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ABSTRACT 

The infrared divergences of quantum electrodynamics are 

eliminated to all orders of perturbation theory in the matrix 

elements by an appropriate choice of initial and final soft photon 

states. The coherent state formalism of Glauber is used to 

parameterize these states. It is shown that the condition for the 

cancellation of the divergences requires that these states belong 

to representations of the canonical commutation rules which are 

unitarily inequivalent to the usual Fock representation. 

A comparison to lowest order is made between this treatment 

and the conventional treatment whereby the divergences are cancelled 

in the total cross section. 
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I. INThODIJCTION 

The matrix element in quantum electrodynamics for the 

scattering from an initial state containing a finite number of 

electrons and photons into a similar final state contains an 

integral which diverges logarithmically for small momentum k 

The conventional treatment of this "infrared divergence" has 

been to sum the cross sections over all possible final states 

consistent with experimental measurements. In particular, when 

all states with any number of soft photons with momenta below 

the threshold of observability are considered, the divergences 

cancel, and the calculated cross sections are consistent with 

experiment. It is therefore possible to attribute the original 

divergence in the matrix element to the inappropriate choice of 

initial and final states to represent the experimental situation. 

In an actual scattering experiment, an indefinite number of soft 

photons are emitted, so that in some sense, states which are 

eigenstates of the number operator are unphysical. 

In this paper, we shall show that there exists a representation 

of the photon states for quantum electrodynamics which appears more 

appropriate for describing scattering than the usual Fock representa-

tion in that the matrix elements do not have infrared divergences. 

These states are not eigenstates of the number operator, and are 

paramzed in a manner similar to that used by Glauber Bargmann, 2  

and others. When certain conditions of- convergence are imposed, 
Si 

the states can be shown to form irreducible representations of the 
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canonical commutation rules for the "in" and "out" fields which 

are unitarily inequivalent to the usual Fock representation. Similar 

results have been obtained by Shroer in certain model field theories. 

In the absence of known solutions to the renormalized field 

equations, we make no pretence to mathematical rigor. In particular 

the Feynman-Dyson perturbation techniques are used throughout, and 

most questions of order in limiting procedures, etc., are treated 

heuristically. 

The parameterization of the states and its relationship to 

the usual occupation number parameterization are introduced in 

Section II. We shall make use of the algebra of states developed 

1 
in Glauber's paper. 	In Section III the cancellation of the 

divergences to second order is demonstrated in order to illustrate 

the methods to be used in the succeeding sections. Section IV will 

summarize the parts of the conventional treatment of infraied 

divergences which we shall need. This section is based on a more 

complete discussion made in the article by Yennie, F'autschi, and 

Suura. A calculation of the matrix elements for potential scattering 

in Section V shows that the divergences indeed cancel to all orders. 

In Section VT, the structure and the physical meaning of the representa-

tions are examined. Then we show that by squaring the matrix elements 

and summing over the final states, results are obtained in low order 

which agree with those obtained by Yennie et al. by the conventional 

treatment. Some extensions and generalizations of our treatment are 

ear ....Id oiii in the apperici:i.ce 
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fl. PARANETERIZATION OF THE PHOTON STATES 

The properties of the states which we will find convenient 

to use have been discussed by several other authors" 2  in different 

contexts from the one in which we intend to use them. 

Let (f.(k)) be a complete and orthonormal set of functions 

defined on some region £2 of momentum space including k = 0 

(perbaps all of momentum space). A typical state "belonging to 

the I th mode" is defined by 

n 
exp(a.ai) 	 (a.a. t) 

Jaw) 	 1 
1 2 	0) = exp(-a1 2 ) E 	 - 	Jo) 	( ) 

exp(Ja.J ) 	 n 

where 

a.t = fdk f.(k) a(k) 	 (2) 

is an "in" or "out" creation operator. 

In this expression a. is a complex number which can take 

on any value in the complex plane, a±(k) is the photon creation 

operator which obeys the commutation rules 

[a(k), at(kT)] = 3(k-k'), [a(k), a(k! )i = [ at(k), a±(k' )i = O (:) 

and Jo) is the state with no photons; a.t obeys the commutation 

rules 

[a.,a.t} = 
	a.,a.] = Ia.t, a.tI = 0 	 () 
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From the commutation rules, it is a trivial matter to show 

that these states are eigenfimctions of the destruction operator 

a(k) J a. ) = a.f.(k) 	a. ) 

or 	 a. 	a. ) 	= a. 	a. ) 
1 	1 	 1 	1 

and that the mean number of "photons" is 

(a.JNJa.) = jd3k (a.J at(k) a(k) a) = 1a12 
	

(6) 

It is sometimes useful to note that the state in Equation 

(.1 ) can be "created" by a unitary operator 

D(a.) = exp a.a.t - a. *a.  
1 	 11 	lii' 

	 (7) 

which has the following "translation" property: 

• 	n(a1.) D(.) = exp 	(a..* - ai * . ) i D(a. + 
	(8) 

The states defined in this manner are •nonorthogonal; the 

overlap between two states a.) and I.) is given by 
L. 

(.5) 

)I 2  t(a1l. 	= exp C-Ja1 - 	 ( 9). 
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However, it follows from ( 9) that the states are nrma1ized, i.e., 

	

1. 	 (io) 

Another property which these states possess is completeness. 

In fact it is easy to show that 

l2 • 	 - fda 
1 1 
Jcx.) (a1  . 	

1 
J = 	z Jn. 	

1 
) (n.J  

ti  n. 
1 

where the state denoted by n. is an eigenstate of the number of 

photons whiàh have the momentum distribution described by the function 

f(k), and d2a = d(Rea.) d(Im a.) is real. 

An arbitrary state of the ith mode has an expansion in 

terms of th n-photon statesof the form 

(aj) 
I) = E c Jn) = E c 	' n 	

Jo), 	 (12) 
2 p 	n 	n 	(ni) 

where Z IcJ 2  = 1. We associate with each such state an analytic 

function, 

h(z) = E cn 	 (13) 

	

n 	(n.) 

