ≤ 0.416.

So there are solutions to 3-SAT that asymptotically outperform brute force, despite still
being exponential.5 But in the general case, we have a (slightly stronger again) conjecture
by the same authors:

5In passing, although the ETH only talks about deterministic algorithms, the best known randomized
algorithms for k-SAT are also exponential.
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Conjecture 3 (Strong ETH). limk→∞ sk = 1.

The Strong ETH says that for larger and larger values of k, the optimal solution of k-SAT
regresses progressively to the brute-force O(2n) solution that tests all possible assignments.

We can now restate in complexity-theoretic language the results proven in section 4.2:

Definition 3. Let DUTCHBOOK be the following decision problem. Given a book of propo-
sitional bets over n atoms, does there exist a package of bets that yield a profit under all 2n

outcomes?

I will refer to such books as “Dutch books”, and to bets lacking this property as “co-
herent books,” because they correspond respectively to incoherent and coherent probability
distributions.6

Proposition 2. 3VAL is Karp-reducible to DUTCHBOOK, and 3SAT is Cook-reducible to
DUTCHBOOK; therefore DUTCHBOOK is NP-hard.

Proof. A 3VAL instance has the form∨
1≤i≤m

qi1 ∧ qi2 ∧ qi3

where the qij are literals. Consider the betting book with bets B1, B2 . . . Bm, such that each
bet Bi costs $1 and pays $(m + 1) if qi1 ∧ qi2 ∧ qi3 is true. As discussed in Section 4.2, this
book is Dutch if and only if the original formula is a validity; this is a Karp reduction of
3VAL to DUTCHBOOK. For the Cook reduction of 3SAT to DUTCHBOOK, one combines
this with the Cook reduction of 3SAT to 3VAL given in proposition 1: negate the 3SAT
formula, convert the resulting 3VAL formula to a betting book, apply the algorithm for
DUTCHBOOK, and negate the answer. □

This result has long been known in the literature; Paris [1994] describes it as “folklore.”7

Hardness results for various natural problems in the Savage framework follow immediately.

Corollary 3. Given an oracle for an agent’s preferences over acts within the Savage frame-
work, determining whether those preferences are consistent with the Savage axioms (i.e.
whether there exist a subjective probability distribution and utility function that represent
them) is NP-hard.

6The following heuristic is useful guidance through the twists and turns of the reduction arguments:
Dutchness always corresponds to a universal quantifier (the validity or unsatisfiability of a propositional for-
mula, the nonexistence of a coherent probability distribution, etc.) and coherence to an existential quantifier
(the existence of a satisfying or falsifying propositional assignment, the existence of a coherent probability
distribution and utility function, etc.).

7Paris proves further that the complement problem of DUTCHBOOK (“is this betting book coherent”)
is actually contained in NP, making it NP-complete and DUTCHBOOK co-NP-complete.
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Proof. Take an arbitrary 3SAT formula, negate it, and convert it to a betting book via
the technique in proposition 2. Consider an agent who strictly prefers more money to less8,
and when faced with this book, strictly prefers the empty package of bets to the package
of all the bets. This agent can be represented by a subjective probability distribution and
utility function if and only if the original 3SAT formula is satisfiable. (If the formula is
unsatisfiable, then the book is Dutch and any expected utility maximizer with a strictly
increasing utility function must strictly prefer the package of all bets. Conversely, if the
formula is satisfiable, then there exist distributions and utility functions that model the
agent, e.g. a linear utility function combined with a distribution that assigns probability 1
to the satisfying assignment.) This yields a Karp reduction of 3SAT to the decision problem
of whether such a distribution and utility function exist. □

One might ask instead: if we are guaranteed that the preferences are consistent, does the
problem of extracting their Savage representation become tractable? It does not:

Proposition 3. Assume that RP ̸= NP. Then there is no polynomial-time algorithm that
takes as input a Savage-consistent set of preferences, and outputs a (polynomial-time com-
putable representation of a) utility function and (P-samplable representation of a) subjective
probability distribution that represents those preferences.

I will sketch the argument here; a rigorous proof is deferred to appendix 4.11, since it
involves introducing some technical definitions that are not otherwise relevant. First, we
observe that given a 3SAT formula that is guaranteed to be satisfiable, the function problem
of computing a satisfying assignment is still intractable; if it were tractable, one could feed in
an arbitrary formula and verify whether the output is in fact a satisfying valuation, thereby
deciding 3SAT in the general case. Now, given a satisfiable 3SAT formula, we construct
preferences for the agent that constrain the subjective probability distribution to assign
P (qi1 ∧ qi2 ∧ qi3) = 0 for each clause of its negation. It follows from this that the agent
must assign probability 1 to assignments that satisfy the formula. Since the agent “knows”
at least one satisfying assignment, we can make him “tell” us; we will be able to recover
a satisfying assignment, even given relatively weak assumptions about how the probability
distribution is represented.

Proposition 4. Given an arbitrary betting book, subjective probability distribution, and util-
ity function as inputs, computing the action that maximizes subjective expected utility is
NP-hard.

Proof. Take an arbitrary 3SAT formula, negate it, and convert it to a betting book as
above. Combine it with the uninformative prior over the propositional atoms, and the utility
function from equation (4.2). The package of bets that maximizes expected utility is empty
if and only if the original formula was satisfiable. This yields a Karp reduction of 3SAT to
the function problem of computing the expected-utility-maximizing action. □

8That is to say, let Ai be the Savage act that maps every state to the outcome of having i dollars; then
i < j implies that the agent strictly prefers Aj to Ai.



79

Proposition 5. Given an arbitrary betting book and unsharp subjective probability distribu-
tion as inputs, and assuming linear utility in money, computing the MMEU-optimal action
is NP-hard.

Proof. Take an arbitrary 3SAT formula, negate it, and convert it to a betting book as
above. Combine it with the unsharp probability distribution assigning [0, 1] to every atom,
or alternately the unsharp probability distribution described in Section 4.9. The MMEU-
optimal package of bets is empty if and only if the original formula was satisfiable. This
yields a Karp reduction of 3SAT to the function problem of computing the MMEU-optimal
action. □

4.4 Average-case complexity

Thus far, all the hypotheses we have considered concern worst-case complexity, i.e., they
assert that for any algorithm, there exist cases which it cannot solve efficiently. However, they
leave open various possibilities in the realm of average-case complexity that would suggest a
more hopeful outlook. Impagliazzo [1995] gives evocative names to five epistemically possible
worlds (i.e. mathematical possibilities for complexity theory that are not yet ruled out by
unconditional results), each with different consequences for our class of problems. The first
possibility (which he calls “Algorithmica”) is that P equals NP — as discussed, this would
allow efficient recognition of Dutch books, but is a highly implausible outcome. But there
are two other possible worlds in which expected utility maximization might be a tenable
norm:

1. An efficient algorithm could exist to solve 3VAL and therefore DUTCHBOOK; even
though it would fail on some inputs, those inputs would be vanishingly rare and more-
over difficult to find. One could therefore confidently expect the algorithm to work
on all betting books encountered in practice. (Impagliazzo calls this possible world
“Heuristica”.)

2. An efficient algorithm could exist to solve 3VAL and DUTCHBOOK; it would fail on
a significant number of inputs, but those problem instances would be hard to solve
for any algorithm, including one with control over the inputs. (Impagliazzo calls this
possible world “Pessiland”; it is the “worst” world for applied computer science because
even though it lacks efficient algorithms for arbitrary NP problems, it also lacks secure
cryptography.)

However, an additional widely-believed hypothesis excludes both of these possibilities.
Under this hypothesis, it will be possible to generate new betting book instances, together
with short proofs either of their coherence or their Dutchness, that are too hard for any
efficient algorithm to solve. Specifically, in Impagliazzo’s final two worlds, “Minicrypt” and
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“Cryptomania”, one-way functions exist; the hypothesis that an injective one-way function
exists will be sufficient to carry out this construction.9

Unlike the previous hypotheses, the definition of a one-way function is necessarily prob-
abilistic. We first introduce the notion of a negligible function: a function ϵ(n) is negligible
if for all c, it is eventually less than 1

nc . (For example, 1
2n

and 1
nlogn are negligible, but 1

n100 is
not.) Now, a one-way function is a function that is easy to compute, but hard to invert; it
“scrambles” its input in some way such that it is hard to recover any preimage of a function
output, in a robust probabilistic sense.

Definition 4. A polynomial-time computable function f is one-way if for every probabilistic
polynomial-time algorithm A, there is a negligible function ϵ such that for every n,

Pr
x∈{0,1}n

[A(f(x)) = x′ | f(x′) = f(x)] < ϵ(n)

In other words, for any A that tries to reverse f , when we sample over all possible inputs
x and executions of A, A is unlikely to find a preimage of f(x).

One-way functions have a variety of interesting implications; for example, a deep theo-
rem of H̊astad et al. [1999] shows that they imply the existence of pseudorandom generators
indistinguishable (by polynomial-time adversaries) from true randomness. But for our pur-
poses, a simpler construction will suffice. According to a result of Goldreich and Levin [1989],
without loss of generality, we may assume that a one-way function has a hard-core predicate:

Definition 5. Let f be a one-way function. A hard-core predicate h of f is a function
mapping inputs of f (bitstrings of length n) to single-bit outputs (elements of {0, 1}) such
that for any probabilistic polynomial-time algorithm A, there is a negligible function ϵ such
that for every n,

Pr
x∈{0,1}n

[A(f(x)) = h(x)] <
1

2
+ ϵ(n)

That is to say, for any A that tries to predict the value of h(x) given f(x), when we
sample over all possible inputs x and executions of A, it cannot significantly improve on
guessing the value at random.

To motivate this additional notion, note that the definition of a one-way function leaves
open the possibility that any individual bit of the input might be predictable.10 However,
since the input cannot be predicted in totality, it seems intuitive that a “mixture” of all the
bits together should also be unpredictable. Given a one-way function f , the Goldreich-Levin

9“Cryptomania” (generally believed to be our actual world) is distinguished from “Minicrypt” by the
additional hypothesis that trapdoor one-way functions exist. Loosely speaking, while an ordinary one-way
function is sufficient to construct a secure secret-key cryptosystem, a trapdoor one-way function is necessary
to construct a secure public-key cryptosystem. This distinction does not appear relevant to the decision-
theoretic issues under discussion here (although it might be to others, or to game theory).

10Indeed, given a one-way function f , one may construct a pathological f ′ that is still one-way, but which
always reveals the first bit of its input.
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theorem provides an effective construction of a modified function f ′ and a “mixing” predicate
h that is hard-core for f ′.

Now, let us strengthen our hypothesis slightly and assume the existence of f that is both
one-way in the above sense and injective (i.e. if x and y are inputs of length n then x ̸= y
implies f(x) ̸= f(y)). (Within the hierarchy of cryptographic hardness assumptions, this is
considered only slightly stronger; see Section 4.10 for details.) We observe that the Goldreich-
Levin construction, when applied to an injective function, preserves its injectiveness, so,
without loss of generality, we may assume that f is one-way, injective, and has a hard-core
predicate. Let us moreover assume that an agent can have access to an unpredictable source
of random bits: paradigmatically, this is the ability to “flip coins” or access some other source
of apparent physical indeterminism. It is not necessary to assume that physical chance exists
in a metaphysical sense, only that the agent’s real-world adversaries cannot predict or model
the process better than as i.i.d. draws from the uniform distribution over {0, 1}.

Proposition 6. Suppose an injective one-way function f exists. Then it is possible to
generate cryptographically indistinguishable Dutch and coherent books in polynomial time.
Specifically, it is possible for a polynomial-time agent G with an unpredictable source of
randomness to generate both Dutch and coherent betting books over n propositions, such that
G knows whether the book is Dutch or not, but no probabilistic polynomial-time adversary A
can determine this with probability greater than 1

2
+ ϵ(n), where ϵ is a negligible function.

Proof. As discussed, we may assume that f has a hard-core predicate h. The agent G
uses his source of randomness to generate an unpredictable input string x of length n. Then,
G generates an additional bit of randomness q to decide whether the book will be coherent
or Dutch. If the book is to be coherent, G reveals f(x) and h(x) and sets the following
decision problem: does y exist such that f(y) = f(x) and h(y) = h(x)? If it is to be Dutch,
the agent does the same but after inverting the value of h(x), i.e.: does y exist such that
f(y) = f(x) and h(y) = 1− h(x)?

These problems are in NP because both f and h are polynomial time, so a guessed value
of y can be verified in polynomial time. Note however that in the first case, the problem has
a solution (x) and in the second case it has no solution (since f is injective, there can be
no second preimage y such that h(y) = 1 − h(x)). Consequently, G can apply appropriate
reductions to transform this problem into a SAT instance.11 The SAT instance can then be
transformed into a 3SAT instance, then into a 3VAL instance and finally into a betting book
via the reduction given in Proposition 2. If the original problem had a solution, the book
will be coherent; if it did not, the book will be Dutch.

Suppose a polynomial-time algorithm A could achieve more than negligible advantage
over 1

2
in determining whether a resulting book is Dutch or not. Given a random output

f(x), one could then consider the decision problem “does y exist such that f(y) = f(x) and

11See Cook and Mitchell [1997] for an explicit construction. The core idea is that once we fix an input
size n, f can be represented by a Boolean circuit of size polynomial in n, which can then be transformed
into a SAT instance.
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h(y) = 0?”, apply the relevant reductions to produce a betting book, then apply A. If A
indicates that the book is non-Dutch, then output 0, otherwise 1. This algorithm achieves the
same non-negligible advantage in predicting h(x) from f(x), contradicting the assumption
that h is a hard-core predicate. □

Two things should be noted about this construction. One is that even though we used
a random bit to decide whether the book was to be Dutch or coherent, this assumption can
be relaxed: as long as the input x of the one-way function is chosen at random, this decision
can be made arbitrarily. The problem is that an adversary might then be able to detect
and exploit a higher-level pattern in the sequence of which books are Dutch — for example,
if G was such that every third book was Dutch and the others coherent, an adversary A
could be constructed to predict this perfectly without even examining the books. (Hence
the necessity of the random bit to prove our desired probabilistic hardness claim.) Yet any
such advantage must depend on assumptions about the agent G, rather than on deductions
from the betting book itself, in the following sense:

Corollary 4. Suppose an injective one-way function exists. Then there is no probabilistic
polynomial-time algorithm A such that for any agent G generating betting books over n
propositions, A can distinguish G’s coherent and Dutch books with probability greater than
1
2
+ ϵ(n), where ϵ is a negligible function.

