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Abstract
We consider SU(N) symmetric one-dimensional quantum chains at finite
temperature. For such systems the correlation lengths, ground state energy
and excited state energies are investigated in the framework of conformal
field theory. The possibility of different types of excited states is discussed.
Logarithmic corrections to the ground state energy and different types of excited
states in the presence of a marginal operator are calculated. The known results
for SU(2) and SU(4) symmetric systems follow from our general formula.

PACS numbers: 75.10.Jm, 75.40.Gb

One of the fundamental models of solid state physics is the Heisenberg model of insulating
magnets. In the one-dimensional case (‘spin chains’), the spin- 1

2 Heisenberg models have been
studied extensively: most of our understanding of their quantum critical behaviour is based on
the Bethe ansatz solution for the ground state and excitation spectrum [1, 2], mapping to the
sine-Gordon theory [3], non-Abelian bosonization [4] and mapping to the sigma model [5].
Although spin- 1

2 Heisenberg chains are SU(2) symmetric systems, fruitful generalizations
have been accomplished in two different directions: (a) enlarging the representation of the
SU(2) group to study quantum chains with higher spins and (b) introducing higher symmetry
groups such as SU(N).

Here we consider generalizations of type (b) and investigate how higher symmetry
affects the ground state properties (equations (8)–(10)) and finite-size spectrum of quantum
‘spin’ chains. Earlier studies of Affleck [6] show that any one-dimensional system with
SU(N) symmetry is critical, and at very low energy scale these models are equivalent to
(N − 1) free massless bosons. These free bosons, when viewed in the framework of two-
dimensional conformal field theory, are the primary fields of the SU(N)k=1 WZNW model.
Adopting this model, we give an explicit derivation of logarithmic corrections to the finite-
size spectrum of SU(N) symmetric quantum chains. Logarithmic shifts in excited states
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energy levels have been theoretically observed for SU(2) and SU(4) symmetric systems away
from the T = 0 quantum critical point [7–12]. The known results for N = 2 and N = 4
follow from our general formulae (obtained in equations (27)–(28) and the paragraphs below
equation (30)).

A one-dimensional SU(N) symmetric quantum chain of length L is described by the
Hamiltonian [13]

H =
n∑
j=1

N 2−1∑
A=1

SAj S
A
j+1. (1)

Here n = L/a0 is the total number of discrete points (a0 being the lattice spacing) and SAj are
the (N2 − 1) generators of the SU(N) Lie algebra at each lattice site j . For convenience, the
interaction strength and the lattice spacing a0 have been set equal to 1 in equation (1). At each
site j , the generators SAj can be represented by N ‘flavours’ of fermions, ψaj (a = 1, . . . , N),

SAj =
N∑

a,b=1

ψ
a†
j (T

A)baψbj − I/N (2)

where I is the identity operator, and T A are a complete set of (N2 − 1) traceless normalized
matrices so that Tr[T AT B ] = 1

2δ
AB . Equation (2) satisfies the constraint that at each site the

total number of fermions is conserved, i.e.
∑N

a=1 ψ
a†
j ψja = 1.

For such a fermionic system, the theory can be bosonized using non-Abelian bosonization
at low temperatures. In the continuum limit, the bosonized Hamiltonian (Heff) [4] can then be
written in terms of the Kac–Moody currents,

Heff ≈ vs

N 2−1∑
A=1

∫
dx

[
JAL J

A
L + JAR J

A
R + 2JAL J

A
R

]
(3)

where the normal ordered Kac–Moody currents for the left (with Fermi momentum kF < 0)
and the right moving (with kF > 0) fermions are defined as

JAL = : ψa†L (T
A)baψLb : JAR = : ψa†R (T

A)baψRb : . (4)

At zero temperature (T = 0) the interaction term,
∑N 2−1

A=1 JAL J
A
R , in equation (3) renormalizes

to zero, and the sum of the first two terms in the Hamiltonian that are quadratic in left and
right moving currents corresponds to the SU(N)k=1 WZNW model. The fundamental unitary
N ×N matrix field g of the WZNW model is given by

gab = (const) : ψa†L ψRb : . (5)

The field g transforms into the fundamental representation of SU(N)L × SU(N)R which
describes the exact symmetry of the Hamiltonian in equation (3) at zero temperature. It is
known that this fermionic theory is equivalent to a theory of (N − 1) free massless bosons
at the criticality with velocities vs ; they correspond to (N − 1) excitation modes of the
SU(N) symmetric quantum chain that oscillates at different values of kF [6]. Furthermore,
these oscillating modes are primary fields of the SU(N)k=1 WZNW model and their scaling
dimensions (�p) can be obtained from [14]

