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RESEARCH ARTICLE
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Abstract

Friedreich’s ataxia (FA) is a neurodegenerative disease with no approved therapy that is the

result of frataxin deficiency. The identification of human FA blood biomarkers related to dis-

ease severity and neuro-pathomechanism could support clinical trials of drug efficacy. To

try to identify human biomarkers of neuro-pathomechanistic relevance, we compared the

overlapping gene expression changes of primary blood and skin cells of FA patients with

changes in the Dorsal Root Ganglion (DRG) of the KIKO FA mouse model. As DRG is the

primary site of neurodegeneration in FA, our goal was to identify which changes in blood

and skin of FA patients provide a ’window’ into the FA neuropathomechanism inside the ner-

vous system. In addition, gene expression in frataxin-deficient neuroglial cells and FA

mouse hearts were compared for a total of 5 data sets. The overlap of these changes

strongly supports mitochondrial changes, apoptosis and alterations of selenium metabolism.

Consistent biomarkers were observed, including three genes of mitochondrial stress

(MTIF2, ENO2), apoptosis (DDIT3/CHOP), oxidative stress (PREX1), and selenometabo-

lism (SEPW1). These results prompted our investigation of the GPX1 activity as a marker of

selenium and oxidative stress, in which we observed a significant change in FA patients. We

believe these lead biomarkers that could be assayed in FA patient blood as indicators of dis-

ease severity and progression, and also support the involvement of mitochondria, apoptosis

and selenium in the neurodegenerative process.

Introduction

Friedreich’s ataxia (FA) is a lethal neurodegenerative disease with a pediatric onset, and the

most frequently occurring autosomal recessive inherited ataxia. FA is caused by a trinucleotide
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(GAAn) repeat expansion in intron 1 of the nuclear encoded gene frataxin (FXN) [1], which

results in a 90% decrease in mitochondrial frataxin’s gene expression [2]. The lower the fra-

taxin level, the earlier the age of onset and the worse the severity of the disease [3]. Frataxin

protein is thought to be important for Fe-S cluster biogenesis and heme synthesis [4], thus sup-

porting metabolically active cells through mitochondrial functions. However how this Fe-S

defect leads to neurodegeneration is less clear and could potentially be addressed through

high-dimensional gene expression analysis as in the current study.

The primary site of neurodegeneration in FA patients is the dorsal root ganglion (DRG),

and progressive neural tissue damage ascends the dorsal spine including the spinocerebellar

tract to degenerate the cerebellum and leads to a loss of voluntary motor function [5, 6].

Results of autopsies from FA patients have clearly indicated that the DRGs are significantly

implicated in the progressive pathology of the disease [7]. Because DRG tissue is unavailable

from living patients, finding overlap of blood-based or skin-based human FA biomarkers with

the FA pathoneurophysiological process could be important for understanding the disease

progression. Accessible peripheral cells could provide a window into the neuropathophysiolo-

gical process inside the nervous system.

The first symptom of the disease is usually motor coordination loss in lower extremities [8]

making the lumbar spinal tissue of particular interest. Adolescence is the average age of onset

in FA, when symptoms present most often with lower extremity loss of coordination [9]. By

choosing to analyze gene expression changes in the mid-lumbar spinal cord mouse DRGs, we

assessed the target tissues innervating the lower extremities where clinical signs first present in

humans [10].

Although there is support that frataxin defects affects iron-sulfur biogenesis, how this leads

to DRG neurodegeneration is not clear, so there is still urgent need to understand pathome-

chanism as well as investigate therapeutic avenues for patients. The KIKO mouse model is an

established FA model that results in reduced FXN transcription as well as reduced frataxin

protein expression [11]. The neurobehavioral phenotype of these mice has also recently been

clarified by our lab [12]. There is a defect in mitochondrial biogenesis in KIKO mice which

also occurs in FA patient skin and white blood cells [13].

Using adolescent KIKO mice we isolated the primary target tissue of lumbar (L1-L4) DRG

and spinal cord, and conducted an RNA sequencing experiment with WT and KIKO litter-

mates. The DRG transcriptome genes were then correlated to FXN gene expression within

each sample because FXN gene expression is associated with disease severity [14, 15]. The

genes that were found to be significantly correlated with FXN expression in the mouse DRG

tissues were then compared collaboratively with independent data sets from patient samples

for comparative gene expression profiles in FA human tissues.

