
UC Irvine
UC Irvine Previously Published Works

Title
Genetic diversity of Plasmodium vivax malaria in China and Myanmar

Permalink
https://escholarship.org/uc/item/8q52304k

Journal
Infection Genetics and Evolution, 11(6)

ISSN
1567-1348

Authors
Zhong, Daibin
Bonizzoni, Mariangela
Zhou, Guofa
et al.

Publication Date
2011-08-01

DOI
10.1016/j.meegid.2011.05.009

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8q52304k
https://escholarship.org/uc/item/8q52304k#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Genetic diversity of Plasmodium vivax malaria in China and
Myanmar

Daibin Zhong1, Mariangela Bonizzoni1, Guofa Zhou1, Guangze Wang2, Bin Chen3, Anne
Vardo-Zalik1,4, Liwang Cui3,5, Guiyun Yan1,3, and Bin Zheng6,*

Daibin Zhong: dzhong@uci.edu; Mariangela Bonizzoni: mbonizzo@uci.edu; Guofa Zhou: gzhou@uci.edu; Guangze
Wang: wangguangze63@126.com; Bin Chen: c_bin@hotmail.com; Anne Vardo-Zalik: amv12@psu.edu; Liwang Cui:
luc2@psu.edu; Guiyun Yan: guiyuny@uci.edu; Bin Zheng: chuner1997@yahoo.com
1 Program in Public Health, College of Health Sciences, University of California, Irvine, USA
2 Hainan Provincial Center for Disease Control, Haikou, Hainan Province, P. R. China
3 Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal
University, Chongqing, P. R. China
5 Department of Entomology, the Pennsylvania State University, University Park, PA 16802
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Abstract
Genetic diversity and population structure of Plasmodium vivax parasites are valuable to the
prediction of the origin and spread of novel variants within and between populations, and to the
program evaluation of malaria control measures. Using two polymorphic genetic markers, the
merozoite surface protein genes PvMSP-3α and PvMSP-3β, we investigated the genetic diversity
of four Southeast Asian P. vivax populations, representing both subtropical and temperate strains
with dramatically divergent relapse patterns. PCR amplification of PvMSP-3α and PvMSP-3β
genes detected three and four major size polymorphisms among the 235 infections examined,
respectively, while restriction analysis detected 15 and 19 alleles, respectively. Samples from
different geographical areas differed dramatically in their PvMSP-3α and PvMSP-3β allele
composition and frequency. Samples tended to cluster on the basis of their PCR-RFLP
polymorphism. These results indicated that different parasite genotypes were circulating in each
endemic area, and that geographic isolation may exist. Multiple infections were detected in all four
parasite populations, ranging from 20.5% to 31.8%, strongly indicating that P. vivax populations
were highly diverse and multiple clonal infections are common in these malaria-hypoendemic
regions of Southeast Asia.
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1. Introduction
Plasmodium vivax is the most common and globally widespread of four human malaria
species. It accounted for at least 70–80 million clinical cases annually (Mendis et al., 2001;
Hay et al., 2004; Prajapati et al., 2006). It is the most important species causing human
malaria outside of Africa, and is especially prevalent in Southeast Asia and Central and
South America (WHO, 2006). In 2007, P. vivax malaria accounted for > 95% and ~25% of
all malaria cases reported in China and Myanmar, respectively (Zhou et al., 2008; Moon et
al., 2009). Although malaria incidence is low in China, the areas and population at risk are
large. In contrast, malaria is highly endemic in some border states of Myanmar, and malaria-
related morbidity and mortality are the highest among the countries of the Mekong region
(Moon et al., 2009). The emergence of chloroquine resistance in P. vivax, especially in
Southeast Asia, raises considerable concern about future control of this parasite (Baird et al.,
2004; Guthmann et al., 2008; Lee et al., 2009). As many countries in Southeast Asia
including China are entering the phase of malaria elimination (http://apmen.org/), they are
facing the challenge of eliminating vivax malaria.

