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Abstract

HIV-1-infected adults over the age of 50 years progress to AIDS more rapidly than adults in their twenties or thirties. In
addition, HIV-1-infected individuals receiving antiretroviral therapy (ART) present with clinical diseases, such as various
cancers and liver disease, more commonly seen in older uninfected adults. These observations suggest that HIV-1 infection
in older persons can have detrimental immunological effects that are not completely reversed by ART. As naı̈ve T-cells are
critically important in responses to neoantigens, we first analyzed two subsets (CD45RA+CD31+ and CD45RA+CD31-) within
the naı̈ve CD4+ T-cell compartment in young (20–32 years old) and older (39–58 years old), ART-naı̈ve, HIV-1 seropositive
individuals within 1–3 years of infection and in age-matched seronegative controls. HIV-1 infection in the young cohort was
associated with lower absolute numbers of, and shorter telomere lengths within, both CD45RA+CD31+CD4+ and
CD45RA+CD31-CD4+ T-cell subsets in comparison to age-matched seronegative controls, changes that resembled
seronegative individuals who were decades older. Longitudinal analysis provided evidence of thymic emigration and
reconstitution of CD45RA+CD31+CD4+ T-cells two years post-ART, but minimal reconstitution of the CD45RA+CD31-CD4+

subset, which could impair de novo immune responses. For both ART-naı̈ve and ART-treated HIV-1-infected adults, a
renewable pool of thymic emigrants is necessary to maintain CD4+ T-cell homeostasis. Overall, these results offer a partial
explanation both for the faster disease progression of older adults and the observation that viral responders to ART present
with clinical diseases associated with older adults.
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Introduction

The lifespan of an HIV-1-infected North American or

European individual is shortened by an average of 10 years,

despite antiretroviral therapy (ART) [1]. Many of the causes of

morbidity and mortality in these individuals are similar to those

more commonly observed in uninfected older adults (50–65 years

of age) and the elderly (.65 years of age), and include frailty [2],

non-Hodgkin’s lymphoma [3], anal and cervical carcinomas [4,5],

osteoporosis [6,7], liver [8–10] and renal impairment [11],

cardiovascular disease [12,13], diabetes [14] and hypertension

[14,15]. The diminished lifespan and higher prevalence of these

diseases in HIV-1-infected individuals, in comparison to age-

matched uninfected controls, has led to the theory that HIV-1

infection causes accelerated aging in multiple organ systems. As it

is not clear whether HIV-1 contributes to age-inappropriate

clinical manifestations through mechanisms distinct from aging, a

better understanding of the effects of HIV-1 infection and aging on

various organ systems is essential to future treatment of HIV-1-

infected individuals.

Survival time for HIV-1-infected adults both pre-and post-ART

is closely correlated with CD4+ T-cell counts. The life-expectancy

of an untreated HIV-1-infected individual with 200 CD4+ T-cells/

mm3 is approximately one to two years [16]. An ART-treated, 20-
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year-old adult with a CD4+ T-cell count under 200 cells/mm3 at

ART initiation is predicted to survive 32 years, compared to 50

years for an age-matched individual who initiates ART at a higher

CD4+ T-cell count [16]. An increased risk for frailty is also

associated with decreased CD4+ T-cell counts pre- and post-ART

initiation, as is the risk for non-Hodgkin lymphoma [2,3]. Poor

CD4+ T-cell recovery upon initiation of ART is also correlated

with an increased risk for both AIDS and non-AIDS diseases [17],

emphasizing the important role of the CD4+ T-cell compartment

in maintaining good health.

Although HIV-1 infection of naı̈ve CD4+ T-cells occurs at low

frequency in comparison to that of activated effector/memory

CD4+ T-cells, HIV-1 infection is associated with quantitative and

qualitative changes within the naı̈ve CD4+ T-cell compartment in

both children and adults [18–21]. In HIV-1-infected adults, a loss

of naı̈ve CD4+ T-cells precedes the loss of T-cell homeostasis and

progression to AIDS [20], and inverted naı̈ve to effector/memory

ratios are not always restored upon administration of ART

[17,22]. Since reconstitution of the naı̈ve T-cell compartment

contributes to reconstitution of overall CD4+ T-cell counts, a

continued deficit in naı̈ve CD4+ T-cell numbers would have

downstream implications for the effector/memory compartment.

