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ABSTRACT OF THE THESIS 

 

Discovering strong gravitational lensing  

with deep learning 

 

by 
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Master of Science in Statistics  

University of California, Los Angeles, 2018 

Professor Chad J Hazlett, Chair 

 

The thesis focuses on deep learning methods applied to discovery of gravitational lensing 

events in the universe. Publicly available I-band images of the known gravitational lenses were 

combined with simulated ones and randomly sampled cutouts of the galaxies and stars. Deep 

convolutional networks outperform the conventional discovery methods and achieve up to 0.9984 

mean ROC AUC and 0.9895 mean F1-score on the out-of-sample 7-fold cross-validation. The 

models demonstrated excellent agreement with the latest list of 92 candidates published in the 

literature and created with combination of deep learning and manual analysis by professional 

astronomers.  



iii 

 

The thesis of Ablaikhan Akhazhanov is approved. 

Ying Nian Wu 

Arash Ali Amini 

Chad J Hazlett, Committee Chair 

 

University of California, Los Angeles 

2018  



iv 

 

 

 

 

 

 

 

 

 

To my family who gave me love and support 

  



v 

 

TABLE OF CONTENTS 

LIST OF ACRONYMS .......................................................................................................... vii 

LIST OF SYMBOLS ............................................................................................................... ix 

LIST OF TABLES .................................................................................................................... x 

LIST OF FIGURES ................................................................................................................. xi 

CHAPTER 1 INTRODUCTION ........................................................................................... 1 

CHAPTER 2 GRAVITATIONAL LENSING IN UNIVERSE ............................................. 3 

2.1. Gravitational lenses ................................................................................................... 3 

2.2. Discovery methods.................................................................................................... 4 

CHAPTER 3 DATA-DRIVEN METHODS .......................................................................... 7 

3.1. Mixture models ......................................................................................................... 7 

3.2. Machine learning approaches ................................................................................... 8 

3.3. Deep learning approaches ......................................................................................... 8 

CHAPTER 4 DEEP CONVOLUTIONAL NEURAL NETWORKS .................................. 12 

4.1. Deep convolutional neural networks ...................................................................... 12 

4.2. Gradient descent optimization ................................................................................ 13 

4.3. Regularization techniques ....................................................................................... 14 

4.4. State of the art architectures .................................................................................... 16 

4.5. Transfer learning ..................................................................................................... 18 

CHAPTER 5 TRAINING AND VALIDATION ................................................................. 20 



vi 

 

5.1. Training dataset ....................................................................................................... 21 

5.2. Cross validation training ......................................................................................... 22 

5.3. Predicting new candidates....................................................................................... 24 

CHAPTER 6 CONCLUDING REMARKS ......................................................................... 26 

6.1. Predicting new candidates....................................................................................... 27 

6.2. Future research directions ....................................................................................... 27 

REFERENCES ....................................................................................................................... 29 

 

  



vii 

 

LIST OF ACRONYMS 

Adam 

ANN 

CASTLES 

CIFAR-10 

CNN 

CV 

EM 

F1 

FN 

FP 

FPR 

GD 

GMM 

ICA 

ImageNet 

Inception 

MLP 

Nadam 

NasNet 

PCA 

ResNet 

Adaptive Moment Estimation 

Artificial Neural Network 

Cfa-Arizona Space Telescope Lens Survey of gravitational lenses 

Collection of images that are commonly used to train machine learning 

Convolutional Neural Network 

Cross-Validation 

Expectation-Maximization algorithm  

F1-score, a measure of a test’s accuracy 

False Negatives  

False Positives  

False Positive Rate 

Gradient Descent algorithm 

Gaussian Mixture Model 

Independent Component Analysis 

Large visual database 

Architecture of deep CNN proposed in 20141 

Multilayer Perceptron architecture 

Nesterov-accelerated Adaptive Moment Estimation 

Neural Architecture Search Network proposed in 20172 

Principal Component Analysis 

Deep Residual network architecture proposed in 20153 



viii 

 

RMSprop 

ROC AUC 

SGD 

TP 

TPR 

VGG16 

VGG19 

VLA 

Xception  

Adaptive learning rate SGD 

Area Under Receiver Operatic Characteristic Curve 

Stochastic Gradient Descent algorithm 

True Positives 

True Positive Rate 

Very deep CNN architecture of 16 layers proposed in 2014 4 

Very deep CNN architecture of 19 layers proposed in 2014 4 

Very Large Array of telescopes 

Architecture of deep CNN proposed in 20165 

 

  



ix 

 

LIST OF SYMBOLS 

𝛽 

𝜂 

ℱ 

𝑔 

𝑚 

𝑁 

∇ 

𝑄 

𝜃 

𝑣 

 

