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Abstract
There is no guarantee that the set of possible theories that
boundedly rational agents consider contains the true theory.
And yet, these agents update their beliefs as new evidence
comes in, leading to a conclusion about a particular domain.
In this paper, we investigate under which conditions such
agents arrive at sufficiently accurate beliefs compared to ideal
agents. In doing so, we work within the framework of objective
Bayesianism and draw on the literature on novel predictions in
philosophy of science.
Keywords: Bounded rationality, Novel predictions, Maximum
Entropy, Objective Bayesianism

Introduction
Standard epistemology assumes that agents are ideally ratio-
nal. In particular, it is assumed that the agent’s beliefs are
distributed over a given set of mutually exclusive hypotheses
that contains the true hypothesis. Given enough evidence, the
agent will eventually converge to the truth, that is, the agent
will eventually become maximally confident in the true hy-
pothesis. Since the true hypothesis was part of the original set
of alternatives, it is not necessary to expand it in the course of
the deliberation. However, real agents are different. We have
no guarantee that the set of alternative hypotheses we are con-
sidering at any given time contains the true hypothesis. This
can be seen in many examples where the best considered the-
ories ultimately turn out to be wrong. Real agents are thus
limited not least in the sense that they cannot perform an ex-
haustive search in the space of all possible theories to guar-
antee that the set of hypotheses under consideration contains
the true hypothesis.

In this paper, we develop an objective Bayesian analysis
of this kind of bounded rationality and ask under what con-
ditions such a bounded agent can form sufficiently accurate
beliefs compared to an ideal agent. More precisely, the ques-
tion is whether such a boundedly rational agent is able to
correctly rank these hypotheses according to their probability
given all currently available evidence, as an ideal agent could
do for the same (restricted) set of hypotheses and the same set
of evidence. Interestingly, this question is related to a long-
standing debate in the philosophy of science about the con-
firmatory value of novel predictions and accommodations of
known data. When a new theory successfully predicts novel
phenomena not previously recognised by other theories, this
is considered strong evidence in favour of that theory. There-
fore, many have come to believe that such novel predictions

confirm a scientific theory more strongly than ‘mere accom-
modations’ of known data. The observation of novel predic-
tions therefore speaks more in favour of a theory than if this
data has already been used in the development of the theory.

The corresponding philosophical position is known as pre-
dictivism, and the predictivism-debate concerns the ques-
tion whether (ceteris paribus) novel predictions confirm a
scientific theory better than accommodations of known data
(Lakatos, 1976; Howson, 1988; Scerri & Worrall, 2001;
Barnes, 2005; Worrall, 2005). This debate is not only the-
oretical, because much is at stake for those sciences that have
to rely more on accommodations or ex post explanations be-
cause they have limited experimental control (like social sci-
ences or climate science). If accommodations confirm sys-
tematically less than novel predictions (or not at all), then we
– as boundedly rational agents – may have only little hope of
coming to accurate conclusions within these disciplines.

The aim of this paper is to develop a Bayesian analysis that
identifies optimality conditions for boundedly rational agents.
Our central optimality result derives from an accuracy-first
approach, where agents assign their rational beliefs by min-
imising a measure of expected inaccuracy. This approach
of minimising expected inaccuracy applies to all Bayesian
agents, whether bounded or ideal. Here we take the ideal
agent with the most accurate belief system as a benchmark
against which we compare the constrained agent that does not
know all theoretical alternatives. We find that, given sufficient
knowledge of the empirical implications of their current theo-
ries, the ranking of hypotheses matches that of an ideal agent
when considering the same set of alternatives.

The paper proceeds as follows. In the next section, we in-
troduce bounded rationality in the context of the predictivism
debate and explain the central challenge of bounded agents in
more detail. We then present our formal analysis, based on
the framework of minimising epistemic inaccuracy, and de-
rive our central result. We conclude with a brief discussion of
the formal results with respect to different epistemic contexts
and point out limitations and open questions for future work.

