UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
On Self-Organization in Connectionist Networks

Permalink
https://escholarship.org/uc/item/8q306874)

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 6(0)

Author
Williams, Ronald J.

Publication Date
1984

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/8q306874
https://escholarship.org
http://www.cdlib.org/

353

On Self-Organization in Connectionist Networks

Ronald J. Williams
Institute for Cognitive Science
University of California, San Diego C-015
La Jolla, CA 92093

The aim of this paper is to present some observations about certain types of representations, or
encodings, in connectionist, or neural-like, networks. In particular, this paper will call attention to
two distinct categories of encoding in such networks and examine some results bearing on the issue of
sclf-organizing networks which use one or the other type of encoding. This discussion will be limited
to the encoding of data which is fundamentally numerical (or, more precisely, geometric). It is an
interesting question whether semantic data can also be imbedded in a geometric framework, but such
matters will be ignored here.

A number of interesting attempts have been made to provide an answer to the general problem
of how a network might be shaped to a particular environment through self-organization. Among
these are the early perceptron studies of Rosenblatt (1962), the investigations into possible neural net
dynamics by Grossberg (1980), the recent theoretical approach of Hinton & Sejnowski (1983), and
several works with the goal of finding ways in which cells in visual cortex might become tuned to
specific features through self-organization (von der Malsburg, 1973; Nass & Cooper, 1975; Bicnenstock
et al., 1982). Two recent works which share a common perspective with the approach to be taken here
arc that of Kohonen (1982) and that of Amari (1983).

On the other hand, 2 number of non-self-organizing connectionist networks have been hand-
crafted to perform particular sensory or cognitive processing tasks in ways which are generally
intecnded to account for human performance data and/or be compatible with neurobiological data
(Feldman & Ballard, 1982; Ballard, 1981; McClelland & Rumelhart, 1981; Hinton, 1981). Certain
classes of network have even been proposed as having a certain universality in sensory processing, at
least in the visual system (Ballard, 1981). Such universality might rcasonably be taken as making such
nctworks plausible candidates for the actual implementation of these algorithms in the brain. It then
becomes reasonable as well to investigate possible mechanisms by which such networks might be able
to self-organize to some degree; if such mechanisms can be shown to exist, it could then bé argued
that these types of network represent a general processing strategy which could find wide applicability
in the brain.

This rescarch was supported by« grant to David Zipser from the System Development Foundation.

Copyright © 1984 Ronald J. Williams
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In what follows, attention will be restricted to the following 2-layer architecture:

A, and A, are layers of units and each may optionally have fixed lateral connections. As depicted,
there are connections from A; units to A, units, and these will be assumed to be variable and thus sub-
ject to sclf-organization. In addition, there may be connections (not depicted above) from A, units to
A, units, and these may also be variable. The reason that only the A; - A; connectivity is depicted
above is that it is the A; - A, transfer function that is of paramount interest here. Specifically, input
to the system will be assumed to consist of a pattern of activation in the A, layer, and output will be
taken as the resulting pattern of activation in the A, layer. While this network is being considered
here in isolation, one may view this more generally as simply a sub-network consisting of two adjacent
layers in a larger hierarchical network.

I will consider the A; - A, transfer function as performing a mapping between two individual
encodings, from that in the A, layer to that in the A, layer. A pattern in either layer can be con-
sidered as a Euclidean vector whose coordinates are simply the respective activation values of all of
the units in that layer. The distinction I suggest drawing between cncodings essentially revolves
around how uscful such a vector space description is for capturing the essential dimensions along
which the lawful patterns may vary.

A full characterization of the two types of encoding will not be given here; it will be sufficient
for present purposes to simply give examples of each and to cite a closely related distinction already
 existing in the literature.

Ballard (1981) calls attention to the distinction between having each unit in a network represent
a particular point in a parameter space (with its activation representing confidence in the validity of
that point) and having units whose activation represents the value of a (necessarily one-dimensional)
parameter. The former is called a value unit encoding by Ballard and is used extensively in his gen-
eralized Hough transform approach to early visual processing; the latter is called a variable unit encod-
ing.

For purposes of this paper, call any variable unit encoding a Type I encoding; the class of Type I/
encodings will include any value unit encoding as well as any representation typified by pixel-level
descriptions of retinal images.

As a concrete cxample, consider a 1-dimensional array of 10 units such that the only patterns
which appcar in this array all consist of two adjacent 1's with the rest 0's. This is a Type II encoding
of a pattern space which may be considered essentially one-dimensional; the 10-dimensional vectors
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which represeat the patterns jump around in the space in such a way that this one-dimensionality is
not easily rccognized. This onc-dimensionality is really a conscquence of the manner in which the
patterns overlap.

In contrast, this same pattern space may be given a Type [ encoding in a single unit whose
activation is a monotonic function of, say, the distance of the leftmost 1 in the pattern from the left-
hand end of the array.

At this point, the central thesis of this paper can be stated: Self-organizing mappings from Type I
representations is straightforward; self-organizing mappings frcm Type Il representations, if possible at
all, will require the use of mechanisms yet to be discovered. In support of the first half of this thesis, I
present the following two examples of self-organizing mappings, the first taken from work of Kohonen
(1982) and the second from recent work of my own. Following these examples is a discussion in sup-
port of the second half of this thesis.