Equation (12) may then be reitten as 

	

Jh) = h(a.t) Jo) 	 (1) 
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• 	 Using (n), we can expand 	Jh) 	in terms of the new states: 

h) 	= 	fd 2 ai  Jai) (aj h(a.t) 	0) 

(15) 

= 	f 2c 	la.) h(a.*) exp(-Ja.J2) 

In (i) we have used the fact that the states 	ja.) 	are eigenstates 

of the destruction operator 	a. 

a. la.) 	= 	a.Ia.)  
1 	1 	 1 	1 

In a similar fashion, the adjoint state vectors 	(g I can 

be shown to possess an analogous expansion, 

(gJ 	
= 	

f[g(*)}* (.Jexp(-Jj 2 ) d2 . 

• 	 A basis for the whole electromagnetic field is the set of 

vectors formed from all direct products of the states 	Ja1 ) of the 

• 	 individual modes there the 	a. 	are allowed to range over the whole 

complex plane 

and the mean number of photons in such a state is 

, 1 a.12 	 (19) 
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Equations (13), (15),  and (18) ensure that states containing 

a finite number of photons (the usual Fock representation) can be 

expanded in terms of the states 	Ia.)) which satisf'y 

This will be shom in Section VI. However, this restriction will 

not be imposed in the discussion that follows, i.e., we shall allow 

for the possibility that there exist states in which the average 

number of photons is not bounded.. 



• 	 III. CANCELLATION OF TBE INFRARED DIVERGENCES 

TO SECOND ORDER 

In this section we shall demonstrate the feasibility of our 

scheme for cancelling the infrared divergences in the scattering 

amplitude, and compare it with the conventional method for handling 

the divergences in the cross seàtion. In both cases, a simple 

calculation will be made in second order of the electronic charge e 0  

As a concrete example, let us consider an electron scattering 

from a potential. The zeroth order matrix element, given by the 

diagram in Fig. 111-1 (a), we shall call M0 (p,pl). The second order 

corrections to this process are given by the diagrams in Fig. 111-1 

(b), (c) and (d). Straightforward application of the Feynman rules 

with appropriate renormalization will show that the latter three 

diagrams contribute 

M1  = M0 a+m1 	 (20) 

where a is the fine structure constant, m1  is finite, and 

(  d k 	L 	L 	 L 	 (21) 
2p' - k 	2p -k 

B 
- 	1 	 ( 

k2- 2 '\2p'.k - k2  - 2p.k - k2 j 

p t  and p are the electron momenta in the final and initial state 

respectively. Letting the fictitious photon mass A go to zero, we 	 4 

see that B is a logarithmically divergent integral as k - 0 

The conventional solution to this dilemma is to say that the 
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very low energy soft photons in the final state have been neglected., 

i.e. we should also have computed the diagrams illustrated in Fig.III-2 

(b) and (c) . If the momentum and polarization of the soft photon 

Wel k and e 	respectively, then the contribution of these two 

diagrams is 

e0 	
1p''

e 	 () 
 - p • e 	M + K(k) 	 (22) 

[(27t) 3  2k0 ] 2
L k 	p 1 	k 	p 	

0 

where K will always denote some function or constant which does not 

contribute to the infrared divergence. 

Let £2 denote that region of the photon's momentum which is 

below the threshold of observation, i.e. the region which defines the 

photon as being "soft". Then to second order, the cross section a 

isgivenby 

.2 

a = (M0  + a B M0 + )2 + f d3k (2) 2k0 	

e 	
- k 

xM0  +K+" 

= MO + 2a B M 2  + 2a B M ± K + (higher order terms in e 02 ) 

= M02  (i + 2a B + 2a ) + 	 (23) 

where 

f
d3k ____ 

- k - )2 

	

(2) 
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Note that B is logarithmically divergent and, in tact, 

exactly cancels the divergence in. B . The cross section is finite. 

It is possible to carry out this treatment to all orders of 

e0  , and the result aie obtains by summing over the contributions 

from the emission of 1, 2, 	•,w photons is 

a = expf2aB+2aJ 
	

(25) 

where â is a series in e0  which is term by term infrared divergence 

free. 

• 	 We shall now repeat the calculation for the scattering process 

in which the photon states are parameterized as in Sécion II. Thus 

• 	the initial and final states of the photon are specified by the 

sequences of complex numbers (a x) and 	respectively. The 

additional superscript 2 distinguishes the two polarizations of 

the photon. 

The initial state may be expanded in the following ñanner: 

! aX) ) = exp(- 	IaI 2 J exp( 	aaX  a 	}Jo ) 	(26) 
a,. 	 a,?. 

2 
= (i Jaa 	+ •..) (I + 	aa a 	+ •..) jo) 

a,X 	 a,X 

where 

x 	
j d3k  fa(k) e 	(k) a(k) 	 (27) 

a a 
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and e 	(k) is the poarizatjon vector. For the final state, 

substitute 7 	for a a 	a 

We must now consider all diagrams in Fig. 111-1 and Fig. 111-2. 

With some foresight we will find out that a 7. and 2'a are proportion-

al to 	Therefore, to second order, the contribution of 

Fig. Ifl-1 to the scattering matrix element is 

M0(l 	
' 	 Ia x12 (i I )+aBM0 +m1  

a,. 	a 	 a, 7'. 

The diagram of Fig. 111-2 (a) gives us 

MO 	aX 7aX 
I 

N 	 / 

Fig. 111-2 (b) and (c) contribute 

M0 X:a 	[(2) 2k0]2 eb 
	

e 	
- k e 
	

)f:k 	+ K 

while in a similar manner, Fig. 111-2 (c) and (d) contribute 

• 	 ( 	d3k 	• 	 (x) 	 (X) \\ 

MO - 	

7a 	
[(2) 2k0]2 e0 

	e 	- 	 e 	
)a 	

aX + K 

Thus the total contribution to the matrix element to second order is 	• 

	

7 	
• 	 2 	• 	 2\ 	 7 M 

= 	
Ja 	

- 	

) + aM0 ~ M0 ( 	a7' yX 
a, 7'. 	 a, 7'. 	/ 	 \a, 

	

MO{a
j3F e( 	- p 

,) 	

f*(k) 7*X 

-. a (k) aa ) + K + higher order terms in e . 
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Now suppose we define the following sequences of constants:• 

/ 

iaX 	d3k f:(k) 	
(  

[(2 	2k 	
]2 

0 
 

fa 	
f*(k) 

. 	/ 	[(2) 	2kb] 

and we let 

a 	
= 	ia 	' 7a 	fa  

Then 

M 	= 	M0 	 ) 	l 	- fj+aB) 	K+ 

 

= 	M0  (1 + a B + a 	) + K + 

• 	 The last step follows from the orthonormallty of the 	fs a' 

Note that for this particular choice of photon states, the 

infrared divergence has been removed from the scattering amplitude 

to lowest order. 	It should however be emphasized that in order to 

make this cancellation work, it was not necessary to define the 

4- • 	 sequences of coefficients 	(p.) 	and 	
ia 	exac.ly  as in Equation (28). 

