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ABSTRACT OF THE THESIS

Statics Intelligent Tutoring System

by
Chia-Keng Lee

Master of Science, Graduate Program in Mechanical Engmmgeer
University of California, Riverside, June 2011
Dr. Thomas F. Stahovich, Chairperson

We present an intelligent pen-based tutoring system fdicsta the sub-discipline of engineering
mechanics concerned with the analysis of mechanical sgsteraquilibrium under the action of
forces. The system scaffolds students in the constructidree-body diagrams and equilibrium
equations for planar devices comprised of one or more rigiids.

While there has been extensive research in intelligentingsystems, most existing sys-
tems rely on traditional WIMP (Windows, Icons, Menus, Pentinterfaces. With these systems,
students typically select the correct problem solutiomfiamong a set of predefined choices. With
our pen-based interface, by contrast, students are gurdedristructing solutions from scratch,
mirroring the way they solve problems in ordinary practiadjch recent research suggests is par-
ticularly important for effective instruction.

Our system embodies several innovations including a nosiuctional technique that
focuses students’ attention on a system boundary as a toobfstructing free body diagrams, a
tutorial feedback system based on “buggy rules” that attertgpdiagnose and correct problem-
solving errors typical of novice students, and a hieraadhieedback system which promotes inde-
pendent problem-solving skills. In winter 2010, the tutgrsystem was used by 100 students in an

undergraduate statics course at the University of Cald@ofRiverside. Results from pre- and post-

Vi



tests reveal measurable learning gains after only a shpdsexe to the system. In an attitudinal
survey, students reported that, while there is room for owgment, the interface was preferable to a

WIMP interface and the methodology implemented in the systas valuable for learning statics.
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Chapter 1

| ntroduction

1.1 Introduction

Intelligent tutoring systems have long been a focus of mebeavith applications spanning
a wide range of subjects such as computer programntiidaiv [28], medicine R9], physics B(],
and statics25]. Most current systems rely on traditional WIMP (Windowsphs, Menus, Pointer)
user interfaces. While such interfaces may be useful in ston@ins, they have clear limitations.
For example, they are typically not well-suited for instian in domains in which solutions re-
quire complex graphics. Engineering statics is one suchailan®olving statics problems requires
the construction of free body diagrams and equilibrium &qoa, two tasks which are difficult to
perform with a mouse and keyboard.

Here we present our efforts to create a pen-based tutorstgreythat scaffolds students
in solving statics problems in much the same way they ordynsolve them with pencil and paper.
This work is motivated by recent research comparing stugeribormance across different user in-
terfaces showing that “as the interfaces departed morefomiiar work practice..., students would

experience greater cognitive load such that performancédadeteriorate in speed, attentional fo-



cus, meta-cognitive control, correctness of problem gwigf and memory”21]. While that work
used systems that provided no tutorial assistance, thenfiagirovide compelling evidence of the
potential of natural user interfaces for instructionall$oo

Our statics tutoring system, called Newton’s Pen Il (NP&)pkoys a novel instructional
design. A key element of this design is our use of an expli@tean boundary as a tool for con-
structing free body diagrams. Novice students often steuggdefine the system of interest. For
example, they may attempt to draw a free body diagram by gimgalrawing the original problem
figure, with all of its details. Alternatively, they may draawariety of incorrect abstractions, such
as stick figures or forces floating in space, with no clear eotion to objects. Figuré.1 shows
typical errors. NP2 scaffolds the student in selecting trstesn of interest by guiding the student
in the selection of an explicit system boundary. To constautee body diagram, the student uses
a stylus to trace the system boundary directly on the prolgietare, and then drags the boundary
to the free body diagram workspace. Having an explicit bampndhelps the student distinguish
between external forces, which must be represented ondbhebfydy diagram, and internal forces
which should not appear.

To provide tutorial feedback, NP2 uses a “buggy rules” apphothat attempts to diag-
nose and correct problem-solving errors typical of novicelents. These rules were based in part
on examination of student work from a statics course taugtiteaUniversity of California, River-
side. Feedback is hierarchical, with general suggestiorendirst, and more detailed help given
in response to repeated queries from the student. Thisrdesigtended to promote independent
problem-solving skills by giving students the opporturiityidentify mistakes on their own.

To evaluate the educational usefulness of the NP2, we ctedlacuser study in an un-
dergraduate statics course. This sophomore-level couecgeled just over 100 students. The study

took place during the regularly scheduled discussion aestiand because of time-constraints, we
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Determine the vertical clamping force at £ in terms of the force P applied to A A L
(a) the handle of the toggle clamp, which holds workpiece F in place. (b) x

Figure 1.1: Typical errors in free body diagrams drawn byicestatics students. (a) Problem
description. (b) Free body diagram constructed by redrguthie original problem figure. Internal
forces are erroneously included. (c) An abstract free baalgrdm drawn as a stick figure.

assessed only learning gains related to the constructidreefbody diagrams, and did not con-
sider gains for equilibrium equations. Comparison of penfance on pre- and post-tests revealed
significant learning gains. Furthermore, in an attitudsalvey, students reported that, while there
is room for improvement, the interface was preferable to &®interface and the instructional
design implemented in the system was valuable for learrtatics.

NP2 is designed to run on a tablet PC. In future work, we woikle o compare the
effectiveness of a tutoring system running on a tablet PQieoranning on a digital pen and paper
system. Therefore, in developing NP2, we first created itoiblat abstracts away the details of
the specific hardware platform, thus facilitating portinB2\to other pen-based systems.

The next section places this work in the context of relateckwdhis is followed by an

overview of the toolkit. Afterwards, we present an overviefsthe Newton’s Pen Il system and



details of the system’s design. Finally, results of the gtedy are presented and discussed.



Chapter 2

Literature Review

2.1 Toolkit

There are two toolkits that are closely related to our workir§[11] is a powerful toolkit
for pen-based interfaces development. It can process adeérék, and can recognize pen strokes.
While Satin is intended to provide functionality for cregfigraphical user interfaces, our toolkit is
intended to facilitate the development of pen-based agadics that can run on multiple hardware
platforms.

PENTOOLS is another toolkit closely related to ou®s [It is developed in MATLAB
and designed for rapid prototyping of on-line pen computpglications. The toolkit provides
functionality for storing stroke data, computing strokattees, and editing strokes. Unlike our
toolkit, PENTOOLS does not support multiple hardware platfs and does not provide shape
recognizers.

InkKit [ 5] and Silk [15] can automatically generate a working user interface frode-a
signer’s sketch of it. These toolkits are not hardware iedelent and are intended for building

traditional GUI interfaces rather than pen-based apjidinat



2.2 Intelligent Tutoring System

Intelligent tutoring systems have been developed for a watéety of domains 7, 28,

25, 29, 30]. Nearly all of these systems employ WIMP interfaces andkwioom unambiguous
input provided with a keyboard and mouse. Our work, on therottand, focuses on building
pedagogically-sound, pen-based interfaces for tutoystesns. As such, we need to deal with the
challenges of working from ambiguous, hand-drawn input.

