
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
A Pen Based Statics Tutoring System

Permalink
https://escholarship.org/uc/item/8qb86403

Author
Lee, Chia-Keng

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8qb86403
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Statics Intelligent Tutoring System

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Mechanical Engineering

by

Chia-Keng Lee

June 2011

Thesis Committee:

Dr. Thomas F. Stahovich, Chairperson
Dr. Sundararajan Venkatadriagaram
Dr. Robert Calfee

Copyright by
Chia-Keng Lee

2011

The Thesis of Chia-Keng Lee is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

First of all, I would like to thank the members of my committeefor their time and valuable sug-

gestions. I am deeply and especially indebted to my advisor,Professor Thomas F. Stahovich, for

his constant advice and support, as well as the endless hourshe has spent providing suggestions on

improvement to the programs, thesis, and presentations. Without that, this thesis literally stops right

here.

I also would like to thank my lab mates for their help on my research. I especially thank

Eric Peterson for the endless help with technical issues, especially Statics; Weesan Lee for Newton’s

pen and network setups; Tyler Bischel for his seat in the lab;Josiah Jordan for chats; Matt for

labeling; and Jim for the awesome coffee.

Thanks to my parents and sister for their support.

Thanks to Paul Dorman, my coworker who helped me edit my thesis. Thanks to my

friends, for entertainment purposes.

iv

To my parents, James Lee, Sherry Lee

and my sister, Juliann Lee,

and my grandmother, Heung-Sheh Lee

v

ABSTRACT OF THE THESIS

Statics Intelligent Tutoring System

by

Chia-Keng Lee

Master of Science, Graduate Program in Mechanical Engineering
University of California, Riverside, June 2011

Dr. Thomas F. Stahovich, Chairperson

We present an intelligent pen-based tutoring system for statics – the sub-discipline of engineering

mechanics concerned with the analysis of mechanical systems in equilibrium under the action of

forces. The system scaffolds students in the construction of free-body diagrams and equilibrium

equations for planar devices comprised of one or more rigid bodies.

While there has been extensive research in intelligent tutoring systems, most existing sys-

tems rely on traditional WIMP (Windows, Icons, Menus, Pointer) interfaces. With these systems,

students typically select the correct problem solution from among a set of predefined choices. With

our pen-based interface, by contrast, students are guided in constructing solutions from scratch,

mirroring the way they solve problems in ordinary practice,which recent research suggests is par-

ticularly important for effective instruction.

Our system embodies several innovations including a novel instructional technique that

focuses students’ attention on a system boundary as a tool for constructing free body diagrams, a

tutorial feedback system based on “buggy rules” that attempts to diagnose and correct problem-

solving errors typical of novice students, and a hierarchical feedback system which promotes inde-

pendent problem-solving skills. In winter 2010, the tutoring system was used by 100 students in an

undergraduate statics course at the University of California, Riverside. Results from pre- and post-

vi

tests reveal measurable learning gains after only a short exposure to the system. In an attitudinal

survey, students reported that, while there is room for improvement, the interface was preferable to a

WIMP interface and the methodology implemented in the system was valuable for learning statics.

vii

Contents

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Introduction . 1

2 Literature Review 5
2.1 Toolkit . 5
2.2 Intelligent Tutoring System. 6

3 A Pen-Based Toolkit 8
3.1 Introduction . 8
3.2 Standard API . 9
3.3 Library . 10

4 Statics Tutoring System 13
4.1 System Overview. 13
4.2 Interpreting System Boundaries. 19
4.3 Recognition of Force and Moment Arrows. 21

4.3.1 Force Labels. 23
4.4 Tutorial Feedback. 23

4.4.1 Critiquing Free Body Diagrams. 24
4.4.2 Critiquing Equations. 27

5 User Study 29
5.1 System Evaluation. 29

5.1.1 Measuring Learning Gains. 31
5.1.2 Attitudinal Survey . 35

6 Conclusion 39

Bibliography 41

viii

List of Figures

1.1 Typical errors in free body diagrams drawn by novice statics students. (a) Problem
description. (b) Free body diagram constructed by redrawing the original problem
figure. Internal forces are erroneously included. (c) An abstract free body diagram
drawn as a stick figure.. 3

4.1 The Newton’s Pen II System. The top of the application window contains the prob-
lem description and the free body diagram workspace. The bottom contains the
equation workspace.. 14

4.2 To construct a free body diagram, the student first (a) uses the stylus to trace the
desired system boundary directly on the problem description, then (b) drags the
boundary to the free body diagram workspace.. 15

4.3 Force and moment labels can be entered using a text entry window. Alternative
interpretations are provided below each handwritten character. 16

4.4 Help is presented hierarchically. Top-level help messages provide general sugges-
tions. Lower level messages are more specific. Displaying the lowest level message
reveals the remedy to the error, and causes the relevant portion of the free body
diagram to be highlighted (yellow rectangle).. 17

4.5 The equation workspace: (a) action buttons, (b) equation type area, (c) equation
area, (d) equation interpretation area. The ink in the equation is color coded to
display the grouping of the strokes into characters.. 18

4.6 Stroke merging. (a) raw data points. (b) Resampled data points. (c) Aligned points
on one stroke with those on the other. (d) Merged stroke constructed by merging
matched points.. 19

4.7 Stroke merging criteria. (a) Tangent angle must differ by no more than10◦. (b)
Euclidean distance must be less than 35 pixels. (c) Path length must be greater than
at least twice the Euclidean distance.. 20

4.8 Inverse curvature of an arrow. The three corners of the arrowhead are the three
smallest values of inverse curvature. Image from [18].. 21

5.1 Problem A used for pre- and post-test evaluation. From [20]. 30
5.2 Problem B used in pre- and post-test evaluation. From [20]. 31
5.3 Results for Problem A as both a pre- and post-test.. 35
5.4 Results for Problem B as both a pre- and post-test.. 36

ix

List of Tables

3.1 A list of methods for event listeners.. 10
3.2 A list of methods in the Button class.. 11
3.3 A list of mathematical and stroke methods.. 12

5.1 Average solution time for pre- and post-test problems inminutes, along with the
reduction of average time from pre- to post-test in both minutes and %.. 34

5.2 Survey of student opinions about Newton’s Pen II. All questions are answered on a
scale from one to ten, with one being the most negative response and ten being the
most positive. 38

x

Chapter 1

Introduction

1.1 Introduction

Intelligent tutoring systems have long been a focus of research, with applications spanning

a wide range of subjects such as computer programming [7], law [28], medicine [29], physics [30],

and statics [25]. Most current systems rely on traditional WIMP (Windows, Icons, Menus, Pointer)

user interfaces. While such interfaces may be useful in somedomains, they have clear limitations.

For example, they are typically not well-suited for instruction in domains in which solutions re-

quire complex graphics. Engineering statics is one such domain. Solving statics problems requires

the construction of free body diagrams and equilibrium equations, two tasks which are difficult to

perform with a mouse and keyboard.

Here we present our efforts to create a pen-based tutoring system that scaffolds students

in solving statics problems in much the same way they ordinarily solve them with pencil and paper.

This work is motivated by recent research comparing studentperformance across different user in-

terfaces showing that “as the interfaces departed more fromfamiliar work practice..., students would

experience greater cognitive load such that performance would deteriorate in speed, attentional fo-

1

cus, meta-cognitive control, correctness of problem solutions, and memory” [21]. While that work

used systems that provided no tutorial assistance, the findings provide compelling evidence of the

potential of natural user interfaces for instructional tools.

Our statics tutoring system, called Newton’s Pen II (NP2), employs a novel instructional

design. A key element of this design is our use of an explicit system boundary as a tool for con-

structing free body diagrams. Novice students often struggle to define the system of interest. For

example, they may attempt to draw a free body diagram by simply redrawing the original problem

figure, with all of its details. Alternatively, they may drawa variety of incorrect abstractions, such

as stick figures or forces floating in space, with no clear connection to objects. Figure1.1 shows

typical errors. NP2 scaffolds the student in selecting the system of interest by guiding the student

in the selection of an explicit system boundary. To construct a free body diagram, the student uses

a stylus to trace the system boundary directly on the problempicture, and then drags the boundary

to the free body diagram workspace. Having an explicit boundary helps the student distinguish

between external forces, which must be represented on the free body diagram, and internal forces

which should not appear.