Genetic polymorphism underlies the phenotypic plasticity of the malaria parasites. The P.
vivax parasites have exhibited a high degree of phenotypic plasticity, which ranges from
relapsing pattern to the ability to invade Duffy-negative erythrocytes (Menard et al., 2010).
Understanding the population genetic structure of the malaria parasites may provide us
important information about how certain traits such as drug resistance emerge and spread
(Cui et al., 2003). Recent studies using mitochondrial genome sequences of world P. vivax
populations support the possible origin of this species in Asia, possibly as a result of host
switch from macaque monkeys (Jongwutiwes et al., 2005, Mu et al., 2005). The extant P.
vivax populations appear to be very diverse (Feng et al., 2003), and significant population
differentiation exists among different populations. Studies using neutral nuclear markers
such as microsatellites also revealed contrasting genetic structure in P. vivax populations,
especially those from different continents (Imwong et al., 2007; Gunawardena et al., 2010).
However, little is known about the population genetics of the P. vivax isolates circulating in
temperate regions of China and Myanmar.

High levels of genetic diversity in P. vivax and multiple clone infections have been
demonstrated in Papua New Guinea, Thailand, India, Colombia, Brazil, Laos, Myanmar, and
Sri Lanka despite many of these countries are hypoendemic (Gomez et al., 2003; Imwong et
al., 2006, 2007; Kim et al., 2006; Karunaweera et al., 2007; Moon et al., 2009;
Gunawardena et al., 2010).

The completion of the P. vivax genome project provides an in-depth overview of the
parasite’s genetic blueprint and evolutionary history (Carlton et al., 2008). A number of
genes encoding for P. vivax MSPs have been identified and used for genotyping P. vivax
field isolates from several different malaria-endemic areas, including PvMSP-1, PvMSP-3α,
PvMSP-3β and PvMSP-3γ, PvMSP-4 and PvMSP-5 and PvMSP-9 (Del Portillo et al., 1991;
Black et al., 2002; Putaporntip et al., 1997; Galinski et al., 1999, 2001; Mueller et al., 2002;
Vargas-Serrato et al., 2002). Pvmsp-3α, Pvmsp-3β and Pvmsp-3γ are members of a multi-
gene family of related MSPs (Del Portillo et al., 1991; Galinski et al., 2001). These proteins
are comprised of three characteristic domains: an alanine-rich central domain predicted to
form a coiled-coil tertiary peptide structure, and highly conserved C- and N-terminal regions
(Galinski et al., 1999). This family has similarities with the MSP3 orthologs in multi-allelic
homologs (Galinski et al. 2001; Carlton et al., 2008; Singh et al., 2009), and share the same
similar structural organization in their C-terminal regions, as described in different malaria
parasite species such as P. falciparum and P. knowlesi, and now for P. vivax (Rayner et al.,
2002, 2004). The antigenic nature of this protein family has made them candidates for
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malaria vaccines (Sharma et al., 2008, Singh et al., 2009). This gene family has been under
balancing selection, and exhibits high degrees of genetic diversity (Bruce et al., 1999; Cui et
al., 2003; Yang et al., 2006; Zakeri et al., 2006). In addition to nucleotide polymorphisms,
the central domain has large size variation and can be easily analyzed by using a polymerase
chain reaction–restriction fragment length polymorphism (PCR-RFLP) method (Cristiano et
al., 2008). Large-scale genetic diversity analysis of P. vivax malaria and the genetic studies
of re-emerging P. vivax malaria have been performed with several MSP polymorphic
markers, including the Pv-MSP1, PvMSP-3a and PvMSP-3β, using the PCR- RFLP
genotyping method (Kirchgatter & del Portillo 1998; Cui et al., 2003; Leclerc et al., 2004;
Kim et al., 2006; Yang et al., 2006; Veron et al., 2009; Prajapati et al., 2010; Zeyrek et al.,
2010; Rungsihirunra et al., 2011). In this study, we evaluate the extent of diversity in field
isolates of four P. vivax populations from China and Myanmar by PCR-RFLP of PvMSP-3a
and PvMSP-3β genes. Analysis of allelic variation at multiple independent loci provides the
most effective means to determine population structure.

2. Materials and methods
2.1. Sample collection

A total of 212 finger-prick blood samples were collected between 2006 and 2008 from
symptomatic patients attending hospitals or malaria clinics in four localities of China and
Myanmar. Specifically, 72 samples were collected in Kachin State (Myanmar); 46 in Sanya
city (Hainan Province, China); 22 in the Autonomous Region of Dehong (Yunnan Province,
China) and 72 in Suzhou City (Anhui Province, China) (Fig. 1). Twenty-three archival
Giemsa-stained dried blood samples collected in Suzhou city in 2006 were also included in
this study. These sampling sites represent regional vivax malaria transmission hot spots:
Kachin State was among the most malaria endemic states in Myanmar (WHO, 2007),
whereas Anhui, Hainan and Yunnan are three Chinese provinces where the majority of P.
vivax malaria cases in 2006 were registered (Zhou et al., 2008).

