
UC Irvine
ICS Technical Reports

Title
Assignment decision diagram for high-level synthesis

Permalink
https://escholarship.org/uc/item/8qb1q47m

Authors
Chaiyakul, Viraphol
Gajski, Daniel D.

Publication Date
1992-12-12

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8qb1q47m
https://escholarship.org
http://www.cdlib.org/

Contents

1 Introduction 5

2 Assignment Decision Diagrams (ADD) 6

3 Representing behavior and structure information in the Assignment Deci-
sion Diagrams 10

3.1 Representing behavior information in the ADD

3.1.1 Variable type

3.1.2 Assignment construct

3.1.3 The conditional signal assignment, WHEN, construct

3.1.4 IF-THEN-ELSE construct .

3.1.5 CASE construct

3.1.6 FOR construct .

3.1. 7 WHILE construct

3.1.8 WAIT construct .

3.2 Representing structure information in the ADD

3.2.1 Functional Unit .

3.2.2 Storage Unit ..

3.2.3 Interconnect Unit ..

3.2.4 Control Unit

4 High-level synthesis using the ADD

5 Minimizing syntactic variance using the ADD

6 Scheduling of the ADD

10

10

11

11

12

13

15

15

15

18

18

21

23

23

25

26

30

7 Iterative, interleave and interactive scheduling and binding using the ADD 32

7.1 Transformations of the ADD for scheduling ...

7.2 Transformation of the ADD for operator binding

1

34

41

7.3 Transformation of the ADD for interconnect binding 44

8 Accessing layout quality measures from the ADD 45

9 "Partial" uniqueness of the ADD 48

10 conclusion 49

11 References 50

2

List of Figures

1 The Assignment Decision Diagram: a) FSMD model, b) the ADD.

2 Representing assignment construct in ADD: (a) output port, registers and scalar
variable assignment, (b) local signal, local bus, and temporary variable assign-

7

ment (b) array variable assignment 12

3 The ADD representation of a WHEN assignment statement. 13

4 An example of the ADD representation for the IF-THE-ELSE construct. 14

5 An example of ADD representation for the CASE construct. 14

6 An example of the ADD representation of a WHILE loop: (a) states table for a
sequential representation, (b) ADD representation. 16

7 The ADD representations of different types of functional unit: (a) uni-cycle
functional unit, (b) multi-functional unit, (c) multi-cycle functional unit, and
(d) pipelined functional unit. 19

8 Representation of register file and memory in ADD: (a) reading from a multiple
output port register file, (b) representation of a multiple output port register
file in the ADD, (c) writing to a multiple input port register file, and (d) repre­
sentation of a multiple input port register file in the ADD. 22

9 Examples of the ADD representation for different implementation style of a
bus and a multiplexer: (a) representation of an one level bus or multiplexer in
ADD, (b) single level bus, (c) single level multiplexer, (d) representation of a
segmented bus or a multiple level multiplexer in ADD, (e) segmented bus, (f)
multiple level multiplexer. 24

10 An example of a state table. 25

11 A general high-level synthesis approach. 27

12 Overview of the proposed approach. 28

13 An example of transforming a VHDL input description into ADD. 29

14 An example of scheduling the branch conditions and operations in the branch
in the same control step: (a) Using the ADD, (b) the scheduling effect. 31

15 An example of scheduling operations across basic blocks: (a) Using the ADD,
(b) the scheduling effect. 32

16 An example of merging mutually exclusive operations before scheduling: (a)
before merging, (b) after merging. 33

17 An example of merging mutually exclusive operations during scheduling. 33

3

18 Interactive scheduling and binding using ADD 34

19 Two types of transformations for scheduling in Assignment Decision Diagram:
(a) linear state insertion, and (b) state branches insertion. 35

20 Linear state insertion 36

21 An example of transformation for linear state insertion: (a) ADD before the
transformation and (b) ADD after the transformation. 38

22 An example of transformation for state branches insertion: (a) ADD before the
transformation and (b) ADD after the transformation. 40

23 An example of transformation for operator merging: (a) ADD before the trans-
formation and (b) ADD after the transformation. 43

24 An example of transformation for interconnect merging. 46

25 Estimating layout quality from the ADD. 47

26 Summary of features provided by the ADD that are complicated to obtain from
CDFT, VT, and CF-DFG. 49

4

1 Introduction

High-level synthesis is a process of synthesizing designs from given abstract behavioral
descriptions. In general, the process can be divided into several tasks that include:
compiling descriptions into an internal representation, transforming the internal repre­
sentation into a more suitable form for synthesis, partitioning operations into control
steps, and binding operations and interconnects to appropriate resources. Most of these
tasks require to make design-tradeoff decisions based on information extracted from the
internal representation. Hence, generally speaking, the main backbone of a synthesis
system is its internal representation.

In the past, the research on representation for synthesis systems had been focusing
on two main issues, the completeness and the efficiency. The completeness is defined as
the ability to encode every piece of information that is given in the input description
and is required in constructing a design. The encoding should be accomplished such
that information can be easily and efficiently extracted during synthesis. The simplicity
of extracting information from internal representation defines the efficiency of the rep­
resentation. There is, however, another important issue that is not addressed by most
of traditional representations, the uniqueness of the representation. The uniqueness of a
representation is defined as the ability to represent a given input description in a unique
form. In other words, for every given input description, there must exist a unique way
of representing the description that is independent the from writing styles or the us­
ages of language constructs in that description. A unique internal representation can
tremendously simplify the use of the synthesis system because users can describe the
functionality of the intended design with any language constructs or writting styles and
still obtaining the same synthesized hardware.

Traditional representations, such as CDFG [10, 12], VT [11], and CF-DFG [3], satisfy
the completeness property by encoding the input description into the representation in
a one-to-one mapping manner. In other words, each language construct in the descrip­
tion is realized with a particular topology of nodes in the representation. For example,
a VHDL[18] description can be compiled into a CDFG by mapping computations in
a basic block to nodes in a data-flow graph, and a conditional constructs to a control
nodes [10, 12]. Similar mappings from VHDL to CFG and from ISPS [1] to VT can be
found in [3, 4, 11, 16]. Although these representations shown to be efficient, they lack
the uniqueness. Since there exists a one-to-one correspondence between the constructs
of input descriptions and the schema for the internal representation, different descrip­
tions would result in different representation. The internal representations of two given
descriptions could be far different even if the descriptions are semantically equivalent.

This report proposes a representation, the Assignment Decision Diagram (ADD),
that is complete, efficient and "partially" unique. The constituents of the Assignment
Decision Diagram is discussed in section 2. To demonstrate the completeness of the

5

ADD, representation of frequently used language constructs and structure are presented
in section 3. The efficiency of the ADD is discussed in section 4 and detailed discussion
of useful features of the ADD in minimizing syntactic variance, scheduling, interactive
synthesis, and quality measures are provided in section 5, 6, 7 and 8 respectively. The
ADD is "partially" unique because it can uniquely represent a set of descriptions that are
written with different grouping and ordering of conditional and assignment statements.
However, descriptions that are differed in the ordering or grouping of unbounded loop will
not be represented uniquely in the ADD. Discussion of the ADD's "partial" uniqueness
is provided in section 9. Finally, section 10 shows the summary of features furnished by
the ADD for synthesis tasks and its efficiency as compare to traditional representations.

2 Assignment Decision Diagrams (ADD)

The primary objectives in deriving ADD is to define a representation that is capable
of encapsulating functionality of the described hardware in a unique, precise, and sim­
ple manner. We regard these three objectives with utmost importance because of the
following reasons.

• The uniqueness of the representation will allow synthesis tools to be independent
of syntactic variances that are present in the input description. In [5] we have
proposed the most parallel representation to be the unique representation. Hence,
the ADD has to be able to depict the most parallel representation of a given
description in order to satisfy the uniqueness property.

• In addition to being unique, the representation we are seeking should consists of
parts that reflect semantics of the description instead of syntactic constructs. Each
constituent of the presentation should have no direct relationship with language
constructs. We refer to this property as the preciseness of the representation.

• A simple representation is one that consists of a few number of different object
types and relationship between each object type. Such representation can sim­
plify synthesis algorithms because the algorithms have to manage small number
of objects. Since most of the synthesis algorithms are topology-graph based, the
representation for a synthesis system has to be a form of topology graph. Thus, a
simple representation is, ideally, a graph that consists of small number of different
types of nodes and edges.

To derive the ADD, let us first define a hardware model that could be used to describe
any digital systems.

Digital systems can be classified into two basic groups, namely, the combinational
system and the sequential system. Functionality of both combinational and sequential

6

systems can be described by the Finite-State-Machine and the Datapath model (FSMD)
[7] as shown in Figure 1(a). Note that in the case of a combinational system, storage
units will be absent from the model. The FSMD model can be viewed as assignments of
values to storage units (either the state variable or storage units in the datapath) and
output ports based on certain conditions and the state of the system. These conditional
assignments are represented in the Assignment Decision Diagram shown in Figure 1 (b).
It should be noted that the state variable is represented in the ADD the same way as

...............................
l FSM 1

I i
lnput-1 i

Assignment
conditions

.
Hardware Model

(a)

Assignment
values

Output

Assignment
indeces

Assignment
,....,..... _____ decision

(b)

Assignment
target

Figure 1: The Assignment Decision Diagram: a) FSMD model, b) the ADD.

any other variables in the design. The ADD representation consists of five parts: (1)
the assignment value, (2) the assignment condition, (3) the assignment decision, (4) the
assignment target, and (5) the assignment index. These parts are implemented with
four types of nodes: operation nodes, read nodes, write nodes and assignment decision
nodes (AD N).