Proof. Take G to be the agent constructed in the previous proof (using a random bit for
each book); this then follows immediately. (Note moreover that a probability of exactly 1

2

can be achieved through random guessing, so this is a tight upper and lower bound.) □
In contrast, G himself knows a short, polynomial-time verifiable proof for the status of

each book, whether it is Dutch or coherent: he can simply reveal the hidden value of x.
Then any polynomial-time observer can compute h(x), compare it to the revealed value, and
conclude whether a satisfying assignment exists or not.12

Here is a brief illustration of the level of control G enjoys over these problems. Suppose G
uses this procedure to generate a coherent book; through the construction, he also has access
to the falsifying truth assignment, meaning the propositional valuation such that all the bets
lose. Suppose further that G has access to a stock of obscure true statements that can be
negated without significantly altering their syntax, for example “Childeric I of France reigned
before Chilperic I of France” or “the closing value of the Dow Jones index on January 3rd,
1991 had an odd number of cents”. He can then assign the questions or their negations (which
will not be syntactically distinguishable) as the definitions of the propositions p1, p2 . . . pn so
that their truth values coincide with the falsifying truth assignment. Now, consider an agent
A who is presented with this book, but has no specific information about the true-or-false

12Here a remark about the connection between one-way functions and cryptography is in order. The
one-way function f may be analogized to a cipher, the input x to the secret cipher key, and the output f(x)
as the encipherment of a fixed, publicly known message with that key [Luby and Rackoff, 1987]. If the cipher
is unbreakable, then given only the enciphered message it will be impossible to recover the key, or to answer
questions about the key — yet one in possession of the key may reveal it in order to settle those questions.
For more on these connections, see Impagliazzo and Luby [1989].
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questions. To A, this book appears indistinguishable from a Dutch book: out of the 2n

possible truth assignments, only 1 is falsifying, and computing that assignment from the
book is intractable because f is a one-way function. But if A accepts any of these bets, she
loses. This is not to say that this kind of “cardsharking” is necessarily a significant concern
for decision theory — I am sympathetic to the argument of Al-Najjar and Weinstein [2009]
that adversarial problems like these should be studied via game theory instead — but it
demonstrates the extent to which these problems confound naive attempts at probabilistic
analysis.

Let us briefly discuss the implications of these results for physical computation. The
Church-Turing thesis states that all physically realizable computation can be modeled by
the Turing machine, implying any problem that is undecidable in the Turing machine model
cannot be solved in general by physically realizable computers. A variety of proposals have
been advanced for a complexity-theoretic analogue of this hypothesis, typically under the
name “extended Church-Turing thesis”. Originally it was hypothesized that efficient real-
world computation was captured by the complexity class P, meaning that problems outside
of P cannot be solved by physically realizable computers within realistic amounts of time.
This conjecture has been complicated by the apparent phenomenon of quantum supremacy,
meaning that scalable quantum computers will be able to solve some problems outside of P.
At present, the following conjectures are generally believed:

1. Physically realizable computation is captured by the complexity class BQP (loosely
speaking, the problems that can be solved by quantum computers in polynomial time).
This class contains both P and BPP (the class of the probabilistic polynomial-time
adversaries we invoked in our definition of one-way functions).

2. NP-hard problems are not in BQP [Aaronson, 2005]; therefore, physically realizable
computers cannot recognize sufficiently large Dutch books, or maximize expected util-
ity under the constraints described in Proposition 4.

3. Although the definition of one-way functions we used above referred only to classical
adversaries, there also exist classically computable one-way functions secure against
quantum adversaries.13 Consequently, Proposition 6 is still true even if we grant the
adversary B the power of BQP, instead of just BPP; we can generate Dutch and
coherent books that cannot be distinguished by any physically realizable agent in a
realistic amount of time.

13See, e.g., Moore et al. [2007]. With regard to Impagliazzo’s five worlds, we believe that classically
computable quantum-hard trapdoor one-way functions also exist [Micciancio and Peikert, 2012] and therefore
we remain comfortably in “Cryptomania’.
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4.5 The problem of logical omniscience

Epistemological abstraction

I will take recent work by Elga and Rayo [2022] as paradigmatic of current proposals for
resolving the problem of logical omniscience.14 The authors are concerned with apparent
violations of rationality that arise from human agents’ inabilities to access all logical impli-
cations of their knowledge. For example, an agent may be aware that a simple contradiction
A∧¬A is unsatisfiable and should be assigned probability 0, but may assign nonzero probabil-
ity to a more complex sentence that is also a contradiction and therefore logically equivalent
to the first. Alternatively, an agent might believe the axioms of Peano arithmetic, but also
assign nonzero probability to the so-called Pólya conjecture (a sentence of first-order arith-
metic that is plausible, but disprovable from those axioms).15 Their solution is to provide a
plural model of epistemic states: an agent is modeled by an access table containing multiple
subjective probability distributions. Each “row” of the access table corresponds to a “choice
condition,” an epistemic state in which some subset of the agent’s knowledge has been made
“salient” or immediately accessible — “at the forefront of [the agent’s] mind.” The access
table maps each choice condition to a probability distribution over sentences that is coherent,
but which does not respect all logical implications among sentences — only among those
sentences that have been made salient. Rational decision-making is then governed by the
“fragmented choice rule”:

A subject in choice condition c should act as though to maximize expected utility
relative to Pc, where Pc is the probability function associated with subject c in
the subject’s access table.

I think this model is at least prima facie successful at dealing with the paradigmatic
cases that have long bedeviled Bayesian accounts of knowledge: mathematical conjectures
whose proofs are ultimately determined to follow from old axioms, and scientific theories that
are confirmed by “old evidence” [Glymour, 2010], i.e. old empirical observations that are
only understood as confirmatory after new mathematical consequences are drawn out of the
theory. Elga and Rayo’s insight is that in such cases, the non-omniscient agent is faced with
an epistemic possibility that is not a logical possibility (e.g., that the axioms are true but the
theorem that follows from them is false). Through a possible-world semantics that tracks
epistemic possibility by abstracting away the true logical relationships among sentences,
they are able to construct a locally coherent model in which notions like expected utility
maximization (which is conventionally defined over a coherent probability distribution) can
be applied directly.

14Garber [1983] is an early antecedent.
15A Π0

1 sentence has the form ∀xφ(x), where φ(x) involves only bounded quantification — hence any
false Π0

1 sentence has a quantifier-free counterexample and is disprovable in Peano arithmetic. The Pólya
conjecture is such a sentence; its smallest counterexample is x = 906150257 [Tanaka, 1980].
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But how does this model fare vis-à-vis our problem cases? Consider the expected-utility-
maximizing agent we constructed in Section 4.2. This agent already possesses a coherent
probability distribution over all the salient sentences. Once the betting book is revealed, the
conjunctions qi1∧qi2∧qi3 can all plausibly be made salient to the agent — certainly to an agent
augmented with a physically realizable computer — and they all have probability 1

8
. (Here

it is important that the successive reductions we applied to construct our indistinguishable
books — from the one-way function to a SAT instance to a 3-SAT instance to a betting
book — all increased the size of the problem instance only polynomially. The problem is
still small enough that the agent can fully comprehend what is being asked.) The agent’s
access table is apparently trivialized, consisting of a single row. But we have shown that
the agent, even with computer augmentation, cannot apply the “fragmented choice rule,”
because it requires expected utility maximization — which is computationally intractable
for this distribution and utility function. This intractability cannot be abstracted away via
the access table formalism, because it emerges out of the formalism itself — specifically
out of its pragmatic or decision-theoretic component. To achieve tractability, we need not
only an epistemic relaxation, but some relaxation of the pragmatic norm of expected utility
maximization. But what would such a relaxation look like?

Relaxation or strengthening?

First, a caution: some potential relaxations of the norm of Humean expected utility max-
imization actually intensify the problem of computational intractability. Consider, for ex-
ample, Buchak’s [2013] risk-weighted expected utility (REU). REU can be understood as a
relaxation of the Savage framework that imposes fewer constraints on the agent — in partic-
ular, one of the Savage axioms of rationality (the “sure-thing principle”) is replaced with a
weaker alternative. But this weakening of constraints is also, paradoxically, a strengthening.
For REU contains the Savage framework as a special case: it adds an additional Humean free
parameter, the risk function, but an agent with a linear risk function is rationally obligated
to maximize expected utility. It follows that REU can also entail a rational obligation to
solve DUTCHBOOK.

In fact, if the risk function is allowed to vary, the ability to compute the REU of an action
can be applied to solve prima facie harder problems than expected utility maximization. For
example, with an oracle for REU, one could solve not just SAT but #SAT (counting the
number of satisfying assignments to a Boolean formula) in polynomial time.16 Concerns
of this form potentially apply to any modification of EUM that makes the theory more
expressive, in the sense of being able to construe more agents as rational. As the logical
characterization of the optimal action becomes more complex in structure, the complexity of

16I thank Prasad Raghavendra for this insight. The idea is that by setting the risk function to a step
function, the REU-maximizing agent may become sensitive to whether the probability of an outcome exceeds
an arbitrarily chosen threshold. With repeated queries with different thresholds, the precise probability can
be isolated via binary search. Under the uninformative prior, one multiplies this probability by 2n to get
the count.
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computing it may increase as well. (Conversely, if we were to constrain the Savage-rational
agent further by requiring linear utility in money, the class of intractable problems studied
here would be excluded, and the approach of Elga and Rayo [2022] would be prima facie
adequate to save expected utility theory. But such a constraint is persuasive at neither a
normative nor a descriptive level.)

Approximating ideal rationality

Let us consider relaxations of the norm of expected utility maximization that preserve the
concept of expected utility. There are two distinct paths that a computationally limited
agent can take on our class of problems. One is to buy no bets, which achieves a guaranteed
utility of 0: this is the only action that an agent unable to solve DUTCHBOOK can prove to
have nonnegative expected utility. One may think of this option as relaxing the requirement
of maximization, while preserving the concept of expected utility. However, this strategy
can fail arbitrarily badly relative to the optimal action. For example, one may multiply the
utility function in (4.2) by an arbitrary factor c without changing the relevant properties
(buying the bets is still recommended if and only if the book is Dutch). Then, in the case
where the book is actually Dutch, this strategy underperforms the optimal expected utility
by at least c.

The other path is to buy some nonempty subset of the bets without the assurance that the
book is Dutch. I claim that any such strategy fails to take the premises of Humean expected
utility seriously — it relaxes the concept of expected utility itself. If the utility function
is truly a free parameter, determined by the agent’s sovereign preferences and constrained
only by basic requirements of consistency, then it follows inexorably that even an vanishingly
small probability of an astronomically negative outcome can outweigh a near certainty of
modest gain.

But should we, in fact, take these premises seriously? I propose that vanishingly small
probabilities p are real — grounded in physical realities — in a way that large utilities
on the order of 1

p
are not. We can readily instantiate physical scenarios in which well-

defined events have exponentially low probabilities, for example, by flipping 10,000 coins
and considering the possibility that they all land heads. But how good or bad can things get
for agents in our physical world? It seems to me that plausible bounds on the magnitude of a
utility function can be derived from constraints like the number of electrons in the universe.
Following this suggestion leads to the conclusion that our class of problems cannot, in fact,
be “scaled” indefinitely: at some point, the negative utility must be clamped so that it no
longer outweighs the positive utility, making it licit for the expected utility maximizer to
buy the bets.

Is this enough to put these troublesome cases to rest, by denying that they actually entail
a rational obligation to solve intractable problems? It might be for a non-Humean who is still
a Bayesian, and who therefore affirms a rational obligation to assign sharp credences.17 But in

17In particular, such a solution might be attractive to the “automatic Bayesian” school described by Senn
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the end, it won’t do for me, because I affirm the rational permissibility of unsharp credences
and MMEU as a response to non-probabilistic uncertainty (or “Knightian uncertainty”).
As discussed in Section 4.2, such an agent may also incur a prima facie rational obligation
to solve DUTCHBOOK. I will return to this question in Section 4.6. For now, I contend
only that it is unclear what it would mean to approximate ideal rationality over our class of
problems.

Approaching ideal rationality

There is another defense of a conventional concept of rational obligation: principles like
expected utility maximization might be normative despite the impossibility of realizing them
in practice, because they still function to guide imperfect agents in the right direction. Here
is Zynda [1996]:

Since there are no a priori constraints on what sorts of new methods, shortcuts, or
“heuristics” (including technological aids such as “expert” machines) the human
community may develop as we strive to reach particular ideals that we set for
ourselves, there is often no reason to regard any part of a betterness ordering
that is defined by an unattainable ideal that we currently accept as completely
irrelevant to our personal obligations.

And here is Levi [1997]:

Still more importantly, the counsel of those who urge us to trim our principles
of rationality is the counsel of complacency. Of course, we cannot be obliged to
do at the moment what we cannot at that moment do. We cannot be obliged
to recognize all the logical consequences of our full beliefs or even enough of the
consequences to solve some particular complicated problem. But we can be urged
(costs and time permitting) to seek therapy for our distress, to devise prostheses
to extend our computational capacities and memories (such as computers, paper
and pencil, handbooks of tables, etc.) and to learn logic and mathematics so
that we can to some extent overcome our disabilities.

I highlight these passages not to definitively refute the underlying arguments, but to
suggest that they, like the epistemic theory discussed in Section 4.5, draw their inspiration
and their intuitive force from a different class of problems than ours. These arguments res-
onate well with the problem of logical omniscience as applied to mathematical and scientific
truth. Even though we know that we cannot currently resolve many open mathematical
problems, there is no strong justification for pessimism about our ultimate ability to resolve
any particular open problem; heuristically, we have numerous examples of longstanding open

[2011].
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problems being successfully resolved. Metaphorically speaking, we may hope to incremen-
tally approach a state of perfect mathematical knowledge — as one open problem falls,
another conjecture may open up in its place, but we hope that it too will fall. Moreover,
there seems to be nothing pragmatically embarrassing about not knowing the truth of (for
example) the Riemann hypothesis, since no one else in our world knows it either. A betting
book that assigns probability 0.99 to the Riemann hypothesis may well be Dutch, but the
issue is moot since there is no way to settle the bet.