�p = 2Cp
Cadj + 1

. (6)

For SU(N),Cp (p = 1, 2, . . . , N − 1) is the eigenvalue of the Casimir operator in the pth
fundamental representation (having a Young tableau with p boxes in a single column), and
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Cadj = N is the eigenvalue of the Casimir operator in the adjoint representation (having a
two-column Young tableau with (N − 1) boxes in the first column and one box in the second
column). In a highest weight (�) representation of SU(N), the corresponding Casimir
eigenvalue is given by [15]

C� = (θ, θ)

2

[
m

(
N − m

N

)
+

r0∑
i=1

(bi)
2 −

c0∑
i=1

(ai)
2

]
(7)

where θ is the highest weight corresponding to the adjoint representation and is normalized to
1, m is the total number of boxes in the Young tableau with r0 rows of length b1, b2, . . . , br0 and
c0 columns of length a1, a2, . . . , ac0 . Using this formula we find Cp = p(N −p)(N + 1)/2N
andCadj = N . Hence, the scaling dimensions (�p) of primary fields of the SU(N)k=1 WZNW
model are given by

�p = 2Cp
Cadj + 1

=
[
p(N − p)

N

]
. (8)

For example, in the case of SU(4) the three oscillating components have scaling dimensions(
3
4 , 1, 3

4

)
(for p = 1, 2, 3). For SU(N), the mode (dominant) that oscillates at kF = 2π/N

has a scaling dimension (1 − 1/N) (p = 1 or (N − 1) in this case).
Finite-size corrections to the Heisenberg chain with SU(2) and SU(4) symmetry have

been studied using conformal field theory [7, 17]. The relevance of studying finite-size chains
is twofold. One can not only compare the theoretical results with numerical simulations
and experiments which are limited to the finite size of the system but can also study the
finite-temperature behaviour of the system by identifying the finite size in the imaginary time
direction, which corresponds to finite temperature. To obtain the finite-size corrections of a
one-dimensional chain of length L and with periodic boundary conditions, we first introduce a
conformal mapping from the infinite plane (with coordinate z) to the cylinder (with coordinate
w) via w = (L/2π) ln z. Identifying the length as the inverse of the temperature (L = vs/T )
the finite-temperature results [17] of the ground state energy E0 can be generalized to the
SU(N) symmetric system,

E0(T ) = E0(0)− πT (N − 1)

6vs
. (9)

Here E0(0) refers to the ground state energy at zero temperature. The thermodynamic
quantities such as specific heat and entropy can now be obtained by taking the appropriate
derivatives with respect to the temperature.

Other quantities of interest are the finite-temperature corrections to the correlation lengths
(ξ ) of different modes. These inverses of the correlation lengths, ξ−1, are signatures of energy
gaps (En − E0) between the ground state and the lowest lying excited states (En) that are
created by the finite temperature of the system. Using the general formula for the scaling
dimension (equation (8)), we obtain ξ−1

p of the pth staggered mode,

ξ−1
p ≡ Epn − E0

=
(

2πT

vs

)
�p =

(
2πT

vs

) [
p(N − p)

N

]
. (10)

The temperature dependence of the correlation lengths is in fact modified by logarithmic
corrections in the presence of marginal operators in the theory [17]. The generic form of the
Hamiltonian at the critical point containing a marginal operator φ(x, t) is

H = H ∗ + g0

∫
dx φ (11)
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where g0 is the coupling constant and H ∗ is the Hamiltonian at the fixed point. In our case
(equation (3)), the normalized marginally irrelevant operator is

φ = −D
N 2−1∑
A=1

JAL J
A
R . (12)

For such a marginally irrelevant operator, the Hamiltonian at the critical point (T = 0) becomes
equal to the fixed-point Hamiltonian. In equation (12), D is the normalization constant to be
determined from the two-point correlator of φ. The operator product expansion (OPE) of the
JAL(R) with any normalized Kac–Moody primary field χ is given by [16]

JAL (z)χ(z
′) = JA0,L

2π i(z− z′)
χ(z′) + · · · (13)

JAR (z̄)χ(z̄
′) = JA0,R

2π i(z̄− z̄′)
χ(z̄′) + · · · (14)

where the operators JA0,L and JA0,R are the generators of the global SU(N)L × SU(N)R

transformations, and satisfy the characteristic equations JA0,L|χ(z′)〉 = −T AL |χ(z′)〉 and

JA0,R|χ(z̄′)〉 = |χ(z̄′)〉T AR . Note that
∑

A

(
JA0,L

)2
and

∑
A

(
JA0,R

)2
are the Casimir operators of

SU(N)L and SU(N)R groups, respectively. The two-point correlators of the left currents (for
k = 1) are

