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Disentangling the effects of geographic and ecological isolation
on genetic differentiation

Gideon S. Bradburd1,a, Peter L. Ralph3,b, and Graham M. Coop1,c

1Center for Population Biology, Department of Evolution and Ecology, University of California,
Davis, CA 95616
3Department of Molecular and Computational Biology, University of Southern California, Los
Angeles, CA 90089

Abstract
Populations can be genetically isolated by both geographic distance and by differences in their
ecology or environment that decrease the rate of successful migration. Empirical studies often
seek to investigate the relationship between genetic differentiation and some ecological variable(s)
while accounting for geographic distance, but common approaches to this problem (such as the
partial Mantel test) have a number of drawbacks. In this article, we present a Bayesian method that
enables users to quantify the relative contributions of geographic distance and ecological distance
to genetic differentiation between sampled populations or individuals. We model the allele
frequencies in a set of populations at a set of unlinked loci as spatially correlated Gaussian
processes, in which the covariance structure is a decreasing function of both geographic and
ecological distance. Parameters of the model are estimated using a Markov chain Monte Carlo
algorithm. We call this method Bayesian Estimation of Differentiation in Alleles by Spatial
Structure and Local Ecology (BEDASSLE), and have implemented it in a user-friendly format in
the statistical platform R. We demonstrate its utility with a simulation study and empirical
applications to human and teosinte datasets.
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Introduction
The level of genetic differentiation between populations is determined by the homogenizing
action of gene flow balanced against differentiating processes such as local adaptation,
different adaptive responses to shared environments, and random genetic drift. Geography
often limits dispersal, so that the rate of migration is higher between nearby populations and
lower between more distant populations. The combination of local genetic drift and
distance-limited migration results in local differences in allele frequencies whose magnitude
increases with geographic distance, resulting in a pattern of isolation by distance (Wright,
1943). Extensive theoretical work has described expected patterns of isolation by distance
under a variety of models of genetic drift and migration (Charlesworth et al., 2003), in both
equilibrium populations in which migration and drift reach a balance, and under non-
equilibrium demographic models, such as population expansion or various scenarios of
colonization (Slatkin, 1993). A range of theoretical approaches have been applied, with
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authors variously computing probabilities of identity of gene lineages (e.g. Malécot, 1975;
Rousset, 1997) or correlations in allele frequencies (e.g. Slatkin and Maruyama, 1975; Weir
and Cockerham, 1984), or working with the structured coalescent (e.g. Hey, 1991; Nordborg
and Krone, 2002). Although these approaches differ somewhat in detail, their expectations
can all be described by a pattern in which allele frequencies are more similar between
nearby populations than between distant ones.

In addition to geographic distance, populations can also be isolated by ecological and
environmental differences if processes such as dispersal limitations (Wright, 1943), biased
dispersal (e.g. Edelaar and Bolnick, 2012), or selection against migrants due to local
adaptation (Wright, 1943; Hendry, 2004) decrease the rate of successful migration. Thus, in
an environmentally heterogeneous landscape, genome-wide differentiation may increase
between populations as either geographic distance or ecological distance increase. The
relevant ecological distance may be distance along a single environmental axis, such as
difference in average annual rainfall, or distance along a discrete axis describing some
landscape or ecological feature not captured by pairwise geographic distance, such as being
on serpentine versus non-serpentine soil, or being on different host plants.

Isolation by distance has been observed in many species (Vekemans and Hardy, 2004;
Meirmans, 2012), with a large literature focusing on identifying other ecological and
environmental correlates of genomic differentiation. The goals of these empirical studies are
generally 1) to determine whether an ecological factor is playing a role in generating the
observed pattern of genetic differentiation between populations and, 2) if it is, to determine
the strength of that factor relative to that of geographic distance. The vast majority of this
work makes use of the partial Mantel test to assess the association between pairwise genetic
distance and ecological distance while accounting for geographic distance (Smouse et al.,
1986).

A number of valid objections have been raised to the reliability and inter-pretability of the
partial Mantel (e.g. Legendre and Fortin, 2010; Guillot and Rousset, 2013). First, because
the test statistic of the Mantel test is a matrix correlation, it assumes a linear dependence
between the distance variables, and will therefore behave poorly if there is a nonlinear
relationship (Legendre and Fortin, 2010). Second, the Mantel and partial Mantel tests can
exhibit high false positive rates when the variables measured are spatially autocorrelated
(e.g., when an environmental attribute, such as serpentine soil, is patchily distributed on a
landscape), since this structure is not accommodated by the permutation procedure used to
assess significance (Guillot and Rousset, 2013). Finally, in our view the greatest limitation
of the partial Mantel test in its application to landscape genetics may be that it is only able to
answer the first question posed above — whether an ecological factor plays a role in
generating a pattern of genetic differentiation between populations — rather than the first
and the second — the strength of that factor relative to that of geographic distance. By
attempting to control for the effect of geographic distance with matrix regressions, the
partial Mantel test makes it hard to simultaneously infer the effect sizes of geography and
ecology on genetic differentiation, and because the correlation coefficients are inferred for
the matrices of post-regression residuals, the inferred effects of both variables are not
comparable — they are not in a common currency. We perceive this to be a crucial lacuna in
the populations genetics methods toolbox, as studies quantifying the effects of local
adaptation (e.g. Rosenblum and Harmon, 2011), host-associated differentiation (e.g. Drès
and Mallet, 2002; Gómez-Díaz et al., 2010), or isolation over ecological distance (e.g.
Andrew et al., 2012; Mosca et al., 2012) all require rigorous comparisons to the effect of
isolation by geographic distance.
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In this article, we present a method that enables users to quantify the relative contributions
of geographic distance and ecological distance to genetic differentiation between sampled
populations or individuals. To do this, we borrow tools from geostatistics (Diggle et al.,
1998) and model the allele frequencies at a set of unlinked loci as spatial Gaussian
processes. We use statistical machinery similar to that employed by the Smooth and
Continuous AssignmenTs (SCAT) program designed by (Wasser et al., 2004) and the
BayEnv and BayEnv2 programs designed by (Coop et al., 2010) and (Günther and Coop,
2013). Under this model, the allele frequency of a local population deviates away from a
global mean allele frequency specific to that locus, and populations covary, to varying
extent, in their deviation from this global mean. We model the strength of the covariance
between two populations as a decreasing function of both geographic and ecological
distance between them, so that populations that are closer in space or more similar in
ecology tend to have more similar allele frequencies. We note that this model is not an
explicit population genetics model, but a statistical model – we fit the observed spatial
pattern of genetic variation, rather than modeling the processes that generated it. Informally,
we can think of this model as representing the simplistic scenario of a set of spatially
homogeneous populations at migration-drift equilibrium under isolation by distance.

