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Future increase in compound soil drought-
heat extremes exacerbated by vegetation
greening

Jun Li 1, Yao Zhang 1 , Emanuele Bevacqua 2, Jakob Zscheischler 2,
Trevor F. Keenan 3,4, Xu Lian 5, Sha Zhou 6, Hongying Zhang1,
Mingzhu He1,7 & Shilong Piao 1

Compound soil drought and heat extremes are expected to occur more fre-
quently with global warming, causing wide-ranging socio-ecological reper-
cussions. Vegetation modulates air temperature and soil moisture through
biophysical processes, thereby influencing the occurrence of such extremes.
Global vegetation cover is broadly expected to increase under climate change,
but it remains unclear whether vegetation greening will alleviate or aggravate
future increases in compound soil drought-heat events. Here, using a suite of
state-of-the-art model simulations, we show that the projected vegetation
greening will increase the frequency of global compound soil drought-heat
events, equivalent to 12–21% of the total increment at the end of 21st century.
This increase is predominantly driven by reduced albedo and enhanced tran-
spiration associated with increased leaf area. Although greening-induced
transpiration enhancement has counteracting cooling and drying effects, the
excessive water loss in the early growing season can lead to later soil moisture
deficits, amplifying compound soil drought-heat extremes during the sub-
sequent warm season. These changes are most pronounced in northern high
latitudes and are dominated by the warming effect of CO2. Our study high-
lights the necessity of integrating vegetation biophysical effects into mitiga-
tion and adaptation strategies for addressing compound climate risks.

Occurrences of compound soil drought-heat events, i.e., co-occurring
low soil moisture and high-temperature extremes, have caused
extensive crop failures, wildfires, ecosystem carbon losses, and even
humanmortality worldwide, posing a growing threat to human society
and ecosystem resilience1–4. Compound soil drought-heat conditions
are projected to increase in many regions during the 21st century, with
important socio-ecological impacts5–7. Given the myriad of

consequences, compound soil drought-heat events have gained sig-
nificant attention from the scientific community, with particular focus
on temporal and spatial variations8,9, mechanisms related to land-
atmosphere interactions10,11, and the impacts on biophysical and bio-
geochemical processes12. However, a quantitative understanding of
how long-term vegetation changes might impact the occurrence of
compound soil drought-heat events is lacking.
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Changes in vegetation cover, productivity and water use have
multiple impacts on climate, through modifying key surface biophy-
sical properties such as transpiration and albedo13 (Figs. 1a and Sup-
plementary Fig. 1). These impacts can be categorized as both positive
and negative climate feedbacks. For example, the projected increase in
vegetation activity and extension of growing seasons can enhance
transpiration, effectively dissipating extra heat and cooling the land
surface14–16. In contrast, a denser vegetation canopy can absorb more
heat into the land by reducing albedo, thereby warming the land
surface17. Additionally, enhanced plant transpiration may accelerate
soil drying and facilitate the occurrence of droughts18,19. Such effects
may also propagate from previous seasons to later seasons through
soil moisture memory effect20,21. As changes in compound soil
drought-heat events are induced by variations in multiple drivers and
their dependencies, the effects of vegetation on such events involve
complex interactions among the aforementioned processes, which act
either in synergy or counteractively. Moreover, while current attribu-
tion frameworks for univariate events provide useful insights, they
cannot connect the multi-directional processes underlying vegetation
effects or quantify compounding characteristics22. These complexities
pose amajor challenge in quantifying the risk of future compound soil
drought-heat events associated with plant biophysics.

Here, we develop a framework to quantify the likelihood changes
of compound soil drought-heat events from 1850-2100 and attribute
these changes to transpiration (Tr) and albedo (α) effects, which are
the two key land surface properties23 through which vegetation reg-
ulates the landwater and energy balance and thus air temperature (Ta)
and soilmoisture (SM)14,24. The compound soil drought-heat events are
identified as co-occurring low SM and high Ta over the warm season
(the climatologically hottest three consecutive months), which

overlapswith themain growing seasonwhenplants aremost active. By
employing 17 state-of-the-art Earth system models (ESMs) from the
Coupled Model Intercomparison Project Phase 6 (CMIP6) which
incorporate current knowledge of various land processes25, we char-
acterize changes in the frequency of compound soil drought-heat
extremes using the likelihood multiplication factor (LMF)26. LMF is
defined as the ratio of the joint probability of low SM and high Ta
between future and historical periods, which effectively characterizes
the changes in the occurrence of compound extremes. We partition
the LMF into two components: (1) those related to the trends of Ta and
SM, and (2) those related to the variability and dependence of both
variables (Figs. 1b–c and Supplementary Figs. 2a–b,Methods).We then
attribute the LMF components to vegetation-induced changes in Tr
and α. This allows us to comprehensively evaluate the effect of pro-
jected greening on the likelihood of compound extremes under future
climate change, and identify the underlying processes driving these
changes (see “Methods” for details).