The Challenge for Bounded Agents and
Previous Modeling Approaches

In this section, we provide the conceptual background on
bounded rationality in relation to the predictivism debate.
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Bounded rationality in economic models takes into account
computational limitations of agents to make their decision
making behaviour more realistic. Ideal agents are charac-
terised by perfect information: they know all available op-
tions and can instantly evaluate them. Thereby, ideal agents
always perform an exhaustive search of the option space and
find the global maximum, without having to take into account
the computational costs of this search. Boundedly rational
agents (see Simon (1955); Kahneman (2003); Gigerenzer &
Selten (2002)), on the other hand, do not perform an exhaus-
tive calculation to find the global optimum. Rather, they may
only compare a couple of options and then settle on a satis-
ficing solution, i.e. an option that is “good enough”. This
may be due to bounded agents not being aware of all options,
or, relatedly, due to the cost of performing an extensive in-
formation search. For any physical being, computation (e.g.
reasoning through alternatives) takes time and consumes en-
ergy. As resources are consumed, the agent may be more
prone to committing errors, and as time progresses, the costs
of inaction may outweigh the potential benefits of finding an
alternative that is even better. Given these constraints, choos-
ing an option that is “good enough” (e.g. exceeds a quality
threshold) is a sensible decision.

In the epistemic context, we interpret the “options” as mu-
tually exclusive hypotheses, and one central dimension of
epistemic “utility” is accuracy, i.e. proximity to the truth,
concerning all variables or propositions of interest: in crimi-
nal cases, questions of interest include the identity of the true
perpetrators, and some details of the act (whatever is relevant
for the appropriate verdict); in scientific theory development,
central questions concern the identity of the true laws gov-
erning a domain of interest, while more local questions may
concern the accuracy of concrete predictions.

Bounded epistemic agents face an important problem, in
particular when the set of possible alternative hypotheses is
large, or even infinite. Since the agents cannot perform an
exhaustive search of all logically possible alternatives (e.g.
scientific theories), there is always some fundamental uncer-
tainty as to whether their set of epistemic alternatives at a
given time really contains the true alternative. This is espe-
cially true in scientific contexts: there is fundamental uncer-
tainty as to whether a given theory describes the true laws that
govern the system of interest and whether future predictions
of the theory will be accurate. In criminal cases, the set of
suspects is considerably smaller, but the evidence concerning
the case may be scarce, and relevant information pointing to
the true suspect may be hidden, thus creating the risk that the
true suspect gets overlooked.

Given that bounded agents don’t have the resources to in-
vestigate arbitrarily large sets of alternative theories, a possi-
ble way forward is a more systematic search that is informed
by their current evidence. This can happen in broadly two
ways: either, agents are forced to look for alternative theories,
because none of their current theories fits the evidence, or
they independently look for alternative explanations, which

fit the given data at least as much as the current theories.
In the first case, where evidence is anomalous for all theo-

ries, there is a strong indication that the true theory is not in
the set of currently entertained alternatives. Hence, to solve
the anomaly, agents are looking for a new hypothesis that fits
the data well, that is, under which the given data has a high
likelihood. However, high likelihood by itself is also no guar-
antee that any of the newly introduced hypotheses is the true
hypothesis: one possible risk consists in the introduction of
overfitting theories that explain the existing data very well,
but only due to the idiosyncracies of the dataset (i.e. the hy-
pothesis also models the noise that is in the data). The danger
of overfitting is discussed in the literature concerning accom-
modations of old data (Hitchcock & Sober, 2004) as well as
in Bayesian contexts (Sterkenburg & De Heide, 2022).

The second case, where new alternatives are put forward
independently, often occurs in competitive argumentative
contexts, such as lawsuits or criminal trials: here, one possi-
ble strategy for the defense attorney, rather than challenging
the evidence directly, is to offer an alternative explanation,
which may discount some of the weight put on the defen-
dant as the space of alternatives increases (Hahn & Hartmann,
2020). If this competitive argumentative setup works prop-
erly, it may enable a systematic search for alternatives from
multiple angles, thereby reducing the risk of prematurely set-
tling on a wrong alternative.