The parameters of this model are estimated in a Bayesian framework using a Markov chain
Monte Carlo algorithm (Metropolis et al., 1953; Hastings, 1970). We demonstrate the utility
of this method with two previously published datasets. The first is a dataset from several
subspecies of Zea mays, known collectively as teosinte (Fang et al., 2012), in which we
examine the contribution of difference in elevation to genetic differentiation between
populations. The second is a subset of the Human Genome Diversity Panel (HGDP, (Conrad
et al., 2006; Li et al., 2008)), for which we quantify the effect size of the Himalaya mountain
range on genetic differentiation between human populations. We have coded this method —
Bayesian Estimation of Differentiation in Alleles by Spatial Structure and Local Ecology
(BEDASSLE) — in a user-friendly format in the statistical platform R (R Development
Core Team, 2007), and have made the code available for download at genescape.org.

Methods
Data

Our data consist of L unlinked biallelic single nucleotide polymorphisms (SNPs) in K
populations; a matrix of pairwise geographic distance between the sampled populations (D);
and one or more environmental distance matrices (E). The elements of our environmental
distance matrix may be binary (e.g., same or opposite side of a hypothesized barrier to gene
flow) or continuous (e.g., difference in elevation or average annual rainfall between two
sampled populations). The matrices D and E can be arbitrary, so long as they are
nonnegative definite, a constraint satisfied if they are each matrices of distances with respect
to some metric. We summarize the genetic data as a set of allele counts (C) and sample sizes
(S). We use Cℓ,k to denote the number of observations of one of the two alleles at biallelic
locus ℓ in population k out of a total sample size of Sℓ,k alleles. The designation of which
allele is counted (for convenience, we denote the counted allele as allele ‘1’), is arbitrary,
but must be consistent among populations at the same locus.

Likelihood Function
We model the data as follows. The Cℓ,k observed ‘1’ alleles in population k at locus ℓ result
from randomly sampling a number Sℓ,k of alleles from an underlying population in which
allele 1 is at frequency fℓ,k.These population frequencies fℓ,k are themselves random
variables, independent between loci but correlated between populations in a way that
depends on pairwise geographic and ecological distance. A flexible way to model these
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correlations is to assume that the allele frequen-cies fℓ,k are multivariate normal random
variables, inverse logit-transformed to lie between 0 and 1. In other words, we assume that
fℓ,k is obtained by adding a deviation θℓ,k to the global value µℓ, and transforming:

(1)

Under this notation, µℓ is the transformed mean allele frequency at locus ℓ and θℓ,k is the
population- and locus-specific deviation from that transformed mean. We can then write the
binomial probability of seeing Cℓ,k of allele ‘1’ at locus ℓ in population k as

(2)

In doing so, we are assuming that the individuals are outbred, so that the Sℓ,k alleles
represent independent draws from this population frequency. We will return to relax this
assumption later.

To model the covariance of the allele frequencies across populations, we assume that θℓ,k are
multivariate normally distributed, with mean zero and a covariance matrix Ω that is a
function of the pairwise geographic and ecological distances between the sampled
populations. We model the covariance between populations i and j as

(3)

where Di,j and Ei,j are the pairwise geographic and ecological distances between populations
i and j, respectively, and αD and αE are the effect sizes of geographic distance and
ecological distance, respectively. The parameter α0 controls the variance of population
specific deviate θ (i.e. at Di,j + Ei,j = 0), and α2 controls the shape of the decay of the
covariance with distance. As alluded to above, as many separate ecological distance
variables may be included as desired, each with its own αEx effect size parameter, but here
we restrict discussion to a model with one.

With this model, writing α = (α0,αD, αE, α2), the likelihood of the SNP counts observed at
locus ℓ in all sampled populations can now be expressed as

(4)

where we drop subscripts to indicate a vector (e.g. Cℓ = (Cℓ1, …, CℓK)), and P(θℓ|Ω) is the
multivariate normal density with mean zero and covariance matrix Ω.

The joint likelihood of the SNP counts C and the transformed population allele frequencies θ
across all L unlinked loci in the sampled populations is just the product across loci:

(5)
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Posterior Probability
We take a Bayesian approach to inference on this problem, and specify priors on each of our
parameters. We place exponential priors on αD and αE,each with mean 1; and a gamma prior
on α0,with shape and rate parameters both equal to 1. We took the prior on α2 to be uniform
between 0.1 and 2. Finally, we chose a Gaussian prior for each µℓ, with mean 0, variance 1/
β, and a gamma distributed hyper-prior on β with shape and rate both equal to 0.001. For a
discussion of the rationale for these priors, please see the Appendix

The full expression for the joint posterior density, including all priors, is therefore given by

(6)

where the various P denote the appropriate marginal densities, and the proportionality is up
to the normalization constant given by the right-hand side integrated over all parameters.

Markov chain Monte Carlo
We wish to estimate the posterior distribution of our parameters, particularly αD and αE (or
at least, their ratio). As the integral of the posterior density given above cannot be solved
analytically, we use Markov chain Monte Carlo (MCMC) to sample from the distribution.
We wrote a custom MCMC sampler in the statistical platform R (R Development Core
Team, 2007). The details of our MCMC procedure are given in the Appendix.

Model Adequacy
Our model is a simplification of the potentially complex relationships present in the data,
and there are likely other correlates of differentiation not included in the model. Therefore, it
is important to test the model’s fit to the data, and to highlight features of the data that the
model fails to capture. To do this, we use posterior predictive sampling, using the set of
pairwise population FST values as a summary statistic (Weir and Hill, 2002), as we are
primarily interested in the fit to the differentiation between pairs of populations. In posterior
predictive sampling, draws of parameters are taken from the posterior and used to simulate
new datasets, summaries of which can be compared to those observed in the original
datasets (Gelman et al., 1996).