The development of natural pen-based user interfaces iseancd active research. A
wide variety of experimental systems have been developetiiding tools for: simulating simple,
hand-drawn mechanical deviceg;[sketching user interfaced]; drawing Unified Modeling Lan-
guage diagramslp)]; interpreting hand-drawn equationtd]; and understanding military tacti&j[
Likewise, there has been significant progress in sketchingtapes32].

Researchers have recently begun to explore the applicatipan-based interfaces to in-
structional systems. For example, Oviail] compared student performance using a variety of
platforms including paper and pencil, the Anoto digital 8}y and the tablet PC. These platforms
were used only as devices for recording problem-solvingkwdio tutoring capabilities were pro-
vided. This work by Oviatt suggests that as the interfacedsrom familiar work practice, student
performance decreases on a variety of measures such asapkedrrectness. In a related study
evaluating interfaces for entering mathematical equatioto a computer, Anthony] found that
pen-input of equations is substantially more efficient tkeyboard entry, and is greatly preferred
by users.

Classroom Presente?][is perhaps one of the most widely used pen-based instnadtio
tools. This lecturing system allows students and instnscto communicate during lectures using
tablet computers. However, this system neither interpréts is written nor does it provide tutoring

capabilities.



Newton’s Pen 17] is a statics tutoring system implemented on LeapFrogdrielY”™
pentop computer. The FIA, which employs Anoto technologg], is a ballpoint pen with an em-
bedded computer processor and an integrated digitizewibr&s in conjunction with dot-patterned
paper. While Newton’s Pen is limited to the analysis of géetiequilibrium problems, NP2 pro-
vides instruction for more complex frame and machine proklénvolving multiple rigid bodies.
Similarly, Newton’s Pen is only capable of providing simpleorial feedback, while NP2 uses a
“buggy rules” approach to diagnose and correct problemisglerrors typical of novice students.

Kirchhoff's Pen is a pen-based tutoring system for teackimghhoff’'s Law [6]. Similar
to NP2, this system was designed for a tablet PC. Howevere thee several important differ-
ences between the systems. For example, the two domairiganiery different recognition tasks.
Kirchhoff’'s pen must interpret annotations on a circuit,ilMNP2 must interpret complex free
body diagrams. Similarly, the two systems have differetdrtal content, with NP2 using a more
sophisticated buggy rules approach.

The INTEL system26] is a state-of-the-art web-based statics tutoring systémcon-
struct the free body diagram, a student clicks the mouseléztsebjects from the problem de-
scription. Forces can be added at predefined locations defined orientations. By contrast, NP2
requires the student to construct a free body diagram froatdt by drawing a system boundary
and drawing forces at any location the student deems apatepiWe believe that constructing a
solution from scratch facilitates a more effective leagnexperience than allowing the student to
select the correct answer from a list.

NP2 must recognize hand-drawn sketches in real time. Thisegs is difficult because
hand-writing is often ambiguous. NP2 employs a combinatibthe inverse-curvature recognizer
[18] and the dollar recognizer3[]. We extended the latter to recognize arrows with greateu-ac

racy.



Chapter 3

A Pen-Based Toolkit

3.1 Introduction

Different pen-based hardware platforms have differentiegion programming inter-
faces (APIs). Therefore, applications designed for ondggota will typically have to be rewritten
to work on another. As an alternative, we created a toolkit pinovides a standard API that abstracts
away the details of the hardware-specific APIs. A softwareli@er can create an application us-
ing the standard API and the toolkit can automatically ti@eshe API calls to work with the device
specific APIs.

We implemented the standard API as a reusable toolkit. litiaddo providing hardware
abstraction, the toolkit also provides a variety of funetidhat are typically used when building
pen-based applications such as shape recognition, steekepling, etc.

Therefore, we have three goals:

e To create a toolkit that facilitates the development of @lole¢ pen-based applications that run

on multiple platforms.

e To provide a library of functions, such as shape recognéiath stroke resampling, to facilitate

8



the creation of pen-based applications.

e To enable applications for pentop computers to be developeaidesktop computer with its

greater processing power, visual display, and symbolicigigér.

3.2 Standard API

Currently, the toolkit can be used to create applicatioms thn directly on a tablet PC
or on a computer with a mouse. The toolkit can also be usedettempplications for a FIA/
pentop computer. In this case, however, the applicationrua PC, with the FLY? tethered to
the PC with a debugging cable. The applications can not necitly on the FLY ™ because the
toolkit is in Java while the FLYM’s APl is in C++. However, we plan to extend our toolkit to work
on the Livescribe pentop computers which can run Java mative

The standard API provides display functionality includitig ability to play audio and
synthesized speech, and the ability to render pen strokeilea displays. The API also provides a
set of event listeners which can be used to respond to usefaoé events such as pen down events,
pen up events, pen movement events, and button press eNemapplication needs to respond to
a particular kind of event, the application must activateappropriate listener and register an event
handler for it. The completed set of listeners are describéable3.1

Because pen-based applications often have soft buttornishwahe regions on the work
area that trigger an action when tapped, the toolkit pre/fdactionality for buttons. For hardware
with graphical displays, the toolkit automatically rerglsoft buttons on the display. The toolkit
provides event listeners that enable an application toore$po button click events. The complete

set of button functions are described in the tah



Method Name Description

void down(DataPointEvent) Handles a pen down event.
void up(DataPointEvent) Handles a pen up event.
void dragged(DataPointEvent) Handles a drag event.

void stroke(StrokeEvent) Handles a stroke event.
void tap(DataPointEvent) Handles a tap event.

void doubleTap(DataPointEvent) Handles a double tap event.

void strokeDeleting(DataPointEvent) | Occurs when a delete begins.

void strokeDeleted(DatalndexSetEvent) Occurs when a stroke delete ends.
void rightButtonPressed(DataPointEventDccurs when the main button on a pen device is
pressed.

void rightButtonReleased(StrokeEvent)| Occurs when the main button on a pen device is
leased.

void rightButtonClicked(DataPointEvent) Occurs when the main button on a pen device is
clicked.

—
(9%
1

Table 3.1: A list of methods for event listeners.
3.3 Library

The toolkit contains a variety of recognition algorithmiscantains two single-stroke rec-
ognizers, the Rubine recogniz&7] and the dollar recognizeB[]. It also includes the multi-stroke
image-based recognizer developed by Kdm.[ This multi-stroke recognizer uses four distance
metrics to compare an unknown shape to the definition shdjese four distance metrics are the
Hausdorff Distance, Modified Hausdorff Distance, Tanim®imilarity Coefficient, and Yule Coef-
ficient. The unknown shape may not be in the same orientatigdheadefinition shapes. Therefore,
the image-based recognizer uses search to find the optiigaregnt between the unknown and the
templates. We have added options to turn off the rotatiogeich and to use only one distance met-
ric (the Hausdorff Distance). While this results in fasteagnition, it also increases the possibility
of recognition errors.