7

The assignment value part consists of read nodes and operation nodes. This part
represents the computation of values that are to be assigned to a storage unit or an
output port. The value is computed from current contents of storage units, input ports,
or constants. These are represented by read nodes. The actual computation is repre­
sented as a data-flow graph that contains operator nodes, which correspond to the type
of operations that are performed.

The assignment condition part consists of read nodes and operation nodes that are
connected as a data-flow graph to represent computation of a condition. The end product
of the condition-computation is a binary value that evaluates to true or false. This
true/false value is used as a guarding condition for the assignment value.

The assignment-decision part consists of an Assignment Decision Node (ADN).
The ADN selects a value from a set of values that are provided to it. These input
values are computed by the assignment-value part of the ADD. The selection is based
on the conditions computed by the assignment condition part of the ADD. If one of the
conditions to the ADN evaluates to true then the corresponding input value is selected.
It is also possible that none of the conditions of a ADN evaluate to true at a given time.
In this case none of the input values are selected.

The assignment-target is represented by a write node. The write node is provided
with the selected value from the corresponding ADN. A value will be assigned to the
write node, only if one of the conditions to the corresponding ADN is true. And since
only one value can be assigned to a target at any given time, all assignment conditions
for each target are mutually exclusive. For example, Figure 1 (b) shows (Y + Z) will
be assigned to X if and only if Cl is true and the hardware is in state STl. Likewise,
(Y - Z) will be assigned to X in state ST 4 and the condition C2 is true. If none of the
conditions is true then X will retain its previous value.

The assignment index is used in an ADD expression when the corresponding read
or write node represents an array (i.e., two dimensional storage units) variable, The
assignment index is used to indicate the location where the assignment values are written.
Figure l(b) shows an example of an ADD that represents reading and writing to the
array variable RF. The value (A+ B) will be assigned to RF[!] if and only if Cl is true
and the hardware is in state STl. Likewise, (B - C) will be assigned to RF[J] if and
only if the hardware is in state ST4 and C2 is true.

One of the unique features of ADD is its capability to represent conditions and
computations in a consistent data-flow fashion. Thus, operations in ADD are ordered
by their data dependency only. In other words, ADD is free of control dependency that
are introduced in the description. With this capability, ADD can represent the most
parallel implementation for a given description.

In addition to representing the most parallel representation, ADD can be used to
represent multi-state designs. Such multi-state designs become necessary if the descrip-

8

tion contains a loop construct with variable bounds. In this case, the corresponding
ADD would contain a special storage unit called State_reg that represents the control
step-sequencer. This State_reg has the same representation as any other storage units.
Assignments to State_reg represent the sequencing of control steps, where each assign­
ment value is a constant that represents a control step, and each assignment condition
represents the sequencing between the steps.

ADD can be implemented as an undirected acyclic graph, where each read, write,
operation or assignment decision node is implemented as a node with different attributes,
and connections are implemented as undirected edges. Representing a description would
require, in the worst case, a graph whose size is proportional to the number of conditional
assignments to all the ports and storage units.

In addition to the topological graph representation of the ADD, we have derived
an equation or tex-based description of the ADD. The ADD equation will be used in
many parts of this report especially in describing algorithms. A general equation for an
assignment in ADD is as follows:

where a represents an assignment target or a temporary signal. Each assignment
statement consists n number assignment actions ((...) (Bi]). Each assignment actions
represents the assignment to an index of the corresponding assignment target. Thus, n
is the maximum number of assignment index for the corresponding assignment target
(For example, assignment to a scalar variable will contain only one assignment action,
i.e., n == 1). The expression for each assignment action is separated by "," and the
last assignment action ends with a ".". Each assignment action comprises of three
components: the assignment value, /i, the assignment condition, /3i, and the assignment
index, fh Only one assignment index is given for each assignment action and it is
enclosed in a pair of "[]". For clarity purposes, assignment values are enclosed in a "{}",
and "()" are used as delimiters for the assignment index and the rest of components in
an assignment action. For example, the assignments to X and RF in Figure 1 (b) can
be written in the ADD equation as follows:

temp 1 (type:signal)

t em p2(type:signal)

X(type:storage)

RF(type:storage)

{ST ATE== Stl J\ Cl}.
{ST ATE== St4 J\ C2}.

== templ{Y + Z} EB temp2{Y - Z}.

(templ{A + B}) [I], (temp2{B - C}) (J].

The ADD is to be used in representing both behavior and structure information.
This is because we conceive the synthesis process as tasks that are directly or indirectly

9

"massaging" the ADD. Basically, the input behavior description is transformed into an
ADD that will be manipulated by synthesis algorithms. The manipulation may involve
addition of information or transformation of the ADD topology. For example, scheduling
would transform assignments to the Stateyeg and adding temporary registers to the
ADD, whereas, functional unit binding would transform the ADD by merging operator
nodes. As the final result, we would obtain an ADD that can be mapped directly to
a structure netlist. In the next section we illustrate the completeness of the ADD by
discussing the representation of behavior and structure information in the ADD.

3 Representing behavior and structure information
in the Assignment Decision Diagrams

In order to be complete, ADD should be able to represent any behavior and structure
information. This section is divided into two parts that discuss the representation of
behavior and structure information in ADD, respectively.

3.1 Representing behavior information in the ADD

The input behavior description to the synthesis system is usually written in a high-level
language such as VHDL [18], ISPS [1], or C. In our synthesis-framework, we have chosen
VHDL as the input language due to its popularity and recognition as the standard high­
level descriptive language. We demonstrate the ability of representing behavioral level
information in the ADD by illustrating the representation schema of a set of commonly
used VHDL constructs, namely, the variable type, the assignment construct, the WHEN
construct, the IF-THEN-ELSE construct, the CASE construct, the WHILE construct,
the FOR construct and the WAIT construct. Nevertheless, the same representation
scheme can also be derived for other high level descriptive languages.

3.1.1 Variable type

Each variable in the description carries a set of properties that will be represented in the
ADD as attributes. Three basics attributes are considered in the ADD, type attribute,
dimension attribute and size attribute. The type attribute can be of three kinds, namely
a signal, a port, or a storage unit. The dimension attribute can have value of one, which
represent scalar variables, or two, which represent array variables. The size attribute
indicates bitwidth of the variable. Any variables in the description that are declared
as complex data-type will have to be converted a simple type that can be described by
these three basic attributes.

10

For example, a two dimensional variable A of the size 16x8 is represented in ADD as
follows:

A(type:storage,dim:2 ,sz:(l6,8))

3.1.2 Assignment construct

The assignment in VHDL can be classified into five classes based on the type of the
assignment target: namely, assignment to output ports, assignment to registers, assign­
ment to variables, assignment to signals and buses, and assignment to array variables.
In ADD, the type of a unit (an assignment target or an operand in the assignment
statement) is represented as a type attribute. Input/Output ports are represented as
the port type, local (w.r.t. the VHDL process) signals, local buses and temporary scalar­
variables are represented as the signal type, while registers, scalar and array variables
are represented as the storage type. Global signals and buses have to be resolved using
the approach in [15] prior to this representation scheme. A unit of the port type or of
the storage type are represented in the graph as a read or a write node, depending on
the usage nature of the unit. On the other hand, a unit of a· signal type is represented
as an edge in the graph. The size and dimension of each unit is realized with the size
and the dimension attributes, as described in the previous section.

The following table contains examples that illustrate representation of each assign­
ment type in the ADD.

VHDL assignment construct
Type of the Assignment

assignment target statement
16-bit output port A A<= B + C;

16-bit registers A A:= B + C;
16-bit variable A A:= B + C;

16-bit local signals A A<= B + C;
16-bit local buses A A<= B + C;
8 x 16-bit array A A[i] := B[j] + C;

Representation in the ADD

A(type:port,dim:1,sz:(16)) = {B + C}.Figure 2(a)
A(type:storage,dim:l,sz:(l6)) = {B + C}.Figure 2(a)
A(type:storage,dim:1,sz:(16)) = { B + C} .Figure 2(a)
A(type:signal,dim:1,sz:(l6)) = {B + C}.Figure 2(b)
A(type:signal,dim:l,sz:(l6)) = {B + C}.Figure 2(b)

AJ_type:storage,dim:2,sz:_(16,8)) = ({B[j] + C})[i]. Figure 2{b)

3.1.3 The conditional signal assignment, WHEN, construct

Conditional signal assignment in VHDL is in the form of a GUARDED construct, a
WHEN construct, or a combination of both. VHDL allows the use of GUARDED
assignment only if the type of the assignment target is a bus or a register. Whereas,
WHEN construct can be used with a signal, a bus or a register. The syntax of conditional
assignment is shown as follows:

11

(a) (b) (c)

Figure 2: Representing assignment construct in ADD: (a) output port, registers and
scalar variable assignment, (b) local signal, local bus, and temporary variable assignment
(b) array variable assignment

signal <= [guarded]
value! when condition! else
value2 when condition2 else

valueM when conditionM else
valueN;

Values are assigned to the target only if the guard and/or its correspondent condition
evaluates to true.