Our posterior predictive sampling scheme proceeds as follows. For each replicate of the
simulations we

1. Take a set of values of β and all α parameters from their joint posterior, i.e. our
MCMC output.

2. Compute a covariance matrix Ω from this set of α and the pairwise geographic and
ecological distance matrices from the observed data.

3. Use Ω to generate L multivariate normally distributed θ, and use β to generate a set
of normally distributed µ. These θ and µ are transformed using equation (1) into
allele frequencies for each population-locus combination, and binomially
distributed allele counts are sampled using those frequencies and the per-population
sample sizes from the observed data.

4. Calculate FST between each pair of populations across all loci using the count data.
Specifically we use the FST estimator defined by the equation given on the top of
page 730 in Weir and Hill (2002).

Bradburd et al. Page 5

Evolution. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We then use various visualizations of FST(i,j), e.g. plotted against distance between i and j,
to compare the patterns in the observed dataset to the patterns in the simulated datasets. This
functions as a powerful and informative visual summary of the ability of the model to
describe the observed data. Since FST is a good measure of genetic differentiation, users can
assess how well the method is able to pick up general trends in the data (e.g., increasing
genetic differentiation with ecological or geographic distance) and how well those general
trends in the model match the slope of their observed counterparts, and also identify specific
pairwise population comparisons that the model is doing a poor job describing. These latter
may help reveal other important processes that are generating genetic differentiation
between populations, such as unmeasured ecological variables, or heterogeneity in
population demography.

Accounting for overdispersion
A consequence of the form of the covariance given in equation (3) is that all populations
have the same variance of allele frequencies about the global mean (and this is Ωii = 1/α0).
This will be the case in a homogeneous landscape, but is not expected under many scenarios,
such as those characterized by local differences in population size, inbreeding rate, historical
bottlenecks, or population substructure. In practice, this leads to overdispersion – particular
populations deviating more from global means than others. Indeed, in both empirical
datasets examined in this paper, there are clearly populations with much greater deviation in
allele frequencies from the global mean than predicted from their geographical and
ecological distances.

To account for this, we will explicitly model the within-population correlations in allelic
identity due to varying histories. In so doing, we simultaneously keep outlier populations
from having an undue influence on our estimates of αD and αE, the effect sizes of the
distance variables measured, and highlight those populations that the model is describing
poorly. Introducing correlations accounts for overdispersion because a population whose
allele frequencies differ more from its predicted frequencies across loci has individuals
whose allelic identities are more correlated (and the converse is also true). To see this,
observe that, for instance, if one completely selfing population and one outbred population
each have a given allele at frequency p, then the variance in sampled allele frequency will be
twice as high in the selfing population, since the number of effective independent draws
from the pool of alleles is half as large.

To introduce within-population correlations we assume that the allele frequencies from
which the allele counts Cℓ,k are drawn are not fixed at fℓ,k, but rather randomly distributed,
with mean given by fℓ,k and variance controlled by another parameter. Specifically, given µℓ
and θℓ,k, we suppose that the allele frequency at locus ℓ in population k is beta-distributed
with parameters Φkfℓ,k and Φk(1 – fℓ,k), where fℓ,k = f(µℓ, θℓ,k) as before, and Φk is a
population-specific parameter, estimated separately in each population, that controls the
extent of allelic correlations between draws from individuals in population k. To see why
this introduces allelic correlations, consider the following equivalent description of the
distribution of Cℓ,k We sample the alleles one at a time; if we have drawn n alleles; then the
(n + 1)st allele is either: a new draw with probability Φk/(Φk + n) (in which case it is of type
‘1’ with probability fℓ,k and of type ‘0’ with probability 1 – fℓ,k); otherwise, it is of the same
type as a previously sampled allele, randomly chosen from the n sampled so far.
Conceptually, each allele is either a “close relative” of an allele already sampled, or else a
“new draw” from the “ancestral population” with allele frequency fℓ,k. Smaller values of Φk
lead to increased allelic correlations, which in turn increase the variance of population allele
frequencies.
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Conveniently, the random frequency integrates out, so that the likelihood of the count data
becomes

(7)

where B(x,y) is the beta function. This is known as the “beta-binomial” model (Williams,
1975), and is used in a population genetics context by Balding and Nichols (1995, 1997); see
Balding (2003) for a review.

The parameter Φk can be related to one of Wright’s F-statistics (Wright, 1943). As derived
in previous work (Balding and Nichols, 1995, 1997), if we define Fk by Φk = Fk/(1 – Fk) (0
≤ Fk < 1), then Fk is analogous to the inbreeding coefficient for population k relative to its
set of the spatially predicted population frequencies (Cockerham and Weir, 1986; Balding,
2003), with higher Fk corresponding to higher allelic correlation in population k, as one
would expect given increased drift (inbreeding) in that population. However, it is important
to note that Fk cannot solely be taken as an estimate of the past strength of drift, since higher
Fk would also be expected in populations that simply fit the model less well. We report
values of Fk in the output and results, and discuss the interpretation of this parameter further
in the discussion.

We have coded this beta-binomial approach as an alternative to the basic model (see Results
for a comparison of both approaches on empirical data). To combine estimation of this
overdispersion model into our inference framework, we place an inverse exponential prior
on Φk (that is, 1/Φk ~ Exp(5)). This prior and the beta-binomial probability density function
are incorporated into the posterior.

Simulation Study
We conducted two simulation studies to evaluate the performance of the method. In the first,
we simulated data under the inference model, and in the second, we simulated under a
spatially explicit coalescent model.

For the datasets simulated under the model, each simulated dataset consisted of 30
populations each with 10 diploid individuals sequenced at 1000 polymorphic bi-allelic loci.
Separately for each dataset, the geographic locations of the populations were sampled
uniformly from the unit square, and geographic distances (Di,j) were calculated as the
Euclidean distance between them. We also simulated geographically autocorrelated
environmental variables, some continuous, some discrete (see Figure 1a and c). For both
discrete and continuous variables we simulated datasets in which ecological distance had no
effect on genetic differentiation between populations; these simulations tested whether our
method avoids the false positive issues of the partial Mantel test. We also simulated datasets
with an effect of both geographic and ecological distance on genetic distance across a range
of relative effect sizes (varying the ratio αE/αD) to test our power to detect their relative
effects. The study thus consisted of four sections, each comprised of 50 datasets: discrete
and continuous ecological variables, with or without an effect of ecology.

