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Summary

We evaluated ancestry effects on mutation rates, DNA methylation, and mRNA and miRNA 

expression among 10,678 patients across 33 cancer types from The Cancer Genome Atlas. We 

demonstrated that cancer subtypes and ancestry-related technical artifacts are important 

confounders that have been insufficiently accounted for. Once accounted for, ancestry-associated 

differences spanned all molecular features and hundreds of genes. Biologically significant 

differences were usually tissue-specific but not specific to cancer. However, admixture and 

pathway analyses suggested some of these differences are causally related to cancer. Specific 
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findings included an increased FBXW7 mutations in patients of African origin, decreased VHL 
and PBRM1 mutations in renal cancer patients of African origin, and decreased immune activity 

in bladder cancer patients of East Asian origin.

Graphical Abstract

In Brief:

Analyzing mutation rates, gene and miRNA expression, and DNA methylation across tumor types, 

Carrot-Zhang et al. separate confounders and identify ancestry-related effects that potentially 

explain cancer etiology and treatment.

Introduction

People of different ancestries exhibit varying germline genetics (Rosenberg et al, 2002; Price 

et al, 2006) and tend to encounter different exposures, resulting in varying cancer incidence, 

outcome (Freedman et al, 2006; Yang et al, 2011), and molecular characteristics 

(Shigematsu et al, 2005). However, a comprehensive accounting of ancestry-associated 

differences in molecular features has not been performed across cancers or even non-

neoplastic tissues. Moreover, analyses of ancestry associations rarely account for varying 

prevalence of cancer subtypes across ancestries (Sanchez-Vega et al, 2018; Yuan et al, 2018), 

which can obscure differences within subtypes.

The Cancer Genome Atlas (TCGA) is the largest and most comprehensive multi-omics 

oncology cohort (Hutter and Zenklusen, 2018), rendering possible the simultaneous 
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assessment of ancestry associations in mRNA and miRNA expression and DNA methylation 

and mutation across 33 cancer types. Such analyses can improve our understanding of 

molecular and cellular effects of ancestry in at least four ways. First, by detecting novel 

ancestry-associated molecular features and cancer types. Second, by determining whether 

ancestry effects are cancer- or tissue-type specific, or common across types. Third, by 

increasing power to detect the common effects, using combined data across cancer types. 

And fourth, by integrating cross-platform analyses. The wealth of molecular data also 

enables accurate cancer subtype classification (Sanchez-Vega et al, 2018), enabling precise 

accounting of cancer subtype-ancestry associations.

We sought to exploit these advantages to improve our understanding of the molecular and 

cellular effects of ancestry across tissue and cancer types.

Results

Determination of genetic ancestry

We determined the ancestry of each TCGA patient using five independent classification 

methods, each employing SNP array and/or exome sequencing data (Figure 1A). Among 

9,257 patients for whom at least three of the methods provided calls, 9,090 (98.1%) 

exhibited complete agreement, and 99.7% of non-admixed patients exhibited concordance 

with prior ancestry assignments (Yuan et al, 2018). Discordant calls were primarily 

differences in the relative degree of ancestry assignments in admixed patients.

The final data spanned 10,678 individuals of primarily European (“EUR”; n=8,836), East 

Asian (“EAS”; n=669), African (“AFR”; n=651), Native/Latin American (n=41), South 

Asian (n=27), or at least 20% admixed (n=454) descent (Figure 1B, Table S1) and 33 cancer 

types, of which 13 were divided into pre-defined subtypes. In several cases, ancestries were 

associated with different subtypes (Figure 1C). Admixed individuals were further 

distinguished by their primary ancestries: African-Admixed (n=343), European-Admixed 

(n=68), South Asian-Admixed (n=24), East Asian-Admixed (n=7) and Undetermined 

(n=12).

We also determined local ancestry across 70,748 genomic loci in all samples. These local 

calls appeared to be accurate: for example, the summed local ancestry calls were nearly 

identical with our estimated global ancestry (Pearson’s r>0.99). Among the 1,076 samples 

with only EUR and at least 10% AFR ancestry, we also evaluated whether individual loci 

were enriched for AFR or EUR ancestry relative to their genome-wide levels of admixture. 

No single locus reached statistically significant levels of enrichment after controlling for 

multiple hypotheses (Figure 1D, Table S1).

Next, we explored associations between ancestry and molecular data. For each data type 

(somatic alterations, methylation, mRNA and miRNA expression, and cross-platform data), 

we performed pan-cancer and tissue-specific multivariate regression analyses controlling for 

cancer type and subtype (Figure 1C; STAR Methods). Because most samples were EUR, we 

used them as a reference to which we compared EAS or AFR data.
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The sample size provided substantial statistical power. In pan-cancer analyses, we had 

greater than 90% power to detect ancestry-associated somatic alterations of at least 10% 

prevalence and an odds ratio (OR) greater than two in the AFR-EUR comparison 

(controlling for cancer type as a confounder; Figure S1A); and in both AFR and EAS 

analyses to detect methylation differences that exceed the standard deviation in the data (0.2; 

Figure S1B) or z-score differences in population means of at least 0.15 in mRNA and 

miRNA expression (Figure S1C). Tissue-specific analyses had lower power (Figure S1B).

Somatic alterations associated with ancestry

With respect to the overall burden of somatic alteration, we initially observed significant 

correlations between AFR and aneuploidy (p=0.004) and EAS with tumor mutation burden 

(TMB; p=0.02) in pan-cancer analyses. However, controlling for cancer subtype eliminated 

both correlations (Figure S2A–D).

We then evaluated somatic mutation (single nucleotide variant/indel) and copy-number 

alteration (SCNA) frequencies at the gene level. In the pan-cancer analysis, we initially 

identified significant differences in three genes in AFR individuals, and one gene in EAS, 

relative to EUR (Figure 2A, Figure S2E,F). Two of these in the AFR-EUR comparison have 

been described (Yuan et al, 2018): enriched mutations of TP53 in AFR samples and of 

PIK3CA in EUR samples. We also observed enriched CCND1 amplification in EAS samples 

and FBXW7 mutation in AFR samples. However, after subtype correction, only the FBXW7 
finding remained significant (FDR q=0.07), highlighting how variations in cancer subtype 

frequencies can confound ancestry associations. Pan-cancer analyses restricted to cancer 

types with at least 10 samples in each ancestry produced similar results, though fewer were 

statistically significant (Figure S2G).

Three additional datasets supported the association between FBXW7 mutations and AFR 

ancestry. First, international Cancer Genome Consortium Pan-Cancer Analysis of Whole 

Genomes (ICGC PCAWG) data (excluding TCGA samples) and MSK-IMPACT data, which 

primarily included EUR samples (PCAWG also included many EAS samples) exhibited few 

FBXW7 mutations (20/1225=1.6% in PCAWG and 360/10336=3.5% in MSK-IMPACT) 

relative to the 6.7% mutation rate we had observed in AFR samples. This supports but does 

not formally validate the FBXW7-AFR association. However, an independent Foundation 

Medicine (FMI) cohort of 60,454 tumors from 12 cancer types (Table S2) also exhibited 

more frequent FBXW7 mutations in AFR relative to EUR samples (Fisher’s exact p=0.01), 

and specifically in HNSC (16/134 AFR and 117/2268 EUR samples, p=0.007) and UCEC 

(116/730 AFR and 520/4333 EUR samples, p=0.005).

Within cancer types, we observed four genes with differential mutation rates, with two in a 

single cancer type: kidney clear-cell carcinomas (KIRC), in which AFR samples lacked 

VHL and PBRM1 mutations (OR 0.37 and 0.25, respectively; FDR q=0.06 and 0.04). EAS 

bladder and esophageal cancers were enriched in HRAS (OR=6.6; q=0.03), and NFE2L2 
(OR=11.6, q=0.07) mutations, respectively (Figure 2B, Table S2). The finding that only pan-

cancer analyses identified differential mutation rates in FBXW7 indicates that these 

differences spanned more than one cancer type. However, the finding that most ancestry 
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associations were identified only in individual cancer types, despite smaller sample numbers 

and less power, suggests that these ancestry effects tend to be cancer type-specific.

We validated the associations between VHL, PBRM1, HRAS and NFE2L2 mutations and 

ancestry in external cohorts. We observed fewer VHL and PBRM1 mutations among AFR 

KIRC samples in the FMI cohort (OR=0.20 and 0.44 respectively; p<0.01 in each case; 

Table S2). An independent study (Pena-Llopis et. al. 2012, Krishnan et. al. 2016) also found 

significantly more VHL mutations in EUR (101/125) than AFR KIRC samples (4/10; 

p=0.008). In this cohort, fewer PBRM1 mutations were also detected in AFR (4/10) than 

EUR (62/125) samples, but the association was not significant, possibly due to the small 

number of AFR samples. We observed enrichment of HRAS mutations in EAS (5/89) 

relative to EUR (64/2482) bladder cancers in the FMI cohort and in two additional datasets 

(Nassar et al, 2019 and Wu et al, 2019), where 22/448 EUR and 7/69 EAS samples carried 

those mutations. Neither of these cohorts reached statistical significance on its own, but the 

combined data did (Fisher’s exact p=0.004). For NFE2L2 in ESCA, a study from East Asia 

(Chang et. al, 2017) reported 7/94 samples with mutations-a similar rate to the 5/117 EUR 

samples with the mutation in TCGA. Although prior studies suggested that NFE2L2 
mutations are enriched in EAS esophageal squamous cell carcinoma (Deng et. al, 2017), we 

conclude that we could not validate NFE2L2.

We also validated the VHL and PBRM associations in KIRC patients with admixed AFR 

and EUR ancestry. We hypothesized that these mutations would be observed at rates that are 

proportional to the fraction of the genome with EUR ancestry. This was indeed the case for 

VHL in both TCGA and FMI cohorts (Wilcoxon p=0.02 and p<0.001, respectively) and for 

PBRM1 in TCGA (p=0.007; Figure 2C,D).

