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ABSTRACT

The infrared divergences of éuantum eleétrodynaﬁics are
éliminated to all orders of perturbation theory in the matrix
elements by an appropriate choice of initial»and fiﬁal sof't photon
states. The coherent state formalism of Glauber is used to
paraﬁeterizg these states.. It is shown that the condition for the

cancellation of the divergences requires that these states belong

to representations of the canonical commutation rules which are

unitarily inequivalent to the usual Fock representation.
A comparison to lowest order is made between this treatment
and the conventional treatment whereby the divergences are cancelled

in the total cross section.
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I. INTRODUCTION

The matrix element in quantum electrodynamics for the

scattering from an initial state containing a finite number of

electrons and photons into a similar final state contains an
integral which diverges logérithmically for small momentum k ..
The conventional treatment of this "infrared divergence" has
been to sum the cross sections over all possible final states
consistent with experimental measurements. In particular, when
“all states wiih any number of soft'photohs with momenta below
the threshold of observability are considered, the divergences
cancel, and the calculated cross sections are consistent with

' experimenf. It is therefore possible to attribute the original -
divergence in the matrix element to the inappropriate choice of
initial and final staﬁes to répresent the experimental situation.
In an actual scattering experiment, an indefinite number of soft
photons are emitted, so that in sbme sense,vstates which are
eigenstates of the number operator are unphysical.

In this'papef, we shall show that there exists a representation
yof the photon states for quantum electrodynamics which appears mpre'
appropriate for describing scattering than the usual Fock representa-
tion in that the matrix elements do not have infrared divergences.
These states are not_eigénstateé of the number operator, énd are
paramébrized in a manner similar to that used by Glauber} Bargmann,
and others. When certain conditions of- convergence are imposed,

the states can be shown to form irreducible representations of the
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canonical commutation rules for the "in" and "out" fields which
are unitarily inequivalent to the usual Fock representation. Similar
results have been obtained by éhroer5 in certain model field theories.
In the absence of known solutions to the renormalized field
equations, we make no pretence to mathematical rigor. In particular
the Feynman-Dyson perturbation. technigues are used throughout, and
most questions of order in limiting procedures, etc., are treated
heuristically.
The parameterization of the stateé and its relationship to
- the usual occupation number parameterization are introduced in
Section IT. We shell make use of the algebra of states deveioped
in Glauber's paper.l In Section III the cancellation of the
divergences to second order is demonstrated in order to illusfrate
the methods te be used in the succeeding sections. Section IV will
summarize the parts of the.conventional treatment of infrared |
divergences which we shall need. This section is based éﬁ a more.
complete discussion_made in the article by Yennie, Frautschi, and
Suura.lF A calculation of the matrix elements for potential scattering
in Section V: shows that the divergences indeed cancel to all orders.
InvSeetion VI, the. structure and the physical meanihg of the repreeenta? ,
tions are examined. Then wershew that by squaring the matrix elements
and summing over the final states, results are obtained in low order : e

which agree with those obtained by Yennie et al.LL by the conventional

€

treatment. Some extensions and generalizations of our treatment are

carried out in the appendices.
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"II. PARAMETERIZATION OF THE PHOTON STATES

The properﬁies of the states which we will find convenient
to use have been discussed by several other authorsl’2 in different
contexts from the one in whichlwe intend to use them.

Let {fi(k)} be a coﬁplete and orthonormal set of functions
defined on sbme regioﬁ Q of ﬁomentum space including k = O

(perhaps all of momentum space). A typical state "belonging to

 the ith mode" is defined by -

exp(aiaz)' o (ai if)n
lo,) = ——=2— [0) = exp(-}|a,| ) = == [0} (1)
VT e PY oy T ’
where
ot - '[dBk £ (k) at(x) (2)

is an "in" or "out" creation operator.

In this expressiqn Qﬁ is'a complex number which can take
on any value in the complex piane, a*(k) is the photon Creétion
operator which obeys the commutation rules

(a00), a(x)] = s(xrr), [a(), ax)] = [atqo), tw] -0, ()

H
;
and ,O) is the state with no photons; aiT obeys the commutation
rules
Ta,at] = 5. fa,a.]l = [af, at] _
L2178 } = 5ij, (2gas ) = jaylal | o= 0. (4)
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From the commutation rules, it is a trivial matter to show

~ that these states are eigenfunctions of the destruction operatoi'

a(k) | o, ) = af,(®) [ o)
(5)
or ailai) = a; | a ),
and that the mean number of "photons” is
f; 2
o _ + -
Aoy In]ey) = Jaox (o,] aT(x) ax) o) = loyl”, '(6)
It is sometimes useful to note that the state in Equation
(1) can be "created” by a unitary operator
r 1
= ! T g% i
D(ai) exp Eaiai ay .aié , (7)
which bhas the following "translation" property:
Do) D(B,) = exp | Hap, - a8, Dl +8,) (8)
i’ UMW AN i 71/ i i’

H

- e

The states defined in this manner are nonorthogonal; the

overlap between two states .lai) and lB-i) is given by

Moyl8 )7 = exp (-lag- 8,17 . . (9)

v

@
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However, it follows from ( 9) that the states are normalized, i.e.,
(ailai) = 1. _ | (10)

Another property which these states possess is completeness.
In fact it is easy to show that
L 42
1t

[d% o) (el = = Iny) (my] = 1, (11)

J n.
1

where the state denoted by n. is an eigenstate of the number of
photons Whibh have the momentuﬁ.distribution described by the function -
£,(c), and da = d(Req,) (Im a;) is real.

An arbitrary state of the ith mode has an expaﬁsion in

terms of the n-photon states.of the form
n
_ (aiT) .
Y = = ¢ [n) = = ¢ —— o) (12)
n n n (n!)?

where X Icn!2 = 1. We associate with each such state an analytic
function,
e _ ' o
h(z) = X ¢ — ‘ (15)
n 2
n (n!)