Results
Increases in global compound soil drought-heat likelihood from
vegetation biophysics
We estimate the changes in the likelihood of compound soil drought-
heat events (representedby LMF) and their trend (t) and variability and
dependency (vd) components throughout 1851-2100 relative to the
1850-1879 baseline (Fig. 2). For each component, we further delineate
the contribution of vegetation change through its impact on α and Tr
from both current (cur) and previous (pre) seasons. For the LMF
inducedby the trendsof climate variables, the albedo effect (LMFtcur�α)
exhibits a progressive increase during the 21st century, which dom-
inates the overall increase in the likelihood of compound soil drought-

Fig. 1 | Schematic diagram for quantifying changes in the likelihood of com-
pound soil drought-heat events attributed to vegetation biophysics.
a Illustration of the effects of plant transpiration (Tr) and albedo (α) on compound
soil drought-heat events through regulating temperature (Ta) and soil moisture
(SM). For a comprehensive description of the processes involved, please refer to
Supplementary Fig. 2a.b–cThe hypothetical change in the likelihoodof compound
soil drought-heat events (shift of the bivariate distribution fromgray to red) arising

from a shift in the trend while holding the variability and dependence constant (b)
and a shift in the variability and dependence while holding the trend constant (c).
The black solid line in the upper left corner indicates a threshold assumed to be
constant for both present and future climate conditions. Schematically, the like-
lihoodof a compound soil drought-heat event (represented by LMF) represents the
ratio of the area boundedby the red and black lines to the area enclosed by the gray
and black lines.
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heat extremes (Fig. 2a). The trend of Tr from the previous season
contributes to an increase in LMF (i.e., LMFtpre�Tr steadily increases),
while the LMF associated with the Tr trend of the current season (i.e.,
LMFtcur�Tr) shows a slight decrease (Fig. 2a) due to the offsetting
cooling and drying associated with the current Tr (Supplementary
Figs. 2c–f). For the LMF driven by the variability and dependency, only
Tr from the previous season (LMFvdcur�Tr) shows a large positive

contribution (Fig. 2b) because of the synergistic effect of previous
season Tr on Ta and SM (Supplementary Figs. 2g–h).

Such vegetation-driven changes have a substantial impact on the
overall changes in the likelihood of compound soil drought-heat
events. In particular, the likelihood is projected to increase by a factor
of 2.2 ± 0.6 (i.e., LMFVeg) by the end of the 21st century (Fig. 2c; pri-
marily attributable to LMFtcur�α and LMFvdpre�Tr, Fig. 2a, b). This increase
is equivalent to 13.9 ± 4.5% of the overall increase in compound soil
drought-heat likelihood (i.e., the increase induced by global climate
change; LMFTot) (inset in Fig. 2c). Our results remain robust when we
use evapotranspiration instead of transpiration (Supplementary
Figs. 3v–x), or employing different moving window lengths (Supple-
mentary Figs. 3g-l), forcing scenarios (Supplementary Figs. 3m–u), and
thresholds to define the compound events (Supplementary Figs. 3a–f).
They are also robust if we use optimal weight to calculate multi-model
means (Supplementary Figs. 4s–u, Methods), or different depths of
soil moisture (Supplementary Fig. 4a-i) and initial conditions of model
simulations27,28 (Supplementary Figs. 4j–r). Additionally, the direction
of the LMFVeg between models is generally consistent across various
analyzes (Supplementary Table 1). In particular, the fractional con-
tribution of vegetation to the overall increase in compound event
likelihood is similar across various analysis cases, ranging from 12% to
21% across multi-model means (insets in Supplementary Figs. 3–4).
However, the magnitude of vegetation-driven LMF intensifies with
elevated greenhouse gas emissions (Supplementary Figs. 3m–u),
emphasizing the potential of a low-forcing scenario to mitigate vege-
tation biophysical impacts.

Overall, greening-induced reduction in α, i.e., decreased light
reflection, can increase the total energy absorption and warm the land
surface24, but this response is instantaneous and mostly affects the
trend component of the LMF for the current season (LMFtcur�α , Fig. 2a).
Tr can cool the surface at a cost of lowered soil moisture levels, hence,
its instantaneous effect on Ta and SM is always contradictory13,
resulting in a comparably smaller net effect on LMF. Importantly, Tr
changes have sizable time-lagged effects on compound climate in
subsequent seasons. When Tr increases for the previous season, its
effect on SM will be partially retained and propagated to the current
season18,21. We show that both the trend and variability of Tr in the
previous season dominate the overall effects of Tr on LMF (Fig. 2a-b).
Taken together, our analyzes suggest an amplified effect of vegetation
biophysics on the global average risk of future compound soil
drought-heat events.

Hotspot regions of increasing compound soil drought-heat
likelihood
We identify the global hotspots of the projected changes in the com-
pound soil drought-heat likelihood between 30-year historical (1850-
1879) and future (2071-2100) periods. The increased likelihood asso-
ciated with Tr and α (i.e., LMFTr and LMFα) is detected extensively in
northern ecosystems (Fig. 3a, b), where LMFVeg shows a 5-fold increase
(Fig. 3e), equivalent to more than 30% of the overall increase in com-
pound soil drought-heat likelihood due to global change (LMFTot,
Fig. 3f). LMFtcur�α dominates the increased likelihood, contributing to
more than 80% of LMFα in those areas, whereas LMFvdcur�α exhibits little
influence (Figs. 3c and Supplementary Fig. 5). Correspondingly,
LMFvdpre�Tr is the key driving factor of the likelihood increase in LMFTr
(Fig. 3d). Exceptions are found in semi-arid regions around 30°S,where
the Tr trend in the warm season ðLMFtcur�TrÞ dominates the likelihood
increase from Tr, probably because soil moisturememory is weak and
vegetation is more reliant on concurrent precipitation29. Inmid-to-low
latitudes, the likelihood of compound soil drought-heat events driven
by vegetation (LMFVeg) shows a decrease in some locations (e.g.,
eastern South America and central Africa), but there is no consensus in
the majority of tropical regions (Fig. 3e). This may be due to an
increased α and decreased Tr variability and dependence in these
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regions (Supplementary Figs. 6b, g, and l). Our finding remains con-
sistent when using different thresholds for defining compound events,
various baseline periods, and different warming scenarios (Supple-
mentary Fig. 5). Furthermore, the magnitude and extent of the corre-
sponding likelihood progressively intensify with rising levels of
greenhouse gas emissions during this century (Supplementary
Figs. 5i–n). Overall, vegetation contributes substantially to this like-
lihood increase particularly in northern ecosystems over this century,
with the primary contribution from LMFtcur�α and LMFvdpre�Tr.