In any case, the introduction of new theories necessitates
a re-evaluation of the whole belief system. Since the proba-
bilities of alternative hypotheses must sum up to unity, intro-
ducing an alternative that has positive probability necessar-
ily decreases the probability of the old alternatives. So, the
first question is what probability should be assigned to the
new hypothesis, and how each of the old alternatives should
be changed in response. This is known as the problem of
awareness extension or language change in Bayesian deci-
sion theory and epistemology (Williamson, 2003; Karni &
Vierø, 2015; Bradley, 2017; Wenmackers & Romeijn, 2016;
Steele & Stefánsson, 2021). Furthermore, the resulting new
credence distribution should be determined in the light of the
given evidence. By Bayes’ rule, the probability of each hy-
pothesis hi (for i = 1, . . . ,n) is updated on the evidence as
follows:

P′(hi) = P(hi|e) =
P(e|hi) ·P(hi)

∑
n
j=1 P(e|h j) ·P(h j)

, (1)

where P(e|hi) is the likelihood of hi for data e, and P(hi) is
the prior probability of hi, which is updated to the posterior
P(hi|e) after the observation of e. Thus, the posterior of the
new hypothesis can be computed from the likelihoods and
the new prior distribution that is re-assigned after the new hy-
pothesis was introduced. If each hi is a statistical hypothesis
that fixes the likelihood P(e|hi), the agent only needs to ‘re-
construct’ the prior P(hn) of the new hypothesis hn that she
would have assigned before e was observed, and renormalise
the other hypotheses proportionally (so everything sums up to
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1). This amounts to the known counterfactual solution to the
Problem of Old Evidence. However, some philosophers have
argued that precisely this step of figuring out one’s counter-
factual beliefs is tricky at best, or even practically impossible.
Earman (1992), e.g., argued that it might not be possible to
disentangle the conception of hn (and the hypothetical prior
P(hn)) from the observation of e. For example, he argued that
one of Einstein’s main tenets in developing general relativity
was precisely the explanation of the anomalous Mercury per-
ihelion. So, if this phenomenon didn’t exist in an alternate
timeline, it might be questionable whether anybody would
even conceive of the possibility of general relativity, or con-
sider its initial plausibility to be high enough so that it was
worthy of investigation. On the other hand, if I still assign
some plausible-looking prior to hn ‘under the impression of
e’, and then compute the posterior, I may be double-counting
the evidence, according to Earman. So, how could I be sure
I have reconstructed an adequate prior without being over-
confident (e.g. in the light of old evidence that fits well with
the given evidence)? Sterkenburg & De Heide (2022) showed
that overfitting hypotheses can negatively affect truth conver-
gence of open-minded agents. Intuitively, we can connect this
to Earman’s worry that assigning a too high prior to a new hy-
pothesis in the light of fitting data may generate too high con-
fidence in overfitting hypotheses, which lead the agent astray.
But conversely, if the agent discounts these hypotheses too
much, in order to avoid overconfidence, they may run into
the opposite problem of being underconfident. More gener-
ally, if the temporal order of hypothesis-introduction affects
the agent’s credences, this may lead to bad distortions, and
has to be avoided by finding a principled method for prior
assignments.

One solution proposal that has been put forward in the light
of these considerations is to exclude old data from the assess-
ment of new theories, and to focus instead on generating new
predictions that can confirm the new theories independently.
If the new theories are any better than their predecessors, they
should lead to the discovery of novel facts, and make more
specific predictions that can be tested independently, which
is taken as evidence that they are aiming at the truth (White,
2003). After all, the new theory has to fit the old data anyway
– at least as much as the old theories – in order to be consid-
ered as a real alternative in the first place. This is in line with
the philosophical intuition of strong predictivism, which is
expressed in the “null-support-thesis”: this principle asserts
that accommodations cannot confirm a theory at all (Giere,
1984; Glymour, 1980).