We next looked for evidence that germline genetics at the FBXW7, VHL, and PBRM1 loci 

contribute to cancer formation. To that end, we asked whether any of these loci were locally 

enriched for AFR or EUR ancestry among samples with at least 10% AFR ancestry, after 

controlling for global EUR and AFR ancestry rates (Figure 1D). In each case, the ancestry 

with the higher mutation rates was enriched at the gene locus: AFR ancestry at FBXW7 
(OR=1.001) and EUR ancestry at VHL (OR=1.822) and PBRM1 (OR=1.221). However, 

none were statistically significant. We conclude that the germline features at these loci may 

not be associated with cancer.

To assess the contribution of environmental exposures to differences in mutation frequency 

between ancestries, we compared 57 mutational signatures between AFR or EAS samples 

and EUR samples (Alexandrov et. al. 2019). These signatures, derived from mutational 

patterns across trinucleotide contexts, often reflect mutagen exposure. We did not observe 

significant differences in the AFR-EUR pan-cancer comparison, suggesting that mutagen 

exposures were not major confounders in the differences in FBXW7, VHL, or PBRM1 
mutation rates. We did find six signature associations (Table S2) in the EAS-EUR pan-

cancer analysis. Two signatures frequently observed in liver cancer (Signatures 16 and 24), 

Signature 9 (related to AID activity), and Signature 26 (related to defective mismatch repair) 

were enriched in EAS samples, and two signatures related to APOBEC activity (Signatures 

2 and 13) were enriched in EUR samples. We observed no significant differences in 
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signatures between EAS and EUR BLCA samples, however, suggesting that mutagen 

exposures were not major confounders in the difference in HRAS mutation rates between 

these samples. However, other exposures might still shape mutation rates across ancestries.

We also tested the association of ancestry with chromosome arm-level SCNAs. We observed 

no such associations in the pan-cancer analysis, but found two in cancer type-specific 

analyses. First, 3p loss, encompassing both VHL and PBRM1, was more frequent in EUR 

than AFR KIRC samples (q=0.02; Figure 2E). This, along with our prior finding that VHL 
and PBRM1 mutations are enriched in EUR KIRC samples, indicates that these genes are 

biallelically inactivated more often in EUR KIRC samples. Prior work noted the disparity in 

VHL mutations, but not loss of chromosome 3p, between TCGA AFR and EUR KIRC 

samples (Krishnan et al, 2016). We also found that chromosome 4q loss was more frequent 

in AFR than EUR COAD samples.

Pan-cancer analysis uncovers regions of ancestry-differential DNA methylation

In the pan-cancer analysis, we found statistically significant (F-test p value < 0.05) 

differences in methylation between ancestries in 94,012 of the 482,421 HM450 array CpG 

sites, comprising 19% of all tested probes (Fig S3A). More ancestry associations were 

identified in this pan-cancer analysis than in any single cancer type. However, these 

associations tended to have small effect sizes, predominantly below a change of 0.1 (Fig 

S3B–C), and therefore unlikely to be biologically significant. We conclude that many of 

these findings result from the statistical power of our large dataset, rather than representing 

substantive differences between ancestries.

When restricting to differences that are both significant and large enough to be biologically 

meaningful (methylation change >= 0.1), we found very little of the cancer genome was 

differentially methylated across ancestries. In pan-cancer analyses, we initially identified 

only 3,001 (0.6%) such CpGs. Moreover, 75% of these are likely due to artifact (Figure 3A) 

caused by SNPs in the five bases at the 3’-end of the DNA methylation probes (Zhou et al, 

2017). Only 4.2% of non-ancestry associated CpGs were associated with such SNPs, and 

this artifact was not overrepresented in probes that exhibit tumor-type-associated 

methylation differences (Figure S3D). Probes subject to other types of technical artifact 

were only slightly enriched in ancestry-differential CpGs (Figure S3E). After removing 

these problematic probes, only 374 CpG sites exhibited significant ancestry associations. 

These results highlight the importance of controlling for artifacts related to germline variants 

when comparing methylation data across ancestries.

Similar to somatic genetic alterations, we observed more significant and potentially 

biologically meaningful methylation changes in cancer type-specific than pan-cancer 

analyses, despite the decreased power in the former. Across the six cancer types we 

analyzed, an average of 3,116 sites exhibited ancestry-associations (range 474–12,176), 

eight times the number in the pan-cancer analysis. However, when we performed the same 

analysis on the 65 “rs” probes on the array that interrogate SNP variants and would therefore 

often differ between ancestries, we detected significant differences for 63 probes in the pan-

cancer analysis, and only 43 probes on average in cancer-specific analyses, consistent with 

the greater power in pan-cancer analyses (Figure S3F).
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As might be expected, sites that were significant in pan-cancer analyses exhibited similar 

ancestry associations in most cancer-specific analyses (Figure 3B), but most significant sites 

in cancer type-specific analyses did not. Some differences might be caused by residual 

subtype heterogeneity. For instance, when we did not distinguish BLCA luminal and basal 

subtypes, we detected considerably more ancestry-differential sites (36,926 rather than 

16,716), highlighting the need to account for cancer subtype.

Although the methylation differences were largely tissue-specific (Figure S3G), they 

appeared to be remarkably consistent across cells within those tissues. Ancestry-associations 

could reflect mixed populations of cells with different methylation patterns, whose 

composition varies by ancestry, or different methylation signatures within each population. 

Among the 374 pan-cancer ancestry-differential CpG sites, 204 exhibited multimodal 

distributions in methylation signal (p<0.05, Hartigan’s unimodality test; four exemplary 

cases are shown in Figure S3H), likely representing biallelic lack of methylation, 

monoallelic methylation, and biallelic methylation. Mixed populations of cells with different 

signatures would tend to fill in the three modes, making them more uniform.

We considered genes associated with multiple ancestry-differential methylation sites to have 

the greatest support for ancestry effects (Figure 3C). Forty-one genes were supported by at 

least two probes, and ten genes were supported by at least four (Table S3). These ten include 

known methylation quantitative trait loci (meQTLs) such as SPATC1L (Heyn et al, 2013) 

and PM20D1 (Sanchez-Mut et al, 2018); genes previously recognized as variably 

methylated such as HOOK2 (Kraus et al, 2015); and genes for which variation in 

methylation has not been described, such as FLJ26850, PACS2, and FAAP20 (Figure 3D). 

Among nine of these ten genes, all associated probes exhibited similar ancestry effects. For 

example, all four FAAP20 sites were more frequently methylated in AFR samples while all 

four HOOK2 sites were less frequently methylated in those samples.

The top gene, SPATC1L, uniquely exhibited opposite ancestry associations across its 

associated probes (Figure 3B). These are related to different functional elements, comprising 

probes that cluster at either the gene’s promoter or its transcription termination site (TTS) 

(Figure 3C–D). Prior reports also described coordinated differences in methylation at the 

promoter and TSS sites across haplotypes (Heyn et al, 2013). Promoter methylation of 

SPATC1L (shown by cg12016809) was negatively associated with SPARC1L mRNA levels 

in four ancestry groups (Figure 3E), suggesting an impact on gene transcription, with more 

methylation and less expression in AFR samples.

The observation that multiple neighboring loci show coordinated DNA methylation patterns 

suggests that their ancestry-related differences were not due to technical artifact. We 

attempted to further validate the 374 ancestry-differential sites from the pan-cancer analysis 

in two independent datasets that assayed 149 non-neoplastic hematopoietic samples 

(Stunnenberg et al, 2016) and 49 TCGA samples (40 tumors and 9 normals) (Zhou et al, 

2018) using the orthogonal technology of whole genome bisulfite sequencing (WGBS). 

Among the 374 sites, 343 were also probed in the TCGA WGBS dataset, and all exhibit 

differential methylation. Over 80% (277 sites) had at least one neighboring CpG with highly 

correlated methylation (Spearman’s rho > 0.7), and over 40% had more than 10 such 
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neighboring CpGs (Figure S3I). Among the 149 hematopoietic samples, the regional 

differences in ancestry that we had observed in TCGA cancers again appeared as 

components of larger variably methylated regions (VMRs, consistent with ancestry-

associated differentially methylated regions: A-DMRs) that encompassed multiple 

concordantly methylated CpGs (Figure 3F). Although we focused on regions supported by at 

least two probes, many loci with only one differentially methylated probe show similar 

patterns in the WGBS validation data, such as S100A14 (Figure 3G). These findings 

indicate that many ancestry-associated methylation differences reflect regional chromatin 

states, and that ancestry-associated methylation effects in cancers often reflect similar 

patterns in normal tissue.

We queried four additional datasets to validate the ancestry associations we had detected in 

TCGA, all representing non-neoplastic tissue. Two represented individuals of AFR, EUR 

and EAS ancestry, similar to TCGA: one of whole blood (Heyn et al, 2013, GSE36369) and 

the other of brain tissue (Guintivano et al, 2013, GSE41826). Two represented ancestries not 

well covered in TCGA: one of umbilical cord blood in three EAS populations (Teh et al, 

2014, GSE53816) and another of lymphoblastoid cell lines from five populations of more 

specific ancestry such as Mozabites and Cambodians (Carja et al, 2017, GSE101431) 

(Figure S4A–D). We found that 80% and 60% of the ancestry-differential CpG sites in 

TCGA validated in the whole blood and brain tissue data, respectively (Figure S4A–B, 

group “++”), with substantially lower rates of significant ancestry differences for random 

sites without ancestry associations in TCGA data (Figure S4A–B, group “−”). We observed 

lower validation rates in the two datasets that differ from TCGA in ancestry composition, as 

expected: 40% and 8% respectively (Figure S4C–D)-but still significantly higher than in 

randomly selected CpGs. Further validating these ancestry-specific differences, we found 

strong positive correlations between the magnitudes of methylation preferences in the 

validation datasets and TCGA (Figure S4E–H). We conclude that most of the ancestry-

specific methylation differences we identified can be validated. The fact that the validation 

sets were mostly disease-free tissues also suggests that most of the differences apply to 

healthy tissue as well as cancer.

mRNA associations with genetic ancestry

In pan-cancer analyses correcting for batch, tissue type, and subtype, we found significant 

mRNA expression differences between AFR and EUR samples for 327 genes and between 

EAS and EUR samples for 654 genes (Figure 4A–B, Table S4). These two lists had 85 genes 

in common, including 35 with higher expression in EUR samples, 31 with lower expression 

in EUR samples, and 19 for which expression in EUR samples was between that of AFR and 

EAS samples (Table S4). Prior GTEx consortium analyses identified 221 protein-coding 

genes associated with AFR ancestry (Mele et al, 2015), of which 44 overlapped with our 

analysis (p=2.2e-16) (and exhibited similar effect sizes; r2=0.84, p=3.4e-18) (Figures 4C–D, 

Table S4).