The dominant role of leaf area in the increasing compound soil
drought-heat likelihood
Although Tr and α variation are dominated by vegetation leaf area23,24,
other covarying climatic and environmental factors other than vege-
tation, such as radiation, vapor pressure deficit, and cloud cover, may
also play a role. To elucidate the contribution fromvegetation leaf area
to LMF,we further explore the physical linkage associatedwith the two
key contributors, i.e., LMFvdpre�Tr and LMFtcur�α. To do so, we decom-
pose the associated changes in Tr (or α) into several additive
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lihood of compound soil drought-heat event (LMF) in CMIP6 simulations.
aMulti-model mean of LMFα during the current season from 2071-2100, relative to
the historical (1850-1879) periods. b Same as (a) but for LMFTr. c Dominant driving
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components related to leaf area index (LAI) and other climate factors,
followed by the quantification of LMF attributable to LAI and the other
factors (see “Methods”).

Our results reveal that the projected increase in both LMFvdpre�Tr

and LMFtcur�α is predominantly driven by LAI shifts for the corre-
sponding periods (Fig. 4a, b). The aggregate of the two LAI-driven
components exhibits a progressive increase during the 21st century,
contributing to more than 90% of LMFVeg, equivalent to 13 ± 3.7% of
LMFTot during 2071–2100 (Fig. 4c). Specifically, the additional growth
of pre-season LAI is projected to enhance Tr variability and simulta-
neously intensify the negative dependence of Tr between the pre-
season and thewarm season (Supplementary Figs. 6a and f). A negative
dependence suggests that excessive water extraction during pre-
season reduces water availability and inhibits Tr cooling during sub-
sequent warm seasons, thereby increasing the compound soil
drought-heat likelihood. Regarding the spatial pattern, the LAI-driven
hotspots are also primarily concentrated in the northern ecosystems

(Figs. 4d–f), which well (P < 0.1) coincided with the most substantial
relative increases in LAI (Supplementary Fig. 7). These analyzes high-
light the importanceof LAI inmodulating compound soil drought-heat
extremes.

Compound soil drought-heat impact on northern ecosystems
Our analyzes highlight that vegetation-induced changes in compound
soil drought-heat extremes are most evident in northern ecosystems.
Despite often being considered energy-limited, northern ecosystems
can still suffer from these extreme events. For example, we observe a
much weaker greening trend in the current season (i.e., peak growing
season) than in the previous season (i.e., early growing season)
(Fig. 5a). This is also associated with an enhancement of the negative
correlation between peak season LAI anomaly and early season LAI
anomaly (Fig. 5b), suggesting that the better-than-average early season
growth often led to a worse-than-average peak season growth. Both
lines of evidence imply that the peak seasonmaybemoreproductive if
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compound soil drought-heat extremes do not increase. Additionally,
the enhanced compound soil drought-heat risk also jeopardizes the
ecosystem stability, as evidenced by increased variability in peak sea-
son LAI (Fig. 5b). These results are consistent in both CMIP6 models
and satellite observations of LAI, with slight differences in their abso-
lute values.

Themagnitude and spatial extent of the LAI-driven increase in the
compound likelihood are greater under high emissions scenarios
(Supplementary Figs. 8), implying that compound soil drought-heat
events are exacerbated by vegetation greening as atmospheric CO2

concentrations continue to rise. Using ESMs configured with three
distinct CO2 sensitivity experiments (see “Methods”), We further
demonstrate that CO2 radiative effect dominates the increase in
compound soil drought-heat extremes (Supplementary Fig. 9), and the
associated impact on LAI trend and variability changes in these
northern regions (Figs. 5c, d).

Discussion
Our results demonstrate that the greening-induced shifts in land bio-
physical processes, particularly Tr and α, are expected to increase the
global likelihood of compound soil drought-heat events. This is
equivalent to 12–21% of the total increment in global compound event
likelihood at the end of the 21st century. More than 90% of the pro-
jected increases are caused by an increase in themagnitude of LAI and
its seasonal dynamics. The enhanced vegetation growth reduces α and
triggers additional pre-season Tr increases that further enhance soil
moisturedepletionandhigh temperatureduring the subsequentwarm

season, amplifying the likelihood of compound extremes. The rise in
LAI-induced likelihood is predominantly found innorthern ecosystems
and is dominated by the indirect response of leaf area to CO2, sug-
gesting that the CO2-induced water-saving effect is limited and cannot
fully compensate for the warming effect30,31.