What mattered was that the differences- 	be as definedia  

in Equation (28) for infinitesimally small 	k , i.e., 

fa - Pi 	= 	j 	d3k f 	(k) :1(k) 	, 	 (281) 
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where 

1 	7, 	(x) 	(x) 

	

urn 	1(k) 	
- 	

e 	
-k  e 
	

(28) 

IkI -+0 	 [(2t) 2k0] 	 / 

This is essentially equivalent to saying that if we had let 

	

aa  = ia 	ia +€ .7a 	fa 	fa 	 fa = 	+€ 	where 	and. -  

are defined by Eqpation (28), then convergence would be assured if 

- € 	<CD 
i ia 	a a 

In ±act,the generalization of the scheme to all orders of e 0  will 

show that this last convergence condition continues to be true. 



IV. SEPARATION OF TEE INFRARED FACTORS 

The following exposition of the conventional separation of 

the infrared parts from the matrix elemeit can be found in the review 

article by Yennie et al. We will summarize here thcse parts of the 

conventaR1treatment which we shall use in our own scheme. For 

simplicity, we again study the example of an electron scattering 

from a potential, although similar results can be obtained for more 

general situations. 

Consider a process in which there are a fixed number of 

photons and an electron of momentum p in the initial state, and 

a fixed number of photons witli thé scattered electron of momentum 

p' in the final state. The photons may or may not have interacted 

with the electron line. The complete matrix element for this process 

is given by 

co 
M(p,pt) = 	M(p,p) , 	 (31) 

n=O 

where M(p,pt) corresponds to the sum of all diagrams in which 

there are n virtual photons which. can be distinguished from the 

potential interactions in the Ubasic  process" M0  . The real photon 

variables have been suppressed. 

The quantity p (k1, •k) is defined by the relation: 

d1 k 
Mn  = ni I 	j i 	

2 	2 	. 	pfl  (i, . . k) , 	(32) 
=l k 1  . - A + 1€ 
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where A. 	is thephoton mass which we allow to approach zero later. 

It has been shown that p
n  is of the form 

p(k1, 	k) = s(k) 
n-l1' • .,k) + 	(l) (,  . . 

	 ; k 	
() 

where S(k.) contains the k infrared divergence, andn have the 

form 

[~e2 )   /•2p' - k 	2p - k i (
2 	

( 
)) 

 \ 2•k-k 	2pk-k ! 

(1)  The remainder 	has no infrared divergence in k, and its 

infrared divergence in the other k's has not been made worse by 

the separation. 

By iteration of Eqpation (33) p(k1, 
• kn) can be expressed 

as a sum over all permutations of the k's: 

Pn(ki•••k) 
= perm 	 h-r) 	il s(k1) n-r (k1,,k)(35) 

The functions 	are noninfrared and symmetrical in the k's. If 

we adopt the definitions; 

aB(p,p') 	f dkS(k); 

k 	

(36a) 

d 
m(p,p') 	

rl'"n, 	(6b) 
i=l k. 

i 
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then substitution of (32), (55), (56a),and(56b) into(51) results in 

the simple expression: 

00 

M = exp ((YB) E m 	 (e31 
n=O 

In this expression m = 
PO = 	= M . The m 1 s in(37) are 

divergence-free, so that the whole infrared divergence has been 

isolated in the argument aB of the exponential. For future 

reference, we can write lown the form of Re(aB) which follows 

from (34) and (56): 

2 	r 	/2p 1 -k 	2p-k 
Re (aB) = 	e 	/ 	d k 	

2 	 2 (2) 	J (k2+ A 2  ) 2 	
2k-A 	2p.k-A 

The extraction of the infrared contribution to the matrix 

element for the emission of real photons has a form similar to that 

in Equátion (55). In this case we let p(k1, 	k 	be the matrix 

element corresponding to the emission or absorption of n undetectable 

photons with momenta k1, . . k, and for some arbitrary order in 

the virtual photon corrections. It has been shown that 

= ± 	n-ll'"n + j(k1",k 	kn) (39) 

where 	(k) is the factor containing the infrared divergence, and 

has the form 
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r 	(?) e 	pe 	p.e 
k 

[2(2kl 2  

and the (+) and (-) signs correspond to emission and absorption 

respectively. Again the remainder 	is divergence-free in 	* 

k, and the divergences in the other kts  is no worse for the 

separation. 

It can be shown that the iteration of(39)  leads to the form 

=E 	F, (_l)m r , (r) , • ll s(k.) n_r 
r+1' 	•kn), •(i) perm r=O 	 1=1 

where the functions 	are noninfrared and symmetrical in the kTs, 

and m corresponds to the number of absorbed photons. 
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V. CACJLATION OF INERARED DIVERGENCES TO ALL ORDERS 

In this section we return to our om scheme to eliminate the 

infrared divergences. Some combinatorial algebra will be needed to 

calculate the matrix element for the transition from a state of 

electron momentum p and photon "quantum numbers" 	to a 

state of electron momentum 
p 7  and photon "quantum numbers" 

, where again 

ICa )) = n 
	(Ce a 	dk 	e(k) a(k) 

a 	
a 	 2 	 - 10) 

exp 	Jc 	I i 

Consider all the diagrams represented by Figure V.1, in which 

there are m real photons absorbed by the electron line, m' real 

photons emitted by the electron line, and Z photons whichdo not 

interact with the electron at all. 

9 
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The matrix element f or the process (a 	
"c 

is then a sum over all diagrams of the kind shown in Figure V.1 for 

all values of . m, mT, and t
, and with the proper factors determined 

by Equations (42). 

Considerations which enter the calculation of this matrix 

element are explained below: 

There is an infrared divergent factor eB due to the 

virtual photon corrections, (See Equation ()). 