For each dataset, we set α = 0.5, and sampled αD and α2 from uniform distributions
(U(0.2,4) and U(0.1,2) respectively); the choice of αE varied, depending on the specific
scenario (described below). These parameters were chosen to give a range of pairwise
population FST spanning an order of magnitude between approximately 0.02 and 0.2, and a
realistic allele frequency spectrum. The covariance matrix Ω was calculated using these α
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and the pairwise geographic and ecological distance matrices (normalized by their standard
deviations), and Ω was used to generate the multivariate, normally distributed θ. Values of µ
were drawn from a normal distribution with variance β = 0.09. Allele frequencies at each
locus were calculated for each population from the θ and µ using equation (1), and SNP
counts at each locus in each population were drawn from binomial distributions
parameterized by that allele frequency with the requirement that all loci be polymorphic. We
simulated under the following ecological scenarios.

1. Continuous, Autocorrelated Ecological Variable—For the continuous case, we
simulated the values of an ecological variable across populations by sampling from a
multivariate normal distribution with mean zero and covariance between population i and
population j equal to Cov(E(i),E(j)) = exp(–Di,j/ac), where ac determines the scale of the
autocorrelation (following Guillot and Rousset, 2013). For all simulations, we set ac = 0.7,
to represent a reasonably distributed ecological variable on a landscape.

2. Binary Ecological Variable—A binary variable was produced by declaring that the
latitudinal equator in the unit square was a barrier to dispersal, so that all populations on the
same side of the barrier were separated by an ecological distance of zero, and all population
pairs that spanned the equator were separated by an ecological distance of 1.

A. Zero Effect Size—For each type of ecological variable, we produced 50 simulated
datasets with αE = 0, so that ecological distance had no effect on the covariance of θ, and
hence on genetic differentiation between populations. For each of these simulated datasets,
we performed a partial Mantel test in R using the package ecodist (Goslee and Urban, 2007)
with 1,000,000 permutations.

B. Varying Effect Size—We also produced 50 simulated datasets for each type of
ecological variable by simulating ten datasets for each value of αE/αD from 0.2 to 1.0 in
intervals of 0.2 (see Figure 1b and d). (As above, values of αD were drawn from a uniform
distribution (U(0.2, 4)), so this determines αE).

For the datasets simulated using a spatially explicit coalescent process, allelic count data
were simulated on a fixed lattice using the program ms (Hudson, 2002). A total of 49
populations were simulated, evenly spaced in a seven-by-seven grid, of which a subset of 25
populations were sampled to make the final dataset; these 25 sampled populations were
arranged in a five-by-five grid, as shown in Figure 2. Each population consisted of 10
chromosomes sampled at 1,000 polymorphic, unlinked, biallelic loci. Migration occurred
between neighboring populations (with no diagonal migration) at a rate of 4Nmi,j = 4. In all
simulations, a longitudinal potential barrier to gene flow was included just to the east of the
central line (see Figure 2). Migration rate between populations that were separated by this
barrier was diminished by dividing by some barrier effect size, which varied between
simulation sets. For 40 datasets, the barrier effect size was set to 1, so that the barrier had no
effect on genetic differentiation across it. The barrier effect size was set to 5, 10, and 15, for
20 datasets each, for a total of 100 datasets simulated under the spatial coalescent. For all
datasets, geographic distance was measured as the pairwise Euclidean distance between
populations on the lattice, and ecological distance was defined as zero between populations
on the same side of the barrier, and 1 between populations on opposite sides.

All analyses on the simulated datasets were run for 1,000,000 MCMC iterations, which
appeared sufficient in most cases for convergence on the stationary distribution. The chain
was sampled every 1,000 generations, and all summary statistics from the simulation study
were calculated after a burn-in of 20%. The metrics of method performance used on the
datasets simulated under the inference model were precision, accuracy, and coverage of the
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αE : αD ratio. We defined precision as breadth of the 95% credible set of the marginal
posterior distribution; accuracy as the absolute value of the difference between the median
value of the marginal posterior distributions and the values used to simulate the data in each
dataset; and coverage as the proportion of analyses for which the value used to simulate the
data fell within the 95% credible set of the marginal posterior distribution for that parameter.
For the datasets simulated under the spatial coalescent process, we wished to assess the
ability of the method to accurately recover the relative strength of the barrier to gene flow.

For approximately 30% of all analyses, the MCMC runs displayed obvious difficulty with
convergence within the first 1,000,000 generations. The signs of potentially poor single-
chain MCMC behavior that we looked for included: acceptance rates that are too low or too
high (generally 20–70% acceptance rates are thought to be optimal); parameter trace plots
that exhibit high autocorrelation times; acceptance rates that have not plateaued by the end
of the analysis; and marginal distributions that are multimodal, or not approximately normal
(for a more complete discussion on MCMC diagnosis, please see Gilks et al. (1996); for
plots of example MCMC output, see Figures S5, S6, and S7). In some cases, this was
because the naive scales of the various tuning parameters of the random-walk proposal
mechanisms were inappropriate for the particular dataset, and mixing was too slow over the
number of generations initially specified (as diagnosed by visualizing the parameter
acceptance rates of MCMC generations). This was addressed by re-running analyses on
those datasets using different random-walk tuning parameters, or by increasing the number
of generations over which the MCMC ran. In the other cases, failure to converge was due to
poor performance of the MCMC in regions of parameter space too near the prior boundaries.
Specifically, when the chain was randomly started at values of some α parameters too close
to zero, it was unable to mix out of that region of parameter space. This problem was
addressed by re-running the analyses using different, randomly chosen initial values for the
α parameters. In our R package release of the code we provide simple diagnostic tools for
the MCMC output, and further guidance for their use.