Equation (12) may then be rewritten as

W =m0y, (1%)
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Using (11), we can expand |h) in terms of the new states:

m - 2 [ o) foy nie,h) 10

(15)

Il

1] 2 2y -
L[ o, lay) nlay*) expl-3la, P) -

In (15) we have used the fact that the states Iai) are eigenstates

of the destruction operator ai :
agloy) = oglay) . (16)

In a similar faéhion, the adjoint state vectors (gl can

be shown to possess an analogous expansion,
' 1T 21 1¥ N o, o -
(gl = ﬂd[ig(ﬁi )] (Bilexp(leﬁil ) a8, - (17)

A basis for the whole electromagnétic field is the set of
vectors formed from all direct products of the states lai) of the
individual modes where the ai are allowed to range over the whole

complex plane :

£

) = & l_oai> = o), | - (18)

i

€y,

and the mean number of photons in such a state is

¥ o, l? . | | )



(o

~7=

Equations (13), (15),and (18) ensure that states containing
a finite number of photons (the usual Fock représentation) can be
expanded in terms of the states '[ai}> which satisfy ;loﬁlg(coi.
This ﬁill be shown in Section VI. However, this restricéion’will
not be impdsed in the discussion that foliows, i.e., we shall allow

for the posSibility that there exist states in which the average

number of photons is not bounded.
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IiI. CANCELIATION OF THE INFRARED DIVERGENCES

TO SECOND ORDER

In this section we shall demonstrate the feasibility of our
scheme for cancelling the infrared divergences in the scattering
amplitude, and compare it with the conventional method for handling
the divergences in the cross section. In both cases, a simple
ecalculation will be made in second order of the electronic charge ey -

As a concrete example, letvus consider an electron scattering
from a potential. The zeroth order matrix element, given by the
diagram in Fig. III-1 (a), we shall call Mo(p,p'). The second order

corrections to this process are given by the diagrams in Fig. ITI-1
(p), (c) an& (d). Straightforward application of the Féynman rules
vwith;appropriate renormalization will show that the latter three

diagrams contribute

Moo= MjyaB +m : (20)

where « 1s the fine structure constant, m, is finite, and

_ v ~ 2
) L 2p' -k op -k N .
sood e (Path | Zih) )
(27:)3 : Ko~ A2 \2p' -k - 12 2p+k - kg/

p' and p are the electron momenta in the final and initial state
respectively. Letting the fictitious photon mass A -go to zéro, we
see that B is a logarithmically divergent integral as k - O .

The conventional solution to this dilemma is to say that the

B A
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very low energy soft photons in the final state have been neglected,

‘i.e. we should also have computed the diagrams illustrated in Fig.ITI-2

(b) and (c) . If the momentum and polarization of the soft photon

‘are k and e(x) respectively, then the contribution of these two

- diagrams is

(») ]
— - B e M.+ K(k) (e2)
[(2:‘:)5 eko]2 Lox - p’ k - p 0 y

eq p'- e

- where K will alwayé denote some function or constant which doeé not

qontribute to'the infrared divergence.
Let R denote that region of the photon's momentum which is
below the threshold of observation, i.e. the region which defines the

photon as being "soft". Then to second order, the cross section o

“is given by

' 2 -
‘ - e . [, (M) RSN
v = (1\/1O+04131v10+ml)2 +y J[»d3k g | B
: xR (en)” 2k, L P P
2
X Mb + K + +
2 2 ~ 2 i . 2
= M +20 B My +20BM; +K+ (higher order terms in eg )
2 ~y ' '
= M (L+20B+20B)+ - - (23)
where
; 2 :
o~ -1 dﬁk pgp p“ \\ .
B = =5 X k-p"k-p) - (BR)
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' Noté that fgl isdlogarithmically divergent and, iﬁ fact{
exactly cancels the divergence in. B . The cross section is finite;
It is possible to carry out this treatment to all orders of
€y 7 and the resultcne obtains by summing over the contrlbutlonsv

from the emission of 1, 2, -+, photons is

0 = exp{2a B+ 20 B} Y | - (25)

A v. .o ‘- - I3 v 3 . -’
where ¢ is a series in €5 which is term by term infrared divergence

free.

Wé.shall now repeat the calcUlation fof'the scattering procéss
in which the photon states aré rarameterized as in Section II. Thus
ﬁhe initial and.final states of the photon are specified by the
seqpences of complex nﬁmbers (Oéx} and {7ax}' reébectively. The
. additional superscript A distinguishes the two polarlzatlons of

the photon.

The initisl state may be expanded in the following manner:

M) = el-3 5 oMY enlE ot o) (26)
‘ ) a, A - a,h
= A(l - —é‘a%:}\' ,aaxle + -..) (I + Z aa?" aa%-f + "..5',-())
where
e [ s o) |
a T = ] Prr () e™ (1) at() -~ (27)

Q

. o)
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() (k) is the polarization vector. Tor the final state,
A

and e
. N
substitute o for «
a a .
We must now consider all diagrams in Fig. III-1 and Fig. III-2.
With some forésight we will find out that an and 7ak are proportion--

al to ?O . Therefore, to second order, the contribution of

JFig. III-1 +to the scattering matrix element is

2 2
ke A , e A
M@ -2 ) leM)Y@a-32 T |y ' )+aBM +m .
0 an a 57% a 0 | 1

The diagram of Fig. ITI-2 (a) gives us

- L
M/ a \-
-
0 \ X a, a /
N rd

Fig. ITI~2 (b) and (c) contribute

3 .

: d 'k . A P

My 2 f 5 1 < /pk. e(’) - B e ) 7 4k
e g [en) 2k ]2 O \ - P - P a™’ Ta

while in a similar manner, Fig. III-2 (c) and (d) contribute

Foodx (M) L DN

-uy ¥ I o\ F 57 " T3 )fa(k)aa’ K.

.}\.,a 2 [(en) 2ké]§

Thus the total éontribution to the matrix element to second order is

2"\ ’ // }\. A.*\ .
l+a B M, +M oAy
//‘ 0 OQ;X a, a, )

=
i

- e 2 -
Mo(l -3 7 M-ty |7 M
. a,N . a, A

. -y - d5k . ), R \ ()\) X *7\
ns L N CL S N
O{x%a [ (2n)° 2k )2 O\}j D k- pj | a )7 g

T

fa(k)laax) + K + higher order terms in e .



Now suppose we define the following sequences of constants: ' o
Ve :
n oL 3, % o . e(k)\\ L v
Bia = 47k fa(k) k X . : 1 b . : .
8 AN b s 3 42
' [ (2x%) 2ko] ,
‘ (28)
v N _
N .3 % '/pv. e(7\)\ 1
B = Ak £7(k) | ] s
fa Q & \k -/ 3 E
| P [ (en) 2k,
~and we let
A A A o
Oy = By s Y = B (29)
Then
4 ‘ 2 BN
= (1 + 1 ¥ A M© Voo ‘e
Moo= My (32 gh B, - Bl tPaB) 4K+

(30)

%(l+aB+a@+K#-~

The last step follows ffom the orthonormality of the fa's .