The overlap of the I initial-state noninteracting 

photons with the Z final-state noninteracting photons 

contributes a factor 

E 	y*Xjd3k f* (k)f(k)(x)(k )(')i = 	r , 	C 	kk ac 	(k) p,a,c, 	 - 	 - 	

5 5 

a,c 

Equation (41) gives the contribution due to the interaction 

of m initial-state photons and m' final-state photons 

with the electron line: 

[) 	 rn-i-rn' 	7t 

	

E 	.z 	.(1)rn( 

perm t=O 	. 
k's  

(44) 

X
, -t t+i 	k m  

t(rn+rn'-t)! 

Contribution (c) must be integrated over the momentum 

distribution that is obtained from the formal expansion 

of the initial and final states (See Equation 42): 
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V I 	 [7I} 

	

fl E 	 fl 	E 	Jd3k,(k,) 	(k1, 	, k 	)! 
a 	- 	 ,' 	 =m±l X, c 

(145) 

The formal expansion of Equation (142) also leads to the 

factors 

	

1 	1 	 ( 	 2\ 	/ 	 2\ 

Cm+T 	Cm1 ~ 	
exp 	

a,X 
a! 

) 	
I7! 	 (146) 

In addition to the above, there is a comhinatorial factor 

which accounts for the nurrther of ways that (m+) initial-state 

photons and (m'+) final-state photons can be distributed among m 

initial--state interacting photons, mt final-state interacting 

photons, and 	noninteracting photons: 

(m+)i 	(m'+ 
m'! 1 

After summing over all numbers m, m 1 , and t, we arrive at 

the following expression for the matrix element M 
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= e 	
( 	c 

 CeB 	

=O m=O ra'=O [(m+)t 	(m'+)tJLmm 	J 

2 

	

[ex
-r

X 	(-* z 	)exp 	I I )][ 	L aa 7aX I 
\ X,a 	/ 	X,a 	/ 	X,a 

	

[-(r--1
II Z a 1d1rfar ( 
	

y*cXlj(dkr 	kr  ) 
• 7., a 	J 	 // r =m+1 X, C 	- 

1 
tn+m 	

(k,k 	

j 	

()*-i)m+m 

Another! factor corresponding to the contribution from the 

scattering of photons by photons could have been included explicitly, 

but since this term does not contribute to the cancellation of infrared 

divergences, nor does add to the divergences, it has not been considered 

in this analysis. 

Making the appropriate cancellations, and combining the terms 

with a little bit of careful counting, we arrive at the expression 

	

Go 	co 	co 	 I m 	' m. 	• ni. 

m=O m. m'=O  m 
	La,X a

•  a 	j=O jT=O ji(m-j) 	j T  

Xj-
ax' a1fc 

	) 	

::':' 
exp - 	Jcza  I 	exp 	2 	1a 	' 

\. 	X, a 	• / 	 7'., a 	7 

7 
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where 

dk(k) fa' 
92 

E  d k (X r )(k ) f*(k), 

and 

P. 	= (1)i( II fd k E a Xf (k )) 

	

- 	 a a r 

(1i9) 
• 	(jt 	r 

X 	Jdk, J, 	j+j1 (k1"k+1) 

Definin the "residuals" rn. 
j,J 	

by. 

P. 

	

rn,1(1Pf) = 
	

(50) 

and reordering the sums in (52), we can write 

• 	 r 	 • 	2 	r 	21 	r 
M = e exp - . 	al. expH 	E  'a 	

exp L 
t. 	X,a 	 L 	X,a 	 .a 

• 	 I 	• 
• 	

1 

X exp I -E aX(f ) exp Z *7\. (f* X) 	 m 
• 	 .L 	

a 	[X,c 
C 	c 	Lu,m=O 	

m,m 

To simplir the notation further, we define the coefficients 

(* 	
) 	 (52) 
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Since the function S is real, Equation (55) becomes 

	

r 	 2 	- 	 2. 
cY,B 	 7 	i 	- 	7'. 	 7'. *7  

M = e exp- L. aa 	exp - 	7 	exp 	0a7a exp- L 0'a a1. 

7',,a 

C 	 1 
I 	co 

	

) exp i L 	a 	aJ 	
m, 	i'f 	 (53) 

lm,m=O 

By Equations (28) and (52), 

a 	fa 	ia 	 (5) 

It is convenient to transfo. from the variables a ' 

to the variables € , c 	defined by 
ia 	fa 

	

. 	 . 

7a = fa + €
f 	 +€ a 	ia 	ia 	 (55)  

Thus 

2 

	

1 	

fa 	

'.  
M = e 	exp 	 5ia ± E. 
	2 	 Ef I + ( i ± L i )( f  + 

- 	 - C 	 - 

	

7'., 	7'. 

oo  

- 	. +E 	) 	-- 	( 	+E 	) fl 	 m 
a.a 	i a 	a 	a 	fa 	fa J 	 m.m 

m,m'=O  
(6) 

	

CB 
= eexp 	-F 2if 	i I 2  _2IEf_ EJ2  + i Im(E.+ fEf_ 	± 

{,o

P7  
innim  

m 	
, 



-2 L1 

where the mode and polarization indices have been suppressed for 

convenience. Using the definitions of 13. 	and  13 	, and ortho- ia 

normality as we did in Section III, we arrive at the important 

result 

M = e 	+ a) 
exp- 	J€ 	

- ejj2}e10 	
mmm l 	(57) 

where 0 is real. 

The argument of the first exponential was shown in Section IV 

to be infrared divergenceless in the limit of zero photonmass. The 

third exponential has modulus unity, and the last sum is term by 

term divergence-free. If the possible states of the system are 

restricted by the condition 

-E 	<aD, 
/— 	fa 	Ia X,a 

(8) 

the second exponential is •nonzero, but less than or equal to unity. 

With this condition satisfied the infrared divergences have been 

eliminated. The interpretation of this restriction is discussed 

in the next section. 
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VI. INTERPRETATION OF TER PHOTON STATES 

In the beginning of this section, we will show that 

Equation (58) defines a separable Hubert space. To do this, we 

study a related space 	which will turn out to be identical to 

the ordinary Pock space . Translations like Equation (75)00  

will not change the intrinsic properties of this space. Finally 

a calculation of the total cross section will relate this whole 

discussion to experiment. 