𝑋, 𝑥 

𝑌, 𝑦 

Hyper-parameter of adaptive SGD algorithms 

Learning rate of GD and SGD 

Mapping function between 𝑋 and 𝑌 

Gradient of the cost function 

Exponentially decaying average of past gradients of cost function 

Size of the training set 

Gradient, a multi-variable generalization of the derivative 

Cost function  

Parameters of a model 

Exponentially decaying average of squares of past gradients of the cost 

function 

Input features vector (matrix) or set of input samples 

Label or set of labels 

 

  



x 

 

LIST OF TABLES 

Table 3-1. Tabulated Architecture of the LensFlow network ................................................. 11 

Table 5-1. Out-of-sample cross-validation performance ........................................................ 23 

Table 5-2. Predictions on 92 candidates reported in LensFlow paper15 ................................. 24 

 

  



xi 

 

LIST OF FIGURES 

Figure 2-1. Gravitational lensing in the universe: (A) working principle and (B) the Einstein’s 

ring lensing...................................................................................................................................... 4 

Figure 2-2. Dark matter map by CFHTLenS Collaboration7 .................................................... 5 

Figure 2-3. SPRAT spectroscopy of QSO B0957+561 on 19 November 2015 ....................... 6 

Figure 3-1. Architecture of CMU DeepLens .......................................................................... 10 

Figure 4-1. Convolutional neural network .............................................................................. 12 

Figure 4-2. Architecture of VGG16 ........................................................................................ 16 

Figure 4-3. Inception net: (A) its building block and (B) 22-layers architecture ................... 17 

Figure 4-4. Residual block of ResNet ..................................................................................... 17 

Figure 4-5. Example of NasNet’s building blocks: normal cell (left) and reduction cell (right)

....................................................................................................................................................... 18 

Figure 5-1. Training dataset: gravitational lenses are in a green box (left) and non-lenses are in 

a red box (right) ............................................................................................................................ 22 

Figure 5-2. Random sample from augmented training dataset with labels: [True] and [False] 

correspond to lenses and non-lenses respectively ......................................................................... 22 

 

 

 



1 

 

CHAPTER 1  

INTRODUCTION 

Gravitational lensing is a unique phenomenon taking place due to the presence of heavy objects 

in the universe. It offers unique insights into a number of cosmological and astrophysical 

questions. For example, we can probe the nature of dark matter via measurements of the 

substructures of the known gravitational lenses. Despite its importance, only on the order of 100 

lenses have been found so far, including only 10-20 of the most valuable kinds like quadruply-

imaged systems, or highly variable sources. Since lenses are rare and difficult to find, this justifies 

the small sample size (considered in this study). The conventional discovery method is based on a 

manual analysis and comparison of the spectra of the objects. This method, however, takes an 

excessive amount of time and resources and its results are similar to random guessing in their 

overall outcome. 

Novel data-driven methods are a promising alternative to the manual spectral analysis. With 

the recent development of accurate simulations, researchers have obtained access to large sets of 

artificial data. The synergy of the computational power and the development of statistical and 

machine learning enabled fast and robust discovery of gravitational lensing. The evolution of data-

driven methods started from the population mixture models and statistical learning and reached 

the state of the art algorithms, based on deep convolutional neural networks. Latest publications 

report models composed of early deep learning models, such as AlexNet, VGG16, and Inception. 

The main drawbacks include large number of parameters causing overfitting, poor fitting 

capabilities, high computational cost, and long training time. 
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In this work, we explore deep convolutional neural networks and apply them to the problem 

of discovery of gravitational lensing. We exploit the advantage of the transfer learning and novel 

deep architectures to outperform previously published models, tackle the challenge of overfitting, 

and achieve the state-of-the-art performance. 

Following the introduction, in Chapter 1, we describe the physical phenomenon of 

gravitational lensing. In Chapter 2, we stress its importance and motivate the need for fast and 

reliable discovery methods. In Chapter 3, we analyze the evolution of data-driven methods such 

as mixture models, principal component analysis (PCA), gradient-boosted trees, artificial neural 

networks (ANN), and the state-of-the-art methods based on deep learning. In Chapter 4, we 

introduce deep learning techniques, such as convolutional neural networks (CNN), stochastic 

gradient descent (SGD), dropout, transfer learning, as well as the latest architectures including 

Xception, NasNet, ResNet, Inception and VGG. In Chapter 5, we describe our manually assembled 

dataset and proceed with training, cross-validation, and testing. Chapter 6 concludes the thesis by 

summarizing the findings and discusses the future research directions. 
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CHAPTER 2  

GRAVITATIONAL LENSING IN UNIVERSE 

Gravitational lensing is a phenomenon of bending of the light caused by a heavy object, such 

as a cluster of galaxies, between a distant light source and an observer as shown in Figure 2-1 (A). 

The distribution of matter (i.e. object) is called a lens and the amount of bending can be found 

from one of the predictions of Albert Einstein's general theory of relativity. Unlike an optical lens, 

a gravitational lens produces the maximum deflection of light that passes closest to its center, and 

the minimum deflection of light that travels furthest from its center. Consequently, a gravitational 

lens has no single focal point, but a focal line. 

