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Genetically Encodable Fluorescent and Bioluminescent
Biosensors Light up Signaling Networks

Xin Zhou, Sohum Mehta, Jin Zhang"
Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA

Abstract

Cell signaling networks are intricately regulated in time and space to determine the responses and
fates of cells to different cues. Genetically encodable fluorescent and bioluminescent biosensors
enable the direct visualization of these spatiotemporal signaling dynamics within the native
biological context, and have therefore become powerful molecular tools whose unique benefits are
being used to address challenging biological questions. Here, we first review the basis of biosensor
design and remark on recent technologies that are accelerating biosensor development. We then
discuss a few of the latest advances in the development and application of genetically encodable
fluorescent and bioluminescent biosensors that have led to scientific or technological
breakthroughs.
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Biosensors illuminate signaling dynamics

Cells respond to a variety of internal and external cues through a number of signaling
pathways that engage in complex, coordinated, and often dynamic networks [1]. These
signaling networks are fundamental to determining proper cellular responses and functions,
as well as for processing signal inputs at the systems level to maintain the well-being of the
organism. In recent years, growing evidence has suggested that a large number of cell
signaling events, including the activation of kinases and phosphatases, recruitment of second
messengers (see Glossary), and modulation of protein-protein interactions, depend on
discrete spatial distribution and precise temporal regulation to produce diverse physiological
outcomes [2, 3]. The spatiotemporal aspects of signaling, however, are challenging to track
properly and visualize dynamically within their native cellular context.
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To meet these demands, a wide array of genetically encodable fluorescent and
bioluminescent biosensors has been developed and tailored to visualize specific signaling
events in a rapid, sensitive and non-invasive way [4]. The state-of-the-art biosensor toolbox
has been employed, in conjunction with advanced live-cell imaging techniques, to monitor
and quantify signaling dynamics with spatiotemporal precision within the endogenous
cellular environment (Table 1). As powerful molecular tools for elucidating the molecular
and cellular basis of biological processes, biosensors offer unique advantages, including
genetic targetability, high spatial and temporal resolution, and the capability of providing
quantitative live-cell information.

Over the past 20 years, advances in biosensor development have constantly pushed the
boundaries of achieving higher spatiotemporal resolution for imaging biological processes,
such as signaling pathways in live cells, tissues and intact organisms. Here, we review the
latest progress in the development and application of biosensors to address challenging
biological questions, focusing on superresolution imaging of kinase signaling, ultrafast
neurotransmitter signaling dynamics, and in vivo bioluminescence imaging. We highlight a
few examples and discuss how future efforts can fill technological gaps and lead to new
discoveries.

Recent Advances in Biosensor Development

The design of the sensing and reporting units (Box 1) often holds the key to successfully
developing biosensors with high sensitivity and fidelity. Implementation of new designs and
new reporting units obtained through protein engineering has recently helped to greatly
enhance biosensor performance, such as by increasing dynamic range, signal-to-noise ratio
(SNR), and the capability for multiplexing or in vivo imaging. For example, Mehta and
coworkers recently reported a generalizable backbone for a suite of single-fluorophore
KARs in various colors for sensitive and multiplexed tracking of signaling activities [5]. In
the case of the excitation ratiometric A kinase activity reporter, ExRai-AKAR (Figure 1A),
phosphorylation by PKA induces a conformational change of the reporter, which modulates
the fluorescence excitation spectrum of circular permuted GFP (cpGFP ) and leads to a
specific shift in the excitation peak of cpGFP from ~400 nm to ~480 nm. ExRai-AKAR,
which utilizes the ratio of the fluorescence intensities at these two excitation wavelengths as
a readout for kinase activity, was found to exhibit 3- and 2-fold increases in dynamic range
and SNR compared to the best performing FRET-based PKA reporter, AKAR4. Using these
probes with different colors and subcellular targeting, they were also able to track six-fold
multiplexed imaging of distinct signaling activities simultaneously, such as PKA/
cAMP/ERK/Ca?*, at different subcellular localizations in single living cells [5].

Parallel efforts in fluorescent protein (FP) engineering have improved brightness [6] and
even yielded entirely new reporting units, such as infrared fluorescent proteins (IFPs) [7-
9]. Owing to their near-infrared (NIR) excitation and emission wavelengths (~650-900 nm),
IFPs open new avenues for deep-tissue and in vivo fluorescence imaging [8, 10, 11] by
minimizing autofluorescence, absorption and scattering of the excitation and emission light
by endogenous cellular components [12]. Extending the color palette of IFPs further enables
the development of NIR-FRET biosensors based on the aforementioned modular design. In
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recent work by Shcherbakova and colleagues, the first fully NIR-FRET pair, miRFP670 and
miRFP720, was utilized to generate NIR-FRET biosensors for Racl GTPase (Figure 1B), as
well as the kinases PKA and JNK, that are spectrally compatible with common CFP-YFP
FRET biosensors [13]. This allowed the authors to perform multiplexed FRET imaging and
directly visualize the antagonism between Racl and RhoA in the same cell during cell-edge
movement [13].