A classical argument for the null-support-thesis was al-
ready put forward by Peirce (1932) and Hempel (1966). It
states that, for any finite set of data points, there are infinitely
many mutually exclusive hypotheses that are equally consis-
tent with the data. If a hypothesis is designed to fit the known
data, there are infinitely many alternatives, and therefore the
data couldn’t give us a reason to prefer this particular hy-
pothesis over any of the alternatives. The data never ‘had

a chance to refute the hypothesis’, and so they also cannot
confirm it. Howson (1988, 1990) has presented a rebuttal of
this argument. Whether a hypothesis is ‘designed’ to fit the
data does not matter as to whether the data supports the hy-
pothesis. In fact, maximum likelihood estimation precisely
selects the model that best fits the data. Hence, the original
argument is not sufficient to rule out the possibility that old
evidence does support a hypothesis that is designed to fit the
data. Furthermore, at least in some important cases, old ev-
idence does really seem to confirm new theories – a famous
example is general relativity, which could finally explain the
shift of Mercury’s perihelion that posed a serious anomaly
for the Newtonian theory. Hence, in its full generality, the
null-support thesis seems to be too strong, but we still need
to develop a criterion for deciding when accommodation of
old evidence confirms a theory, and how much. Weak pre-
dictivism, on the other hand, maintains that a restricted class
of accommodations can confirm, but different authors give
different recommendations (White, 2003; Scerri & Worrall,
2001; Barnes, 2005; Frisch, 2015).

Thus, at this point, several questions arise. First of all, we
may ask, whether it is in fact true that novel predictions gen-
erate excess confirmation, just in virtue of their novelty. Fur-
thermore, if the predictivist intuition is correct, the question
remains by how much accommodations of old data should be
discounted. If accommodations have to be significantly dis-
counted (even if not completely), the prospects seem dire in
all those situations where we have to rely (almost exclusively)
on existing data to confirm our theories. If, on the other hand,
old data must count to some extent, the question is how we
should account for it. In order to tackle this question and to
see how novel predictions and accommodations ought to be
compared, we first need to solve the problem of how priors
have to be assigned, in order to avoid distortions due to tem-
poral order effects. We tackle this issue in the next section,
by introducing an objective Bayesian account, based expected
inaccuracy minimisation.

An Objective Bayesian Model
In this section, we start by tackling the question of rational
prior assignment from an objective Bayesian perspective. The
objective prior assignment will be grounded in considerations
of epistemic inaccuracy minimisation. Hence, it is an opti-
mal solution, which justifies the way in which we go about
comparing the confirmatory value of old evidence and novel
predictions. Finally, we will use this framework to answer the
question whether ceteris paribus, novel predictions confirm a
theory more than accommodations of old evidence.

First of all, in keeping with our preceding discussion of
interpreting epistemic utility as accuracy, we need to ground
prior assignments in a principle of epistemic optimality. This
can be achieved within the framework of expected inaccu-
racy minimisation. If the goal of an epistemic agent is to
have maximally accurate beliefs, we can use scoring rules to
measure the inaccuracy of the agent’s subjective degrees of
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belief, relative to the truth. In this context, strictly proper
scoring rules are of special interest. A scoring rule S(ω,P) is
a real-valued function of a materialised outcome ω ∈ Ω, and
the agent’s degree of belief in that outcome P(ω). The score
of S represents the inaccuracy of the agent’s belief (P is fully
accurate if P(ω) = 1).

S is called strictly proper if its expected value EQS(Ω,P)
under a given distribution Q (e.g. relative frequency) is min-
imal if and only if P = Q. Thus, the score S measures how
well-calibrated a belief P is relative to an optimally predictive
distribution Q (e.g. empirical frequencies).

For every strictly proper scoring rule, the situation of
complete ignorance is represented by a uniform distribution.
However, often agents have some (yet incomplete) prior in-
formation. Hence, the agent needs to minimise their expected
inaccuracy subject to those constraints that incorporate their
prior information. In the case of scientific theories that spec-
ify statistical hypotheses, prior information is contained in the
likelihood distributions P(E|t) of each theory t over observa-
tional variables. Such objective likelihoods (Jeffreys, 1998;
Wenmackers & Romeijn, 2016; Howson, 2017) encapsulate
the empirical consequences of a theory, in terms of how likely
each observable outcome is, given that theory. With this prior
information in place, the agent obtains further information
by observing variables, which leads them to updating their
beliefs (and has to be considered as prior information when
introducing new theories). Standard updating proceeds via
Bayesian conditionalisation, but we will introduce a model
that is more general. We will also show that by minimising
expected inaccuracy, it is always possible to recompute ev-
ery update so that we can also reconstruct every state of prior
information.