2.1. Gravitational lenses 

If the light source, the massive lensing object, and the observer lie in a straight line, the original 

light source will appear as a ring around the massive lensing object. If there is any misalignment, 

the observer will see an arc segment instead. More commonly, if the lensing mass is complex (e.g. 

a galaxy group or cluster) and does not cause a spherical distortion of the space-time, the source 

will resemble partial arcs scattered around the lens. The observer may then see multiple distorted 

images of the same source. 

There are three classes of gravitational lensing: 

1) Strong lensing that appear in the form of Einstein rings (Figure 2-1 (B)), arcs, and multiple 

images. 

2) Weak lensing that causes small distortions, which require a lot more observations to draw 

conclusions 
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3) Microlensing that brings no observable distortions to light. 

 

Figure 2-1. Gravitational lensing in the universe: (A) working principle and (B) the 

Einstein’s ring lensing 

2.2. Discovery methods 

Gravitational lenses in space help astronomers to tackle the most important questions in 

cosmology, including the discovery of dark matter, imaging the deep space, and exploring 

gravitational interactions between extremely heavy objects in the universe6. Gravitational lensing 

is directly sensitive to the amount and distribution of dark matter. This means that, to measure the 

amount of lensing on a patch of sky, we do not need to know anything about what type of galaxies 

we are observing, how they form and behave or what color light they emit. This makes 

gravitational lensing a very clean and reliable cosmological probe since it relies on few 

assumptions or approximations. Therefore, gravitational lensing helps astronomers build accurate 

models of the dark matter distribution, such as the map shown in Figure 2-27. 

Most of the gravitational lenses in the past have been discovered accidentally. A search for 

gravitational lenses in the northern hemisphere, performed in the range of radio frequencies using 

the Very Large Array (VLA) in New Mexico, led to the discovery of 22 new lensing systems, a 

major milestone. This has opened a completely new avenue for research, ranging from finding 
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very distant objects to finding values for cosmological parameters, which can help better 

understand the universe. 

 

Figure 2-2. Dark matter map by CFHTLenS Collaboration7 

Conventional techniques for discovering gravitational lenses are based on the analysis of 

spectral characteristics of the objects. Gravitational lenses have an equal effect on all kinds of 

electromagnetic radiation, not just visible light. If two neighboring objects have similar spectrums, 

it is likely that they are coming from the same source, which is a good indication of lensing effect 

(see Figure 2-3). Their relative locations can be further used to infer the accurate model of the lens. 

For these purposes, researchers use radiofrequency and infrared telescopes. 

Conventional methods require a meticulous analysis of thousands of terabytes of images and 

expensive spectroscopy measurements. It is of extreme importance to develop computational tools 

that enable well-informed predictions of potential candidate objects. In the next chapter, we will 
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cover statistical modeling approaches and novel machine learning and deep learning methods 

demonstrating promising results. 

 

Figure 2-3. SPRAT spectroscopy of QSO B0957+561 on 19 November 2015 

and 17 January 20178  
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CHAPTER 3  

DATA-DRIVEN METHODS 

Despite significant importance for cosmology and physics, little progress is achieved in 

discovery gravitational lenses. Among the biggest challenges are the rare nature of the 

phenomenon, the lack of high-resolution and low noise astronomical images, and the absence of 

numerical methods for fast and reliable detection in large-scale astronomical surveys. Data-driven 

methods is a promising alternative to manual spectral analysis. With recent development of 

accurate models of lensing effects9,10, researchers have access to large sets of simulated data. The 

synergy of computational power and development of statistical and machine learning enables fast 

and robust discovering of gravitational lensing. 

3.1. Mixture models 

Because of the diverse nature of sources and lenses in the universe, distribution of light 

intensity along the spectrum can be modelled as a mixture of models. Williams et al. applied 

Gaussian mixture model (GMM) to separate point-like quasars, quasars with an extended host, and 

strongly lensed quasars11. To optimize the model, authors use the expectation-maximization (EM) 

algorithm. At E-step, they compute log-likelihood function (1) and membership probabilities 𝛼𝑘 

for each class 𝑘 with current parameters 𝜃𝑡. On M-step, they find 𝜃𝑡+1 that maximizes the log-

likelihood function. EM algorithm stops when the model converges to the optimal 𝜃𝑂𝑃𝑇. To rule 

out a local minimum, the EM algorithm is executed several times with randomly chosen initial 

parameters for the models. 