Much of the mathematical material here will be treated 

heuristically, but a more rigorous formulation of some of the statements 

can be found in the papers by V. Bargmann. 215  

We will define a separable Hubert space 	in the following 

manner: Let fe be an infinite sequence of complex numbers. A set 

of "principal vectors Tt  J(e)) is then defined by the equation 

= 	) = n exp Ie.j Jexp {e. a.t 	JO) 

(59) 

= n exp I 	e.J 2 Jexp [e,ffk) at(k)J Jo) 

and the condition 

2 

JeiJ <cD, 	 (6o) 
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The elements of '' are taken to be the closure of all finite 

linear combinations of the principal vectors. 

From (79) and the commutation rules for a+(k), the inner ,  
p 

product of two elements, J±') = z X. Je.'"J) 	and 
q 	 j=l 

= 	e± 	)), is given by  
Pk k= 1 

(f1f) = 	jexp 	
e*(3)e(k)1 

ex+ 	Je ) J expz 1e1If 

(60) 

In particular, the inner product of two principal vectors 

and 	ei)) has the property 

!((efl  2  (k)))1 = exp( 
	e  (3)e(k)] exp 	e(3exp 	e)6/ 

2  

	

= exp-E ec- 	
211 	 (61) 

so that the principal vectors are all normalized to unit length. 

Moreover, by Equation (60), no two principal vectors are normal 

to each other. 

The properties of the space could in fact have been derived 

by using Equation (61) instead of Equation (9), but we wish to retain 

the connection with the previous sections of this paper. 

The separability of ' follows from the existence of a countable 

	

sequence of vectors which is dense in - 	. Let r(®.)) be any 
principal vector. From Equation (59), it is known that for any 

> 0 there exists an integer N such that E Fe.! 2 < 
i>N 
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Moreover, for any I <N and 8> 0 it Is always possible to find 

rational numbers (R 	such that le RI2  <8 

Consider a principal vector Ice')) such that e' = 0 for 

I > N, and e = R. for i <Ir 	iet z le. ]_ j2 A2  . Then 

- 	<N5 + 

and 

I Im F, 9%! 	= I Im E 9%. + Im Z 9 (e! - 9. ) 
1 	 1 	 1 

E 9  (eT - 

<zIeI2 zp 

< AJN8 + 

Thus, 

f[ei)) 	= 2 - (Ce)J[e))  

= 2 -exp1- zIeI 21exp[_ zle'J 2 ] 

{exp[z e e']+ exp 	9i j  

= 2 -exp -•- E Je' - el 1 expJi mi Z G*Qj 
1 	 1 

+ exp 1 Im E 99 
1 

21-xp1- z Ie - el2i 	icos rm 	I 
r 

< (A+ 1) (1c6 + 	 ('62) 



Since 	(e.) ,3. 0  and S were arbitrary, we have shown 

that any principal vector can be approximated by another principal 

vector belonging to a denumerable set. The denumerable set which 

consists of all finite sums of principal vectors like (e!)) is 

dense in ' 

• 	In the case of massless soft photons, there is no reason to 

restrict the photon states by Equation (59). Let f•(°)) be a 

sequence of complex numbers which are not square-summable, i.e., 

( 

	

e. ° j 	a 	 (6) 
• 	 . 

1 

Then the states defined by the complex numbers fe.) , and which 

satisfy the condition 

2 

	

0 	<, 	 (6) 1 	i 
1 

form a separable Hubert space °  with all the properties of 

except Equation (60). 	 is unitarily inequi1ent to, i.e., 

it forms a unitarily inequivalent representation of the canonical 

commutation rules. 

• 	 In Section II we discussed the connection between the Fock 

states and the principal vectors for a single mode. We will now 

briefly study the relationship between the occupation number 

parametedzation and the principal vector parametLzation. 
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The states in the Fock space 4 00 
 are specified by a 

set M of infinite sequences of non negative integers Cm.) , 

or "occupation numbers of which a finite number are different 

from zero, and the limit sequences of such vectors. An orthonormal 

basis of Fock space is given by 

\ m. 

	

) = II 	____ 	jo) 	 (65) 

	

m) 	
j 	'jm. 

1 

An arbitrary state f) of 	aJ 
is given by 

!u 	) , 	 (66) = 	
(m) 	Cm) 

Cm) €M 

where the complex coefficients 7() satisfy 

2 
L 	7'ç mJ <co . 	 (6) 

(m)cM 

At this point, it should be apparent tbatcco, since 

ni 

(e i  a 
t) 	 (e) 1  

ICe.)) 	= 	 Jo) = 	 ii 	
1 	Ju 	) 	(68) 

1 	 (m)EM .1 	M. 	 (m)EM i 

	

1 	 1 

and 

M. 	2 	 2m. 
1 	 1 

	

II 

 (e) CD e. 	
)=(exp 	 <co. 	(69) 

Cm)€M i ifm. 	 i \m=0 	m. 	 i 



MM 

The scalar product of two vectors If) and ff) in 

can be obtained from (65) and (66): 

(m} (m)€M 

Let Q(m.) be the truncated sequence 

Q fl 1 (m.} = 	(m1,m2 1 ... 1  m,O,O,...) 	 (71) 

and define a projection on T 	by co 

E 	
= En m)€M (m.) IU(} ) =.. ( M7m) 

Iu 	) 

where M is the set of all sequences of the form given by 

Equation (71). Then it follows from Equation (6) that EIf) 

converges strongly to If) as n - co. We will show that Ejf) 

is contained in 	which implies that 	 1. 

The expansion of Elf) in terms of the principal vectors 

follows directly from Equation (15): 	 . 

( e *) 1  
Enif) 	

m)(m) 	
t(e1,e2,...,e, o,,...))1 	

(fl).
M. 

where 

d. = exp 	e.JI d(Re e.) d(Im e.) 	 . 	() 
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From Equation ((2), it is clear that principal vectors 	J(e}) 	which 

do not satisfy Equation (6Q) are orthogonal to 	EJf) 	Therefore 

Elf) €'1 and the result 	 follows, i.e., the Fock space 
GD  

built from states with a finite number of photons, and the space of 

principal vectors satisfying Equation (60),are the same space. 