On the other hand, the specificity and fidelity of biosensors largely rely on the sensing unit,
typically a protein or peptide that undergoes an intrinsic or engineered conformational
change in response to biological events. For example, to design a kinase activity reporter, it
is critical to identify a substrate peptide specific to a kinase-of-interest as part of a sensing
unit. Recently, systematic approaches have been developed to identify suitable and kinase-
specific substrates to improve biosensor specificity, as exemplified by the use of position-
scanning peptide library screening for AMPK substrates [14] and the kinase-interacting
substrate screening (KISS) approach [15] for Rho-associated protein kinase (ROCK)
substrates [16]. Work performed using various AMPK activity biosensors has since revealed
distinct patterns of AMPK activity at subcellular locations induced by different input signals
[14, 17], as well as the complex regulation of AMPK by PKA at the plasma membrane [18].
While biosensor optimization involves rational protein design and empirical, trial-and-error
testing, additional systematic approaches have also been successfully employed to accelerate
the creation of improved biosensors for pathways other than kinase signaling, including
genetically encoded calcium indicators (GECIs) [19-21], genetically encoded voltage
indicators (GEVIs) [22-24] and biosensors for neurotransmitters [25-27]. Most recently, for
example, Villette et a/. developed an efficient screening platform that combines an
electroporation-based screening system and direct PCR (Polymerase Chain Reaction)
transfection into mammalian cells [24]. Through multiple rounds of structure-guided
combinatorial saturation mutagenesis, this work yielded the improved voltage sensor,
ASAP3 (Figure 1C), with a higher response, favorable kinetics, and efficient membrane
localization. In combination with ULoVE (ultrafast local volume excitation) two-photon
microscopy, ASAP3 was able to report subthreshold membrane potentials with subcellular
resolution in deep mouse brain regions during behavioral tasks.

Recent advances in the development and application of new and improved biosensors (Table
1) promise to not only illuminate signaling dynamics in time and space but also make a
significant impact on the future of medicine, given the rapid growth of in vivo imaging using
next-gen biosensors. Below, we highlight several exciting advances in which biosensors help
address challenging biological questions and catalyze important scientific breakthroughs.

Refining localized biochemical activities: Super-resolution imaging with

FLINC

Signaling molecules are spatially organized at multiple levels within cells, such as anchoring
to organelle membranes, partitioning into membrane microdomains, associating with

scaffold proteins, and assembling into protein complexes. A signaling “activity architecture”
is thus built upon compartmentalization across length-scales ranging from a few nanometers
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at the single-molecule level to hundreds of nanometers for large complexes [3]. Genetically
encodable biosensors enable visualizing the dynamics of localized biochemical activities in
live cells; however, the diffraction limit of visible light (200-250 nm) prevents the precise
localization of biochemical activities on a comparable spatial scale via conventional light
microscopy. On the other hand, super-resolution imaging methods based on patterned
illumination or single-molecule localization have remarkably improved the spatial resolution
beyond the diffraction limit. These methods, including stimulated emission depletion
(STED), photoactivated localization microscopy (PALM), stochastic optical reconstruction
microscopy (STORM), stochastic optical fluctuation imaging (SOFI), and many others, have
provided valuable biological insights into biomolecule localization with nanometer accuracy
[28-32]; however, only a few examples address the challenges of visualizing biochemical
activities in super-resolution, especially in the live-cell context. For example, live-cell
imaging using STED microscopy requires particularly photostable fluorophores because of
the high-energy illumination required for emission stimulation and depletion in STED mode.
The intensity-based H,O, biosensor, Hyper2, contains a highly photostable cpYFP that
retains its sensitivity to H,O,. Using the brightness of Hyper2 as a readout for cellular H,O»
levels in STED imaging, Mishina et al. tracked H,O» production in live cells and measured
H,0, microdomains as small as 100-200 nm [33, 34]. In addition, in a few cases of live-cell
applications, photoactivatible [35], photosconvertible [36], and photoswitchable FPs [37]
have been engineered to enable nanoscale imaging of protein-protein interactions based on
Bimolecular Fluorescence Complementation (BiFC). However, BiFC is inherently
irreversible and is limited to tracing /n situ protein-protein interactions due to the relatively
slow kinetics of FP reconstitution and chromophore maturation.