As mentioned, in our model evidence can be more complex
than what is captured by simple conditionalisation. For one
thing, evidence can be uncertain in the sense that the proba-
bility is raised, i.e. P′(e) > P(e), but still P′(e) < 1, which
requires Jeffrey’s (1965) rule. Going further, evidence can be
even more complex, e.g. when the agent learns about corre-
lations between observable variables – for example between
temperature and pressure. This involves learning conditional
probabilities P′(a|b), which go beyond Jeffrey’s rule. Thus,
the most general update involves minimising an f -divergence
(which is a class of functions that measure ‘how different’ two
probability distributions are). There is only one f -divergence
that is also related to a strictly proper scoring rule (Eva et al.,
2020), that is, by minimising the distance from the prior dis-
tribution, the agent also minimises their expected inaccuracy:
this is the Kullback-Leibler divergence (Kullback & Leibler,
1951), which is associated with the logarithmic scoring rule
S(ω,P) =− logP(ω):

DKL(Q||P) = ∑
ω∈Ω

Q(ω) log
Q(ω)

P(ω)
(2)

The KL-divergence is also called relative entropy, because it
is closely related to Shannon’s (1948) measure of expected

information content, which is called entropy:

H(P) =− ∑
ω∈Ω

P(ω) logP(ω) (3)

Alternatively, when P is defined over random variables1

X1, . . . ,Xn, we can also write H(X1, . . . ,Xn) instead of H(P).
Objective Bayesianism is centered around the Principle of

Minimum Information (Williams, 1980), which maintains that
a rational agent ought to assign probabilities that are only as
extreme as is necessitated by known evidence, and otherwise
remain as equivocal as possible. Technically, this means that
(i) H(P) (eq. (3)) is maximised (Jaynes, 1968), to make the
prior as uniform as possible, and (ii) DKL(Q||P) (eq. (2)) is
minimised, to update the prior distribution just as much as is
necessitated by the new evidence. The principle of minimum
information works as an extension of Proposition 1, which en-
ables us to identify the optimal, inaccuracy-minimising prior
for any set of probabilistic constraints

In order to capture novel predictions, we also allow for par-
tially specified likelihood distributions. As mentioned, the
likelihood of a theory represents its empirical consequences.
If a new theory introduces a novel phenomenon E ′, this new
E ′ is outside the domain of previous theories – thus, the like-
lihood of those theories is not yet defined for E ′. In this case,
maximising entropy (MaxEnt) given all known constraints
yields a precise prior distribution, even if not all likelihoods
are specified.

With this framework, we can now propose a general strat-
egy through which a bounded agent can identify the ideal
agent’s credences on a restricted domain. Here is the setup:
The ideal agent entertains all logically possible and mutually
exclusive theories (random variable T ) and a collection of ev-
idential variables that contain all possible observations (set of
random variables E). Importantly, the ti, t j (i ̸= j) are mutu-
ally exclusive. This means that we are considering theories
that are maximally specified. The bounded agent entertains
a subset T ′ ⊂ T of all possible theories and a subcollection
E′ ⊂ E. Introducing a new theory corresponds to adding a
new value tn+1 to T ′ (denote the expanded variable as T ′

n+1.)
Analogously, introducing a novel prediction corresponds to
adding a new observable magnitude Em+1 to E′. We denote
the ideal agent’s probability distribution at time step n as Qn,
and the bounded agent’s analogously as Pn. Both agents have
a set of prior constraints KT (ideal) and KT ′ ⊂ KT (bounded),
which contain information the likelihood distributions of each
element of T and T ′, respectively. The prior distributions Q0

and P0 are obtained by MaxEnt given the respective set of
constraints.