Lymphocytes were collected from patient blood and were analyzed for gene expression

changes in a comparison of control, carrier, and patient cells [16]. Gene expression data was

collected on fibroblasts derived from FA patient or unaffected control skin biopsies [17] in a

comparison of FA to control [18]. For additional independent confirmation of frataxin-depen-

dent gene expression changes mouse glial and mouse heart array data were compared as fourth

and fifth data sets for confirmation of genes likely to be significantly altered in FA.

There was substantial overlap in significantly altered gene expression across the five data

sets. Those genes that overlapped in greater than 3 data sets were evaluated for their relative

strength as potential biomarkers of FA. The list of overlapping altered genes was also analyzed

for their functional association to each other using STRING interaction network mapping and

resulted in a distinct groups of antioxidant genes, apoptosis regulation, translation regulation,

and mitochondrial genes.
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Materials and methods

Mouse DRG

Mice were bred in the UC Davis laboratory colony until tissue extraction at 4 months of age.

All research involving mouse tissues has been approved by The Institutional Animal Care and

Use Committee (IACUC) protocol #18070. Mice were maintained on a (12h light/12hr dark

cycle), and given food and water ad libitum. A total of 7 knock-in knock-out (KIKO) mice

(C57BL6/j; fxn^GAA230/-), and 10 littermate wild type mice were used for these data. Mice

were euthanized using inhaled isoflurane, followed by cervical dislocation before rapid tissue

removal and storage in RNAlater, Vilnius, Lithuania). Mouse DRG tissue was removed using a

modified protocol for dorsal approach DRG removal of the lumbar spinal cord [19]. Total

RNA was extracted from DRG lumbar tissue lysate using RNeasy Plus Mini Kit (Qiagen, Valen-

cia, CA) following manufacturer’s instructions. The mRNA quantity was measured by Nano-

Drop 2000c Spectrophotometer (Thermo Scientific, Waltham, MA), and quality was measured

by the 2100 Bioanalyzer using the Agilent RNA 6000 Nano Kit (Agilent Technologies).

RNA Sequencing

The DNA Technologies Core prepared barcoded mRNA-Seq libraries for each sample, pooled

them, and ran the pool on one lane of HiSeq (PE100). After evaluation of the first lane for qual-

ity and number of reads per sample, additional lanes were run to increase the number of reads

(or pairs of reads). For RNAseq studies in vertebrates, 10 million fragments should detect

~80% of annotated genes, while 30 million fragments should detect ~90% of annotated genes

(ENCODE Consortium Standards, Guidelines and Best Practices for RNA-Seq, V1.0, June

2011;[20]). Illumina read quality assessment was performed using FastQC. Scythe and Sickle

were used for Illumina adapter and quality trimming. Trimmed reads were aligned to the Mus

musculus mm10 genome using Tophat2 [21]. Cufflinks2 [22] were used on the paired-end

reads to identify potential novel splice variants. The raw counts were derived from the align-

ments using the HTSeq-count python script [23]. Statistical analyses (tests of differential

expression and tests of correlation were conducted using EdgeR or Limma-Voom).

Genes with expression less than 0.2 counts per million reads were filtered prior to analysis,

leaving 20,444 genes. Analyses of the correlation of frataxin expression with the expression of

other genes were conducted by fitting linear regression models using the Limma-Voom Bio-

conductor pipeline. Raw p-value was calculated for the test that the logFC for frataxin is differ-

ent from 0. Benjamini-Hochberg false discovery rate (FDR) is used to calculate the adjusted P-

value.

Lymphocytes

The second independent set of data was derived from human blood samples collected from

patients, carriers, and control individuals in a clinical setting at The UCLA Department of

Neurology Program in Neurogenetics, and the UCLA Ataxia Center. Blood samples were col-

lected from ~760 different individuals over ~ 5 years and results were also correlated to GAA

repeat length to analyze peripheral gene expression data from patients with FA. All raw gene

expression data is available for download in NCBI Gene Expression Omnibus (https://www.

ncbi.nlm.nih.gov/gds) under accession number GSE102008.

All research involving patient/patient lymphocyte tissues was been approved by the Institu-

tional Review Boards (IRB) protocol IRB#10–000833. The lymphocytes gene expression data

was overlapped with the KIKO DRG gene expression data in search of commonly altered

genes.