There are certain mathematical functions that are commas#y in processing ink, such

as computing angles between vectors, and dot products éetwextors. The toolkit includes a

10



M ethods

Description

void setX(int)

Sets the x coordinate of the button.

void setY (int)

Sets the y coordinate of the button.

void setHeight(int)

Sets the height of the button.

void setWidth(int)

Sets the width of the button.

void setName(String)

Sets the name of the button.

UUID getUID()

Gets the unique id of the button.

void copy(Button)

Copies the properties of another Button.

boolean isPointinButton(DataPoint)

Checks if a point is within the button.

void actionEvent(ButtonEvent)

Forces event notification on all listeners to this b
ton.

void addActionListener(ButtonActionListene

)Adds a listener to the button.

Table 3.2: A list of methods in the Button class.

variety of mathematical functions as listed in taBI8.
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M ethod Name

Description

double euclideanDistance(DataPoint, DataPoint)

Euclidean distance between two poin

double manhattanDistance(DataPoint, DataPoint)

Manhattan distance between ty
points.

double dot(DataPoint, DataPoint)

Dot product between two vectors.

double magnitude(DataPoint)

Magnitude of a vector.

double angleBetweenTwoVectors(DataPoint, DataPg

iMthgle between two vectors.

double[] leastSquareLine(DataPoint...)

Least squares line fit.

DataPoint closestPtBTWLineAndPt

(DataPoint, DataPoint, DataPoint)

Closest point between a line and
point.

ts.
VO

double minDistanceBTWLineAndPt

(DataPoint, DataPoint, DataPoint)

Minimum distance between a line to
point.

a

ArrayList< DataPoint >

Resample(ArrayList DataPoint >,int)

Resamples the ink to defined numb
of points.

er

Stroke smoothStroke(Stroke, int)

Smoothes the stroke.

ArrayList< DataPoint > ScaleNonUniformly

Scales strokes non-uniformly.

void scaleStrokeByPercent(Stroke, double)

Scales a stroke to a percentage of
size

ts’

ArraylList< DataPoint > RotateBy
(ArrayList< DataPoint >, double)

Rotate a stroke by a certain degree.

double inkLength(ArrayList DataPoint >)

Compute ink length of a stroke.

DataPoint Centroid(ArrayList DataPoint >)

Compute the centroid of a stroke.

Stroke dehooking(Stroke, int, int, double)

Dehooks the stroke.

Stroke reverseStroke(Stroke)

Reverses the stroke.

Stroke smoothStroke(Stroke, int)

Smoothes the stroke.

void translateStroke(double, double, Stroke)

Translate the stroke.

double getStraightnessRatio(Stroke)

Computes if the stroke is a line.

Table 3.3: A list of mathematical and stroke methods.

12



Chapter 4

Statics Tutoring System

4.1 System Overview

NP2 scaffolds students through the process of both conistguitee body diagrams and
constructing equilibrium equations. Figutel shows the program’s user interface. The top portion
of the program window contains the problem description &edree body diagram workspace. The
bottom portion contains the equation workspace.

To construct a free body diagram, the student begins byifgieng the boundary of the
system of interest. The student does this by using the stgltreice the boundary directly on the
problem picture (Figurd.2a). When the student then taps the “Recognize BoundarydiuP2
identifies which objects have been included in the systenmdbeny. If the student has selected an
improper or ambiguous boundary, the system provides apptegdeedback. For example, if the
boundary “cuts” through a rigid body, the student is infodribat cutting through a rigid body
reveals potentially complicated internal forces, and thufferent boundary should be selected.
Likewise, if the student has not accurately traced a set @otdy the student is informed that the

boundary is ambiguous. Once the student has defined a suitabhdary, he uses the stylus to drag

13



Lg

Determine the vertical clamping force at £ in terms of the force P applied to
the handle of the toggle clamp, which holds workpicce  in place.

== [ Tpuzueo  Jantowr E P S \@
ZMp=0 |
| F(L’.L*Lé) Eiy(L5.§~B (Lt-L3)" o

Equation: P(L1-L6)+BY(L6}BX(L4-L3)=0

Figure 4.1: The Newton’s Pen Il System. The top of the apficawvindow contains the problem
description and the free body diagram workspace. The battortains the equation workspace.

it to the free body diagram workspace (Figdr.eb).

The notion of a system boundary is a critical part of the NR&guctional design. Novice
students often have difficulty defining a system, and mayrgit¢o draw a free body diagram by
simply redrawing the original problem figure, with all of dsetails (Figurel.1b). Alternatively, they
may draw a variety of incorrect abstractions, such as stk dis or forces floating in space, with
no clear connection to objects (Figutelc). NP2 is designed to overcome these misconceptions
by guiding the student to explicitly identify the boundariytiee system. Having such a boundary
helps the student distinguish between external forces;iwiust be represented on the free body
diagram, and internal forces which should not appear there.

To complete the free body diagram, the student draws the$and moments, which are
drawn in the usual way as straight and curved arrows, respBct These arrows must be drawn
with a single stroke. (Our current implementation allowdtirairoke arrows, but this was not used

in the user study described in Sectirl) After drawing, the student must pause briefly to trigger

14



n terms of the force P applicd 10
holds workpiece F in place.

(b)

Figure 4.2: To construct a free body diagram, the student(&jsises the stylus to trace the desired
system boundary directly on the problem description, thgrd(ags the boundary to the free body
diagram workspace.

recognition. If a pen stroke is recognized as a force or maoragnw, the ink is replaced with a
machine-drawn arrow to indicate the interpretation.

Forces and moments can be labeled by drawing directly on ttkswpace, or by using
a text entry window (Figurd.3). In the former case, the characters are recognized aftausep
and the ink is replaced with its interpretation, which isdered with a hand-drawn character font.
We use this approach, rather than using a traditional coenfpomt, to preserve the informality of a
student’s handwritten work. The student can correct magpnetations by erasing and rewriting the
text, or by pressing the button on the barrel of the stylusaling the ink, triggering the display
of alternative interpretations from which the student melest the intended characters.

To initiate use of the text entry window, the student simpigvas an “L’-shaped pen
stroke, causing the window to appear. The text entry windomtains two character entry boxes.
After each character is written, it is recognized and regdawith its interpretation. If the text is mis-

interpreted, the student can select the correct intetpratérom the provided lists of alternatives.