But with our class of problems, we see that the “aids” and “prostheses” that Zynda and
Levi appeal to are of no avail. There may not be a priori constraints on the prostheses we
can build to solve decision problems, but the extended Church-Turing thesis gives us a very
strong putative empirical constraint: it is physically impossible for an agent in our universe
to solve these problems in general.18 Rather than envisioning an endless ascent towards
mathematical truth, we may imagine an impenetrable barrier or firmament that separates
us from unreconstructed norms of decision-theoretic rationality like EUM. Moreover, due to
the asymmetrical nature of average-case complexity theory, hard problem instances can be
generated together with their solutions, and then the solutions can be revealed and verified to
settle the bets — all by a physically realizable agent with the same computational capabilities
as the would-be solver.

4.6 On the status of rational obligations

But Zynda has anticipated a key part of this criticism:

Finally, in those cases where we do have reason to believe that there are lim-
itations on how closely the ideal will ever be approximated, our judgments of
betterness [or] worseness with regard to the feasible case are often in fact guided
by the ideal: we define the ideal, and then define what is “better” in terms of
approximation to that ideal, not the other way around. In such cases, there is
a clear sense in which the ideal is guiding our practice, even though it is itself
unattainable.

Let us step back from specific formalisms like expected utility maximization and con-
sider our problems in a pre-theoretic setting. Imagine an agent who has reasons to accept
only packages of bets that yield sure profit.19 It seems clear that in Elga’s original single-

18There is something paradoxical here. I have just argued that there is no definitive reason for pessimism
about any individual mathematical question. Yet at the same time, every intractable decision problem
constructed via Proposition 6 is, in itself, just another mathematical question: it corresponds to a mere
∆0

1 sentence of arithmetic! The answer is that even though any individual instance is solvable, they are
unsolvable as a class in the sense that there can be no general method of solving them. The trans-temporal
human mathematical community, like other entities in our physical universe, is constrained such that it can
only solve a “negligible” fraction of these problems.

19As we have seen, such preferences are interpretable within both EUM and MMEU, but this discussion
will not presuppose any particular framework.
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proposition case, buying both bets is rationally preferable to buying no bets, and moreover
that buying no bets constitutes a breach of the agent’s rational obligations. Furthermore,
it seems to me that when one considers increasingly complex cases (extending finally to the
betting books constructed in Proposition 6), the first judgment still holds: the agent able
to recognize whether such books are Dutch exhibits a superior facility of rationality, and is
meaningfully closer to ideal rationality. Here I am concurring with Zynda that ideal concep-
tions of rationality retain some kind of normativity, even in the face of complexity-theoretic
impossibility results. But I think the second judgment — that the agent unable to solve
arbitrary books is in breach of a rational obligation, or evincing a “failure of rationality” —
is no longer supported. Ought must imply can, and an agent in our physical universe cannot
solve these problems, nor make meaningful progress towards the ability to solve them.

I hold, therefore, that the concept of “rational obligation” has been problematized even if
the concept of “ideal rationality” has not. What would it take to save it? We would seemingly
need a bright-line distinction somewhere between the Elga case and the indistinguishable
cases, separating tractable from intractable problems. But on our best understanding of
SAT and VAL, no such distinction is possible; there is no “perfect” or “complete” solver
that can solve all the tractable instances. Rather, we have a messy patchwork of heuristics
[Biere et al., 2009] representing incremental progress, but which, as discussed, cannot hope
to approach the hardest problems in the space.

Moreover, if we try to make rigorous a view where rational obligations coincide with
tractability de facto, a troubling relativism emerges. We can deliberately sabotage the con-
struction in Proposition 6 by choosing a one-way function that is believed to resist classical
adversaries, but known to be vulnerable to quantum adversaries, such as the RSA function
[Goldwasser and Bellare, 1996]. The resulting problem instances will be intractable to an
agent who lacks access to scalable quantum computation, but tractable to one with such aug-
mentation. The problem here is that unlike classical computing, which “exists in nature”
in the sense that humans can store and process classical information by means of mun-
dane objects such as pen and paper, scalable quantum computing will require the creation
and manipulation of highly anomalous physical states, because achieving quantum advan-
tage requires protecting the qubits from quantum decoherence [DiVincenzo, 2000]. Scalable
quantum computing is not an extension or enhancement of classical computing in the way
that digital computers extended the possibilities already available via “human computers”
[Grier, 2013], but a phenomenon fundamentally different in kind. This suggests that in order
to save the concept of “rational obligation”, we would have to relativize it: it would have to
exist in (at least) two variants, one for classical and one for quantum agents.

I think the natural conclusion is that the term “rational obligation” is both vague and
context-dependent — its meaning is entangled with the meaning of “tractable,” which turns
out to function much like the ordinary-language terms “small” or “inexpensive” in resisting
a precise definition. This is not to say that the concept is of no philosophical use, but that
we should be wary of its susceptibility to paradox. For example, returning to axiomatic
frameworks like Savage’s, consider the agent who, faced with a hard Dutch book, buys no
bets. This agent is not maximizing expected utility and is therefore in breach of one of the
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Savage axioms. But I have argued that this agent is not in breach of any rational obligation
— on this view, the Savage axioms do not unconditionally create obligations of rationality.

4.7 On the status of ideal rationality

I have just argued that aspects of ideal rationality — in particular, the recognition that
some decisions really are better than others, regardless of tractability concerns — are worth
saving. But I think these results problematize the way ideal rationality has been theorized.

The first problem is as identified in Section 4.5; if ideal rationality is unachievable due to
intractability, the natural move is to adopt a norm of approximating ideal rationality instead.
Zynda [1996] takes his defense of ideal rationality to be contingent on such a project, because
it is only through such a “betterness ordering” of approximations that ideal rationality can
still function pragmatically to guide us. But in general we should expect multiple competing
(and mutually incomparable) concepts of approximation. As we saw with EUM, one may
preserve the concept of subjective expected utility while relaxing the norm of maximization,
or relax the concept of subjective expected utility. Which answer is superior? The problem
may well have a solution, but it is unlikely that the theory itself will be able to provide it,
since by definition we are operating in a domain in which the theory has broken down.

Furthermore, if the ideal is unachievable, it is not clear why theoretical acceptance of the
ideal’s premises should mandate pragmatic acceptance of the ideal’s methods. For example,
one might accept the foundational principles of Bayesian statistics at a theoretical level,
but use frequentist methods in practice given the impossibility of achieving the Bayesian
ideal.20 There is consequently an argumentative gap between typical attempts to prove the
normativity of Bayesianism (via the axiomatic method, Dutch Book arguments, etc.) and
advocacy for the use of Bayesian methods — pace Savage’s [1972] claim that his axioms
provide “the foundations of statistics.”

But the question that really interests me is this: why, as Diaconis [2003] observes, is
expected utility maximization so ineffective in practice at guiding real-world decisions?21 To
all the familiar practical issues with the framework — individuation of outcomes [Bermúdez,
2009], reconciliation of “small-world” and “grand-world” models [Buchak, 2013], model un-
certainty — one may add another: even on toy problems that present none of these con-
ceptual difficulties, we find that applying the framework can be computationally infeasible.
The practical import of representation theorems is hollowed out by results like Proposition
3, which show a computational barrier to actually extracting subjective probabilities and
utilities from preferences.

20For example, Robert [2007] discusses settings in which Bayesian estimation of hyperparameters turns
out to be NP-hard.

21There is a genre of self-help literature aimed at popularizing Bayesian concepts of rationality, but
Bayesian epistemology and decision theory seem to have limited substantive impact on the content. One
might say that Bayesianism provides the “theology” while the “pastoral care” is drawn directly from the
psychology and microeconomics literature on cognitive bias.
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I am pessimistic about attempts to modify existing decision-theoretic frameworks to take
computation into account, because it seems to me that computational omniscience is woven
very deeply into their fabric. Take, for example, Savage’s axiom of comparability, which
states that a rational agent normatively has a linear preference ordering over acts. Aside from
concerns about whether some acts might be genuinely incomparable, it seems to me that the
effect of this axiom is to reify the agent’s preferences as a “completed” totality, making them
simultaneously visible to the apparatus of the representation theorem. In reality, however,
some preferences might be significantly harder to compute than others, or a computationally
limited agent might intentionally sacrifice the ability to compare acts that it would never have
to choose between in practice. I would suggest that for a computationally bounded theory
of rationality, an alternative program is to begin from the bottom up: take systems that are
known to be computationally efficient and then interpret them retroactively as following (in
full or in part) decision-theoretic principles. In this way, a computational decision theory
would be contiguous with current work on AI “surveyability” or “explainability”.
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4.9 Appendix: A non-extremal unsharp distribution

for which MMEU is intractable

Consider the betting books defined in Section 4.2, where we have n propositional atoms and
m bets on formulae of the form qi1 ∧ qi2 ∧ qi3, each costing $1 and paying $(m + 1) if the
formula is true. We adopt a definition of “unsharp probability distribution” as a convex
family of ordinary (“sharp”) probability distributions.22 We are seeking to construct an
unsharp probability distribution D over the underlying propositional atoms p1, p2 . . . pn such
that

1. D is non-extremal; for every sharp distribution P ∈ D, P assigns nonzero probability
to every possible truth assignment.

2. MMEU (with linear utility in money) over D mandates buying a nonempty subset of
bets if and only if the formula (4.1) corresponding to the betting book is a propositional
validity. (This is the property necessary to support the reduction in Proposition 5.)

22This follows, e.g., Levi [1985]. It is likely that this argument can be adapted to other definitions; for
example, the requirement of convexity can be deleted.
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As discussed in Section 4.2, if the formula is a propositional validity, then the minimum
expected utility (MEU) of the full package of bets is at least 1; since the minimum expected
utility from buying no bets is 0, this action is disallowed by MMEU and the agent must buy
some nonempty subset of bets. Assume then that the formula has some falsifying assignment
h. Fix ϵ ∈ (0, 1

2
). Let D be the set of all probability distributions P such that P assigns

nonzero probability to every truth assignment and furthermore P (pi) ∈ [ϵ, 1− ϵ] for all i. It
is immediate from the definition that D is convex.

Now, the MEU of the whole package of bets under D is bounded above by its expected
utility under any individual P ∈ D. Consider P such that all the pi are mutually independent
and

P (pi) =

{
ϵ if h(pi) = ⊥
1− ϵ if h(pi) = ⊤

i.e. given the constraints on P , it assigns the maximum possible probability (1− ϵ)n to the
falsifying truth assignment h. If the expected utility of the full package of bets under P is
negative, then buying the whole package of bets is forbidden by MMEU (since buying no
bets has a MEU of 0).

The utility from the falsifying assignment is −m, while the utility from any other as-
signment is at most m2, yielding the following upper bound on the expected utility of the
package under P :

E[X] ≤ (1− ϵ)n · (−m) + (1− (1− ϵ)n)) ·m2.

Let r = (1− ϵ)n. We want E[X] < 0; it suffices to choose ϵ such that

E[X] ≤ −rm+ (1− r)m2 < 0

(1− r)m2 < rm

m <
r

1− r

1

m
>

1− r

r

1

m
>

1

r
− 1

1

r
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1

m

r >
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1 + 1
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ϵ < 1−
(

1

1 + 1
m

) 1
n

.

Now, as m increases, this bound on ϵ decreases, so the bound produced for the full
package of m bets is also adequate for any nonempty proper subset of bets. That is to say,
when considering the MEU of a subset of m′ bets, where 0 < m′ < m, we consider the book
that consists only of those m′ bets and re-run this argument. The resulting bound on c will
be entailed by the bound above. □

4.10 Appendix: Some cryptographic context

I stated earlier that the assumption that an injective one-way function exists is “slightly
stronger” than the assumption that a one-way function exists. All claims of this form must
be regarded as metaphors, since in fact any such hypothesis is either unconditionally true
or unconditionally false in the “real world”.23 Claims about relative strength should be
understood as statements about known implications between the hypotheses.

The construction in Proposition 6 aims to create a betting book with three properties:

1. Given only the book as an input, it is intractable to determine whether the book is
Dutch or coherent;

2. If the book is coherent, the generator can reveal a proof of its coherence;

3. If the book is Dutch, the generator can reveal a proof of its Dutchness.

If we carry out the construction using a one-way function that is not injective, properties
1 and 2 are preserved, but 3 is not. The generator G can still reveal the preimage x of
f(x), and if h(x) coincides with the previously announced value of the one-way predicate,
A can verify that x yields a satisfying assignment. But if h(x) contradicts the previously
announced value, A cannot satisfy herself that there does not exist some other x′ such that
f(x) = f(x′), but h(x′) agrees with the previously revealed value — which would make the
book coherent after all.

It would therefore be useful for our purposes to be able to transform an ordinary one-way
function into an injective one, via a construction analogous to the Goldreich-Levin theorem
(which transforms an ordinary one-way function into one with a hard-core predicate). Unfor-
tunately, Rudich [1988] proved that no such construction is possible in a “black-box” model,
i.e. without relying on specific properties of the candidate one-way function. This is discour-
aging but not necessarily fatal for the project of constructing an injective one-way function
based on weaker hypotheses; see Rotem and Segev [2018] for recent work on the question.
Conversely, however, injective one-way functions are themselves a weak hypothesis in the

23In general, most complexity-theoretic hypotheses are equivalent to sentences of first-order arithmetic.
Some “nonuniform” hypotheses in circuit complexity may require second-order arithmetic to express.
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sense that it does not appear possible to use them to construct trapdoor one-way functions
or public-key cryptosystems (they would not, by themselves, take us out of Impagliazzo’s
“Minicrypt” and into “Cryptomania”).

However, at a higher level of abstraction, these three properties correspond to what is
known in cryptography as a bit commitment scheme [Goldreich, 2001]. This is a protocol by
which an agent G can fix a secret value b ∈ {0, 1}, then reveal a “commitment” c derived
from b. It must be intractable for anyone to recover the true value of b from c. However,
it must also be possible for G to subsequently reveal a secret value s that “opens” the
commitment c. Specifically, it must be tractable to compute the true value of b from both c
and s together, and moreover s must prove that G did not alter the value of b after c was
generated — in other words, once c is fixed, it must be intractable for G to produce both a
s that reveals b = 0 and a s′ that reveals b = 1.