Almost one-fifth of the increase in compound soil drought-heat
likelihood is associated with increased vegetation activity in the
northern regions. This “greening but warming-drying” phenomenon
seems contradictorybut canbe explained from twoperspectives. First,
the negative impacts from the compound soil drought-heat extremes
may be overridden by the strong positive carryover effect from the
previous season. This is supported by a much weaker LAI increase
during the peak growing season than the early growing season
(Fig. 5a). Second, although compound soil drought-heat extremes
have caused a large increase in fire occurrences32–34 and forest
mortality35,36 in these boreal regions, these changes aremost scattered
and obscured by the overall greenness increase at coarse spatial
resolution37. However, these greenness increases contributed by
young and fast-growing species are not likely to fully compensate for
ecosystem carbon and biodiversity loss. The compound soil drought-
heat extremes are likely to decrease ecosystem stability in boreal
regions.

Our analysis also highlights the large influence of lagged ecosys-
tem dynamics on the prevalence of compound soil drought-heat
extremes. From the pre-season to the warm season, extra water con-
sumption not only leads to lower subsequent soil moisture levels, but
the enhanced vegetation growth also increases the water demand38,39.
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Fig. 5 | Changes in vegetation leaf area index (LAI) across northern ecosystems
(> 23°N). aThe difference of the relative change in LAI (%) between the current and
previous seasons. b The changes in LAI variability for the current season (Δv, m4

m−4) and the covariance of LAI (Δd, m4 m-4) between the previous and current
seasons. c–d Same as (a–b) but for the three CO2 experiments. The dependence is
represented by covariance, and variability is denoted by variance. Changes in
CMIP6 and 1pctCO2 are calculated using a 30-year moving window, while the

observed LAI changes from 1982–2018 are computed using a 10-year moving
window. For a better comparison between the observed and modeled LAI, the
changes in CMIP6 are relative to the baseline of 1963–1992. The lower left inset in
(a–b) shows trends indicated by Z values of theMann-Kendall test, while the upper-
middle inset shows a zoom-in during 1992–2018. The shaded areas represent the
mean of ±1 standard deviation across models.
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When this imbalance between demand and supply accumulates and
surpasses the ecosystem carrying capacity, a peculiar type of com-
pound soil drought-heat extreme happens, known as “structural
overshoot”40. Additionally, such overshoot, when interacting with cli-
mate change, can further exacerbate climate events38,39. Northern high
latitudes have been shown to have the highest likelihood of experi-
encing structural overshoot drought18, and our study further projects a
much stronger increase in the associated compound extremes in these
regions.

The projected increase in compound drought-heat extremes
induced by greening has important implications for both ecosystem
stability and human wellbeing. Vegetation-driven drought-heat events
can have cascading effects on agriculture ecosystems through inter-
actions between plants and various agents in the ecosystem41–43. Crops
during the critical grain-filling period may also be more frequently
affected by drought-heat extremes, both locally due to enhanced
early-season growth and remotely through heat advection44 and water
competition45 from neighboring natural vegetation, potentially jeo-
pardizing global food production. Moreover, in many regions globally
with strong vegetation-atmosphere coupling, surface climate condi-
tions are influenced by large-scale atmospheric circulation patterns
and local vegetation conditions14,46. Our findings emphasize the sig-
nificance of also considering the pre-existing conditions of vegetation
growth in compound event forecasts during the subsequent warm
season18,47.

While our study focuses on natural ecosystems, these insights are
relevant for nature-based solutions in urban environment. This is due
to the consistent effects of vegetation on climate at both macro and
micro scales, particularly through mechanisms such as modifications
of albedo and transpiration13,48. Urban green initiatives can mitigate
urban heat by enhancing albedo and transpiration, especially in mid-
to-low latitudes49,50. Consistently, we show that vegetation greening
will mitigate compound soil drought-heat in these regions, implying
potential climate benefits from nature-based solutions in urban set-
tings. Conversely, in high-latitude or arid regions, urban greening
might not yield the expected benefits, likely due to the projected
exacerbation of dry and heat extremes by climate change and urban
development51,52. Whether urban greening canmitigate the compound
soil drought-heat extremes also depends on human management
practices, such as irrigation and species selections, and faces large
uncertainties in model simulations. Therefore, effective future urban
climate mitigation efforts should incorporate high-resolution model-
ing and delicate management to ensure the success of these inter-
ventions in the face of ongoing climate change.

Compound soil drought-heat extremes may disproportionately
impact the global carbon cycle compared to univariate extremes, not
only through the direct effect on vegetation photosynthesis, but
through other processes including enhanced fire emission53, perma-
frost thaw54, variation in boundary layer55, and the complex positive
interactions therein56. However, these processes lack robust observa-
tional constraints and are still not well-represented in the state-of-the-
art models, contributing to the uncertainties in future global com-
pound soil drought-heat extremes predictions. Our global quantifica-
tion of the effects of vegetationfingerprint on compound soil drought-
heat events emphasizes the importance of accurately representing
land processes for future projections of compound extremes, and
motivates the need to incorporate vegetation biophysics into climate
decision-making and adaptation strategies related to compound
extremes.

Methods
CMIP6 model simulations
We used outputs from 17 state-of-the-art ESMs that participate in
CMIP6 (Supplementary Table 2).We useCMIP6models since a lengthy
timeseries is necessary to acquire an adequeate number of samples for

estimating compound event likelihood, and evaluate its trend attrib-
uted to vegetation changes8,22,26,28. Remote sensing observations are
limited in temporal coverage and do not have the capability to predict
the changes of compound extremes in the future. Moreover, our
analyzes (Supplementary Fig. 10) and ample evidence suggest that the
overall trends in historical drought57–59, temperature60–62, and vegeta-
tion characteristics13,63 (such as LAI, transpiration, and others) simu-
lated by the ESMs are generally consistent with observations. The
various output variables from this consistentmodeling framework also
allow us to reliably investigate the underlying processes and
mechanisms driving such changes. Hence, we utilize ESMs from
CMIP6, which integrate the latest human understanding of knowledge
on various land surface processes25, to project the vegetation-driven
compound soil drought-heat likelihood.