Empirical Data
To demonstrate the utility of this method, we applied it to two empirical datasets: one
consisting of populations of teosinte (Zea mays), the wild progenitor of maize, and one
consisting of human populations from the HGDP panel. Both processed datasets are
available for download at genescape.org. See Tables S1 and S2 in the Supplementary
Materials for names and metadata of populations used.

The teosinte dataset consisted of 63 populations of between 2 and 30 diploid individuals
genotyped at 978 biallelic, variant SNP loci (Fang et al., 2012). Each population was
associated with a latitude, longitude, and elevation at the point of sampling (see Figure S2
and Table S1). Pairwise geographic great-circle distances and ecological distances were
calculated for all pairs of populations, where ecological distance was defined as the
difference in elevation between populations. Both pairwise distance variables were
normalized by their standard deviations.

The human dataset was the Eurasian subset of that available from the HGDP (Conrad et al.,
2006; Li et al., 2008), consisting of 33 populations of between 6 and 45 individuals
genotyped at 1000 biallelic, variant SNP loci (see Figure S3 and Table S2). Pairwise
geographic great-circle distances and ecological distances were calculated for all pairs of
populations, where ecological distance was defined as 0 or 1 if the populations were on the
same or opposite side of the Himalaya mountain range, respectively. For the purposes of our
analysis the western edge of the Himalaya was defined at 75° East.
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For comparison, the method was run on each of the two datasets both with and without the
beta-binomial overdispersion model. MCMC marginal traces were examined visually to
assess convergence on a stationary distribution. The chain was thinned by sampling every
1000 generations, and the median and 95% credible sets were reported on the marginal
distribution after a burn-in of 20%. The MCMC analysis for the teosinte dataset without the
overdispersion model was run for 10 million generations; the analysis with the
overdispersion model was run for 15 million generations. For the HGDP dataset, the
numbers of generations were 25 million and 35 million, for the analyses without and with
the overdispersion model, respectively.

Results
Simulation Results

As described above, we conducted two simulation studies. The performance of the method
in inference of the parameters of greatest interest is given below.

First we note that, consistent with the results of (Guillot and Rousset, 2013), the spatial
autocorrelation in our ecological variable caused the partial Mantel to have a high false
positive rate when αE = 0, which suggests that the partial Mantel test is not well calibrated
to assess the significance of ecological distance on patterns of genetic differentiation. At a
significance level of p = 0.05, the false positive rate for the datasets simulated under the
inference model with a binary ecological distance variable was 8%, and for the continuous
ecological variable, the false positive error rate was 24%. For the datasets simulated under
the spatial coalescent process with a barrier effect size of 1 (meaning that the barrier had no
effect on genetic differentiation across it), the false positive error rate was 37.5% (see Figure
S4).

The precision and accuracy results for the datasets simulated under the model with a
continuous and discrete ecological variable are visualized in Figure 3, panels a and b,
respectively, across the six simulated values of the ratio αE/αD. Median precision, accuracy,
and coverage are reported in Table 1.

The performance of the method on the datasets simulated using the spatial coalescent model
is given in Figure 4, which shows the posterior distributions of αE: αD ratio from each
analyzed dataset over the four barrier effect sizes.

Empirical Results
Teosinte Results—For the Zea mays SNP dataset analysis, the mean and median of the
posterior ratio of the effect size of pairwise difference in elevation to the effect size of
pairwise geographic distance (i.e.- the αE : αD ratio) was 0.153, and the 95% credible set
was 0.137 to 0.171 (see Figure S10a). The interpretation of this ratio is that one thousand
meters of elevation difference between two populations has a similar impact on genetic
differentiation as around 150 (137–171) kilometers of lateral distance.

Accounting for overdispersion (using the beta-binomial model) we obtain slightly different
results, with a mean and median αE : αD ratio of 0.205, and a 95% credible set from 0.180 to
0.233 (1,000 meters difference in elevation ≈ 205 kilometers lateral distance, see Figure
S10b). Values of our F statistics Fk estimated across populations ranged from 2 × 10−4 to
0.53, and are shown in Supplemental Figure S2.

Posterior predictive sampling indicates incorporating overdispersion with the beta-binomial
extension results in a better fit to the data (see Figure 5a and b): the mean Pearson’s product
moment correlation between the posterior predictive datasets and the observed data without
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the beta-binomial extension was 0.64, while the mean correlation with the beta-binomial
model was 0.86 (see Figure S1a). The ability of the model to predict specific pairwise
population FST is shown Figure S8.

HGDP results—For the human (HGDP) SNP dataset analysis, the mean posterior αE : αD
ratio was 5.13 × 104, the median was 5.00 × 104, and the 95% credible set was 3.09 × 104 to
7.85 × 104 (see Figure S11a). However, this result seems to be sensitive to outlier
populations, as the beta-binomial extension of this method on the same dataset yields
significantly different results, with a mean αE : αD ratio of 1.35 × 104, a median of 1.34 ×
104, and a 95% credible set from 1.09 × 104 to 1.65 × 104 (see Figure S10b). This latter
result is broadly consistent with that of Rosenberg (2011), who found an effect size ratio of
9.52 × 103 in a linear regression analysis that treated pairwise population comparisons as
independent observations. The interpretation of our result is that being on the opposite side
of the Himalaya mountain range has the impact of between approximately 11 and 16
thousand kilometers of extra pairwise geographic distance on genetic differentiation.

Under our beta-binomial extension values of Fk estimated across populations ranged from
3.2 × 10−4 to 0.06. Population values of Fk are shown on the map in Figure S3.

Posterior predictive sampling again indicates a better fit to the data including overdispersion
(see Figure 5c and d): the mean Pearson’s product moment correlation between the posterior
predictive datasets and the observed data without the beta-binomial extension was 0.88,
while the mean correlation with the beta-binomial model was 0.91 (see Figure S1b). The
ability of the model to predict specific pairwise population FST is shown in Figure S9.