A general method to visualize dynamic biochemical activities, such as kinase activities, in
super-resolution in living cells is highly desirable. To address this gap, Mo and coworkers
introduced a new class of genetically encodable biosensors that enable visualization of
activity dynamics and protein-protein interactions at a resolution of approximately 100 nm,
up to threefold better than the resolution limit of conventional microscopy (200-250 nm)
[38, 39]. These biosensors are based on the green FP Dronpa, a photoswitchable FP whose
fluorescence can be reversibly switched on and off with 405 nm and 488 nm irradiation,
respectively [40], and TagRFP-T, a non-switchable red FP [41] that exhibits weak, intrinsic
fluorescence fluctuation (“blinking”) behavior, like many basic FPs [42]. Close proximity to
Dronpa specifically enhances the rate and probability of TagRFP-T blinking, a phenomenon
the authors termed fluorescence fluctuation increase by contact (FLINC) [38]. Dynamic
changes in TagRFP-T blinking can be quantified via photochromic stochastic optical
fluctuation imaging (pcSOFI), which utilizes statistical analyses of the fluorescence
fluctuations in each pixel over time to generate super-resolution maps [43]. This imaging
method, while achieving a spatial resolution below the diffraction limit, is user-friendly
since data acquisition can be accomplished using any off-the-shelf microscope capable of
capturing fluctuations. Because FLINC shows similar sensitivity to FP distance and
orientation as FRET, the team was able to build a new series of FLINC-based biosensors for
kinase activities, as well as protein-protein interactions, using FRET-based biosensors as a
template. When combined with pcSOFI, these sensors allow changes in biochemical
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activities, such as PKA and ERK activities, to be converted to “SOFI values”, which reflect
the “intensity” of TagRFP-T blinking, and used to generate super-resolution activity maps.

Using the novel super-resolution PKA activity biosensor FLINC-AKAR (Figure 2A), Mo et
al. were able to observe highly active puncta at the plasma membrane of living cells in
response to cCAMP production [38], suggesting that PKA activity is strictly confined to
discrete microdomains (mean diameter of 350 nm) rather than being uniformly distributed
across the plasma membrane (Figure 2B). These highly active PKA microdomains were
found to colocalize with clusters of plasma membrane AKAP79/AKAPS5, a predominantly
membrane-localized scaffold that binds to RII PKA holoenzymes and other regulators of
PKA signaling [38]. The authors further propose a working model where AKAP clustering
selectively increases the local concentration of PKA regulatory subunits, leading to
enhanced recapture of diffusive catalytic subunits and PKA activity compartmentalization.
This refined model of compartmentalized PKA signaling suggests that the precise spatial
regulation of other biochemical activities can also be dissected with this new class of FLINC
biosensors.

FLINC biosensors are the first series of biosensors that report signaling activities with a
resolution under the diffraction limit. The ability to precisely localize biochemical activities,
combined with more refined structural information from localization-based super-resolution
microscopy and multiplexed imaging at distinct subcellular localizations, provides the basis
for unraveling the cell’s biochemical activity architecture. While being a highly compelling
tool for elucidating signaling activities at the molecular scale, FLINC biosensors offer
somewhat limited temporal resolution compared to conventional activity imaging.
Specifically, each super-resolution activity map in a FLINC imaging time course is
generated from a series of fluctuation images acquired under high-intensity illumination,
which causes photobleaching. Periods of darkness, typically on the order of a few minutes,
must therefore be included between each acquisition sequence in a time course to minimize
this effect, which reduces the temporal resolution. However, it is hoped that engineering
photostable FPs, improving imaging techniques, or new biosensor designs will help enhance
the temporal resolution of super-resolution activity imaging.

It’s all about timing: New biosensors capture neurotransmitter release

A fundamental goal in neuroscience is to uncover the relationship between the neuronal
signaling pathways that underlie brain function and behavioral outputs such as movement
and learning. The billions of neurons in the brain communicate through trillions of
synapses, where chemical signals called neurotransmitters are released to excite or inhibit
specific target neurons, while various neuromodulators are secreted throughout the brain to
modify neuronal activity. Understanding how neuronal firing and neurotransmitter release
are coordinated in space and time to influence brain pathways and govern complex behavior
remains a major challenge. A key step in addressing this challenge is to capture the in vivo
dynamics of neurotransmitters with high spatiotemporal resolution, sensitivity and
selectivity. Although widely used analytical chemistry techniques such as microdialysis and
voltammetry permit the in vivo detection of neurotransmitters, they are limited by low
temporal resolution on the order of minutes and low selectivity between neurotransmitters
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with nearly identical redox potential, respectively, and both lack the ability to precisely
target cells of interest [25, 26].