We observed fewer significant associations within cancer types, with a maximum of 61 in 

the EAS-EUR hepatocellular carcinoma (LIHC) analysis (Table S4). Several genes were 

consistently identified across cancer types. For example, four AFR-associated genes 
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(CRYBB2, NOTCH2NL, LOC90784, PPIL3) and eight EAS-associated genes 

(POM121L10P, TSPAN10, THOC3, XKR9, LOC162632, SIRPB2, MGC23270, DDX11L2, 
TGOLN2) were significant in at least 33% of the cancer types (Figures 4A–B and 4E–F).

However, as in the methylation analyses above, the effect sizes in the mRNA analyses were 

much higher in individual cancer types: over 60% of ancestry-associated genes in these 

analyses had coefficients greater than one, relative to only 2% in the pan-cancer analyses 

(EAS-EUR 12/654, AFR-EUR 7/327) (Figure S5A–D). We conclude that, although common 

ancestry associations exist across cancers, the strongest associations are within individual 

cancer types.

To validate the mRNA results, we compared EAS data from the ICGC PCAWG Japanese 

liver cancer (LIHC) cohort to TCGA EUR LIHC samples. We selected LIHC because it does 

not split into subgroups, whereby different subgroup compositions might confound our 

analyses. Among the 54 genes found to be ancestry-associated within TCGA, we found a 

significant correlation (p<0.01) between beta values calculated within TCGA and using the 

new PCAWG data and 62% concordance based on directionality (positive or negative) 

(Figure S5E–F). In contrast, 54 randomly selected genes exhibited only 37% concordance 

between the datasets. Next, to determine if expression patterns were similar between the two 

datasets on a per sample basis, we weighted each gene’s expression by the absolute value of 

its beta to account for its ancestry effect size, and then summed across genes in each sample. 

In both PCAWG and TCGA, the EAS and EUR samples were enriched with genes with 

positive and negative beta values, respectively, as expected. and the differences were 

significant (t-test p<1e-6 in all cases; Figure S5G–J). We conclude that our ancestry 

associations largely validated.

Two of the pan-cancer hits, Glutathione S-Transferase Theta 1 (GSTM1) and Crystallin Beta 

B2 (CRYBB2), were previously associated with both ancestry and susceptibility to cancer 

(White et al, 2008; Zhang et al, 2011; Bin et al, 2013; Mo et al, 2009; Faruque et al, 2015). 

CRYBB2, specifically, has high expression among African-American women with Luminal 

A breast tumors (D’Arcy et al, 2015). These genes exhibited consistent ancestry associations 

across different tissue types, though with varying magnitude (Figures 4A and 4E).

Detection of ancestry-associated mRNA expression is heavily dependent upon accurately 

controlling for cancer subtype distributions across ancestries. For example, breast cancer 

subtypes differ widely in expression profiles (Cancer Genome Atlas Network, 2012) and 

associate with ancestry (Huo et al, 2017; Troester et al, 2018). As a result, when not 

controlling for subtype, over 2,000 genes appeared to be associated with AFR ancestry in 

BRCA (Table S4) and 1,427 genes appeared to be associated with EAS ancestry in 

esophageal cancers. After controlling for subtype and batch, however, these numbers 

diminished to 59 and 0, respectively (Figure 4A; Table S4). Our cohort included nine cancer 

types that have been further subclassified and five that have not (Table S4). On average, prior 

to subtype correction, we detected 358 ancestry-associated mRNAs in the former group and 

only 9 in the latter. After subtype correction, however, we detected an average of 9–10 

associations in both groups. Many cancer subtypes are defined by differences in 

methylation, miRNA, and somatic genetic profiles in addition to mRNA (Hoadley et al, 
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2018), indicating the value of generating comprehensive molecular data to conduct properly 

controlled comparisons.

miRNA associations with genetic ancestry

An important consideration in miRNA analysis across ancestries is the possibility of artifacts 

associated with germline variants. In generating miRNA mature strand (miR) expression 

data, TCGA considered only exact-match read alignments (Chu et al, 2016). If an ancestry is 

enriched for a variant within a miR, sequence reads for that mature strand will be 

undercounted. To mitigate this artifact, we ignored 41 miRs that contain ancestry-specific 

SNPs (Table S5). Among the remaining miRs, 149 miRs exhibited ancestry-differential 

expression passing a significance threshold of FDR q<0.001 in the pan-cancer analysis 

(Figure 5A,B, Table S5). Fewer miRs exhibited associations within individual cancer types 

or subtypes, with a maximum of 54 in BRCA. Thus, similar to the methylation and mRNA 

results, there was sufficient commonality across cancer types that the increased power in the 

pan-cancer analysis identified larger numbers of associations. However, as with methylation 

and mRNAs, the associations in the pan-cancer miRNA analysis represented only small 

differences between ancestries; none had even a two-fold change in expression. Conversely, 

associations within cancer types often represented greater differences, sometimes over four-

fold (Figure 5B).

We therefore performed a separate analysis to focus on miRs with at least two-fold 

differences in expression between ancestries. Using this stringent effect size threshold in 

combination with a more relaxed significance threshold (FDR<0.05), we detected 117 

associations across all cancer types and subtypes, and none in the pan-cancer analysis. These 

ancestry associations were distributed across 71 miRs and 22 tumor types and subtypes: 89 

associations for AFR, 27 for EAS, 1 for AMR and 0 for SAS (Table S5; the 17 miRs with 

the largest effect sizes are indicated in Figure S6A). Most miRs were associated with 

ancestry in only one tumor type. Differences in the numbers of observed associations 

reflected the number of samples from different ancestry groups in a cancer type, and 

therefore statistical power.

We next determined the extent to which the miR associations could be explained by 

differential expression of the genes that host them. Most miRNAs (74%) overlap a ‘host’ 

gene on the same strand, and tend to be expressed with that gene (Figure S6B, Table S5, 

STAR Methods: Resources for miRNA annotation). However, none of the 117 significant 

miR-ancestry associations that reached our effect size threshold corresponded to an mRNA 

that was similarly differentially expressed between the same ancestries in the same cancer 

type.

Two contributors to this disparity are that some differentially expressed miRs did not have 

same-strand host genes, and others had host genes (particularly non-coding transcripts) 

whose expression was not assessed by TCGA. Among the 71 differentially expressed miRs, 

66 (93%) were hosted, compared to only 74% of miRs overall (p=0.0004, test of 

proportions). However, for approximately half of these 66 hosted miRs, expression of the 

host gene was not assessed by TCGA.
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A third reason is that most correlations between hosted miRs and host genes were modest, 

due to the diverse genomic contexts in which miRNAs occur and to the many factors that 

can influence correlations between expression of a host gene and its hosted miR(s) (Figures 

5C–D, S6B–J). For example, for four TCGA cohorts, few Spearman correlations between 

hosted miRs and host genes had large positive values (medians 0.31 to 0.36, Figure 5E, see 

also Figure S6K).

We also found that few miRNA host genes were themselves ancestry-associated. Of 62 

AFR-associated mRNAs in four cancer types (BRCA, COAD, HNSC, and UCEC), only 

CLN8 was identified as a host gene (for hsa-miR-3674, which was not among the 743 miRs 

available for analysis). Of the 56 EAS-associated mRNAs in BLCA, BRCA, and STAD, 

none was a miRNA host gene. As a result, hosted miRs were not enriched among the 71 

ancestry-associated miRNAs.

Taken together, we found that ancestry-associated differences with large effect sizes in 

miRNA expression were largely specific to individual cancer types, as was the case with 

methylation and mRNA. However, expression correlations between hosted miRs and host 

genes were generally weak, and few ancestry-associated mRNAs were miRNA host genes. 

At the same time, approximately 80% of ancestry-associated miRs with large effect sizes 

were within host genes, which suggests that work to identify (epi)genetic causes of a miR 

being ancestry-associated will often need to account for different or more subtle effects of 

those same factors on a host gene.

Relation between ancestry associations and germline genetics

The ancestry associations we observed in DNA methylation and RNA expression raise two 

questions: first, how are these associated with germline genetic differences, and second, are 

these differences associated with cancer? We attempted to address the first question by 

identifying ancestry-associated expression quantitative trait loci (eQTLs) associated with the 

mRNA differences we had identified. We attempted to address the second question by 

determining whether loci encoding ancestry-associated genes are non-randomly distributed 

between ancestries in cancer.

Ancestry associations in mRNA expression can be due to differences in underlying genetics 

or in the environments experienced by different ancestry groups. In the former case, we 

might expect to identify eQTLs. We therefore assessed the extent to which both cis- and 

trans-eQTLs might account for ancestry-differential mRNA expression. We first identified 

ancestry-associated genetic polymorphisms by testing for the association between SNP 

genotype proportions and ancestry using TCGA cohort matched normal samples (n=10,678). 

Approximately 85% of tested SNPs were associated with ancestry. We then integrated these 

data with a cancer cis- and trans-eQTLs catalog, PancanQTL (Gong et al, 2018), to find 

ancestry-associated SNPs that overlap cancer-type specific eQTLs.

Focusing on cancer types with at least 10 minority population samples, we observed varying 

numbers of cancer type-specific cis-eQTLs associated with ancestry-specific gene 

expression: from 2,760 in UCEC to 26,089 in BRCA in AFR-EUR comparisons, and from 

3,311 in UCEC to 44,640 in THCA in EAS-EUR comparisons (Table S6). We found support 
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for ancestry-associated genetic variation for 64 to 90% of these cis-eQTLs (Figures 6A–B). 