Note that for this particular choice of photon states, the
infrared divergence has been removed from the scattering amplitude
to.lowést order. It should however be emphasized that in order fo
) méke'this cancellation work, it was not necessary to definevthe
sequences of coefficients {Big} and {Big} exactly as in Equation (28).
IWhat mattered was thaf the differences {5f2 - Big} be as defined |

in Equation (28) for infinitesimally small k , i.e.,

©y,

e < Paa = e () 100 (61



where

L\l kXx-p" 7 "k -p )
x| >0 [(en) 2k012 AN P : )

‘s . V v lim I(k) = . (/p'. e(%') p - e(?\)

This is essentially equivalent to saying that if we had let

A A S W ¥ o A A
%, Pia ia 7 7a T Ppa * €py WheTe Bp, and . B,

are defined by Equation (28), then convergence would be assured if

)

> le ™ - e, <o .
L fa jia
N8

In fact,the generalization of the scheme to all orders of €q will
show that this last convergence condition continues to be true.
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IV. SEPARATION OF THE INFRARED FACTORS

The following exposition of the conventional separation of
the infrared parts from the matrix element can be found in the revieﬁ
article by Yennie et al.h We will summsrize here those parts of the
conventioml treatment which we shall use in oﬁr own scheme. For
simplicity, we again study the example of an electron scattering
from a potential, although similar results can be obtained for more
general situations.

Consider a process in which there are a fixed number of
photons and an electron of momentum  p in the initial state, and
a fixed number of photons with the scattered electron of momentuﬁ
p' in the final state. Thé photons may or may‘not have interacted
with the electron line. The comflete matrix element fbr this process
is given by

Ly

M (') , (31)

M(p_,p') = ny

[

n=0

where Mn(p,p') corresponds to the sum of all diagrams in which
there are n virtual photons which can be distinguished from the

potential interactions in the "basic process” M, . The real photon

variables have been suppressed.

The quantity pn(kl, o--kn) is defined by the relation:

- Coon L
1 ; ad'k
M = =T e I p(k,"‘k), (32)
n n! J{ i kiE _ A2 + e n' 1l . n

)
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where A. - is the photon mass which we éllow to approach zero later.

‘ i
It has been shown that pn is of the form -
Pl 1) = 80e) o (g o Do, x s x) 69
1’ n-1""1  ’7n.l Bk n’?

where >S(kn) containsg the kn infrared divergence, and @n have the
form:

- - .2

i / . BN

2p' -k °p -k

N T T T
5

. 2
1le .
: \ ~ i
(Q:r)&_ \ 2p"k-k2 2p k-k ./ B8

K}IH

s(kn)' -

The remainder g(l) has no infrared divergence in k " and its

1nfrared divergence in the other k's has not been made worse by

the separatlon.

- By iteration of Equation (33), pn(kl,'--,kn) can be expressed

as a sum over all permutations of the k's

n r

= l LI Y =
pn(kl""’kn) = Z = ri(n-r)! .H S(ki) B (kr+l’ ’kn)- (35)
: perm r=0 i=1

The functions gr -are noninfrared and éymmetrical in the k's. If

‘we adopt the definitions.

o . L |
OIB(p,p') = [%E_'S_%{‘Z ’ ’ (36&)
~ % A _
1 (-r dhk. 7
mr(g’g’) = ‘;T I —-§;'§r(kl’...’kn)’ (36p)

2i=1l Kk,
i
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then substitution of (32), (35), (36a), and(36b) into(Bi) results in

the simple expression:

. : : o0 : o
M = exp (6B) & m . (37)
n
n=0 :
. . _ _ v _ ! o s 4
In this expression moo= P, = éo = MO . The m 's in(37) are

divergence-free, so that the whole infrared divergence has been
V isolated in the argument oB of the exponential. For future
reference, we can wriﬁe down.the form of Re(aB)_ which follows

from (34) and 66):

5

]

2 s S opt - x op -k
e [__ &k T T T

Re(aB) = | T
= L a2 : A2
Men)? [ (2, 42yF \ el paca® )

.

The extraction of the infrared contribution to the matrix
elemént for the emission of reél photons has a form similar to that
in Equation (33). In this case we let gn(kl,'--,kn) be the matrix
element corresponding to the emission or absorption of n undetectable
.photons wifh momenta k ,"'kn, and fd}'some arbitrary order in

1

the virtual photon corrections. It has been shown that = -

~ ... . o .~ : ;<l) ,.;. : Z
pn(kl) )kn) . i_ s(k‘n) n_l(kl}'..kn) + g (k’l’ }k'n_l 2 kn)’ ()9)

where §<kn) is the factor containing the infrared divergence, and
52
has the form
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M) = 8 T | (10)
tQ(Qn)BkO} :

[V

and the (+) and (-) signs correspond to emission and absorption

E,(l)

respectively. Again the remainder is divergence-free in
kn’ and the divergences in the other k's 1is no worse for the
separation.
It can be shown that the iteration of(39) leads to the form
n m
oplkpseenk ) = & 2 (1)
perm r=0

- .
1 o v s e 1
ri(n-r); i¥l S(ki> gn-r(kr+l’ ’Kn): (bl)

where the functions ¢ .are noninfrared and symmetrical in the k's,

and m corresponds to the number of absorbed photons.
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V. CANCELLATTION OF INFRARED DIVERGENCES TO ALL ORDERS .

In this section we return to our own scheme to eliﬁinate the
infrared divergences. Some combinatorial algebra will be ﬁeeded to
- calculate the matrix element for the transition from‘a state of
électron momentum p and photon "quantum numbers" {aak} to a
state of electron momentum p' and photon "quantum numbers"

f7ch} » Where again

-

expz;\{aak jg a’k £_(x) euo‘)(k) ao“)Jr(k)f{

T 5
expg{% 3 oM ]

le™) = x
: a

Considef all the diagrams represented by Figure V.1, in which
there are m real photons absorbed by the electron line, V m' real
pPhotons emitted by the electron line, and ¢ photons which do not

interact with the electron at all.

»

i

©
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. t .
The matrix element for the process J{aéx}, pi)->[{7ck }, pf)

is then a sum over all diagrams of the kind shown in Figure V.1 for

all values of m, m', and 1, and with the Proper factors determined

by Equations (Lp).

Cbnsiderations which enter the calculation of this matrix

element are explained below:

i:[

X
Hsa,c,

(a) There is an infrared divergent facﬁor eaB due to the
virtual photon corrections. (See Equation (37)). |

(b) The overlap of the & initial-state noninteracting
| photonsbwith the ¢ final-state noninteracting photons

contributes a factor

P -~ - “ 2

Me)»’jB * OO PR\ PRI B *N ;
LY, JaTk fc(k)fa(k)eH (k)eu (k)g = LT % e Sxx,Bacg - (4%)
: ’ LN j
oo .