2.2. Parasite DNA extraction
Parasite DNA from dried blood dots stored on filter paper (~100 ul of blood) was extracted
using the Saponin/Chelex method (Wooden et al., 1993). Parasite DNA from archival
Giemsa-stained blood samples was extracted following the method of Vince et al. (1998).
Before extraction, smears were scraped off the glass slides in a Fisher Hamilton Fume Hood
with a sterile scalper blade, and the resulting powdered material was transferred to 1.5 ml
Eppendorf tubes. The identification of P. vivax was conducted following the published
method (Sineo et al., 1998).

2.3. PCR-RFLP genotyping of P. vivax isolates at the PvMSP-3α and PvMSP-3β loci
Allelic diversity of the PvMSP-3a and PvMSP-3β genes was assessed using established
PCR-RFLP techniques (Bruce et al., 1999; Yang et al., 2006). Briefly, PvMSP-3a was
amplified by nested PCR using primers P1—5′ CAGCAGACACCATTTAAGG 3′ and P2—
5′ CCGTTTGTTGATTAGTTGC 3′ for the primary PCR and primers N1—5′
GACCAGTGTGATACCATTAACC 3′ and N2—5′ ATACTGGTTCTTCGTCTTCAGG 3′
for the nest PCR. Primary PCR of PvMSP-3β was performed with primers F1
(5′GTATTCTTCGCAACACTC 3′) and R1 (5′-CTTCTGATGTTATTTCCAG- 3′), while
nested reactions were done with primers F2 (5′-CGAGGGGCGAAATTGTAAACC- 3′) and
R2 (5′-GCTGCTTCTTTTGCAAAGG- 3′). PCR was performed for 35 cycles using the
following conditions: 94 ºC for 20 s, 54 ºC for 30 s, and 68 ºC for 2.5 min. For RFLP
analysis, the PCR product of PvMSP-3a and PvMSP-3β were digested with Hha I and Pst I,
respectively, and DNA was separated in a 0.8% agarose gel. Multiple strain infections were
identified when the summed size of the DNA fragments resulting from the restriction
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digestion exceeded the size of the uncut PCR product (Yang et al 2006). Alleles were
identified based on unique restriction banding patterns. Alleles were considered the same if
the restriction banding patterns were measured to be within 20 base-pairs in molecular
weight (Cattamanchi et al 2003).

2.4. Sequence analyses of PvMSP-3β
To confirm the RFLP-pattern of 27 samples (19 samples with unique PCR-RFLP patterns, 5
samples of mixed strain infection, and 3 samples with same PCR-RFLP pattern but slight
difference in molecular size of the RFLP fragments), we amplified their PvMSP-3β fragment
corresponding to nucleotides 1733 – 3176 of PvMSP-3β gene of the Belem strain
(AF099662) (Yang et al., 2006). Specifically, first PCR reaction was carried out using
primers BF1 (5′ GTATTCTTCGCAACACTC) and BR1 (5′CTTCTGATGTTATTTCCAG),
whereas nested PCR was carried out with primers BF2
(5′CGAGGGGCGAAATTGTAAACC) and BR2 (5′GCTGCTTCTTTTGCAAAGG). PCR
conditions included an initial denaturing at 95ºC for 3 min, followed by 35 (first PCR) or 29
(nested PCR) cycles of 94ºC for 30 sec, 55ºC for 30 sec, 68ºC for 2.5 min, and a final
extension step at 68ºC for 10 min. Products of the nested PCR reaction were cloned in the
pCR4-TOPO vector (Invitrogen, Carlsbad, CA, USA) following the supplier’s instructions.
Plasmid DNA was extracted using the GeneElute Plasmid Miniprep Kit (Sigma) and
sequenced by GENEWIZ San Diego Laboratory (La Jolla, CA, USA). Two to five clones
were sequenced in their entirety in both directions for each of the 27 samples. If sequence
differences were noted between two clones, the clones were re-sequenced to confirm the
sequence identity. To eliminate the possibility that the polymorphisms are resulted from
polymerase error, we used a procedure of assessing each single nucleotide polymorphism
(SNP) and indel by their recurrence in more than one isolate or by sequencing an additional
clone from the original sample (Rayner et al., 2004).