We detected fewer such associations among trans-eQTLs, possibly due to the more stringent 

corrections required for multiple hypotheses (Figures S7A–B, Table S6). Much of the 

ancestry-associated differences in expression linked to cis- or trans-eQTLs can be explained 

by differences in genotype frequencies underlying these loci (Figures 6C, S7C). We 

conclude that germline genetic variation can partially explain differences in mRNA 

expression across populations in a cancer type-specific manner.

To assess whether the ancestry-associations that we identified in methylation and mRNA 

expression might be associated with the development of cancer, we evaluated whether one 

ancestry was enriched at each of the involved genomic loci in TCGA subjects with admixed 

ancestry. We focused on the AFR-EUR analysis because admixed populations were best 

represented in our dataset for this comparison. In Figure 1D, we found that no single locus 

was significantly enriched with AFR or EUR ancestry when considering all loci as 

independent hypotheses. Here, we considered whether focusing on loci with ancestry-

associated differences in methylation or expression might provide greater resolution.

In aggregate, both the 191 loci with pan-cancer ancestry-associated differences in mRNA 

expression (excluding genes that spanned ancestry blocks and therefore had ambiguous 

results) and the 176 loci with pan-cancer ancestry-associated differences in methylation 

were modestly enriched for one ancestry-most often AFR-relative to what would be 

expected by chance (Wilcoxon p<0.001 in both cases; Figures S7D–E). These findings 

support the hypothesis that pan-cancer differences in methylation and mRNA expression 

between AFR and EUR ancestries contribute to cancer, with a modest bias towards 

association between AFR ancestry at these loci with cancer. Evaluation of additional cohorts 

will be necessary to validate this finding.

Integrated ancestry-associated pathways and cell states

We integrated across our molecular data to answer two questions: first, do ancestry-

associated differences in methylation account for ancestry-associated differences in mRNA 

expression, and second, do all these molecular features, when taken together, indicate 

consistent differences in activation of specific molecular pathways? For the first question, 

we found that, among the 251 genes with ancestry-associated methylation, 27 were also 

among the 806 genes with annotated CpGs that exhibited ancestry-associated mRNA 

expression, constituting a strong association (p<0.001, OR=7; Figure S7F). This association 

was strongest for genes with the most differentially methylated CpGs (Figures S7G–H). 

However, differential methylation could account for only 3.3% of differentially expressed 

genes.

For the second question, we used PARADIGM (Vaske et al, 2010; Sedgewick et al, 2013) to 

infer the activation of ~19K pathway features between ancestry groups within tumor types. 

We observed significant differential features between AFR and EUR groups in eight tumor 

types (Table S7). Only BRCA, however, provided significant differences in “key” regulatory 

nodes with at least 10 differential downstream targets, and only three-ATM, a known breast 

cancer susceptibility gene, SP1, and MAPK14-remained significant in subtype-adjusted 

analyses (within the Luminal A subtype) (Figures 7A–B). Similarly, significant EAS-EUR 
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differential features were observed in seven tumor types, but key regulatory nodes were 

identified only in BLCA, BRCA, and ESCA (Figure 7C). None of these remained significant 

in subtype-adjusted analyses, suggesting that they reflect subtype enrichments.

We also assessed whether known cancer pathways and driver genes (Knijnenburg et al, 

2018; Sanchez-Vega et al, 2018; Bailey et al, 2018) are overrepresented among genes with 

differential PARADIGM-inferred IPLs from subtype-adjusted analyses, using a 

hypergeometric test with Benjamini-Hochberg multiple testing corrections. Significantly 

enriched pathways included DNA repair, HIPPO, RTK-RAS, p53, NRF2 and Notch 

pathways in the BRCA AFR-EUR comparison and the WNT pathway in the BLCA EAS-

EUR comparison (Figure 7D, Table S7). These analyses suggest contributions of ancestry to 

cancer-related pathway activity.

We also hypothesized that the cellular composition of individual cancers might differ 

between populations. Indeed, in EAS BLCA were depleted for immune infiltrates as 

estimated from mRNA expression after controlling for age, gender, subtype, TMB, and 

aneuploidy (Figure 7E), and higher inferred pathway activities of immune-related features 

were found in the EUR group (Figure 7A). The mRNA expression of CD274 that encodes 

PD-L1 was also significantly lower in EAS relative to EUR and AFR samples (Figure 7F). 

These results are consistent with a prior orthogonal analysis that found lower lymphocyte 

infiltrates in EAS samples (Thorsson et al, 2018), and suggest that ancestry should be taken 

into account when evaluating immunotherapy response.

Discussion

This comprehensive analysis of molecular features associated with ancestry across a range 

of tumor types has implications for both cancer and normal tissue, given the limited prior 

analyses available. An analysis of mRNA profiles from several dozen non-neoplastic tissues 

found that differences between AFR and EUR tended to be shared across tissue types (Mele 

et al, 2015). We obtained a similar result when considering all statistically significant 

associations. However, when considering associations whose effect sizes are biologically 

meaningful, we found that ancestry associations tend to be tissue-specific, regardless of 

whether those associations reflect rates of somatic alteration, degrees of CpG methylation, or 

levels of mRNA or miRNA expression

The sources of these ancestry associations are unclear. Our eQTL analyses indicated that 

germline genetic differences could explain much of the differences in mRNA expression, but 

varied environmental exposures may also be a major contributor. Although more than two 

thirds of TCGA donors were from the United States, most EAS donors were likely from 

other countries, and the collected samples may not represent the entire cancer patient 

population in any country. TCGA samples were largely collected from academic centers 

whose patients are often from different socioeconomic strata than the general population. 

Separating ancestry from the effects of social and environmental factors, and comparing 

ancestral groups across regions and countries, requires greater study (Gomez et al, 2015).

Carrot-Zhang et al. Page 14

Cancer Cell. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although some ancestry-associated differences in methylation and RNA expression are 

likely to be somatic, we found evidence that many are shared by normal tissue. A robust 

distinction of cancer-specific ancestral association will require profiling more tissue samples 

across ancestries, especially normal tissue samples due to the limitations of current data. 

However, we did observe modest evidence that AFR-EUR differences in methylation and 

mRNA expression are causally related to cancer, and that these differences were enriched in 

several cancer-related and immune pathways. These findings may inform cancer prevention 

and treatment across ancestral groups.

In the process of detecting ancestry associations, we found that uneven distributions of 

ancestry groups between cancer subtypes was a major confounder. The causes of these 

ancestry associations with cancer subtypes-possibly disparities in cancer incidence or 

sample collection biases-are not understood and deserve further exploration, but by 

controlling for subtypes we aimed to detect ancestry-associated differences within subtypes 

as well. We were aided by TCGA-derived molecularly-defined subtypes (Sanchez-Vega et 

al, 2018). This ability to control for subtypes, for example, allowed us to focus on FBXW7 
mutations as associated with ancestry, where prior analyses had instead identified TP53 and 

PIK3CA mutations (Yuan et al, 2018) that we found to disappear with subtype controls.

A particularly robust finding was enrichment of VHL and PBRM1 mutations and 

chromosome 3p loss, on which these genes reside, in EUR over AFR KIRC samples. Given 

the centrality of VHL and 3p loss to KIRC, samples without these alterations might 

represent a different cancer subtype, one which is more prevalent in AFR patients. Many of 

the VHL wild-type cases not only differ transcriptomically from VHL mutants, but have 

very disparate expression profiles themselves (Beroukhim et al, 2009). VHL wild-type cases 

may therefore represent more than one subtype, or their limited transcriptomic similarities 

may be particularly important. The indication that EAS BLCA samples exhibit less immune 

infiltration than EUR samples might suggest differing responses to immunotherapies such as 

Bacillus Calmette–Guérin (BCG) and immune checkpoint inhibition, which form mainstays 

of BLCA treatment (Marchioni, et al, 2018). Perhaps the greatest analytic obstacle we faced 

was the small number of non-EUR TCGA samples. Only 17% were at least partially non-

EUR, as opposed to ~40% of the U.S. general population (https://www.census.gov/

quickfacts/fact/table/US/PST045218) and cancer population (https://seer.cancer.gov/csr/

1975_2016/results_merged/topic_race_ethnicity.pdf). Even fewer non-EUR samples would 

have been included if AFR BRCA collection had not been prioritized (Huo et al, 2017). 

Additional comprehensively characterized non-EUR cancers would be of great value.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for data or code generated in this study 

should be directed to and will be fulfilled by Lead Contact, Andrew D. Cherniack 

(achernia@broadinstitute.org).

Materials Availability—This study did not generate new unique reagents.

Carrot-Zhang et al. Page 15

Cancer Cell. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.census.gov/quickfacts/fact/table/US/PST045218
https://www.census.gov/quickfacts/fact/table/US/PST045218
https://seer.cancer.gov/csr/1975_2016/results_merged/topic_race_ethnicity.pdf
https://seer.cancer.gov/csr/1975_2016/results_merged/topic_race_ethnicity.pdf


Data and Code Availability—The raw ancestry assignments and local ancestry calls 

generated during this study can be found at https://portal.gdc.cancer.gov. Code generated for 

local ancestry-related analyses is available from the following URL https://github.com/

jcarrotzhang/ancestry-from-panel/tree/master/GDAN_AIM.

METHOD DETAILS

Ancestry assignment—We assigned ancestries using five separate approaches, including 

three (Broad Institute, Washington University, and University of California San Francisco 

methods) that are based upon SNP 6.0 array genotyping calls (https://portal.gdc.cancer.gov/

legacy-archive/) and two (University of Trento and ExAC/Broad methods) based upon 

exome sequencing data (https://portal.gdc.cancer.gov/). Details on each method are as 

follows.

Broad Institute - SNP and exome based calls: We merged the genotype files of all TCGA 

normal samples with reference samples from the 1000 genome project. We excluded TCGA 

variants with excess missingness of 5% or failed the Hardy Weinberg equilibrium test. 