Informally, then, constructions of indistinguishable betting books are intertranslatable
with bit commitment schemes. Proposition 6 corresponds to a simple bit commitment scheme
based on an injective one-way function f with hard-core predicate h: given b, generate a ran-
dom s, reveal f(s) and b⊕h(s) as the commitment, then reveal s to open the commitment.24

But conversely, given a typical bit commitment scheme, one can generate indistinguishable
Dutch and coherent books. Suppose without loss of generality that the true value of b is
0. For a coherent book, at the final stage of the commitment scheme one sets the decision
problem, “does a secret value s exist that would open the commitment and reveal 0?” For
a Dutch book, one asks instead, “does s exist that would open the commitment and reveal
1?” The appropriate reductions applied to the (deterministic, polynomial-time) algorithm
for opening the commitments will yield SAT formulae and eventually betting books.

The good news, then, is that Naor [1991] gives a bit commitment scheme based only
on the assumption of a cryptographically secure pseudorandom generator (CSPRNG). Since
H̊astad et al. [1999] construct a CSPRNG based only on a one-way function, some analogue
of Proposition 6 can go through without assuming injectivity. The bad news is that Naor’s
scheme is interactive, in that it requires the verifier to send a randomly generated initial
message to the committer. If the message is not random, then property 3 is compromised
again. Translated back into the context of betting books, the bookie cannot simply present
the book to the bettor; rather, the bettor must cooperate in setting up the game. The
philosophical implications of this are unclear to me, so I have analyzed only a non-interactive
construction from an injective one-way function. The existence of such a scheme based only
on a one-way function is, to the best of my knowledge, an open problem.

What if one wished to construct such books in the real world? I will briefly sketch a
construction based on collision-resistant hash functions. Such functions belong to the world
of cryptographic engineering rather than complexity-theoretic cryptography, since it is not
clear how to even define them in an asymptotic hardness context [Katz and Lindell, 2020].
A collision-resistant hash function h takes inputs of arbitrary length to an output of fixed

24The symbol ⊕ denotes the “exclusive or” operation. The construction is well-known; Goldreich [2001]
attributes its origin to Blum [1982].
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length (as of 2022, 256 bits is common), such that no two inputs x ̸= y are known to anyone
such that h(x) = h(y). In other words, h is necessarily non-injective, but it is injective
for many practical purposes since no counterexamples to injectivity are known. Moreover,
for a well-designed cryptographic hash function, every individual bit of the input is a hard-
core predicate, in an analogous informal sense. Such a function can then be slotted into
the construction in Proposition 6. It would then be an engineering problem to choose a
cryptographic hash function with relatively small Boolean circuits, in order to make the
resulting books as short as possible.

4.11 Appendix: On the intractability of representing

consistent preferences

To restate proposition 3:

Assume that RP ̸= NP. Then there is no polynomial-time algorithm that takes
as input a Savage-consistent set of preferences, and outputs a (polynomial-time
computable representation of a) utility function and (P-samplable representation
of a) subjective probability distribution that represents those preferences.

When we consider the problem of representing consistent preferences, we immediately
encounter several difficulties of formalization. The first is that to output the literal joint
distribution over n propositional atoms would require O(2n) space, which would be trivially
impossible for an algorithm running in time polynomial in n. A natural relaxation might
be to ask instead for a representation that allows the probability of any one propositional
valuation to be computable in polynomial time. Yet this definition turns out to be too
weak: if most of the probability mass is concentrated on a few valuations, oracle or “black-
box” access to such a representation would not actually allow us to find those valuations.
Accordingly, the notion more common in the complexity literature is P-samplability : a P-
samplable distribution is one that can be efficiently simulated by a probabilistic polynomial-
time algorithm, such that each execution of the algorithm yields an i.i.d. sample from the
distribution. Specifically, Yamakami [1999] defines P-samplability for a distribution P as
the existence of a probabilistic Turing machine T with a polynomial time bound p(i) such
that for any x in P ’s sample space, when T is given 0i (i.e. a string of i zeroes) as an input,
the probability that it halts within p(i) and returns x is within 1/2i of the true probability
P (x). For our purposes, we will require a time bound of p(i, c), where c is the length of the
set of preferences.

Another difficulty is that although the Savage representation theorem promises a unique
subjective probability distribution, isolating the unique distribution would likely require
examining O(2n) preferences, in order to unambiguously order all of the 2n possible assign-
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ments.25 Therefore, the impossibility result here is formulated in terms of examining a set
of k preferences and obtaining any subjective probability distribution consistent with those
preferences, in time polynomial in k.

Finally, we define the class RP. RP (“randomized polynomial time”) is the class of decision
problems for which there exists a probabilistic polynomial-time algorithm with one-sided
error: the algorithm has no false positives, but may return false negatives with probability
at most 1

2
.26 It is immediate that RP ⊆ NP, since a nondeterministic Turing machine

can “guess” the random choices for a successful execution of the algorithm. It is generally
believed that RP ̸= NP; this is considered only a slight strengthening of the hypothesis that
P ̸= NP. If RP and NP were equal, we would be in Impagliazzo’s “Heuristica” world, where
strong cryptography does not exist.27

Now, assume the existence of a polynomial-time algorithm for representing consistent
Savage preferences; when given inconsistent preferences, it will either fail to terminate within
the polynomial-time bound, or return an undefined representation. Given an arbitrary 3SAT
formula φ =

∧
i(ri1 ∨ ri2 ∨ ri3), we negate it, yielding a 3VAL formula

∨
i(qi1 ∧ qi2 ∧ qi3).

We construct the following “gambles”: for each i, Bi costs $0 and pays $1 on qi1 ∧ qi2 ∧
qi3. Then we assign the agent a strict preference for $1 over $0, but make him indifferent
between accepting and rejecting each Bi. These preferences are consistent if and only if
φ is satisfiable, in which case any subjective probability distribution that represents them
must assign P (qi1 ∧ qi2 ∧ qi3) = 0 for all i, and consequently P (φ) = 1. Now, we apply the
representation algorithm to these preferences. If the algorithm fails to terminate, we return
that φ is unsatisfiable. If it returns a representation of a probability distribution, we draw a
sample from it with input 0. If the sampling fails to terminate, or returns a valuation that
does not satisfy φ, we return that φ is unsatisfiable. If it returns a valuation that satisfies
φ, we return that φ is satisfiable. This is an RP algorithm for 3SAT; false positives are
impossible since we only return true on verifying the existence of a satisfying valuation, and
the probability of a false negative is at most the 1

2
probability that the sampling fails. □

25I have been unable to prove this. A direction for future work might be to obtain a proof by analyzing
the construction of Gül [1992].

26The threshold of 1
2 is chosen arbitrarily; any fixed lower threshold can be amplified to 1

2 by repeating
the algorithm a constant number of times. Similarly, if any individual attempt succeeds with probability
1
2 , n repetitions of the sampling will yield a success with probability 1/2n, meaning that we can efficiently
obtain a valid sample with very high probability.

27In fact, it is generally believed that randomized algorithms (even with two-sided error) are no more
powerful than deterministic algorithms, i.e. that BPP = RP = P.
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Chapter 5

Can we resolve the Continuum
Hypothesis?

Abstract

I argue that that contemporary set theory, as depicted in the 2011-2012 EFI lecture se-
ries, lacks a program that promises to decide, in a genuinely realist fashion, the continuum
hypothesis (CH) and related questions about the “width” of the universe. We can distin-
guish three possible objectives for a realist completion of set theory: maximizing structures,
maximizing sets, and maximizing interpretive power. However, none of these is allied to a
program that can plausibly decide CH. I discuss the implications of this for set theory and
other foundational programs.

5.1 Introduction

The continuum hypothesis (CH) — the hypothesis or conjecture that 2ℵ0 = ℵ1 — is as old as
set theory itself and has cast its long shadow over the discipline for the entirety of its history.
As early as 1878, Cantor asked the question in its modern form: is every infinite X ⊆ R
in bijection with either N or R? By 1900, the question was sufficiently well-established to
be the first of the 23 Hilbert problems, unsolved questions that would guide the future of
mathematical research for much of the 20th century. And its inclusion in the list did bear
immediate fruit in shaping the evolution of descriptive set theory; for example, interest in
the perfect set property was inspired by Cantor’s search for subsets of R that could be
counterexamples to CH [Kanamori, 2008].

Real progress on the original question, however, had to wait for Gödel’s 1938 identification
of the constructible universe L, an inner model of any model of set theory which always
satisfies the continuum hypothesis; this showed the equiconsistency of ZFC with ZFC +
CH. Then, in another conceptual breakthrough, Cohen’s work of 1963 showed, via the novel
technique of forcing, that ZFC is also equiconsistent with ZFC +¬CH; this completed the
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proof that CH is formally independent of ZFC. This proof inaugurated the contemporary
era of set theory, characterized by the study of problems independent of ZFC.

In 2011 and 2012, Peter Koellner convened the EFI (“Exploring the Foundations of
Incompleteness”) lecture series at Harvard, inviting leading researchers in set theory and
related fields to present papers on the philosophical significance of the past half-century of
set-theoretic advances. A variety of perspectives were represented, but the ones I will discuss
here formed a sort of spectrum between anti-realism and realism about set-theoretic truth.
At one end of the spectrum, Feferman [2011] described a position of anti-realism about much
of transfinite mathematics, including parts of ZFC itself and extending upwards to CH. In
the middle, Hamkins [2012] defended multiversism about set theory, i.e., the claim that the
independence results have resolved CH definitely by showing that its truth value can vary
across a multiverse of models of ZFC, none of which has a privileged claim to being the true
V . Without taking a strong ontological stance, Cummings [2012] argued for a naturalistic
acceptance of the independence phenomena as the subject matter of combinatorial set theory.
Finally, Magidor, Martin, Steel, and Woodin defended various forms of set-theoretic realism,
on which the continuum hypothesis could have a definite truth value that can be discovered
through modern set-theoretic research.

My goal here is to argue, with reference to these EFI papers, that no development in
contemporary set theory contributes to a realist resolution of the continuum hypothesis —
in other words, that all programs that purport to resolve CH are either philosophically
unsuccessful, or are implicitly anti-realist about the truth value of CH. In particular, I
distinguish three possible goals for a realist completion of set theory: maximizing structures,
maximizing sets, and maximizing interpretive power. I will argue that the first goal is
revealed, in the light of the independence phenomena, as incoherent; that the second is
coherent but not genuinely realized by any contemporary program; and that the third fails
to be realist about CH.

I wish to stress that none of this should be taken as disparaging the significance of
contemporary set theory. First of all, I think the case is clear that independently of the
philosophical programs it is in dialogue with, set theory is in its own right a deep and
important branch of mathematics. (I refer the skeptical reader to Cummings [2012] in
particular.) But I hope that my discussion will also make clear my belief that the technical
progress in contemporary set theory does have a great deal of philosophical significance.

A note on realism

I have appealed to two notions — “goals” and “realism” — that deserve clarification. I
think the idea of “goals” for foundational systems is fairly straightforward. The programs
I am analyzing can all be read as following (or seeking to follow, with some steps resting
on conjectures or otherwise incomplete) a particular schema. They lay out philosophical
desiderata for new principles that might extend ZFC, formulate candidate principles, argue
that the principles realize those desiderata, then derive either CH or its negation from them.
A “goal”, then, is such a philosophically motivated desideratum; we can evaluate the success
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of a program by whether it achieves its goals. I don’t intend to claim that every such program
must fit this mold.

My insistence on a realist resolution of the continuum problem raises the more difficult
question of what I mean by realism. This is a central problem in the philosophy of mathe-
matics, and I would like to avoid committing myself to a full characterization of the term; I
think that such a commitment would be both difficult and unproductive, since my discussion
should be compatible with more than one conception of what mathematical realism is.

In general, it is easier to say what I don’t mean by realism than what I do. For example,
following Gödel, questions about the philosophical motivations for new set-theoretic axioms
are often thought of in terms of a dichotomy between intrinsic justification (i.e., justification
on the basis of the philosophical concept of set) and extrinsic justification (justification on
the basis of some other consideration, such as mathematical fruitfulness).1 For a variety of
reasons, one might think that intrinsic justifications have a superior claim to realism. This
is not what I mean; my discussion will identify several approaches to CH that are clearly
extrinsic in their motivations but nonetheless qualify, on my view, as realist.

Secondly, the terms “realism” and “Platonism” are commonly employed as part of the
debate over ontological commitments, i.e., the question of whether sets and the universe
of sets are real entities. But I am taking realism about CH to mean merely what Shapiro
[2000] calls realism in truth-value, as opposed to realism in ontology. Realism in truth-value
is certainly entailed by belief in a unique mind-independent V , but is compatible with a
belief in multiple mind-independent universes, or even with a belief that there is no such
universe.

Moreover, some forms of Platonism are compatible with a multiversism in ontology that
would entail anti-realism in truth value about CH. For example, on the “plenitudinous
Platonism” of Balaguer [1998], all logically possible mathematical structures are ontologically
real and therefore there are real universes of set theory satisfying both CH and its negation.
The question of whether CH is true is then the question of which universes set-theoretic
practitioners intend as the subject matter of their discipline; if they intend to consider both
kinds, then CH has no truth value.

In the end, the best definition I can give is a functional one. I am talking about attitudes
to set theory on which the value of the continuum is something to be discovered, in the
sense that working mathematicians in other fields attempt to discover the outcomes of their
conjectures, rather than something to be adjudicated by professional consensus. In this sense,
the hyperuniverse program, as expounded by Arrigoni and Friedman [2013], is an example of
a view compatible with realism about CH despite its explicit rejection of realism in ontology.

Despite my definition of realism as merely realism in truth-value, my discussion will make
extensive reference to ontology, because the proposals I critique are justified with reference
to ontological considerations. Again, I think it would be counterproductive for me to commit
to a full positive proposal of the relationship between the two kinds of realism. I intend to
rely only on the following premises:

1For an overview of the distinction and its history, see Koellner [2009].
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1. If a view is realist in ontology about a single, canonical universe of set theory, then it
is realist in truth value about CH, and indeed about every first-order sentence in the
language of set theory. (I will return to this view in section 5.2 under the name of
“strong absolutism”),

2. Suppose a view is sufficiently realist in ontology to propose a new axiom φ motivated
by a belief about ontology. If ZFC+ φ proves CH or not-CH, the view then counts as
“realist about CH” for my purposes.