2.5. Statistical analysis
The chi-square (χ2) test was used to compare the frequencies of individual RFLP alleles
among the populations using the Minitab Software 15.0 (MINITAB Inc., PA). The test was
done for all alleles in the four parasite populations both simultaneously and in pairs. The
level of significance was set at P < 0.05. Sequences were deposited in GenBank™ with
accession numbers HQ847379 – 408 and JF900763-64. Sequences were assembled and
aligned using BioEdit software, version 7.0.9.0 (Isis Pharmaceuticals, Carlsbad, CA).
Phylogenetic analyses were conducted using PHYLIP 4.0 (Felsenstein, 1993). Unrooted
trees were generated using the neighbor-joining method with the Jukes-Cantor distance
option. Support for node was assessed by 1000 bootstrap resampling of the original dataset.
The portions of the PvMSP-3β gene sequence corresponding to the N- and C-terminal
domains were determined as in Rayner et al. (2004) on the basis of the SalI strain sequence
(AY454095). The PvMSP-3β gene sequence of the Belem strain (AF099662) and other
available sequences (Rayner et al., 2004; accession numbers AY454080-98) were also
included in the analysis.

3. Results
3.1. Genetic diversity of the PvMSP-3α gene

PvMSP-3α gene was successfully amplified in 226 of 235 P. vivax samples tested (96.2%).
Based on the size of the PCR products, three different allele-types were detected and
classified as type A (~1.9 kb), type B (~1.5 kb) and type C (~1.1 kb) (Cui et al., 2003). Most
of the samples (>70%) were type A with frequencies in the four regions ranging from 92%
in Anhui to 70.9% in Yunnan (Table 1), whereas the least frequent allele type was type C in
Anhui (3%) and type B in the other three populations. The PCR-RFLP analysis revealed a
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high level of polymorphism in PvMSP-3α gene. Hha I digestion identified a total of 15
patterns (Fig. 2a). All samples exhibited a ~1.0 kb size band in Hha I digestion. Because of
fluctuation in allele size determination from agarose gels, a bin of 20 bp in the size of
restriction digestion fragments of the PCR products was allowed in allele calling (Fig. 2b),
and this is consistent with the previous published allele designation scheme (Cui et al.
2003). Allele variants A1-A9, B1, B2 and C were reported earlier (Cui et al. 2003), whereas
allele variants A10, A11 and B3 were new alleles identified in this study. Samples from
different geographical areas differed dramatically in their PvMSP-3α allele composition and
frequency. The highest number of alleles was found in Myanmar (14), while the lowest was
found in Yunnan (7). In Anhui, the most common allele variant was A9 (29.3%). In Hainan
there was a more homogeneous distribution of variants among the samples, with variant A8
accounting for 16.7% of the samples, and variants A1, A3 and A7 accounting each for
14.6% of the samples. In Hainan, 70.8% of the samples showed the allele variants A1, A3,
A6, A7 and A8. In Yunnan, the alleles A1, A4 and C were found in 75% of the samples. In
Myanmar, the most prevalent alleles were A1, A4, A6 and C. The χ2 test detected significant
differences in allele frequency among the four populations (type A: χ2 = 98.30, df = 33, P <
0.0001; type B: χ2 = 14.23, df = 6, P < 0.05; type C: χ2 = 14.62, df = 3, P < 0.01). The
overall differences in allele frequency among the four regions are highly significant (χ2 =
124.22, df = 45, P < 0.0001).

Size polymorphism associated with the PvMSP-3α products allowed easy detection of mixed
genotype infections. Mixed infections were assigned when a single sample resulted in more
than one PCR products of different sizes (Fig. 2, lanes M1 uncut) or when the summed size
of the restriction fragments of a single PCR band exceeded the size of the uncut PCR band
(Fig. 2, lanes M1 and M2). PCR alone detected mixed infections of PvMSP-3α between
2.6%–4.5% of samples among the four populations analyzed. RFLP analysis detected more
mixed infections, ranging from 7.6% to 14.3% among the four populations (Table 1). The
highest percentage of mixed infection was detected in Yunnan (14.3%), followed by
Myanmar (10.2%), Hainan (9.1%) and Anhui (7.6%). There was no significant difference
among the four populations in the percentage of mixed infection (χ2 = 0.99, df = 3, P =
0.804).