EIGENSOFT smartpca version 9102 (Price et al, 2006) was used to remove outliers and 

9,040 samples were kept after quality control. We used 90,4099 markers with minor allele 

frequency greater than 1% in the 1000 genome cohort for global ancestry identification of 

TCGA samples using smartpca. We defined the AFR, EUR and EAS ancestral groups using 

the 1000 genome samples based on smartpca generated PC1 and PC2, and AMR and SAS 

ancestral groups based on PC2 and PC3. We then used ADMIXTURE version 1.23 

(Alexander et al, 2009) to estimate the percentage of global ancestry of AFR, EUR, EAS, 

AMR and SAS (k=5) for each sample. Samples with the proportion of the secondary 

ancestry greater than 20% were considered as admixed samples.

The Exome based ancestry assignments for 8,066 TCGA patients were provided by the 

Exome Aggregation Consortium (ExAC). The ExAC dataset ancestry calls were created by 

using principal component analysis (PCA) of 5400 common exome SNPs to stratify the 

exomic data into principal components and identify major clusters of continental ancestry 

(Lek et al, 2016).

Washington University - SNP based calls: Birdseed genotype files were converted to 

individual VCF files and then merged into a combined VCFs containing all 11,459 samples 

and 522,606 variants. We conducted PCA as implemented by PLINK 1.9 (Purcell et al, 

2007). Specifically, we retained 298,004 variants with MAF > 15% for population structure 

analysis. The resulting eigen values and eigen vectors were then recorded. PC1 and PC2 

accounted for 51.6% and 29.2% of the variations across the first 20 PCs and none of the 

trailing PCs accounted for more than 3.2%. We then visually examined samples and their 

self-reported ethnicity based on PC1 and PC2. We defined (1) EUR as samples that self-

reported as white and with PC1 < 0.01 and PC2 < 0.02, (2) EAS as samples that self-

reported as EAS and with PC1 > 0.01 and PC2 > 0.02, and (3) AFR as samples that self-

reported as black or AFR and with PC1 > 0.01 and PC2 < 0.
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University of California San Francisco - SNP based calls: Ancestry calls were computed 

based on partition around medoids (PAM) clustering of principal components (PC’s) 1–3 

generated from quality controlled genotyping files of 10,128 individuals. PCA without LD 

pruning was computed in PLINK 1.9 (Purcell et al, 2007), and visual examination of the 

principal component plots annotated by self-reported race and ethnicity reveal the first 3–4 

PCs capture population structure information, while PC 5–6 capture outliers. PCA-based 

initial ancestry clusters were determined by performing both k-means and PAM clustering 

on either the first three or first four PCs. We computed gap statistics and average silhouette 

widths iteratively for number of clusters, k=1 to 10 for k-means and PAM methods 

respectively to find the optimal number of clusters for each method. Four clusters were 

found to be optimal based on average silhouette width statistics computed iteratively for 

number of clusters, k=1 to k=10 (GDC Publication Page Figure S1–A https://

gdc.cancer.gov/about-data/publications/CCG-AIM-2020). The four PCA-based ancestry 

clusters show high concordance with the self-reported race/ethnicity of the individuals (GDC 

Publication Page Figure S1–B,C,D https://gdc.cancer.gov/about-data/publications/CCG-

AIM-2020). The four ancestry cluster are as follows: (1) PAM ancestry cluster 1 is 

concordant with EUR ancestry, capturing 97.27% of individuals self-reporting as White, as 

well as 82.16% of individuals with self-reported non-Hispanic/non-Latino ancestry and 

45.96% with self-reported Hispanic/Latino ancestry; (2) ancestry cluster 2 with AFR 

ancestry, capturing of 97.53% of individuals self-reporting as Black/African-American race; 

(3) ancestry cluster 3 with EAS ancestry, capturing 90.88% of individuals self-reporting as 

EAS and 88.89% self-reporting as Native Hawaiian/Pacific Islander; and (4) ancestry cluster 

4 with a subgroup of individuals with AMR ancestry capturing 60% of individuals self-

reporting as American Indian /Alaska Native and 47.2% with self-reported Hispanic/Latino 

ethnicity (GDC Publication Page Figure S1–B https://gdc.cancer.gov/about-data/

publications/CCG-AIM-2020). PC’s 1–7 show further population sub-structure in the EAS 

and EUR ancestry clusters (GDC Publication Page Figure S2 https://gdc.cancer.gov/about-

data/publications/CCG-AIM-2020). PAM ancestry sub-clusters were computed using PC’s 

1–7 for individuals within the EAS ancestry cluster which yielded two optimal sub-clusters 

(GDC Publication Page Figure S2–A https://gdc.cancer.gov/about-data/publications/CCG-

AIM-2020), and within the EUR ancestry cluster which yielded three optimal sub-clusters 

(GDC Publication Page Figure S2–B https://gdc.cancer.gov/about-data/publications/CCG-

AIM-2020). Of note, 72.46% of EUR sub-cluster 3 self-reports as EAS (15.94% have no 

race reported). Ancestry clusters, sub-clusters, self-reported race and ethnicity and PC’s 1–7 

are provided for each individual (GDC Publication UCSF_Ancestry_Calls.csv https://

gdc.cancer.gov/about-data/publications/CCG-AIM-2020). For individuals represented by 

more than one sample, blood-derived normal samples were preferentially selected; for those 

with more than one blood-derived samples, samples with higher call rates were retained 

leaving 10,128 unique individuals.

University of Trento - whole-exome sequencing based calls: Ancestry analysis was 

performed by means of EthSEQ (Romanel et al, 2017). First, by combining 1,000 Genome 

Project and Ashkenazi (Carmi et al, 2014) genotype data, a reference model including 

70,415 common (MAF>1%) exonic SNPs and representing 6 main ethnic groups (EUR, 

ASH, AMR, AFR, SAS, EAS) was built. Then, genotypes of all considered SNPs for 9,666 
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TCGA individuals were inferred from WES data using ASEQ (Romanel et al, 2015) and a 

target model for each tumor tissue (N=24) was built. Genotype calls from WES required 

depth of coverage >=10X and read/base mapping qualities >=20. EthSEQ PCA-based 

analysis was then performed for each tumor tissue on aggregated target and reference 

models genotype data considering only SNPs with appropriate overall call rate (99% 

threshold was applied). Three-dimensional Euclidean space defined by the first three PCA 

components (“3D” EthSEQ option) was used to first generate the smallest convex sets 

identifying reference ethnic groups and then to assign an ancestry all TCGA individuals 

(GDC Publication Page Figure S3a https://gdc.cancer.gov/about-data/publications/CCG-

AIM-2020). EthSEQ refinement analysis was used to better characterize spatially close 

AMR and EUR groups (GDC Publication Page Figure S3b https://gdc.cancer.gov/about-

data/publications/CCG-AIM-2020). Individuals projection inside a reference ethnic group 

set were annotated with the corresponding ancestry and INSIDE label; individuals outside 

ethnic group sets were annotated with the nearest (Euclidean distance) ethnic group and 

CLOSEST label. All reference models were built using 1,000 Genome Project genotype 

data, including 246,164 common (MAF>1%) exonic SNPs (103,471 and 142,693 even or 

odd chromosomes, respectively) and representing 5 main ethnic groups (EUR, AMR, AFR, 

SAS, EAS). Overall concordance of EthSEQ ancestry calls between the three analyses is 

shown in GDC Publication Page Figure S3a, while fraction of calls preserved using only 

even/odd chromosomes is shown in GDC Publication Page Figure S4 (https://

gdc.cancer.gov/about-data/publications/CCG-AIM-2020).

Consensus ancestry calls for the TCGA cohort: After ancestries were independently 

determined using these five methods, consensus calls were created based on the ancestral 

population that received the majority of assignments for each patient. Ancestry assignments 

are in Table S1.

Ancestry calls for the Foundation Medicine cohort: Comprehensive genomic profiling 

was performed in a Clinical Laboratory Improvement Amendments (CLIA)-certified, CAP 

(College of American Pathologists)-accredited laboratory (Foundation Medicine Inc., 

Cambridge, MA, USA) on de-identified, consented-for-research samples using the 

FoundationOne test. For each sample, genome-wide ancestry-calling and chromosome-level 

ancestry-calling were performed. Ancestry callers were trained on 1000 Genomes samples 

to recognize five ancestral groups (AFR, AMR, EAS, EUR, SAS), using SNPs cataloged by 

both the 1000 Genomes Project and captured by FoundationOne. These SNPs were 

projected using principal components analysis, and the top N resulting features were used to 

train a random forest classifier (with N=5 for genome-wide calling, and N=100 for 

chromosome-level calling). Samples with > 80% chromosome-level consensus calls that 

matched the genome-wide call were considered in this study. Next, disease ontology terms 

in the Foundation Medicine dataset were harmonized with TCGA datasets (Table S2) to 

ensure proper comparisons. Finally, Fisher’s Exact test was used to determine statistically 

significant differences in alteration rates in different ancestral groups. Admixture analysis 

was also performed, wherein ADMIXTURE was run on the 1000 Genomes AFR, EAS, and 

EUR samples with K=3 to learn admixture groups, and then ADMIXTURE was rerun on the 
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Foundation Medicine data in projection mode using the groups learned on the 1000 

Genomes data.

Local ancestry assignment: We performed local ancestry identification on 10,366 samples 

based on the SNP array genotype data. We used SHAPEIT v2 (Delaneau et al, 2011) to 

phase the SNPs and then RFMix version 1.5.4 (Maples et al, 2013) to infer local, AFR, EUR 

or EAS ancestry by chromosomes, using 1,668 AFR, EUR, or EAS samples from the 1000 

genome Phase 3v5 reference panel as the reference panel. For each sample, we collapsed 

nearby SNPs with the same ancestry into regions that were used for association analyses 

(Martin et al, 2017).

TCGA tumor subtypes: TCGA subtypes for all tumor types except bladder cancer were 

published by the TCGA Pancancer Atlas (https://gdc.cancer.gov/about-data/publications/

pancanatlas, Sanchez-Vega et al, 2018). Bladder cancer (BLCA) mRNA subtypes were 

obtained from Robertson et al, 2017.