The conditional signal assignment is represented in ADD as a parallel task of condi­
tions evaluation and values assignment. Each value is directly mapped to the assignment
value, while its correspondent condition is evaluated and stored in a signal that is used
as the assignment condition. For example, the ADD representation for the conditional
assignment statements:

A := B + C when (E < F) else
B - C;

where A, B, C, E and F. are 16-bit signals, is as follows:

temp(type:signal,dim:1,sz:1) - { E < F}.
A(type:signal,dim:1,size:(16)) templ { B + C} ED temp{ B - C}.

The graphical representation of this ADD is shown in Figure 3.

3.1.4 IF-THEN-ELSE construct

IF-THEN-ELSE construct is used in the behavioral description to produce sequential
condition-branching effect. The IF part is accompanied by a condition that if evaluates

12

Figure 3: The ADD representation of a WHEN assignment statement.

to true will cause the execution of actions in the THEN part, otherwise actions in the
ELSE part is executed (the ELSE part is optional).

A parallel representation of the IF-THEN-ELSE construct requires simultaneous
evaluation of conditions and execution of statements in the THEN and ELSE part.
For example, consider the following block of VHDL code:

if (C == "0010") then
A .- B + D;

else
A .- B - D;

endif;

where, A, B, C and C are 4-bit registers. The ADD representation of this example is
as follows:

temp(type:signal,dim:l,size:(l))

A(type:storage,dim:l ,size(4))

{C < "0010"}.

temp{B + D} EB temp{B - D}.

The correspondent graphical representation of the above ADD is shown in Figure 4.

3.1.5 CASE construct

Similar to the IF-THEN-ELSE construct, the CASE construct provides multi-way branch­
ing capability to the sequential description. Actions in each branch is executed if its
companion condition evaluates to true.

The parallel representation of the CASE construct requires simultaneous evaluation
of conditions and execution of operations in each branches of the CASE. For example,
consider a VHDL CASE statement below:

13

Figure 4: An example of the ADD representation for the IF-THE-ELSE construct.

case (C + E) is
when "0001" => A = "0100";
when "0101" => A = "1111";
when "1011" => A = "0110";

end case;

where A, C, and E are 4-bit registers. The ADD representation of this example is as
follows:

tempO(type:signal,dim:l ,size:(4)) {C +E}
t 1 {tempo == "0001"} emp (type:signal,dim:l,size:(l))

t 2 {tempo == "0101"} emp (type:signal,dim:l,size:(l))

temp3(type:signal,dim:l,size:(l)) { tempO == "1011"}

A - templ{ "0100"} ffi temp2{ "1111"} ffi temp3{ "0110"} (type:storage,dim:l,size(4)) \J7 \J7

The correspondent graphical representation of this ADD is shown in Figure 5.

Figure 5: An example of ADD representation for the CASE construct.

14

3.1.6 FOR construct

FOR loop is used to describe a sequence of statements that is to be executed repeatedly
in a deterministic number of time. The FOR construct uses an index variable whose
value steps through a specified range for each iteration of the loop. The most parallel
representation for a FOR loop is to unroll the loop and substituting values of the index
variable for each unrolled instant.

3.1.7 WHILE construct

The WHILE construct is used to describe a non-deterministic loop where loop exit
condition is not known before the execution time. Hence, the loop has to be iterated
in a sequential manner. The most parallel representation of a WHILE loop requires 3
control steps: namely, the loop-entry step, the loop-body step, and the loop-exit step.
In the loop-entry step, the loop condition is evaluated and if the result is true then the
loop-body step is assigned as the next control step, otherwise, the next control step will
be the loop-exit step. The same branching of control step is performed in the loop-body
step. For example, consider a WHILE loop described in VHDL below:

D := O;
while (D < E) loop

A := D + A;
D := D + 1;

end loop;

where A, D, and E are 4-bit registers. The ADD representation of this description is as
follows:

t em P(type:signat ,dim:1,size:(1))

State..Jegister

A(type:storage,dim:l ,size:(4))

D (type:storage,dim:l ,size:(4))

{D < E}.
sL2{sLO} EB ((st_O !\temp) V (st_l !\ temp)){st1 }

EB ((st_O !\temp) V (sLl !\ temp)){st2 }.

sti{D +A}.
- st0 {"0000"} EB sti{D + "0001"}.

The state transition table and the graphical representation of the ADD is shown in
Figure 6.

3.1.8 WAIT construct

Syntax for WAIT statement in VHD L is shown below:

15

State Cond

temp
STO

temp

ST1
temp

temp

ST2

Next St.

ST1

ST2

ST1

ST2

STO
(a)

(b)

Actions

temp := (D < E)

A:= D +A;
D := D + 1;

temp := (D < E)

Figure 6: An example of the ADD representation of a WHILE loop: (a) states table for
a sequential representation, (b) ADD representation.

16

wait [until <condition>] [for <time>];

A WAIT statement is used as the synchronization mechanism by suspending the execu­
tion of a process until a specified condition is true, or a specified time period elapses.
WAIT statement is interpreted as a synchronous event in the ADD representation. In
other words, the evaluation of the WAIT condition is performed at the edge of the clock.
Hence, WAIT for a condition, C, is represented in a similar manner as an empty WHILE
loop (a WHILE loop with empty loop body) that exits on the condition, C. For example,
consider the following WAIT statement:

wait until (A< B);

where A is a 4-bit register and B is a 4-bit input port. This WAIT is represented in
ADD the same way as the following WHILE loop:

while (A < B) loop
end loop;

that is,

tem P(type:signal ,dim:l ,size:(l))

State..:register

{A< B}
sL2{ sLO} EB ((sLO /\ temp) V (sLl /\ temp)){ sti} EB

((sLO /\temp) V (sLl /\ temp)){ st2 }

On the other hand, a WAIT for a specified time period, t, is interpreted as a wait for
a constant number of clock cycle, Count, where Count= t/cp and cp is an estimated
clock period. A WAIT for Count number of clock cycle is represented in ADD as a
WHILE loop with a counter that is initialized to 1 and increments by 0 at every loop
iteration. The loop is exited when the counter reaches Count. For example, consider
the following WAIT statement:

wait for 200 ns;

where the estimated clock period is 20 ns. This WAIT is represented the same way as
the following WHILE loop:

count = O;
while (count != 10) loop

count = count + 1;
end loop;

17

3.2 Representing structure information in the ADD

Structural information consists of description of structure components in the design
(e.g., ALU, adder, AND gate, OR gate) and their interconnectivities. In this section,
we illustrate methods of representing a set of commonly used structure components and
interconnectivities in the ADD.

Structure information can be classified into four categories; namely, functional unit,
storage unit, interconnect unit, and control unit.

3.2.1 Functional Unit

Functional unit consists of logic that are used to manipulate data. Components in the
functional units can be further classified into five types depending on the number of
execution steps they required, or the number of operations they can perform; these are
uni-cycle, multi-function, multi-cycle, pipelined, and macro functional unit.

• Uni-cycle functional unit

A uni-cycle functional unit is represented in the ADD as an operator (arithmetic
or logic) in the computation of the assignment value. For example, a 16-bit adder
is represented as:

A(type:signal,dim:l,size:(16)) = { B + C} ·

where B and C are inputs and A is the output of the adder. The correspondent
graphical ADD is shown in Figure 7(a).

• Multi-functional unit

A muti-functional unit is a component that has the ability to perform more than
one operations. The unit requires control signals to indicate the type of function to
be performed at .any given instant of time. A multi-functional unit is represented
in the ADD similar to the representation of a function in a programing language.
The name of the unit is represented as the function name while inputs and control
signals are represented as input parameters to the function. The set of functions
that the unit can perform are listed as attributes of the output signal. For example,
a 16-bit ALU that can perform four functions, namely add, subtract, left shift, and
right shift, can be represented in the ADD as follows:

A(type:signalsize:(16),func:(+,-,LSH,RSH)) = {ALU(B, c, cntl)}.

where Band Care inputs.of the ALU, cntl is the control signal that indicates the
type of function to be performed, and A is the output of the ALU.

A multi-functional unit can have more than one type of output. For example, an
ALU that performs add (+), subtract (-), less than comparison (<) and greater

18

y
(a) (b)

ST1

(c)

~
emp2 @emp3

x 3 x 4

ST2 T3 ST4

I temp2 j I temp3 j [TI
(d)

Figure 7: The ADD representations of different types of functional unit: (a) uni­
cycle functional unit, (b) multi-functional unit, (c) multi-cycle functional unit, and (d)
pipelined functional unit.

than comparison(>) can provide two types of output; data from the two arithmetic
operations (+,-),or status from comparison operations (<,>). When representing
such unit in the ADD, all outputs are bundled and assigned to a temporary signal.
Different output types are then extracted from this temporary signal. For example,
an ALU, which has functionalities as described earlier, with output data connects
to register A and status data connects to register cond is represented in the ADD
as follows:

temp(type:signal,size:(l 7),func:(+,-,<,>))

A(type:register,size:(l6))

cond(type:register ,size:(l))

{ALU(B, C, cntl)}.

{tem(0 .. 15)}.