 𝑙(𝜃) = log 𝑝(𝑋|𝜃) = log∏ ∑
𝛼𝑘

(2𝜋)𝑃/2|Σ𝑘|
1/2 𝑒

−
1

2
(𝑥𝑖−𝜇𝑘)

𝑇Σ𝑘
−1(𝑥𝑖−𝜇𝑘)𝐾

𝑘
𝑁
𝑖   (1)  
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GMM has several practical advantages including high speed, applicability to multiple different 

data sources (many astronomical surveys use different equipment), small dimensionality of the 

data (uses only 9-features vector), and naturalistic representation of normally distributed light 

sources in space. However, its simplicity is achieved by sacrificing fitting power. In particular, it 

only uses aggregated statistics, while ignoring pixel-wise analysis. 

3.2. Machine learning approaches 

Similarly to GMM, researchers explored other types of machine learning, including kernel 

principal component analysis (PCA), gradient boosted trees, and artificial neural networks (ANN). 

In comparison to GMM, these methods are able to fit non-linear data and work “out of the box” 

(one needs to find an optimal number of components in mixture models). 

A good example is presented in Agnello et al.12 The authors broke down the problem into two 

stages: target selection and candidate selection. In the target selection stage, promising systems 

were selected based solely on information available at astronomical surveys. In the candidate 

selection stage, they returned to the images of the targets in order to narrow down the search: they 

used 10 arcsecond (25-by-25 pixels) cutout images, and reduced the dimensionality via kernel-

PCA to 200 features. Reduced data was used to train artificial ANN and gradient boosted trees. 

3.3. Deep learning approaches 

State of the art in data-driven methods of discovery of gravitational lensing are based on deep 

convolutional networks13–17. Authors combine advances in deep learning and gravitational lensing 

simulations to collect large datasets and train sophisticated models. Because deep convolutional 

networks perform pixel-wise feature extraction, these models are inherently applicable to a wide 

range of data sources and do not require additional dimensionality reduction steps. Another 
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advantage is its speed and scalability, which is extremely important as the number of astronomical 

images increases every year. 

One of the latest works on deep-learning-based lens detection is CMU DeepLens17 (see Figure 

3-1), a model for detection of Einstein rings (particular types of strong lens show in Figure 2-1 

(B)). Authors built deep neural network based on ResNet units, previously introduced by 

Microsoft3. They trained and validated the models on a set of 20,000 simulated observations, 

including a range of lensed systems of various sizes and signal-to-noise ratios. Although the 

reported performance of the proposed model is promising, authors do not include realistic images 

that usually have lower signal-to-noise ratio, contain contaminations and additional objects, and 

have larger diversity in nature. 

Research group from Stanford reported the use of a deep neural network composed of eight 

convolutional layers and two fully connected layers to estimate lensing parameters in an extremely 

fast and automated way, circumventing the difficulties that are faced by maximum likelihood 

methods. They also showed that the removal of lens’ light could be made fast and automated using 

independent component analysis (ICA) of multi-filter imaging data. Proposed convolutional neural 

networks can recover the parameters of the “singular isothermal ellipsoid” density profile, which 

is commonly used to model strong lensing systems, with an accuracy comparable to the 

uncertainties of sophisticated models but about ten million times faster: 100 systems in 

approximately one second on a single graphics processing unit13. Despite impressive speed up and 

performance, authors could train more sophisticated models by employing pre-trained feature 

maps. Although they justify use of random Xavier initialization by different nature of the data 

comparing to ImageNet, pre-trained weights could be helpful at intermediate- and high-level 
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feature extraction. Another possible improvement is use of other pre-trained models, besides 

AlexNet, Inception, and OverFeat. 

 

Figure 3-1. Architecture of CMU DeepLens 
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The recently published LensFlow model is based on an early convolutional neural network 

architecture (see Table 3-1)15. Authors combine simulated images and images of known 

gravitational lenses to train the model and produce 92 real candidates. The developed model is 

more computationally efficient and complimentary to the classical lens identification algorithms, 

and it is ideal for discovering such events across wide areas from current and future. The 

combination of simulated and real images prevents overfitting and makes the model applicable to 

real astronomical survey data. However, the use of more complex nets such as Inception, ResNet 

and others might improve the results. 

 

Table 3-1. Tabulated Architecture of the LensFlow network 

Layer Type Data directionality 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

input 

convolution + tanh 

max-pooling 

convolution + tanh 

max-pooling 

convolution + tanh 

max-pooling 

fully connected + ReLU 

fully connected + ReLU 

fully connected + ReLU 

softmax 

1-by-100-by-100 

30-by-96-by-96 

30-by-48-by-48 

60-by-44-by-44 

60-by-22-by-22 

90-by-18-by-18 

90-by-9-by-9 (7290 features) 

1000 

800 

600 

2 
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CHAPTER 4  

DEEP CONVOLUTIONAL NEURAL NETWORKS 

Introduced by LeCun et al.18 in 1998, convolutional neural networks (CNN) gained global 

popularity after triumph of AlexNet19. Inspired by the visual cortex of the brain, CNN can achieve 

super-human performance in computer vision task such as recognition, reconstruction, restoration, 

and motion analysis20. It is therefore intuitive to employ CNN to discover new gravitational lenses. 