Example 1. Let the A, layer have a certain pattern of lateral feedback connections so that the
only patterns of activity which it supports are such that all non-zero activity is confined to a very small
number of nearby units. In particular, assume that the units are laid out in 2-dimensional space in
such a way that nearby units excite one another but more distant units inhibit one another. Suppose
that the A, layer consists of 2 units, with patterns drawn uniformly from a convex subset of Euclidean
2-space. Suppose also that there arc no A; - A, connections. Then Kohonen (1982) has shown that,
by using a common variant of what has come to be known as the Hebb learning rule, the A; - A,
mapping will generally self-organize in such a way that nearby units respond most strongly to nearby
patterns. ! The resulting mapping re-codes the 2-dimensional pattern space implicit in the activations
of the A, units in such a way that its 2-dimensionality becomes explicit in the A, layer. In the
language of Ballard (1981), the resulting mapping can be said to turn a variable unit encoding into
what is essentially a valuc unit encoding; in the terminology of this paper, the resulting mapping re-
casts a Type I representation into a particular Type II representation.

Example 2. -Let the system have no laferal connections in either the A; layer or the A, layer, but
lct there be reciprocal A; - Aj connections. Let the A; units apply a weight modification rule to their
incoming A; - A, connections which has the effect of trying to more closely match their current pat-
tern; furthermore, let them apply this same correction to their outgoing A; - A, connections. Then,
if the bottom-up and top-down connections are symmetrical, 2 the system performs a principal com-
ponent analysis of the training stimuli during self-organization. More precisely, let n, denote the
number of units in the A, layer. Then, if this system is trained with patterns having mean 0, self-
organization causes the output corresponding to any given input vector to consist of a projection onto
the subspace spanned by the eigenvectors corresponding to the n, largest eigenvalues of the scatter
matrix of the training stimuli. This output is cxpressed in some orthonormal basis which nced not be
these eigenvectors themselves. In other words, individual units in A, will not necessarily be feature
detectors for individual principal components; instead the output encoding may be distributed with
respect to these compeonents. A fuller account of the details of this system and an analysis of its
bchavior will appear elsewhere.

1. I have slightly simplificd the actual details of Kohonen’s work in order to avoid discussion of techni-
cal matters not germane to this presentation.

2. These weights need not be assumed symmetrical at the outsct; the simple trick of allowing all
weights to decay slowly will accomplish the necessary symmetry eventually.
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The key point to be made about the system of Example 2 in the context of this paper is that it
readily sclf-orgenizes a useful mapping from one Type I representation to another.

While the work of Kohonen (1982) and Amari (1983) may leave one with the impression that
certain Type Il = Type Il mappings may be sclf-organized in the same way as described in Example 1,
I would claim that, in general, a good mapping is not achieved through the application of such a
learning rule. For example, suppose that the A layer is an identical copy of the A, layer as described
in Example 1 and the system is expected to sclf-organize what is essentially an identity mapping. This
is a simple version of the problem of forming a topographic map between, for example, the retina and
visual cortex. While Amari (1983) makes certain claims about such self-organization being possible, he
readily concedes that it is difficult to obtain a topographic map from such a system if onc starts with
totally random initial connections. In fact, my simulations of such a system would suggest that unless
one starts with initial connections very close to what one intends as the final outcome, the system is
very unlikely to form a true topographic map. The major difficulty, it appears to me, is that the
learning rule basically requires that, at statistical equilibrium, the stimulus vector to which each 4,
unit most strongly responds must be equal to a weighted average of the stimulus vectors to which its
neighbors (in the topology of the lateral connectivity of A,) most strongly respond. This is the under-
lying reason why such a system works well for self-organizing convex Type I input, and why I claim
that it cannot be expected to do the same for Type II input. Indeed, this fundamental difference is
thc main motivation behind my drawing the distinction between these two types of representation.
This argument in fact suggests that any learning rule which causes an A, unit to learn to respond to
an average of the stimulus vectors which have excited it cannot be expected to achieve a good map-
ping between Type Il encodings. Some other learning rule must be used to achieve this.

Thus I argue that it remains an open question whether mappings can, in gencral, be self-
organized from a Type II representation to another Type Il representation. Discovery of such a
mechanism would be quite interesting, since it is possible to specify lateral connectivity patterns in the
A, layer which could force any particular topology on the stimulus space. As an example, if the 4,
layer has the connectivity of a Mobius band and the A layer is a patch of 2-dimensional retina upon
which patterns of activity are elongated bars of various orientation and position, then application of
this mechanism should lead to a mapping in which each A, unit is maximally responsive to a particular
combination of oricntation and position. One can imagine self-organizing just about any Hough-style
transform in this manner.

Another intriguing possibility which is suggested by this work is that of self-organizing a map-
ping from a Type Il representation to a Type I representation. As an example of such a mapping, con-
sider a description of a connected pattern on a 2-dimensional retina in terms of Fourier descriptors
for the boundary (Zahn & Roskies, 1972; Persoon & Fu, 1977) along with the coordinates of the
center of mass, all encoded in variable units. What is appealing about this particular example is that
it should be much more economical in both units and connections to compute a mapping between a
retina-based description of an object and an object-based description of that object (Hinton, 1981) if
these descriptions are encoded in variable units than if they are encoded in value units.
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