(c) Equation (11) gives the contribution'due to the interaction
of m initial-state photons and m' final-state photons

with the electron line:

y

(2 \ e A ST
pm+m' (k'l, . .,km.‘.m' ) = 2 Z ) ("1) ( .n S . (ki)
perm t=0 _ \i=1 y
K's \ P
(L)
K ) -
X & (ke k
CoTmAmt -t M4 m+m ! ! (mim' -t ) ! .

(d) Contribution (c) must be integrated over the momentum
distribution that is obtained from the formal expansion

of the initial and final states (See Equation 42y,
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i /” . N '.‘
i ' WS e ' Vo uad !
A CENE I 5 R Bl CE NS0 B I (RS PIR
AN _ a ra' o ;K 1 : c ricrr'/ "mtm 1 m-+m’
L \I‘:l }\')a - rd { =m+l }\.;C R s : ..)‘
(L5)
(e) The formal expansion of Equation (L42) also leads to the
factors
< > ' 2
1 1 N At !
CYSHE (m'+2)! exp “% % IQé ] \>@XP <'% Z ']70 , } (u6)
’ : a, A J/ . C,A! g

(f) In addition to the above, there is a combinatorial factor
which accounts for the number of ways that (m+f) initial-state

photons and (m'+4) final-state photons can be distributed among m

initial-state interacting photons, wm' final-state interacting .

photons,  and ¢ noninteracting photons:

(m+2)!  (m'+ 2)!
mé £} m'!t ¢! .

After summing over all numbers m, m', and i, we arrive at

the following expression for the matrix element M¢

[
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o~ 'CD' QO Q@ ’] "!
il 33 S { 1 1 i[(mw) (m+£) |
8=0 m=0 m'=0 L (m+t)t (m'+£)!Jlmim"teie! J
7 v 2'\\  ” - . -‘: %
\ 1
X[exp (—% 2 o iexp(f% z |7 J[% ‘{ 2 oMM
\. Na / Nsa / Lha 4
r m m-+m' e Y
i1 = «a R {d \></ ‘ 7* M adx kLT (k)
i r=1 \,a a J —m+l K' J : ,{'”
ooy | R
pm+m' (kl’ L ‘, km+m’ ) j . . i ‘ ()-l-'—()

Anotherjfactor corresponding td the contributioh from the
scattering of phofons by photons could have been included explicitly,
but.since this term does not contribute tobthe cancellation of infrafed
divefgences, nor does add to the divergences, it has not beén consiaered
in this analysis. |

Making the appropriate cancellations, and cbmbining the terms

with a little bit‘of careful counting, we arrive at the expression

: : 1
@ @x (03] r Tiom m!
M= B 5 g% 5 j% 5 _%ﬁ_g 5 QA 7*k§€ s 5 m; m' !
=0 “ m=0 ™ mr=0 "7 [a,n % F 11520 310 Jr(m-g)r 3N -3t
\
. o
- 95 NN ™ U VI o) L
Xl B tEh e ) By (5T ) L B (p,pf){
Loa,n Q) Le,n Q)
; . . : ' ‘/!.
[/ N T R
X lexp i by |aa | §exp i- 2z 17& P ;?. s ' (¥ 8
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where

e ) = ( e 8™ ) £ ),
a’q J a
, Q
Lo et [
@8 = | @23
& 2
and . . \
. J Y
P, ., = (-1)3( I [adk 5 o (kr)§
53 Y ae Y (49)
+9
Y(J'IB N ) B )
) . (a’k, = 7. £ (k) E. . (et "k,
\r'=1 T, crr J+d 1 J+d
Defining the '"residuals" my by
B . Js
P, ., e
=> z » . -
mJ,j'(pi,Pf) j:jll 2 (50)
and reordering the sums in (52), we can write
~ - OB fr 1 A 2 { 1 A l A s/?\.q;
M = e exp|~-3 Z Ia |, exp|= 3 2 |7 | exp ooy
: : a . a ‘a |
L L %) L Ay 8 (N2 4 L
. N
A KN X Ay | [ o L oy
'l{exp{}:a (Sf) [exp? oy, (f ™) ¢ .2 LI
L%qa Ql ! L\sC QJ %m,m'=0 o j
To simplify the notation further, we define the coefficients Bax by
A % ah '
B," = (f,87) . (52)

9!

'y
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Since the function 'g is real, Equation (55) becomes

2 - o
~ aB f 7\. } i LY 7\. o )\ (™™ )\‘
M = e expL—% ’ ‘Oé } jexpg—%- ‘L ‘ya !Iexpi . Qéyz ? exp[ 24 o
N a - i A a ) Ay a ’ 9
¢ o }i
r b )\. *7\. 3 J A {
vexpl p B0 L my e (Bpapp) (53)
iy 7\.,8, ~ 1 m}mizo S - J
LS . .
By Equations (28) and (52),
A A
Ba - Bfa - 61& . (5)"")
Tt is convenient to transform from the variables Qék 5 7&
to the variables e.% B E,X defined by
ia, fa ,
n A A A n A -
Yo T Pea ¥ € 7 % 7 Pio * €12 - (55)
Thus
M o= B fex T e Ay é 7\'|2v——1--’8 Mie hl + (B My x)(B Ny
- ﬁ Pl 172 Pia ia 2lPra © Tfa ia ia’/ W fa
L 317\-
. ' - 'Y (x) ~
A Ay o ¥A Nea N NyFT . :
- (6ia * Eia) By *Pa (Bfa * efa) f{ 2o Ppome f
) m,m'=0 -
, (56)
= Blexp N il -8 |2 -tle - € |2 + i Tm(ere.+ Be.~ B.BY + €.¢
It SR A1 SR ] i1 e Titf i
x 1
P . m.o_, ’
memt=0 ™ f
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where the mode and polarization indices have been suppressed for
convenience. Using the definitions of Big and Bfg , and ortho-

normality as we did in Section III, we arrive at the important

result

~ (0B + aB) [ ) A A 21 i \OO ]

M = e expl-5 E: ’efa - eial e . moo ? (57)
L na J { m,m’ =0 ? j

where ¢ is real.

The argument of the first exponential was shown in Section IV
to be infrared divergenceless in the limit of zero photon mass. The
third exponential has modulus unity, and the last sum is term by
term divergence-free{ ITf the possible states of the system are

restricted by the condition

A A2 '
= ela, < s (58)

le

the second exponential is nonzero, but less than or equal to unity.
With this condition satisfied the infrared divergences have been
eliminated. The interpretation of this restriction is discussed

- 1in the next section.