Imputation: Birdseed files were read in R using an in-house tool (courtesy of Donglei Hu), 

and 905,422 variants were loaded and analyzed in PLINK 1.9 using the SNP Array 6.0 

(release 35) annotation file. A total of 861,351 variants passed missingness thresholds of 5% 

maximum per variant, and 10,917 samples passed missingness thresholds of 5% per sample. 

Hardy-Weinberg equilibrium (HWE) was calculated in PLINK for autosomal chromosome 

variants in the largest UCSF ancestry cluster (European ancestry cluster 1), and SNPs out of 

HWE (<10^−6) were flagged. Flagged SNPs were cross-referenced against cancer risk 

SNPs, and non-risk SNPs with HWE <10^−6 were removed. Minor allele frequency (MAF) 

was then calculated and variants with MAF <0.5% were excluded. Duplicate SNPs with 

identical genomic first positions were removed. A total of 838,948 autosomal chromosome 

variants for 10,128 individuals passed QC (clean file). PCA was performed on the clean 

genotyping file and final PAM-ancestry clusters were computed for the 10,128 individuals 

for optimal k=4 (see UCSF ancestry calls). We found very high concordance of initial and 

final ancestry assignments (99.98% matching, the 2 samples varying between initial and 

final ancestry cluster computation assigned to NA).

The cleaned genotyping file was then stranded and imputed against two reference panels: 

Haplotype Reference Consortium (http://www.haplotype-reference-consortium.org/) and 

1000 Genomes (http://www.internationalgenome.org/). For Haplotype Reference 

Consortium, all palindromic SNPs were removed and stranding was done using the 

McCarthy Group tools (HRC-1000G-check-bim-v4.29), which compares genotyping alleles 

to reference SNP list from Haplotype Reference Consortium (v1.1 HRC.r1–

1.GRCh37.wgs.mac5.sites.tab) leaving 680,389 correctly matched variants for imputation. 

For 1000 Genomes, all palindromic SNPs were removed and stranding was done using an 

in-house tool (courtesy of Scott Huntsman), which compares genotyping alleles to stated 

alleles from 1000 Genomes (Phase 3v5) legend files leaving 678,304 correctly matched 

variants for imputation.

Imputation and phasing were performed using a standard pipeline on the Michigan 

Imputation Server (https://imputationserver.sph.umich.edu). The process of phasing involved 
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running on the WGS variant call file (VCF). To reduce the run time, the VCF file was split-

up into 22 files corresponding to individual autosomes. By default, Eagle (Loh et al, 2016) 

restricts analysis to bi-allelic variants that exist in both the target and reference. Minimac 3 

(Howie et al, 2012) was used to run the imputation. For Haplotype Reference Consortium, 

the HRC r1.1.2016 reference panel was selected using mixed population for QC, with a total 

of 39,127,678 SNPs were returned after imputation. For 1000G, the 1000G Phase 3v5 

reference panel was selected using mixed population, with a total of 43,826,430 SNPs and 

3,233,367 INDELs were obtained (1000G imputation courtesy of Younes Mokrab).

QUANTIFICATION AND STATISTICAL ANALYSIS

Ancestry and molecular features—A multivariate regression model was generated for 

each data type to determine the effects of ancestry on the molecular features while 

controlling for potential confounders such as cancer types, subtypes, age and gender. For 

each data type, two main regression tests were performed: first, a pan-cancer analysis using 

all cancer types, and second, cancer type-specific analyses. For each analysis, p values were 

corrected for multiple hypotheses using the Benjamini-hochberg procedure (Benjamini and 

Hochberg, 1995).

Somatic alteration: Pan-cancer mutation and copy number data were used (https://

gdc.cancer.gov/about-data/publications/pancanatlas). ICGC PCAWG data was obtained from 

https://dcc.icgc.org/pcawg and MSK-IMPACT data was obtained from https://

www.cbioportal.org/. Mutational signature data were obtained from Alexandrov et. al. 

(2018). We used signatures 1 to 45 in our analysis. Arm-level SCNA calls, TMB, genome 

doubling, immune infiltration score represented by leukocyte fraction, and aneuploidy scores 

were downloaded from previously published work (Taylor et al, 2018).

For the pan-cancer analyses, we counted somatic SNVs, indels and focal CNAs for all 

significantly mutated genes in all cancer types. For cancer-specific analyses, we counted 

somatic SNVs, indels and focal CNAs for significantly mutated genes in that cancer type. 

Focal CNA was defined by a log2 copy number ratio > 1 or < −1. Multivariate logistic 

regression was applied to test the association of somatic alteration for each gene with 

ancestry, while coding AFR or EAS ancestry as 1, and EUR ancestry as 0, with controlling 

for age, gender, and cancer type and subtype when applicable. Genes with FDR adjusted q 

values < 0.1 were considered as candidates for validation. In the Foundation Medicine 

cohort, gene alterations (short variants, copy alterations, and rearrangements) were detected 

and alteration status was related to genetic admixture proportions using binomial logistic 

regression. For admixture validation of FBXW7, VHL and PBRM1, we collapsed SNPs in 

the locus of each gene into blocks, and correlated the local ancestry of the blocks with the 

somatic mutation status in the gene, using logistic regression controlling for the global 

ancestry of individuals (somatic alteration ~ local ancestry + percentage of EUR ancestry + 

percentage of AFR ancestry).

To test if ancestry is associated with arm-level SCNA, multivariate logistic regression was 

used with controlling for age, gender, and cancer type and subtype when applicable, as well 

as aneuploidy and genome doubling (ancestry ~ arm-level SCNA + aneuploidy + genome 
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doubling + age + gender + subtype). Similarly, to test if ancestry is associated with genomic/

molecular features including TMB, aneuploidy and IMS, regression was performed as 

ancestry ~ aneuploidy + TMB + IMS + age + gender + subtype.

DNA methylation: IDAT files for Infinium HumanMethylation450 (HM450) arrays were 

downloaded from GDC (https://portal.gdc.cancer.gov/legacy-archive/) and preprocessed 

using the openSeSAMe pipeline (Zhou et al, 2018b). We did not explicitly mask for design 

issues, to enable associations between SNP artifacts and ancestry-differential probes. 

Samples with mixed ancestry background or undetermined purity estimate were excluded, 

leaving 6,264 tumor samples. The HM450 array included 485,577 probes, 65 of which were 

nested SNP probes (‘rs’ probes) that reflect the sample genotype rather than DNA 

methylation. Whole-Genome Bisulfite Sequencing (WGBS) data for sorted blood cells from 

149 nonmalignant samples were downloaded from the BLUEPRINT project (Schuyler et al, 

2016) for orthogonal validation of HM450 array results. The 49 TCGA WGBS dataset 

(Zhou et al, 2018a) was downloaded from Genomic Data Commons (https://

portal.gdc.cancer.gov/). Four additional validation HM450 data sets were downloaded from 

Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/, GSE36369; 

GSE41826; GSE53816; GSE101431). These include two data sets that studied DNA 

methylation in individuals of AFR, EUR and EAS ancestry, similar to the TCGA cohort: one 

of whole blood (Heyn et al, unpublished, GSE36369) and the other of brain tissue 

(Guintivano et al, 2013, GSE41826). In order to assess the validity of our ancestry-

differential methylation calls in ancestries not well covered in TCGA, we also studied a data 

set (Teh et al, 2014, GSE53816) that assayed umbilical cord blood in three EAS populations, 

and another data set (Carja et al, 2017, GSE101431) obtained from lymphoblastoid cell lines 

from five human populations of more specific ancestry origins such as Mozabites and 

Cambodians.

We performed a multivariate linear regression to identify probes that were differentially 

methylated between ancestry groups. The model explicitly adjusts for tumor type and 

subtype (Sanchez-Vega, 2018), age, gender, and tumor purity. We performed model fitting 

on both the entire TCGA cohort (pan-cancer analysis) as well as within each individual 

cancer type, with and without subtype as a covariate. From the pan-cancer analysis, cancer 

subtypes known for global methylation alterations such as TGCT with hypomethylation and 

IDH mutant with hypermethylation are seen with a higher number of corresponding cancer-

type and subtype differential probes, validating our model fitting (Figure S3H). The 

significance of ancestry differences was measured by an F-test contrasting a full model with 

a model without adjusting for ancestry differences (Table S3). After regression, the mean 

slope coefficient of methylation from all ancestry groups was re-centered to zero for each 

probe. The effect size of a probe is calculated by the range of the slope coefficients from 

different ancestry groups. Probes with effect size greater than or equal to 0.1 and adjusted p 

value less than 0.05 are considered ancestry-differentially methylated. We also tested 

alternative regression models including ones that depend on the iCluster assignment (instead 

of tumor types and subtypes) and self-reported ancestry (instead of consensus inferred 

ancestry). The top ancestry-differentially methylated genes were robust across alternative 

regression models (Table S3).
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The 374 ancestry-differentially methylated sites that were not identified with design artifacts 

were projected and displayed using Uniform Manifold Approximation and Projection 

(McInnes et al, 2018) based on their ancestry methylation bias. A probe was considered to 

be associated with a gene when the interrogated CpG was located from 1500bp upstream of 

the TSS until the TTS of any isoform of the gene. Some probes may be associated with more 

than one gene, but only the one gene symbol is shown in the plot for brevity. Alternative 

gene names are shown in Table S3.