Great strides have been made in the recent development of genetically encodable FP-based
biosensors for neurotransmitters. In contrast to the above analytical chemistry techniques,
these biosensors offer high temporal precision and single-cell resolution. Many of these
biosensors are developed using proteins [44—46] or receptors [25, 26, 47, 48] that are
sensitive to neurotransmitter binding. For instance, Marvin et al. developed iGIuSnFR, a
single-FP sensor for glutamate (Glu), by inserting cpEGFP into the bacterial periplasmic
glutamate/aspartate binding protein (GIuBP). Upon Glu binding, GIuBP is reconstituted,
resulting in a ~5 fold fluorescence intensity increase [44]. iGIuSnFR exhibits a high affinity
and dynamic range to Glu, enabling visualization of Glu release at frequencies up to ~10 Hz
(10 times per second) [44]. To resolve Glu dynamics at a higher frequency, Helassa et al.
generated variants of iGIuSnFR that have reduced Glu affinity by mutating residues in the
GluBP binding pocket [45]. The resulting fast (iGlup and ultrafast (iGlu,) variants have
comparable brightness to iGIuSnFR, and their decreased Glu affinity enables more rapid
glutamate dissociation from iGlugand iGlu,, allowing fast and sensitive imaging of synaptic
Glu release events at 100 Hz [45].

Another strategy to engineer neurotransmitter biosensors is to use a GPCR (G-protein-
coupled receptor) as the sensing unit, wherein the binding of neurotransmitters such as
dopamine (DA) [25, 26, 47] or acetylcholine (Ach) [48] induces a conformational change in
the GPCR. DA in particular plays an important role in motivation, movement, cognition, and
reward-driven learning, and two series of DA biosensors have been developed to date:
dLight [25] and GPCR-activation-based-DA (GRABpp) sensors [26]. By inserting cpEGFP
into the third intracellular loop (I1L3) of the human DA receptors D1, Dy, and Dy, Patriarchi
et al. generated and optimized variants of the dLight probe family (dLight1.1-1.5), which
exhibit low-nanomolar to micromolar affinity for DA [25] (Figure 3A). Using a similar
strategy, Sun et a/. introduced cpEGFP into IL3 of the human D, DA receptor and
systematically optimized the insertion site and linker sequence, while also tuning the affinity
via mutation, yielding GRABpa1m and GRABpa1, With moderate (~130 nM) and high (~10
nM) binding affinity, respectively [26]. DA binding causes a highly specific and rapid
increase in fluorescence intensity in both sensors, enabling spatiotemporally precise
measurements of DA dynamics in live animals, and both sensors are also compatible with
available optogenetic tools (Figure 3B).

The advent of these new DA biosensors has enabled detailed examinations of how DA
supports brain function. In a recent study, Mohebi et a/. shed light on how DA release from
dopaminergic neurons (i.e., neurons that release DA) that project from the ventral tegmental
area (VTA) to the nucleus accumbens (NAc), one of four major dopaminergic pathways
(e.g., the mesolimbic pathway, sometimes called the “reward” pathway), is regulated in the
brains of rats performing a decision- making task [49]. In this pathway, the long axons of the
VTA dopaminergic neurons extend to other parts of the brain, including the NAc, the dorsal
striatum and the prefrontal cortex, where activation of these VTA neurons generates
electrical signals (neuronal firing) that cause local DA release at these axon terminals. While
DA neuron firing can encode reward prediction errors (RPES) as a learning signal, DA
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release can also reflect reward expectation as a motivation signal. To dissect how DA release
is regulated to achieve these two distinct functions, e.g., learning and motivation, the authors
measured DA cell firing in the VTA using single-cell optrode recording along with DA
release in the NAc core using multiple approaches, including dLight, during the same task in
freely moving rats. In this behavioral test, the authors observed elevated DA release only in
the NAc and regions of the prefrontal cortex, but not in the dorsal striatum. Furthermore, DA
release ramps up when the rate of reward increases, which motivates rats to participate in the
task; however, neuronal activity in the VTA of rats was not affected, suggesting that
motivation-coding DA release is independent of the firing activity of VTA DA neurons. By
contrast, both VTA DA neuron spiking activity and DA release were linked to reward
availability and the reward itself, suggesting that DA release associated with DA neuron
firing encodes RPEs to promote learning. Because the dLight probe enables the detection of
highly dynamic fluctuations in DA release on subsecond timescales, which correlates with
both state values and RPEs, it suggests that DA release coupled with corresponding changes
in the firing rates of DA neurons serves as a global “broadcast” to facilitate learning,
whereas local DA release without DA neuron firing drives motivation (Figure 3C). Most
recently, dLight has also been used to reveal reduced dopamine release in NF1
(neurofibromatosis type 1) mice, a model for an inherited neurological disorder [50], and to
track fluctuations in DA release in the brains of mice across their sleep-wake cycle [51].