〈
JAL (z)J

B
L (z

′)
〉 = − Tr

[
T AL T

B
L

]
4π2(z− z′)2

= − δAB

8π2(z− z′)2
(15)

〈
JAR (z̄)J

B
R (z̄

′)
〉 = δAB

8π2(z̄− z̄′)2
. (16)

Using these results we explicitly calculate

〈φ(z, z̄)φ(z′, z̄′)〉 =
(
D

8π2

)2
(N2 − 1)

(z − z′)2(z̄− z̄′)2
(17)

and then compare it to the standard conformal field theory result, i.e. 〈φ(z, z̄)φ(z′, z̄′)〉 =
|z− z′|−2|z̄− z̄′|−2, to obtain the value of the constant,

D = 8π2

√
N2 − 1

. (18)

Thus the normalized irrelevant marginal operator is given by

φ(z, z̄) = − 8π2

√
N2 − 1

N 2−1∑
A=1

JAL (z)J
A
R (z̄). (19)

Perturbation to the normalized excited state (φn) energies due to the marginal operator
can now be calculated [17] from

δ(En − E0) = g0

∫
dx〈φn|φ|φn〉 (20)

where φ and φn are Virasoro primary fields generated by applying Fourier modes of JAL and
JAR on Kac–Moody primary fields. For large length (equivalently, small temperature), we may
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replace the coupling g0 by its renormalization group improved value (up to the log–log term)
[18],

g0(T ) =
(

1

πb ln(T0/T )

)[
1 − 1

2 ln(T0/T )
ln[ln(T0/T )]

]
. (21)

Here T0 is the model-dependent parameter of the system and the coefficient b is defined via
the following three-point correlator:

〈φ(z1, z̄1)φ(z2, z̄2)φ(z3, z̄3)〉 = −b/|z12|2|z23|2|z13|2. (22)

Substituting this in equation (20) we obtain

δ(En − E0) =
(

2πT

vs ln(T0/T )

) (
2bn
b

) [
1 − 1

2 ln(T0/T )
ln[ln(T0/T )]

]
. (23)

The coefficient bn is again defined through the three-point correlator,

〈φn(z1, z̄1)φ(z2, z̄2)φn(z3, z̄3)〉 = −bn/|z12|2|z23|2|z13|2xn−2. (24)

Here xn is the scaling dimension of the Virasoro primary field φn. Substituting equation (19)
in equation (24) and using the OPEs as in equations (13) and (14) it follows that bn is directly
proportional to the sum of the product of the eigenvalues of the generators JA0,L and JA0,R :

bn = − 2√
N2 − 1

N 2−1∑
A=1

T AL T
A
R . (25)

To evaluate
∑

A T
A
L T

A
R , we observe that the full symmetry,SU(N)L×SU(N)R , of the quantum

chain at the critical point is broken by the presence of the marginal operator φ(z, z̄). Only the
diagonal SU(N) ⊂ SU(N)L × SU(N)R is an exact symmetry of the quantum chain. Under
this subgroup, the representation VL ⊗ VR of SU(N)L × SU(N)R decomposes into the direct
sum of various irreducible subrepresentations. If an excited state (|φn〉) belongs to a highest
weight subrepresentation V ⊂ VL ⊗ VR and C is the corresponding Casimir invariant of the
diagonal SU(N) in V , then we have [19]

N 2−1∑
A=1

T AL T
A
R = 1

2
[C − CL − CR] (26)

where CL and CR are the Casimir invariants of SU(N)L and SU(N)R in the highest weight
representations VL and VR , respectively. Therefore, using equations (25) and (26) we find

bn = − 1√
N2 − 1

[C − CL − CR] . (27)

The above formula may also be used to evaluate the renormalization group coefficient b
(equation (22)): since φ(z, z̄) is a Virasoro primary field of conformal dimensions (1,1), we set
φn(z, z̄) = φ(z, z̄) and xn = 2 in equation (24), and hence bn = b. This can be seen as follows.
The Virasoro primary fields JAL and JAR of conformal dimensions (1, 0) and (0, 1) transform
as the adjoint representations V adj

L and V adj
R of SU(N), and since V adj

R is conjugate to V adj
L the

direct sum decomposition of V adj
L ⊗ V

adj
R under the diagonal SU(N) ⊂ SU(N)L × SU(N)R

must contain a unique singlet. Hence, the Virasoro primary field φ(z, z̄) in equation (19)
transforms as this singlet representation and we have C = 0, CL = CR = N in equation (27).
This implies

b = 2N√
N2 − 1

. (28)
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For example, in the case of Heisenberg spin-chain with SU(2) symmetry, b = 4/
√