Why demand realism?

Finally, why should it matter if approaches to CH are realist according to my definition? For
example, on a view such as the naturalism of Maddy [1997], adjudication by the consensus
of the set-theoretic community might be exactly what is required to settle CH. If a technical
program to resolve CH can be mated with one of these philosophical stances, wouldn’t that
render the bulk of my criticisms moot?2

My answer is that I intend to comment on the debate begun by Feferman’s claim [2011]
that CH is not a “definite problem,” by which he meant that the very meaning of the
proposition is unclear, but which I wish to read less strictly as the claim that there is no fact
of the matter about CH. Part of Feferman’s argument was a detailed thought experiment in
which a committee of the Clay Mathematics Institute considers CH for inclusion as one of the
Millennium Prize problems (alongside the Riemann Hypothesis, with which it co-appeared
on Hilbert’s list a century earlier). This hypothetical committee concludes there is no clear
criterion for what it would mean to resolve CH, and that ongoing research on the question
does not seem to be converging on such a criterion, and then rejects CH as a candidate for
inclusion on this basis. Feferman took this as suggestive (but not conclusive) evidence that
CH is indefinite.

In an unpublished research note, Koellner [2012] replied that the fact that there is no
definite program at this time to resolve CH does not imply that the problem itself is indef-
inite; the same concerns would imply to propositions that are unambiguously definite on
Feferman’s view, e.g., a conjecture expressible in the language of first-order arithmetic that
is subsequently discovered to be equivalent to the consistency sentence of a large cardinal
axiom. Feferman largely accepted this criticism and accordingly the thought experiment
does not appear in the final version [2015] of his paper.

However, I think that the test that Feferman described in the thought experiment —
whether “the usual idea of mathematical truth in its ordinary sense is [...] operative in the
research [program]” — is a valuable one and remains applicable. We cannot expect the
definition of success for CH to be as uncontroversial as it is for the Riemann Hypothesis,
because there we have a clear consensus to require a proof in ZFC3 and we know that for

2I thank the anonymous reviewers for pressing this point.
3Or perhaps ZFC plus the existence of Grothendieck universes, as McLarty [2010] argues happened with

Fermat’s Last Theorem.
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CH this is impossible. But we can still measure approaches to CH against the standards of
ordinary mathematical enquiry: are the practitioners behaving as though there is a fact of
the matter to be discovered? If they are not, then I think this is weak evidence that there
is indeed no fact of the matter. I will return to this issue in my conclusion.

5.2 Basic independendence phenomena

“Width” independence results: inner and outer models

My discussion will focus on the following basic independence phenomena. Given any model
of set theory V , one can identify within it the inner model L, the universe containing only
the constructible sets. L is the “smallest possible” universe in a precise sense; in particular,
it is the minimal class model of ZFC inside V and it is absolute under its own construction,
so it is a model of V = L (an axiom saying that every set is constructible). The continuum
hypothesis is always true in L, regardless of its status in V . In fact, so is the generalized
continuum hypothesis (GCH), which fixes the exponentiation function for the entire cardi-
nal hierarchy at 2ℵα = ℵα+1. Moreover, Jensen gave a “fine-structural” analysis of L that
establishes many of its combinatorial properties. In particular, L satisfies the combinato-
rial principle ♢, which implies the existence of a Suslin line: a dense linear order without
endpoints that, like R, is complete and has the countable chain condition, but which is not
isomorphic to R. Similarly, Shelah established that if V = L, every Whitehead group (an
abelian group satisfying Ext1(A,Z) = 0) is free.4

Meanwhile, forcing is a technique for “expanding” a model V (there are metamathemat-
ical subtleties here, to which I will return in section 5.2). A few forcing constructions in
particular are of interest to us here: forcing can increase the size of the continuum, creating
a model that violates CH from a model in which it holds. It can also decrease the value of
the continuum, or “collapse” a cardinal (adding a bijection between it and a lesser ordinal,
so that it ceases to be a cardinal); for example, one can make ℵ1 into a countable ordinal
by forcing. Forcing can also alter the combinatorial properties of V . In particular, one can
force the negation of CH together with the principle Martin’s Axiom (MA).5 This principle
implies that there is no Suslin line, but it also implies the existence of a non-free Whitehead
group.

These are the so-called “width” independence phenomena, so-called because they do not
change the ordinals α of the universe, but do alter the levels Vα of the cumulative hierarchy.
Within this metaphor, L is a “thin” universe; the levels Lα of its cumulative hierarchy are
the smallest possible under ZFC. It has “few” reals (indeed, the smallest possible number
ℵ1), and its “orderliness” manifests itself in its satisfaction of strong combinatorial principles

4Magidor [2012] gives an equivalent statement of this result: if V = L, then every compact Abelian
pathwise connected topological group is a product of copies of the unit circle.

5Henceforth, I will use MA as a synonym for MA(ω1), which entails the negation of CH.
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such as ♢. Meanwhile, a universe satisfying MA is metaphorically “thick”, since the presence
of certain objects (generic filters) has been guaranteed.

“Height” independence results: large cardinals

Essentially, the large cardinals are cardinals such that their existence implies the consistency
of ZFC, and therefore (by Gödel’s second incompleteness theorem) cannot be proven within
ZFC itself. They can be divided roughly into two groups. The “small” large cardinals are
those consistent with V = L; this category begins with simple properties such as inacces-
sibility6 and proceeds through various properties of interest to combinatorial set theorists.
Beginning approximately with 0# and the measurable cardinals, we get cardinals such that
their existence is inconsistent with V = L; these are the “large” large cardinals. It should
be noted that it is misleading to view the “height” of large cardinals in terms of their literal
ordinal height. For example, suppose V contains a measurable cardinal κ. If we pass down to
L, κ is still present but it is no longer measurable (although it will be strongly inaccessible);
the construction of L removed its 0-1-valued measure. “Height” is in this sense a looser
metaphor than “width”.7

As Koellner [2011] observes, even though we can construct, via metamathematical tech-
niques, examples of theories of incomparable consistency strength, it is a surprising fact that
the “natural” large cardinal axioms studied by set theorists appear to be linearly ordered
(indeed, well-ordered) by consistency strength. Moreover, the research program known as
large cardinals from determinacy, associated with Martin, Steel, and Woodin [Koellner and
Woodin, 2010], explores the consequences of large cardinal hypotheses for descriptive set
theory and analysis. An example is the case of the axiom of projective determinacy (PD).
The projective sets are those A ⊆ R that are generated from the Borel sets by finitely many
iterations of taking complements and images under continuous functions. PD says that for
any such A, a certain two-player game on it is determined, i.e., one of the players has a
winning strategy; for the purposes of our discussion, this may simply be taken as a gen-
eralization of desirable descriptive set-theoretic properties such as Lebesgue measurability,
the property of Baire, and the perfect set property. Under V = L, PD is false and there
are projective sets that are not Lebesgue measurable, etc.; under suitable large cardinal as-
sumptions, however, PD is true. These considerations give rise to a case for realism about
the existence of large cardinals and their consequences; when we enhance the consistency
strength and interpretive power of our set theory in this mathematically natural way, we
seem to discover truths “lower down” about the structure of P(R). The full picture of the
connection between large cardinals and determinacy goes deeper and is more sophisticated
than I can present here; Koellner [2014] gives a concise overview.8

6A weakly inaccessible κ is both regular and limit, so it can’t be “reached” from below by taking limits
or successor cardinals respectively. A strongly inaccessible κ additionally can’t be reached from below by
taking power sets; this implies that Vκ is a model of ZFC.

7I thank Neil Barton for making this point.
8For the purposes of this paper, I will not formally dispute the claim that the program has settled
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Significantly, although “height” questions have consequences in first-order and second-
order arithmetic, they turn out to be orthogonal to many of the “width” questions that can
be altered by forcing, including CH. This is due to a family of results originating with the
following theorem of Levy and Solovay: in a universe with a measurable cardinal κ, “small”
forcing (i.e., forcing with a notion of size < κ) does not stop κ from being measurable. Since
such forcing is sufficient to alter the value of 2ℵ0 , it follows that CH is also independent from
ZFC + “a measurable cardinal exists.” The result generalizes to other large cardinal notions,
all of which are known not to decide CH. (However, there are “width” hypotheses that have
large cardinal consistency strength, in particular two extensions of Martin’s Axiom known
as the Proper Forcing Axiom and Martin’s Maximum. I will return to these hypotheses in
section 5.4.)

Philosophical significance of the independence phenomena

The pre-theoretic platonistic view about V is that it is like N, a unique structure that doesn’t
just satisfy the axioms of ZFC and their consequences, but furthermore fixes a truth value
for all sentences in the language of set theory. (I will discuss an attempt to ground this idea
in section 5.4.) Steel [2014] calls this view “strong absolutism”.

I think it is important to note that this view is not directly challenged by any of the
set-theoretic independence results; it is possible to maintain, in the face of them, realism
in ontology about V and realism in truth-value about its first-order theory. For example,
suppose strong absolutism and then consider L. Then the fact that L satisfies CH is irrelevant
to the truth value of CH, which is fixed by the true V . If V ̸= L, V can see “from the outside”
that L is defective, in that it omits some sets that really exist — in other words, there is
at least one set-sized collection of sets that L “refuses” to gather together into a set. Thus,
L does not force the strong absolutist into pluralism about the truth value of any sentences
that vary between V and L. These considerations apply equally to any other inner model
construction.

What about outer models? If we are thoroughgoing platonists about V , there are no
genuine sets outside of V and therefore the idea of constructing a larger model of set theory
is incoherent; specifically, V does not have V -generic sets for any forcing notion P , so the
forcing construction does not get off the ground. In the context of relative consistency
proofs, this issue can be metamathematically finessed by forcing against set models of finite
fragments of ZFC (which can be proven to exist within ZFC itself, via the reflection results
of Montague). So all the independence results discussed so far are intelligible without talk
of actually expanding the universe.

the case for the acceptance of large cardinals — I am primarily concerned with claims to have settled the
width phenomena, not the height phenomena. It is worth noting that there is dissent among set-theoretic
practitioners about the program as a whole and about the specific arguments in support of it; for example,
Hamkins [2015] suggests that the linearity phenomenon may be the product of confirmation bias. For reasons
discussed in sections 5.5 and 5.6, I am personally skeptical, but I think the jury is out.
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Nevertheless, the idea of expanding V itself by forcing is robust enough that set theorists
do commonly speak of taking extensions of the universe. In particular, Hamkins [2012]
describes a result which gives a theoretical basis for taking this talk (in his phrase, the
“naturalist account of forcing”) at face value. For any forcing notion P , one can, within V ,
construct class models V ⊆ V [G]; there will be an elementary embedding of V into V , and
V [G] will be a forcing extension of V by a V -generic set G ∈ V . This can then be construed
as legitimizing the ordinary practice of referring to V [G]. But for the strong absolutist, this
proof is not evidence for the actual existence of outer models; the construction merely yields
another a class model like L, defective in that it does not instantiate the correct levels of the
true cumulative hierarchy. In some cases, it can even be seen “from the outside” (i.e., from
the perspective of the true V ) to be ill-founded. So again, the independence phenomena do
not inherently push us into pluralism about the concept of set.9

The independence phenomena as part of mathematics

At this point, I will endorse two views concerning the width phenomena. The first is the
contention of Magidor [2012] that it will not do to dismiss them as inherently metamathe-
matical in character, irrelevant to the working mathematician — indeed, the independence
result for Whitehead groups came as a very surprising intrusion of higher set theory into a
problem that was perceived as purely algebraic, and attempts after the fact to dismiss it as a
“merely” set-theoretic problem are a kind of gerrymandering. The independence phenomena
cannot be defined out of “real mathematics”.

If one accepts that sentences like Whitehead’s problem (whether there is a non-free White-
head group) or Kaplansky’s conjecture (whether there can be a discontinuous homomorphism
between certain kinds of Banach algebras) remain properly mathematical questions, even af-
ter having been found independent of ZFC, then it follows that they pose a challenge not
merely for set-theoretic foundational programs, but for alternative foundations as well: we
can benchmark those alternative proposals by how they answer the independent questions.
I will return to this issue in section 5.6.

The “dream solution” to the independence phenomena

The other view I want to endorse is that of Hamkins [2012] that at this point, we cannot
hope to find an intuitively evident principle, analogous to the existing axioms and intrinsi-
cally justified by the concept of set, which decides these questions. Given such a principle
(Hamkins calls it the “dream solution”), we are already so well acquainted with universes

9This argument applies a fortiori to the semantic account of forcing, in which the forcing relation ⊩∗
P is

defined within V itself and then interpreted as describing what would be true in a generic extension V [G].
The reasoning is essentially analogical: in a countable transitive model M , the forcing relation definable
within M would identify sentences true in the extension M [G], so one may argue that it does the same thing
in V . But for the strong absolutist, there is no V [G] and the analogy simply breaks down — the semantic
account is reduced to a method of producing relative consistency proofs.
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that violate it that we will not be convinced that it identifies something truly essential to
the concept of set itself. We cannot recover platonism via the naive continuation of the
axiomatic method.

Hamkins takes this further. On his view, the independence phenomena have demon-
strated that there exist multiple valid concepts of set. These concepts can be arranged to
form a set-theoretic multiverse, each world of which is a model of ZFC; Hamkins gives a
formal description of this multiverse, one that entails an extensive anti-realism about con-
cepts such as the ordinal hierarchy, countability, and well-foundedness. For him, the truth
value of CH can vary across the set-theoretic multiverse, and this is the end of the matter:
CH simpliciter has no truth value. I should emphasize that my endorsement ab initio of
Hamkins’s attitude to the “dream solution” does not entail a similar endorsement of his
multiverse view. I will return to the status of Hamkins’s multiverse vis-a-vis more realist
views in sections 5.5 and 5.6.