15
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Figure 4.3: Force and moment labels can be entered using artey window. Alternative inter-
pretations are provided below each handwritten character.

Once text entry is complete, the final interpretation is ldigpd in the workspace with a handwritten
font.

NP2 matches each force and moment label with the nearest. a@wolor coding is used
to indicate the matches. For forces that are not alignedavithordinate direction, the student must
specify the angle. This is done by drawing an extension &negrc, and a single character to label
the angle.

The analysis of frames and machines typically requires ¢mstcuction of multiple free
body diagrams. The student can construct additional frely labagrams by tracing additional
boundaries, dragging them to the workspace, and labelmfptices.

Once the student has constructed all of the free body diagrae can obtain tutorial
feedback by tapping the “Critique FBDs” button. If the stndéas correctly drawn all of the
necessary free body diagrams, he is informed of the succekssanstructed to move on to the
construction of the equilibrium equations. If there areoesy the student is informed of them.

The feedback system is based on a “buggy rules” approactattemhpts to diagnose and correct

16



problem-solving errors typical of novice students. As diésd in more detail in Sectio#.4.], the
system can explain a wide range of conceptual errors suciokions of Newton’s Third Law,
improperly modeled reactions, and confusion about twoeganembers. As shown in Figude4,

the feedback is presented hierarchically, with generalraents given first, and more specific help
provided later. For example, if Newton’s Third Law is viadf{ the student is first informed that
“Newton’s 3rd Law is not satisfied.” The student can tap the pe the message to receive a more
specific message, such as “Action and reaction pairs areyslegual and opposite.” Continued
requests for more details result in the program highlightime offending force on the free body
diagram and, in the example in Figutel, informing the student that he should reverse the direction

of the force.

—

o Fandpackbictoasa s & | | B3 extra Assist =)

] ERRORS Newton's 3rd Law

9 CZ1ERROR1

¢ [C1 Newton's 3rd Law is not satisfied
@ [ Action and reaction pairs are always equal and opposite
¢ (- Redraw forces in the pairs relafive to this force so its direction is

[ [Retdraw the highii force so thatitis in the opposite direc|

—
7 Text view =)

Redraw the highlighted force so thatitis in
the opposite direction of its current

direction.
< I I»

Figure 4.4: Help is presented hierarchically. Top-levdpheessages provide general suggestions.
Lower level messages are more specific. Displaying the lolggsl message reveals the remedy
to the error, and causes the relevant portion of the free loiatyram to be highlighted (yellow
rectangle).

Equilibrium equations are constructed in the equation sjpake at the bottom of the pro-

gram window. To begin, the student specifies which of the liasty diagrams is being considered.
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This is done using a pull down menu containing a list of the fvedy diagrams which are named
according to the bodies they contain, such as “left leveltie Btudent then specifies the type of
equilibrium equation he is constructing. For example, ttidate the x-equilibrium equation, the
student writesy | F, = 0 in the “equation type” area shown in Figuéetb. Similarly, to indicate
the moment equilibrium equations, the student wrikgs/,, = 0, wherep is a labeled point in the

problem. Tapping the “Set Type” button triggers recogmitad the equation type.

(a)=>
b= ZMp =0 |

9= PLL-LEY+ByLE) =B (L4-L3)7 0

Type: THa=0

(d)=>|p(L1- L6) + BY(L6) - BX(L4 - L3) = 0

Figure 4.5: The equation workspace: (a) action buttonseolation type area, (c) equation area,
(d) equation interpretation area. The ink in the equatiotolsr coded to display the grouping of
the strokes into characters.

After specifying the equation type, the student writes theation itself in the equation
area (Figuret.5c). The student triggers recognition by tapping the “Intetpbutton. The program
then displays the interpretation in the equation displ@adFiguret.5d). If there are interpretation
errors, the student can correct them using the correctigdhads described earlier. When the student
has confirmed that the program has correctly interpretecetpuation, he can tap the “Critique”
button to obtain feedback, which is again presented hikically.

To construct additional equations, the student taps thé pege (“»”) button, which
presents a new equation area. The student can use the nexap@@revious page<”) buttons
to navigate through his work.

The next section describes the techniques that NP2 usesetpriet a student’s work,
including the techniques for interpreting the system bamypdand the techniques for recognizing

arrows and text. This is followed by a description of the tisicdfeedback system.
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4.2 Interpreting System Boundaries

To identify the bodies contained in the student’s systermdaty, NP2 first converts the
strokes that comprise the boundary into a polygon. It thenpzdes the intersection between this
boundary polygon and the polygons of the bodies in the probl# this calculation reveals that
most of a given body is inside the boundary polygon, thenltldly is considered to be inside the
boundary.

We have found that boundaries are often drawn with multigle gtrokes. If a boundary
is drawn with a single pen stroke, then a polygon could be éattnivially by connecting the end
points. When multiple pen strokes are used, however, itéessary to merge the overlapping re-
gions together. There are many contour identification tegtes designed for bitmaps that could be
used for this task. However, since our contour is comprigetiokes rather than a collection of pix-
els, we can create more efficient methods. Speed is particuigportant for an online application
such as ours.

We need to merge only the ends of the pen strokes as this iewherdiscontinuities
occur. Two stroke ends are considered for merging, onlyey #re sufficiently near each other. We
have found that users often draw all of the strokes in the tharynin the same sense. For example,
when drawing a square with four pen strokes, all would be draleckwise or all would be drawn

counterclockwise. Thus, our algorithm considers mergiogigns of two strokes only when their

(a) (b)

O

(©)

Figure 4.6: Stroke merging. (a) raw data points. (b) Resathgata points. (c) Aligned points on
one stroke with those on the other. (d) Merged stroke coctstiuby merging matched points.
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Figure 4.7: Stroke merging criteria. (a) Tangent angle ndaifé¢r by no more thanl0°. (b)
Euclidean distance must be less than 35 pixels. (c) Pathhangst be greater than at least twice
the Euclidean distance.

tangent directions are similar. Figudes shows the steps for merging.

To reduce computation time, the algorithm begins by resemg@ach stroke to a max-
imum of 128 equidistant points. To reduce noise, the resasnghta points are smoothed by av-
eraging the location of each point with the locations of tlnpon each side. Once the ink is
resampled, the algorithm considers only the first and la% ©0the stroke for possible merging.
For a point on one stroke to be merged with a point on anothekes{or a point on the other end of
the same stroke) to be merged, the following criteria mustdiesfied (Figuret.?): First, the tan-
gent directions of the two points must differ by no more than. Second, the Euclidean distance
between the two points must be less than 35 pixels. Finatlyeitwo points are on the same stroke,
the Euclidean distance between them must be at least twacarthiength that separates them. The
last criteria prevents a point on a stroke from being mergél s immediate neighbors, while
allowing opposite ends of the stroke to be merged.