4.1. Deep convolutional neural networks 

The core component of CNN is a convolutional layer (see Figure 4-1), which applies a 

convolution operation to the input, passing the result to the next layer. It emulates the response of 

an individual neuron to visual stimuli of a particular pattern or color. The advantage of the 

convolutional layer is sparsity, as it has a small window size and requires much less memory to 

store the weights. For instance, if we use fully connected dense layer, then an image of 100-by-

100 pixels would lead to 10000 weights for each neuron in the second layer, while few 5-by-5 

convolutional filters would require 25 weights each. 

 

Figure 4-1. Convolutional neural network 
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Two other components of CNN are the pooling layer and the fully connected layer (see Figure 

4-1). Pooling combines the outputs of neuron clusters at one layer into a single neuron in the next 

layer. It is usually represented by a simple fixed operation such as mean {𝑥} or max {𝑥}. Fully 

connected layers connect every neuron in one layer to every neuron in another layer. It is, in 

principle, the same as the traditional multi-layer perceptron neural network (MLP). 

Over the last 5 years, CNNs have achieved impressive performance in numerous applications. 

They evolved into sophisticated architectures, also called “deep learning”, which allow the models 

to learn representations of data with multiple levels of abstraction. Deep learning discovers an 

intricate structure in large data sets by using the backpropagation algorithm to indicate how a 

machine should change its internal parameters, which are used to compute the representation in 

each layer from the representation in the previous layer20. 

4.2. Gradient descent optimization 

The engine of backpropagation algorithm is gradient decent (GD) optimization. It is a popular 

numerical method for minimization of the cost function 𝑄(𝜃) by updating parameters 𝜃 in the 

direction opposite to that of the gradient of the cost function ∇𝜃𝑄(𝜃𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ as shown in equation (2). 

 𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝑄(𝜃𝑡)   (2)  

Depending on how many samples of data we use at each update step, GD is divided into batch 

GD, mini-batch GD, and stochastic GD (SGD). The latter attracted far the most attention due to 

its faster speed and inherent capability to avoid local minima of the cost function21. At each step 

SGD stochastically chooses a single entry from new data and updates the parameters. 

One of the major challenges of SGD is choosing the optimal learning rate 𝜂. Depending on the 

data and model, cost function can become extremely nonlinear with numerous local minimums. 
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To solve this problem, several adaptive variants of SGD were introduced. The most popular are 

RMSProp, Adam, and Nadam22,23. RMSProp divides the learning rate by an exponentially 

decaying average of squared gradients: 

 {

𝑔𝑡 = ∇𝜃𝑄(𝜃𝑡)

𝐸(𝑔2)𝑡 = 0.9𝐸(𝑔
2)𝑡−1 + 0.1𝑔𝑡

2

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝐸(𝑔2)𝑡+10−8
𝑔𝑡

  (3)  

In addition to storing an exponentially decaying average of the past squared gradients 𝑣𝑡, 

Adaptive Moment Estimation (Adam) also keeps an exponentially decaying average of past 

gradients 𝑚𝑡, similar to momentum as shown in (4). Whereas momentum can be seen as a ball 

running down a slope, Adam behaves like a heavy ball with friction, which therefore prefers flat 

minima in the cost function space. 

 

{
 
 

 
 𝑚𝑡 =

𝛽1
𝑡𝑚𝑡−1+(1−𝛽1

𝑡)𝑔𝑡

1−𝛽1
𝑡

𝑣𝑡 =
𝛽2
𝑡𝑣𝑡−1+(1−𝛽2

𝑡)𝑔𝑡
2

1−𝛽2
𝑡

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡+10−8
𝑚𝑡

  (4) 

A combination of Adam and Nesterov momentum gave birth to Nesterov-accelerated Adaptive 

Moment Estimation (Nadam): 

 𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡+10−8
(𝛽1

𝑡 𝛽1
𝑡𝑚𝑡−1+(1−𝛽1

𝑡)𝑔𝑡

1−𝛽1
𝑡 +

(1−𝛽1
𝑡)𝑔𝑡

1−𝛽1
𝑡 )  (5) 

4.3. Regularization techniques 

Another common challenge for machine learning is overfitting. In a practical scenario, it is 

likely that without prior knowledge of the data one can build a model that contains more parameters 

than can be justified by the data. One way to overcome this issue is regularization, a technique 
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used in an attempt to solve the overfitting problem in statistical models. Most popular and effective 

regularization methods in deep learning are the dropout and batch normalization. 

The key idea behind dropout is to randomly drop units (along with their connections) from the 

neural network during training. This prevents units from co-adapting too much. During training, 

dropout samples from an exponential number of different “thinned” networks. At test time, it is 

easy to approximate the effect of averaging the predictions of all these thinned networks by simply 

using a single “thick” network that has smaller weights. This significantly reduces overfitting and 

gives major improvements over other regularization methods. It has been shown that dropout 

improves the performance of neural networks on supervised learning tasks in vision, speech 

recognition, document classification and computational biology, obtaining state-of-the-art results 

on many benchmark data sets24. 