In order to satisfy the requirement Equation (58) for finite 

matrix elements, it will be necessary not to restrict the scattering 

states to 	For if the initial state were in 7 , i e , the 

(aa) 	of Equation (42) 	satisfied the condition 

2 
z 	lal 	<co.,, 	 . (;5) 

7.., a 

then the final state parametrized by the sequence of complex numbers 

ya 	would be given by 

7.. 	7.. 	7.. 	7.. 	. 	7.. 	2.. 
- + fa 	ia 	+ fa 	ia (16) 

where we have used Equation (55), and the 	€s 	would satisfy 

z 	 < co  
I  

But we know from Section III 	that 

= 	

2 	
fI 	k)J 2  d3k 	= 	a E 	

1 fa 	-  ia 
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r'1 

and B - co as the photon mass approaches zero. Therefore 

i 17a %
1 2 
 -~ co 	 (79) 

?., a 

as the photon mass approaches zero. Thus the final state cannot 

belong to 

	

Nevertheless, the coefficients 	define a final state. 

It must be that the final state belongs to a representation of the 

canonical commutation rules ineuilent to the Fock space ' whose 

most outstanding feature is that the average number of photons is 

finite. Not any final state will do, however, for the boundaries of 

this new space 	are restricted by the condition Equation (58), 

One of many ways to satisfy Equation (8) which preserves 

symmetry between the initial and final states is to write these 

state as 

X 
a 	= € 

i 	z 
+. .+€ 

a 	a 	a 	oa 

(80) 

Ya 
=C + 	+c 

fa 	fa 	oa 

and to restrict the states by 

2 

2 	kial < co , 	
: 	

Cf I <  CD 
a 	 2'.,a 

(8i) 
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Then we would get different theories by different choices of the 

sequence (€o$) . With such a choice, the photon states would 

have a dependence upon the momenta of the participating electrons. 

In a practical calculation where one wants to treat, for 

example, the scattering of an electron with the emission of hard 

photons, the hard photons can be dealt with by the conventional 

occupation-number parameterizatiOri, while the soft photons are 

described in terms of the translated principal vectors. More 

specifically, consider the calculation of the cross section for an 

electron of momentum p. scattering into a state with an electron 

of momentum Pf plus several hard photons. The incoming electron 

is associated with a photon field described by a sequence (a } 

and the outgoing electron has a photon field (y) . In Equation 

(77) the "basic matrix element" m00  corresponds to diagrams with 

only the detectable real photons and those virtual photons necessary 

for the process to occur. The terms m. j  for i,j = 0 contain the 

effects of the noninfrared parts of the real and virtual soft photons 

to higher order in the coupling constant. 

• 	 To lowest order in the noninfrared photons, the squared 

matrix element for a particular diagram rn 0 . 
is from Equation (77): 

2 	
2(ReaB+aB)  

= e 	• 	exp[ : kfa %_ €il 
21 	2 . 	(82) 

a 

We can then sum over final states. The result (to lowest order) is 

independent of the initial state: 
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2 	2(Re 	± 	 2 	1 nI r 2 	_j 	
2 in 

L 	MJ 	= e 	 Jm 	I urn (r ) 	Id € 	e 
final 	 00 	 U 	f 
states 

(83) 

= e2(Re crB + c) 
rn 	2 
0,0 

The remaining exponential contains part of the effect of the choice 

of s 1 (k) and the "region of resolution" £ , and we obtain a 

similar result to what Yennie et al. obtained (for a non-energy-

conserving potential). In fact, the "reason" why the results are 

the same is that in the summation over all final states in the 

conventional treatment of the infrared divergence, the main contribu-

tions came from states which were not in the usual Fock space, but 

were in a reducible representation of the canonical commutation rules 

without any restrictions on the sequence (mJ of occupation numbers. 

In particular, the separable space of final states 	is contained 

in this larger, nonseparable space. 

In the above computation, and in Section V, the resolution 

regions for the initial and final states were assumed to be the same. 

One can argue that the resolution region of the initial state can 

be made arbitrarily small, but finite, by waiting a sufficiently 

long time before the scattering experiment. The situation where the 

initial resolution region is smaller than the final state resolution 

region is discussed in the Appendix. 
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APPEINDIX A 

GENERALIZATION OF TES CANCELLATION TO SEVERAL ELECTRON LINES 

For simplicity, only the case of a single electron line inter-

acting with .a potential was treated in Section V. The generalization 

to several interacting electron lines will be outlined here for 

completeness. The extension to other processes such as positron 

scattering, pair production, etc., is obvious and will not be done here. 

Since the cancellation of the infrared divergence in this 

more complicated situation requires a proliferation of subscripts and 

superscripts, all notation pertaining to the photon polarization will 

be suppressed until the final steps of the proof. 

The initial state will consist of N incoming electrons with 

	

momenta p1 , p2  , ... 	
N and a photon state 

These will scatter into final state of N outgoing electrons with 

momenta p11 , 	. 	 N and a photon state 

The "resolution regions" 2 of the initial and final state are 

assumed to be identical. The interaction is illustrated in Fig. A-i. 

The matrix element is given by the following considerations: 

(a) Due to virtual photon corrections there is an infrared 

divergent factor F = exp(aB), where the generalized definition of 

B is 

	

2W 	7 2p.e. - k 	2pM. + k 
-i1dk 	' ee ( 	 + 
8n3 	k2- A2 .. 1 J 'k2  2k pie. 	k + 2k . pê 
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and 6. = + (-) if electron line i is outgoing (incoming). The 

sum is taken over all 2N outgoing and incoming electron lines. 

('b) The overlap of t initial state noninteracting photons with 

final state noninteracting photons contriljutes a factor 

	

( 	a 
1. 

The interaction of m initial state photons and m' final 

state photons with the N electron lines gives 

	

V 	,V 

	

N m±m 	v 	/ t 

	

mV}(mTV)) 	 ()m 	T 	( 	n 
v=1 	t=O 	 perm "S . i=l 

k's 

	

m- t 	
k 	

m' 	t (mV 	mtV - 

The superscript V indicates which of the N electron lin 5es 

participates in the interaction. Thus 

N 	 N 
V 	, 	 T V 
m , m = 	m 

	

v=l 	 v=i 

Note that the alDove expression is exactly the same as the expression 

(c) in Section V, except that a product is taken over the contrfbu-

tions from N electron lines. 