With their high dynamic ranges and optimized kinetics, the newly developed single FP-
based biosensors for DA [25, 26], Glu [44, 45], Ach [48] and GABA [46] have enabled the
quantification of neurotransmitter release dynamics in the brains of freely behaving animals,
one of the most critical steps towards understanding the relationship between neuronal
signaling pathways and brain functions. Improvements in biosensor performance (e.g.,
sensitivity and specificity), expanding the biosensor toolkit to simultaneously detect multiple
signaling activities, and advanced microscopy techniques for in vivo functional brain
imaging will further enable us to delineate how neuronal signaling patterns correlate with
complex behavioral outputs.

Bioluminescence goes in vivo

Unlike fluorescence, bioluminescence involves light produced from a luciferase-catalyzed
chemical reaction without the need for an external excitation source, thereby eliminating
photobleaching, background interference, and autofluorescence. However, in vivo
bioluminescence imaging has been hampered by low photon emission (i.e., quantum yield)
[52], high tissue absorption and scattering in the visible spectrum [53], and low tissue
permeability of luciferase substrates [54, 55]. Considerable efforts have therefore been
devoted to improving bioluminescence imaging systems. For example, whereas firefly
luciferase (FLuc) and Renilla luciferase (RLuc) were engineered as suitable tools for live-
cell imaging, their signals are dim compared with fluorescence. Nano-lantern (Yellow NL) is
a chimeric protein consisting of an enhanced RLuc with a bright FP, Veenus [56]. Nano-
lantern offers roughly 10 times the brightness of RLuc alone through BRET [57], where the
excited-state energy produced during the RLuc-catalyzed oxidation of coelenterazine is
nonradiatively transferred to the acceptor Venus, which emits photons with high efficiency,
thus enhancing brightness [56]. By exploring different BRET acceptors, Takai et a/. further
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developed cyan and orange Nano-lantern variants (CNL and ONL) [58]. However, the RLuc
substrate coelenterazine is less stable than the natural substrate, luciferin, and is rapidly
consumed in cell culture media. Suzuki et a/. developed 5 color variants of a brighter,
enhanced Nano-lantern (eNL) [59] that incorporates the highly optimized NanoLuc variant
of deep-sea shrimp Oplophorus gracilirostris luciferase with its optimal substrate, furimazine
[60], which is more stable and produces lower autoluminescence than coelenterazine. Chu et
al. also developed a cyan-excitable orange-red fluorescent protein, CyOFP1, to act as a
BRET acceptor for NanoLuc, and the optimized fusion of CyOFP1 and NanoLuc, called
Antares, improves BRET by approximately 3-fold and uses a lower concentration of
substrate compared with FLuc [61]. Such improved sensitivity and expanded color variants
allows multiplexed bioluminescence imaging [58, 59, 61] and tracking of the dynamics of
subcellular structures [58, 59, 61], gene expression [58], and signaling events, such as
intracellular calcium [58, 59, 62] and voltage change [63], and even extend the application to
deep-tissue imaging in living mice [61, 64].

Perhaps the most striking example of efforts to extend the reach of bioluminescence is the
recent development of the AkaBL I system for imaging in freely moving animals.
Previously, lwano and colleagues identified a synthetic analog of D-luciferin, AkaLumine
[53] (Figure 4A), which emits near-infrared light when catalyzed by FLuc and has favorable
biodistribution in deep organs and the ability to cross the blood-brain barrier (BBB). To
develop a luciferase that favorably pairs with AkaLumine, the authors then performed
directed evolution on the FLuc gene in the presence of AkaLumine to obtain Akaluc, an
improved luciferase with enhanced catalytic efficiency, bright near-infrared emission (~52
times stronger than that from AkaLumine/FLuc), and high thermostability [65] (Figure 4B).
The successful combination of Akaluc and AkaL.umine enables the detection of
bioluminescence signals in deep tissues (Figure 4C), for example, in lung tumor cells, as
well as the tracking of a few hippocampal neurons in response to exposure to new
environments. More impressively, the authors were able to monitor bioluminescence signals
for more than one year without signs of toxicity in marmosets injected with an Akaluc-
expressing AAV (adeno-associated virus) vector in the striatum [65]. The success of the
AkaBLI system will certainly spark efforts to develop Akaluc-based biosensors to visualize
signaling dynamics in unrestrained live animals.