L3
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VI. INTERPRETATION OF THE PHOTON STATES

In the beginning of this section, we will show that
Equation (58) defines a separable Hilbert space. To do this, we
study a related space :§‘which will turn out to be identical to
thé ordinary Fock space % __ . ‘Trenslations like Equation (55)
will not change the intrinsic!properties of this space. Finally
a calculation of the totalvcross section will relate this whole
discussion to experiment.

Much of the mathematical material here will be treated
heuristically, but a more rigorous formulation of sdme of the étatementg
can be found in the papers by V. Bargmar11r1.2"5

We will define a separable Hilbert space X in the following

manner: Let {Gi} be an infinite sequence of complex numbers. A set

of "principal vectors" l{ei}) is then defined by the equation

l{ei} ) = I lei ) = I exp [-—% leil )eXP [Gi aiT |o)
’ . | (59)
= g exp [-%—[eil }exp {ei_/}i<k) aT(k)} l0>
i . :
and the condition:
o A
£ le,| <. (60)
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The elements of 3 are taken to be the closure of all finite
linear combinations of the principal vectors. . -

From (59) and the commutation rules for a+(k), the inner
product of two elements, ,f) = g hJ l{@ (J)}) and

(%) .
l£1) = Z Hye ,(9 }), is given by

A )
[ ] 2%
(r]rt) = = »¥ by { exp "fzeﬁ‘(J)e.(k)] exp[ ix le (J)I «exp[ by ]e.(k)] 1
. J L. i i - . i iE
Jrk 1 : 1 ' 1 . J
(60)
.In particular, the inner product of two principal vectors lfe (J)}>
(x)
and I{e }) has the property
()] (6(<)yy)° 26,06 o[z 16@F Ll 1 5 16 P
[((e;°73] (8,°/1)] = lexp| 8,0l 8) | o 2z e, [ 2 ey |
i i .4 i L i . i j
i - i L i
‘ 2)
j k) 61
= expd -z [old) o(¥))7) (61)
. t
+ s
so that the principal vectors are all normalized to unit length.
Moreover, by Equation (60), no two principal vectors are normal
to. each other.
The properties of the space could in fact have been derived
by using Equation (61) instead of Equation ( 59, but we wish to retdln
the connection w1th the previous sections of this paper.
The separability of g& follows from the existence of a countable o
sequence of vectors which is dense in & . Let J{ei}) be any
principal vector. From Equation (59), it is known that for any :
8y > O there exists an integer N such that % [e ! < By . .

i>N
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Moreover, for-any i <N and & >0 it 'is always possible to find

rational numbers [Rii such that lei- Ri|2'< 5.

Consider a principal vector |{ei]) ‘such that ©; = 0 ‘for

i >N, and 6] =R, for i<N. Let % Ieile =A% . Then
, i
T |e! - o le < N5 + 8
AR S A N
: ahq )
|m s e%!| = |Imse*e, + Inz e¥ (6! -8,)]
’ ; i ; 11 g 1 i it
< |zl (o) -9,)]
1
I 1a 12 2
<z 6,17 = lo; - o]
Vi i
< jAf}/Na By
7 ! '
;l{e )y - l{e')>} = 2 - (le;}|{ef]) - ({9i3 [ (e, )
]

_ 2 _expf- zle | 1exp[ Z‘eilg]

.
AN
{exp( ]+ exp (Z 61 _eili
- o l :
| N .
= -exp [ Z ]e' - ] jexpil Im 5 e*e J
3 N l
i
+ exp | 1 Im X 9*' 61?‘ .
1 . H ,.
S ! : 27 4 Ty
‘ = 2¢1- xp{-% z ’6? - 6;’ }? { cos {Im z 9*9“ ?*
i ey 01 147 5 i i |

N

»(Aé+ 1) (W& + §N)_‘ - : - ) te2)
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Since I{Si}) , & ,and & were arbitrary, we have shown

N’
that any principal vector can be approkimated by another pfincipal
vector belonging to a denumerable set. The denumerable set which
consists of all finite sums.of principal vectors like !{Gi}> is
dense in X .

In the case of masslessRsoft rhotons, there is no reason to

restrict the photon states by Equation (59). Let {Gi(o>} be a

sequence of complex numbers which are not square-summable, i.e.,

GO
% 1o Kk, (63)
i
Then the states defined by the complex numbers {61} , and which

satisfy the condition

= le.- o (o)f2<oo (64)
5 i i ?
form a separable Hilbert spacetk(o) with all the properties of %$,
except Equation (60). . :f(o) is unitarily inequivaleﬁt tod, i.e.,
it forms a unitarily inequivalent representation of the canonical
commutation rules.

| In Section IT we discussed the connection betweenvthe Fock
states and the principal vectors for a single mode. We will now
briefly study the relationship between the occupation number

parameterization and the principal vector parameterization.

va
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The states in the Fock space GEE w ore specified by a
set M of infinite sequences of non negative integers {mi} B

or "occupation numbers"” of which a finite number are different

. ‘ from zero, and the 1limit sequences of such vectors. An orthonormal

basis of Fock space is given by

N
(\aiT)
lup ) = 1 =t— o) . (65)
{m} . —
i I\/mi '
An arbitrary state |f) of o‘Poo is é_iven by
£ = 2 ey lue ), (66)
e
where the complex coeff‘_icients 7{m] satisfy
: 4. ? ) < . . - (67)
{m}eM
At this point, it should be apparent that & Cc”g-‘oo’ since
m
: i ms
(8,2, - (e
ey = X om —EA—— o) = oI = ) (69)
) . v 1 c " l .
{mleM i m, * {m}eM i vfmi
and
| - | | m 2 | !Emi
- - “ (e.) [eo] 9. - N
: . < . o o
Lom —— = n o ——5———'=(exp Lle ") <o (69
v =0 m, ! ’

(m}eM| i 4/m, ! - i\ m=0 m, ! i
) 1 ) 1 :
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The scalar product of two vectors [f) and |f') in %

¥} )
can be obtained from (65) and (66): . -
1 — * 1
<f’f ) = {mz}:eM 7{111} 7{m} . (70)
Let Qn[mi} be the truncated sequence
Qn{mi} = (ml’mg’“" mn,0,0,“«), (71)
and define a projection on f}d) by \
En If) = En Z 7{m} ,U~£m} ) = E- V{m} !u(m} ), (72)

Em}eM >{m}th

where Mh is‘the set of all sequences of the form given by
Equation (71). Then it follows from Equation (67) that Enlf)
conyerges strongly to |f) as n - w. We will show that En’f)
isAcontained in.ﬁﬁ, vhich implies that Eyaj = .