3.2. Genetic diversity of the PvMSP-3β gene
The PvMSP-3β gene was successfully amplified in 216 of 235 malaria samples (91.9%). The
PvMSP-3β PCR products showed clear size polymorphism with four allele sizes of 1.7–2.4,
1.4–1.5, and 0.7–0.8, and 0.5–0.6 kb, which were categorized as types A, B, C, and D,
respectively, following an earlier scheme (Yang et al., 2006). Type A and B were the most
predominant types, accounting for >91% of P. vivax isolates in this study (Table 2). Type D
allele was identified in a mixed infection with type A (lane M1 in Fig. 3). Restriction
analysis of the PCR products by Pst I revealed 12 variants of for Type A allele and five
variants for Type B allele, whereas Type C allele showed one allele variant (Fig. 3). The
PCR-RFLP categorization of alleles was confirmed by DNA sequencing of selected
fragments (Table 3). Fig. 3b showed representative examples of fragments differing within
20 bp and classified in the same allele class.

Samples from different geographical areas also differed dramatically in their PvMSP-3β
allele composition and frequency. The highest number of alleles was found in Myanmar
(16), the lowest in Anhui (10). The most frequent allele variant was B1 (33.3%) in Anhui,
A5 (27.1%) in Hainan, A3 and B1 (both 21.7%) in Yunnan and A2 (15.4%) in Myanmar.
Five allele variants (A8, A12, B3, B4, and B5) were detected only in Myanmar. The allele
variant A11 was detected only in Hainan. Chi square test detected significant difference in
allele frequency of major alleles among the four populations (type A: χ2 = 46.04, df = 33, P
= 0.065; type B: χ2 = 21.25, df = 12, P < 0.05; type C: χ2 = 9.87, df = 3, P < 0.05). The
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overall differences in allele frequency among the four regions were significant (χ2 = 78.45,
df = 57, P < 0.05).

PCR of PvMSP-3β detected mixed infections in 3.9–6.2% of the four populations. RFLP
analysis increased the percentage of detected mixed infection (Fig. 3, M1–M4). The highest
mixed infection rate was detected in Myanmar (16.4%), followed by Yunnan (15.0%),
Anhui (14.7%) and Hainan (14.3%), but this was not statistically significant (χ2 = 0.21, df =
3, P = 0.976) (Table 2).

3.3. Analysis of PvMSP-3β gene sequences
Thirty-two PvMSP-3β sequences were obtained from 27 samples due to mixed strain
infections in five samples (i.e. Yunnan 127, clones L and H, Yunnan 125, clones 78 and 79,
Myanmar 87, clones L and H, Myanmar 89, clones L and H, Anhui 145, clones 54 and 153)
(Fig. 4). Eighteen of these sequences were classified as variants of allele type A, eleven as
variants of allele type B, one as allele C, and two of allele type D. Sequencing of the
PvMSP-3β gene confirmed the allele type assignments and Pst I restriction patterns (Fig. 3,
Table 3). The sequenced PvMSP-3β fragments encompassed the conserved N-terminal part
of the protein, a region with high sequence polymorphism previously called “Insert A”
(Rayner et al., 2004), the central Ala-rich region expected to harbor deletions and insertions
called “Insert B”, and the first 503 bp of the 933 bp the C-terminus (Rayner et al., 2004,
Yang et al., 2006). Our sequence data conformed to the expectations of limited
polymorphisms in the N- and C-terminal regions and deletions and insertions in the region
coding for the Ala-rich domain of the protein (Supplemental file 1, Supplemental file 2).
Phylogenetic analyses were performed on the N-terminal and C-terminal domains,
separately. From the unrooted neighbor-joining tree based on the N-terminal domain (Fig.
4), 9 major branches were identified, comprising either one RFLP-PCR variant (groups B1,
B2, B3, A1, A9) or more than one variant of the same class (i.e. groups: A4/A5, A2/A8, A3/
A7/A11). PCR-RFLP variants A6, A10, A12, B4, B5 and C did not group with other
variants. Interestingly, samples of variant B1 tended to form two different clusters, one
grouping all samples from Anhui, and one comprising samples from Myanmar. Less than
half the nodes of the trees based on the sequence of the C-terminal domain had bootstrap
values higher than 50%, suggesting that the portion of the C-terminal domain sequenced was
not sufficiently polymorphic to provide a meaningful phylogeny (Supplemental file 2).
Overall, the four populations were intermingled and not always clustered on the basis of
their geographical origins.