5.3 Maximizing structures

At this point, it may seem as though I have ruled out all the philosophically motivated
avenues for resolving the continuum problem. However, instead of relying on the intuitive
acceptability of axioms, we can appeal to the philosophical motivations for the set-theoretic
program itself. Such a program could pick out philosophically better models of set theory,
and all of these models could agree on the truth value of CH — this without rejecting
Hamkins’s claim that there are legitimate models of both CH and its negation.

What goals does set theory serve as a foundation for mathematics? Structuralist critiques
of set theory as a foundation often focus on the failure of set theory’s ontology and proof
system to describe the means by which mathematicians actually reason. These objections
strike me as missing the point. The foundational goals served by ZFC are not primarily
about enabling the straightforward translation of working mathematics into a formal system.
Rather, the set-theoretic universe is “Cantor’s paradise”10, in which seemingly disparate or
incommensurate kinds of mathematical structure exist and can be studied together — for
example, the monster group, the complex numbers C, and the ω1-Aronszajn tree. Thus,
one might endorse an analogue of Shapiro’s [1997] “coherence principle” — intuitively, “all
structures that can possibly exist, should exist” — and take as a realist objective for set
theory the principle of maximizing structures. The best set theory is then the one that
realizes the most structures.

How can we formally cash out the idea of maximizing structures? Maddy [1998] provides
one suggestion: maximize the isomorphism types available. This principle can be used, for
example, to argue against V = L as an axiom, because it precludes the existence of the set
0# (a subset of N that codes a certain metamathematical property). It follows from this
that if V contains 0#, no set in L is isomorphic (from the point of view of V ) to the level

10Hilbert’s phrase.
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Vω+1 of V at which it first appears — thus, V = L can be interpreted as failing to maximize
the availability of isomorphism types.

A prima facie problem with this suggestion is that there is no neutral standpoint from
which to judge whether two objects are isomorphic (and therefore whether they represent one
or two distinct isomorphism types); any such judgment must occur from the point of view of
a particular model of set theory. For example, suppose we have conceptions of two competing
models V and V ′ of set theory, but not a conception of how one is contained in the other; how
are we to tell whether a ∈ V and b ∈ V ′ are isomorphic? But the situation is not improved
when we consider the case where one model is contained in the other, because the condition
of being isomorphic is not absolute under set forcing. Here is a straightforward example
suggested to me by John Steel: the first-order theory T of dense linear orderings without
endpoints is ω-categorical (it has exactly one isomorphism type of size ℵ0, instantiated by
the rational numbers Q) but is not categorical in any uncountable cardinality. Let M be
some model of set theory, and let A,B ∈ M be non-isomorphic models of T of cardinality ℵ1.
Then, extend M to M [G] by forcing to collapse ℵ1 so that it becomes a countable ordinal; A
and B still satisfy the same first-order theory, but are now countable, so they have become
isomorphic to each other and to Q. (Interestingly, Baldwin et al. [1993], motivated explicitly
by the idea that this merging of isomorphism types by forcing is a pathological phenomenon,
give combined constraints on first-order theories and forcing notions that prevent this from
happening.)

Maddy negotiates these difficulties by defining structure-maximization for theories, rather
than for particular models. Specifically, a theory T maximizes over a theory S if models of
T provably have “good” inner models11 of S, and the outer model of T provably contains an
set X such that no set in the inner model of S is isomorphic to X. Maddy then considers
S to be restrictive, and therefore defective, if T maximizes over S and S does not maximize
over T . This resolves the problem of perspective just identified: the outer model provides the
vantage point from which we assess the distinctness of isomorphism types, but the types are
not being identified with the model-theoretic isomorphism types present in any particular
universe, rather with the proofs that pick them out.

Nonetheless, I believe the definitions are still fundamentally reliant on a characterization
of structure as isomorphism type, and that this reliance poses an ineluctable problem. A
natural conception of “mathematical structure”, as it is used by working mathematicians
and then interpreted within a set-theoretic ontology, will include non-absolute properties that
depend on non-absolute relationships with N (such as countability) and R. An example is
the Suslin line, as discussed in section 5.2, which is characterized by two such non-absolute
properties: having the countable chain condition and being non-isomorphic with R. The
existence of such a line S is independent, because it follows from ♢ and is therefore true in
“narrow” universes like L, but fails in a “wide” universe satisfying MA. Take a universe U

11Maddy’s original definitions (which refer to these suitable models as “fair interpretations”) allow proper
class inner models, truncations of V at an inaccessible, and truncations of proper class inner models at an
inaccessible. The correct definition of “fair interpretation” has been the subject of subsequent debate; see
Incurvati and Löwe [2016] for a recent perspective.
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satisfying V = L and consider an outer model W ⊃ U satisfying MA. Then the set ⟨X,<⟩
that instantiated the Suslin line in U is still present in W . It continues to represent its
isomorphism type, and it retains all its first-order properties (it is still a dense linear order),
but it has ceased to be a Suslin line.

If we accept this conception of mathematical structure, reducing the universe may add
structures as well as removing them, and enlarging it may remove structures as well as adding
them. But Maddy’s definitions (as with any definitions relying solely on isomorphism type)
are unable to “detect” this phenomenon, because the set instantiating the structure in the
inner model is always trivially present in the outer model as well. According to them, the
theory V = L does not maximize even over the theory “there is no Suslin line” — rather,
that theory properly maximizes over V = L, because it entails V ̸= L, and the added
nonconstructible set counts as a new isomorphism type.

On a characterization of structure faithful to the ordinary mathematical notion, can we
maximize structures? I conjecture that this goal is impossible: some structures are unable to
peacefully coexist in Cantor’s Paradise and will force us to choose between them. Specifically:

Conjecture 4 (Informal). There exist sentences φ1 and φ2 in the language of set theory,
each describing the existence of a mathematical structure, such that ZFC+φ1 and ZFC+φ2

are each consistent, but ZFC + φ1 + φ2 is inconsistent.

This conjecture is true when φ1 is the principle ♢ (read as “a ♢-sequence exists”12) and
φ2 is “a non-free Whitehead group exists” — but I think many working mathematicians
might dispute the claim that a ♢-sequence is a bona fide structure, instead viewing it as a
purely set-theoretic artifact. My (largely uninformed) speculation is that the conjecture is
still true when φ1 is replaced by the sentence “a Suslin line exists”.13 But here is some more
grounded speculation: the incompatible combinatorial phenomena in “wide” and “narrow”
universes mean that we will be able to fill in some natural φ1 and φ2. So I believe that the
project of maximizing structures ends up being incoherent. I will return to the implications
of this in section 5.6.

5.4 Maximizing sets

To see how strong absolutism (that is, realism about V as a definite totality) has fared in the
face of the independence phenomena, it is instructive to look at Martin’s [2012] exposition
of the informal argument for the uniqueness of V . I note that Martin’s actual position is
subtle and does not literally endorse the argument as it is presented here — I am presenting
it not as part of a discussion of Martin’s view, but because I think it illuminates the original,
pre-independence-era motivation for set-theoretic platonism.

12Specifically, ♢ asserts the existence of a sequence of subsets Aα of ℵ1, for α < ℵ1, such that for every
A ⊆ ℵ1, the set {α ∈ ℵ1 | Aα = A ∩ α} is stationary.

13On the other hand, it might be possible to start with a relativization of MA or PFA that preserves
Suslin lines, as in Todorcevic [2011], and then still obtain a non-free Whitehead group.
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Suppose V and V ′ are models of set theory with the same ordinals; we will argue by
an informal version of transfinite induction that they must be equal at every level of the
cumulative hierarchy, and therefore equal overall. Certainly they must agree at level 0:
this is just to say that V0 and V ′

0 are both the empty set. Suppose now that they agree
up to level α of the cumulative hierarchy, i.e., Vα = V ′

α. Then, for any x ∈ Vα+1, we can
apply an informal version of the Axiom of Comprehension to collect a corresponding set
f(x) = {y′ ∈ V ′

α | y′ ∈ x} ∈ V ′
α+1. Since V ′ satisfies the Axiom of Extensionality, f is an

injection from Vα+1 to V ′
α+1; but since V does as well, the corresponding map defined by

g(x′) = {y ∈ Vα | y ∈ x′} is also an injection and is the inverse of f . Therefore, f is an
isomorphism and we can use it to identify Vα+1 with V ′

α+1, as before. The case where α is
a limit ordinal is trivial, since any disagreement at a limit α must have been introduced at
some level β < α. □

The significance of this argument is not in its ability to persuade the anti-realist or
multiversist. Nonetheless, let’s examine in detail the point at which the multiversist objects
to it. Suppose that V is a “wide” universe satisfying MA(ω1), and V ′ is its L. These
models have the same ordinals and therefore Martin’s proof is putatively applicable to them;
nevertheless, our straw multiversist will maintain, for purposes of argument, that V and V ′

are equally good universes of set theory. Now, let the two models will agree up to some
level α, where α > ω, and begin to disagree at Vα+1. Let x ∈ Vα+1 be one of the sets that
doesn’t appear in V ′

α+1; when the absolutist tries to produce f(x), the multiversist retorts
that comprehension cannot be applied, because the property y′ ∈ x has no meaning within
V ′, where x does not exist.

This objection is good as far as it goes. But the absolutist can reply: the failure of V ′ to
collect these elements into a set constitutes evidence that V ′ is defective. After all, once the
existence of V and x is conceded, there is nothing conceptually unclear about the property
“being a member of x”. Why, then, does V ′ refuse to collect the elements of V ′

α that satisfy it
into a set? In essence, the universist is arguing that that V is categorical because given two
competing notions of set over a common set of objects, the more permissive one is superior
— given a set X and a collection Y of its elements, there are no grounds on which we can
deny that Y is a genuine subset of X. This gives us a basis for a genuinely realist approach
to set-theoretic truth: the true universe V is the one that contains as many sets as possible,
and the goal of set theory is to maximize sets.14

Is there a mathematical program that can be viewed as maximizing sets? In fact, Magidor
[2012] proposes the forcing axioms — MA, the Proper Forcing Axiom (PFA), and Martin’s
Maximum (MM) — as formalizations of this intuition that the most permissive notion of
set is the best. Intuitively, the forcing axioms identify a class of “mild” forcing notions,
then assert that the results of applying those forcing notions are already available within
the current universe. For example, MA applies to forcing with partial orders P that satisfy
the countable chain condition (“c.c.c.”); among other desirable properties, these forcings
preserve cardinals. MA(ω1) asserts that for any c.c.c. partial order P and any family of

14The idea may originate with Gödel [1964], who used it as part of an argument against V = L.
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dense sets D in P satisfying |D| ≤ ω1, there is already a D-generic filter F on P . PFA and
MM generalize this to larger classes of forcings, with MM giving the most general class for
which a forcing axiom of this form is consistent. Metaphorically, if we use these mild forcings
to make our concept of set more and more expansive, the final result is a universe satisfying
the relevant forcing axiom. (This metaphor accords with the constructions that produce
models of the forcing axioms; the relevant kinds of forcing are iterated in a “controlled” way
so that the final model satisfies the axiom.) Moreover, PFA and MM prove that 2ℵ0 = ℵ2,
so they decide CH in a natural way.15

The problem is that a set-maximizing rationale for the forcing axioms seems to require
viewing forcing in a realist sense as “adding sets” to the universe — and if we accept this,
then it’s hard to know when to stop. If there is set-theoretic structure outside of our current
universe and we can access it via forcing, why should we stop at mild forcing? Without
this restriction, we can start from a universe satisfying MM, then force to restore CH (by
collapsing 2ℵ0 to equal ℵ1) and then even an L-like principle such as ♢.

One could accept the forcing axioms concomitantly with the belief that non-mild forcings
are pathological, because they destroy important features of the original universe; this would
solve the immediate difficulty just presented. (Indeed, there is something intuitively patho-
logical about collapsing a cardinal.) But the problem quickly reappears, since the forcing
axioms are not “stable” with respect to their own classes of mild forcings. For example,
starting from a universe that satisfies MM, one can use a forcing that is mild according to
MM’s own definition of mildness (in fact, a c.c.c. forcing) to obtain 2ℵ0 = ℵ3, which will
destroy MM. Note that this is a disanalogy between outer and inner models, or between
maximality and minimality, since L is absolute under its own construction. With inner
models, we can descend to the bottom, but with outer models there seems to be no top that
we can climb to.16

At this point, I need to clarify the nature of my critique of the program: my quarrel
is not with its goal, but with its claim to have achieved the goal. In fact, the program is
my paradigm for a properly realist approach to resolving an independence phenomenon. It
is not an instance of the “dream solution”, since no one is claiming that MM is intuitively
evident. Nor is it necessarily a claim that MM is intrinsically justified, in the sense of Gödel
and Koellner, on the basis of the concept of set. One might maintain instead that MM is
not contained in the original concept of set, but rather in a refinement of that concept that
deserves on realist grounds to supersede the original.17 The point is that that 2ℵ0 = ℵ2 has
putatively been discovered as a consequence of the set-maximizing program combined with
technical results about forcing. In the next section, I will use this as a benchmark for a

15However, they do not fix the values of any beth number above ℶ1, so they are largely silent on the
question of GCH.

16However, see Hamkins [2003] for a discussion of sentences that are in fact “stable” in the sense that
once made true by forcing, they cannot be made false by any subsequent forcing.

17In fact, I think this is a reasonable reading of Magidor’s actual position: he states explicitly that he
is interested in extrinsic rather than intrinsic justifications, and the title of his paper (which doubles as the
“slogan” of his program) is “Some Set Theories Are More Equal.”
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competing program.

5.5 Maximizing interpretive power

The inner model program

The inner model program is probably the most significant contemporary attempt to complete
set theory and resolve CH. Many notable people have contributed to it mathematically, but
its most prominent advocates qua philosophy are Steel and Woodin. In the discussion that
follows, I will somewhat conflate their philosophical views, or perhaps rely on Steel as a
philosophical interpreter of Woodin’s technical program; the attendant dangers are evident
but I think this is necessary in order to maintain focus.18 The philosophical goal served
by the inner model program is the maximization of interpretive power — see in particular
Steel [2000, 2014] — and the technical goal is the construction of inner models that are
compatible with the existence of very large cardinals (at the level of a supercompact and
above). The key philosophical tenets of the program, invariant historically across several
different technical directions, are realism about the existence of these large cardinals (about
the ordinal hierarchy itself, and about the non-absolute properties of the ordinals asserted
by large cardinal hypotheses), and about the consequences of their existence in descriptive
set theory (for example, projective determinacy).