The expansion of En,f>' in terms of the principal vectors

follows directly from Equation (15):

my
Je) - T law | Ly 80 (73)
E If = z oy 11 idu. (e’e}-..’e, O’O’...) —— 73).
" (m}em_ (m} 5 /% T n Vi, T

" where

i

H

dp; = exp é'% 6,1 | a(Re 6,) d(mm e,) . - (7))
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From Equaﬁion k62), it is clear that principal vectors I[Oi}) which
do not satisfy Equatign-(60) are orthogonal to 'En]f). Therefore
Enlf) efb»and the result ﬁ%@sv= é& follows, i.e., the Fock space
“built from'stétes with a finite number of photons, and thevspace'of
principal vectors satisfyinngquation (60),are‘the éame space.

Ih order to satisfy the requirement Equation (58) for finiﬁef
matrix elements, it will be necessary not to restrict the scattering
states‘to ;¥ . For if the initial state-were'in\ﬁb, i.e., the

x} . .

[oé of Equation (42) satisfied the condition

T ]aé%lg

< o, | ’ o (75)
Asa o _

then the final state parame&fized by the sequence of complex numbers

v.{yax} would be given by

7, = a ™+ (Bfa%‘ - e,iax) + '(efak - €, K), ‘ (76)

2 : R
< A A : , .
! Y 'Gfa Eia l < oo | , 3 (77)
- Nya : : . - : ;
. But we know from Section TII .that- " -
: .2 2 o t 2 : : : -
SN . A . 1@ ~ .
B lpg - Byl = %= ;IS( o) Pk - aF, (78)
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and B —» oo as the photon mass approaches zero. Therefore

-

M o (79)
Nsa :

as the photon mass approaches Zero. Thué the final state cannot
belong to ﬁ;.

.Nevertheless, the coefficients [yak} define a final state.
It must be that the final state belongs to a representation‘of the
canogical commutation rules inequivalent to the Fock space Cg; whose

most outstanding feature is that the average number dephotOns is

finite. Not any final state will do, however, for the boundaries of

P
4

this new space &  are restricted by the condition Equation (58).
One of many ways to satisfy Equation (58) which preserves
symmetry between the initial and final states is to write these

state as

Q, A = A + B.x'+ € A R
a ia ia ca
| (80)
N A A ~
Ya T Sra Bfa * € 7
and to restrict the states by
2 2

}M Ielaxl < o , Z« ICfahl <@ . (81) -
Ny & nsa
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Then we would get different theo?ies by differenﬁ choices of the
sequence {eoak} . With such a chice, the photon states would
nave a dependence upon the momenta of the participating electrons.
'I; a practical calculation where one wants to treat, for
example, the scattering of an electron with the emission of hard
photons, the hard photons can be dealt with by the conventional
occupation-number parameferizatioﬁ, while the soft photons are
described in terms of the translated principal vectors. More
specifically, éonsider the calculation of the cross section for an

electron of momentum P scattering into a state with an electron

of momentum' Pp plus several hard photons. The incoming electron

. is associated with a photon field described by a sequence {aax}
and the outgoing electron has a photon field {y k} . In Equation
a

(57) the "pbasic matrix element"” m, corresponds to diagrams with
2

‘only the detectable real photons and those virtual photons necessary

for the process to occur. The terms m for 1i,j = O contain the

[3

effects of the noninfrared parts of the real and virtual soft phoﬁons
to higher order in the coupling constant.
To lowest order in the noninfrared photons, the squared
matrix element for a particular diagram ms is from Equation (57);
~ 2
M= = e

a

2(Re OB + OB)
exp[
}\.’a .

2 ,
- 2. |€fx - €12| } imo,ol2 . (&)

We can then sum over final states. The result (to lowest order) is

independent of the initial state:
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~ 2‘1n
A 2(Re 0B + aB_) n{ -le ] | -
o 2 Q : 2 .. -1 2 T
2 Ml = e ]mo o, lim () ,}é €. e J
final 4 n—oo L
states . -
' (83)
2(Re aB + oﬁég) 5
= e m |
0,0

The remaining exponential contains part of the effeét of the choice
of gi(k) and the "region of resolution” &, and we obtain a
similar result to what Yennie et al. dbtainedb(for a noﬁfenefgy-
conserving potential). In fact, the "reason" why the results are
the same is that in the summation over all final states in the
conventional treatment of the infrared divergence, the main contribu-
tions came from states which were not in the usﬁal Fock space, ‘but
were in a reducible representation of the canonical commutation rules
without any restrictions on the sequence {m} of occupation numbers.
In particular, the separable space of final states fgl is contained
in this larger, nonseparable space.

in fhe above computation, and in Section V, the resolution
:regions for the initial and final states were assumed to be.the same.,
One cén argUe that the résolutioh region of the initial state can
be made'arbitrarily small, but finite, by waiting arsufficiently
long time before the scattering experiment. The situation where the
_initial resolution region is smaller than the final statevresolution .

region is discussed in the Appendix.
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APPENDIX A B ‘ _ s

GENERALIZATION OF THE CANCELLATION TO SEVERAT, ELECTRON LINES

For'simplicity, only the case of a‘single electron line inter-
acting with a pofential was treated in Section V. vThe generalization
to several interacting electron lines will be outlined here for
completeness. The extension to other processes such as positron
scattering, pair production, etc., is obvious and will not be done here.

Since the‘cancellation of the infrared divergence in this
more complicated situation requires a proliferation of subscripts and
superscripts, all nobtation pertaining to the photon polarization will
be suppréssed until the final'steps of the proof.

The initial state will consist of N incoming electrons with

momenta D, , D, » % pﬁ » ***, py and a photon state {aa}
These will scatter into final state of N oubgoing electrons with
momentd p'l P p'e FEEET prv , e, va and a photon state {Va} .
The “"resolution regiéns'i 2 of the initial and final state are
assumed to be identical. The interaction is illustrated in Fig. A-1.