A major bottleneck for the development of most bioluminescence imaging systems,
however, is the requirement for exogenous luciferin, the luciferase-catalyzed oxidation of
which triggers light emission. Engineering a bioluminescent system that produces both
luciferase and luciferin could potentially solve this bottleneck. Two such bioluminescence
systems have been identified to date: a bacterial bioluminescence system which utilizes the
cell’s abundant supply of reduced flavin mononucleotide as the luciferin [66, 67], and a
fungal bioluminescence system that involves seven key genes for the biosynthesis of
luciferase and luciferin [68, 69]. More recently, two groups transplanted the fungal
bioluminescence pathway /n planta, to achieve auto-luminescence and utilized this system to
study gene expression in planta[70, 71]. Meanwhile, Srinivasan ef a/. took advantage of the
bacterial bioluminescence system and developed Autonomous Molecular Biolumin Escent
Reporter (AMBER), an indicator of membrane potential, for observing neural activity in
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freely moving animals (C. efegans) with temporal resolution in seconds [72]. AMBER
utilizes the membrane-bound Ciona intestinalis voltage-sensing domain (Ci-VSD) fused to
an N-terminal flavin reductase phosphate (FRP) and a C-terminal BRET pair composed of a
synthetic enhanced bacterial luciferase, eluxAB, and a bright yellow FP (YPet). As such,
AMBER encodes genes to produce both luciferase and luciferin in situ and modulates
luciferase activity as a function of membrane potential. An expanding toolbox of
bioluminescence-based biosensors targeting signaling pathways continues to emerge [58, 59,
62, 63, 72]. Given the increased brightness of bioluminescence systems and lack of a
requirement for external illumination, bioluminescence imaging will allow a range of in vivo
applications to track signaling events in thick tissues and live animals, such as calcium and
voltage dynamics, neurotransmitter release, and protein kinase activities.

Concluding remarks and future perspectives

As Sydney Brenner said, “Progress in science depends on new techniques, new discoveries
and new ideas, probably in that order” [73]. Genetically encodable biosensors have become
indispensable molecular tools that provide numerous insights into the dynamic regulation
and function of signaling pathways that are entangled within complex signaling networks.
Here, we have discussed recent advances in biosensor development, focusing on three recent
examples of the development and application of fluorescent or bioluminescent biosensors. In
these three examples, new biosensors or bioimaging systems were created to reveal crucial
details of signaling dynamics and to address challenging biological questions or to achieve
technological breakthroughs. These advances, combined with other exciting advances
discussed elsewhere [74-77], will not only deepen our understanding of how signaling
networks are coordinated to regulate the functions of living cells and organisms as part of
the ongoing quest for scientific knowledge but will also open up avenues for exploring novel
diagnostic, intervention, and treatment strategies for a myriad of diseases in the future. The
field of genetically encodable biosensors is rapidly expanding now but is far from saturated
with respect to target diversity, sensitivity and selectivity, spatiotemporal resolution,
fluorescent and bioluminescent protein performance, imaging and processing techniques,
and so on. For example, directed evolution has been widely used to increase biosensor
dynamic range, multi-photon imaging technology has been developed and applied for tissue
imaging [19, 24, 78, 79], and a proof-of-concept protease biosensor has also been recently
developed for use with photoacoustic imaging to enable even deeper tissue penetration [80,
81]. Moving forward, future development of new biosensors may benefit from advances in
computer-aided protein engineering [82, 83] to generate stable and bright FPs, tune binding
affinities for analytes, and engineer larger dynamic changes. Future endeavors, including
combining biosensor imaging with single cell-based sequencing, will contribute to further
illuminate the intricate biochemical activity architecture with high spatiotemporal resolution
both in cells and in vivo, and to unravel the complex etiology of human diseases.
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Box 1
The basics of biosensor design.