The selected CMIP6 models all report the required variables and
incorporate the dynamic responses of stomatal conductance and
vegetation cover to climate change and increased CO2. We used
monthly total soil moisture (mrso), near-surface air temperature (tas),
transpiration (tran), evapotranspiration (evspsbl), runoff (mrro), pre-
cipitation (pr), relative humidity (hurs), leaf area index (lai), sensible
heat flux (hfss), latent heat flux (hfls), total cloud cover percentage
(clt), surface downwelling shortwave radiation (rsds), and surface
upwelling shortwave radiation (rsus) from the historical (1850-2014),
SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 (2015-2100) simulations.
Surface albedo (α) was computed as the ratio of rsus to rsds. From
CanESM5, CanESM5-1, and MPI-ESM1-2-LR, we extracted all ensemble
members (i.e., 50, 20, and 20), respectively, to assess the effect of
initial conditions on the estimated compound soil drought-heat like-
lihood. Relative humidity was not available for the BCC-CSM2-MR, and
was calculated from specific humidity, near-surface air pressure, and
Ta. Considering the divergent depth of soil moisture across model64,65,
multiple layer soil moisture (mrsol) is also used to obtain surface SM
and SM at 1m and 2m. We linearly interpolate the profiles of each
model and then extract the soil moisture at 1m and 2m66. The satellite
LAI are from GIMMS LAI3g67 and GLASS LAI68. We also used three
idealized single-forcing CMIP6 experiments (i.e., 1pctCO2, 1pctCO2-
rad and 1pctCO2-bgc) that participate in the coupled carbon-climate
ESMs69. In these experiments, the influence of atmospheric CO2 was
separated into the radiation effect and vegetation physiological effect.
In 1pctCO2, both the atmospheric and land surface modules experi-
ence a 1% annual increase of atmospheric CO2 starting from 280 ppm
(pre-industrial) to 1140 ppm (4 × CO2) over a 140-year period. The rate
of CO2 increase is similar to that in historical and SSP5-8.5 simulations.
In 1pctCO2-bgc, only the vegetation module experiences the increase
in CO2, while the atmosphere continuously experiences pre-industrial
CO2 levels. By contrast, in 1pctCO2-rad, only the atmospheric module
is subjected to the increase in CO2, while the vegetation module is set
to a fixed CO2 concentration at the pre-industrial level. These simula-
tions have been commonly used to investigate the impact of CO2

radiative and physiological effects on climate extremes31,66,70. Ten cli-
mate models that participated in the three idealized single-forcing
CMIP6 (Supplementary Table 2) were used. In these simulations, we
also used the above-mentioned monthly outputs. All the model out-
puts utilized in this study were resampled to a common spatial reso-
lution of 1.5° × 1.5° by using bilinear interpolation.

A framework for quantifying the likelihood of compound soil
drought-heat events from vegetation biophysics
The total LMF. Compound soil drought-heat extremes are expected to
have large impacts on natural ecosystems and human society, espe-
cially for thosehappenduring thewarmseason. Additionally, thewarm
season also overlaps with the main growing season for most regions,
during which vegetation change through modifying α and Tr can
substantially regulate SMandTa13,21.We thus focus on global vegetated
regions during the warm season. Following ref. 26, the warm season is
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defined as the average hottest three consecutive months during study
periods in each model grid cell.

Following ref. 26, we used the likelihood multiplication factor
(LMF) to quantify the change in the frequency of compound soil
drought-heat events driven by Ta and SM (hereafter referred to as
LMFTot). We first employed the commonly used bivariate copulas to
calculate the joint probability of a compound soil drought-heat event.
Accordingly, our two variables are monthly Ta and the opposite of SM
(-SM) over the warm season. Given two random variables X (i.e., Ta)
and Y (i.e., -SM), the joint probability distribution function of X and Y
with a copula C can be expressed as

F x, yð Þ=P X ≤ x,Y ≤ yð Þ=Cðu, vÞ ð1Þ

Where P is the joint cumulative probability; u and v are the uniform
distribution of X and Y, respectively. The joint probability of a com-
pound soil drought-heat event during the historical period, defined by
both variables exceeding their specific thresholds, can be expressed as

phis = Phis u>uhis

\
v> vhis

� �
= 1� uhis � vhis + Chisðuhis, vhisÞ ð2Þ

whereChis is the copula during the historical period. uhis and vhis are Ta
and SM thresholds, respectively, and both are set at 0.9, which is a
common threshold to define climate extremes.

Subsequently, we calculated the future thresholds of X and Y,
corresponding to the 90th quantile values during the historical period.
For example, future thresholds of X (ufut) can be expressed as

ufut = Ffut X90�his

� � ð3Þ

Where X90-his is the 90th percentile value of X during the historical
period, Ffut is the normal cumulative distribution function (CDF) of X
during the future period. We then recomputed a new copula driven by
future X and Y, and used Eq. (2) to calculate the future joint probability
ðpfutÞ. The LMFTot is defined as the ratio of pfut to phis

LMFTot =
pfut

phis
ð4Þ

An increase in likelihood is indicated by a value greater than one. We
used the function “BiCopCDF” in R VineCopula package71 to calculate
the joint probability.