To provide tutorial feedback, NP2 uses a “buggy rules” approach that attempts to diag-

nose and correct problem-solving errors typical of novice students. These rules were based in part

on examination of student work from a statics course taught at the University of California, River-

side. Feedback is hierarchical, with general suggestions given first, and more detailed help given

in response to repeated queries from the student. This design is intended to promote independent

problem-solving skills by giving students the opportunityto identify mistakes on their own.

To evaluate the educational usefulness of the NP2, we conducted a user study in an un-

dergraduate statics course. This sophomore-level course included just over 100 students. The study

took place during the regularly scheduled discussion sections, and because of time-constraints, we

2

(a)

L
3

L
4

L
5

L
6

L
2

L
1

P

U

B

C

E

FA

D

Determine the vertical clamping force at in terms of the force applied to
the handle of the toggle clamp, which holds workpiece in place.

E P

F (b)

(c)

Figure 1.1: Typical errors in free body diagrams drawn by novice statics students. (a) Problem
description. (b) Free body diagram constructed by redrawing the original problem figure. Internal
forces are erroneously included. (c) An abstract free body diagram drawn as a stick figure.

assessed only learning gains related to the construction offree body diagrams, and did not con-

sider gains for equilibrium equations. Comparison of performance on pre- and post-tests revealed

significant learning gains. Furthermore, in an attitudinalsurvey, students reported that, while there

is room for improvement, the interface was preferable to a WIMP interface and the instructional

design implemented in the system was valuable for learning statics.

NP2 is designed to run on a tablet PC. In future work, we would like to compare the

effectiveness of a tutoring system running on a tablet PC to one running on a digital pen and paper

system. Therefore, in developing NP2, we first created a toolkit that abstracts away the details of

the specific hardware platform, thus facilitating porting NP2 to other pen-based systems.

The next section places this work in the context of related work. This is followed by an

overview of the toolkit. Afterwards, we present an overviewof the Newton’s Pen II system and

3

details of the system’s design. Finally, results of the userstudy are presented and discussed.

4

Chapter 2

Literature Review

2.1 Toolkit

There are two toolkits that are closely related to our work. Satin [11] is a powerful toolkit

for pen-based interfaces development. It can process and render ink, and can recognize pen strokes.

While Satin is intended to provide functionality for creating graphical user interfaces, our toolkit is

intended to facilitate the development of pen-based applications that can run on multiple hardware

platforms.

PENTOOLS is another toolkit closely related to ours [9]. It is developed in MATLAB

and designed for rapid prototyping of on-line pen computingapplications. The toolkit provides

functionality for storing stroke data, computing stroke features, and editing strokes. Unlike our

toolkit, PENTOOLS does not support multiple hardware platforms and does not provide shape

recognizers.

InkKit [5] and Silk [15] can automatically generate a working user interface from ade-

signer’s sketch of it. These toolkits are not hardware independent and are intended for building

traditional GUI interfaces rather than pen-based applications.

5

2.2 Intelligent Tutoring System

Intelligent tutoring systems have been developed for a widevariety of domains [7, 28,

25, 29, 30]. Nearly all of these systems employ WIMP interfaces and work from unambiguous

input provided with a keyboard and mouse. Our work, on the other hand, focuses on building

pedagogically-sound, pen-based interfaces for tutoring systems. As such, we need to deal with the

challenges of working from ambiguous, hand-drawn input.

The development of natural pen-based user interfaces is an area of active research. A

wide variety of experimental systems have been developed, including tools for: simulating simple,

hand-drawn mechanical devices [1]; sketching user interfaces [16]; drawing Unified Modeling Lan-

guage diagrams [10]; interpreting hand-drawn equations [19]; and understanding military tactics[8].

Likewise, there has been significant progress in sketching 3D shapes [32].

Researchers have recently begun to explore the applicationof pen-based interfaces to in-

structional systems. For example, Oviatt [21] compared student performance using a variety of

platforms including paper and pencil, the Anoto digital pen[3], and the tablet PC. These platforms

were used only as devices for recording problem-solving work. No tutoring capabilities were pro-

vided. This work by Oviatt suggests that as the interface departs from familiar work practice, student

performance decreases on a variety of measures such as speedand correctness. In a related study

evaluating interfaces for entering mathematical equations into a computer, Anthony [4] found that

pen-input of equations is substantially more efficient thankeyboard entry, and is greatly preferred

by users.

Classroom Presenter [2] is perhaps one of the most widely used pen-based instructional

tools. This lecturing system allows students and instructors to communicate during lectures using

tablet computers. However, this system neither interpretswhat is written nor does it provide tutoring

capabilities.

6

Newton’s Pen [17] is a statics tutoring system implemented on LeapFrog Inc.’s FLYTM

pentop computer. The FLYTM , which employs Anoto technology [3], is a ballpoint pen with an em-

bedded computer processor and an integrated digitizer thatworks in conjunction with dot-patterned

paper. While Newton’s Pen is limited to the analysis of particle equilibrium problems, NP2 pro-

vides instruction for more complex frame and machine problems involving multiple rigid bodies.

Similarly, Newton’s Pen is only capable of providing simpletutorial feedback, while NP2 uses a

“buggy rules” approach to diagnose and correct problem-solving errors typical of novice students.

Kirchhoff’s Pen is a pen-based tutoring system for teachingKirchhoff’s Law [6]. Similar

to NP2, this system was designed for a tablet PC. However, there are several important differ-

ences between the systems. For example, the two domains involve very different recognition tasks.

Kirchhoff’s pen must interpret annotations on a circuit, while NP2 must interpret complex free

body diagrams. Similarly, the two systems have different tutorial content, with NP2 using a more

sophisticated buggy rules approach.

The InTEL system [26] is a state-of-the-art web-based statics tutoring system.To con-

struct the free body diagram, a student clicks the mouse to select objects from the problem de-

scription. Forces can be added at predefined locations in predefined orientations. By contrast, NP2

requires the student to construct a free body diagram from scratch by drawing a system boundary

and drawing forces at any location the student deems appropriate. We believe that constructing a

solution from scratch facilitates a more effective learning experience than allowing the student to

select the correct answer from a list.

NP2 must recognize hand-drawn sketches in real time. This process is difficult because

hand-writing is often ambiguous. NP2 employs a combinationof the inverse-curvature recognizer

[18] and the dollar recognizer [31]. We extended the latter to recognize arrows with greater accu-

racy.

7

Chapter 3

A Pen-Based Toolkit

3.1 Introduction

Different pen-based hardware platforms have different application programming inter-

faces (APIs). Therefore, applications designed for one platform will typically have to be rewritten

to work on another. As an alternative, we created a toolkit that provides a standard API that abstracts

away the details of the hardware-specific APIs. A software developer can create an application us-

ing the standard API and the toolkit can automatically translate the API calls to work with the device

specific APIs.

We implemented the standard API as a reusable toolkit. In addition to providing hardware

abstraction, the toolkit also provides a variety of functions that are typically used when building

pen-based applications such as shape recognition, stroke resampling, etc.

Therefore, we have three goals:

• To create a toolkit that facilitates the development of portable pen-based applications that run

on multiple platforms.

• To provide a library of functions, such as shape recognitionand stroke resampling, to facilitate

8

the creation of pen-based applications.

• To enable applications for pentop computers to be developedon a desktop computer with its

greater processing power, visual display, and symbolic debugger.

3.2 Standard API

Currently, the toolkit can be used to create applications that run directly on a tablet PC

or on a computer with a mouse. The toolkit can also be used to create applications for a FLYTM

pentop computer. In this case, however, the applications run on a PC, with the FLYTM tethered to

the PC with a debugging cable. The applications can not run directly on the FLYTM because the

toolkit is in Java while the FLYTM ’s API is in C++. However, we plan to extend our toolkit to work

on the Livescribe pentop computers which can run Java natively.

The standard API provides display functionality includingthe ability to play audio and

synthesized speech, and the ability to render pen strokes onvideo displays. The API also provides a

set of event listeners which can be used to respond to user interface events such as pen down events,

pen up events, pen movement events, and button press events.If an application needs to respond to

a particular kind of event, the application must activate the appropriate listener and register an event

handler for it. The completed set of listeners are describedin table3.1.