All genetically encodable biosensors are designed to convert a specific intracellular or
extracellular signal, such as signaling enzyme activity, protein-protein interactions, and
changes in second messenger concentrations, into a measurable fluorescent or
bioluminescent readout. Therefore, biosensors enable the direct visualization of signaling
molecule behavior within the native cellular context. Generally, biosensors consist of two
essential components: a sensing unit and a reporting unit [84]. A sensing unit is
responsible for detecting changes in the target biological events, while a reporting unit is
responsible for converting these changes to measurable signals. In some cases, the
functions of both the sensing unit and reporting unit can be fulfilled by a fluorescent
protein (FP); for example, the binding of cellular analytes (such as chloride, iodide) [85]
or intracellular pH changes can directly affect the chromophore of an FP and sensitize its
fluorescence [86]. More commonly, the sensing unit is derived from endogenous proteins
or peptide sequences that are sensitive to the target signaling event (e.g., phosphorylation
or second messenger levels) [4], whereas the reporting unit consists of one or more FPs
or luciferases configured to translate signaling-induced changes in the state of the sensing
unit into one of several types of quantifiable signals, including Fluorescence Resonance
Energy Transfer (FRET) [13, 87-90], fluorescence intensity [22-24, 27, 91, 92],
excitation or emission ratio [5, 93, 94], and Bioluminescence Resonance Energy Transfer
(BRET) [63, 95, 96].

The modular construction of biosensors has proven to be highly generalizable, as
individual components can be optimized to enhance biosensor performance or
specifically modified to monitor several major cellular signaling molecules, including
protein kinases [90, 97], GTP hydrolases (GTPases) [98], and second messengers [4].
This modularity is exemplified by the design of kinase activity reporters, or KARs, in
which a kinase substrate peptide paired with a phosphoamino acid binding domain
(PAABD) is sandwiched between two FPs [77, 84]. Upon phosphorylation, the binding of
the substrate peptide and PAABD generates a conformational change, leading to a change
in FRET. Engineering different substrate-PAABD pairs has thus facilitated the
development of a diverse family of FRET-based sensors for various protein kinases,
including for PKA [13, 99-101], PKC [102], ERK [18, 101, 103], and CaMKII [104].
Many outstanding reviews [4, 77] are available to illustrate the design details of
biosensors, and a comprehensive database for fluorescent biosensors can be found at
biosensorDB.ucsd.edu.
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Outstanding Questions

How can we use computational algorithms, such as deep learning methods, to
facilitate biosensor design and optimization?

How can biosensor imaging approaches be integrated with powerful single-
cell sequencing technology to provide a higher resolution view of cellular
activity differences among individual cells within distinct
microenvironments?

In vivo imaging using biosensors represents one of the most exciting fields to
study human diseases. How do we achieve precise quantification of
biochemical signals in 4D dimensions from in vivo imaging?

Multiplexed imaging promises the ability to simultaneously monitor the
coordinated behaviors of multiple signaling molecules/pathways in time and
space in a quantitative way. Is there a limit on the number of pathways that
can be visualized with high sensitivity and specificity? How can we achieve a
better understanding of signaling networks through multiplex imaging and
computational modeling?

Would signaling profiles obtained through imaging allow us to identify
biomarkers for diagnosis and to track disease progression?
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Highlights:

Genetically encodable fluorescent and bioluminescent biosensors enable
direct visualization of the spatiotemporal regulation of signaling networks
within the native biological environment.

The successful construction of a biosensor depends on the design of sensing
and reporting units. Recent advances, such as new designs, new reporting
units and screening approaches, have greatly accelerated the development of
biosensors.

Super-resolution FLINC biosensors break the diffraction limit and allow the
construction of high resolution kinase activity maps.

Newly developed biosensors help to capture the dynamics of neurotransmitter
release.

The successful pairing of an engineered luciferase with a synthetic substrate
has led to the development of the AkaBLI system to enable highly sensitive
cell tracking in vivo, as well as long-term bioluminescence imaging in the
brains of freely moving animals.
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Figure 1. Advances in biosensor design and engineering.
(A) Left: FRET-based KARs such as A kinase activity reporter (AKAR) utilize an