The decomposition of LMF. Following ref. 22, changes in trend,
variability, and dependence of relevant drivers can affect the like-
lihood of all types of compound events. For example, an increase
(reduction) in Ta (SM), an escalation in variability, or an intensification
of negative dependence between Ta and SM can increase the com-
pound event likelihood22. We partition LMFTot into components
attributed to Ta trend, SM trend, variability, and dependence.

We first calculated the LMF attributed to changes in variability
(referred to as LMFvTot). Using Eq. (3), but with the CDF that fixes the
mean values of Ta (SM) in accordance with the historical period while
allowing standard deviation to change, we calculated the future Ta
(SM) threshold (i.e., uv�Ta

fut and vv�SM
fut , where the superscript v stands for

variability). With this, we obtained the joint probability only encom-
passing information on the variability of Ta and SM ðpv

futÞ. LMFvTot is
given by

pv
fut = Pfut u > uv�Ta

fut

\
v >uv�SM

fut

� �
= 1� uv�Ta

fut � uv�SM
fut +Cfut uv�Ta

fut , uv�SM
fut

� �
ð5Þ

LMFvTot =
pv
fut

pfut
ð6Þ

WhereCfut is the newly recalculated copuladrivenby futureTaandSM.
We then calculated the LMF related to trends in Ta and SM (i.e.,
LMFt�Ta

Tot and LMFt�SM
Tot ), using Ta as an example. We derived a new Ta

threshold ðut�v�Ta
fut Þ, employing a CDF calculated from future Ta which

contains both changes inmean and variability of Ta.We then obtained
the joint probability containing information on Ta’s variability and
trend ðpt�v�Ta

fut Þ, by setting the threshold for SM to 0.9, as well as the
joint probability for Ta’s variability only ðpv�Ta

fut Þ. The LMFt�Ta
Tot is given

by

pt�v�Ta
fut = Pfut u >ut�v�Ta

fut

\
v >0:9

� �
= 1� ut�v�Ta

fut � 0:9+Cfut ut�v�Ta
fut , 0:9

� �
ð7Þ

pv�Ta
fut = Pfut u >uv�Ta

fut

\
v>0:9

� �
= 1� uv�Ta

fut � 0:9+Cfut uv�Ta
fut , 0:9

� �
ð8Þ

LMFt�Ta
Tot =

pt�v�Ta
fut

pv�Ta
fut

ð9Þ

The LMF changes resulting from SM’s trend can be calculated in a
similarway. To quantify the LMFdue to dependence changes ðLMFdTotÞ,
we set future thresholds ðud�Ta

fut , vd�SM
fut Þ being 90th quantile for both SM

and Ta based on model prediction for future period, and used the Eq.
(2) and Cfut to obtain the future joint probability due to shifts in
dependence ðpd

futÞ. LMFdTot is given by

LMFdTot =
pd
fut

phis

ð10Þ

Since LMFTot is overall driven by changes in trend, variability and
dependence22, it can also be calculated from the as the summation of
the individual components after logarithm transformed:

logðLMFTotÞ= logðLMFt�SM
Tot Þ+ logðLMFt�Ta

Tot Þ+ logðLMFvTotÞ + logðLMFdTotÞ
ð11Þ

In particular, we find a very high consistency between logðLMFTotÞ
estimated from Eq. (4) and the summation of all components in Eq. (11)
(Supplementary Fig. 11). Additionally, logðLMFTotÞ and the summation
exhibit good spatial consistency at a global scale. These analyzes
suggest that our decomposition method is in line with theoretical
principles.

The changes in each individual LMF component predominantly
stem from the anomalies of the respective element. For example,
LMFt�SM

Tot is caused by shifts in SM trends, and LMFvTot is caused by
changes in the product of Ta and SM standard deviation. To establish
the relationship between LFM components and the variability char-
acteristics (trend, variation, dependency) of the two variables, we
computed each individual LMF component for each consecutive 30-
year period from 1850–2100, in relation to the first 30-year period
(1850-1879) within eachmodel grid cell (a total of 221 points). We then
build a piecewise function to predict each LMF component (after log-
transformation) from Ta and SM variability characteristics using the
function “segmented.lm” in R package “segmented”72.

Ta and SMchanges associatedwith Tr and α. Tr is expected to affect
both Ta and SM simultaneously24,73,74. Additionally, evidence from
observations and models also indicates lagged effects of spring Tr on
summer SM20,75–77, such as increased summer drying due to enhanced
springTr21.Moreover, the change inα can also regulate the land energy
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balance and further affect Ta. We incorporated changes in trend,
variability, and dependence of SM and Ta from Tr of the previous
season and current season, and the associated changes due to current
α (Supplementary Figs. 2a,b).

Given the additive nature of the logðLMFÞ, we performed separate
calculations for each pertinent item related to Tr and α. Following
refs. 14,78, we applied the surface energy balance equation to assess
the impact of changes in Tr and α on Ta. Briefly, changes in Tr can
modify the surface energy budget and alter land surface temperature,
further warming or cooling the local Ta. The surface energy balance
equation is given by

Sin 1� αð Þ+ εsσ εaTa
4 � Ts4

� �
= λ Tr + Ei + Esð Þ+H +G ð12Þ

Where Sin represents surface downward shortwave radiation, λ is the
latent heat of vaporization, Ei is canopy evaporation, Es is soil eva-
poration,H is sensible heat flux, andG is ground heatflux. εs, σ, εa, and
Ts denote land surface emissivity, Stephan-Boltzmann constant,
atmospheric air emissivity, and land surface temperature, respectively.