Because pen-based applications often have soft buttons, which are regions on the work

area that trigger an action when tapped, the toolkit provides functionality for buttons. For hardware

with graphical displays, the toolkit automatically renders soft buttons on the display. The toolkit

provides event listeners that enable an application to respond to button click events. The complete

set of button functions are described in the table3.2.

9

Method Name Description
void down(DataPointEvent) Handles a pen down event.
void up(DataPointEvent) Handles a pen up event.
void dragged(DataPointEvent) Handles a drag event.
void stroke(StrokeEvent) Handles a stroke event.
void tap(DataPointEvent) Handles a tap event.
void doubleTap(DataPointEvent) Handles a double tap event.
void strokeDeleting(DataPointEvent) Occurs when a delete begins.
void strokeDeleted(DataIndexSetEvent) Occurs when a stroke delete ends.
void rightButtonPressed(DataPointEvent)Occurs when the main button on a pen device is

pressed.
void rightButtonReleased(StrokeEvent) Occurs when the main button on a pen device is re-

leased.
void rightButtonClicked(DataPointEvent)Occurs when the main button on a pen device is

clicked.

Table 3.1: A list of methods for event listeners.

3.3 Library

The toolkit contains a variety of recognition algorithms. It contains two single-stroke rec-

ognizers, the Rubine recognizer [27] and the dollar recognizer [31]. It also includes the multi-stroke

image-based recognizer developed by Kara [14]. This multi-stroke recognizer uses four distance

metrics to compare an unknown shape to the definition shapes.These four distance metrics are the

Hausdorff Distance, Modified Hausdorff Distance, TanimotoSimilarity Coefficient, and Yule Coef-

ficient. The unknown shape may not be in the same orientation as the definition shapes. Therefore,

the image-based recognizer uses search to find the optimal alignment between the unknown and the

templates. We have added options to turn off the rotational search and to use only one distance met-

ric (the Hausdorff Distance). While this results in faster recognition, it also increases the possibility

of recognition errors.

There are certain mathematical functions that are commonlyused in processing ink, such

as computing angles between vectors, and dot products between vectors. The toolkit includes a

10

Methods Description
void setX(int) Sets the x coordinate of the button.
void setY(int) Sets the y coordinate of the button.
void setHeight(int) Sets the height of the button.
void setWidth(int) Sets the width of the button.
void setName(String) Sets the name of the button.
UUID getUID() Gets the unique id of the button.
void copy(Button) Copies the properties of another Button.
boolean isPointInButton(DataPoint) Checks if a point is within the button.
void actionEvent(ButtonEvent) Forces event notification on all listeners to this but-

ton.
void addActionListener(ButtonActionListener)Adds a listener to the button.

Table 3.2: A list of methods in the Button class.

variety of mathematical functions as listed in table3.3.

11

Method Name Description
double euclideanDistance(DataPoint, DataPoint) Euclidean distance between two points.
double manhattanDistance(DataPoint, DataPoint) Manhattan distance between two

points.
double dot(DataPoint, DataPoint) Dot product between two vectors.
double magnitude(DataPoint) Magnitude of a vector.
double angleBetweenTwoVectors(DataPoint, DataPoint)Angle between two vectors.
double[] leastSquareLine(DataPoint...) Least squares line fit.
DataPoint closestPtBTWLineAndPt Closest point between a line and a

point.
(DataPoint, DataPoint, DataPoint)
double minDistanceBTWLineAndPt Minimum distance between a line to a

point.
(DataPoint, DataPoint, DataPoint)
ArrayList< DataPoint > Resamples the ink to defined number

of points.
Resample(ArrayList< DataPoint >,int)
Stroke smoothStroke(Stroke, int) Smoothes the stroke.
ArrayList< DataPoint > ScaleNonUniformly Scales strokes non-uniformly.
void scaleStrokeByPercent(Stroke, double) Scales a stroke to a percentage of its’

size
ArrayList< DataPoint > RotateBy Rotate a stroke by a certain degree.
(ArrayList< DataPoint >, double)
double inkLength(ArrayList< DataPoint >) Compute ink length of a stroke.
DataPoint Centroid(ArrayList< DataPoint >) Compute the centroid of a stroke.
Stroke dehooking(Stroke, int, int, double) Dehooks the stroke.
Stroke reverseStroke(Stroke) Reverses the stroke.
Stroke smoothStroke(Stroke, int) Smoothes the stroke.
void translateStroke(double, double, Stroke) Translate the stroke.
double getStraightnessRatio(Stroke) Computes if the stroke is a line.

Table 3.3: A list of mathematical and stroke methods.

12

Chapter 4

Statics Tutoring System

4.1 System Overview

NP2 scaffolds students through the process of both constructing free body diagrams and

constructing equilibrium equations. Figure4.1shows the program’s user interface. The top portion

of the program window contains the problem description and the free body diagram workspace. The

bottom portion contains the equation workspace.

To construct a free body diagram, the student begins by identifying the boundary of the

system of interest. The student does this by using the stylusto trace the boundary directly on the

problem picture (Figure4.2a). When the student then taps the “Recognize Boundary” button, NP2

identifies which objects have been included in the system boundary. If the student has selected an

improper or ambiguous boundary, the system provides appropriate feedback. For example, if the

boundary “cuts” through a rigid body, the student is informed that cutting through a rigid body

reveals potentially complicated internal forces, and thusa different boundary should be selected.

Likewise, if the student has not accurately traced a set of objects, the student is informed that the

boundary is ambiguous. Once the student has defined a suitable boundary, he uses the stylus to drag

13

Figure 4.1: The Newton’s Pen II System. The top of the application window contains the problem
description and the free body diagram workspace. The bottomcontains the equation workspace.

it to the free body diagram workspace (Figure4.2b).

The notion of a system boundary is a critical part of the NP2’sinstructional design. Novice

students often have difficulty defining a system, and may attempt to draw a free body diagram by

simply redrawing the original problem figure, with all of itsdetails (Figure1.1b). Alternatively, they

may draw a variety of incorrect abstractions, such as stick figures or forces floating in space, with

no clear connection to objects (Figure1.1c). NP2 is designed to overcome these misconceptions

by guiding the student to explicitly identify the boundary of the system. Having such a boundary

helps the student distinguish between external forces, which must be represented on the free body

diagram, and internal forces which should not appear there.

To complete the free body diagram, the student draws the forces and moments, which are

drawn in the usual way as straight and curved arrows, respectively. These arrows must be drawn

with a single stroke. (Our current implementation allows multi-stroke arrows, but this was not used

in the user study described in Section5.1.) After drawing, the student must pause briefly to trigger

14

(a)

(b)

Figure 4.2: To construct a free body diagram, the student first (a) uses the stylus to trace the desired
system boundary directly on the problem description, then (b) drags the boundary to the free body
diagram workspace.

recognition. If a pen stroke is recognized as a force or moment arrow, the ink is replaced with a

machine-drawn arrow to indicate the interpretation.

Forces and moments can be labeled by drawing directly on the workspace, or by using

a text entry window (Figure4.3). In the former case, the characters are recognized after a pause

and the ink is replaced with its interpretation, which is rendered with a hand-drawn character font.

We use this approach, rather than using a traditional computer font, to preserve the informality of a

student’s handwritten work. The student can correct misinterpretations by erasing and rewriting the

text, or by pressing the button on the barrel of the stylus andcircling the ink, triggering the display

of alternative interpretations from which the student may select the intended characters.

To initiate use of the text entry window, the student simply draws an “L”-shaped pen

stroke, causing the window to appear. The text entry window contains two character entry boxes.

After each character is written, it is recognized and replaced with its interpretation. If the text is mis-

interpreted, the student can select the correct interpretation from the provided lists of alternatives.

15

Figure 4.3: Force and moment labels can be entered using a text entry window. Alternative inter-
pretations are provided below each handwritten character.

Once text entry is complete, the final interpretation is displayed in the workspace with a handwritten

font.