In addition, functional defects, such as diminished antigen-specific

proliferative responses [23], persist in the naı̈ve CD4+ T-cell

compartment, despite treatment. As naı̈ve CD4+ T-cell prolifer-

ative responses post-ART predict immune responses to immuni-

zation with neoantigens [24], it is possible that an impaired naı̈ve

CD4+ T-cell compartment may contribute to the clinical

observations regarding poor health and age-associated pathologies

post-ART.

Aging, in the absence of HIV infection, is also associated with

quantitative and qualitative changes within the naı̈ve CD4+ T-cell

compartment [25–27]. Decreased numbers of recent thymic

emigrants (RTE), shortened telomeres, hyporesponsiveness to

stimulation, decreased proliferative capacity, reduced IL-2 pro-

duction, alterations in signal transduction and changes in cell

surface phenotype [26–28] have all been reported. These changes

likely contribute to the poor response to vaccines and increased

susceptibility to infectious diseases and neoplasms reported for

older adults [29–31] and possibly also contribute to the more rapid

disease progression in HIV-1-infected individuals over 50 years of

age.

Many factors, including co-infections and toxicity, or negative

side effects, of antiretroviral drugs, are likely to contribute to the

decreased lifespan and increased morbidities seen in HIV-1-

infected individuals. In the current study, we address the question

of whether HIV-1 infection accelerates the aging process by

characterizing the effects of HIV-1 infection and aging on the

naı̈ve CD4+ T-cell compartment. We investigate whether the

negative effects of HIV-1 infection and aging on the naı̈ve CD4+

T-cell compartment are additive or interactive. To this end, we

subdivided the naı̈ve CD4+ T-cell compartment into two

biologically disparate subsets based on the surface expression of

PECAM-1 (CD31), which distinguishes TREC high (CD31+)

naı̈ve CD4+ T-cells from their proliferative progeny, the TREC

low (CD31-) naı̈ve CD4+ T-cell subset [27,32]. We had previously

shown that aging is associated with changes in the relative

proportions of these two subsets and with telomere shortening

within cells from both subsets [27]. Therefore, in the current study

we compared the two naı̈ve CD4+ T-cell subsets within younger

(20–32 years old) and older (39–58 years old) HIV-1 seropositive

(SP) ART-naı̈ve adults relatively early in infection, as well as with

HIV-1 seronegative (SN) age-matched adults. Our results suggest

that the effects of HIV-1 infection and aging on the the naı̈ve

CD4+ T-cell compartment are both additive and distinct, and that

HIV-1 induced impairments are not fully restored to an age-

appropriate status by ART.

Materials and Methods

Ethics Statement
All study participants from the cross-sectional study were

recruited from the Los Angeles area. This study was approved

by the University of California, Los Angeles Medical Institutional

Review Board and each participant provided written, informed

consent per the approved protocol.

Participants
Cross-sectional study. Twenty-eight HIV-1 SN participants

aged 19–30 years, nineteen SN participants aged 47–60 years,

nine HIV-1 SP participants aged 20–32 years, and ten SP

participants aged 39–58 years. All SP participants were within 1–3

years of infection by self-report and were treatment-naı̈ve.

Longitudinal study. From the Multicenter AIDS Cohort Study

(MACS), a study of the natural and treated history of HIV-1

infection in men who have sex with men [33,34], we selected ten

SP men who initiated ART while enrolled in the MACS. ART is

self-reported during the semi-annual MACS study visits. Selection

criteria included the following characteristics at the visit prior to

initiating ART: an age of 40–50 years, an absolute T-cell count

.250 cells/mm3 of blood, a viral load .50 copies/ml (90% of

those selected had .5000 copies/ml), and a successful response to

treatment, defined by a viral load of ,400 RNA copies/ml

approximately one year post-ART (90% of those selected had a

viral load of ,50 RNA copies/ml). The average increase in

absolute CD4+ T-cell count one year post-ART was 147 cells/

mm3. Ten SN MACS participants, age-matched (within 6 months

to a year of age) to the pre-ART donor visit, were selected as

controls. We analyzed cryopreserved PBMC provided by these

men at 6 months to one year prior to ART initiation and at 1 and

2 years after that time.