The matrix element is given by the following.considerationsf

(2) Due to virtual photon corrections there is an infrafed

divergent factor F = exp(aB), where the generalized definition of

L s
B is
. : 5 T
i duk 2N {/ 2p,®, - k gpjej + k \‘ )
B = 3 5 > eiej\ 5 + 3 ; ,
8 - AT i< KT - . D . p8. -
T k i< \k 2k piei k + 2k | Pj 3 /
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and ei = 4 (-) if electron line i is outgoing (incoming). The
sum is taken over all 2N outgoing and incoming electron lines.
(b) The overlap of £ initial state noninteracting photons with

t final state noninteracting photons contributes a factor

(¢) The interaction of m initial state photons and m' final

state phoﬁons with the N electron lines gives

PVRRRY \ N mv‘i m'” m’ o S vy
o(fw ™)) = m 5 ()" o[ W sk
o v=1 £=0 perm i=1 /
k's
v v 1
x & (k st Kk ) ‘
m+m -t trl n’+mV e (m’ + m’ - )

The superscript Vv 1indicates which of the N electron lines

participates in the interaction. Thus

Note that the above expression 1s exactly the same as the expression
(¢) in Section V, except that a product ié taken ovef the contribu-
tions from N electron lines.

(d) The photon momenta k in (c) must be‘intggrated over the

5
momentum distribution given by the set of functions fa
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(e) TFormal expansion of Equation (L) again leads to the

factors
1 ‘ 1 1% 2 1T 2
(m+ &) (m+ &)! expl -3 AJIOEI ] expl-3 4, '7a’l ]

a a’'

(f) 1In addition to the above, there is a combinatorisl factor
which accounts for the number of ways that the (m + £) initial
state photons and the (m + 4) final state vhotons can be diétri~

buted among the N electron lines and the noninteracting photons.

(m + &)! (m'+ 4)!
(Tm’1)er  (@mwmVi)e:
Y Vv

To obtain the matrix element M , the contributions are

v 14
summed over all values of m , m' and 1

.

® N *x % " 1

M = F ) I ) ) — X J
- A o " 1 ' 1 ;
=0 v=l v o Vo L(m + &) (m'+ 2)! r



rhed”

><gr(m+17,)1 (m’ +£)z}
H . i
Lmn’)er @mVi)e:d
v v
a" ? g 21 3 1 24 r bt ¥* !
lexpl- 3 % -1 125 |
X ;eXPaL 2 E [Olal i exp! .2 % b'a] Lﬂ (éJaa?/a) :
- 1% \% 1%
{' N [,m T ~ ,m -’ - r
x ¢ T nov o jatx Ve x VY T PR e s (k
AN —~ Ta j r Tavr W\ - a’ ] ' TalVr
v=l L ~r=1l a ~ N v, a'
rf=m +1
p eV v Y «I
x o({m"} (m*7} 5 (&7} .
: J
The last factor in the braces can be reduced by separating out the
divergent terms:
JN { \-nlv erf{'v mv ! m’v ! o ~ > jV
moyo) : — <-/ a, (s,1,) )"
a1 & Vo VoV, ViV TV, e a’
=l lgvg 5V 3 im-3T)r ) Pt 3 a /
- ¥ % -~ jl ”]l
~ \ - 1Y 1 !
<3? 7 (£, 5 8) JPm -3, m'- ] .pv,pv)l
where
v L,V U %
P(37 5, 3" s, P)
- .V VoL,
Loy 3 NI (5 e v
= (-1) T lak » a f(k)) 1 fa'k oyl £ (k)
T a “a / v rt Lo -
r=1 - a 7/ \r'—_—j +1J a'
A 3 (kl,..., I
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Again one defines a divergence-free "residual” by e

v v
VoY P, 3™
n(s’, 37y - Edad

3Vt v

so that

where as usual,

- e p',-e p, e’
vV . * N _ 0 : 1% _ i
By = (5 8) =

a I lk-p, E-p, |
. 2 L ; j
[(2x)° 2x,] Y

Now suppose we again define the sequence of numbers

r ’ e Crp, - en

Big z dBk'f;(k) Q - kv. ;

- 3 2 . By

Q - [ (exn) 2ko]

s e (p', - e’
Bf; = [ &k £ (k) 9 - ’ . LA {
. J & 3 5 i * Py,
Q [ (exn) 2ko] -

and transform from the variables Qé s Y to €., , € :
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Then a 1ittle additional algebra will exhibit the result

M- = F exp 1z 7, ‘ 2 5fa - Bia'-i eXpy- 2z 2, Iefa ia,
@ a v=1 - ) a
. e o "
explif] I |l o w3 )
v ‘jto yyﬂ) s

The orthonormality of the fa’s ‘allows us to write

[ | N v 127 N
. A ~
IE X KN 18 - B~ t = OB
It ‘a‘ v::]_ fa 1a $
where the generalized definition of IE is
-~ -~ ' ~N 2
¥ 1 &k \ xo Py Py )
S T g2 | o E s kep 7 k.op
8 0 (k2+ AE)“ V=l v v /
Thus
~ __]; - ) 2 .
M = exp [ p +aB] exp [- % >§ fefa - eial ] explid]
x I Looomlt L, 3
v L.V v J

-37=0  jtY=0

Since the infrared divergences in

matrix element is finite for

23]

B andiﬁ‘ cancel,

. 2
; € - €, < o
a .

the
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! APPENDIX B

THE PROJECTTION OF ENERGY-MOMENTUM EIGENSTATES

For completeness, the procedure for projecting out energy-

momentum eigenstates will be given here. Consider a typical soft

photon state described by a principal vector [(oca%'}):

: [/ . " .
() = exp [ -3 2 1ol bl = o) @l e (1) €M) M) o)
Jd . A a
s a Asa Q
;-‘ NI n 3 (n) (N)+
= expl -—% 2 lo&a} i 2 0T 2 O¢a id kl £ (k,)e s (k)!
tona =0 """ a,N T g
[
X 5 aak ;’d5kn e x ) MMy oy
a, N\ Q n
Using the formula
1 I ' _ ,
1X
é—;J eV ay = 8(x), (B.2)

it is then possible to project out from Hoza?\'}) the eigenstates

of energy momentum:

(B.1)



P(E,IE)' ,{Oéa}\'}) = exp i— i = Ioza

N

\.

oo n
X ;(d5k ek, 1 [ 2l )M e Mk )] (e 2 )67 (62 &,)- [0)

‘"‘ * i=1" a,}\.
r i @ ' f l
= o1 N L 1 iEy JIKex
= expi-3 % |o " | o T Ay a’ x e
- na o o n=0 " (2x) i
f N
vild B o 5 ol eI ! () (M) v
A | n . %, © £0) e (k) a ()7 o)
i iNa 1‘ .
3
r .
2~ iFy-iK-x g [ - ~ik
1 B x 1dy ~1K*Xx
= — | dy d X exp - ~ Z IOA}\'I e exp X o:"' d5lr e
(2n) na a a.
v £ (x) eo‘)(k) ao\')+(k); )
1 [ [ 1 s NM21 iKex e A3 -ikex
= jd x expi-3 ) IO& I e exp. o 147k«
W - R V- S . Na o o
£ () e M) M) (8.3)