By differentiating Eq. (12), we obtained the sensitivity of Ta to Tr
(i.e., δTa

δTr), and calculated the effect of changes in Tr’s trend on Ta
(ΔtTacur�Tr).

ΔtTacur�Tr =
δTa
δTr

ðTrfut � TrhisÞ ð13Þ

Where Trfut and Trhis denote the average of Tr during historical and
future periods. Similarly, combing the sensitivity of Ta to α from Eq.
(12) (i.e., δTa

δα ) and the long-term α trends, we obtained the effect of
changes in α’s trend on Ta ðΔtTacur�αÞ.

As for SM, we need to consider both Tr of current period (k) and
previous period (k-1). We used a simple water balance equation to
characterize the impact of Tr on SM. The water balance equation is
given by

SMk =SMk�1 + Prk�1 � Trk�1 �Qk�1 ð14Þ

Where SMk is SM at time k. SMk-1, Prk-1, Trk-1, and Qk-1 are the average
SM, precipitation, Tr, and runoff from the previous three months,
respectively. Using three-month average values can consider the
potential collective effects of spring vegetation water use and longer
timescales of droughts75. Due to the different surface and climate
characteristics, the effect of Trk�1 to SMk can be different across grid
cells. For example, in very wet regions with abundant precipitation,
water losses from Tr will be fully replenished, and will have little effect
on SM. We therefore build a linear model for each grid cell to quantify
the sensitivity of SM to Tr (i.e., δSM

δTr ) using observations from both
historical and future periods. If we consider the precipitation events as
randomly occurring, such a sensitivity can also be applied to calculate
the effect of current Tr on SM. With this, the SM changes due to the
trend of warm season Tr ðΔtSMcur�TrÞ can be calculated as:

ΔtSMcur�Tr =
δSM
δTr

ðTrfutk � Trhisk Þ ð15Þ

The Eq. (15) can also be used to calculate the SM changes due to trend
of previous season ðΔtSMpre�TrÞ using Trk�1 from historical and future
periods. We then calculated the antecedent and current effects of a Tr
anomaly ðTranoÞ on dependence using both δSM

δTr estimated from Eq. (14)
and δTa

δTr estimated from Eq. (12):

Δdcur�Tr = cov
δSM
δTr

Trv, futk ,
δTa
δTr

Trv, futk

� �
� cov

δSM
δTr

Trv, hisk ,
δTa
δTr

Trv, hisk

� �

ð16Þ

Δdpre�Tr = cov
δSM
δTr

Trv, futk�1 ,
δTa
δTr

Trv, futk

� �
� cov

δSM
δTr

Trv, hisk�1 ,
δTa
δTr

Trv, hisk

� �

ð17Þ
Where cov is the covariance that quantifies the direction and magni-
tude of dependence between two variables. Δdcur�Tr represents
dependence change due to current Trano, while Δdpre�Tr denotes
changes in dependence between SM (caused by preseason Trano) and
Ta (caused by current Trano). Tr

v, his
k and Trv, futk are monthly Trano at

time k during historical and future periods, respectively. Trv, hisk�1 and
Trv, futk�1 was calculated by averaging monthly Trano from time k-1 to k-3
during historical and future periods, respectively.

We finally calculated the changes in variability related to Tr. The
Tr-driven change in variability is defined as the products between Tr-
driven Ta and SM anomalies, given that LMFvTot is driven by changes in
the product of Ta and SM standard deviation (see following section),
and this definition facilitates the comparison with LMF pairs related to
Tr-driven variability and dependence.

Δvcur�Tr = sd
δSM
δTr

Trv, futk

� �
sd

δTa
δTr

Trv, futk

� �
� sd

δSM
δTr

Trv, hisk

� �
sd

δTa
δTr

Trv, hisk

� �

ð18Þ

Δvpre�Tr = sd
δSM
δTr

Trv, futk�1

� �
sd

δTa
δTr

Trv, futk�1

� �
� sd

δSM
δTr

Trv, hisk�1

� �
sd

δTa
δTr

Trv, hisk�1

� �

ð19Þ

Where sd denotes standard deviation. Δvcur�Tr represents the varia-
bility changedue to current Trano, whileΔvpre�Tr denotes the variability
change induced by preseason and current Trano. Using the Eqs.
(16 and 18) and considering the changes in Ta variability associated
with α, we obtained changes in variability and dependence induced by
α anomalies (i.e., Δvcur�α and Δdcur�α):