To determine if a particular set of bodies is included in thalent's boundary polygon,
NP2 first constructs a “nominal polygon” by merging the baanes of the components. It also
constructs a“minimum polygon” and a “maximum polygon” byngauting polygons offset from
the nominal polygon. The maximum polygon completely cargaihe nominal polygon, which
in turn completely contains the minimum polygon. NPT getesrahis set of polygons for each

combination of components.
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A set of components is considered to be selected by the boupddygon if: (a) the
boundary polygon contains at least 80% of their nominal gty (b) their entire minimum polygon
is contained within the boundary polygon, and (c) the boungdalygon does not contain their entire
maximum polygon.

While a system boundary should not cut through a rigid bodis acceptable for the
boundary to cut through a flexible element, such as a cabbd.léfast 10% of a flexible element is

contained within the boundary polygon, the portion inshielioundary is considered to be selected.

4.3 Recognition of Force and M oment Arrows

After the FBD boundary has been dragged into the FBD workspie student draws
arrows to represent forces and moments, with straight arfowthe former and curved ones for
the latter. NP2 is capable of recognizing arrows drawn teiiéad with either one or two strokes.
The system accomplishes this by combining two differervamecognizers: aimverse-curvature

recognizer and dollar arrow recognizer.

IR

0.5

Inverse Curvature
o

-0.5

10 20 30 40 50 60 70 80 90 100
Data Point

Figure 4.8: Inverse curvature of an arrow. The three coroitise arrowhead are the three smallest
values of inverse curvature. Image frof8J.

The inverse-curvature recognizer identifies arrows byhhestcorners typically found on
arrowhead. With this technique, the stroke is first resathfel 28 points to reduce computation

time and then smoothed to remove noise. Next, line segmeatoastructed between each pair of
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consecutive points. The “inverse curvature” at a point inéel as the cosine of the angle between
the two adjacent segments. If the adjacent segments allg nekinear, the inverse curvature value
is close to one. If the segments make a sharp angle, the énearsature value is much smaller
than one. In the case ofl&0° bend, for instance, the inverse curvature is negative ohe.tfiree
corners of an arrowhead can be detected by their small envenvature values (Figuee8).

The inverse-curvature recognizer uses a neural networlassity pen strokes. The 128
inverse curvature values for the resampled pen stroke asrifee features to the classifier. The neu-
ral network was trained with approximately 100 arrows an@ 60n-arrows (letters and numbers)
from 5 different users. (The complete details can be founflir.)

The dollar arrow recognizer is a modified version of the da#i@ognizer 81]. The dollar
recognizer has difficulty recognizing arrows, because tiats may be arbitrarily long. We have
modified the algorithm to ignore most of the shaft. To do tthg dollar Arrow recognizer uses
inverse curvature to identify the three corners of the anemd. The corners are used to compute
the length of the line segments forming the arrowhead. I§tt&dt (i.e., the “non-arrowhead” portion
of the arrow) is longer than twice this average length of tinevehead segments, the shatft is clipped
to this length, otherwise the entire shaft is used. Aftes firieprocessing, recognition continues
with the usual dollar recognizer approach.

Both of these recognizers accepts a stroke as input andhsetuconfidence value be-
tween|0, 1] indicating the likelihood that the stroke is an arrow. Thefatence values of the two
recognizers are combined by taking their average. If thesaye is greater thahg, the stroke
is classified as an arrow. Both the inverse-curvature anldrdairow recognizer are designed for
single strokes. To use them for multi-stroke stroke arrdiesend of the first stroke is joined to the
start of the second stroke. Arrows with more than two straleesbe processed in a similar fashion,

but in this case, it is useful to consider all permutationstaike order when appending strokes.
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To determine if an arrow is a force or a moment, NP2 fits a lihe@st squares line to the
shaft of the arrow. If the error of fit is less than a threshaha, arrow is considered to be a force,

otherwise it is considered to be a moment.

43.1 ForcelLabes

Forces and moments can be labeled by drawing directly on ¢inkspace, or by using a
text entry window. In the former case, the characters amgrazed with the Microsoft Handwriting
Recognizer (MHR) 23] after a user-adjustable timeout. The ink is then replacild & interpre-
tation, which is rendered with a hand-drawn character férg.use this approach, rather than using
a traditional computer font, to preserve the informalityaattudent’'s handwritten work. The student
can correct misinterpretations by erasing and rewritirgytéxt, or by pressing the button on the
barrel of the stylus and circling the ink, triggering thepd#s/ of alternative interpretations from
which the student may select the intended characters.

To initiate the use of the text entry window, the student $yngpaws an “L"-shaped pen
stroke, causing the window to appear. The text entry windomtains two character entry boxes,
as force labels are limited to two characters. After eachadter is written, it is recognized using
the MHR and replaced with its interpretation. If the text isimerpreted, the student can select the
correct interpretation from the provided lists of alteivieg. Once text entry is complete, the final

interpretation is displayed in the workspace with a hantemifont.

4.4 Tutorial Feedback

NP2 interprets the student’s handwritten solutions tdcstggroblems and provides tuto-
rial feedback when there are problem-solving errors. Tistesy employs two separate feedback

systems, one for free body diagrams, and one for equilibegomtions. In the sections below, we
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describe the workings of these two systems.

4.4.1 Critiquing Free Body Diagrams

To interpret the system boundary that the student has treegrogram first joins the pen
strokes to form a closed region. The program then compugdstitrsection between this region and
each of the bodies in the problem figure. If at least 80% of tha af a body is contained within the
region, it is considered to be included in the system boyndaless than 10% is contained within
the region, the body is considered to be outside the systemdaoy. Otherwise, it is assumed that
the boundary cuts through the body, which would reveal mateforces. In this case, the student is
immediately instructed to draw a new boundary to avoid thabfem. If a significant amount of
the region intersects no bodies (i.e., the boundary cansgnificant empty space), the boundary
does not accurately define a system, and the student is irateldinstructed to trace the boundary
more carefully.

When the student has completed the free body diagrams fooldepn, he can tap the
“Critique FBDs” button to obtain feedback. The program gates the feedback by using a set of
solution templates and a set of “buggy rules”. NP2 containkipte solution templates representing
common correct and incorrect solutions for each problenchEamplate includes the properties of
the forces and their expected locations. Forces are reyieesby a variety of properties such as the
source of the force, which is either reaction or applied dinection, which may be either known or
unknown, and if the force is applied, the name of the forceadien forces are further described
in terms of the physical constraint that produces them, sisch pivot, a roller joint, or a flexible
element. If a body is a two-force member, the two force laretiare labeled as such. Often,
students incorrectly assume that all bar-shaped comper@eattwo-force members. Sometimes,

students even incorrectly model bar-like protrusions asftwce members. To help the program
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diagnose such errors, force locations that have a barfikpesare labeled as such. For example,
the three ends of a “T"-shaped body would be labeled as havay-like shape.