Potential biomarker identification for Friedreich’s ataxia using gene expression overlap data

PLOS ONE | https://doi.org/10.1371/journal.pone.0223209 October 30, 2019 3 / 18

https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102008
https://doi.org/10.1371/journal.pone.0223209


Fibroblast

The third separate data set was generated from RNA sequencing reactions performed on 18

FA patient and 17 control fibroblast cell lines [17]. Fibroblast repositories were created from

more than 50 patient skin biopsies, and numerous controls, and transformed in to induced

pluripotent stem cells (iPSCs) All research involving patient/patient tissues has been approved

by the Institutional Review Boards (IRB) at The University of Alabama at Birmingham (IRB

Protocols: N160923005 and N160922011) and Children’s Hospital of Philadelphia (IRB Proto-

col 10–007864). The fibroblast gene expression results were then analyzed for overlap with

mouse DRG transcriptome results.

Mouse heart, glia

The fourth and fifth data sets were included as microarrays of Glial knockdowns of frataxin,

and microarrays of mouse hearts lacking frataxin. Reverse transfection involving simulta-

neously transfecting and plating cells was performed using lipofectamine 2000 according to

the manufacture protocol (Invitrogen). Briefly, transfection mix including siRNA (30nM final

concentration, except 40nM for ND7/23) and transfection reagent was made and added to the

wells in 6-well plates. The cells were harvested by trypsinization and about 0.3 million cells

were plated in the wells with the transfection mix. siRNAs used in the study include: human

frataxin siRNA described previously[20], AAC GUG GCC UCA ACC AGA UUU, and scram-

bled siRNA, CAG UCG CGU UUG CGA CUG GdTdT, human frataxin siRNA (ON-TAR-

GETplus duplex #J-006691-07) and non-targeting siRNA (D-001810-0X), Rat frataxin siRNA

(ON-TARGETplus SMARTpool, L-104901-01), mouse frataxin siRNA (ON-TARGETplus

SMARTpool, #L-045500-00), and control siRNA (Non-Targeting Pool, #D-001810-10) from

Dharmacon [24, 25]. Data was analyzed individually for each sample type using dChip v1.2.

Within each group, samples were normalized to the median intensity chip and fluorescence

values were generated using the perfect match-only model. Probe sets with a pCall > 40% and

P< .05 were considered significantly altered. FDR testing was not performed.

GPX activity

Glutathione peroxidase activity in FA patient whole blood was evaluated by using a commer-

cially available kit from Abcam (#ab102530) and according to the manufacturer’s protocol.

Hemoglobin was evaluated by using the ferricyanide-cyanide reagent. Results were expressed

as IU per g Hb.

Data analysis

All experiments were analyzed as a log fold change of FA cells compared to control, except for

the mouse DRGs. Mouse DRGs results were analyzed as a regression analysis function of FXN

expression. LogFC of DRG samples represents the change of a gene compared to FXN (+ r

value represents the increase in a gene as FXN also increases). String Association Network

Version 10.0 [26] tools were applied to overlap analysis of the 87 genes that were significant in

4/5 datasets. All settings were automated to default selections including a minimum required

interaction score of 0.400, no clustering parameters specified, and with active interaction

sources including: Textmining, Experiments, Databases, Co-expression, Neighborhood, Gene

Fusion, and Co-occurrence. Network nodes represent all of “the proteins produced by a single

protein-coding gene locus”. Edges represent protein-protein associations, “where proteins

jointly contribute to a shared function” to determine the interactions shown. Further

Potential biomarker identification for Friedreich’s ataxia using gene expression overlap data
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clarification of clusters associations and gene pathways were analyzed using DAVID Bioinfor-

matics Resources [27], and using ENRICHR Comprehensive Gene Set Enrichment Analysis

[28].

Results

There is substantial overlap of gene profile in frataxin-deficient cells and tissues. In the

DRG transcriptome sequencing experiment of KIKO mice, 3961 genes were significantly cor-

related with FXN expression (FDR<0.05). In the human lymphocyte data set 2617 genes were

significantly different in the comparison of patient to carriers (p<0.05). When DRG and lym-

phocyte data sets were compared to find common genes, 443 genes were found to be linked to

frataxin expression on both lists. Next we incorporated expression data from FA patient fibro-

blasts, and found that 100 genes overlapped between the 3 experiments (Fig 1). We also tested

the overlap of genes affected by frataxin depletion in FA mouse heart and FA glial cells (Fig 1).

87 most ’frataxin responsive’ or ’consistently altered’ transcripts differentially expressed in at

least 4 experiments were identified (S1 Table).