4. Discussion
The aim of this study was to assess the level of genetic polymorphism of the PvMSP-3α and
PvMSP-3β in P. vivax infections from China and Myanmar. Among the four localities
studied, PCR-RFLP analysis identified 15 genotypes of PvMSP-3α among 226 samples, of
which 21 were multiclonal. At least eight of the PvMSP-3α alleles detected were common to
those from previous studies (Bruce et al., 1999; Cui et al., 2003), suggesting that some
parasite genotypes may have a worldwide distribution. Regarding PvMSP-3β, 19 RFLP
allele variants were detected from 216 samples analyzed, of which 35 (16.2%) were mixed-
strain infections.

It is important to note that the mixed-strain infections were defined by instances when the
summed size of the DNA fragments in RFLP analysis was greater than the size of the uncut
PCR product, or when more than one size PCR product was seen in the initial amplification.
The method for detecting mixed infection likely underestimates the true rate of mixed
infections because the summing of RFLP fragments will only identify variants where there
is a SNP in the recognition site of the restriction endonuclease being used, and comparison
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of amplicon size will only identify variants with major indels. Amplicon size will have least
power to identify mixed infections, and while RFLP has more power, it is still limited as
evidenced by the results that PCR-RFLP analysis of PvMSP-3α and PvMSP-3β identified
more mixed infections than PCR amplicon methods. For example, PCR-RFLP detected
mixed infections in 7.6–14.3% of infections using the PvMSP-3α gene and 14.7–16.4%
infections when measured with the PvMSP-3β gene in the four parasite populations.
Combining both PvMSP-3α and PvMSP-3β genes, the PCR-RFLP analysis detected
additional mixed genotype infections in these populations, giving a final mixed infection
rate of 20.5–31.8%. Sequence analysis of representative allele variants detected 2 out of the
27 (7.4%) samples that showed same PCR product sizes but different nucleotide sequences.
Therefore, the PCR-RFLP on single gene yielded conservative estimation of mixed infection
rate in comparison to DNA sequencing. The combination of PCR-RFLP on two genes
provides higher power to differentiate intra-species genetic variations.

Compared with P. vivax isolates from previous studies conducted in Asia, our result further
confirmed the existence of small geographic differentiation among P. vivax populations. An
earlier study in western Thailand reported that the B type of PvMSP-3β is more abundant
(60.4%) than other types, whereas in the Chinese Bengbu and Guangxi samples, both A and
B types were similarly prevalent (Yang et al., 2006). In the present study, the type A allele
was the most abundant in all four parasite populations (>57% more abundant than other
types). In addition, RFLP analysis also revealed different allele compositions at each
sampling site (Yang et al., 2006). In the present study with four Asian populations, a total of
19 alleles (12 A, 5 B, 1 C, and 1 D) was identified. Myanmar had the highest number of
alleles (16), whereas the other three populations had 10–12 alleles each. With regard to
allele frequency, A5, B1, B2, and B4 were the most abundant alleles in the Thai samples,
which accounted for 66% of all isolates. In the Chinese Bengbu P. vivax samples, the
frequency of four alleles (A2, A5, B1, and B2) reached 80.8%. In the present study, alleles
A2, A3, A5 and B1 were the most abundant alleles, accounting for 50.0–72.5% of all
isolates. Interestingly, despite the difference in individual allele types, the four P. vivax
populations shared seven alleles (A1–A5, B1, and B2) (Table 2). These results indicated that
the PCR-RFLP method for PvMSP-3β could be used to detect genetic structure.