NP2’s “buggy rules” encompass a wide range of conceptuat®of the sort that novice
students typically make. Some are specialized to problératsrequire only a single free body
diagram for the solution, while most apply to frame and maelproblems requiring multiple free
body diagrams. Each rule contains multiple levels of taldeedback that progresses from general
suggestions to the actual remedy for the error.

NP2’s rule base contains a total of 61 rules for free bodyrdiagerrors. Here we sum-

marize the major conceptual errors these rules diagnose:

e Incomplete formulation, single free body diagram probleror problems requiring only a
single free body diagram, the free body diagram selected dotinclude all of the forces

that must be solved for. The student is instructed to selemthar system.

e Statically indeterminate, single free body diagram prbld-or problems requiring only a
single free body diagram, the free body diagram containgriaay unknowns and thus is

unsolvable. The student is instructed to select another
system.
o Statically indeterminate composite free body diagram: Stuelent has drawn only the free

body diagram for the entire system and it is statically ird®inate. The student is instructed

to decompose the system into multiple free body diagrams.

e Incomplete decomposition: The student has decomposeddbiem into multiple free body
diagrams, but one or more of them is statically indeterneinathe student is instructed to

decompose the problematic free body diagrams into smaiterss.
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Missing free body diagrams: The student has decomposedrtiidem into multiple free

body diagrams, but additional free body diagrams are needed

Pivot support modeled improperly: One or more of the twodotomponents is missing or

the components are not orthogonal.

Roller modeled incorrectly: The normal force is missings tiormal force is not actually

normal to the surface, or a friction force is included.

Incorrect applied force: An applied force (as opposed toaatien force) is missing, in the
wrong direction, or has the wrong label. If a force is defingglieitly in the problem, then
the student should have drew the force at that location. thufdilly, students are warned if a
weight force is labeled “m”, as students often confuse madswgeight. Similarly, students
are also warned if a weight force is labeled “Wg.” For loadsdents will be informed to
draw the load so that it is normal to the surface. Additionadtudents will be informed if

they included more than one force or attempted to represadtds force components.

Flexible element modeled incorrectly: The force is missisgiot aligned with the element,
or is not in tension. Also, students are warned if they tictdhe flexible element as a pivot

by decomposing into force components.

Rough surface contact modeled incorrectly: Either theifmcforce, normal force, or both
are missing or in the wrong direction. Furthermore, thetifsit and normal force should be

orthogonal to each other.

Internal Forces: The free body diagram includes forcesnateo the system.

Two-force member: One or both of the forces on the ends of wweforce member are

missing, they are not in opposite directions, or they haffergnt labels. Alternatively, there
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iS one or more extra force.

e Newton’'s Third Law error: A pair of reaction forces does natisfy the third law of action
and reaction. Rules include one reaction has more comp®tigant the other, the forces are

not in opposite directions, or the forces have been givdaréift labels.

e A multi-force body confused with a two-force member: If a tdbrce body is modeled
as having exactly two equal and opposite forces at locatiosishave a bar-like shape, the
student may have considered the body to be a two-force mefibestudent is informed that
not all bodies with a bar-like shape are two-force membedsthat they may have confused

the body with a two-force member.

e Missing forces: Any missing forces not explained by othéesware simply reported as miss-

ing forces.

e Extraforce: Any extra forces not explained by other rulessimply reported as extra forces.

4.4.2 Critiquing Equations

The first step in interpreting an equation is to group the pekss into individual char-
acters. NP2 does this by using a statistical grouping datyorbased on the one reported 22]. As
shown in Figured.5, the program renders each character with a unique colobliegahe student
to detect any grouping errors. Next, the handwriting recogmbuilt into the Microsoft Windows
operating system?] is used to recognize the individual characters.

It is difficult to obtain high accuracy when recognizing wvidual characters. Handwrit-
ing recognizers (i.e., “word recognizers”) overcome rettign errors by using a lexicon. Such
an approach would not work for a tutoring application, beeaiti would bias the system to correct

answers, potentially causing the system to overlook aptudllem-solving errors. Instead, we have
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developed a novel error correction technique that usesdehitMarkov model derived from a gram-
mar for legal equations and statistics about how the unithgrlgharacter recognizer misclassifies
characters. This approach, which is described in moreldetdi2] has proven to be very effective

at correcting interpretation errors.

Once an equation has been interpreted, a heuristic matelgogthm is used to match
the terms in the student’s equations with the most likelgnidied terms in the correct solution. The
heuristics consider which parts of an equation term are indgtative of intent. For example, the
force label is a better indicator than the trigonometric ponment. Consider a situation in which the
student has writtenF'cos(U)+ Psin(U) = 0" and the correct equation iF"sin(U )+ Pcos(U) =
0”. In this case the student’s first term is likely intended épresent the first term in the correct
equation, despite the fact that the trigonometric compbneaiches the second term in the correct
equation.

After the terms have been matched, a set of “buggy rules” sl is provide feedback
for any differences. Again, help is provided hierarchigafirogressing from general guidance to
specific remedies. Also, the guidance is provided in ternmstaifcs concepts, rather than a simple
enumeration of the differences between the student’s egquand the correct one. For example,
if in the x-equilibrium equation the students has writtdicts(U)” but “ F'sin(U)” is expected,
the system informs the students that “the wrong componesbban selected for fordg”. More
specific feedback instructs the student to “select the compioparallel to the x-direction.”

The “buggy rules” consider a variety of errors including:ssing forces, force compo-
nents, and moments; extra forces, force components, andentejmncorrect force components
(wrong trigonometric function); missing or incorrect mamearms; and sign errors. (Se¥] for

complete details of the equation critiquing process.)
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Chapter 5

User Study

5.1 System Evaluation

NP2 was integrated into the sophomore-level engineeraiicstcourse at University of
California, Riverside in the winter quarter of 2010. Thessldad an enroliment of just over 100
students. In a survey in which 95 students responded, 9% dittlients reported being Mechanical
Engineering majors. Furthermore, 84 students reportetgbeile, and 11 reported being female.

Students used NP2 in their discussion sections four timgaglthe quarter. In the first
session, students used the system to learn to construtiddyediagrams for problems involving the
analysis of a single 2D body. In the second session, studsetsthe system to construct both free
body diagrams and equilibrium equations for single 2D b&dla the third session, students used
the system to construct free body diagrams for multi-bodyne and machine problems. Finally, in
the fourth session, students used the system to constrtictriee body diagrams and equilibrium
equations for frame and machine problems.

To evaluate NP2’s educational usefulness, we used pre- @stetgsts during the third

session to measure learning gains for the constructioreeftiody diagrams for frame and machine
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problems. We did not measure gains for equilibrium equati@s the 50-minute discussion sec-
tions were not long enough for students to both complete gd-post-tests and use the system to
complete a tutorial problem.