Although there was substantial overlap both of gene expression changes, and sometimes of

the direction of change, there are also cases in which transcript direction was different in

patients vs. controls in different tissues. For the remainder of our analysis we disregarded

those differences, picking those 87 genes as the most ’frataxin-responsive’, irrespective of sign

change positive or negative in the patient vs. control comparison (Fig 2 red = negative value,

green = positive value).

STRING network analysis suggests multiple functional clusters. We then used STRING

Network Association version 10.0 [26] to analyze the 87 frataxin-responsive genes. Three dis-

tinct clusters emerged (Fig 3). The functional enrichment results for our network (p-

value = 0.00783) included biological processes and cellular components (FDR < .05) The three

distinct clusters were: biological processes related to apoptosis regulation in Cluster 1, mito-

chondrial translation and transcription in Cluster 2, and antioxidant genes in Cluster 3 (Fig 4).

Fig 1. The overlap between human FA fibroblasts, human FA lymphocytes, KIKO mouse DRG, KIKO mouse

heart and KIKO mouse glia cells (p< .05). Genes overlapping in 4/5 analyses passed to the next level of analysis.

https://doi.org/10.1371/journal.pone.0223209.g001
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Fig 2. The 87 genes that were significantly changed in 4/5 experiments are shown as a heat map (Red = negative

value, green = positive value, black = not significant). Lymphocyctes, fibroblasts, glia, and heart samples are all

expressed as FA/Control. Mouse DRGs are analyzed as a FXN correlation, (-1)x logFC of gene/FXN expression.

Outlined genes in the gene column were significant in all 5 datasets.

https://doi.org/10.1371/journal.pone.0223209.g002
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18 of the 87 shared genes were mitochondrial. The STRING Association Network Cellular

Compartment mitochondrial genes are: MTIF2, TOMM40, TXNRD1, LPIN1, PTEN, FYN,

KIF1B, CERK, RPL10A, ADSL, DCAKD, CYB5B, ECHDC2, SEPW1, SLC11A2, TTC3,

HAX1, and SNN (FDR = 0.01) (Fig 5). Thus 20% of genes altered in frataxin-deficient cells

across 4 tissues are mitochondrial. Frataxin is a nuclear-encoded gene that is translated on

cytosolic ribosomes and translocated to mitochondria [15]. One interesting gene from the

mitochondrial cluster is Translocase of Outer Mitochondrial Membrane 40 (TOMM40).

TOMM40 was significantly lower in patient lymphocytes as compared to carriers, and in fra-

taxin-knock down glial cells. These data imply that frataxin deficiency causes many mitochon-

drial changes, and that mitochondrial biomarkers are altered in multiple FA patient tissues,

and multiple frataxin-deficient cell lines. The results on (mitochondrial) translation and mito-

chondria in general suggest a fundamental involvement of mitochondrial biogenesis and

metabolism in Friedreich’s, which has recently been confirmed by identifying a mitochondrial

biogenesis defect in FA mouse model KIKO, patient cells and patient blood [13]

The composition of cluster 1 includes 10 genes from the biological process pathway

of Positive Regulation of Apoptotic Process (FDR = 0.0324). Genes that induce apoptosis

also scored highly, they include DDIT3, JUN, PTEN, SMAD3, RHOB, SLC11A2, ADRB2,

TSC22D1, RPS27A, and RNPS1. These 10 apoptosis related genes could potentially play a role

downstream of frataxin loss and upstream of neurodegeneration. A predisposition to apoptosis

in FA (Wong et al., 1999) may be induced as a result of the intrinsic pathway of apoptosis due

to DNA damage [29]. Notably among the cluster 1 genes, DNA Damage Inducible Transcript

3 (DDIT3 = CHOP = GADD153) is significantly upregulated in 4/5 of the experiments (S3b

Fig), and significantly correlated with FXN expression in KIKO mouse DRG (r = 0.56). Stimu-

lation of DDIT3/CHOP/GADD153 stress response [30–33] has been shown to occur as the

Fig 3. STRING network analysis of the 87 genes showing 3 clusters. Cluster 1 is primarily composed of the 10

genes significantly associated with regulation of apoptosis (FDR = .03). Cluster 2 is primarily composed of RNA

transcription and mitochondrial translation related genes. Cluster 3 is primarily composed of selenium and

glutathione metabolism genes.

https://doi.org/10.1371/journal.pone.0223209.g003

Potential biomarker identification for Friedreich’s ataxia using gene expression overlap data

PLOS ONE | https://doi.org/10.1371/journal.pone.0223209 October 30, 2019 7 / 18

https://doi.org/10.1371/journal.pone.0223209.g003
https://doi.org/10.1371/journal.pone.0223209


immediate result of mitochondrial inhibition and the mitochondrial stress response [30, 31,

34]. Thus DDIT3/CHOP shows great promise as a biomarker of the mitochondrial stress that

occurs in the pathophysiological mechanism of FA. DDIT3/CHOP induction also occurs as a

result of cellular stress, and multiple genes in our Cluster 2 results relate to translational stress.