Immunophenotyping and Cell Sorting
For the cross-sectional study, blood was collected into

ethylenediaminetetraacetic acid (EDTA)-treated vacutainer tubes

(Becton Dickinson, Rutherford, NJ). Whole blood was stained

with the following monoclonal antibodies: CD45RA fluorescein

isothiocyanate (FITC), CD4 peridinin chlorophyll protein

(PerCPTM), CD31 phycoerytherin (PE) and CD28 and/or CD27

allophycocyanin (APC), (BD Biosciences Immunocytometry Sys-

tems (BDIS), San Jose, CA). Whole blood was stained, lysed, and

analyzed as described [35]. PBMC for longitudinal analyses were

originally collected in heparin and cryopreserved in liquid

nitrogen. After thawing, the PBMC were stained as described

above and the cells were washed twice in 1 ml of 1X PBS

containing 2% newborn calf serum (NCS) and 0.1% sodium azide.

To aid in establishing a viable lymphocyte gate for cryopreserved

PBMC, an additional tube stained with 7-AAD, a marker for

cellular viability [36], was utilized. Samples were analyzed using a

FACSCaliburTM flow cytometer (BDIS) equipped with a 15 mW

air-cooled 488 nm argon-ion laser and a red diode laser emitting

at ,635 nm. For each sample, a minimum of 5,000 CD4+

lymphocytes were collected. Analysis of the data was performed

with CELLQuestTM software (BDIS).

Cell sorting was performed on a FACSAria flow cytometer

(BDIS). A singlet gate of side scatter height versus side scatter

width was used in addition to the standard forward scatter versus

side scatter gating, in order to exclude cell ‘‘doublets’’. PBMC,

Effects of HIV-1 and Aging on Naı̈ve CD4+ T-Cells
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both freshly isolated as described [27], and cryopreserved, were

stained with CD45RA-FITC, CD31-PE, CD4-APC and CD8

APC-CY7 for cell sorting. The sorts for CD45RA+CD31+bright

CD4+ yielded cells that expressed 2-3 times more CD31 than

the sorts for CD45RA+CD31+dim CD4+. The sort gate for

CD45RA+CD31+dimCD4+ T-cells was very narrow in order to

exclude cells that were bright or negative for CD31. Based on

comparison with Quantibrite Phycoerythrin (PE) beads (BDIS),

CD45RA+CD31+brightCD4+ cells and CD45RA+CD31+dimCD4+

cells have a median staining intensity of 5700 and 1500 molecules of

PE, respectively [37,38]. The purities for sorted CD4+ T-cells were

all .99% and the subsets of CD4+ T-cells were .95% pure.

Measurement of Telomere length
Genomic DNA was extracted from PBMC using the DNeasy

Tissue Kit according to manufacturer’s instructions (Qiagen,

Valencia, California). Real-Time PCR was performed on a total of

5 ng of DNA per sample using IQ Sybr Green Supermix per

manufacturer’s instructions (Biorad, Hercules, California) and a

previously published quantitative telomere PCR protocol [39].

The primers used were: Tel 1b: 39-CGGTTTGTTTGGGTTT-

GGGTTTGGG TTTGGGTT TGGGTT-59 and Tel 2b: 39-G-

GCTTGCCTTACCCTTACCCTTACCCTT ACCCTTACC-

CT-59. The beta hemoglobin primers (used to quantify cell

numbers) were: HGB 1: 39-GCTTCTGACACAACTGTGTT-

CACTAGC-59 and HGB 2: 39-CACCAACTTCATCCACGTT-

CACC-59. Genomic DNA extracted from a B lymphoblastoid cell

line (BLCL) and from 1301 cells, a T-cell leukemia cell line with

extremely long telomere lengths (.25 kb) [40], were included in

each PCR reaction to control for inter-assay variation. A no-

template control was included in all PCR reactions, and data from

all samples were expressed as a percentage of the telomere length

of the 1301 cells, as described previously [27].

Measurement of TREC concentrations
TREC concentration was assessed by real-time PCR protocol as

described [41] and modified by us [42,43]. Briefly, cell lysates were

prepared by incubation of the cells with 100 mg of proteinase K

(Boehringer Ingelheim, Petersburg, Va.) per ml for at least 1 hour

at 56uC. Proteinase was inactivated by heating the sample for 10

minutes at 95uC. TREC were quantified by real-time PCR

analysis, using the 59 nuclease (TaqMan) assay and the ABI Prism

7700 sequence detector system (PE Biosystems) as described [43].