Upon obtaining new constraints E containing informa-
tion about empirical probabilities Q(E j|Ek) for E j, . . . ,Ek ⊆

1We use capital letters A,B,C to denote random variables and
lowercase letters a1, . . . ,an to denote variable-values or propositions
(the binary values are a and ¬a). Thus P(ai) (short for P(A = ai)) is
the probability that the variable A takes the value ai. Furthermore,
P(A,B) refers to the whole joint distribution over the variables A,B,
and P(A|A′) refers to the distribution over the variable A if its set of
possible values is restricted to a subset A′ ⊆ A.
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E, the ideal agent updates Qn → Qn+1 by minimising
DKL(Q||Qn) subject to E .

In contrast to that, the bounded agent can not only learn
new empirical constraints, but also develop new theories, and
derive their observational consequences. Thus, the bounded
agent can expand the value range of T ′ and the set E′. We
will show that, in order to combine both learning modes so as
to approximate the ideal agent’s order of posteriors (express-
ing which theories are the best-supported ones), the bounded
agent can employ the following strategy:

1. Upon learning new constraints E containing information
about empirical probabilities P(E j|Ek) for E j,Ek ⊆ E′, the
update proceeds by minimising DKL(Pn+1||Pn) subject to
E .

2. Upon becoming aware of a new theory tn+1 (and novel
predictions Em+1, . . . ), the bounded agent first recomputes
their prior Pn over the extended set of variables, by MaxEnt
given the extended set of prior constraints KT ′

n+1
. Second,

the agent minimises DKL(Pn+1||Pn) given E .

Thus, there are two kinds of variables of which the agent
can be unaware: (1) alternative hypotheses over the same do-
main (set of observables), and (2) further empirical conse-
quences (predictions) of a given hypothesis. Perhaps intu-
itively, one might suspect that(1) has a stronger effect on the
agent’s accuracy than (2). Thus, if we consider a fixed set
of hypotheses at a given point in time (i.e. the agents have
done their best to come up with a set of plausible hypotheses,
and now they need to evaluate them), we can ask how know-
ing the predictions of all theories may affect their ranking, in
comparison to an ideal agent, who knows all conceivable the-
ories and empirical variables. We formalise the predictions
of a theory via the theory’s likelihoods, which are captured
as prior constraints (as introduced above). It turns out that
being aware of all implications of the current theories (i.e.
knowing all prior constraints on likelihoods) is sufficient for
emulating the ideal agent’s ranking over the given set of hy-
potheses. However, when this condition fails, it is possible
that the bounded agent deviates from the ideal ranking, as we
will see in the next section. Formally, we define this aware-
ness condition as follows.

Empirical Closure: If there are variables Ek, . . . ,E l that
are not entertained by the bounded agent (i.e. not in E’), then
for every ti in T ′, there are no prior constraints on the con-
ditional probability distributions P(Ek, . . . ,E l |e, ti) for every
value configuration e of E’.

This means that the given theories have nothing to say
about variables Ek, . . . ,E l outside the current domain, or in
other words, all empirical implications (for which the given
theories do posit prior constraints) are known by the agent.
Even though knowing all empirical consequences is demand-
ing for real agents, it is in principle realistic, as opposed to
knowing all possible theories. Furthermore, it is certainly
reasonable as a goal of rational inquiry: if a theory is formu-
lated, all of its potential implications need to be derived (even

if they cannot be tested right away), because this is needed to
guarantee optimal credences.

With these assumptions in place, the following proposition
holds:

Proposition 1. Consider a single update of each agent’s pri-
ors (Q0 and P0) upon learning some fixed (possibly empty) set
of empirical constraints E . Then, under empirical closure, it
follows that P1(T ′) = Q1(T |T ′), where P1(T ′) is the bounded
agent’s posterior over T ′, and Q1(T |T ′) is the ideal agent’s
posterior over T , restricted to the value-range of T ′.

As a corollary, we get that ceteris paribus (for the same set
of likelihoods), accommodations of old evidence and novel
predictions yield the same degree of confirmation.

Discussion
In this section, we use our results to answer the questions
raised in our conceptual discussion, and point out limitations
that can be tackled in future research.