Batch normalization was initially proposed as a method for accelerated training since it leads 

to faster and better performance25. However, it is commonly used together with dropout to achieve 

more flexible regularization effect without sacrificing model complexity. The core idea is that in 

deep networks the distribution of each layer’s inputs changes during training, as the parameters of 

the previous layers change. This slows down the training by requiring lower learning rates and a 

careful parameter initialization, and makes it notoriously hard to train models with saturating 

nonlinearities. Authors call this phenomenon internal covariate shift and address the problem by 

normalizing layer inputs. Batch normalization is applied for each training mini-batch and becomes 

an integral part of the model. It allows use of much higher learning rates and simplifies hyper 

parameter optimization. 
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4.4. State of the art architectures 

In 2014 Simonyan and Zisserman of the University of Oxford created 19-layers and 16-layers 

CNN that strictly used 3-by-3 filters with stride and pad of 1, along with 2-by-2 max-pooling layers 

with stride 2. These architectures became widely known as VGG16 and VGG194. Authors also 

replaced large convolutions with two consecutive small convolutional layers in order to achieve 

higher flexibility and a decrease in the number of parameters. VGG was the first CNN architecture 

that reinforces the idea of shrinking spatial dimensions, but growing depth. 

 

Figure 4-2. Architecture of VGG16 

The winner of ILSVRC in 2014 was Google’s Inception net1. It is 22-layers CNN that is built 

out of “inception” building block (see Figure 4-3 (A)). It contains input (bottom green box), 

intermediate parallel convolutions (blue boxes), pooling (red box) and dimensionality reduction 

(yellow boxes) operations, and concatenated output (top green box). The idea behind inception 

module is to perform multiple operations in parallel and increase fitting power of the model. 

Besides inception module, the authors showed that a creative structuring of layers could lead to 

improved performance. Moreover, by avoiding use of fully connected layers, they make Inception 

net computationally efficient. In the next few years, the field of deep learning witnessed truly 

amazing architectures based on these ideas. 
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Figure 4-3. Inception net: (A) its building block and (B) 22-layers architecture 

In 2015, Microsoft set a new world record in classification, detection, and localization on 

ILSVRC with even deeper ResNet architecture3. The model has depth of 152 layers and is based 

on a residual block, which tries to optimize the residual mapping of the data. As shown in Figure 

4-4, we pass the data (𝑥) through two layers of convolution and then add it to itself. The resulting 

function ℱ(𝑥) will learn the required residual. Stacking these modules on top of each other 

achieves super-human performance in traditional computer vision tasks. The main argument is that 

it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. 

Moreover, such scheme inherently overcomes the vanishing gradient problem, as we evenly 

distribute the gradient through regular addition operations. 

 

Figure 4-4. Residual block of ResNet 

Extreme version of Inception net was proposed in 2017 by researchers from Google5. Authors 

hypothesize that the mapping of cross-channels correlations and spatial correlations in the feature 

maps of convolutional neural networks can be entirely decoupled. Xception architecture has 36 
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convolutional layers forming the feature extraction base of the network. Convolutional layers are 

structured into 14 modules, all of which have linear residual connections around them, except for 

the first and last modules. In other words, the Xception architecture is a linear stack of depth-wise 

separable convolution layers with residual connections. 

Recently developed NasNet learns the model architectures directly on the dataset of interest. 

Since this approach is expensive when the dataset is large, authors propose to search for an 

architectural building block on a small dataset and then transfer the block to a larger dataset. 

NasNet creates a new search space (NasNet search space) which enables transferability2. Similarly 

to Inception module, NasNet builds on parallelizing multiple operations and varies their number. 

For example, one may build a deep network from “normal” and “reduction” cells (see Figure 4-5) 

by stacking them on each other. 

 

Figure 4-5. Example of NasNet’s building blocks: normal cell (left) and reduction cell (right) 

4.5. Transfer learning 

A major assumption in many machine learning and data mining algorithms is that the training 

and future data must be in the same feature space and have the same distribution. However, in 
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many real-world applications, this assumption may not hold, which makes a previously trained 

model inapplicable in many tasks. Transfer learning is a research problem in machine learning that 

focuses on storing knowledge gained while solving one problem and applying it to a different but 

related problem. 

Beauty of transfer learning is that it allows us to use previously trained models and their feature 

maps. For example, we sometimes have a classification task in one domain of interest, but we only 

have sufficient training data in another domain of interest, where the latter data may be in a 

different feature space or follow a different data distribution. In such cases, knowledge transfer, if 

done successfully, would greatly improve the performance of learning by avoiding much 

expensive data-labeling efforts. In recent years, transfer learning has emerged as a new learning 

framework to address this problem. Pan and Yang published a thorough review of modern transfer 

learning approaches26. 