Discussion
In this paper, we have presented a method that uses raw allelic count data to infer the
relative contribution of geographic and ecological distance to genetic distance between
sampled populations. The method performs quite well: we have shown that it reliably and
accurately estimates correct parameter values using simulations, and produces sensible
models that produce a good fit to observed patterns of differentiation in real datasets. We
feel that our method has broad utility to the field of landscape genetics and to studies of
local adaptation, and holds a number of advantages over existing methods. (although see
Wang et al. (2012) for another recent approach.) It allows users to simultaneously quantify
effect sizes of geographic distance and ecological distance (rather than assessing the
significance of a correlation once the effect of geography has been removed, as in the partial
Mantel test). Explicitly modeling the covariance in allele frequencies allows users to
accommodate non-independence in the data, and the method’s Bayesian framework
naturally accommodates uncertainty and provides a means of evaluating model adequacy.
The inclusion of overdispersion allows fit to a set of populations with heterogeneous
demographic histories. In addition, the basic model presented here – a parametric model of
spatial covariance in allele frequencies – is extremely versatile, allowing for the inclusion of
multiple ecological or geographic distance variables, as well as great flexibility in the
function used to model the covariance.

Simulation Study
Our method performed well in both simulation studies (see Figure 3, Table 1, and Figure 4),
and was able to effectively recognize and indicate when a ecological variable contributes
significantly to genetic differentiation. This is in contrast to the partial Mantel, which has a
high false positive rate in the presence of spatial autocorrelation of environmental variables
(see Figure S4).
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For datasets simulated under the inference model, coverage, accuracy, and precision were all
satisfactory (see Table 1). The precision of our estimator of αE was generally lower for our
discrete ecological variable, likely due to the strong spatial structure of the discrete
ecological variable.

For datasets simulated using the spatial coalescent, there were no true values for the αE : αD
ratio to compare with those inferred by the method. However, we note that the αE : αD ratios
estimated across analyzed simulated datasets tracked the barrier effect sizes used to simulate
them, and that when the barrier had no effect on migration, the marginal distributions on the
αE : αD ratio estimated were stacked up against the prior bound at zero and had very low
median values. The width of the 95% credible set of the marginal posteriors grew with the
barrier effect size as a result of the flattening of the posterior probability surface as true
parameter value increased. Overall, the method performed well on the datasets simulated
under a model different from that used for inference (and presumably closer to reality).

An issue we observed in practice is that at some parameter values, different combinations of
α are essentially nonidentifiable — the form of the covariance given in equation (3)
sometimes allows equally reasonable fits at different values of α2, or at different
combinations of α0, αD, and αE. (In other cases, all four parameters can be well-estimated.)
Even when this is the case, the αE : αD ratio, which is the real parameter of interest, remains
constant across the credible region, even as αE and αD change together to compensate for
changes in α2 and α0. Such ‘ridges’ in the likelihood surface are readily diagnosed by
viewing the trace plots and joint marginals of the α parameters (see Figures S5 and S6).

Empirical Results
Teosinte—The application of our method to the teosinte SNP dataset indicated that
difference in elevation has a potentially substantial contribution to genetic differentiation
between teosinte populations. Difference in elevation could be correlated with another, as
yet unmeasured ecological variable, so we cannot claim to report a causal link, but these
results are certainly suggestive, especially in the light of the research on morphological
adaptations in teosinte to high altitude (Eagles and Lothrop, 1994).

The analysis of the teosinte SNP data with the beta-binomial extension of our method shows
a much better model fit, and highlights a number of populations with particularly high Fk
values. These populations (highlighted in Figure S2) all belong to the subspecies Zea mays
mexicana, which primarily occurs at higher altitudes and is hypothesized to have undergone
significant drift due to small effective population sizes or bottlenecks (Fukunaga et al.,
2005). In addition, a number of these populations occur in putative hybrid zones between
Zea mays mexicana and Zea mays parviglumis, a separate, co-occuring subspecies
(Heerwaarden et al., 2011). Like drift, admixture would have the effect of increasing the
variance in observed allele frequencies around the expectation derived from the strict
geographic/ecological distance model, and would drive up the inferred Fk parameters for
admixed populations.

HGDP—In the Human Genome Diversity Panel data we find a strong effect of separation
by the Himalayas on genetic differentiation, confirming previous results (e.g. Rosenberg et
al., 2005). To obtain a good fit to the data it is necessary to model overdispersion (with the
beta-binomial extension). This lack of model fit of the basic model can be seen in the
posterior predictive sampling in Figure 5 c and d, which highlights the importance of
assessing model adequacy during analysis. Under the beta-binomial extension the αE/αD
ratio estimates an effect of the Himalayas far greater than the distance simply to
circumnavigate around the Himalayas. We think this likely reflects the fact that Eurasian
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populations are away from migration-selection equilibrium, reflecting past large-scale
population expansions (Keinan et al., 2007).

With overdispersion included, the model appears to describe the data reasonably well,
suggesting substantial heterogeneity beyond that dictated by geographic distance and
separation by the Himalayas between the sampled populations. A number of populations
stand out in their Fk values, in particular the Kalash, the Lahu, the Mozabites, the Hazara,
and the Uygur (highlighted in Figure S3). This is consistent with the known history of these
populations and previous work on these samples (Rosenberg et al., 2002), which suggests
that these populations are unusual for their geographic position (that is, they depart from
expectations of their covariance in allele frequencies with their neighbors). The Hazara and
Uygur populations are known to be recently admixed populations between central Asian and
East ancestry populations. The Mozabite population has substantial recent admixture from
Sub-Saharan African populations (Rosenberg et al., 2002; Rosenberg, 2011). The Kalash,
who live in northwest Pakistan, are an isolated population with low heterozygosity,
suggesting a historically small effective population size. Finally the Lahu have unusually
low heterozygosity compared to the other East Asian populations, suggesting that they too
may have had an unusually low effective population size. Thus our beta-binomial model, in
addition to improving the fit to the data, is successfully highlighting populations that are
outliers from simple patterns of isolation by distance.

Population-specific variance—As noted above, in both empirical datasets analyzed, the
beta-binomial extension to the basic model offers substantially better model fit. This could
in part reflect ecological variables not included in the analyses, in addition to heterogeneity
in demographic processes, both of which could shape genetic variation in these populations
by pushing population allele frequencies away from their expectations under our simple
isolation by distance and ecology model. Our Fk statistic provides a useful way to highlight
populations that show the strongest deviations away from our model, and to prevent these
deviations from obscuring environmental correlations or causing spurious correlations.
Therefore, we recommend that the extended model be used as the default model for
analyses.