First, we have answered the question of how to (re-)assign
priors in a principled, non-arbitrary way – namely, by max-
imising the agent’s expected accuracy via the logarithmic
scoring rule, which leads to the principle of minimum infor-
mation. Since both ideal and bounded agents will follow this
principle of epistemic rationality, we can also directly com-
pare the bounded agent’s beliefs and resulting accuracy to the
ideal benchmark. In doing so, we find that it is possible for
the ideal agent to emulate the ideal belief system under the
condition of empirical closure.

As a consequence of this, we can also propose a first an-
swer to the question of predictivism: ceteris paribus, novel
predictions and accommodations have the same confirmatory
power. This is, because the prior distribution can be recom-
puted at any point, independently of the temporal order in
which hypotheses were formulated, and it only depends on
the distribution of likelihoods. To see this, consider equation
6 (in the Appendix). Since H(E|tk) is maximal if P(E|tk) is
uniform, and minimal (zero) if P(e|tk) = 1 for exactly one
e ∈ E (i.e. maximally extreme), it follows that P(ti) depends
on how extreme its likelihood distribution is, relative to the
other theories t j ̸=i. That is, the theory that is relatively the
strongest (intuitively: ‘rules out the most observations’) has
the lowest (absolute) prior probability. On the flip side, if the
likelihood distribution is very concentrated, the correspond-
ing theory will get a much higher confirmatory boost, if the
predicted outcome (that is most likely under that theory) is
observed and differs from the predictions of the other theo-
ries. With this prior probability at hand, we can also recom-
pute the posterior for every set of observations – including
old evidence, without having to worry about distortions due
to an overconfident prior.

This may be good news regarding those cases, in which
the agent has to rely mostly or exclusively on old data, be-
cause old data can count just as much as new observations. As
shown in proposition 1, it is possible for the bounded agent
to emulate the ideal agent for a given set of hypotheses and
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empirical observations. However, this positive result depends
on the bounded agent being sufficiently aware of all relevant
empirical implications (empirical closure), which can be a de-
manding requirement. If empirical closure is violated, on the
other and, there are cases where the bounded agent will even
get the ordinal ranking of hypotheses wrong.

Consider the following example: T = T ′ = {t1, t2}, and
E’ = {E1} ⊂ E = {E1,E2}, with the following conditional
entropies: H(E1|t1) = 0.5, H(E1|t2) = 0.9, H(E2|t1) = 0.9,
and H(E2|t2) = 0 (where, for simplicity, E1 is conditionally
independent of E2, given T ). Now, the prior distribution of
the ideal agent (before observing the value of either E1 or E2)
is

Pi(t1) =
e0.5+0.9

e0.5+0.9 + e0.9+0 ≈ 0.62246,

and thus, Pi(t1) > Pi(t2). However, for the bounded agent,
who is only aware of E’, we have

Pb(t1) =
e0.5

e0.5 + e0.9 ≈ 0.40131,

and thus, the ordering is reversed: Pb(t1) < Pb(t2). This is
due to the fact that H(Ee|t2) is minimal, which means that
t2 predicts a particular value of E2 with certainty. That is,
the prediction of t2 with respect to E2 is maximally specific,
as opposed to that of t1. Therefore, under the full algebra,
t2 is discounted much more than t1, which is the reason for
the reversal, if E2 is left out. Conceptually, we can under-
stand this as follows: If the bounded agent is ignorant of E2,
they are in fact missing a major prediction of t2, and there-
fore severely misjudge the potential empirical content of that
theory that could set it apart from its competitor t1 (if the pre-
diction is not confirmed, t2 is refuted, and if it is confirmed, t2
gets a much higher confirmatory boost than t1). On the other
hand, if the agent misses a prediction that is not very spe-
cific in comparison to the competitor, the correct order may
still hold. In our example, suppose that H(E2|t2) = 0.7 in-
stead of H(E2|t2) = 0. Then, with everything else unchanged,
Pb(t1) > Pb(t2), even if E’ = {E1} (i.e. the bounded agent
is not aware of E2). Thus, for the bounded agent to get the
theory-ranking approximately right, it is primarily important
to be aware of strong predictions that set apart some theories
in a certain subdomain, even if those predictions cannot be
tested right away. Moreover, if the agent is aware of all em-
pirical implications of all theories under consideration, the
agent is guaranteed to get the ordering and the relative pref-
erence for each hypothesis right, as stated in Proposition 1.