{ tem(16)}.

where, temp is a temporary signal. Bit 0 to 15 of temp are data output, while the
bit 16th is the output of the comparison. The correspondent graphical ADD of
the above ALU is shown in Figure 7 (b)

• Multi-cycle functional unit

Each multi-cycle functional unit is represented by n number of nodes, where n is
the number of clock cycle required by the unit. Each of the n nodes represents a
part of the operation performed in one clock cycle. For example, Figure 7(c) shows
the representation of a 3 clock-cycle adder. Intermediate results obtained from each
clock cycle are represented by a variable, t, that does not have any structural or

19

functional meaning. It is used to signify the dependency between operation at
each clock cycle. It should be noted that operands of the function are required for
all n number of cycle. This is very crucial because it reflects the required life time
of the operands. The corresponding ADD equation for Figure 7(c) is as follows:

t(type:dependency, ..)

A

• Pipelined functional unit

STl{B +i C} EB ST2{ +2(B, C, t)}.

ST3{ +3 (B, C, t)}.

In a pipelined functional unit, the computation task is subdivide into a sequence
of subtasks, each of which can be executed by a hardware stage that operates
concurrently with other stages in the pipeline. Intermediate results from each
stage is kept in a storage unit that is used as inputs to the next stage. A pipelined
functional unit is represented in the ADD as multiple assignment statements to
storage units. Each assignment represents the storing of the intermediate result
for a pipelined stage. To indicate the stage in which the assignment is performed,
the operator in the assignment computation is subscripted with a stage number.
Inputs to the pipelined unit are kept in some storage units, which are embeded
in the pipelined unit. Only the computation in the first stage requires content
of the operands. Computations in successive stages operate only on output from
the previous stages. This is the main difference between a multi-cycle unit and a
pipelined unit. It should be noted that the size of storage units that store results
of each intermediate pipe stage may not reflect the real size as required in the
hardware. Example of the representation of a 16 bits multiplier with 4-stages
pipelined is shown as follows:

iempl(type:storage,dim:l,size:(16),func(x)) = STl { B X 1 C}.

temp2(type:storage,dim:l,size:(l6),func(x)) = ST2{ X2iempl }.

temp3(type:storage,dim:1,size:(16),func(x)) = ST3{ X3temp2}.

A(type:signal,dim:1,size:(16)) = ST4{ temp3}.

The correspondent graphical ADD representation of the above pipelined multiplier
is shown in Figure 7 (d).

• Macro functional unit

A macro unit is a component that is designed to carry out a predefined set of
operations; for an example, an incrementer is a macro unit that computes the value
of 1 plus its input value. The macro functional unit is represented in the ADD the
same way as any other functional unit depending on its execution property, i.e.,
pipelined, multi-state etc.

20

3.2.2 Storage Unit

Storage units can be classified into two classes based on the dimension of the storage
cells: namely, register (one-dimension), and register file and memory (two-dimensions).
Representations of storage unit in ADD are described below:

• Register

A register consists of a single dimensional array of storage cells with an input port
and an output port. Dimension and size of a register is represented in the ADD as
attributes of the assignment target. For example, a 16-bit register is represented
as

A(type:storage,dim:l,size(l6)) =

Reading from a register is represented as a variable in the computation of the
assignment value. Where as writing to a register in the ADD is represented as
a simple assignment to an assignment target of the storage type. For example,
consider the assignment A= B + C where A, B and C are 16-bit registers. This
is represented in the ADD as follows:

A(type:storage,dim:l,size(l6)) = { B + C} •

• Register file and memory

Register file and memory are storage units that consist of two-dimensional array
of storage cells. They can be viewed as an one-dimensional array of registers with
direct access mechanism to any register of the array. In the ADD, dimension and
size of each unit is represented as attributes of the assignment target. For example,
an 8x16-bi t register file is represented as

A(type:storage,dim:2,size(l6,8)) =

where the size in the first dimension (i.e., 16) represents number of registers in the
register file or memory, and the second dimension (i.e., 8) represents number of
bits for each register.

A register file or a memory can have more than one input or one output port.
Each port contains an index whose bit-width is greater than or equal to pog n l,
where n is the number of register in the array. For example, an 16x8 register file
requires at least flog 161 = 4 bits for the index. The index is used to indicate the
register that is being accessed. Representations of the reading and write to the
register file or the memory are described below.

Reading from a register file or a memory is represented as a group of assignment
to temporary signals each of which represents an output port of the register file or
memory. An index signal is assigned to each output port to indicate the location

21

of the register where the content is read. For example, the ADD representation of
read accesses from the register file shown in Figure 8(a) is as follows:

01 (type: signal ,dim:l ,size(16))

02(type:signal ,dim:l ,size(16))

03(type:signal ,dim:l ,size(16))

{ A["OlOO"]}.

{A[Oaddr2]}.

{A[Oaddr3]}.

B(type:signal,dim:l,size(16))) = { 01 + "OxOOOl"}.

where A represents the register file or memory (e.g., A(type:storage,dim:2,size(16,B))).

The correspondent graphical ADD representation is shown in Figure 8(b).

'0100" Oaddr1 ~

Oaddr2~
Oaddr3~

Register file/
Memory

1s·a-bit

A

01 02 03

(a)

B "Ox0001"

1\ "l
Register file/

Memory

16*8-bit

A

·oxooo1·

02 03

B

(b)

I Oaddr3 11 Oaddr2 I 0100 B Ox0001
~ laddr1 ..,.._ "0100"

.+
~laddr2

11
.... 'ff'

~laddr3

(c) (d)

Figure 8: Representation of register file and memory in ADD: (a) reading from a multiple
output port register file, (b) representation of a multiple output port register file in the
ADD, (c) writing to a multiple input port register file, and (d) representation of a
multiple input port register file in the ADD.

Writing to a register file or a memory is represented as a group of assignments
to the storage unit. Each assignment represents all write accesses to an input port
of the register file or the memory. An index signal is assigned to each input port

22

to indicate the location where the value is to be assigned. For example, the ADD
representation of the register file shown in Figure 8(c) is as follows:

A(type:storage,dim:2,size(16,s)) = ({ B + 1}) ["0010"] , ({12}) [J addr2] ({ 13}) [J addr3].

The correspondent graphical ADD representation is shown in Figure 8(d).

3.2.3 Interconnect Unit

Interconnect unit can be classified into two classes: namely, signal and bus/multiplexer.

• Signal is the simpliest kind of interconnect unit that allows only one physical driver.
A signal has one dimension but can have arbitrary sizes. The size and dimension
of a signal is represented as attributes in the ADD. For example, a 16-bit signal A
is represented as

A(type:signal,dim:l ,size(l6)) =
A signal is represented in the ADD graph as an edge in the graph.

• Bus/multiplexer is an interconnect type that supports more than one physical
drivers. Though the bus/multiplexer can carry values from multiple sources, only
one source will be activated at any given instant of time. Thus, a bus or a multi­
plexer requires control signals to select the active driver.

Bus and multiplexer share the same representation in the ADD since both of them
have the same functionalities. Each bus/multiplexer is represented as an ADN.
An attribute is assigned to each ADN to indicate its implementation as a bus or
a multiplexer. The ADD representation of a bus or a multipleser is discussed as
follows:

- When representing a bus, each assignment condition of the ADN depicts a
control to the tri-state driver of the assignment value (e.g. Figure 9(b)).
In the case where the assignment value is an ADN (e.g. Figure 9(d)) the
assignment condition represent conditions to the switch between the two bus
segments (e.g. Figure 9(e)).

On the other hand, when representing a multiplexer, each assignment condi­
tion of the ADN depicts a control signal to the multiplexer (e.g. Figure 9(c)).
If the assignment value is an ADN then the corresponding ADD represent a
multiple level multiplexers implementation (e.g. Figure 9(f)).

3.2.4 Control Unit

The Control unit is a collection of combinational logic that are responsible for managing
the sequence of data computation (next-state logic) and controlling proper execution of

23

11 12 13 14

·±+±-± 01
~11121314

c2

g~

B

(a) (b)

11 12 13 14

~" ++ ++
-it.

(d) (e)

c1
c2

(c)

11 12

B

13 14

B
(~

Figure 9: Examples of the ADD representation for different implementation style of a
bus and a multiplexer: (a) representation of an one level bus or multiplexer in ADD, (b)
single level bus, (c) single level multiplexer, (cl) representation of a segmented bus or a
multiple level multiplexer in ADD, (e) segmented bus, (f) multiple level multiplexer.

data computation (control logic). Both types of logic are represented in the ADD as the
computation in the assignment conditions.

The next-state logic is represented as assignment conditions for the special as­
signment target called State..:register. For example, the next-state logic for the state
transition shown in Figure 10 is represented in the ADD as

On the other hand, the control logic is represented in the ADD as assignment
conditions for assignment targets that are not the State..:register. For example, the
control logic for the sequential system shown in Figure 10 is represented in the ADD as

nl == (cl/\sto){A} EB (cl/\st2){B} EB

(c3 !\ st2){E}.

n2 (c4 !\ sto) { "OxOOOO"} EB

(c5/\st1){C} EB (c6/\st2){E}.

n3 - (c7 !\ sto){"lO"} EB (c5 !\ sto){"OO"}.

24

Present state Condition Next state Condition Assignment

cond

1 St1 c1 n1 -A
StO

c4 n2 - ·oooo·
0 St2 c7 n3-"10"

c5 n3 - ·oo·
St1 - St3 c5 n2-C

c2 n1 -B

St2 - ST3 c3 n1 -E

c6 n2-E

St3

Figure 10: An example of a state table.