Limitations
The flexibility of this statistical model is accompanied by computational expense.
Depending on the number of loci and populations in a dataset, as well as the number of
MCMC generation required to accurately describe the stationary distribution, analyses can
take anywhere from hours to days. Speedups could be obtained by parallelization or porting
code to C. In addition, as with any method that employs an MCMC algorithm, users should
take care to assess MCMC performance to ensure that the chain is mixing well, has been run
for a sufficient number of generations, and has converged on a stationary distribution (Gilks
et al., 1996). Users are well advised to run multiple independent chains from random initial
locations in parameter space, and to compare the output of those analyses to confirm that all
are describing the same stationary distributions.

Our model rests on a number of assumptions, principal among which is that population
allele frequencies are well-represented by a spatially homogeneous process, such as are
obtained under mutation-migration equilibrium. That is, we assume that current patterns of
gene flow between populations are solely responsible for observed patterns of genetic
differentiation. Some examples of biological situations that may violate the assumptions of
our model include: two populations that have higher genetic differentiation than expected
based on their pairwise geographic distance because they arrived in nearby locations as part
of separate waves of colonization; or two populations that have been recently founded on
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either side of some landscape element that truly does act as a barrier to gene flow, but that
do not exhibit strong genetic differentiation yet, because the system is not in equilibrium. In
reality, we expect that very few natural populations will conform perfectly to the
assumptions of our model; however, we feel that the method will provide valid
approximations of the patterns for many systems, and that it will be a useful tool for teasing
apart patterns of genetic variation in populations across heterogeneous landscapes.

Extensions
The flexibility of this method translates well into extendability. Among a number of natural
extensions the community might be interested in implementing, we highlight a few here.

One natural extension is to incorporate different definitions of the ecological distance
between our populations. Just because two populations have no difference in their ecological
variable state does not guarantee that there is not great heterogeneity in the distance between
them. For example, a pair of populations separated by the Grand Canyon might have nearly
identical elevations, but the cost to migrants between them incurred by elevation may well
be significant. One solution to this would be to enter a simple binary barrier variable, or to
calculate least-cost paths between populations, and use those distances in lieu of geographic
distance. A more elegant solution would be to use “isolation by resistance” distances,
obtained by rasterizing landscapes and employing results relating mean passage rates of
random walks in a heterogeneous environment to quantities from circuit theory in order to
calculate the conductance (ease of migration) between nodes on that landscape (McRae and
Beier, 2007). This method has the advantage of integrating over all possible pathways
between populations. Currently, users must specify the resistance of landscape elements a
priori, but those resistance parameters could be incorporated into our parametric covariance
function, and estimated along with the other parameters of our model in the same MCMC.
This approach carries great appeal, as it combines the conceptual rigor of accommodating
multiple migration paths with the methodological rigor of statistically estimated, rather than
user-specified, parameter values.

Another extension is the further relaxation of the assumption of process homogeneity in
decay of allelic covariance over geographic and ecological distance. Specifically, the
method currently requires that a single unit of pairwise ecological distance translate into the
same extent of pairwise genetic differentiation between all population pairs. This
assumption is unlikely to be realistic in most empirical examples, especially if populations
are locally adapted. For example, individuals from populations adapted to high elevation
may be able to migrate more easily over topography than individuals from populations
adapted to low elevations. Such heterogeneity could be accommodated by using different
covariance functions for different, pre-specified population pairings.

A final extension that could be integrated into this method is a model selection framework,
in which models with and without an ecological distance variable, or with different
combinations of ecological distance variables, can be rigorously compared. Because our
method is implemented in a Bayesian framework, we could select between models by
calculating Bayes factors (the ratio of the marginal likelihoods of the data under two
competing hypotheses) (Dickey, 1971; Verdinelli and Wasserman, 1995). This approach
would seem to offer the best of both worlds: robust parameter inference that accommodates
uncertainty in addition to output that could be interpreted as definitive evidence for or
against the association of an ecological variable of interest with genetic differentiation
between populations.
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Conclusion
In closing, we present a tool that can be useful in a wide variety of contexts, allowing a
description of the landscape as viewed by the movements of genetic material between
populations. We urge users to be cautious in their interpretation of results generated with
this model. A correlation between genetic differentiation and an ecological distance variable
does not guarantee a causal relationship, especially because unmeasured ecological variables
may be highly correlated with those included in an analysis. In addition, evidence of a
correlation between genetic differentiation and an ecological variable may not be evidence
of local adaptation or selection against migrants, as both neutral and selective forces can
give rise to an association between genetic divergence and ecological distance.

Finally, we are making this method available online at genescape.org, and we hope that
users elaborate on the framework we present here to derive new models that are better able
to describe empirical patterns of isolation by distance — both geographic and ecological.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

Priors
We denote a gamma distribution with given shape and rate parameters as Γ(shape, rate), a
normal distribution with given mean and variance parameters as N(mean, variance), an
exponential distribution with given rate parameter Exp(rate), and a uniform distribution
between given upper and lower boundaries as U(lower, upper). The priors specified on the
parameters of this model are: α0 ~ Γ(0.001,0.001); αD ~ Exp(1); αE ~ Exp(1); α2 ~ U(0.1,2);
and µℓ ~ N(0,1/β), with a hyper-prior β ~ Γ(1,1).

The priors on αD and αE were chosen to reflect the assumption that there is some, and
potentially very great, effect of isolation by geography and ecology. The priors on α2, α0,
and β were the same as those used by (Wasser et al., 2004), and, in the case of the latter two
(on β and α0), were chosen because they were conjugate to the likelihood, so their
parameters could therefore be updated by a Gibbs sampling step.