NP2 matches each force and moment label with the nearest arrow. Color coding is used

to indicate the matches. For forces that are not aligned witha coordinate direction, the student must

specify the angle. This is done by drawing an extension line,an arc, and a single character to label

the angle.

The analysis of frames and machines typically requires the construction of multiple free

body diagrams. The student can construct additional free body diagrams by tracing additional

boundaries, dragging them to the workspace, and labeling the forces.

Once the student has constructed all of the free body diagrams, he can obtain tutorial

feedback by tapping the “Critique FBDs” button. If the student has correctly drawn all of the

necessary free body diagrams, he is informed of the success and is instructed to move on to the

construction of the equilibrium equations. If there are errors, the student is informed of them.

The feedback system is based on a “buggy rules” approach thatattempts to diagnose and correct

16

problem-solving errors typical of novice students. As described in more detail in Section4.4.1, the

system can explain a wide range of conceptual errors such as violations of Newton’s Third Law,

improperly modeled reactions, and confusion about two-force members. As shown in Figure4.4,

the feedback is presented hierarchically, with general comments given first, and more specific help

provided later. For example, if Newton’s Third Law is violated, the student is first informed that

“Newton’s 3rd Law is not satisfied.” The student can tap the pen on the message to receive a more

specific message, such as “Action and reaction pairs are always equal and opposite.” Continued

requests for more details result in the program highlighting the offending force on the free body

diagram and, in the example in Figure4.4, informing the student that he should reverse the direction

of the force.

Figure 4.4: Help is presented hierarchically. Top-level help messages provide general suggestions.
Lower level messages are more specific. Displaying the lowest level message reveals the remedy
to the error, and causes the relevant portion of the free bodydiagram to be highlighted (yellow
rectangle).

Equilibrium equations are constructed in the equation workspace at the bottom of the pro-

gram window. To begin, the student specifies which of the freebody diagrams is being considered.

17

This is done using a pull down menu containing a list of the free body diagrams which are named

according to the bodies they contain, such as “left lever.” The student then specifies the type of

equilibrium equation he is constructing. For example, to indicate the x-equilibrium equation, the

student writes
∑

Fx = 0 in the “equation type” area shown in Figure4.5b. Similarly, to indicate

the moment equilibrium equations, the student writes
∑

Mp = 0, wherep is a labeled point in the

problem. Tapping the “Set Type” button triggers recognition of the equation type.

Figure 4.5: The equation workspace: (a) action buttons, (b)equation type area, (c) equation area,
(d) equation interpretation area. The ink in the equation iscolor coded to display the grouping of
the strokes into characters.

After specifying the equation type, the student writes the equation itself in the equation

area (Figure4.5c). The student triggers recognition by tapping the “Interpret” button. The program

then displays the interpretation in the equation display area (Figure4.5d). If there are interpretation

errors, the student can correct them using the correction methods described earlier. When the student

has confirmed that the program has correctly interpreted theequation, he can tap the “Critique”

button to obtain feedback, which is again presented hierarchically.

To construct additional equations, the student taps the next page (“→”) button, which

presents a new equation area. The student can use the next page and previous page (“←”) buttons

to navigate through his work.

The next section describes the techniques that NP2 uses to interpret a student’s work,

including the techniques for interpreting the system boundary, and the techniques for recognizing

arrows and text. This is followed by a description of the tutorial feedback system.

18

4.2 Interpreting System Boundaries

To identify the bodies contained in the student’s system boundary, NP2 first converts the

strokes that comprise the boundary into a polygon. It then computes the intersection between this

boundary polygon and the polygons of the bodies in the problem. If this calculation reveals that

most of a given body is inside the boundary polygon, then thatbody is considered to be inside the

boundary.

We have found that boundaries are often drawn with multiple pen strokes. If a boundary

is drawn with a single pen stroke, then a polygon could be formed trivially by connecting the end

points. When multiple pen strokes are used, however, it is necessary to merge the overlapping re-

gions together. There are many contour identification techniques designed for bitmaps that could be

used for this task. However, since our contour is comprised of strokes rather than a collection of pix-

els, we can create more efficient methods. Speed is particularly important for an online application

such as ours.

We need to merge only the ends of the pen strokes as this is where the discontinuities

occur. Two stroke ends are considered for merging, only if they are sufficiently near each other. We

have found that users often draw all of the strokes in the boundary in the same sense. For example,

when drawing a square with four pen strokes, all would be drawn clockwise or all would be drawn

counterclockwise. Thus, our algorithm considers merging portions of two strokes only when their

(a)

(c)

(b)

(d)

Figure 4.6: Stroke merging. (a) raw data points. (b) Resampled data points. (c) Aligned points on
one stroke with those on the other. (d) Merged stroke constructed by merging matched points.

19

Figure 4.7: Stroke merging criteria. (a) Tangent angle mustdiffer by no more than10◦. (b)
Euclidean distance must be less than 35 pixels. (c) Path length must be greater than at least twice
the Euclidean distance.

tangent directions are similar. Figure4.6shows the steps for merging.

To reduce computation time, the algorithm begins by resampling each stroke to a max-

imum of 128 equidistant points. To reduce noise, the resampled data points are smoothed by av-

eraging the location of each point with the locations of the point on each side. Once the ink is

resampled, the algorithm considers only the first and last 10% of the stroke for possible merging.

For a point on one stroke to be merged with a point on another stroke (or a point on the other end of

the same stroke) to be merged, the following criteria must besatisfied (Figure4.7): First, the tan-

gent directions of the two points must differ by no more than10◦. Second, the Euclidean distance

between the two points must be less than 35 pixels. Finally, if the two points are on the same stroke,

the Euclidean distance between them must be at least twice the arc length that separates them. The

last criteria prevents a point on a stroke from being merged with its immediate neighbors, while

allowing opposite ends of the stroke to be merged.

To determine if a particular set of bodies is included in the student’s boundary polygon,

NP2 first constructs a “nominal polygon” by merging the boundaries of the components. It also

constructs a“minimum polygon” and a “maximum polygon” by computing polygons offset from

the nominal polygon. The maximum polygon completely contains the nominal polygon, which

in turn completely contains the minimum polygon. NPT generates this set of polygons for each

combination of components.

20

A set of components is considered to be selected by the boundary polygon if: (a) the

boundary polygon contains at least 80% of their nominal polygon, (b) their entire minimum polygon

is contained within the boundary polygon, and (c) the boundary polygon does not contain their entire

maximum polygon.

While a system boundary should not cut through a rigid body, it is acceptable for the

boundary to cut through a flexible element, such as a cable. Ifat least 10% of a flexible element is

contained within the boundary polygon, the portion inside the boundary is considered to be selected.

4.3 Recognition of Force and Moment Arrows

After the FBD boundary has been dragged into the FBD workspace, the student draws

arrows to represent forces and moments, with straight arrows for the former and curved ones for

the latter. NP2 is capable of recognizing arrows drawn tail to head with either one or two strokes.

The system accomplishes this by combining two different arrow recognizers: aninverse-curvature

recognizer and adollar arrow recognizer.

Figure 4.8: Inverse curvature of an arrow. The three cornersof the arrowhead are the three smallest
values of inverse curvature. Image from [18].

The inverse-curvature recognizer identifies arrows by the three corners typically found on

arrowhead. With this technique, the stroke is first resampled to 128 points to reduce computation

time and then smoothed to remove noise. Next, line segments are constructed between each pair of

21

consecutive points. The “inverse curvature” at a point is defined as the cosine of the angle between

the two adjacent segments. If the adjacent segments are nearly collinear, the inverse curvature value

is close to one. If the segments make a sharp angle, the inverse curvature value is much smaller

than one. In the case of a180◦ bend, for instance, the inverse curvature is negative one. The three

corners of an arrowhead can be detected by their small inverse curvature values (Figure4.8).

The inverse-curvature recognizer uses a neural network to classify pen strokes. The 128

inverse curvature values for the resampled pen stroke serveas the features to the classifier. The neu-

ral network was trained with approximately 100 arrows and 600 non-arrows (letters and numbers)

from 5 different users. (The complete details can be found in[17].)