As mentioned, empirical closure is a strong requirement,
and bounded agents in our model are still ideal Bayesian rea-
soners in the sense that they immediately know (with maxi-
mal probability) all logical truths that hold in their language.
Furthermore, we have restricted our attention to epistemic ac-
curacy, i.e. proximity to the truth. However, in practical con-
texts (e.g. the aforementioned lawsuit), other values besides
accuracy may also be important. Last but not least, time and
computational resources may still make our solution unattain-
able in cases where the space of alternatives is large. Taking

these computational constraints into account in more detail
will be a fruitful task for future research.

Conclusion
In this paper, we have shown that bounded Bayesian agents
who are not aware of all conceivable theories can approxi-
mate the ideal agent’s credences if they are at least aware of
all empirical implications of their theories. As a consequence,
novel predictions and accommodations have the same confir-
matory power, ceteris paribus. This follows from the central
result that bounded agents can use a method, based on ex-
pected inaccuracy minimisation, to figure out their optimal
degrees of belief, relative to the given subset of theories that
they currently entertain. This provides hope for disciplines
which have limited experimental control. Therefore, in con-
cluding our paper we suggest that, in future research our re-
sult can be fruitfully applied to study more concrete issues
that arise in the special sciences, such as model confirmation
in climate science, and issues concerning the replication crisis
in psychology.
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Appendix
Proof of Theorem 1
In order to find the maximum entropy prior P′ for the bounded
agent, subject to known likelihoods, we maximise the La-
grangian function

L = H(P′)+ ∑
φ∈K

λφ ·φ, (4)

where each φ ∈ K is a constraint on known likeli-
hoods, such that for a given value configuration e1

j , . . . ,e
m
k , ti

of E1, . . . ,Em and Tb there is a ∈ [0,1] such that
P(e1

j , . . . ,e
m
k |ti) = a. Taking the partial derivatives of L and

setting them equal to zero yields predefined values for all like-
lihoods P(e|ti) that are constrained by Kb, while

P(e1
j , . . . ,e

m
k |ti) =

1−∑φti∈K φti

|{ψti : ψti ̸∈ K }|
, (5)

where, for fixed ti, φti are those constellations of E1, ...,Em

for which P(e|ti) ∈ K while ψti are those constellations with
ψti ̸∈ K . That is, the probabilities of unconstrained likeli-
hoods are evenly spread out over the remaining mass that is
left over by the constrained ones.

Finally, the prior distribution over T2 is given by

Pb(ti) =
eH(E1,...,Em|ti)

∑
n+1
j=1 eH(E1,...,Em|t j)

, (6)

where
H(E|tk) =− ∑

e∈E
P(e|tk) logP(e|tk) (7)

is the entropy of E conditional on theory tk.
By empirical closure, there are no constraints on

Em+1, . . . ,Eq given any value of Tb, which leads to a uniform
conditional distribution and full conditional independence of
Em+1, . . . ,Eq given Tb. Thus, for ti ∈ Tb, the joint entropies
are additive:

H(E1, . . . ,Em, . . . ,Eq|ti)=H(E1, . . . ,Em|ti)+H(Em+1, . . . ,Eq|ti)

, which means that a constant factor α is added to each ex-
ponent in equation 6 to obtain the prior of the ideal agent,
conditional on T2:

Pi(t j|Tb) =
eH(E1,...,Em|t j)+α

∑
n+1
k=1 eH(E1,...,Em|tk)+α

, (8)

which cancels out, and therefore yields the same values.

Finally, upon observing any evidence E that is express-
ible in terms of E1, . . . ,Em, both agents minimise DKL(Q||Po)
subject to the same set of constraints E , where Po = Pb
for the bounded agent, and we consider Po(·) = Pi(·|Tb) for
the ideal agent. Since these are identical, it follows that
Qb(Tb) = Qi(Ti|Tb), as required.
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