The genes in cluster 2 are composed of the genes related to mitochondrial translation

and transcription. They are translation-related genes MTIF2 (involved in mitochondrial

translation), EIF4b, EEF2, RPL8, RPS27A, RPS2, and RPL10A; and transcription genes BTF3,

Fig 4. Cluster 3 genes include SEPW1, GPX7, and TXNRD1 which are significantly altered in 4/5 experiments

(p<0.05). Fig 4a. In the mouse DRG SEPW1 expression is significantly correlated with FXN expression (r = 0.59)

(FDR = 0.035). Fig 4b. GPX7 is not significantly correlated with FXN expression in mouse DRG (r = 0.28, FDR = 0.33).

Fig 4c. TXNRD1 is significantly correlated with FXN expression in mouse DRG (r = -0.55, FDR = 0.04). Fig 4d. SELM

is significantly correlated with FXN expression in mouse DRG (r = 0.6, FDR = 0.035). Fig 4e. ANPEP is significantly

correlated with FXN expression (r = 0.69, FDR = 0.035).

https://doi.org/10.1371/journal.pone.0223209.g004
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and RNPS1 (Enrichr). In fact MTIF2 was conserved in 5/5 overlapping datasets, supporting a

defect/alteration in mitochondrial protein translation (Fig 2, S1a and S1b Fig). We recently

demonstrated a defect in mitochondrial biogenesis in Friedreich’s ataxia in FA cells, FA KIKO

mouse tissues, and FA human patients[13], which could result from this consistent defect in

MTIF, involved in mitochondrial protein translation. Eukaryotic Translation Initiation Factor

4b (EIF4B) are cluster 2 genes that are significantly altered in all 5 data sets (S1c Fig). The clus-

ter is also composed of RPS27A and RPS2, which encode for ribosomal protein components of

the 40s ribosomal subunit. RPL10A and RPL8 encode for ribosomal 60s subunit components.

EEF2 promotes the GTP-dependent translocation of the nascent protein chain from the A-site

to the P-site of the ribosome [35]. BTF3 basic transcription factor 3 is required for transcrip-

tional initiation. RNPS1 detects incomplete translation as an mRNA nuclear transport and

mRNA surveillance protein, detecting truncated mRNA and initiates nonsense-mediated

mRNA decay. Thus these high dimensional studies suggest a (mitochondrial) protein transla-

tion defect, and in fact other studies have recently confirmed a mitochondrial biogenesis defect

in multiple FA mouse and human tissues.

The genes in cluster 3 are primarily antioxidant genes related to selenium and glutathi-

one. Multiple antioxidant response genes altered are related to selenium metabolism and glu-

tathione peroxidase activity: SEPW1, GPX7, and TXNRD1 (Fig 4), and if one reduces the

Fig 5. Glutathione peroxidase activity in whole blood was significantly increased in FA patients compared to

controls (p = .047).

https://doi.org/10.1371/journal.pone.0223209.g005
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stringency to 3/5 experiments, selenoprotein M (SELM) was also significant (p<0.05). SEPW1

and SELM are both biomarkers of bioavailable selenium [36–42], and both genes are down

regulated when FXN is reduced in the DRGs. Because selenocysteine is at the active site of

many selenium-dependent antioxidant enzymes, deficiency in selenium results in reduced

antioxidant activity, including glutathione peroxidase activity [43–45], and the gene expression

changes observed in our data may be important to understanding the involvement of frataxin

as an antioxidant. Alanyl aminopeptidase (ANPEP) has been shown to positively regulate glu-

tathione synthase [46], and its expression was also altered in 4/5 of the experiments (Fig 4e).