The dollar arrow recognizer is a modified version of the dollar recognizer [31]. The dollar

recognizer has difficulty recognizing arrows, because the shafts may be arbitrarily long. We have

modified the algorithm to ignore most of the shaft. To do this,the dollar Arrow recognizer uses

inverse curvature to identify the three corners of the arrowhead. The corners are used to compute

the length of the line segments forming the arrowhead. If theshaft (i.e., the “non-arrowhead” portion

of the arrow) is longer than twice this average length of the arrowhead segments, the shaft is clipped

to this length, otherwise the entire shaft is used. After this preprocessing, recognition continues

with the usual dollar recognizer approach.

Both of these recognizers accepts a stroke as input and returns a confidence value be-

tween[0, 1] indicating the likelihood that the stroke is an arrow. The confidence values of the two

recognizers are combined by taking their average. If this average is greater than0.8, the stroke

is classified as an arrow. Both the inverse-curvature and dollar arrow recognizer are designed for

single strokes. To use them for multi-stroke stroke arrows,the end of the first stroke is joined to the

start of the second stroke. Arrows with more than two strokescan be processed in a similar fashion,

but in this case, it is useful to consider all permutations ofstroke order when appending strokes.

22

To determine if an arrow is a force or a moment, NP2 fits a linearleast squares line to the

shaft of the arrow. If the error of fit is less than a threshold,the arrow is considered to be a force,

otherwise it is considered to be a moment.

4.3.1 Force Labels

Forces and moments can be labeled by drawing directly on the workspace, or by using a

text entry window. In the former case, the characters are recognized with the Microsoft Handwriting

Recognizer (MHR) [23] after a user-adjustable timeout. The ink is then replaced with its interpre-

tation, which is rendered with a hand-drawn character font.We use this approach, rather than using

a traditional computer font, to preserve the informality ofa student’s handwritten work. The student

can correct misinterpretations by erasing and rewriting the text, or by pressing the button on the

barrel of the stylus and circling the ink, triggering the display of alternative interpretations from

which the student may select the intended characters.

To initiate the use of the text entry window, the student simply draws an “L”-shaped pen

stroke, causing the window to appear. The text entry window contains two character entry boxes,

as force labels are limited to two characters. After each character is written, it is recognized using

the MHR and replaced with its interpretation. If the text is misinterpreted, the student can select the

correct interpretation from the provided lists of alternatives. Once text entry is complete, the final

interpretation is displayed in the workspace with a handwritten font.

4.4 Tutorial Feedback

NP2 interprets the student’s handwritten solutions to statics problems and provides tuto-

rial feedback when there are problem-solving errors. The system employs two separate feedback

systems, one for free body diagrams, and one for equilibriumequations. In the sections below, we

23

describe the workings of these two systems.

4.4.1 Critiquing Free Body Diagrams

To interpret the system boundary that the student has traced, the program first joins the pen

strokes to form a closed region. The program then computes the intersection between this region and

each of the bodies in the problem figure. If at least 80% of the area of a body is contained within the

region, it is considered to be included in the system boundary. If less than 10% is contained within

the region, the body is considered to be outside the system boundary. Otherwise, it is assumed that

the boundary cuts through the body, which would reveal internal forces. In this case, the student is

immediately instructed to draw a new boundary to avoid this problem. If a significant amount of

the region intersects no bodies (i.e., the boundary contains significant empty space), the boundary

does not accurately define a system, and the student is immediately instructed to trace the boundary

more carefully.

When the student has completed the free body diagrams for a problem, he can tap the

“Critique FBDs” button to obtain feedback. The program generates the feedback by using a set of

solution templates and a set of “buggy rules”. NP2 contains multiple solution templates representing

common correct and incorrect solutions for each problem. Each template includes the properties of

the forces and their expected locations. Forces are represented by a variety of properties such as the

source of the force, which is either reaction or applied, thedirection, which may be either known or

unknown, and if the force is applied, the name of the force. Reaction forces are further described

in terms of the physical constraint that produces them, suchas a pivot, a roller joint, or a flexible

element. If a body is a two-force member, the two force locations are labeled as such. Often,

students incorrectly assume that all bar-shaped components are two-force members. Sometimes,

students even incorrectly model bar-like protrusions as two-force members. To help the program

24

diagnose such errors, force locations that have a bar-like shape are labeled as such. For example,

the three ends of a “T”-shaped body would be labeled as havinga bar-like shape.

NP2’s “buggy rules” encompass a wide range of conceptual errors of the sort that novice

students typically make. Some are specialized to problems that require only a single free body

diagram for the solution, while most apply to frame and machine problems requiring multiple free

body diagrams. Each rule contains multiple levels of tutorial feedback that progresses from general

suggestions to the actual remedy for the error.

NP2’s rule base contains a total of 61 rules for free body diagram errors. Here we sum-

marize the major conceptual errors these rules diagnose:

• Incomplete formulation, single free body diagram problem:For problems requiring only a

single free body diagram, the free body diagram selected does not include all of the forces

that must be solved for. The student is instructed to select another system.

• Statically indeterminate, single free body diagram problem: For problems requiring only a

single free body diagram, the free body diagram contains toomany unknowns and thus is

unsolvable. The student is instructed to select another

system.

• Statically indeterminate composite free body diagram: Thestudent has drawn only the free

body diagram for the entire system and it is statically indeterminate. The student is instructed

to decompose the system into multiple free body diagrams.

• Incomplete decomposition: The student has decomposed the problem into multiple free body

diagrams, but one or more of them is statically indeterminate. The student is instructed to

decompose the problematic free body diagrams into smaller systems.

25

• Missing free body diagrams: The student has decomposed the problem into multiple free

body diagrams, but additional free body diagrams are needed.

• Pivot support modeled improperly: One or more of the two force components is missing or

the components are not orthogonal.

• Roller modeled incorrectly: The normal force is missing, the normal force is not actually

normal to the surface, or a friction force is included.

• Incorrect applied force: An applied force (as opposed to a reaction force) is missing, in the

wrong direction, or has the wrong label. If a force is defined explicitly in the problem, then

the student should have drew the force at that location. Additionally, students are warned if a

weight force is labeled “m”, as students often confuse mass and weight. Similarly, students

are also warned if a weight force is labeled “Wg.” For loads, students will be informed to

draw the load so that it is normal to the surface. Additionally, students will be informed if

they included more than one force or attempted to represent load as force components.

• Flexible element modeled incorrectly: The force is missing, is not aligned with the element,

or is not in tension. Also, students are warned if they treated the flexible element as a pivot

by decomposing into force components.

• Rough surface contact modeled incorrectly: Either the friction force, normal force, or both

are missing or in the wrong direction. Furthermore, the friction and normal force should be

orthogonal to each other.

• Internal Forces: The free body diagram includes forces internal to the system.

• Two-force member: One or both of the forces on the ends of the two-force member are

missing, they are not in opposite directions, or they have different labels. Alternatively, there

26

is one or more extra force.

• Newton’s Third Law error: A pair of reaction forces does not satisfy the third law of action

and reaction. Rules include one reaction has more components than the other, the forces are

not in opposite directions, or the forces have been given different labels.

• A multi-force body confused with a two-force member: If a multi-force body is modeled

as having exactly two equal and opposite forces at locationsthat have a bar-like shape, the

student may have considered the body to be a two-force member. The student is informed that

not all bodies with a bar-like shape are two-force members and that they may have confused

the body with a two-force member.

• Missing forces: Any missing forces not explained by other rules are simply reported as miss-

ing forces.

• Extra force: Any extra forces not explained by other rules are simply reported as extra forces.

4.4.2 Critiquing Equations

The first step in interpreting an equation is to group the pen strokes into individual char-

acters. NP2 does this by using a statistical grouping algorithm based on the one reported in [22]. As

shown in Figure4.5, the program renders each character with a unique color, enabling the student

to detect any grouping errors. Next, the handwriting recognizer built into the Microsoft Windows

operating system [24] is used to recognize the individual characters.

It is difficult to obtain high accuracy when recognizing individual characters. Handwrit-

ing recognizers (i.e., “word recognizers”) overcome recognition errors by using a lexicon. Such

an approach would not work for a tutoring application, because it would bias the system to correct

answers, potentially causing the system to overlook actualproblem-solving errors. Instead, we have

27

developed a novel error correction technique that uses a hidden Markov model derived from a gram-

mar for legal equations and statistics about how the underlying character recognizer misclassifies

characters. This approach, which is described in more detail in [12] has proven to be very effective

at correcting interpretation errors.