To estimate the power of detecting DNA methylation differences, we modeled DNA 

methylation measurements as a binomial distribution with the number of experiments N 

equal to 40 and the mean equal to true methylation, with assigned ancestry-specific 

methylation differences. N was set at 40 to model the average bead number for each probe in 

the Infinium DNA methylation microarray. To imitate the distribution of gender-specific 

DNA methylation, we introduced a gender difference modeled by a beta distribution 

parameterized by a=1 and b=5 for the two shape parameters. We also introduced subtype-

specific DNA methylation modeled using a normal distribution with a mean of 0.1 and 

standard deviation of 0.2 with caps at 1 and 0 to keep values between 0 and 1. For each 

given methylation difference, we performed 1000 simulations and the same regression 

analysis we performed on the real data. We then computed the fraction of significant 

ancestry-specific differences and plotted against known methylation differences.

mRNA expression: Pan-cancer mRNA normalized data (https://gdc.cancer.gov/about-data/

publications/pancanatlas) was filtered to retain samples with an admixture of <20% for 

EUR, EAS, and AFR ancestry. The samples were then split to compare EAS (n=532) vs 

EUR (n=5,901) and AFR (n=380) vs EUR (n=5,901). The dataset was log2 transformed and 

filtered for genes present in >80% of samples. The filtered genes (n=16,269) were 

determined to be significantly associated with EAS vs EUR (FDR q<0.001) and AFR vs 

EUR (FDR q<0.001) by linear regression correcting for TCGA plate ID and tumor specific 

subtype. The same linear model was applied both across all cancer types and on a per cancer 

type basis for tumor types with more than ten samples of the minor ancestry, corrected for 

tumor subtype where appropriate. For GSTM1/CRYBB2 and PPIL3/FBLL1, the median 

expression per tumor type and ancestry was plotted to highlight within-ancestry variance.

miRNA: We obtained the TCGA miRNA data prepared for the TCGA Pan-Cancer Atlas 

(https://gdc.cancer.gov/about-data/publications/pancanatlas). This dataset includes 

expression levels of 743 miRNA mature strands (miRs) for 10,824 TCGA samples, which 

we batch-corrected to enable pan-cancer analyses 

(pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16.csv). 

The consolidated dataset included 8,180 samples across 32 tumor types for which both 

miRNA expression data and ancestry calls were available (Table S6). No miRNA data were 

available for GBM. Twelve of the 32 tumor types had subtype annotation.

Before statistical tests, negative miRNA reads per million mapped reads (RPM) values 

(introduced due to the batch correction procedure) were set to zero, and miRNA RPM values 

were then log transformed using y = log2(x+1), where x values are the RPM values and y 

values are the log-transformed values used for statistical analyses and visualization.
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To determine ancestry associations, we applied a linear regression model with a binary 

design matrix based on the subtype calls as predictors to explain the normalized expression 

across the samples of each tumor type and subtype. We then performed Wilcoxon rank sum 

tests against ancestry calls on the output of this model. We applied the following pre-

filtering criteria:

1. The sample size of both groups to be tested should be 5 or larger.

2. The coefficient-of-variation (CoV) across the expression levels of the union of 

samples of both groups was 0.1 or larger.

3. There were at least 5 samples among the union of samples of both groups with 

an RPM value of 25 or higher (4.7 in logarithmic space).

4. miRNAs that were flagged as having ancestry-specific SNPs are discarded (n=3). 

See below for more details about the ancestry-specific SNPs.

Since in TCGA miRNA-seq data only exact-match reads (to the hg19 reference genome) 

were counted towards expression (Chu et al, 2016), TCGA samples with SNPs in miRNAs 

will report artificially low (or zero) expression levels for these miRNAs. Ancestry-specific 

SNPs in miRNAs will thus lead to spurious relationships of differential miRNA expression 

between ancestry groups. We therefore discarded miRNAs with ancestry-specific SNPs. We 

merged miRNA annotation from miRBase (http://www.mirbase.org/, v21 released June 

2014) with 1000 Genomes Phase 3 information from Ensembl, which contains ancestry-

specific SNP allele frequencies, and called SNPs “ancestry-specific” if the difference 

between the maximum and minimum AAFs of the SNP among the five superpopulations 

(AFR, AMR, EAS, EUR, SAS) was 0.25 or larger. Table S6 lists the SNPs in miRNAs along 

with their ancestry-specific allele frequencies. Process details are also provided in our GDC 

publication page (https://gdc.cancer.gov/about-data/publications/CCG-AIM-2020).

To identify miRNA mature strands (miRs) that were overlapped by and on the same strand 

as ‘host’ genes, we compiled a general miR-gene resource from GRCh38/hg38 GFF3 files 

for Ensembl v94 genes and miRBase v22.1 miRNAs, using the rtracklayer v1.42.2 R 

package (Lawrence et al, 2009), in R v3.5.3. In using GRCh38 annotations, we recognized 

that the GRCh37/hg19 TCGA RSEM gene expression data would be unavailable for some 

Ensembl genes, but we prioritized using current miRNA annotations and (largely) current 

gene annotations and biotypes (https://gdc.cancer.gov/about-data/publications/CCG-

AIM-2020). To report Spearman correlations between hosted miRs and host genes, we used 

Pan-cancer, batch-corrected, normalized GRCh37 expression data for 20,531 RSEM genes 

and 743 expressed mature strands (https://gdc.cancer.gov/about-data/publications/

pancanatlas). Given our GRCh38-based annotation/overlap resource, these data supported 

calculating correlations for 203 host genes and 331 hosted miRs.

Ancestry associated SNPs and eQTLs—Association analyses were carried out using 

the Hail framework (https://github.com/hail-is/hail). We transformed the post-imputation vcf 

files from the Michigan imputation server into Hail matrix format to speed up downstream 

analysis. Using the Haplotype Reference Consortium imputation calls, we performed further 

quality control analyses to filter out low-imputation confidence variants. Common variants 
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(MAF>0.05) that had an imputation confidence score (r^2>=0.5) and did not violate Hardy-

Weinberg equilibrium assumption (Hail HWE test p>0.05) were kept for association 

analysis. We also filtered out samples with call rates<0.95 and admixed samples, leaving 

8,696 samples and 8,551,986 SNPs for testing.

To identify SNPs associations with ancestry, we performed logistic regression analysis for 

EUR versus AFR and EUR versus EAS (Hail Wald’s test implementation), including patient 

age and gender as covariates. For the set of genes with pan-cancer differential mRNA 

expression associated with ancestry, we extracted pancanQTL cis- and trans-eQTLs from the 

pancanQTL resource (Gong et al, 2018), and determined the number of eQTL pairs for each 

cancer-type in which the underlying SNP also showed a significant association with ancestry 

(Wald’s test FDR q<0.05) by merging tables across dbSNP identifiers.

Ancestry and pathways—The PARADIGM algorithm was used to integrate platform-

corrected expression, gene-level copy number, and pathway interaction data for 9829 TCGA 

Pan-Cancer samples to infer the activities of ~19K pathway features (Vaske et al, 2010; 

Sedgewick et al, 2013). The inferred activities, termed integrated pathway levels (IPLs), 

reflect the log likelihood of the probability that a given feature is activated (vs. inactivated). 

Only samples with admixture proportions ≤20% were included, yielding 9046 evaluable 

samples.

Among the 33 tumor types, the 24 with ≥5 patients not of EUR ancestry were considered. 

Within each tumor type, we identified pathway features with differential inferred activities 

between each ancestry group with ≥5 patients and the EUR group using t-tests and Wilcoxon 

Rank sum tests. Three initial minimum variation filters were applied prior to statistical 

testing: first, at least 1 sample with absolute activity > 0.05; second, at least 10% of samples 

have non-zero activity; and third, standard deviation of activity > 0.05. Features deemed 

significant (q<0.05) by both tests and showing an absolute difference in group means >0.05 

were selected. The selected pathway features were assessed for interconnectivity; and 

regulatory nodes with differential IPLs that also had at least 10 differential downstream 

regulatory targets were identified. We also evaluated whether DNA repair genes 

(Knijnenburg et al, 2018) and known cancer pathway or driver genes (Sanchez-Vega et al, 

Cell 2018 and Bailey et al, Cell 2018) were enriched among the selected differential features 

by comparing the proportion of pathway genes selected against the proportion of total genes 

selected, using a hypergeometric test with a Benjamini-Hochberg correction. Pathway gene 

sets were considered significantly enriched if there were at least two members that were 

differential at q<0.05.

Among the 24 included tumor types, 10 have subtype annotation; the above described 

analyses were also performed within tumor subtypes. In addition, for each tumor type, we 

conducted a subtype-adjusted analysis by first fitting a linear model of each IPL as a 

function of a binary matrix of subtype membership. The resulting residuals were then 

compared to identify ‘subtype-adjusted’ differential features and key regulatory nodes as 

described above.
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Significance

We conducted a comprehensive analysis of the molecular effects of ancestry across 

cancer or normal tissues. We found that, though many ancestry effects were shared by 

normal tissues, they were profoundly tissue-specific, suggesting ancestry effects have to 

be considered primarily on a per-tissue basis both among cancers and non-cancer tissues. 

In tissue-specific analyses of normal tissue especially, more samples from diverse 

ancestries are required for comprehensive ancestry analyses, and we identified important 

controls for confounders and artifacts that need to be applied in such studies. Differences 

between African, European, and East Asian groups in renal and bladder cancers in 

particular suggest that ancestry should be taken into account when considering routes to 

disease and response to immunotherapies.
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Highlights

• This large analysis identified ancestry correlates in cancer

• Ancestry-associated artifacts and confounders were identified

• Ancestry effects are profoundly tissue-specific

• Rates of FBXW7, VHL, and PBRM1 mutations and immune activity vary by 

ancestry
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Figure 1. TCGA donor ancestries
(A) Ancestries were called as the consensus between five independent methods based upon 

SNP array and/or whole exome sequencing. (B) Ancestry representation in each disease type 

(upper plot), aggregate fractions of each ancestry among admixed individuals (middle 

panel), and cancer types with at least 10 individuals of the indicated ancestries (black dots; 

lower panel). (C) Ancestry representation across tumor subtypes with non-random ancestry 

distributions. (D) Example local ancestry calls (top) and summary enrichment scores for 

AFR or EUR ancestry (vertical axis), plotted against genomic location (horizontal axis).