Δvcur�α = sd
δSM
δTr

Trv, futk

� �
sd

δTa
δα

αv, fut
k

� �
� sd

δSM
δTr

Trv, hisk

� �
sd

δTa
δα

αv, his
k

� �

ð20Þ

Δdcur�α = cov
δSM
δTr

Trv, futk ,
δTa
δα

αv, fut
k

� �
� cov

δSM
δTr

Trv, hisk ,
δTa
δα

αv, his
k

� �
ð21Þ

The LMF caused by changes in Tr and α. In the previous sections, we
calculated the LMFand its components related to the trend, variability,
and dependence of Ta and SM. We employed a piecewise regression
function to characterize these relationships for each model and for
each grid cell. We also used energy balance equations and water bal-
ance equations to quantify the changes in Ta and SM trend, variability
and dependence associated with Tr and α. With these, we can use the
“chain rule” to calculate the changes in Tr and α and their contribution
to LMF, i.e., LMF from ΔtTacur�Tr and ΔtSMcur�Tr (LMFt�Ta

cur�Tr and LMFt�SM
cur�Tr),

Δdcur-Tr and Δvcur-Tr (LMFdcur�Tr and LMFvcur�Tr), Δdpre-Tr and Δvpre-Tr
(LMFdpre�Tr and LMFvpre�Tr),Δdcur-α andΔvcur-α (LMFdcur�α and LMFvcur�α),
ΔtTacur�α (LMFtcur�α), and ΔtSMpre�Tr (LMFt�Ta

cur�Tr). For example, LMFt�Ta
cur�Tr is

given by

logðLMFt�Ta
cur�TrÞ= ft�TaðΔtTacur�TrÞ ð22Þ

Where ft�Ta denotes the piecewise function formulated by
logðLMFt�Ta

Tot Þ and the change in Ta’s trend.
To assess the impacts of the current Tr trend on compound event

likelihood, we added LMFt�Ta
cur�Tr and LMFt�SM

cur�Tr to get LMFtcur�Tr. Given
that Tr-driven (or α-driven) variability and dependence are quantified
by variance and covariance, respectively, and are therefore
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compatible, we combined the LMFvcur�Tr and LMFdcur�Tr ðLMFvdcur�TrÞ,
LMFvpre�Tr and LMFdpre�Tr ðLMFvdpre�TrÞ, LMFvcur�α and
LMFdcur�αðLMFvdcur�αÞ, to represent the influences of variability and
dependence on compound event likelihood. We set any the modeled
log(LMF) values larger (smaller) than 4.6 (−4.6) tomissing (a very small
proportion, 0.29%), given that log(LMFTot) is generally less than 4.6 (its
value before logarithmic transformation is 100)6,26. Our evaluation
shows that the prediction model satisfactorily captures the linkage
between response and predictive variables (Supplementary Figs. 12).
Specifically, the simulation and observation exhibit satisfactory cor-
relation alongside minimal error, and present strong spatial con-
sistency across a global scale.

We tested whether the ensemble median of the models shows a
change in likelihood with the one-sided sign test26. We highlighted
regions for which the model ensemble median of the LMF is sig-
nificantly larger thanor less than0with stippling. Global statistics such
as means and quantiles are based on the arithmetic mean for a
balanced reflection of the frequency of events, since LMF represents
the frequency of compound events independent of the area size6,8,26.

The contribution of LAI in Tr- andα- driven LMF. Changes in Trano can
be linked to factors such as leaf area index (LAI), precipitation (Pr), net
radiation (Rn), stomatal conductance (gs), and vapor pressure deficit
(VPD). Following ref.79, weused amultivariate regression framework to
investigate the Trano associated with these factors. This approach
adeptly factors out the direct impacts of alterations in climatic and
vegetation factorson terrestrial energyfluxes79 and canbe consistently
applied to various ESM outputs80. Partial least-squares regression was
used to overcome the potential multicollinearity problem of drivers
for eachmodel grid cell and each month81. The Trano was expressed as

Trano =
δTrano
δLAI

LAI +
δTrano
δgs

gs +
δTrano
δRn

Rn+
δTrano
δPr

Pr +
δTrano
δVPD

VPD

ð23Þ

Where LAI, gs, Rn, Pr and VPD are detrended and deseasonalized
sequences. VPD was calculated from Ta and relative humidity. gs was
estimated by Tr per leaf area following ref.82. We calculated the
changes in the corresponding variability and dependence (i.e., Δv and
Δd), and subsequently obtained Δv attributed to LAI, gs, VPD, Pr, and
Rn, as well as Δd attributed to these factors. Combining these factors
with the above framework, we further partition LMFvdpre�Tr associated
with LAI ðLMFvdLAIÞ, gs, VPD, Pr, andRn.We also employed the consistent
methods to calculate the change in α’s trend associated with LAI, Pr,
and Cl, as well as partition LMFtcur�α related to LAI ðLMFtLAIÞ and other
factors.

Our evaluation shows that this approach can effectively replicate
the correctly associated changes in Tr and α at the global scale (Sup-
plementary Fig. 13). This calculation was conducted for each con-
secutive 30-year period from 1851 to 2100, relative to the first 30-year
period (1850-1879) within each model grid cell. We utilized the pls R
packages to execute the partial least-squares regression. In the
three CO2 sensitivity experiments, we assessed the changes in LAI
between the first (years 1-30) and last (years 111-140) 30-year periods,
and performed a similar analysis to separate the effect of LAI
on Trano and α.

Data availability
The original CMIP6 model simulations are publicly available from the
CMIP6 data portal (https://esgf-node.llnl.gov/search/cmip6/). Earth sys-
tem models and simulations used in this study are listed in Supplemen-
tary Table 1. The data generated in this study are provided in the Source
Data file (https://doi.org/10.6084/m9.figshare.27889785.v1). Source data
are provided with this paper.

Code availability
The code used for the calculation of Tr- andα-induced LMF is available
at GitHub (https://github.com/jlyfine/comveg), and have been
archived on figshare (https://doi.org/10.6084/m9.figshare.
27889749.v1)
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