4 High-level synthesis using the ADD

The Assignment Decision Diagram provides high-level synthesis with two major capa­
bilities that are not offered by traditional representations, which are, the minimization
of syntactic variances and the models for estimating layout quality metrics during syn­
thesis. In addition, the proposed diagram also simplifies many synthesis tasks such
as allocation and scheduling. Overview of advantages using the ADD is given in this
section. Detailed discussion is provided in subsequent sections.

• Minimize syntactic variances

Due to the "partially" uniqueness property of the ADD, the ADD can be used to
minimize syntactic variances in the input description. To be specific, the ADD can
be used to minimize syntactic variances that are caused by ordering and grouping
or conditional and assignment statements. A synthesis system that uses the ADD
can produce consistent results for descriptions that are differed in such ordering or
grouping of statements but are functionally equivalent. Discussion of minimizing
syntactic variance scheme is provided in section 5 and [5].

• Allocation

Since control dependencies are represented as data dependencies, the notion of
"basic block" is absent in the ADD. This means determining allocation for the
whole design would require only a simple data-flow based allocation algorithm.

• Scheduling

Similar to the simplification of the allocation task, a simple data flow scheduling
can be used to schedule any design that is represented in the ADD. Operations can
be scheduled with global dependencies and criticality consideration. In addition,

25

since the initial ADD which is obtained from the compilation is in its most parallel
form (see section 5), results of the scheduling is free from implicit state boundaries
that might have been introduced in the description. Furthermore, each operator
in the ADD is represented with a correspondent condition in which the result
of operation is to be used. Thus, during scheduling, operators that are mutually
exclusive due to their usage conditions can be easily identified. Detailed discussion
of scheduling using the ADD is provided in section 6.

• Iterative, interleave and interactive scheduling and binding tasks

Results from both scheduling and binding can be represented in the ADD. In other
words, scheduling and binding can be conceived as transformations on the ADD
representation. After a scheduling or a binding iteration a new ADD that repre­
sents the scheduled or bounded result is created. This new ADD can then be used
for further scheduling and binding. Thus, the scheduling and the binding can be
applied iteratively and in interleaving manner. This is a very crucial requirement
for a representation to be used in the interactive synthesis paradigm.

• Improve cost function

In conjunction with the ADD, we have developed fast estimation techniques that
can access layout area and timing information with high fidelity [21, 6, 14]. Thus,
synthesis tasks that use the ADD can perform realistic design tradeoff with these
layout quality metrics.

• Binding

Although the ADD does not increase the efficiency of the binding task, the ADD
neither decrease the efficiency. This is because majority of binding algorithms op­
erate on graphs that show usage exclusivity of operators, storage units, and inter­
connect (e.g., compatibility graph), instead of the internal representation. These
usage-exclusivity graphs are, generally, constructed from results of the scheduling.
The same information can be extracted from the ADD with the same complexity
as traditional representations.

5 Minimizing syntactic variance using the ADD

The first task in high-level synthesis is to compile the input description into an internal
representation that is usually in a form of a topological graph. The compilation is
usually accomplished by a one-to-one mapping of the input description into the internal
representation. In other words, each language construct in the description is realized
with a particular topology of nodes in the representation.

Due to the one-to-one correspondence that exist between the constructs of the input
descriptions and the schema for the internal representation, these compilers produce

26

the control dependency in CFG implies the sequentiality in the execution of each
computation as specified in the description.

In addition, the representation, which we are seeking, should consist of parts that
reflect semantics of the description and not syntactic constructs. This rules out
traditional representations because their constructs are closely related to language
constructs. For example, IF-branch and IF-join nodes in CDFG are used to rep­
resent the begining and the ending of an if branch, respectively.

Hence, to resolve this issue, we developed the ADD that is capable of represent­
ing the description in its the most parallel form using parts that have no direct
relationship with languag·e constructs.

2. Having defined the ADD, we need to develop a compilation scheme from the in­
put description into the new representation. The compilation transforms/ converts
a given description into its most parallel representation and, at the same time,
resolve the discrepancies that are caused by the ordering and grouping of condi­
tional branches and/ or computations. As a result, different descriptions that con­
tain such discrepancies can be transformed into a "unique" graph so that result
obtained from synthesis tasks is consistent. The proposed approach is illustrated
in Figure 12.

Different descriptions but ,.··"" · ·" · · · · .. · .. · · ·" "· ·.
with the same semantics / "·\

/Description 1 JZ+-
Synthesis

tasks ---
Hardware

Description 2 -----
High-level synthesis system ,.·

···

Figure 12: Overview of the proposed approach.

The transformation process converts a given input description into its most parallel
representation in ADD. The process assumes that a state boundary will be introduced
for every loop, with variable bound, and synchronization (e.g., WAIT statement of
VHDL) constructs. On the other hand, each statement block of assignment statements
and conditional branches that are defined before, within, and after the assumed state
boundaries are transformed into an ADD that shows the execution of the statement block
in one state (i.e., the most parallel representation). Figure 13(a) shows the assumed state
boundaries for a VHDL example that contains a WHILE loop.

28

different representations for different descriptions. The internal representations of two
given descriptions could be far different even if the descriptions are semantically equiv­
alent.

Graphs obtained from the compiler are used by high-level synthesis tasks. Hence,
majority of synthesis algorithms are topological-graph based. These algorithms pro­
duce results that are generally depended on topology of the graph. Meaning, the algo­
rithms would produce different results for graphs with different topology, even though
those graphs have the same semantics. And since the compiler produces different graph
topologies for different descriptions, as the result, synthesis tasks would produce different
hardware for each of the topology, as illustrated in Figure 11.

Different descriptions but .. .

with the same semantics / "·".,
Different hardware

L Description 1 ft[Compiler J 1i@~Jfil\]k Synthesis {Hardware 1 /

L Description 2 F ~ tasks •-1 _,./_/Hardware 2/
..... High-level synthesis system

··
G!3> Internal representation (e.g., CDFG, VT, CFG)

Figure 11: A general high-level synthesis approach.

A simple solution to avoid the inefficiences caused by syntactic differences is to force
the designer to write descriptions that fit the algorithm used inside the synthesis sys­
tem. This solution is impractical because the designers would need to acquire detailed
knowledge of the synthesis algorithms that are used.

We believe that the effect of syntactic variances can be minimized without unneces­
sarily increasing the complexity of synthesis tasks by (1) improving the internal repre­
sentation and (2) modifying the compilation scheme, as discussed as follows:

1. We need a representation that is capable of representing different descriptions that
have the same semantics in one "unique" topology. There are many ways of rep­
resenting a given description starting from the most sequential, which is inherent
from the description, to the most parallel representation. We choose the most par­
allel representation to be the "unique" representation because it does not contain
implicit sequentiality that are found in the description. Thus, the representation
we are seeking should be able to depict the most parallel representation of any
given descriptions. Traditional representations can not provide such capability be­
cause their constructs inherit the sequentiality from the description. For example,

27

X:=A;

entity EXAMPLE is
port(

A, B, C: in BIT_VECTOR (15 downto O);
Cond1, Cond2, Cond3: in BIT;
OUTPUT: out BIT_VECTOR (15 downto O));

end EXAMPLE;

architecture EXAMPLE_A of EXAMPLE is
begin
process

variable X, Y, Z: BIT_VECTOR (15 downto O);

-~~~~.,
X :=A;
Y := "OxOOOO";
Z := B + C; STATE 1
if (Cond1) then

Y :=Z +A;
end if;

• • • wtiiia ·(5(<··:o"Xo.A:oA'·) roop • • • -• • • • • • • • • • - - • • • • • - • • •
if (Cond2) then Assumed state boundaries

if (Cond3) then
y := y +A;

else STATE 2
y := y + B;

end if;
end if;
X=X-B;

••• ~n.d_ls>~P.: ••••••••••••••••••••••••••••••••••••
OUTPUT<= X • Y; STATE 3 .

end process;
end EXAMPLE_A;

(a)

Y := "OxOOOO"·
i:1Z@i:J.Wf.~fr*
··n'(c;o-r;aw1B0'r;

i1•1ftq;,~-~i
else

Y :=Z +A;
end if;

(b)

(d)

y := y + B;
end if;

end if;
X=X-B;

(c)

Figure 13: An example of transforming a VHDL input description into ADD.

29

For each variable in a statement block, the transformation process determines all
possible assignment values and their correspondent conditions for that variable. Both
assignment values and assignment conditions are expressed in their most flattened form.
In other words, every use of temporary variables are replaced with their actual values.
As the result, computations within the assumed state boundaries are represented as a
dataflow graph that required inputs only from two sources; namely, input ports and
content of variables from previous state. By flattening the computation, the resultant
representation is free of implicit state boundaries that might be introduced due to writing
and reading of temporary variables. Figure 13(b) shows an example of the computation
flattening process.

In addition, to flattening of computation, the transformation also flattens nested
conditional branches. Basically, assignment conditions for each computation in a nested
conditional branch is transformed into boolean functions of conditions that determine
the path to that computation. By doing so, the resultant representation is free of any
grouping and ordering of conditional branches that are specified in the description. Fig­
ure 13(c) shows an example of the flattening of a two level nesting conditional branches.