engineered molecular switch wherein the phosphorylation (e.g., T — pT) -dependent
interaction between a substrate sequence for a kinase of interest (e.g., PKA) and a
phosphoamino acid-binding domain (e.g., FHA1) modulates FRET between a pair of
fluorescent proteins (FPs) such as Cerulean (e.g., CFP) and cpVenus (e.g., YFP). Right:
Mehta et al. transplanted this molecular switch onto circularly permuted GFP (cpGFP),
yielding a new suite of excitation ratiometric KARs (ExRai-KARS) [5]. As shown for
ExRai-AKAR, PKA-mediated phosphorylation (e.g., T — pT) of the sensor induces a
conformational change that shifts the maximum excitation wavelength from 400 nm to 480
nm. (B) Left: Several groups have utilized bacterial phytochromes (BphPs) to engineer
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infrared fluorescent proteins (IFPs) capable of undergoing excitation and emission in the
near-infrared (NIR) region of the electromagnetic spectrum. IFPs contain the PAS and GAF
domains from BphP and utilize biliverdin, an endogenous heme catabolite, as their
chromophore. Right: By engineering IFPs with different excitation/emission wavelengths,
Shcherbakova et al. generated an all-NIR FRET pair, miRFP670/miRFP720, allowing them
to construct NIR FRET sensors for monitoring Racl activation (shown), as well as PKA and
JNK kinase activity [13]. (C) High-throughput approaches are highly desirable for
accelerating biosensor engineering and optimization. Villette ef a/. recently developed a
novel screening system (left) involving direct transfection of linear PCR products from a
library of ASAP2f variants into mammalian cells, followed by high-throughput, automated
electroporation-based voltage screening. Multiple rounds of screening ultimately yielded the
enhanced voltage indicator ASAP3 (right), which contains 6 amino acid changes
(highlighted in blue) with respect to ASAP2f (highlighted in red) [24]. ASAP-family sensors
utilize the voltage-induced conformational change in the voltage-sensing domain (VSD) of
chicken (Gallus gallus) voltage-sensitive phosphatase (GgVSP) to modulate the fluorescence
intensity of circularly permuted superfolder GFP (cp-sfGFP), which is inserted between the
3 and 4t helical segments of the VSD. Membrane depolarization results in a
conformational change that decreases cp-sfGFP fluorescence intensity.
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LRRATLVD

FHA1 PKAsub TagRFP-T C

FLINC-AKAR

Fluctuation

Figure 2. Super-resolution mapping of biochemical activities using FLINC.
(A) Mo et al. discovered a novel phenomenon, which they called fluorescence fluctuation

induced by contact (FLINC), wherein the red fluorescent protein TagRFP-T exhibits a
dramatic increase in spontaneous intensity fluctuations when in very close proximity to the
green FP Dronpa [38]. Similar to FRET, FLINC can be utilized as a readout for genetically
encoded biosensors through coupling to a conformational switch, thereby enabling super-
resolution imaging of enzyme activities. For example, FLINC-AKAR contains a PKA
substrate fused to FHAL, which are sandwiched between Dronpa and TagRFP-T. PKA-
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dependent phosphorylation (T — pT) of the substrate induces binding by the FHA1 domain,
leading to a conformational change and an increase in TagRFP-T intensity fluctuations. (B)
Visualizing FLINC-AKAR in living cells using the super-resolution imaging technique
pcSOFI yields a live-cell super-resolution map of PKA activity dynamics. In this example,
HeLa cells expressing FLINC-AKAR localized to the plasma membrane were visualized
before and after treatment with forskolin (Fsk) and 3-isobutyl-1-methyxanthine (IBMX) to
activate PKA. Images generated through pcSOFI analysis reveal nanoscale domains of PKA
activity (magnified in inset images) distributed non-uniformly across the cell surface. While
PKA activity clearly increases after stimulation, as indicated by the pseudocoloring), the
signal remains confined within these nanodomains, suggesting tight compartmentalization of
PKA activity. Scale bars, 10 um (full image) and 3 pm (inset)
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Figure 3. Novel sensors illuminate the dynamics of neurotransmitter signaling.
(A, B) Parallel work by Patriarchi et al. and Sun et al. has recently given rise to the dLight

and GRABpp families of biosensors for monitoring dopamine (DA) signaling. These
sensors feature the insertion of cpEGFP within the 3™ intracellular loop of the D1, D2, or
D4 type human DA receptors (A), such that the binding of DA to the receptor induces a
conformational change that increases the fluorescence intensity of cpEGFP (B). (C) The
advent of genetically encoded DA sensors is already helping to expand our understanding of
DA neurotransmission in the brain. For example, Mohebi et a/. recently used dLight as part
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of their efforts to unravel the contributions of dopaminergic neuronal activity (e.g., spiking)
and DA release in reward-driven learning and reward-seeking behavior (e.g., motivation) in
rats [49]. Their work revealed that whereas both DA neuron firing (e.g., spiking, blue) and
DA release (green) were associated with learning behavior, spiking-independent DA release
was found to be associated with motivation.
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Figure 4. AkaBLI system for in vivo bioluminescence imaging.
(A) Chemical structures of D-luciferin and the red-shifted luciferase substrate AkaLumine.

(B) The AkaBLI system consists of AkaLumine along with the novel luciferase Akaluc,
which was engineered through directed evolution of FLuc to more efficiently catalyze the
ATP-dependent oxidation of AkaLumine and increase light output. Illustration is modeled
on the structure of FLuc (PDB 2D1R). Akaluc contains 28 amino acid substitutions with
respect to FLuc. (C) Cell tracking in whole animals using AkaBLI.
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