Two difficulties immediately present themselves. One is that, by the results discussed
in section 5.2, CH appears to be entirely orthogonal to questions of interpretive power as
expressed through the large cardinal hierarchy: for all known candidate theories T that assert
the existence of large cardinals, T , T +CH, and T + ¬CH are all equiconsistent. The other
is that to harness the interpretive power of large cardinals, a theory does not need to assert
that large cardinals actually exist. As Hamkins [2012] points out, the Shoenfield absoluteness
theorem guarantees that for any reasonable19 theory T , the existence of a countable transitive
model of T is absolute between V and L, and thus between V and any forcing extension
of V . So if T is something like “ZFC plus the existence of arbitrarily large supercompact
cardinals”, T is incompatible with V = L, as are all large cardinals above a measurable. But
“ZFC, plus V = L, plus the existence of a countable transitive model of T” is consistent if
“ZFC plus the existence of a strong inaccessible with arbitrarily large supercompacts below
it” is — so the large cardinal realist is committed to the consistency of this theory as well.

Even before discussing specifics of the inner model program, it will be helpful to frame
the discussion in terms of how it purports to respond to these two objections. To the second
objection, Steel (ibid.) replies that due to the mathematical considerations described in sec-
tion 5.2, specifically their natural well-ordering by consistency strength, large cardinals are

18Specifically, Woodin has historically advocated many different (and incompatible) technical programs
with different philosophical justifications. The one discussed here is the one represented in his most recent
work, which is also the closest to Steel’s view. For a detailed history, see Koellner [2013].

19Specifically, any constructible theory. This includes all the recursively axiomatizable theories.
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unique among proposals to expand the interpretive power of ZFC in terms of their systematiz-
ing influence. Therefore, accepting the low-complexity consequences (such as arithmetical
consistency sentences and the existence of countable transitive models) of large cardinals,
while maintaining skepticism about large cardinals themselves, can be criticized as an in-
strumentalism, comparable to instrumentalism about unobservables in physical science. In
Steel’s [2000] phrase, it is philosophically unsatisfactory in the same sense as the assertion,
“There are no electrons, but mid-sized objects behave as if there were.” So on this view,
any “first-class” (in the sense of both interpretive power and philosophical faithfulness to
the theory of large cardinals) model of set theory must contain all the ordinals, and those
ordinals must retain their requisite large cardinal properties, and therefore the model will
satisfy PD, etc.

As for the first objection, the inner model program seeks to pick out a preferred model
of ZFC with large cardinals that will decide CH — so its claims to resolve CH will rest on
the philosophical justification for this preference. Woodin’s “Ultimate L” program, more
or less, is to obtain an L-like inner model that, like L, will support a detailed structural
analysis, but unlike it will be compatible with the existence of large cardinals at the level
of a supercompact and above. In one commonly discussed possible outcome, this model will
satisfy L-like principles such as GCH and ♢.20 The sense in which it maximizes interpretive
power is via Steel’s generic multiverse proposal, as follows. Start from a model V with (for
example) arbitrarily large supercompact cardinals. Consider the universe of proper class
models that are mutually accessible from V via set forcing; since set-sized forcing cannot
alter the properties of more than set-many cardinals, every model in the multiverse will
still have arbitrarily large supercompacts. Steel [2014] then proves that the theory of this
multiverse is expressible in the ZFC language of the original model. The truth value of CH
will necessarily vary across the multiverse, but the multiverse may have a unique element
definable in the multiverse language, the core. Pending outcomes of Woodin’s conjectures
[Woodin, 2011], the core will be ultimate L. So we can accept the axiom “V = Ultimate-
L” with confidence that no interpretive power has been lost, since any omitted structure is
available — in a “first-class” model with all the ordinals and arbitrarily large supercompacts
— via set forcing. Then we may take the fact that CH is true in Ultimate-L to mean that
CH is true.

Does the inner model program resolve CH?

Let us take stock. What underlies the case for “V = Ultimate-L” as an axiom, or alternately,
the case for “truth in the core model” as the correct analysis of set-theoretic truth? It seems
that the justification cannot be an intrinsic one; the considerations motivating the picture
are highly technical and cannot be claimed to arise from the concept of set itself (indeed,
its proponents make no such claim). Moreover, as discussed in section 5.4, the intrinsic

20As Koellner [2013] points out, there are other ways the conjectures could turn out, including some
possibilities where CH fails, but my critique applies in those eventualities as well.
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considerations seem to militate in favor of a “wider”, more permissive concept of set. So
the justification must be extrinsic. There are two salient possibilities: the picture could be
justified on the strength of the core model’s privileged position within the generic multiverse,
or by the fact that the resulting model will support a fine-structural analysis.

I think a fair reading of the first argument — that the core model may be taken to
be the true V in virtue of its minimality in the generic multiverse, or in virtue of being
the only definable element thereof — is that it immediately belies its own claim to have
resolved CH. The core model has been recommended to us as a sort of springboard; by
forcing over it, we can access other “first-class” universes of set theory, containing other
mathematical structures that are legitimized by their appearance in such a universe. The
relevant distinction is that although we can jump from our initial universe with its Suslin
line to a different one with a Whitehead group, we can never reach a universe where PD
fails. This is, prima facie, realism about “height” questions and anti-realism about “width”
questions, including CH. Steel [2014] argues that given the independence phenomena, we
must reframe CH as a sentence in the multiverse language, and the only suitable candidate
for such a reframing is the question of whether CH is true in the unique definable world —
in which case, CH turns out to be true. But it is difficult to see why we should accept the
reframing, as opposed to the more natural interpretation where CH remains a sentence in
the language of set theory and its truth value simply varies across the worlds of the generic
multiverse.

What of the possibility that supporting a fine-structural analysis is itself a reason to
choose a model of set theory? The challenge here is that there is no good reason to think that
V should support a particular kind of structural analysis — even supposing that this analysis
is the only known way21 to answer open questions about its properties. If we seek analogues
of this in other fields of mathematics, we find seemingly parallel phenomena; for example, in
complexity theory, difficult questions are often studied under oracle relativizations [Fortnow,
1994], which can provide a simpler setting that nonetheless illuminates the original problem.
But no one would say that answering the relativized question in itself answers the original
question, or argue naturalistically that the original question has been superseded by the
relativized question. So the strong absolutist who is a proponent of principles that are
incompatible with “V = Ultimate-L” (for example, MM), can mount the following challenge:
the inner model theory program is answering a relativized analogue of CH (specifically,
relativized to the inner model Ultimate-L), but this is not an answer to the question itself.

Can it be argued that a fine-structural analysis is in itself mathematically fruitful, and
this is an extrinsic ground for its acceptance? First it must be noted that there is no
evidence, as yet, of interest from working mathematicians in the specific results that follow
from a fine-structural analysis. (In contrast, there is a better case that large cardinals and
PD lead to a descriptive set theory that is “useful to analysts,” in Steel’s [2000] phrase.) So
the appeal must be to its fruitfulness in resolving set-theoretic questions. This seems to be

21Since, as discussed previously, the forcing axioms do not settle the cardinal exponentiation function
above ℵ0.
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the stance of Woodin [2009], who says that “V = Ultimate-L” could lead to “a conception of
the transfinite universe which is as clear and unambiguous as our conception of the fragment
Vω, the universe of the finite integers.” On this view, V = L would have been an ideal
axiom except for its incompatibility with large cardinals. Subordinate to the constraint of
maximizing interpretive power, we are also maximizing clarity or answers.

The problem is that on this methodology, just as long as we get an answer, any answer
will do — and this lends teeth to Feferman’s charge that the “usual idea of mathematical
truth” is no longer operative in set theory. Again, comparisons with other mathematical
fields are instructive. In number theory, many results of interest have been shown to follow
from the Riemann Hypothesis. In computational complexity theory, the existence of one-way
functions [Goldreich, 2006] and the Unique Games Conjecture [Trevisan, 2012] are unproven
hypotheses that can be used to prove many foundational results in cryptography and the
theory of hardness of approximation, respectively. Yet it is inconceivable that working
mathematicians in these fields could take the fruitfulness of these hypotheses as a reason to
accept them as true — as heuristic evidence of their truth, certainly, but not to grant them
the same epistemic status as proven results. Of course, this is due in part to the fact that the
standard for acceptance in these fields is the exhibition of a proof in ZFC, a standard which is
inapplicable here — so inasmuch as this is the reason, the comparison is invalid. But I think
the deeper reason for the asymmetry is that number theorists and computational complexity
theorists believe that there are facts of the matter about their hypotheses, facts that are at
liberty, so to speak, to be uncooperative with their theorem-proving ambitions. There is a
real and salient epistemic possibility that despite our hopes, the Riemann Hypothesis could
actually be false — so much the worse for us! If there is no such fear to restrain us with
regard to CH and the width questions, it must be because we do not really believe that there
are facts about them — we are free to adjudicate or even dismiss the questions, rather being
forced to discover their solutions.

Put another way, what distinguishes the answer-maximizing justification for “V = Ultimate-
L” from other extrinsic justifications is the lack of accountability to an external criterion of
set-theoretic truth. In the case for large cardinals, one is (meant to be) persuaded by the
goal of maximizing interpretive power, which leads to belief in the large cardinal axioms and
the discovery of truths such as PD. In another perspective on the case [Koellner, 2014], one
comes to believe that PD is true (e.g., because PD’s regularization of descriptive set theory
makes it the correct venue for analysts), and then one comes to accept large cardinals because
they are natural hypotheses from which determinacy can be derived. Nor is it necessary to
choose one “direction” for the argument to the exclusion of the other; the “web of implica-
tions” (Moschovakis’s phrase, quoted in Maddy’s [2011] summary of the case) between the
two classes of hypotheses leads naturally to a picture where the beliefs in them are mutually
supporting. The point is that the web is not “free-floating”, but is anchored somewhere to
the ground: it rests on some external reason or reasons to believe that in adopting large
cardinals and determinacy, rather than V = L and definable failures of determinacy, we have



114

arrived at the right answer.22

The case for MM discussed in section 5.4 is realist according to this criterion: one is
(meant to be) persuaded as to the maximality of the set concept, which leads to belief in
MM (via an extrinsic justification) and then to the discovery that 2ℵ0 = ℵ2. But in the
case for “V = Ultimate-L”, neither the proposed axiom nor its conjectured consequences
(including 2ℵ0 = ℵ1) have a suitable external ground. The justification for CH is then
essentially circular: 2ℵ0 equals ℵ1 because we want to fix a value for it, and any value will
do. This is not a realist attitude to the continuum problem.23

To make the point more explicit, imagine a proponent of MM motivated by the set-
maximizing goal; call him Straw Magidor. If we ask Straw Magidor, “why is there no
Suslin line?”, he replies, ”the Suslin line was incompatible with the true, maximal concept
of set.” The crux is that Straw Magidor can claim to have discovered, in some sense, that
there is no Suslin line. In contrast, if we ask Straw Woodin “why is there no Whitehead
group?”, Straw Woodin seems to have one of two possible replies. He can say that the
Whitehead group has been discovered to be incompatible with a fine-structural analysis of
the universe, and therefore not to exist. But the thrust of this reply seems to be just that
the Whitehead group cannot exist because the alternative would be admitting that we do
not know whether it exists — and therefore it is poorly positioned to argue against a view
which asserts that the Whitehead group does exist, and adduces independent evidence for
its existence. Alternately, he can affirm the Whitehead group’s legitimacy as an object of
mathematical interest, despite its failure to appear in the core model, and say that it can
still be studied by forcing MA(ω1) over the core model. But now the claim to have resolved
CH rests solely on the claimed primacy of the core model within the generic multiverse, a
claim which I have already argued cannot do the necessary work. Either way, we don’t seem
to get to realism about the truth values of sentences that can vary across the worlds of the
generic multiverse.24

22As I mentioned in section 5.2, I am not describing my own persuasion by the case, but merely the
structure of its appeal to a hypothetical member of the audience.

23Nor does there appear to be a “prediction and confirmation” case for “V = Ultimate-L” of the kind
Martin [1998] gave for large cardinals. Without going into details, I believe that such an argument would
face an unmet burden of proof to show that it supports acceptance of the width consequences themselves,
rather than merely reiterating the one for large cardinals and determinacy that rests on the relationships
between determinacy hypotheses and the existence of L-like inner models with large cardinals [Koellner,
2014].

24Returning briefly to the possibility that the preferred inner model will violate CH, or even have a
Whitehead group: substitute an independent question that is true under a forcing axiom, but not under any
candidate inner model axiom, and the argument proceeds mutatis mutandis. As Koellner [2013] describes,
there may be a realist means of deciding between candidate “completionist” inner model axioms, via the
structure theory of rank-into-rank embeddings — but the realist case for choosing one at all is still lacking.
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Generic-multiverse truth

Could we then analyze set-theoretic truth simply as “truth in every world of the generic
multiverse”? At first glance, this would fulfill some of the program’s goals by recognizing the
existence of large cardinals and projective determinacy as global truths. However, Woodin
[2009] actually argues against this characterization, based on the idea that the set of Π2

generic-multiverse truths would be “too simple”, in the sense of being captured by set-
sized models. Without engaging directly with this argument, there is another problem:
there will seemingly be some “accidental” generic-multiverse truths, due to limitations of
the construction. In particular, the generic multiverse is not closed under class forcing.25

Suppose the core of the generic multiverse satisfies GCH. Then, since set forcing can only
change the value of the continuum function in set-many places, no world of the generic
multiverse will violate GCH in class-many places, e.g., by having 2ℵα = ℵα+2 for all regular
ℵα, even though we know that this condition is equiconsistent with ZFC via Easton’s class
forcing technique. So, if we want to study a universe satisfying this condition in the generic
multiverse setting, we have to study it via set models; we cut the core model off at a suitable
large cardinal κ and force over Vκ. But now we have abandoned our insistence on “first-
class” models of set theory, and opened the door back up to Hamkins’s anti-realism about
the ordinal hierarchy, the large cardinals, and PD. In this way, the generic multiverse view
may ultimately undermine its own anti-instrumentalist motivations. I will say more about
the status of the anti-instrumentalist argument in the next section.