Detailed transformation algorithms for converting input description into ADD can be
found in [5]. The conversion process includes algorithms for resolving data dependencies
(i.e., read after read, write after write, read after write, and write after read), flattening
of computation and flattening of conditional branches. Figure 13(cl) shows an example
of ADD obtained from applying transformation algorithms on the VHDL description
shown in Figure 13 (a).

6 Scheduling of the ADD

With the ADD representation, any description that contains straight-line code, condi­
tional branches, loops, or synchronization constructs (WAIT statement) can be sched­
uled using a simple dataflow scheduling technique (e.g., the FDS [13]). In addition
to simplifying scheduling algorithm, ADD provides crucial information for scheduling
that could be complicated to obtain from traditional representations, such as CDFG.
Scheduling features that can be obtained from scheduling of the ADD are discussed as
follows:

• Scheduling of conditions of the branches and operations of the branches
in the same control step

With the ADD, operations in conditional branches can be scheduled before, after,
or in the same control step as the condition of the branch. Scheduling of operations
in conditional branches to available operators, even before the branch is decided,
can increase the component utilization factor and reduce total number of control

30

steps in the design [17]. In addition, number of control steps on the critical path
can be reduced if the scheduled operations are on the critical path [3, 8].

For example, Figure 14(a) shows the scheduling of the branch condition (A+ B),
which is to be used in ((A+ B) < C)), and a computation in a branch (C * J) in
the same control step. (C * J) is selected because it is on the critical path. Results
of (C * J) are stored in a temporary variable that will be used in later control
steps. The effect of such scheduling can be illustrated with the CDFG shown in
Figure 14(b).

E: D' G
T1 = ((j:~OlH~ C)

True False

F = f.9,j%!W D) + E
H: J' E

CJ STATE 1

I: D+G

(a) • Given 1 ALU and 1 multiplier (b)

Figure 14: An example of scheduling the branch conditions and operations in the branch
in the same control step: (a) Using the ADD, (b) the scheduling effect.

• Scheduling across basic blocks

In the ADD, operations that are described in different basic blocks can be scheduled
in the same control step. This is because the ADD does not contain the notion of
a basic block. Selection of operations to be scheduled can be based on the data
dependencies, and resource constraints. Thus, allowing the scheduler to consider
the criticality of all operations globally before making any decision.

For example, Figure 15(a) shows the scheduling of operations (A+ B) and (D * G)
in the same control step. The effect of such scheduling can be illustrated with the
CDFG shown in Figure 15(b).

• Merging of mutually exclusive operation before scheduling

Each operator in the ADD is accompanied with a condition under which the result
of the operation is to be used. The mutual exclusivity of operators can be deter­
mined by deciding the mutual exclusiveness of these conditions. Since the result of
merging can be represented in the ADD, exclusive operators can be merged before
applying the scheduling algorithm.

31

E:D*G
T1 = ((:MM;J.t~ C)

STATE 1

True

EJ STATE 1

I= (gfMMiK) + L

(a) • Given 1 ALU and 1 multiplier (b)

Figure 15: An example of scheduling operations across basic blocks: (a) Using the ADD,
(b) the scheduling effect.

For example, Figure 16(a) shows two multiplication that are used in mutually
exclusive condition, namely, when (A+ B) < C) and when (NOT((A + B) <
C)). The resultant ADD after merging of these two multiplications is shown in
Figure 16(b). Further scheduling can then be applied to resultant of the merge.

• Merging of mutually exclusive operations during scheduling

In the ADD, operators that are mutually exclusive can be merged during schedul­
ing. The merging is possible provided that conditions for the merged operators
are scheduled in a control step prior to the operator or in the same control step
as the merged operators. This form of merging can be achieved in the ADD us­
ing a simple dataflow scheduling technique as illustrated in an example shown
in Figure 17. The example shows assignment of two multiplication operators to
the same multiplier in the same control step ST AT E3. This is possible because
the two multiplications are used in mutually exclusive conditions, namely when
((A+ B) < C) and when (NOT((A + B) < C)).

7 Iterative, interleave and interactive scheduling
and binding using the ADD

Scheduling and binding can be conceived as tasks that "massage" the ADD. In other
words, during each step of scheduling or binding, the ADD representation is transformed
or annotated until the final design is obtained. The process can be illustrated by the
Figure 18

32

(a)

(b)

Figure 16: An example of merging mutually exclusive operations before scheduling: (a)
before merging, (b) after merging.

* Given 1 ALU and 1 multiplier

Figure 17: An example of merging mutually exclusive operations during scheduling.

33

A single iteration of
scheduling or binding

A single iteration of
scheduling or binding

Figure 18: Interactive scheduling and binding using ADD

The transformation process consists of rules that, when invoked, alters the topology
of the ADD to reflects the intended scheduling or binding decisions. These rules are
described as follows:

7.1 Transformations of the ADD for scheduling

Transformations that are used in scheduling can be categorized into two major classes:
namely, linear state insertion and state branches insertion. Generally, the linear state
insertion is used for partitioning of a state to reduce the clock period or to reduce the
required number of resources. On the other hand, the state branches insertion is used
for partitioning actions in a state into substates based on the conditions under which the
actions are performed. The state branches insertion can lead to minimization of number
of states on the execution path.

The main difference between these two transformation rules is the construction of
the next-state logic. In linear state insertion, a state is partitioned (scheduled) in such a
way that transition into the new state (i.e., the state formed by partitioning an existing
state) is based on the same condition as the partitioned state. The effect of the linear
state insertion can be thought as the insertion of a new state right before the partitioned
state. For example, Figure 19(a) shows a state transition diagram before and after the
linear state insertion. In this example STl and ST2 are being partitioned and the
states STnew1 and STnew2 are linearly inserted, respectively. On the other hand,
state branches insertion creates new conditions for the transition to the inserted states

34

State to be pSTtitioned

··

(a)

State to b9 pSTlitiomd

(b)

Figure 19: Two types of transformations for scheduling in Assignment Decision Diagram:
(a) linear state insertion, and (b) state branches insertion.

based on the branching conditions. For example, Figure 19(b) shows an example of a
state branches insertion. In this example, STl is partitioned into two states, STnew1

and STnew2 based on conditions Cl and C2 respectively. Both transformations required
update of assignments to the State...register such that the state transition is preserved.

Transformation procedures for linear state insertion and state branches insertion are
discused as follows:

• Linear state insertion

Given an ADD,

State...register

where AC is an assignment condition of the form

STi is a state i, condi is a boolean expression, and 11 and 12 are arithmetic ex­
pressions. Let <P be a set of states that are used in the assignment condition AC.
That is

35

where n is the total number of states which are used in AC, and STi ... STj are
the actual states that are used in AC.

We want to insert a state boundary right after the computation of /1 such that
the result of /l will be stored in a register, temp, and the result of temp will be
used by OP in the successive clock cycle, as illustrated in Figure 20. A new ADD
that reflects the insertion of this state boundary can be created using the following
algorithm.

Inserted
state boundary

Figure 20: Linear state insertion

Algorithm: Linear state insertion

1. Create a set of new states, i.e., {STnew1 , STnew2 , ••• , STnewn}

2. Create a temporary register to hold the result of /l· Let the name of this
new register be temp. Assign 11 to temp with assignment condition ACnew,
where

n

ACnew == V (STnewi)·
i=l

That is
temp= ACnew{11}.

3. Replace /l with the register temp, that is

X = ... EBAC{temp OP 12} EB

4. Update the state transition (i.e., update assignment to the StateJegister
assignment target) as follows:

(a) For all i = 1 to n

i. Replace the assignment condition, /3i, for rf>i (i.e.,

stateJegister = ... EB /3i { cPi} EB •.•.

36

with STnewi. That is

State...register = ... EB STnewi{ <Pi} EB

11. Add the assignment value STnewi to state...register and guard the
assignment with the condition, /3i, that is

state.Yegister = ... EB /3i{ STnewi} EB

To illustrate the Linear state insertion, let us consider the following ADD example,

A STo{B + C}
F - ((ST1 /\ X) V (ST2 /\Y)){(A + D) + E}

Stateyegister = (init){STo} EB STo{STi} EB (ST1 /\ Z){ST2} EB

(ST1 /\ Z){ST2} EB ST2{ST3}.

whose graphical representation is shown in Figure 21(a). If there is a resource
constraint of one adder then the chaining of additions for F, (A+ D) + E, has
to be partitioned. And let's assume that the computation is partitioned such that
the value (A+ D) is stored in a temporary register (TEMP) and to be used in
the following clock cycle as F = TEMP + E, which is shown in Figure 21 (a). In
addition, the new state is assumed to be inserted linearly. Following the above
transformation algorithm we would obtain the following results:

- Step 1

new states = { STnew1, STnew2}

- Step 2

TEMP - (STnew1VSTnew2){A+D}

- Step 3

- Step 4

State...register (init){STo} EB STo{STnew1} EB STnew1{ST1} EB

(ST1 /\ Z){STnew2} EB (ST1 /\ Z){STnew2} EB

STnew2{ST2} EB ST2{ST3}.

37

- Slate boundary

(a) I
TRANSFORM

'
(b)

loll .,.....L----L---L._...:z:=-.1....--!...,.

STO
STnew1

(ST1 •Z)

(ST1•Zj--~
STnew2--~

Figure 21: An example of transformation for linear state insertion: (a) ADD before the
transformation and (b) ADD after the transformation.