In early implementations of our method, we experimented with uniform priors on αD and αE
(U(0,4)), as used by Wasser et al. (2004) (although they did not have a parameter analogous
to αE). We replaced these uniform priors with exponentials to reflect the fact that we have
no prior belief that there should be any upper bound to the effects geographic or ecological
distance may have on genetic differentiation. In practice, we found that for all simulated and
empirical datasets tested, there was sufficient information in the data for the likelihood
function to swamp the effect of the priors — whether uniform or exponential — on αD and
αE.
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However, in all analyses, we encourage users to visualize the marginal distri-butions of each
parameter at the end of a run and compare it to its prior. If the marginal distribution looks
exactly like the prior, there may be insufficient information in the data to parameterize the
model effectively, and the prior may be having an unduly large impact on analysis. If the
marginal distribution for a parameter shows that it is “piling up” against its prior’s hard
bound (e.g., the marginal distribution on αE has a median of 1e-3, close to its hard bound at
0), that may suggest that the current form of the prior is not describing the natural
distribution of the parameter for that particular dataset well (e.g., αE “wants” to be zero, but
the prior is constraining it). In both cases (the marginal posterior and the prior have
significant overlap; the prior is exhibiting an edge effect), we suggest that the user
experiment with different priors and/or model parameterizations to see what effect they are
having on inference.

MCMC
Our MCMC scheme proceeds as follows. The chain is initiated at maximum likelihood
estimates (MLEs) for θ and µ, and, for α0, αD, αE, and α2, at values drawn randomly from
their priors. The empirical standard deviation of the MLEs of µ is used as the initial value of
β.

In each generation one of {µ, β, θ, α0, αD, αE, α2} is selected at random to be updated.

The priors on β and α0 are conjugate to their marginal posteriors, and each is updated via a
Gibbs sampling step. The updated value of β given the current µ is drawn from

(8)

and the updated value of α0 conditional on the current set of θ is drawn from

(9)

where k is the number of populations sampled, L is the number of loci sequenced, and χ =
α0Ω = exp(–(αD Di,j + αE Ei,j)α2).

The remaining parameters are updated by a Metropolis-Hastings step; here we describe the
proposal mechanisms. The proposed updates to θ do not affect each other, and so are
accepted or rejected independently. Following Wasser et al. (2004) (derived from
(Christensen and Waagepetersen, 2002; Møller et al., 1998)), the proposal is chosen as θ′ℓ =
θℓ + RℓZ, where R is a vector of normally distributed random variables with mean zero and
small variance (controlled by the scale of the tuning parameter on θ) and Z is the Cholesky
decomposition of Ω (so that ZZT = Ω). Under this proposal mechanism, proposed updates to
θℓ tend to stay within the region of high posterior probability, so that more updates are
accepted and mixing is improved relative to a scheme in which the θ in each population
were updated individually.

Updates to αD, αE, and α2 are accomplished via a random-walk sampler (adding a normally
distributed random variable with mean zero and small variance to the current value) (Gilks
et al., 1996). Updates to elements of µℓ are also accomplished via a random-walk sampler,
and again the updates to each locus are accepted or rejected independently.
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In the overdispersion model, initial values of Φk are drawn from the prior for each
population. Updates are proposed one population at a time via a random-walk step, and are
accepted or rejected independently.

Well-suited values of tuning parameters (variances in the proposal distributions for µ, θ, αD,
αE and α2) and the number of generations required to accurately describe the joint posterior
will vary from dataset to dataset, and so may require tuning.
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Figure 1.
a) Populations simulated in the unit square, colored by their value of a continuous ecological
variable.
b) Pairwise FST between simulated populations from (a), colored by difference in their
values of the continuous ecological variable.
c) Populations simulated in the unit square, colored by their value of a binary ecological
variable.
d) Pairwise FST between simulated populations from (c), colored by difference in their
values of the binary ecological variable.

Bradburd et al. Page 20

Evolution. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Populations simulated using a spatially explicit coalescent model in the unit square. All
simulated populations are indicated with black dots, while populations that were sampled for
inclusion in each dataset are indicated by large black dots. All pairwise migration is
indicated with gray arrows. The barrier to dispersal is given by the red dotted line, across
which the standard migration rate was divided by a barrier effect size, which we varied.
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Figure 3.
a) Performance of the method for the 100 datasets simulated with a continuous ecological
distance variable.
b) Performance of the method for the 100 datasets simulated with a binary ecological
distance variable.
In each, the left panel depicts performance on the 50 datasets for which αE was fixed at 0,
and the right panel depicts performance on the 50 datasets for which αE varied.
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Figure 4.
The marginal distributions on the αE/αD ratio from the analyses performed on the datasets
simulated using a spatially explicit coalescent process. The migration rate between
populations separated by the barrier was divided by a barrier effect size, which varied
among simulations.
Inset: Pairwise FST colored by whether populations were on the same or opposite sides of a
barrier to dispersal, plotted against pairwise geographic distance for example datasets for
each of the 4 barrier effect sizes.
a) Barrier effect size of 1 (n=40);
b)Barrier effect size of 5 (n=20);
c)Barrier effect size of 10 (n=20);
d) Barrier effect size of 15 (n=20).
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Figure 5.
Posterior predictive sampling with 1,000 simulated datasets, using pairwise FST as a
summary statistic of the allelic count data for:
a) the Teosinte dataset, using the standard model;
b) the Teosinte dataset, using the overdispersion model;
c) HGDP dataset, standard model.
d) HGDP dataset, overdispersion model.
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Table 1

Simulation Studies 1A and 1B were conducted with a continuous ecological variable and αE = 0 and αE > 0,
respectively. Simulation Studies 2A and 2B were conducted with a binary ecological variable and αE = 0 and
αE > 0, respectively. Precision is breadth of the 95% credible set of the marginal posterior distribution (smaller
values indicate better method performance). Accuracy is the absolute value of the difference between the
median value of the marginal posterior distributions and the values used to simulate the data (smaller values
indicate better method performance). Coverage is the proportion of analyses for which the value used to
simulate the data fell within the 95% credible set of the marginal posterior distribution for that parameter
(higher values indicate better method performance). Coverage is not reported for the simulations in which the
effect size of the ecological distance variable was fixed to zero (αE = 0), as the parameter value used to
generate the data is on the prior bound on αE and coverage was therefore zero.

Sim Study 1A Sim Study 1B Sim Study 2A Sim Study 2B

Precision 0.041 0.30 0.15 0.96

Accuracy 0.013 0.0066 0.031 0.033

Coverage NA 94% NA 94%
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