Transfer learning is a powerful technique that lets us to employ pre-trained models, including 

state-of-the-art ones such as Inception, ResNet, VGG16, VGG19, NasNet, and Xception. 
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CHAPTER 5  

TRAINING AND VALIDATION 

In the previous chapter, we introduced deep convolutional networks that are used in computer 

vision tasks such as recognition, reconstruction, restoration and motion analysis. Each one of these 

models achieved the state-of-the-art performance. Given demonstrated success of deep learning in 

discovery of gravitational lensing, we hypothesize that such models can be of immediate use in 

this field. 

We train models in transfer learning paradigm by taking advantage of pre-trained feature 

mappings. In particular, we add a few deconvolutional layers to upsample the input image to 

appropriate dimensions. Then we replace the last few layers in the pre-trained model with 

randomly initialized equivalent ones that produce the output of length two. Finally, we apply the 

softmax operation to produce probability-akin output. To avoid overfitting, we introduce dropout 

and batch normalization layers. 

In this work, we use the following pre-trained models: 

1) Inception1 

2) ResNet3 

3) NasNet2 

4) Xception5 

5) VGG164 

6) VGG194 
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5.1. Training dataset 

To build our discovery algorithm for gravitational lensing we collect data from Cfa-Arizona 

Space Telescope Lens Survey (CASTLES)27 of gravitational lenses. CASTLES is an open 

database of known lenses built on hundreds of published papers. It provides a list of objects with 

observed statistics and images at different wavelengths. To be consistent with LensFlow15 data 

and to be able to evaluate the latest proposed candidates, we use only I-band images cleaned from 

noise and artifacts. In addition to this, we collect simulated true positives from the LensFlow paper. 

Assuming that gravitational lensing is an extremely rare event, we randomly sample I-band 

images from Hubble Legacy Archive28 measured with the same technical specifications as in 

CASTLES data. These random images of galaxies and stars are used as true negatives. In addition, 

we collect simulated false positives from the LensFlow paper. 

Finally, we employ data augmentation to combat the imbalanced classes problem. We apply 

the following random transformations to augment the data and assemble a dataset of a total of 

15,000 positive and 13,239 negative samples: 

7) Rotation around center [−45°, 45°] 

8) Zooming [0.9,1.0] 

9) Shear mapping [−15°, 15°] 

10) Horizontal flipping 

11) Vertical flipping 

The overall collected dataset is shown in Figure 5-1 and a random sample is illustrated in 

Figure 5-2. Each image is a single-channel 100-by-100-pixel array of single precision floating 

numbers (32 bits). 
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Figure 5-1. Training dataset: gravitational lenses are in a green box (left) and non-lenses are 

in a red box (right) 

 

Figure 5-2. Random sample from augmented training dataset with labels: [True] and [False] 

correspond to lenses and non-lenses respectively 

5.2. Cross validation training 

In the model selection step, we use a 7-fold cross-validation (CV) procedure, which splits the 

entire dataset into seven subsets. At each iteration, the models are randomly initialized and then 

trained on six shuffled subsets. After an iteration, each model is evaluated on the last remaining 

subset. After seven iterations, we calculate the mean of the performance metrics and report them. 
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We use the area under the receiver operating characteristic curve (ROC AUC) and F1-score 

given by (6) and (7) respectively. 

 𝑅𝑂𝐶 𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝑇)𝐹𝑃𝑅′(𝑇)𝑑𝑇
+∞

−∞
= 1 −

1

2
∑ (𝑋𝑘 − 𝑋𝑘−1)(𝑌𝑘 − 𝑌𝑘−1)
𝑁
ℱ(𝑋𝑘)>ℱ(𝑋𝑘−1)

  (6)  

 𝐹1 =
2𝑇𝑃2

2𝑇𝑃+𝐹𝑃+𝐹𝑁
  (7)  

Since we adjust the original models by adding deconvolutional layers in the beginning and 

replacing fully connected layers in the end, we have a choice of whether to keep the intermediate 

layers intact. In addition, we use random Xavier initializations, that was suggested in literature13, 

for all layers to test if it yields better performance. The highest average CV results (out-of-sample) 

is obtained when the intermediate layers are kept unchanged during the training (see Table 5-1). 

On average, training the full network leads to significant overfitting and degradation of ROC AUC 

below 0.7 (70%). Random Xavier initialization also causes overfitting, as the models cannot 

generalize on the validation set and yield ROC AUC similar to random guesses. 