The final resultant ADD after the transformation is:

A

TEMP

F

State...:register

STo{B + C}
- (STnew1 V STnew2){A + D}

((ST1 /\ X) V (ST2 /\ Y)){T EMP + E}
(init){STo} EB STo{STnewi} EB STnew1 {STi} EB

(ST1 /\ Z) { STnew2} EB (ST1 /\ Z) { STnew2} EB

STnew2{ST2} EB EBST2{ST3}.

The corresponding graphical representation is shown in Figure 21 (b).

• State branches insertion

Given an ADD,

X ... EB ((STi /\ cond1 /\ C1) V D1){1i}

EB((STi /\ cond2 /\ C2) V D2){12} EB

State...:register -

38

where STi is the state where branches are to be inserted, condj is a branching
condition, and Cj and Di are boolean equations. Let q> be the set of all assignment
conditions in the given ADD that contain the state STi. That is,

Let /k be the assignment value for the kth assignment condition in q>. And let
ST1 be the next state which transits from STi (i.e., ST1 is the assignment value to
the State_register that has the assignment condition STi). The insertion of state
branches can be achieved as follows:

Algorithm: State branches insertion

1. Create a set of new state, i.e., {STnew1, ... , STnewn}

2. For j = 1 to n

(a) Replace </;j, ((STi /\ condj /\ Cj) V Dj), with ((STnewi /\ Cj) V Dj)·

3. For j = 1 ton

(a) insert STnewj as assignment value to the State_register and guard the
assignment with condition AC /\condi, where AC is, originally, the assign­
ment condition that guards the assignment of STi to the State_register.
That is,

state_register = ... EB (AC /\ condj) { STnewj} EB

4. Create a new assignment condition, AC new, which will be used in the next
step, ACnew = (ACVj=1(condj)).

5. Replace the assignment condition that is guarding ST1 in the state_register
with (Vj=1) V ACnew· That is,

state_register = ... EB (STnew1 V STnew2 V ... V AC new) { ST1} EB

6. Remove STi and any logic that uses STi. -

To illustrate the state branches transformation algorithm, let us consider the fol­
lowing ADD example,

A - ST0{B+C}

F (ST1 /\ X){A + D} EB ST2{F + G}
State_register (init){STo} EB STo{STi} EB ST1 {ST2}.

whose graphical representation is shown in Figure 22(a). The given ADD requires
3 control steps to complete the computation. However, it is possible to reduce one
control step if X is false. This is because the computation for F in state ST1 is
required if, and only if the value of X is true. Thus, we can reduce one control
step by branching from state ST0 to ST2 if Xis false. Applying the state branches
insertion procedure we can obtain the following:

39

(a) I
TRANSFORM

'
STO

(b)

STO ST1 ST2

init

STO
ST1--~

I State_register

in it

(STO"X)

Figure 22: An example of transformation for state branches insertion: (a) ADD before
the transformation and (b) ADD after the transformation.

40

- Step 1

new states = { STnew1}

- Step 2

F STnew1{A+D}EBST2{F+G}

- Step 3

- Step 4

- Step 5

- Step 6

State.:register

State....register

(init){STo} EB (ST0 /\ X){STnewi} EB

. STo{ST1} EB ST1 {ST2}.

AC new = (STo /\ X)

(init){STo} EB (ST0 /\ X){STnew1} EB

STo{STi} EB (STnew1 V (STo /\ X){ST2}.

Remove any logic that uses the value of ST1 •

Thus, the resultant ADD after transformation is as follows:

A

F

State....register

STo{B + C}
STnew1{A + D} EB ST2{F + G}
(init){STo} EB (STo /\ X){STnewt} EB
(STnew1 V (ST0 /\ X)){ST2}.

The corresponding graphical representation of this ADD is shown in Figure 22(b).

7.2 Transformation of the ADD for operator binding

Operators that are exclusively used in different conditions or states can be bounded
to the same component. In ADD, the mutual exclusiveness of operator usage can be
identified by testing the exclusivity of their corresponding assignment conditions.

41

Given a set of operators, { 0 P1, ... , 0 Pn}, that are to be bounded to the same
component and the following ADD

X ... EB /31 {11,10P111,2} EB

Y ... EB /32{12,10P212,2} EB f33{!'3,10P3!3,2} EB

State...:register

where /3i is the assignment condition for 0 Pi, and l'i,l and l'i,2 are the first and
second operands for the operator 0 Pi, respectively. Let <P be the set of assignment
conditions for the operators to be bounded, (i.e., <P = {/31, ... , f3n}). Merging of
operators { 0 P1, ... , 0 Pn} to an 0 P merged can be achieved as follows:

Algorithm: Operator merging

1. Create two temporary signals, iemp1 and iemp2, that will be used to hold
the operands for 0 P merged.

2. For i = 1 ton

(a) Assign value l'i,l to temp1 using /3i as the guarding assignment condition.
That is,

iemp1 = ... EB /3i{ l'i,i} EB

(b) Assign value l'i,2 to iemp2 using /3i as the guarding assignment condition.
That is,

iemp2 = ... EB /3i{ li,2} EB · · · ·
3. Create a temporary signal iempmerged that will be used to represent out­

put signal of the OPmerged· Then, assign value (tempi OPmerged iemp2) to
iempmerged· That is,

iempmerged = { iemp1 OP merged iemp2}.

4. For i = 1 ton

(a) Replace all the computations that use operator OPi, which is merged to
OPmerged, with the signal iempmerged· That is

X - ... EB /31 { iempmerged} EB····
Y - ... EB /32{ iempmerged} EB f33{ iempmerged} EB · · · ·

Z ... EB /3n { iempmerged} EB · · · ·

State...:register

42

To illustrate the operator merging algorithm, let us consider the following ADD
example

t1 X{B}EBX{C-D}
E Y{A+tl}

I Y{(F*G)+H}

whose graphical representation is shown in Figure 23(a). Two addition operations
are required for the computation in the example ADD; namely (A+tl) and((...)+
H). However, these two additions are mutually exclusive since the value of (A+tl)
is used when Y is true, while ((...) + H) is used when Y is false. Thus, these two
addition operations can be merged using the above transformation algorithm, as
follows:

(b)

init

STO

ST1

(STO AX) v STnew1

Figure 23: An example of transformation for operator merging: (a) ADD before the
transformation and (b) ADD after the transformation.

Step 1

Create temp1 and temp2.

43

- Step 2

- Step 3

- Step 4

Y {A} EB Y { F * G}
Y{tl}EBY{H}

tempmerged = {tempi + temp2}

E Y { tempmerged}

J Y { tempmerged}

Thus, the resultant ADD after transformation is as follows:

t1 X{B}EBX{C-D}

tempi Y{A} EB Y{F * G}

temp2 Y{tl} EBY {H}

tempmerged {tempi+ temp2}
E = Y { tempmerged}

I Y { tempmerged}

The corresponding graphical representation of the resultant ADD is shown in Fig­
ure 23(b).

7.3 Transformation of the ADD for interconnect binding

Interconnect binding reduces the total number of interconnect units required in the
design. The binding can be accomplished by merging interconnect units, which are rep­
resented by ADNs, that are exclusively used. The mutual exclusiveness of the usages can
be determined from the assignment decision conditions of the ADNs. The interconnect
merging algorithm is described below.

Given an ADD,

X - ,Bxi{!xd EB ,8x2{1'x2} EB .. • EB ,Bxn{!xn}
y - ,Byi{ fyi} EB ... ,Byp { lYP}

State..:register

where X and Y are signals, and ,Bxi ... ,Byp are assignment conditions that are mutually
exclusive. Let <I> be the set of all assignment to X and Y (i.e., <I> = {,Bxi { lxd EB ... EB
,Bxn { lxn}, . .. , ,Byi { !yi} EB ... EB ,Byp{ lYP}} Merging of interconnect units X and Y can be
accomplished as follows:

44

1. Create a temporary signal, tempmerge, that will be used to represent the merged
interconnect unit.

2. Assign values in <I> to tempmerge, that is

3. Replace all instances of X to Y with tempmerge·

Merging of interconnect units can be illustrated by the following example. Consider
the following ADD:

t1 X{A+B}

t2 X {D * E}
c {tl}
H { (t2 + G) + I}.

where tl and t2 represent signals. The corresponding graphical representation for the
example ADD is shown in Figure 24(a). Two interconnect units (i.e., one for tl and
the other for t2) will be required to implement the given ADD. However, tl and t2 are
exclusively used; tl is used when X while t2 is used when X, respectively. Thus, tl
and t2 can be merged using the transformation algorithm described above. The result
of merging is as follows:

tempmerge

C = { tempmerge}

H {(tempmerge + G) + J}.

The corresponding graphical representation of the merging result is shown in Figure 24(b).

8 Accessing layout quality measures from the ADD

In conjunction with the development of ADD, we have designed estimation algorithms [21,
6, 14] that can provide estimates of layout area and timing for a given ADD. The es­
timation algorithm is based on models that take into account layout characteristics,
layout design process (i.e., placement, routing etc.), and layout technology (such as 3.0
micron CM OS technology). Preliminary experiments have shown that these models are
efficient (i.e., linear complexity), accurate, and have high fidelity [21, 6, 14]. Thus, if
synthesis tasks are realized as procedures that "message" the ADD then this estimation
algorithm can be used to provide realistic layout quality metrics for design tradeoffs in
those synthesis tasks.