The photon momenta k in (c) must be integrated over the 

momentum distribution given by the set of functions 
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V 	 V 	V 
N i/rn 	 ( 	 \ 7 m ± rn' 	. 

a I  d k 
V 	

(k 
V))( 	 * / dkV f*(kV)F 

	

v=l \r=l a a J 	r a r / 	 a 	r a r 
'r=rn+l 

x 	rnVHm) ; {kv)) 

Formal expansion of Equation 	2) again. leads to the 

factors 

____ 	1 	 2 	 2 
cm + 	(m ± 	

exp[ - 2 Jaa  I exp [ _ 	'a' 

In addition to the above, there is a combinatorial factor 

which accounts for the number of ways that the (m + ) initial 

state photons and the (m + ) final state photons can be distri-

buted among the N electron lines and the noninteracting photons. 

(m + 	 (m+ t) 

(II m )n• 	(n mTV ) 

V 	 V 

To obtain the matrix element M , the contributions are 

summed over all values of mV , mtV and 

co 	N 	cc 	o: 	r 	 •1 
M = F 	r 	) 	 - 	

1 

=O v=l 
m ' =O 	m=O 	(m 	

(m?+ Z )T j 
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1 

	

(m + 	 (m + 

V7)2? 	(ii m'i i 

2 	 21 

	

X expH 	 exp- 2 L 	'a .1 a 	 a 	 a 

V 	 V V 
N 	m 	 - 	 m ±m' 

IT 	 d 	
V 	

(k 
V)( 	 d3k* f* (k V); 

Li ir=i - 
	a j 	r 	a r 	, 	

a') 	r' a 7  rt 
r =m +1 

x p((m
V 
 ) { m'

V 
 ) ; (- 

V 
)( 

) 

The last factor in the braces can be reduced by separating out the 

divergent terms: 

I 	V 	 V 

	

N cm 	in' 	 V 	 V 

	

ri) 	 m 	 m' 	: 

v=i [v=0 	,v=0 	jV?(mV 	V) 7 	7 V t ( 7 V 	tV)1 E 	a'a) 

(, )it) p( V 	V 	,V 	V 	

, a a 

where 

p ( j V 	7V 	
p 

V , 

I 	 -. 
V( 

II I d2k 	a f (k))( 	II 	!d2k 	
\ 	f*(k) 

r 	a a 	 v j 	r 	a a L 	 'r=l -' 	a 	/ r'=j +1 	a' 

X. (k1, 	
1 ,  •,

V : p 
jV 1 

	
, 	

') ] 
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Again one defines a divergence-free "residual by 

m(jV, .!V) 
= 	pjV, 	7 V 

: 

so that 

I 2 	1 	 2 	 * 
N = Fexp[- 	fa 	exp- - 	H'a 	exp 	a 7a 

Ir 	 r cc 	cc r 	* v 	 V 	v xflexp- 	aiexpi. 	 m(j 
 L L 	 a 	j I 

j=0 j=0 	 ) 

where as usual, 

= 	
d5k f*(k) 	

e0 	 e - p 	
e 

a 	
[(2) 2k0]2 	

k 	k 	J 

Now suppose we again define the sequence of numbers 

e 

ia = 
	d kf*(k) 	 p 	

e 
3 	 0  

	

[(2) 2k0]2 	
k 

d3k f*(k) 	
e0 	1'v 	e]  

	

[(2) 2k0]2 	
k 

and transforpi from the variables a , 7to € , € 

	

a 	a 	ia 	fa 

a 	= 	 , 2' 	= a 	ia 	ia 	a 	fa 	fa 
V 	 V 

tj 
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Then a little additional algebra will exhibit the result 

N 	 o 1 i 	 v 	v 1 	1 i 	 2 

	

l vi = FexP[ 	
Efa 	tia j a 	v-i 	 a 

1 exp[iØ] II Y 	m ( jV, jT V) 1  

The orthonormality of the f t S allows us to write 

N 	 2 
i: =  

where the genezlized definition of B is 

3 	"N 

	

= - 
	 k - p 	k 

	

81r 	
(k + A 2 7, 	 V- 	 PV 

Thus 

	

M = exp [a + a B] exp 	2 ) kfa  - Eia H exp[iØ] 

co 	co 

	

II 	 m(JV 	V 

Since the infrared divergences in B and B cancel, 	the 

matrix element is finite for 

2 ,) 	E 	-€• 	<co 
- 	fa 	ia 



- - 

APPTDIX B 

THE PROJECTION OF ENERC-Y-MOMENTUM EIC-ENBTATES 

For completeness, the procedure for projecting out energy-

momentum eigenstates will be given here. Consider a typical soft 

photon state described by a principal vector 	1. 
a 

= exp - 	Hexp E 	dk fa(k) e(k) a(k) Jo) (Bi) 
a 	7'.,a 

2, o 
exp- E 	N 	N a 1d3k1  f (k1)ea(k) 

a 	n=O 	a, '. 	
a 

E a J dk 	e a 	(kr ) 
a,7'. 	£2 

Using the formula 

LJIXY e 	dy = 
	(x), 	 (B.2) 

it is then possible to project out from 'a7'. 
	the eigenstates 

of energy momentum: 



P(E,K) [a)) = exp [- 
	

X.a 	a 	n=0 

	

X 	Idk 	•dk 	II 	aXf (k. )e(k. )a(k.)] (E-E c. ) 3 (K-z k. ): 10) 
i=l t a,X 	 1 	 1 

a] 	
.L: 	1 	ox e 	e 4  

n=o 	(2iit) 

x 	•k ]I 	a 	 el 	
fa(ki) e(k1 ) a(k.) 	0) 

	

1 	1 	 iEy-IK'x 	 -iur -ik•x 
= 	jdydxexp- 	

a1 e 	exp Laa 	he 	e 
(2it) 	 X,a 

e(k) a(k), 

	

1 	
[x expl- 	alj e±K 	exp 	aa 	

]I.X 

	

(23r) 	 X,a 	 7,a 

e(k) (x)t  a 	(k)j (B.3) 

This equation may  now be used to calculate the matrix 

element between states in which there is a constraint on the total 

energy-momentum of the soft photons. For example, consider a 

process where no soft photons are present in the initial state, 

but because of energy-momentum conservation the total energy-

mom€ntum K of the so:Iit; photons in the final state is fixed.. 
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From Equation (B.3) one sees that the only effect on our 

calculations in Section V is making the replacement 

a 	- 	7a fa(k) ek 
	 (E.) 

and requiring an additional integration over the variable x: 

1 	1 	)-i- 	iK•x 
• 	 dx e 

• 	 (22t) 

We make the following new definitions: 

.13 	 - 
P. 	, (x) E (i) ( 	fl 	d3k 	a 	f (k ) 

r=1 	 a 	a r,. 