Table 5-1. Out-of-sample cross-validation performance 

Model name # of parameters ROC AUC F1-score 

Xception 23M 99.84% 98.95% 

Inception 24M 92.69% 80.00% 

ResNet 26M 78.49% 54.33% 

NasNet 93M 74.40% 15.49% 

VGG16 139M 71.72% 56.91% 

VGG19 144M 61.54% 38.23% 
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As one can see from the table above, the best performance was achieved by the models with 

smallest number of fitting parameters such as Xception and Inception. This is a strong indication 

of overfitting in ResNet, NasNet, VGG16 and VGG19 models. Although we used dropout and 

batch normalization, the corresponding ROC AUC and F1-score significantly drop when we cross 

the 25 millions of parameters. Nevertheless, Xception and Inception models achieved the state-of-

the-art ROC AUC and F1-scores. They by far outperform the conventional methods for discovery 

of gravitational lenses as well as early data-driven methods. 

5.3. Predicting new candidates 

To test our best-fitting models against previously published works, we produce predictions on 

the latest 92 candidates published in the LensFlow paper15 (see Table 5-2). The candidates passed 

meticulous manual analysis by experts and were divided into 3 classes: A (most likely a 

gravitational lens), B (there is chance that it is not a lens) and C (most likely not a lens). 

Table 5-2. Predictions on 92 candidates reported in LensFlow paper15 

Predicted 

Probability 

Xception Inception ResNet 

mean std dev mean std dev mean std dev 

L
en

sF
lo

w
 

G
ra

d
e 

A* 0.982 0.041 0.872 0.314 0.767 0.385 

B** 0.618 0.297 0.852 0.290 0.775 0.356 

C*** 0.553 0.336 0.639 0.354 0.657 0.447 

* Grade A corresponds to images that are clearly a strong gravitational lens.  

** Grade B lenses correspond to images that are most likely a lens, but there is a chance they could also be 

artifacts, noise, structures in elliptical galaxies, satellite galaxies, tidally interacting galaxies, etc. 

*** Grade C lenses consist of images that are most likely not a lens, but there is a chance they might be 

gravitationally lensed. 
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As the results suggest, Xception network has the best conformity with the suggested grades. It 

predicts a mean of 98% for “grade A”, 62% for “grade B” and 55% for “grade C”, which is an 

extremely good result given that the model was trained on a completely different dataset and did 

not require manual analysis from professional astronomers. Interestingly, that for grades B and C 

Xception has much larger standard deviation, which confirm that these candidates, as their 

description states, might not be lenses.  
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CHAPTER 6  

CONCLUDING REMARKS 

Gravitational lensing is an exceptionally rare event predicted by Einstein’s general theory of 

relativity. Caused by the heaviest objects in the universe, it is inherently important for cosmology 

and astrophysics. Nonetheless, we have only discovered a little portion of these events predicted 

by our current understanding of the dark matter. The main bottleneck is the conventional discovery 

method, which is based on manual analysis and comparison of the spectrum of the objects. It takes 

infeasible amounts of time and resources. Synergy of theoretical models of gravitational lensing, 

statistical analysis, and numerical techniques led to novel data-driven approaches and enabled fast 

and automated predictions of the new gravitational lenses.  

Data-driven discovery methods evolved from the population mixture models and statistical 

learning into the state of the art algorithms based on deep convolutional neural networks. The latest 

publications report models composed of early deep learning models such as AlexNet, VGG16, and 

Inception. The main drawback of these models is the large number of parameters that causes 

overfitting, poor fitting capabilities, high computational cost, and long training time. 

In this work, we demonstrated that deep convolutional neural networks, commonly applied to 

the most challenging problems in computer vision, have a prominent potential in this field. The 

proposed models achieved the state-of-the-art performance on single channel (I-band) 100-by-100-

pixel images. 
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6.1. Predicting new candidates 

Fine-tooth comparison of the 92 latest proposed candidates revealed a strong conformity with 

a mean prediction of 98% for “grade A” candidates, 62% for “grade B” and 55% for “grade C”. 

The key concluding points: 

1) Deep convolutional neural networks seem to catch important features of gravitational 

lenses and may be extremely helpful in the discovery of new objects in the next decade. 

2) Transfer learning (use of pre-trained models) eliminates long training time and yields 

higher performance. This implies that despite a different domain, astronomical images have 

common patterns with general-purpose datasets such as CIFAR-10 and ImageNet. 

3) Data augmentation (zooming, rotating, shear mapping, flipping) is a simple yet powerful 

method that works well for this problem. 

4) Sophisticated models suffer from significant overfitting. This implies opportunities for 

higher performance with a better dataset and more efficient model architectures. 

6.2. Future research directions 

Among future research directions, the most promising ones include: 

1) Further improvement in the training dataset almost certainly guarantees better 

performance. This include larger amount of diverse data, additional multimodal 

information (e.g. location, additional colors or bands, measurement metadata), and high-

quality simulated data. 

2) Generative models (e.g. generative adversarial networks) can be used either to generate 

new data and learn the feature space of the problem, or to train discriminative models and 

improve false positive rates. 
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3) Advanced feature extraction can lead to higher performance and faster computations. 

These methods include but not limited to novel deep learning (e.g. capsule networks, 

special transformer networks), kernel learning, and image processing (e.g. the phase stretch 

transform). 
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