Thioredoxin reductase 1 (TXNRD1) is a selenoenzyme that protects against oxidative stress

[47], [48] which was significant in 4/5 of the experiments. Thus, frataxin-deficiency is associ-

ated with multiple parameters related to oxidative stress and selenometabolism. If frataxin

deficiency alters selenium bioavailability, then reduced selenium bioavailability could poten-

tially decrease the selenium-dependent antioxidant functions of thioredoxin reductase and

other glutathione peroxidases[49], underlying the intrinsic sensitivity of FA patient cells to oxi-

dant stress [50, 51].

For direct confirmation of the glutathione peroxidase antioxidant pathway in frataxin-defi-

cient cells, a 6x6 study of FA patient whole blood was compared to control whole blood

samples. There was no difference between controls and patients in hemoglobin (mg/mL)

(p = 0.400), but GPx activity was significantly increased (IU/g Hb) in patient cells (p = 0.047)

(Fig 5).

Search for overlapping genes with available blood tests. Since the underlying goal of this

work is to identify new biomarkers that could be used clinically, we decreased screening strin-

gency to altered in 3/5 of the experiments, which increased the total gene list, and then we

crossed this expanded gene list with clinical blood tests available and orderable at the Mayo

clinic diagnostic testing labs. The genes altered in 3/5 experiments and also with an orderable

blood test from Mayo include: ENO2, LPIN1, SLC22A5, ATP6AP2, PTEN, SMAD3,

TMEM127, ADSL, AARS, HAX1, and KIF1B. ENO2 (Mayo Clinic), and lipin 1 (LPIN1) (S4a

Fig), are potentially interesting in terms of clinical monitoring of FA disease progression.

ENO2 is found in mature neurons, and is linked to brain iron accumulation associated neuro-

degeneration [52]. Lipin 1 (LPIN1) was significantly altered in 4/5 of the data sets. Abnormal

LPIN1 is associated with metabolic syndromes, vacuole regulation, and diabetes [53, 54]. Inte-

gral aspects of FA patient pathologies include increased likelihood of developing diabetes, met-

abolic abnormalities, and abnormal vacuole accumulation in the DRGs.

Discussion

Here we conducted differential expression analyses of clinical and preclinical models of Frie-

dreich’s ataxia. Our results suggest defects in mitochondrial translation and selenium metabo-

lism are part of the pathophysiological process that leads to apoptosis and neurodegeneration.

Since these clusters were identified in both clinical and preclinical samples, we suggest that

they represent promising targets for further pathomechanistic studies. These results suggest

that decreased FXN may alter selenometabolism which could explain the translational deficits

(cluster 2), and may decrease the activity of antioxidant selenoenzymes (cluster 3), increasing

the burden of oxidative stress, and leading to increased apoptosis (cluster 1). Thus, our results

further support a more specific formulation of the oxidative stress hypothesis for FA, which

has long been hypothesized to be a key mechanism of FA [55].

Transcription and Translation Cluster: The apoptosis genes may connect cluster 1 to clus-

ter 2. This implies that the regulation of cell death is inextricably linked to the transcription

and translation changes seen in frataxin-deficient cells. The GAA repeat expansion in FXN
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causes R-Loop formation [56], which leads to transcriptional repression. Basic transcription

factor 3 (BTF3), which was significantly altered in 4/5 of the experiments, is required for tran-

scriptional initiation, and may be responding to the need for increased transcription of FXN.

Additionally, RNPS1 was a significantly altered gene in 4/5 of the experiments. RNPSI is inte-

gral to mRNA nuclear transport and mRNA surveillance, which may be detecting truncated

frataxin mRNA and initiating nonsense-mediated mRNA decay.

Expression of translation genes was also altered, suggesting that cellular compensation for

frataxin deficiency has an impact on translation efficiency of mitochondrial and cytoplasmic

translation. Most mitochondrial proteins are translated on the cytoplasmic ribosomes, includ-

ing Frataxin and other Fe-S cluster proteins [57]. Our results included significantly altered

cytoplasmic translation genes: EEF2, RPL8, RPS27A, RPS2, and RPL10A. MTIF2 is a mito-

chondrial gene that is altered in 5/5 of the experiments. MTIF2 transfers mt-mRNAs into the

mitoribosome [58] and translocation of frataxin to the mitochondria appears to be integral to

oxidative phosphorylation [59, 60].