5.6 Other possibilities

The hyperuniverse program

The hyperuniverse program [Arrigoni and Friedman, 2013] rests on a third kind of multiverse
picture, different from those of Hamkins and Steel. The hyperuniverse H is defined, relative
to a particular model V of set theory, to be the set of all countable transitive models of ZFC
that exist in that universe. It is consistent with ZFC that the hyperuniverse is empty, so
in order to have a theory of interest we need to augment ZFC with additional consistency
strength. Large cardinals are effective for this, but a different candidate is suggested by the
program itself: the Inner Model Hypothesis (IMH). This axiom asserts, speaking loosely and
eliding some difficulties in formalization26, that any sentence φ achievable in an outer model

25Steel and Woodin have slightly different definitions of the generic multiverse, but neither includes closure
under class forcing. Steel’s formulation has an explicit incompatibility with class forcing: one of its axioms
is an “amalgamation” property, which states that any two universes U and V can be extended by forcing so
that U [G] = V [H], and one can construct class-generic extensions that are incompatible in this sense. It’s
not clear whether there is a good way to allow for class forcing, given that pathological class forcings could
destroy all of the class-many large cardinals.

26Specifically, the IMH has no candidate formulation in ZFC. However, new work by Antos, Barton, and
Friedman shows that it can be formulated in NBG + Σ1

1-comprehension for classes.
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of V is already realized in some inner model of V . This axiom has large cardinal consistency
strength and guarantees that H contains models with large cardinals, but it rules out the
existence of any large cardinals (at the level of an inaccessible or higher) in V itself. So it is a
putative counterexample to the key premise of the anti-instrumentalist argument described
in the previous section, i.e., the claim that asserting the actual existence of large cardinals
is the only mathematically fruitful direction for maximizing interpretive power. To reuse
Steel’s analogy, the IMH is like an empirically adequate scientific theory with no electrons.

The hyperuniverse program seeks to formulate principles that guarantee good properties
for H, or for subsets of H that contain preferred models (this preferment may be for technical
or philosophical reasons). Then it proposes to investigate the consequences of those principles
in V itself — including, potentially, CH or its negation. I will not discuss the status of these
goals in detail because at the present time of writing, the program does not have a fully
mature strategy for resolving CH. (A strengthening of the IMH, the Strong Inner Model
Hypothesis, implies that CH is false and that the continuum must be quite large27; however,
its status is still tentative because it has not yet been proven consistent relative to established
large cardinal hypotheses.)

Nevertheless, I think that the program, as it stands, already offers an interesting inter-
pretation of the independence results that have been discussed. We can maintain strong
absolutism about V and regard H, or some preferred subset of it, as the space of epistemi-
cally possible universes of set theory. Most of them will not be metaphysically possible on
this view, since they will satisfy sentences that are not true in V and be thereby incompatible
with the unique true concept of set, as instantiated by V . But nonetheless, the default out-
come of an independence phenomenon is the creation of new epistemically possible worlds
— which may subsequently be dispelled by the discovery of new properties of V , or new
restrictions on H.

Meanwhile, from the point of view of multiversism, I think the hyperuniverse is our best
current formalization of what the multiverse might look like. As discussed in section 5.5,
the Steel-Woodin generic multiverse seems too restrictive, in that it can realize at most
one of the regular cardinal exponentiation functions 2ℵα = ℵα+1 and 2ℵα = ℵα+2. On the
other hand, the Hamkins [2012] multiverse seems far too permissive, in particular in its anti-
realism about the concepts of well-foundedness and N. Specifically, it satisfies a principle
called well-foundedness mirage: every universe V is ill-founded from the point of view of
another universe W . On this view, every universe contains at least one set ϵ that it believes
to be an ordinal, but such that there is no fact of the matter about whether ϵ is well-founded.
Moreover, Hamkins thinks ϵ can be as low as ω, i.e., he rejects the concepts of the standard
model N of the natural numbers and the true theory of first-order arithmetic. I agree with
Barton [2016] that this rejection also undermines the metamathematical posits needed to
develop and discuss the multiverse in the first place, in particular the concepts of well-
formed formula and proof. Even if we could stave off this collapse by asserting that ϵ must
always be greater than ω, i.e., that every universe must be an ω-model, I find the idea that

27SIMH implies that 2ℵ0 > ℵα for any α countable in L.
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the concept of well-foundedness is never secure untenable. By contrast, the hyperuniverse
offers us a much more sober picture; since the worlds of H are transitive set models, they
straightforwardly share global concepts of ω, ∈, and well-foundedness with each other and
with V .

Non-set-theoretic foundations

Homotopy type theory (HOTT) is a novel foundational program that unites ideas from
category theory and algebraic topology. Awodey, one of its creators, proposes it [2014] as a
realization of philosophical structuralism about mathematics, in particular as a foundation
that takes structure rather than set-theoretic ontology to be fundamental. But HOTT has
many potential advantages on a technical level as well: a greater fidelity to mathematical
practice, an easier pathway to computer-checkable and and computer-assisted proofs, and
more dialogue between foundational efforts and ordinary working mathematics.

I take the upshot of the discussion in section 5.3 to be that the concept of structure,
as it is commonly used by working mathematicians, appears to be set-theoretically relative:
in certain extreme (but nonetheless probative) cases, our only approach to the question of
whether a structure (e.g., the Whitehead group) actually exists is to think about it in terms
of axioms that extend ZFC. So on one level, the independence phenomena challenge the
possibility of an independent conception of structure: how will a structuralist foundation
decide whether the Whitehead group is real? If the only way to do so is by importing
analogues of set-theoretic principles such as ♢ or MA, this undermines the claim that the
new foundational scheme is truly independent of set theory.

On the other hand, the phenomenon of ZFC-independent statements in ordinary mathe-
matics means that an alternative foundational system could potentially reveal truths about
set theory. For example, Kaplansky’s conjecture states that every homomorphism h : A → B,
where A is the Banach algebra C0(X) for X a Hausdorff space and B is an arbitrary Banach
algebra, must be continuous. If CH is true, then the conjecture is false, i.e., there exist
spaces with a discontinuous homomorphism that provide a counterexample. If MA is true,
however, then the conjecture is true. If, as I claimed in section 5.2, the Kaplansky conjecture
is a properly mathematical question and not a pseudoproblem or artifact of the choice of
set-theoretic foundations, a proof in HOTT that it is true (of the first-class mathematical ob-
jects posited by HOTT) would be evidence that CH is actually false, or more conservatively
that we should prefer set theories in which it is false.

5.7 Conclusions

Where do we go from here? First of all, none of the considerations discussed here rule out
the possibility of a new program (perhaps the hyperuniverse program), or a modification of
one of the programs already mentioned, that would resolve CH on the basis of a recognizably
realist goal. But it’s also possible that CH could be resolved on purely naturalistic grounds:
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set-theoretic practitioners and working mathematicians could together come to a de facto
agreement to extend ZFC with axioms that decide CH.

A comparison with the Axiom of Choice (AC) is instructive. Historically, AC was very
controversial [Bell, 2015], but it now enjoys near-universal acceptance by working mathe-
maticians along with the rest of ZFC as a foundation for mathematical practice. This is
surely not because a consensus emerged among mathematicians that AC was in fact intrin-
sically justified by the concept of set! Rather, it seems that Gödel’s construction of L put
to rest the most significant concern about AC, that it might be inconsistent, after which
the path was clear for mathematicians to view it as an essential and harmless convenience.
As Hrbáček and Jech [1999] put it: “the irreplaceable role of the Axiom of Choice is to
simplify general topological and algebraic considerations which otherwise would be bogged
down in irrelevant set-theoretic detail.” Similarly, the forcing axioms could become useful to
functional analysts28, which could further their methodological acceptance among working
mathematicians more generally. Alternately, anti-realism about set theory among working
mathematicians could foster acceptance of Ultimate-L as the preferred venue for mathemat-
ical practice — to people who are inclined to see “purely set-theoretic” questions like CH as
pseudoproblems, the perception that “V = Ultimate-L” dismisses those questions could be
a feature instead of a bug.

Working mathematicians often seem to intuit that the bulk of their subject matter does
not actually depend on set-theoretic considerations; for them, working in ZFC has more the
character of a notational choice than an ontological commitment. I am therefore sympa-
thetic to programs like Feferman’s [1992] that seek to ground this intuition both technically
and philosophically: by developing as much mathematics as possible in weaker systems than
ZFC, then justifying a realist attitude towards those systems and the entities they posit.
Furthermore, due to philosophical considerations not discussed here, I am personally sym-
pathetic to Feferman’s anti-realism about transfinite mathematics, and to explorations like
that in Rathjen [2016] of formal systems that attempt to capture this attitude. But at the
same time, I think the project of maximizing consistency strength and interpretive power
via the large cardinal hierarchy is extraordinarily philosophically compelling. And I also
agree with the suggestion of Cummings [2012] that whatever else the independence phenom-
ena are, they are also the subject matter of combinatorial set theory, a significant branch
of mathematics in its own right and one that should not be suppressed as an inadvertent
byproduct of a foundational program that completes ZFC.29 Inasmuch as these sympathies
point to any coherent view about mathematical truth, it is a tiered one — realism about

28I am somewhat hazy on the details of this scenario. My understanding is that several nice theorems in
functional analysis have undesired counterexamples under V = L or CH, which are then ruled out by MA,
PFA, or the Open Coloring Axiom. Examples include the aforementioned Kaplansky conjecture on Banach
algebras, the theorem that all countably tight Hausdorff spaces are sequential [Balogh et al., 1988], and the
theorem that all automorphisms of the Calkin algebra are inner [Farah, 2011].

29Cummings emphasizes the mathematical richness of the spectrum of possibilities between “compactness”
properties (combinatorial principles that follow from forcing axioms or large cardinals) and “incompactness”
properties (paradigmatically, principles that follow from V = L), in particular the relevance of this theory
to topology and functional analysis. “This area has taken on a life of its own, with its own initiatives and
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arithmetic and some transfinite mathematics, a guarded realism about ZFC and countable
transitive models containing large cardinals, a guarded skepticism about large cardinals, and
an attitude on which the truth values of sentences like “a Suslin line exists”, or CH itself,
might indeed turn out to vary modally.

Steel [2014] is correct that we should not allow a fragmentation of mathematical practice
into incompatible domains — in his phrase, we want “all our flowers to bloom in the same
garden.” But I think philosophical pluralism does not have to endanger the unity of practice
that we presently enjoy. I am optimistic that different foundational programs, with contra-
dictory philosophical objectives, can thrive together without erecting fences in the garden
of mathematical practice — or seriously challenging the identification of that garden with
Cantor’s Paradise, an identification which has borne much fruit and continues to do so.
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insights, and continues to flourish in the absence of a solution to the Continuum Problem. In fact if CH
were settled positively it would be a blow to ‘set theory of the continuum’, since a major part of the subject
is a rich structure theory inconsistent with CH.”
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Chapter 6

Afterword

One cannot take mathematicians or formal philosophers at their word about the social or
political implications of their work. De Finetti [1931], for example, seems to have believed
quite earnestly that Bayesianism was the epistemology best suited to fascism, because its
anti-foundationalism was akin to the fascist rejection of legality and human rights:

But where my spirit rebelled most ferociously and clashed against the concept of
“absolute truth” was in the political field, and I could not say what part, surely
very great, this sense of impatient revolt must have had in the development of
my ideas. To be confronted by papier-mâché idols and a miserable political class
that would have preferred Italy in ruins rather than failing (sacrilege!) to render
due homage! Those delicious absolute truths that stuffed the demo-liberal brains!
That impeccable rational mechanics of the perfect civilian regime of the peoples,
conforming to the rights of man and various other immortal principles!

October of ‘22! It seemed to me I could see them, these Immortal Principles, as
filthy corpses in the dust. And with what conscious and ferocious voluptuousness
I felt myself trampling them, marching to hymns of triumph, obscure but faithful
Blackshirt!

It goes without saying that as an assessment of Bayesianism, this is not to be taken
seriously. But ignoring this cautionary tale, I would like to venture some thoughts on the
broader significance of my own project. When I began it (sometime between 2009 and 2012),
it seemed to me that Bayesianism might in fact be the epistemology with the closest affinity
to atheism. I thought that the contemporary religious believer was faced with something
akin to Laplace’s “sunrise problem”: a stream of information that, interpreted within a
Bayesian framework, would constitute mounting incremental evidence against the doctrines
of any traditional religion. In order to preserve the possibility of faith, a foundationalist
epistemology would be required, one in which transcendent principles would not continually
be chipped away by mundane “disconfirmations”. I took as my paradigm Maimonides’s
use of Habakkuk 2:3: one must believe with perfect faith in the coming of the messiah, no
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matter how many days he is delayed. Here, I thought, was a perfect inversion of the sunrise
problem, a model for an epistemology that could support — both in principle and at the
level of psychological reality — a religious life.

In a time when religion seemed increasingly marginal, pushed out of intellectual re-
spectability by an ascendant New Atheism, the project of constructing such an epistemology
— or, at the very least, pushing back against Bayesianism — seemed vital and relevant.
I fancied myself a modern Bishop Berkeley: just as Berkeley attacked the mathematical
foundations of calculus in order to undermine the cogency of Enlightenment rationalism, I
thought to attack the foundations of Bayesianism in order to preserve some small space for
faith.

My assessment of the link between Bayesianism and atheism hasn’t changed, but my
assessment of the world has. I am concluding this project in a darker time than when I
began it: a time where authoritarianism (frequently in alliance with religion) is resurgent
across the globe, a time where the international cooperation needed to address the climate
crisis seems more elusive than ever, a time when the two largest countries in Europe are at
war. From the standpoint of 2024, the world in which a universalist secularism seemed on
the verge of a permanent triumph has been revealed as a mirage. An intellectual defense of
religious faith no longer seems like an urgent or valuable project — rather, it seems that the
line between belief and atheism cuts at best orthogonally to the line between those seeking
to unmake our civilization and those seeking to defend it. I leave it to others to find the
philosophical interventions that are needed today.
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2022.

Daniel Ellsberg. Risk, ambiguity, and the savage axioms. The Quarterly Journal of Eco-
nomics, 75(4):643–669, 1961. ISSN 00335533, 15314650. URL http://www.jstor.org/

stable/1884324.
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