See also Figure S1 and Table S1.
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Figure 2. Ancestry-associated somatic genetic alterations.
(A) QQ plot showing genes whose pan-cancer mutation rates were significantly associated 

with AFR vs EUR ancestry after controlling cancer type but not subtype. Red and blue 

respectively indicate higher and lower frequencies in AFR (FDR q<0.1). Cancer subtype 

adjustment removed TP53 and PIK3CA associations, shown in gray; FBXW7 retained 

significance. (B) Cancer-specific mutation frequencies in EUR and either AFR (VHL and 

PBRM1; KIRC) or EAS (HRAS and NFE2L2; BLCA and ESCA respectively) TCGA 

cohorts. p values represent analyses controlled for cancer subtype. Stars represent genes that 

validated in external cohorts. (C-D) VHL mutation frequency (vertical axis) plotted against 

level of admixture (horizontal axis) of (C) AFR and (D) EUR ancestry in KIRC FMI 

patients. Individual patient admixture levels are indicated by the blue dots at the top of each 

panel. Yellow dots represent frequencies at each decile of admixture; dot sizes correspond to 

the patient numbers in each decile. Blue profiles and shadows represent binomial logistic 

regression (p < 0.001 for VHL in AFR and EUR) and confidence intervals, respectively. (E) 

Arm-level SCNA frequencies in EUR (vertical axis) and AFR (horizontal axis) cohorts, 

across all diseases and chromosome arms. Chromosomes 3p and 4q had significantly 

different rates of loss among KIRC and COAD patients respectively.

See also Figure S2 and Table S2.
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Figure 3. Ancestry-differential DNA methylation
(A) Number of positive control 65 rs probes (‘Explicit SNPs’), probes with measurements 

directly influenced by SNPs (‘SNP masked’, excluded from later analyses), and all other 

probes (‘Not Masked’), among probes found to be significant or non-significant in ancestry 

testing. (B) Left: Regression coefficients between AFR and EUR samples, pan-cancer and in 

six cancer types. Right: the statistical significance of these differences. (C) Concordant 

ancestry bias across probes (dots) for the same genes. Genes with at least four ancestry-

differential probes are colored. (D) Ancestry bias (vertical axis), computed as the slope 

(beta) in the regression model, across ancestries in example genes. (E) Methylation at the 

SPATC1L promoter (cg12016809 beta value, horizontal axis) is associated with reduced 

gene expression (vertical axis). Beta value distributions are shown as smoothed density plots 

above scatter plots. (F) Ancestry-associated differentially methylated regions (A-DMRs) 

detected in 149 whole-genome bisulfite sequenced samples. The PM20D1 promoter and 

HOOK2 gene body enhancer loci in panels C and D are shown. (G) Isolated probes can also 

be part of A-DMRs. Top: Probe cg08477332, between S100A14 and S100A13, displays 

preferential lack of methylation in AFR samples. Bottom: At least six contiguous CpGs 

neighboring cg08477332 display concordant methylation, a potential A-DMR.

See also Figures S3, S4 and Table S3.
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Figure 4. Ancestry-associated mRNAs.
Genes associated with ancestry (FDR q<0.001) after correcting for either batch alone or 

batch and cancer subtype. Expression ratios and significance levels were plotted for AFR 

(A) and EAS (B) associated genes. Genes that were significant in 33% of tumor types are 

highlighted (bottom). (C) Overlap of mRNAs associated with AFR or EUR ancestry, 

identified by either TCGA or GTEx. (D) Effect sizes (as regression coefficients) from 

TCGA (horizontal axis) and GTEx (vertical axis) analyses, for ancestry-associated mRNAs 

identified in both analyses. (E-F) Median levels per tumor type of the ancestry associated 

genes (E) GSTM1 and CRYBB2 (F) PPIL3 and FBLL1. Dot sizes indicate sample sizes and 

colors indicate ancestry.

See also Figure S5 and Table S4.
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Figure 5. Ancestry-associated miRNA mature strands.
(A) Number of ancestry-associated miRs (FDR q<0.001), pan-cancer and in six cancer 

types. (B) Distributions of log2 fold changes for the associations in (A). (C) Ancestry-

differential expression of miR-628–5p in basal BRCA, and miR-4326 in MSI STAD. Violin 

plot widths reflect kernel density estimates; solid and dashed lines reflect median and 

interquartile range. (D) Genomic neighborhood of hsa-mir-628, modified from the UCSC 

browser. The miRNA is within an intron of and on the same strand as host gene CCPG1. 

Red boxes are TSS loci (Marsico et al. 2013). The pale blue box at the bottom is a miRBase 

v22.1 read pileup on the miRNA’s stem-loop sequence. (E) Expression of miR-628–5p and 

CCPG1 in BRCA (left) and KIRC (right) samples, with Spearman rho values. (F) 

Distribution of rho values between hosted mature strands and host genes in BLCA, BRCA, 

CESC and ESCA.

See also Figure S6 and Table S5.
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Figure 6. Ancestry-associated eQTLs.
Ancestry-associated germline variation cis-effects on expression in (A) AFR-EUR and (B) 

EAS-EUR comparisons. Dots, representing cancer type and colored by the number of 

samples in the minority population, are plotted against the number of PancanQTL eGenes 

with at least one ancestry-associated SNP (horizontal axis), and the proportion of ancestry-

associated eSNPs (vertical axis). (C) Representative cis-eQTL rs2058665-PPIL3 in BRCA. 

(i-ii) PPIL3 expression by (i) ancestry and (ii) SNP genotype. (iii) Proportions of samples 

with each genotype, by ancestry (Wald’s association test, FDR q<0.01). (iv) PPIL3 
expression by genotype between EUR and AFR samples (p values: Wilcoxon test). Violin 

plot widths reflect kernel density estimates. Lines show median and interquartile ranges.

See also Figure S7 and Table S6.
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Figure 7. Ancestry-differential pathway features.
(A) Mean differences (red: higher in EUR; blue: lower in EUR) in PARADIGM-inferred 

integrated pathway levels (IPLs) of regulatory nodes with ≥10 ancestry-differential 

downstream targets, by tumor type. Gray denotes regulatory nodes that are not differential or 

have <10 differential downstream targets. (B) ATM IPLs of AFR and EUR Luminal A 

BRCA samples. (C) MYC/Max complex IPLs of EAS and EUR BLCA subtype 5 samples. 

In B and C, the violin plot widths reflect kernel density estimates and internal boxplots show 

median, interquartile range, and 1.5 times the interquartile range. (D) Cancer-associated 

genes and pathways enriched among differential pathway features between ancestry groups, 

from subtype-adjusted analyses. (E) Association of EAS ancestry with immune infiltration 

score. Coefficients from a multivariate logistic regression are shown on the horizontal axis. 

Red and green dots indicate correlations with FDR q < 0.05 and < 0.25, respectively. (F) 

Expression of CD274, which encodes PD-L1, in AFR, EAS, and EUR ancestries across all 
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cancers with at least 10 samples from the minority cohort. Boxeplots show median, 

interquartile range and 1.5 times the interquartile range.

See also Table S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

TCGA SNP 6.0 array and 
HumanMethylation450 array

TCGA legacy archive https://portal.gdc.cancer.gov/legacy-archive/

TCGA whole-exome sequencing Genomic Data Commons https://portal.gdc.cancer.gov/

Haplotype Reference Consortium 
reference data

Haplotype Reference Consortium http://www.haplotype-reference-
consortium.org/

1000 Genomes project data 1000 Genomes project http://www.internationalgenome.org/

Somatic mutation, copy number and 
other genomic/immune features

Genomic Data Commons; Taylor et al. 2018 https://gdc.cancer.gov/about-data/
publications/pancanatlas

Mutational signature Alexandrov et. al. (2018)

Whole genome bisulfite sequencing Genomic Data Commons; Schuyler et al, 2016 https://portal.gdc.cancer.gov/

TCGA mRNA normalized and 
miRNA data

Genomic Data Commons https://gdc.cancer.gov/about-data/
publications/pancanatlas

TCGA clinical and subtype data Genomic Data Commons; Sanchez-Vega et al, 2018; 
Robertson et al, 2017

https://gdc.cancer.gov/about-data/
publications/pancanatlas

ICGC PCAWG data International Cancer Genome Consortium https://dcc.icgc.org/pcawg

MSK-IMPACT data cBioPortal https://www.cbioportal.org/

Additional somatic validation 
datasets

Pena-Llopis et. al. 2012; Krishnan et. al. 2016; 
Nassar et al, 2019; Wu et al, 2019; Chang et. al, 2017

Additional methylation validation 
datasets

Gene expression omnibus https://
www.ncbi.nlm.nih.gov/geo/

GSE36369; GSE41826; GSE53816; 
GSE101431

miRBase http://www.mirbase.org/

Software and Algorithms

AIM local ancestry https://github.com/jcarrotzhang/ancestry-from-panel/
tree/master/AIM_local_ancestry

EIGENSOFT smartpca v9102 Price et al, 2002 https://github.com/chrchang/eigensoft/

ADMIXTURE v1.23 Alexander et al, 2009 http://software.genetics.ucla.edu/admixture/

PLINK v1.9 Purcell et al, 2007 https://www.cog-genomics.org/plink/1.9/

EthSEQ Romanel et al, 2017 https://github.com/cibiobcg/EthSEQ

SHAPEIT v2 Delaneau et al, 2011 https://mathgen.stats.ox.ac.uk/
genetics_software/shapeit/shapeit.html

RFMIX v1.5.4 Maples et al, 2013 https://github.com/slowkoni/rfmix

McCarthy Group tools https://www.well.ox.ac.uk/~wrayner/tools/

Michigan Imputation Server https://imputationserver.sph.umich.edu

Eagle v2.3 Loh et al, 2016 https://data.broadinstitute.org/alkesgroup/
Eagle/

Minimac 3 Howie et al, 2012 https://genome.sph.umich.edu/wiki/
Minimac3

Hail framework https://github.com/hail-is/hail

openSeSAMe Zhou et al, 2018b https://bioconductor.org/packages/devel/bioc/
vignettes/sesame/inst/doc/sesame.html

rtracklayer Lawrence et al, 2009 https://www.bioconductor.org/packages/
release/bioc/html/rtracklayer.html
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REAGENT or RESOURCE SOURCE IDENTIFIER
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