Once an equation has been interpreted, a heuristic matchingalgorithm is used to match

the terms in the student’s equations with the most likely intended terms in the correct solution. The

heuristics consider which parts of an equation term are mostindicative of intent. For example, the

force label is a better indicator than the trigonometric component. Consider a situation in which the

student has written “Fcos(U)+Psin(U) = 0” and the correct equation is “Fsin(U)+Pcos(U) =

0”. In this case the student’s first term is likely intended to represent the first term in the correct

equation, despite the fact that the trigonometric component matches the second term in the correct

equation.

After the terms have been matched, a set of “buggy rules” is used to provide feedback

for any differences. Again, help is provided hierarchically, progressing from general guidance to

specific remedies. Also, the guidance is provided in terms ofstatics concepts, rather than a simple

enumeration of the differences between the student’s equation and the correct one. For example,

if in the x-equilibrium equation the students has written “Fcos(U)” but “Fsin(U)” is expected,

the system informs the students that “the wrong component has been selected for forceF ”. More

specific feedback instructs the student to “select the component parallel to the x-direction.”

The “buggy rules” consider a variety of errors including: missing forces, force compo-

nents, and moments; extra forces, force components, and moments; incorrect force components

(wrong trigonometric function); missing or incorrect moment arms; and sign errors. (See [12] for

complete details of the equation critiquing process.)

28

Chapter 5

User Study

5.1 System Evaluation

NP2 was integrated into the sophomore-level engineering statics course at University of

California, Riverside in the winter quarter of 2010. The class had an enrollment of just over 100

students. In a survey in which 95 students responded, 91 of the students reported being Mechanical

Engineering majors. Furthermore, 84 students reported being male, and 11 reported being female.

Students used NP2 in their discussion sections four times during the quarter. In the first

session, students used the system to learn to construct freebody diagrams for problems involving the

analysis of a single 2D body. In the second session, studentsused the system to construct both free

body diagrams and equilibrium equations for single 2D bodies. In the third session, students used

the system to construct free body diagrams for multi-body frame and machine problems. Finally, in

the fourth session, students used the system to construct both free body diagrams and equilibrium

equations for frame and machine problems.

To evaluate NP2’s educational usefulness, we used pre- and post-tests during the third

session to measure learning gains for the construction of free body diagrams for frame and machine

29

problems. We did not measure gains for equilibrium equations, as the 50-minute discussion sec-

tions were not long enough for students to both complete pre-and post-tests and use the system to

complete a tutorial problem.

Our study employed two test problems. Problem A (Figure5.1) concerns the analysis of

an airplane landing gear. Problem B (Figure5.2) concerns an automobile hoist. Half of the students

used Problem A for the pre-test, and B for the post-test. The other half solved the problems in the

reverse sequence. All students used NP2 to complete a tutorial problem concerning a toggle clamp

(Figure4.1). Because of the limited number of tablet PCs available, students worked in pairs while

completing the tutorial.

The nose-wheel assembly is raised by

the application of torque to linkM BC

through the shaft at . If the arm andB

wheel have a combined weight ofAO

100 lb with center of gravity at , findG

the value of necessary to lift theM

wheel when is directly under , atD B

which position = 30°.q

Draw the necessary free body

diagrams. Do not construct/solve the

equilibrium equations.

Figure 5.1: Problem A used for pre- and post-test evaluation. From [20].

Students completed the tests using an Anoto-based Livescribe digital pen and paper. This

enabled us to accurately measure the amount of time it took each student to complete the tests.

Some students did not have their digital pen available to complete the tests. In such cases, their test

data was excluded from the analysis. Overall, the analysis included 36 students who had A as a

30

The car hoist allows the car to be driven onto the platform,

after which the rear wheels are raised. If the loading from both

rear wheels is 1500lb, determine the force in the hydraulic

cylinder . Neglect the weight of the platform itself. MemberAB

BCD is a right-angle bell crank pinned to the ramp at C.

Draw the necessary free body diagrams. Do not

construct/solve the equilibrium equations.

Figure 5.2: Problem B used in pre- and post-test evaluation.From [20].

pre-test and B as a post-test, and 40 students who had the reverse problem order.

5.1.1 Measuring Learning Gains

We measured learning gains by measuring performance on the pre- and post-test in terms

of problem-solving errors. We consider eight major kinds ofconceptual errors:

• Roller modeled incorrectly: The normal force is missing, the normal force is not actually

normal to the surface, or a friction force is included.

• Pivot modeled incorrectly: One or more of the two force components for the pivot support is

missing.

• Weight force incorrect: The weight force is missing or in thewrong direction.

• Moment modeled incorrectly: On Problem A, the moment is not included on the free body

diagram, or is drawn in the wrong direction.

31

• Two-force member error: There is no free body diagram for thetwo-force member (and a

correct model of the two-force member is not implied by the other free body diagrams); there

is a free body diagram but the body is modeled with two pivots each having two unknown

force components; or there is an apparent attempt to model the body as a two-force member,

but forces are not equal and opposite.

• Third law error: A pair of reaction forces does not satisfy the third law of action and reaction.

For example, one reaction has more components than the other, the forces are not in opposite

directions, or the forces have been given different names.

• Internal forces included: Forces internal to the system areerroneously included on the free

body diagram. For example, the free body diagram representstwo connected objects, and a

force is included at the joint connecting the two.

• Other extra forces: The free body diagram erroneously contains other forces not considered

in the other error categories.

These errors are assessed for each free body diagram necessary to solve the problem.

For Problem A, we observed three different correct solutions. The first included three free body

diagrams, one for member AO, one for member BC, and one for member CD. The second is similar

to the first, except that the free body diagram for CD was implicit: this diagram was not drawn, but

the other two free body diagrams were consistent with CD being correctly modeled as a two-force

member. The third solution included only two free body diagrams, one for AO and one for BCD

(i.e., the combination of two members). Even for the third approach, a correct solution requires

the student to model point D as the end of a two-force member. If the student omitted one of the

free body diagrams necessary for the solution approach selected, the maximum possible number of

errors was assessed. For example, if the free body diagram for BC was omitted, three errors were

32

assessed: an incorrectly modeled pivot, a missing moment, and a violation of the third law.

For Problem B, we again observed three different correct solutions. The first included

three free body diagrams, one for member OAC, one for member BCD, and one for member AB.

The second is similar to the first, except that the free body diagram for AB was implicit. The

third solution included only two free body diagrams, one forOAC and one for ABCD (i.e., the

combination of two members). For the third approach, a correct solution requires the student to

model point A as the end of a two-force member. As before, if the student omitted one of the

free body diagrams necessary for the solution approach selected, the maximum possible number of

errors was assessed.

Many students began the solution of the problems by constructing a free body diagram

for the complete system containing all of the members. This “composite” free body diagram was

unnecessary for a correct solution, thus if it was not drawn,no errors were assessed. Because many

students did not draw the composite free body diagram, we tabulated errors for it separately from

those for the other free body diagrams.

After examining the tests, we discovered that students performed substantially better on

Problem A than on B. (Comparison of Figures5.3and5.4shows that students made far fewer errors

on Problem A than on B). It appears that the latter problem wasmore difficult for the students. As

a result, making within-subject comparisons of student performance from pre- to post-test does not

produce useful insights: Students who had A as a pre-test faced a harder post-test, while those who

had B as a pre-test faced an easier post-test. Thus, we find it more useful to examine across-subject

performance, comparing the performance on a problem as pre-test, to the performance on the same

problem as a post-test. Note that in this analysis, we are comparing the performance of two different

groups of students on the same problem.

33

The performance results for Problem A are shown in Figure5.3, while those for Problem

B are shown in Figure5.4. The errors for the required free body diagrams are averagedover the

number of students who were assigned the particular problem(i.e., those who did not complete the

tests with a digital pen were excluded). The errors for the composite free body diagrams, which are

unnecessary for a correct solution, are averaged over the number of students who attempted to draw

them. Coincidentally, for both problems, 70% of students drew composite free body diagrams.