3 and
for the spin-orbital model with SU(4), b = 8/

√
15. Our result for SU(4) is new. Together

with equation (21), the constant b also determines the correction ofO(g3
0) in the ground state

energy,

E0(T )− E0(0) = −
(
πT

6vs

) [
(N − 1) + 2π3bg3

0

]
. (29)

To determine the logarithmic shifts in the excited states energy levels, we need the ratio
2bn/b in equation (23). From equations (27) and (28) we get(

2bn
b

)
= − 1

N
[C − CL − CR]. (30)

To evaluate bn (and hence 2bn/b) we must know the excited states. In SU(N) invariant
quantum chains, the low lying excited states (|φn〉) correspond to (N−1) primary fields of the
SU(N)k=1 WZNW model with the scaling dimensions �p. These fields transform as (q, q̄)
representations of SU(N)L × SU(N)R , where

q = N(N − 1) · · · (N − p + 1)

p!

is the dimension of the pth fundamental representation of SU(N) for p = 1, 2, . . . , N − 1.
For instance, the lowest excited states correspond to the fundamental primary field g with the
scaling dimensions �1 = (1 − 1/N). This field transforms under the (N, N̄) representation
which decomposes under the diagonal SU(N) into the adjoint and singlet representations.
For the excited states, Tr [g T A], belonging to the adjoint representation, we have C = N ,
CL = CR = (N2 − 1)/2N which implies bn = −1/(N

√
N2 − 1) and 2bn/b = −1/N2. For

example, in the case of SU(2) the ratio 2bn/b = − 1
4 [7], and for SU(3) and SU(4) this is − 1

9

and − 1
16 respectively.

For the excited state, Tr g, belonging to the singlet representation, we have C = 0, CL =
CR = (N2 −1)/2N . In this case, bn = √

N2 − 1/N and the 2bn/b = 1−1/N2. This result is
new. In case of SU(2), the value 2bn/b = 3

4 has been previously obtained [7] but for SU(3),
2bn/b = 8

9 and for SU(4), 2bn/b = 15
16 are the predictions from our general formula.

We consider one more application of formula (30) of current interest—the SU(4)
symmetric quantum chain described by the SU(4)k=1 WZNW model. In this case, to compute
logarithmic corrections to the excited states energy we note that there are three primary fields
with scaling dimensions�p = 3

4 , 1, 3
4 for p = 1, 2, 3 respectively, as seen from equation (8).

The case of p = 1 (and p = 3), as discussed above, is the fundamental field g (and
its Hermitian conjugate ḡ) which transforms under the (4, 4̄) (and (4̄, 4)) representation of
SU(4)L × SU(4)R . From equation (10), the next lowest energy excited states correspond
to the primary field operator (denoted by 
) with �2 = 1. The field 
 transforms under
the (6, 6) representation of SU(4)L × SU(4)R . The (6, 6) representation decomposes as the
direct sum of a singlet, an adjoint and a 20-dimensional representation (as in figure 1) under
the diagonal SU(4).

We now compute the ratio 2bn/b for the excited states corresponding to the 20-dimensional
representation which has a Young tableau with two rows and two columns. For this
representation, the Casimir invariant C in equation (30) is obtained from formula (7): we
find C = 6, and CL = CR = Cp=2 = 5

2 . Thus, for the excited states corresponding to 
 in
the 20-dimensional subrepresentation of (6, 6), we have 2bn/b = − 1

4 .
In summary, we have studied the finite-size spectrum for one-dimensional SU(N)

symmetric quantum chains using both conformal field theory and representation theory of
SU(N). We have calculated in general the scaling dimensions of all the oscillating modes,
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Figure 1. Young tableau for the decomposition of the (6, 6) representation of SU(4). The number
in the parentheses denotes the dimension of the corresponding representation.

and obtained the ground state energy as well as correlation lengths of the staggered modes
for a finite-size system with SU(N) symmetry. The possibilities of different types of excited
states are also briefly discussed and a general formula to compute the logarithmic correction
to the excited state energies has been derived. The existing results for N = 2, 4 agree with
the predictions from our general formula.
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[16] Di Francesco P, Mathieu P and Sénéchal D 1996 Conformal Field Theory (Berlin: Springer)
[17] Cardy J L 1984 Nucl. Phys. B 240 514

Cardy J L 1986 J. Phys. A: Math. Gen. 19 L1093
[18] Nomura K and Yamada M 1991 Phys. Rev. B 43 8217
[19] Etingof P I, Frenkel I B and Kirillov A A 1998 Lectures on Representation Theory and Knizhnik–Zamolodchikov

Equations (Providence, RI: American Mathematical Society)