Our study employed two test problems. Problem A (Figu® concerns the analysis of
an airplane landing gear. Problem B (Figbr8) concerns an automobile hoist. Half of the students
used Problem A for the pre-test, and B for the post-test. Therdalf solved the problems in the
reverse sequence. All students used NP2 to complete adiupooblem concerning a toggle clamp
(Figure4.1). Because of the limited number of tablet PCs availablalesits worked in pairs while

completing the tutorial.

The nose-wheel assembly is raised by
the application of torque M to link BC
through the shaft at B. If the arm and
wheel AO have a combined weight of
100 Ib with center of gravity at G, find
the value of M necessary to lift the
wheel when D is directly under B, at
which position 6 = 30°.

Draw the necessary free body
diagrams. Do not construct/solve the
equilibrium equations.

Figure 5.1: Problem A used for pre- and post-test evaluaioom [20].

Students completed the tests using an Anoto-based Libesdigital pen and paper. This
enabled us to accurately measure the amount of time it took student to complete the tests.
Some students did not have their digital pen available topteta the tests. In such cases, their test

data was excluded from the analysis. Overall, the analysisided 36 students who had A as a
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The car hoist allows the car to be driven onto the platform,
after which the rear wheels are raised. If the loading from both
rear wheels is 1500Ib, determine the force in the hydraulic
cylinder AB. Neglect the weight of the platform itself. Member
BCD is a right-angle bell crank pinned to the ramp at C.

Draw the necessary free body diagrams. Do not
construct/solve the equilibrium equations.

Figure 5.2: Problem B used in pre- and post-test evaluakoom [20].

pre-test and B as a post-test, and 40 students who had thieegreblem order.

5.1.1 Measuring Learning Gains

We measured learning gains by measuring performance omé¢hamd post-test in terms

of problem-solving errors. We consider eight major kindsafceptual errors:

¢ Roller modeled incorrectly: The normal force is missingg tiormal force is not actually

normal to the surface, or a friction force is included.

e Pivot modeled incorrectly: One or more of the two force comgrus for the pivot support is

missing.

e Weight force incorrect: The weight force is missing or in thw®ng direction.

¢ Moment modeled incorrectly: On Problem A, the moment is notuded on the free body

diagram, or is drawn in the wrong direction.
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e Two-force member error: There is no free body diagram fortiin@force member (and a
correct model of the two-force member is not implied by theeofree body diagrams); there
is a free body diagram but the body is modeled with two pivaishehaving two unknown
force components; or there is an apparent attempt to moedldatly as a two-force member,

but forces are not equal and opposite.

e Third law error: A pair of reaction forces does not satisfy third law of action and reaction.
For example, one reaction has more components than the thtedorces are not in opposite

directions, or the forces have been given different names.

e Internal forces included: Forces internal to the systemeareneously included on the free
body diagram. For example, the free body diagram repres@ntsonnected objects, and a

force is included at the joint connecting the two.

e Other extra forces: The free body diagram erroneously amntather forces not considered

in the other error categories.

These errors are assessed for each free body diagram mgcessalve the problem.
For Problem A, we observed three different correct solgtiomhe first included three free body
diagrams, one for member AO, one for member BC, and one forbme@D. The second is similar
to the first, except that the free body diagram for CD was iaiiplthis diagram was not drawn, but
the other two free body diagrams were consistent with CDdoeorrectly modeled as a two-force
member. The third solution included only two free body déags, one for AO and one for BCD
(i.e., the combination of two members). Even for the thirgrapch, a correct solution requires
the student to model point D as the end of a two-force memib¢helstudent omitted one of the
free body diagrams necessary for the solution approachtsdlehe maximum possible number of

errors was assessed. For example, if the free body diagnaBCfavas omitted, three errors were
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assessed: an incorrectly modeled pivot, a missing momedta aiolation of the third law.

For Problem B, we again observed three different correcttionls. The first included
three free body diagrams, one for member OAC, one for memié&,Eand one for member AB.
The second is similar to the first, except that the free bodgrdim for AB was implicit. The
third solution included only two free body diagrams, one @&C and one for ABCD (i.e., the
combination of two members). For the third approach, a cbelution requires the student to
model point A as the end of a two-force member. As before, éf sludent omitted one of the
free body diagrams necessary for the solution approachtsdighe maximum possible number of
errors was assessed.

Many students began the solution of the problems by consigia free body diagram
for the complete system containing all of the members. Toariposite” free body diagram was
unnecessary for a correct solution, thus if it was not dravargrrors were assessed. Because many
students did not draw the composite free body diagram, wadtgal errors for it separately from
those for the other free body diagrams.

After examining the tests, we discovered that studentsopadd substantially better on
Problem A than on B. (Comparison of Figur@8and5.4 shows that students made far fewer errors
on Problem A than on B). It appears that the latter problemmvaise difficult for the students. As
a result, making within-subject comparisons of studentgperance from pre- to post-test does not
produce useful insights: Students who had A as a pre-testi faharder post-test, while those who
had B as a pre-test faced an easier post-test. Thus, we firatétuseful to examine across-subject
performance, comparing the performance on a problem atepteto the performance on the same
problem as a post-test. Note that in this analysis, we argpadnyg the performance of two different

groups of students on the same problem.
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The performance results for Problem A are shown in FiguBewhile those for Problem
B are shown in Figur®.4. The errors for the required free body diagrams are averagedthe
number of students who were assigned the particular profilemthose who did not complete the
tests with a digital pen were excluded). The errors for themusite free body diagrams, which are
unnecessary for a correct solution, are averaged over thbewof students who attempted to draw
them. Coincidentally, for both problems, 70% of studenesndcomposite free body diagrams.

Examination of Figure%.3 and5.4 reveals clear learning gains from pre- to post-test.
There is a reduction in the average number of errors for neary error measure. Error reduc-
tions are largest for Newton’s Third Law errors, pivot réactforce errors, and erroneous internal
forces on the composite free body diagrams. On Problem Ae tisea substantial increase in the
number of extra forces erroneously included in the free lhdgrams. This appears to be due to a
misunderstanding of the problem. After completing theriatgoroblem with NP2, some students
modeled the wheel of the landing gear as a roller with a nofarek. However, as the wheel is not
touching the ground, there should be no force there.

In addition to the gains in solution correctness, there ve¢se gains in solution speed
from pre- to post-test as illustrated in Talld. Students required 32% less time to solve Problem
A as a post-test than as a pre-test. Similarly, they requded less time to solve Problem B as a

post-test than as a pre-test.