Examination of Figures5.3 and5.4 reveals clear learning gains from pre- to post-test.

There is a reduction in the average number of errors for nearly every error measure. Error reduc-

tions are largest for Newton’s Third Law errors, pivot reaction force errors, and erroneous internal

forces on the composite free body diagrams. On Problem A, there is a substantial increase in the

number of extra forces erroneously included in the free bodydiagrams. This appears to be due to a

misunderstanding of the problem. After completing the tutorial problem with NP2, some students

modeled the wheel of the landing gear as a roller with a normalforce. However, as the wheel is not

touching the ground, there should be no force there.

In addition to the gains in solution correctness, there werealso gains in solution speed

from pre- to post-test as illustrated in Table5.1. Students required 32% less time to solve Problem

A as a post-test than as a pre-test. Similarly, they required24% less time to solve Problem B as a

post-test than as a pre-test.

Problem Pre-test Time Post-test Time Reduction Reduction (%)
A 7.17 4.90 2.28 32%
B 7.33 5.57 1.76 24%

Table 5.1: Average solution time for pre- and post-test problems in minutes, along with the reduction
of average time from pre- to post-test in both minutes and %.

34

0 0.5 1 1.5 2

Other extra forces

Pivot modeled incorrectly

Internal forces

Weight force incorrect

Moment modeled incorrectly

Other extra forces

Pivot modeled incorrectly

Third Law error

Two-force member error

Weight force incorrect

Moment modeled incorrectly

Average Errors Per Student

O
p

ti
o

n
a
l

C
o

m
p

o
s

it
e

F
B

D
s

Problem A

Pretest

Posttest

R
e

q
u

ir
e

d
F

B
D

s

Figure 5.3: Results for Problem A as both a pre- and post-test.

5.1.2 Attitudinal Survey

All questions were answered on a scale from one to ten, with one being the most negative

response and ten being the most positive. The median response on all questions was on the positive

side of the scale except for two of the questions. Students experienced problems with the system’s

recognition and interpretation functionality, which likely led to some frustration. We observed that

some of the frustration was due to the system’s conventions.For example, some students drew

arrows head to tail rather than tail to head as the program expected. Similarly, some students wrote

equations in unexpected ways, for example, writing the word“SUM” rather than the symbol “Σ”

for the equation type.

At the end of the quarter, students were asked to complete a 25question survey of their

opinions about NP2. The survey questions and responses are listed in Table5.2 in which students

rated various aspects of the system including ease of drawing, usability, educational usefulness, and

35

0 0.5 1 1.5 2

Other extra forces

Pivot modeled incorrectly

Internal forces

Weight force incorrect

Roller modeled incorrectly

Other extra forces

Pivot modeled incorrectly

Third Law error

Two-force member error

Weight force incorrect

Roller modeled incorrectly

Average Errors Per Student

O
p

ti
o

n
a

l
C

o
m

p
o

s
it

e
F

B
D

s

Problem B

Pretest

Posttest

R
e
q

u
ir

e
d

F
B

D
s

Figure 5.4: Results for Problem B as both a pre- and post-test.

overall reaction. The questions for the latter topic were taken from the user study reported in [13].

The first 11 questions were related to the usability of the system, and considered ease of drawing,

recognition accuracy, and overall usability. In one question, students were asked to compare the

interface to a traditional WIMP interface. Their answer wasbased on their general familiarity with

WIMP interfaces as the students were not provided with a WIMP-based statics tutoring system.

The next 10 questions focused on the usefulness of the systemfor learning various statics concepts

and the overall instructional usefulness. The final four questions concerned the students’ overall

reaction to the system.

Because this was the first deployment of NP2, students also discovered some bugs in

the recognition algorithms. These issues were quickly addressed resulting in releases of improved

versions of the system throughout the quarter. We believe that the survey results were negatively

affected by students’ experiences with the earlier versions of the system. We expect that future

36

deployments of the improved system will result in more favorable opinions.

37

Survey Question Scale Ave Med
1 How easy is it to trace and drag system boundaries?Hard (1) — Easy (10) 6.8 7
2 How easy is it to draw force arrows? Hard (1) — Easy (10) 6.2 6
3 How easy is it to label force names? Hard (1) — Easy (10) 5.6 6
4 How easy is it to draw correctly-interpreted equation

types?
Hard (1) — Easy (10) 6.4 7

5 How easy is it to write correctly-interpreted equa-
tions?

Hard (1) — Easy (10) 5.5 6

6 How easy is it to correct interpretation errors in
equations?

Hard (1) — Easy (10) 5.9 6

7 Are the program’s interpretation capabilities suffi-
ciently accurate?

Insufficient (1) — Sufficient (10) 5.2 5

8 How easy is it to learn to use the program? Easy (1) — Hard (10) 2.9 2
9 What is your overall opinion of the usability of this

program?
Not usable (1) — Very usable
(10)

6.1 6

10 How similar is this system to working with paper
and pencil?

Very Dissimilar (1) — Very sim-
ilar (10)

5.3 5

11 Is this interface preferable to WIMP interfaces? Prefer traditional interface (1) —
Prefer pen-based interface (10)

6.5 7

12 Is this program’s tutorial feedback presented in a us-
able form?

Not usable (1) — Very usable
(10)

6.8 7

13 How useful is this for learning selection of system
boundaries?

Not useful (1) — Very useful
(10)

6.9 7

14 How useful is this for identifying forces on free body
diagrams?

Not useful (1) — Very useful
(10)

7.1 7

15 How useful is this for application of Newton’s 3rd
Law?

Not useful (1) — Very useful
(10)

6.8 7

16 How useful is this for analysis of two-force mem-
bers?

Not useful (1) — Very useful
(10)

7.0 7

17 How useful is this for force equations? Not useful (1) — Very useful
(10)

6.4 7

18 How useful is this for moment equations? Not useful (1) — Very useful
(10)

6.5 7

19 What is your overall opinion of the usefulness of this
program in learning to solve equilibrium problems?

Not useful (1) — Very useful
(10)

6.5 7

20 How likely would you be using this system to study
for statics courses?

Unlikely (1) — Likely (10) 6.1 7

21 How likely would you be using this kind of system
for other subjects?

Unlikely (1) — Likely (10) 6.2 7

22 Rate your overall reaction to the system. Terrible (1) — Wonderful (10) 6.2 6
23 Rate your overall reaction to the system. Difficult (1) — Easy (10) 6.7 7
24 Rate your overall reaction to the system. Frustrating (1) — Satisfying

(10)
5.4 5

25 Rate your overall reaction to the system. Dull (1) — Stimulating (10) 6.4 7

Table 5.2: Survey of student opinions about Newton’s Pen II.All questions are answered on a scale
from one to ten, with one being the most negative response andten being the most positive.

38

Chapter 6

Conclusion

We have developed Newton’s Pen II, a pen-based tutoring system for engineering statics.

The tutoring system scaffolds students in the constructionof free-body diagrams and equilibrium

equations for planar devices comprised of one or more rigid bodies.

Different pen-based hardware platforms have different application programming inter-

faces (APIs). Therefore, applications designed for one platform will typically have to be rewritten

to work on another. As an alternative, we created a toolkit that provides a standard API that abstracts

away the details of the hardware-specific APIs. A software developer can create an application using

the standard API and the toolkit can automatically translate the API calls to work with the device-

specific APIs. The toolkit also provides a variety of functions that are typically used when building

pen-based applications such as shape recognition and stroke resampling. By building NP2 with this

toolkit, we will be able to easily port it to other pen-based platforms, such as the digital pen and

paper platform, enabling us to evaluate the suitability of these platforms for tutoring applications.

Our tutorial system embodies several innovations: (1) a novel instructional technique that

focuses students’ attention on a system boundary as a tool for constructing free body diagrams. (2)

A tutorial feedback system based on “buggy rules” that attempts to diagnose and correct problem-

39

solving errors typical of novice students. (3) A progressively more detailed feedback system which

promotes independent problem-solving skills.

In the evaluation of the system, we have deployed the system in the an undergraduate

statics course with an enrollment of just over 100 students.We administered tests before and after

the student’s used the tutorial system to determine whetherthe system helped students construct

free-body diagrams for frame and machine problems.