45

I
TRANSFORM

• Interconnects to be merged

~

temp merged

(b)

Figure 24: An example of transformation for interconnect merging.

46

The process of obtaining layout estimates for a given ADD can be divided into 3
major steps: 1) technology mapping, 2) component grouping, and 3) quality estimation,
which are illustrated in Figure 25 and described ~s follows:

Component partitioning

Quality estimation

Technology mapping

Figure 25: Estimating layout quality from the ADD.

1. Technology mapping

The goal of the estimation is to provide layout quality measures of an ADD at any
instant in the design process. This means, the estimates may have to be derived
from an ADD that contains partial or no binding information. To achieve this, the
first step is to ensure that all nodes and edges in the given ADD is mapped to a
specific structural construct. It is important to realize that this mapping is not a
binding process. It is merely a temporary assignment of hardware implementation
to ADD constructs so that we can estimate the layout quality. The mapping will
not take into account the possibility of component sharing which is done during
binding.

Since the ADD is derived from a hardware model, the mapping can be easily
accomplished by a one-to-one mapping of each ADD's construct to a hardware
construct; read and write nodes are mapped to storage units, operator nodes are
mapped to functional units, ADNs are mapped to buses or multiplexers, and edges
are mapped to wires. Although the mapping of the ADD constructs to the hard­
ware constructs can be achieved in a one-to-one manner, there can be multiple
choices of implementation style for the hardware constructs. For example, an add
operation can be mapped to an adder that can be implemented as a ripple or a
carry-look-ahead. To resolve the issue of implementation style we assume that
there is a preselected implementation style for each construct that would be used

47

by the technology mapper. The preselected implementation style can be defined
by the user or randomly chosen from the database during synthesis.

2. Component grouping

After all nodes in the ADD are assigned to a specific hardware implementation, the
next step is to assign each node to one of the four component classes as defined
in the layout models, namely, datapath, control logic, macros, and memories.
Datapath consists of a set of regular components such as adders/subtracters, AL Us,
MUXs, or registers that are to be layout in a bit-sliced architecture. Control logic
consists of a set of random gates or a PLA associated with the datapath to execute
data operations that are to be layout in a standard cells or PLA. Macros include
some predefined components such as multipliers. Memories include register files,
RAMs, and ROMs. Layouts of macros and memories are predesigned and their
layout characteristics are given.

3. Quality estimating

The estimation algorithm requires components to be identified into different classes
because each class has different layout characteristics and design styles and would
required different estimation techniques and models. Detailed discussion of the
area and the timing estimation algorithm using layout models can be found in
[21, 6, 14]. The algorithm provides estimates for chip area in terms of number
of square microns. The chip area includes floor plan, routing, and cell areas. In
addition, timing estimate is provided by the algorithm in terms of the delay of
each register- transfer path and the clock period of the design, (the clock period is
defined to be the most critical register transfer path).

9 "Partial" uniqueness of the ADD

One of the ultimate goal in the research on representation for synthesis is the search
of a unique representation. A unique representation is one that able to represent any
descriptions. that have the same functionality in one unique topology. Synthesis system
that uses a unique representation would be independent from variances in the descrip­
tions and, thus, would be easy to use. Such unique representation exists in the logic
synthesis, for example the Binary Decision Diagram [2, 9]. However, to the best of the
authors' knowledge, a unique representation for the high-level synthesis is not known to
exist.

Deriving a unique representation is as difficult as proving the equivalence of two de­
scriptions/programs. Hence, deriving a unique representation for the high-level synthesis
is a very difficult task, if it is possible. We consider the ADD representation as a one
step closer to a unique representation because the ADD can provide the uniqueness for a
certain class of descriptions. To be specific, descriptions that are differed in the ordering

48

and grouping of conditional and assignment statements can be uniquely represented in
the ADD [5]. However, the ADD will not be uniqued for descriptions that are differed
due to loop constructs. This is because the transformation algorithm from an input
description to a ADD assumes that there is a state boundary at each loop boundary.

10 conclusion

This report proposes a representation for high-level synthesis called the Assignment De­
cision Diagram (ADD) that is complete, partially unique and efficient. The complete­
ness of the ADD is demonstrated by illustrating methods of representing commonly used
VHDL constructs and Register-Transfer-Level components. The ADD can uniquely rep­
resent functionally equivalent descriptions that are differed in the ordering and grouping
of conditional and assignment statements. In addition, the ADD also furnishes many
synthesis tasks with information that can simplify the tasks and can enrich the results
of the synthesis. Figure 26 shows the summary of features that can be obtained from
the ADD but are not available from the three commonly used representation, namely,
CDFG, VT, and CF-DFG.

High-level synthesis tasks Features that are provided by the ADD but
are complicated to obtain from CDFG, VT, and

CF-DFG

Reduces syntactic variances that are due to :
Minimizing of syntactic variances -ordering and grouping of assignment statements

-ordering and grouping of condltional statements

Provides the following features even with a simple
data-flow scheduling technique

1) scheduling across basic blocks,
Scheduling 2) scheduling of branch conditions and

computations in the branch at the same time,
3) scheduling and merging of mutually exclusive

operators at the same time.

-Allows scheduling and binding in any order
Interleave scheduling and binding -Allows scheduling with partial binding information

-Allows binding with partial scheduling information

Quality measures Provides fast estimates of layout area and timing characteristics
with high fidelity.

Figure 26: Summary of features provided by the ADD that are complicated to obtain
from CDFT, VT, and CF-DFG.

49

11 References

[l] M.R. Barbacci, G.E. Barnes, R.G. Cattell, and D.P. Siewiorek, "The ISPS Com­
puter Description Language," Technical Report, Department of Computer Science,
Carnegie-Mellon University, 1977.

[2] R.E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation," IEEE
Trans. CAD, vol.C-15, no.8, pp.677-689, Aug. 1986.

[3] R. Camposano, "Path-Based Scheduling for Synthesis," IEEE Trans. CAD, Vol.10,
no.l, pp.85-93, Jan. 1991.

[4] R. Camposano and W. Wolf, High-Level VLSI Synthesis, Kluwer Academic Pub­
lishers, 1991.

[5] V. Chaiyakul, D.D. Gajski and L. Ramachandran, "High-level Transformations for
Minimizing Syntactic Variances," Proc. 30th DAG, pp. 413-418, 1993.

[6] V. Chaiyakul, A. C.-H. Wu and D.D. Gajski, "Timing Models for High-Level Syn­
thesis," Proc. EURO-DAG, pp.60-65, 1992.

[7] D.D. Gajski, N. Dutt, A. Wu and S. Lin, High-level Synthesis, Introduction to Chip
and System Design, Kluwer Academic Publishers, 1992.

[8] T. Kim, J.W.S. Liu, and C.L. Liu, "A Scheduling Algorithm For Conditional Re­
source Sharing," Proc. ICCAD 91, pp.84-87, 1991.

[9] C.Y. Lee, "Representation of switching circuits by binary-decision programs," Bell.
Syst. Tech. J., vol.38, pp.985-999, Jul 1959.

(10] J.S. Lis and D.D. Gajski, "Synthesis from VHDL," Proc. IEEE Int. Conf on Com­
puter Design'88, pp.378-381, 1988.

[11] M.C. McFarland, "The Value Trace: A Data Base for Automated Digital Design,"
PhD. Dissertation, Department of Electrical Engineering, Carnegie-Mellon Univer­
sity, 1978.

[12] A. Orailoglu and D.D. Gajski, "Flow Graph Representation," Proc. 23rd DAG.,
pp.503-509, 1986.

[13] P.G. Paulin and J.P. Knight, "Force-Directed Scheduling for the Behavioral Syn­
thesis of ASIC's," IEEE Trans. CAD, vol.8, no.6, pp.661-679, Jun. 1989.

[14] C. Ramachandran, F.J. Kurdahi, D.D. Gajski, A. C.-H. Wu and V. Chaiyakul,
"Accurate Layout Area and Delay Modeling for System Level Design," Proc. ICCAD
92, pp.355-361, 1992.

50

[15] L. Ramachandran, F. Vahid, S. Narayan and D.D. Gajski, "Semantics and Synthesis
of Signals in Behavioral VHDL," Proc. EURO-DAG 92, pp.616-621, 1992.

[16] E.A. Snow, "Automation of Module Set Independent Register-Transfer Level De­
sign," PhD. Dissertation, Department of Electrical Engineering, Carnegie-Mellon
University, 1978.

[17] C.-J. Tseng, R.W. Wei, S.G. Rothweiler, M. Tong and A.K. Bose, "Bridge: A
Versatile Behavioral Synthesis System," Proc. 25th DAG., pp.415-420, 1988.

[18) Standard VHDL Language Reference Manual. New York: The Institute of Electrical
and Electronics Engineers, Mar. 1988.

[19] R.A. Walker and R. Camposano, A Survey of High-Level Synthesis Systems, Kluwer
Academic Publishers, 1991.

[20] R.A. Walker and D.E. Thomas, "Behavioral Transformations for Algorithmic Level
IC Design," IEEE Trans. CAD, vol.8, no.10, pp.1115-1128, Oct. 1989.

[21] A. C.-H. Wu, V. Chaiyakul and D.D. Gajski, "Layout-area models for high-level
synthesis," Proc. ICCAD 91, pp. 34-37, 1991.

51