This equation may now be used to calculate the matrix
element betﬁeen states in which there is a constraint on the total
energy-momentum of the soft photons. For example, consider a
process where no soft photons are present in the initial state,
but because of energy-momentum conservabion the total energy-

momentum K of the soft photons in the firal state is fixed.
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From Equation (B.3) one sees that the only effect on our s

calculations in Section V is making the replacement

8

Ao -ikex '
) —— oy e () e (5.4)

4

and requiring an additional integration over the variable X

We make the following new definitions:

Sd T - N
Pyoopl) = (0 n jod T oatr ()]
J \r=1 ~ o o
(kor)
it [ . +ik_,ex .
X ! IT | d5kr, _._\‘_4, ' z}\, fi(kr,) e r EJ'E?]\'} (kl} ) kj'f-jt)
Py ¢ .
T'=1 ?\.’lC _
s ) = (N M o [ Bk gW) g R (g
~ Y] J
so that Equation (53) becomes
v [h o iKex aB T 1 o . A2 F e A )
M = jd X e e expi-3 ), lya , jexp| 2, B&’L 7 J
N a A8 : . “
) (5.5)
oo ,
P 5
X <1 2' mm,m' . .
{ mm

By rearranging the terms slightly, we find
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If the condition yﬂ ’7

~L5-

~ i s1, - 2 ) v (2
o= ot MK B v (3 M s N6 - B e 3 b 6]
J N a .
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The second sum in the argument of the 1ast‘eprnential is finite:

S Ay h o (3 ) ® , -ikex '
K};a (."(s) -B,7) B, =.ﬁ»}_\,“)fdk I8V (%) (e 1) <o .

A a2 s _ :
-B ' < oo is imposed, then the third
x'“a a 8
2

and fourth terms in the argument are also finite. Thus the cancella-

tion of the infrared divergences is again established.
Squaring the matrix element and summing over final states

for the lowest order term as we did in Section VI, one arrives at.

the form
Y M2 = s(0) £ BFTEXB Imoole ”'1"11 [a% K%L op  (5.6)
final CED R
states
where
. st N2
f 3 D’ Y e,
R Il €= = A I A
Ut Jg 0 P, _ _

This is the same general result obtained by Yennie et al.
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APPENDIX C

INITTAL AND FINAL STATES WITH DIFFERENT RESOLUTION REGIONS

Suppose that we are dealing with the situation where the
resolution region & for the initial state is smaller than the
resolution region QF for the final state (<Q'). In other
words, the threshold for detecting low-energy photons is lower
béfore'the scattering experiment than afterwards. Then an infrared
divergenceless matrix element in a form analogous to Equation (64)
may be obtained with.vefy 1ittle additional complication.

Tet us define a domain D of momentum space such that
Qt = QUD where &VD = O.

Then we suppose that there exists a complete set of orthnormal
functions {gj(k)} defined on D. A typical final state is

- now given by

1
i

oxp (17, [P 2,007 )] o (7 1 P g, (k)" (k)|
: i »; ' °J - '
y . Q D '
|f> I£7i’yj}> - f‘l _ 2 b} . . H 2 3 ‘O>.
expiz & ]7i1 i eXPi% z l7~l
S i e
(C:l)

The indices having to do with polarization have been suppressed.
The result of the modification is that in the derivation of Equation

" (55), one must make the substitutions

9
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so that Equation (55) is correct only if we have on. thé right-hand

sidé the additional factor

2 5 .
‘ ’ A i - N s ¥ (0 !
ew -22 M Jew 2o g, M) L,
' A, C "Ny

and the divergenceless sum

@,
= Mmoot
m, m*=0 ?

contains integrals of the functions {gc} over the addition region D.

We now define new coefficients Séx and variables

a similar way to Equations (59) and (61),

b

o = (@, B0

Then the additional (non-infraredndivergent) factor becomes.

o 2 2 \ -
[ [ LlgiN ¢ A ; *'N N ]
exp| X x\zlﬁa l ’efa | +11Im €ra Pa /i -
na
-It is natural to define
2
~ i 1 N
o) = ex| = 318N 1,

e

€1
fa

IS

in

‘(c.e)

(c.3)
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so that FEquation (64) becomes

OfB+OB OB o 2
M = e( N BD) exp - %2 |e Mol M (c.h)
2y 1 L 2% . fa ja ' . ’
. It ¢, Mt i © ?
X exp{ s X2 ‘efa ! je 2 mm,m’
73z m,m’:O

Tn this expression the infrared divergences cancel in the

sum aB%uBQ of the argument of the first exponential. The term

0Bp

e accounts for the difference in resolution regions.' The

condition for finite matrix elements is now

2
z |e A €. Mo< loe)
fa, ia ’
)
(c.5)
S
1
Z iefa ‘ <® .

£
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Fig. ITI-1.

Fig. III-2.

"Fig. V-1.
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FIGURE CAPTIONS

Contributions to the second-order virtual photon
radistive corrections. Diagram (a) corresponds to

the original uncorrected matrix element MO .
Contributions to the second-order corrections due to
emission or absorption of real soft photons. Diagram
(a) accounts for the possibility that the photon does
not interact with the electrons at all.

Representation of /4 noninteracting real soft photons,
m real soft photons absorbed by thé electron line, and
m' real soft photons emitted by the electron line.
Representation of £ noninteracting real soft photons,
mv real soft photons absorbed by the th‘ electron, |

and m’v real soft photons emitted by the vth electron.
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Fig. III-1. Contributions to the sécond-order virtual photon radiative

corrections. Diagram (a) corresponds to the original

uncorrected_matrix element MO .
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Fig. I1II-2.
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(a) | (b)

(d) (e)

" Contributions to the second-order corrections due to emission
Diagram (a) accounts for

eract with the
MU-36178

or absorption of real soft photons.

the possibility that the photon does not int

electrons at all.
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Fig. V-1. Representation of £ noninteracting real sof't photons, m
real soft photons absorbed by the electron line, and m' real

soft photons emitted by the electron line.
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Fig. A-1. Representation of £ noninteracting real soft photons, m”

vi

- real soft photons absorbed by the vth electron, and m'" ,
: real soft photons emitted by the vth eléctron.
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