(9l) 

x ( 	/dk 	y 	f*(k ) er' 	J(k ,", k. .,) 
r' 21c c 	c r' 	 3±31 i 	3+3 

(x) 	(fe, S 	
= 	

d3k (x) f*(k) 	 (521) 

so that Equation (5) becomes 

- 

	f 	 iK. • 2 	 ,
M =d x e 	e 	

exp - X,a 7a 	
exp L 	a 7a i 

r 	 (B.5) 
00 

m 
rn,m' 

By rearranging the terms slightly, we find 



- - 

= r d x e 	e 	exp 	
[2

1- 1 ~ 
J 	

± (f(x)
*7  

+ (X(x) 
- 	 - 

 
±iTm 

a 	 a 	a 	aJ. 

The second sum in the argument of the last exponential is finite: 

a 	
- 	

i 3 	j(k)j 	(e ' 	-1) <  Go 

x 
If the condition 'a - a 	

<co
is imposed, then the third 

and fourth terms in the argument are also finite. Thus the cancella-

tion of the infrared divergences is again established. 

Squaring the matrix element and summing over final states 

for the lowest order term as we did in Section VI, one arrives at. 

the form 

	

r 	iK.x 
M 	= s(o) e 

2a3+2aB i n  2 
	1 

- c d x e 	± a D 
00 

final 	 (231) -' 

states 

where 

 

- 

1 	 -ikx 

) 
k0 	

- 

kpi (e 
 

4Tr 

 

This is the same general result obtained by Yennie et al. 
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APPKNDIX C 

INITIAL PJD FINAL STATES WITH DIFFERENT RESOLUTION REGIONS 

Suppose that we are dealing with the situation where the 

resolution region 2 for the initial state is smaller than the 

resolution region 2 1  for the final state (Q'). In other 

words, the threshold for detecting low-energy photons is lower 

before the scattering experiment than afterwards. Then an infrared 

divergenceless matrix element in a form analogous to Equation (61 ) 

may be obtained with very little additional complication. 

Let us define a domain D of momentiJiii space such that 

= 	UD where £2UD = 0. 

Then we suppose that there exists a complete set of orthnormal 

functions 	 defined on D. A typical final state is 

now given by 

exp fl 7. d3k  f(k)a(k), expifi Y [d 3kg(k)a(k)J .  

If) 	

= 	1 	

2 	 2 	lo) 

exp 	E 17l j 	
exp 	z l'J 

(ci) 

The indices. having to do with polarization have been suppressed. 

The result of the modification is that in the derivation of Equation 

(55), one must make the substitutions 



- 

y 
X  if e—>y 	/f e 	+ 7 	/ g 	e a 	a 	a J a 	a 	a 

D 

so that Equation (77) is correct only if we have on theright-hand 

side the additional factor 

2 
exp 	lyc,% J 	exp 	E7 	(g* 

X,c 	 X, c 	c 

and the divergenceless sum 

cx 
m m.ni 

m,m=O 

contains integrals of the functions (g} over the addition region D. 

We now define new coefficients P1 7.  and variables e' 	in 

	

a 	 fa 

a similar way to Equations (59) and (61), 

= 	* —(x) 	 = 	+ € 	
( c.2) a 	a' S 	' 'a 	a 	fa 

Then the additional (non-infrared-divergent) factor becomes. 

2  exp[ a 	 - 	a2 + i Im €fa a)i. 

It is natural to define 

= exp 	1 	l27 	
(c.3) 



so that EquatiOn (64) becomes 

(aB+aQ+cz) 	 2 
(c.)4) 

	

M = e 	 expH-E E 	-€ 

exp[_ 	k X2•ti$ 	

fa 	ia

oc)m 

	

fa 	 =0 m,m 
m,m 

In this expression the infrared divergences cancel in the 

sun' aB+aB of the argument of the first exponential. The term

aBD e accounts for the difference in resolution regions. The 

condition for fInite matrix elements is now 

E k fa 	C 
ia 	

<co 

a 
(c.5) 

fa 	
< OD 

a 

LI 
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FIGURE CAPTIONS 

Fig. ui-i.. Contributions to the second-order virtual photon 

radiative corrections. Diagram (a) corresponds to 

the original uncorrected matrix element 

Fig. 111-2. Contributions to the second-order corrections due to 

emission or absorption of real soft photons. Diagram 

(a) accounts for the possibility that the photon does 

not interact with the electrons at all. 

Fig. V-i. 	Representation of £ noninteracting real soft photons, 

rn real soft photons absorbed by the electron line, and 

ni real soft photons emitted by the electron line. 

Fig. A-i. 

	

	Representation of £ noninteracting real soft photons, 

rn real soft photons absorbed by the vth electron, 

and ml 	 real soft photons emitted by the vth electron.. 
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01 

(C) 	 (d) 

Fig. 111-1. Contributions to the second-order virtual photon radiative 

corrections. Diagram (a) corresponds to the original 

uncorrected matrix element N0  . 

- 	 MU-36177 
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(c) 

KA 

d) 	 (e 

Fig. 111-2. Contributions to the second-order corrections due to emission 

or absorption of real soft photons. Diagram (a) accounts for 

the possibility that the photon does not interact with the 

electrons at all. 	
Mu36178 
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• Fig. V-i. Representation of £ noninteracting real soft photons, m 

real soft photons absorbed by the electron line, and m' rca]-

soft photons emitted by the electron line. 



MI 

W 
m' 
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Fig. A-i.. Representation of. £ noninteracting real soft photons, 

real soft photons absorbed by the vth electron, and 

real soft photons emitted by the vth electron. 



ej 	 This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission: 

Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor.-

mation, apparatus, method, or process disclosed in 

this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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