We found that after using the system to solve only a single tutorial problem, there were

significant learning gains from pre- to post-test. Furthermore, in a formal survey, students expressed

somewhat favorable opinions about the usefulness of the system for learning statics and for the user

interface design. However, students did experience frustration with some of the program’s features,

particularly its interpretation capabilities.

We are encouraged by the results of this first deployment of the Newton’s Pen II system

in a large undergraduate course. The students did achieve significant learning gains after only a

brief exposure to the system. Nevertheless, this is a first step, and there are clear opportunities for

improving the system.

40

Bibliography

[1] Christine Alvarado and Randall Davis. Resolving ambiguities to create a natural sketch based
interface. InProceedings of Seventeenth International Joint Conference on Artificial Intelli-
gence (IJCAI-2001), pages 1365–1371, 2001.

[2] Richard Anderson, Luke McDowell, and Beth Simon. Use of classroom presenter in engineer-
ing courses. InProceedings of Frontiers in Education ’05, pages T2G–13–18, 2005.

[3] Anoto. Development Guide for Service Enabled by Anoto Functionality, February 2006.

[4] Lisa Anthony, Jie Yang, and Kenneth R. Koedinger. Evaluation of multimodal input for enter-
ing mathematical equations on the computer. InCHI ’05 extended abstracts on Human factors
in computing systems, 2005.

[5] Ronald Chung, Petrut Mirica, and Beryl Plimmer. Inkkit:a generic design tool for the tablet
pc. InCHINZ ’05: Proceedings of the 6th ACM SIGCHI New Zealand chapter’s international
conference on Computer-human interaction, pages 29–30, New York, NY, USA, 2005. ACM.

[6] Ruwanee de Silva, David Tyler Bischel, WeeSan Lee, Eric J. Peterson, Robert C. Calfee, and
Thomas F. Stahovich. Kirchhoff’s pen: a pen-based circuit analysis tutor. InSBIM ’07: Pro-
ceedings of the 4th Eurographics workshop on Sketch-based interfaces and modeling, pages
75–82, New York, NY, USA, 2007. ACM.

[7] Robert G. Farrell, John R. Anderson, and Brian J. Reiser.An interactive computer-based tutor
for LISP. InProceedings of the Fourth Annual Conference on Artificial Intelligence (AAAI’84),
pages 106–109, 1984.

[8] Kenneth D. Forbus, Ronald W. Ferguson, and Jeffery M. Usher. Towards a computational
model of sketching. InProceedings of the 6th International Conference on Intelligent User
Interfaces, pages 77–83, 2001.

[9] Richard M. Guest. Pentools - a matlab toolkit for on-linepen-based data experimentation. In
ICDAR ’09: Proceedings of the 2009 10th International Conference on Document Analysis
and Recognition, pages 1221–1225, Washington, DC, USA, 2009. IEEE ComputerSociety.

[10] Tracy Hammond and Randall Davis. Tahuti: A geometricalsketch recognition system for
UML class diagrams. InProceedings of 2002 AAAI Spring Symposium on Sketch Understand-
ing, pages 59–68, 2002.

[11] James I. Hong and James Landay. A toolkit supporting pen-based interfaces. Technical report,
Berkeley, CA, USA, Berkeley, CA, USA, 2002.

41

[12] Josiah William Jordan. An Intelligent Tutoring SystemFor Static Equilibrium Equations.
Master’s thesis, University of California, Riverside, USA, March 2011.

[13] Joseph J. LaViola Jr. An initial evaluation of MathPad2: A tool for creating dynamic mathe-
matical illustrations.Computers & Graphics, 31(4):540–553, 2007.

[14] Levent Burak Kara. An image-based trainable symbol recognizer for sketch-based interfaces.
In in AAAI Fall Symposium Series 2004: Making Pen-Based Interaction Intelligent and Natu-
ral, pages 99–105. AAAI Press, 2004.

[15] James A. Landay. Silk: sketching interfaces like krazy. In CHI ’96: Conference companion
on Human factors in computing systems, pages 398–399, New York, NY, USA, 1996. ACM.

[16] James A. Landay and Brad A. Myers. Sketching interfaces: Toward more human interface
design.IEEE Computer, 34(3), 2001.

[17] WeeSan Lee, Ruwanee de Silva, Eric J. Peterson, Robert C. Calfee, and Thomas F. Stahovich.
Newton’s pen - a pen-based tutoring system for statics. In2007 Eurographics Workshop on
Sketch-Based Interfaces and Modeling, August 2007.

[18] WeeSan Lee, Ruwanee de Silva, Eric J. Peterson, Robert C. Calfee, and Thomas F. Stahovich.
Newton’s pen: A pen-based tutoring system for statics.Computers & Graphics, 32(5):511 –
524, 2008.

[19] Nicholas Matsakis. Recognition of handwritten mathematical expressions. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, MA, 1999.

[20] J.L. Meriam and L.G. Kraige.Engineering Mechanics - Statics. John Wiley & Sons, Inc., 6th
edition, 2007.

[21] Sharon Oviatt, Alex Arthur, and Julia Cohen. Quiet interfaces that help students think. In
Proceedings of the 19th annual ACM symposium on User interface software and technology
(UIST ’06), pages 191–200, 2006.

[22] Eric Jeffrey Peterson, Thomas F. Stahovich, Eric Doi, and Christine Alvarado. Grouping
strokes into shapes in hand-drawn diagrams. In Maria Fox andDavid Poole, editors,AAAI.
AAAI Press, 2010.

[23] James A. Pittman. Handwriting recognition: Tablet pc text input.Computer, 40:49–54, 2007.

[24] James A. Pittman. Handwriting recognition: Tablet PC text input. Computer, 40(9):49–54,
September 2007.

[25] Robert J. Roselli, Larry Howard, Bryan Cinnamon, Sean Brophy, Patrick Norris, Megan Roth-
ney, and Derek Eggers. Integration of an interactive free body diagram assistant with a course-
ware authoring package and an experimental learning management system. InProceedings of
American Society for Engineering Education Annual Conference & Exposition, 2003.

[26] Sue Vi Rosser and Christine Valle. InTEL: Interactive toolkit for engineering learning.
http://intel.gatech.edu/, 2007.

[27] Dean Rubine. Specifying gestures by example.Computer Graphics, 25:329–337, 1991.

42

http://intel.gatech.edu/

[28] Georges Span. LITES, an intelligent tutoring system for legal problem solving in the domain
of Dutch civil law. InProceedings of the 4th International Conference on AI and Law, pages
76–81, 1993.

[29] Siriwan Suebnukarn and Peter Haddawy. A collaborativeintelligent tutoring system for medi-
cal problem-based learning. InProceedings of the 9th International Conference on Intelligent
User Interfaces (IUI ’04), pages 14–21, 2004.

[30] Kurt VanLehn, Collin Lynch, Kay Schulze, Joel A. Shapiro, Robert Shelby, Linwood Taylor,
Don Treacy, Anders Weinstein, and Mary Wintersgill. The Andes physics tutoring system:
Lessons learned.International Journal of Artificial Intelligence in Education, 15(3), 2005.

[31] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. Gestures without libraries, toolkits or
training: a $1 recognizer for user interface prototypes. InUIST ’07: Proceedings of the 20th
annual ACM symposium on User interface software and technology, pages 159–168, New
York, NY, USA, 2007. ACM.

[32] Robert Zeleznik, K.P. Herndon, and J.F. Hughes. SKETCH: An interface for sketching 3D
scenes. InProceedings of the 23rd annual conference on Computer Graphics and interactive
techniques (SIGGRAPH ’96), pages 163–170, 1996.

43

	List of Figures
	List of Tables
	Introduction
	Introduction

	Literature Review
	Toolkit
	Intelligent Tutoring System

	A Pen-Based Toolkit
	Introduction
	Standard API
	Library

	Statics Tutoring System
	System Overview
	Interpreting System Boundaries
	Recognition of Force and Moment Arrows
	Force Labels

	Tutorial Feedback
	Critiquing Free Body Diagrams
	Critiquing Equations

	User Study
	System Evaluation
	Measuring Learning Gains
	Attitudinal Survey

	Conclusion
	Bibliography