Although the PCR-RFLP technique is frequently used for Plasmodium genotyping, it has
limitations. First, detection threshold depends on the sensitivity of PCR amplification
reaction. Second, resolution for detecting allelic variants is contingent on product size or the
size of restriction digestion fragments (Snounou and Beck, 1998). These two major
limitations can be especially problematic with low-level parasitemia or when one strain is a
minor component of a multistrain infection (Farnert et al., 2001). The heteroduplex tracking
assay (HTA) is more sensitive than PCR and is capable of resolving multiple nucleotide
sequences in a single sample, but it requires the generation of DNA molecular probes and
PCR product clone techniques (Ngrenngarmlert et al., 2005). Finally, direct DNA
sequencing can be used to detect sequence and size discrepant variants, but it is costly and
unless complemented with cloning, it is ineffective at identifying the number of sequence
variants when multiple sequences are present (Snounou and Beck, 1998). The determination
of complete sequence of P. vivax and syntenic similarity with other Plasmodium species will
accelerate the search for useful genetic markers (Carlton, 2003). Genome-wide analysis
technologies such as the next-generation sequencing technique and gene-specific microarray
systems may show promising to obtain a more detailed picture of the demographic history
and evolution of P. vivax.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights
We examine genetic diversity of Plasmodium vivax malaria in China and Myanmar
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Fig. 1.
Sample sites: 1, Suzhou city (Anhui Province, China); 2, Sanya city (Hainan Province,
China); 3, Dehong (Yunnan Province, China); and 4, Kachin State (Myanmar).
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Fig. 2.
PCR-RFLP analysis of PvMSP-3α gene in Plasmodium vivax samples obtained from four
Asian populations. a: Examples of major alleles and mixed genotypes; and b: reperesentive
samples showing various restriction digestion patterns and classification of alleles. Upper
panel, undigested PCR products, and Lower panel, PCR products digested with Hha I.
Lane marker: M – DNA size marker; A, B, C – allele types; M1 and M2 - mixed strain
infections; A1, A2, …A10, B1, B2… - alleles identified by PCR-RFLP.
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Fig. 3.
PCR-RFLP analysis of PvMSP-3β gene in Plasmodium vivax samples obtained from four
Asian populations. a: Examples of major alleles and mixed genotypes; and b: reperesentive
samples showing various restriction digestion patterns and classification of alleles. Upper
panel, undigested PCR products, and Lower panel, PCR products digested with Pst I. Lane
marker: M – DNA size marker; A, B, C – allele types; M1…M4 - mixed strain infections;
A1, A2, …A12, B1… B5 - alleles identified by PCR-RFLP.
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Fig. 4.
PvMSP-3β phylogenies based on the N- terminal domain of the PvMSP-3β fragment
sequenced from 27 samples from Myanmar (M), Yunnan (Y), Anhui (A) and Hainan (H).
The PCR-RFLP allele variant is shown after the sample name. Multiple clone sequences
were included only for multiple infections, i.e. sample Y127 (L, H), Y 125 (78, 79), M87 (L,
H), M89 (L, H), A145 (153, 54). For the sequences downloaded from NCBI, the
GenBankTM accession numbers are showing after the sample name.
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Table 1

PvMSP-3α PCR-RFLP allele types and frequencies in four Asian Plasmodium vivax populations.

Allele (PCR-RFLP) Anhui (n = 92) Hainan (n = 44) Yunnan (n = 21) Myanmar (n = 69)

A1 12.1 14.6 29.2 19.7

A2 3.0 2.1 4.2 3.9

A3 9.1 14.6 8.3 2.6

A4 17.2 6.3 25.0 13.2

A5 0 4.2 0 2.6

A6 9.1 10.4 0 14.5

A7 0 14.6 4.2 7.9

A8 1.0 16.7 0 6.6

A9 29.3 0 0 1.3

A10 5.1 4.2 0 0

A11 6.1 0 0 2.6

B1 0 0 0 1.3

B2 5.1 4.2 8.3 2.6

B3 0 0 0 5.3

C 3.0 8.3 20.8 15.8

Multi-infection 7.6 9.1 14.3 10.2

Total number of alleles 11 11 7 14
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Table 2

PvMSP-3β PCR-RFLP allele types and their distribution frequencies in four Asian Plasmodium vivax
populations

Allele (PCR-RFLP) Anhui (n = 87) Hainan (n = 42) Yunnan (n = 20) Myanmar (n = 67)

A1 6.9 10.4 4.3 6.4

A2 15.7 14.6 8.7 15.4

A3 11.8 4.2 21.7 14.1

A4 4.9 2.1 4.3 9.0

A5 11.8 27.1 13.1 7.7

A6 0 0 4.3 5.1

A7 0 2.1 4.3 1.3

A8 0 0 0 2.6

A9 3.9 0 4.3 0

A10 2.9 2.1 0 0

A11 0 2.1 0 0

A12 0 0 0 1.3

B1 33.3 20.8 21.7 12.8

B2 6.9 10.4 8.7 9.0

B3 0 0 0 1.3

B4 0 0 0 3.8

B5 0 0 0 1.3

C 0 2.1 0 7.7

D 2.0 2.1 4.3 1.3

Multi-infection 14.7 14.3 15.0 16.4

Total number of alleles 10 12 11 16
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