A selenium-dependent cluster of genes: Relationship to glutathione and

oxidative stress and potential use as a biomarker

Selenometabolism cluster: Selenium metabolism is intimately related with oxidative stress, as

many important antioxidants enzymes (thioredoxin reductase, glutathione peroxidase) require

the abnormal amino acid selenocysteine in order to carry out their activities. Selenium is a

constitutive component of glutathione peroxidase [61]. If frataxin deficiency reduces the

bioavailability of selenocysteine, causing selenocysteine deficiency, then one might predict

multiple consequences. First, since selenocysteine is a rare but used amino acid with its own

selenocysteine-tRNA, one might expect translational defects, and translation was a major func-

tional cluster (Fig 3). The deficiency of SEPW1 and SELM in FA patient blood is consistent

with a deficiency of bioavailable selenocysteine in FA patients.

Second, a defect in selenocysteine bioavailability would be predicted to reduce the antioxi-

dant activity of multiple antioxidant selenoenzymes, including TXNRD1 and GPX7 which

were both significantly altered in 4/5 of the experiments. Glutathione peroxidases and thiore-

doxin have also previously been shown to be significantly altered in the blood samples of FA

patients [62]. These selenoenzymes were also found to be reduced in DRG of another FA

mouse model, YG8 [49]. In support of an alteration in selenometabolism in FA, we observed a

significant increase in GPX1 activity (Fig 5). These data tend to support an alteration of seleno-

metabolism, possibly GPX1 activity is induced in response to a deficiency in the antioxidant

selenium.

Alterations in selenoenzymes have been reported by others, including Helveston et al, 1996

[63]. Altered bioavailability of selenium results in reduced glutathione peroxidase activity,

which has selenocysteine at its active site [45, 64, 65]. A deficiency in bioavailable selenium or

selenocysteine could be an important consequence of frataxin deficiency, because many sele-

noenzymes are antioxidants. Additionally, selenium supplementation has been shown to

increase the viability of FA fibroblast’s viability [66]. SEPW1, and SELM to some extent, are

biomarkers of selenium status [67], and TXNRD1, thioredoxin reductase 1, is a selenium con-

taining enzyme. Many glutathione peroxidases require selenium [64], GPX7 does not [68].

The selenoenzymes that are thought to provide antioxidant protection against ROS induced

cellular damage are GPX—GPX1, GPX3, GPX4, GPX5, and GPX6 [69], and there is substantial

support for antioxidant deficiency in FA [34, 49, 70].

Several markers of selenium status and selenium-related enzymes were significantly over-

lapping in 3/5 experiments. Those have not been included in these results to remove

Potential biomarker identification for Friedreich’s ataxia using gene expression overlap data

PLOS ONE | https://doi.org/10.1371/journal.pone.0223209 October 30, 2019 11 / 18

https://doi.org/10.1371/journal.pone.0223209


speculation. However, animals deficient in selenium or vitamin E develop white muscle dis-

ease, a myodegenerative condition considered to result from defects in antioxidant activity

[71, 72]. Selenoprotein W was altered in 4/5 experiments. Selenoprotein W has been shown by

[73] Flohe, and Steinbrenner) as the most responsive blood biomarker to selenium status.

Based on the observed data we propose that frataxin deficiency may be associated with a

change in bioavailable selenium or selenocysteine, which results in a deficiency in selenoen-

zymes and an antioxidant enzyme deficiency. Selenium level in blood and serum is available to

be ordered through Mayo Clinic laboratories.

Apoptosis Regulation Cluster: From the STRING analysis, multiple apoptosis regulation

genes were altered. These are consistent with the idea that frataxin deficiency may cause oxida-

tive stress to the cells, result in DNA damage, and increase sensitivity to apoptosis [50]. DDIT3

and PTEN are notable transcripts from our cluster 1 results. DDIT3 (also known as CHOP),

which we observed to be significantly altered in 4/5 of our data has already been shown to be

activated downstream of mitochondrial stress [4, 34]. DDIT3 has also been linked to global

shut down type of cellular response to stress [32].

PTEN was significantly altered in 4/5 of the data sets. PTEN has been linked to PREX1 acti-

vation [74](S4c Fig). PREX1 = Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac

Exchange Factor 1 was also significantly changed in 3/5 of the experiments. PREX1 has been

shown to bind to Rac1, which is a NADPH oxidase [75], and we have previously observed

PREX1 to be altered in a smaller screen for FA biomarkers [76]. PREX1 induces PI3K inhibi-

tion-induced apoptosis and also has potential as a stress response biomarker. PREX1 was sig-

nificant in 3/5 of the experiments. PREX1 has been shown to bind to Rac1, which is a NADPH

oxidase [75], and we have also previously observed PREX1 to be altered in a smaller screen for

FA biomarkers [76].