Problem | Pretest Time Post-test Time Reduction Reduction (%)
A 7.17 4.90 2.28 32%
B 7.33 5.57 1.76 24%

Table 5.1: Average solution time for pre- and post-test jgmols in minutes, along with the reduction

of average time from pre- to post-test in both minutes and %.
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Figure 5.3: Results for Problem A as both a pre- and post-test

5.1.2 Attitudinal Survey

All questions were answered on a scale from one to ten, wighbeing the most negative
response and ten being the most positive. The median resporall questions was on the positive
side of the scale except for two of the questions. Studemtsreenced problems with the system’s
recognition and interpretation functionality, which likdéed to some frustration. We observed that
some of the frustration was due to the system’s conventiérm. example, some students drew
arrows head to tail rather than tail to head as the prograreateg. Similarly, some students wrote
equations in unexpected ways, for example, writing the W8tdM” rather than the symbolX”
for the equation type.

At the end of the quarter, students were asked to completequé@&ion survey of their
opinions about NP2. The survey questions and responsesstaiet ih Tables.2in which students

rated various aspects of the system including ease of dgawgability, educational usefulness, and
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Figure 5.4: Results for Problem B as both a pre- and post-test

overall reaction. The questions for the latter topic wekemafrom the user study reported ihJ.
The first 11 questions were related to the usability of théesgsand considered ease of drawing,
recognition accuracy, and overall usability. In one queststudents were asked to compare the
interface to a traditional WIMP interface. Their answer Wwased on their general familiarity with
WIMP interfaces as the students were not provided with a WdBed statics tutoring system.
The next 10 questions focused on the usefulness of the systdearning various statics concepts
and the overall instructional usefulness. The final fourstjoes concerned the students’ overall
reaction to the system.

Because this was the first deployment of NP2, students amwired some bugs in
the recognition algorithms. These issues were quickly esdrd resulting in releases of improved
versions of the system throughout the quarter. We beliexettie survey results were negatively

affected by students’ experiences with the earlier vessiointhe system. We expect that future
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deployments of the improved system will result in more falde opinions.
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Survey Question Scale Ave M
1 How easy isitto trace and drag system boundariebfard (1) — Easy (10) 6.8 7
2 How easy is it to draw force arrows? Hard (1) — Easy (10) 6.2 6
3  How easy is it to label force names? Hard (1) — Easy (10) 56 6
4  How easy is it to draw correctly-interpreted equatioHard (1) — Easy (10) 6.4 7
types?
5 How easy is it to write correctly-interpreted eqyaHard (1) — Easy (10) 55 6
tions?
6 How easy is it to correct interpretation errors |itdard (1) — Easy (10) 59 6
equations?
7  Are the program’s interpretation capabilities suffinsufficient (1) — Sufficient (10) 5.2 5
ciently accurate?
8 How easy isitto learn to use the program? Easy (1) — Hard (10) 29 2
9  What is your overall opinion of the usability of thjsNot usable (1) — Very usable6.1 6
program? (20)
10 How similar is this system to working with papeMery Dissimilar (1) — Very sim-| 5.3 5
and pencil? ilar (10)
11 Isthis interface preferable to WIMP interfaces? | Prefer traditional interface (1) +6.5 7
Prefer pen-based interface (10
12 Isthis program’s tutorial feedback presented in ajuNot usable (1) — Very usable6.8 7
able form? (20)
13 How useful is this for learning selection of systerilot useful (1) — Very useful 6.9 7
boundaries? (20)
14 How useful is this for identifying forces on free bogyNot useful (1) — Very useful 7.1 7
diagrams? (20)
15 How useful is this for application of Newton’s 3rdNot useful (1) — Very useful 6.8 7
Law? (10)
16 How useful is this for analysis of two-force memNot useful (1) — Very useful 7.0 7
bers? (20)
17 How useful is this for force equations? Not useful (1) — Very useful 6.4 7
(10)
18 How useful is this for moment equations? Not useful (1) — Very useful 6.5 7
(10)
19 Whatis your overall opinion of the usefulness of thislot useful (1) — Very useful 6.5 7
program in learning to solve equilibrium problems%10)
20 How likely would you be using this system to studyJnlikely (1) — Likely (10) 6.1 7
for statics courses?
21 How likely would you be using this kind of systemUnlikely (1) — Likely (10) 6.2 7
for other subjects?
22 Rate your overall reaction to the system. Terrible (1) — Wonderful (10) | 6.2 6
23 Rate your overall reaction to the system. Difficult (1) — Easy (10) 6.7 7
24 Rate your overall reaction to the system. Frustrating (1) — Satisfying 5.4 5
(10)
25 Rate your overall reaction to the system. Dull (1) — Stimulating (10) 64 7

Table 5.2: Survey of student opinions about Newton’s PeAlliquestions are answered on a scale

from one to ten, with one being the most negative responséesniokeing the most positive.
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Chapter 6

Conclusion

We have developed Newton’s Pen Il, a pen-based tutoringmsyiir engineering statics.
The tutoring system scaffolds students in the construatifoinee-body diagrams and equilibrium
equations for planar devices comprised of one or more rigaids.

Different pen-based hardware platforms have differentiegion programming inter-
faces (APIs). Therefore, applications designed for ondgola will typically have to be rewritten
to work on another. As an alternative, we created a toolkit pinovides a standard API that abstracts
away the details of the hardware-specific APIs. A softwakeliger can create an application using
the standard API and the toolkit can automatically traesiae API calls to work with the device-
specific APIs. The toolkit also provides a variety of funogahat are typically used when building
pen-based applications such as shape recognition an@ sas&mpling. By building NP2 with this
toolkit, we will be able to easily port it to other pen-basddtijprms, such as the digital pen and
paper platform, enabling us to evaluate the suitabilityhele platforms for tutoring applications.

Our tutorial system embodies several innovations: (1) &hiogtructional technique that
focuses students’ attention on a system boundary as a toobfstructing free body diagrams. (2)

A tutorial feedback system based on “buggy rules” that gitsno diagnose and correct problem-
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solving errors typical of novice students. (3) A progreskivmore detailed feedback system which
promotes independent problem-solving skills.

In the evaluation of the system, we have deployed the systetinei an undergraduate
statics course with an enrollment of just over 100 studeénts.administered tests before and after
the student’'s used the tutorial system to determine whettgeesystem helped students construct
free-body diagrams for frame and machine problems.

We found that after using the system to solve only a singleriltproblem, there were
significant learning gains from pre- to post-test. Furthaenin a formal survey, students expressed
somewhat favorable opinions about the usefulness of therayf®r learning statics and for the user
interface design. However, students did experience ftistr with some of the program'’s features,
particularly its interpretation capabilities.

We are encouraged by the results of this first deploymenteof\iwton’s Pen Il system
in a large undergraduate course. The students did achiguéicant learning gains after only a
brief exposure to the system. Nevertheless, this is a fegt sind there are clear opportunities for

improving the system.
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