Other potential blood based biomarkers of FA that already exist as blood tests is ENO2.

We observed significantly altered expression of ENO2 in 3/5 experiments. Enolase 2 = Neu-

ron-specific enolase is expressed in neurons and lymphocytes, and was one of the most altered

genes in FA blood. It has also been shown that increased ENO2 corresponds to demyelination

[77]. ENO2 is known to play a role in at least one other neuronal disease that results in motor

coordination loss [78]. Recently, serum neuron specific enolase (NSE) levels have been

reported as a biomarker for multiple sclerosis disease progression [79]. ENO2 is a clinically-

run blood test (Mayo Clinic, Quest Diagnostics), and could be used to assess markers of mito-

chondrial function and/or myelination status in FA patients. If we relax constraints to 3/5

experiments and then cross these by blood tests available at Mayo clinic the list of blood tests

include: ENO2, LPIN1, SLC22A5, ATP6AP2, PTEN, SMAD3, TMEM127, ADSL, AARS,

HAX1, and KIF1B. Thus these are potential biomarkers to be explored in FA for which com-

mercially available clinical tests exist.

List of potential biomarkers with support from blood to mice. Our results suggest a

group of biomarkers to be tested in FA patients vs. controls, including these four seleno-

related: SEPW1, SELM1, TXRD1, ANPEP, and the antioxidant-related PREX1. As a marker of

apoptosis and mitochondrial defects DDIT3 also shows potential. ENO2 is currently available

from clinical labs, was quite altered in blood, and shows promise. MTIF2 was a significant bio-

marker in 5/5 of the experiments and could potentially act to clarify ongoing mitochondrial

changes as a result of disease progression or therapy.

Conclusions

Overlapping patterns of gene expression in 5 independent frataxin-deficient tissues led to a

limited set of 5 potential biomarkers. Cluster analysis identified a mitochondrial transcription
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translation cluster, and a selenium metabolism cluster, and an apoptotic cluster. Multiple

genes that could be considered as biomarkers of frataxin deficiency in blood, that agreed with

other tissues, were identified, and these included DDIT3, MTIF2, SEPW1, ENO2, and PREX1.

Of these, blood tests for ENO2, Lpin1, Serum Selenium, and Blood Selenium are clinically

available blood tests from Mayo Clinic laboratories, and thus could be included in new bio-

marker clinical trials for Friedreich’s. These ’most consistent’ biomarkers appear to be ready

for testing in humans, and could be tested in blood relative to repeat length, extent of frataxin

deficiency, age of onset, and clinical assessment of motor score. Furthermore, these data sug-

gest pathomechanistically that frataxin deficiency perhaps through selenium metabolism alters

mitochondrial biogenesis and consequently triggers apoptosis and neurodegeneration.

Supporting information

S1 Fig. a. Cluster 2 genes include Mitochondrial Translational Initiation Factor 2 (MTIF2)

which is significantly correlated with FXN expression (r = -0.69) (FDR = 0.036). b. MTIF2

expression is significantly altered in all 5 data experiments. c. Eukaryotic Translation Initiation

Factor 4b (EIF4B) is significantly correlated with FXN expression in KIKO mouse DRG

(r = 0.52) FDR = 0.046.

(TIF)

S2 Fig. A substantial number of mitochondrial genes are significantly associated with FXN

expression in 4/5 gene sets. String Association Network results shown with Cellular Compart-

ment: Mitochondrion in red (FDR = 0.01) were manually clustered for this figure.

(TIF)

S3 Fig. a. Cluster 1 genes regulating apoptosis include DNA damage inducible transcript 3

(DDIT3) which is correlated to FXN expression (r = 0.56) (FDR = 0.049). b. DDIT3 is signifi-

cantly altered in FA patient lymphocytes, FA mouse glial cells, KIKO mouse DRG, and FA

mouse heart (p<0.05).

(TIF)

S4 Fig. a. LPIN1 expression is significantly correlated with FXN expression (r = -0.54)

(FDR = 0.039). b. ENO2 expression is significantly correlated to FXN expression (r = -0.53)

(FDR = 0.042) in mouse DRG. c. PREX1 is significantly correlated with FXN expression in

mouse DRG (r = 0.54) (FDR = 0.041).

(TIF)

S1 Table. The 87 genes that were significantly changed in 4/5 experiments are shown as

raw values.

(TIF)
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