A 25-ml PCR mixture was used consisting of 5 ml of genomic DNA

solution, 2.5 ml of 10x PCR buffer, 1.75 ml of 50 mM MgCl2, 1 ml

of 5 mM deoxynucleoside triphosphates, 1 ml each of 12.5 pM

forward (39-CACATCC CTTTCAACCATGCT-59) and reverse

(39-GCCAGCTGCAGGGTTTAGG-59) primer and 1 ml of

5 mM probe (39-FAM-ACACCTCTGGTTTTTGTAAAGGTG-

CCCACT-Tamra/QSY-59) (MegaBases), 0.25 ml of 10 mM ROX

reference dye (Invitrogen), and 0.125 ml of platinum Taq

polymerase. The TREC standard consisted of known concentra-

tions (from 20/5ml – 26106/5ml) of a plasmid containing a

sjTREC fragment (kindly provided by D. Douek). Standard curves

and TREC concentrations in test samples were determined using

the software supplied with the ABI 7700. The number of cells in

each test sample was determined by using real-time PCR to

amplify b-actin DNA sequences (Applied Biosystems) per the

manufacturer’s instructions. All TREC and b-actin analyses were

performed in triplicate on the same plate. The average variability

of the triplicates was 9% for TREC measurements and 6% for the

b-actin measurements. The mean value for each triplicate was

used for statistical analyses.

Statistical Analysis
The cross-sectional analysis examined the joint effects of age

and HIV-1 serostatus on cell count and telomere length. Two-way

ANOVAs with main effects for age and serostatus and an

interaction term were followed, when significant, by post-hoc t-

tests for comparisons within each of the following compartments:

CD45RA+CD31+, CD45RA+CD31-, and CD45RA-mem (this

subset contains effector/memory cells). To assess relative differ-

ences between SP and SN subjects, we computed the ratios of the

average cell counts for these subgroups (SN to SP) within each age

range and compartment. To make comparisons across com-

partments, we also computed the differences in the ratios

for CD45RA+CD31+ vs. CD45RA+CD31-, CD45RA-mem vs.

CD45RA+CD31-, and CD45RA+31+ vs. CD45RA-mem in each

age range. Since the distribution of these ratios could not readily

be determined analytically, we employed a bootstrap resampling

procedure to obtain empirical p-values for the tests of cross-

compartment differences [44] as follows. First we generated

20,000 replicates of the original data set, sampling subjects with

replacement. For each of these ‘‘bootstrap’’ data sets we computed

the subgroup means, the ratios of SN to SP means within each age

range and compartment, and the corresponding differences in

ratios across compartments. We thus obtained an empirical

distribution for each of these quantities. Evidence of a significant

cross-compartmental difference in SN:SP ratio is based on

whether the corresponding empirical distribution lay almost

entirely above (or below) 0. A 95% confidence interval for the

difference was obtained by taking the 2.5% and 97.5% quantiles of

the empirical distribution. Similarly, we obtained two-sided p-

values for the ratio differences by doubling the tail probability

corresponding to where the empirical distribution crossed 0. We

took advantage of the same bootstrap simulations to validate the p-

values from ANOVA using the empirical distributions of the

differences in group means (analogous to t-tests). The bootstrap

analyses were performed in the R programming language.

To assess differences in TREC number between subjects with

high and low CD31 expression levels we used the non-parametric

two-sided Wilcoxon rank-sum tests due to the small sample sizes in

these subgroups. These analyses were performed using SAS,

version 9.1 (Cary, NC).

To assess changes in absolute cell counts post-ART, we fit a

linear mixed effects regression model. For absolute cell counts over

time, the model was the same as a standard linear regression,

except that a more sophisticated covariance structure was used to

account for the relationships among the repeated measures within

each subject. A significant positive coefficient of time would

suggest that cell counts increased post-ART, while a zero or

negative coefficient would suggest the opposite. Models were fit

using SAS PROC MIXED with a compound symmetric

covariance structure and time post-ART treated as a categorical

variable.

Results

Preferential loss of CD31- CD4+ naı̈ve T-cells during HIV-1
infection

We first quantified the percentage and absolute numbers of

CD31+CD45RA+CD27+CD3+CD4+ (CD31+CD4+ naı̈ve) and

CD31-CD45RA+CD27+ CD3+CD4+ (CD31-CD4+ naı̈ve) T-cells

in the peripheral blood of young (20-32 years of age) and older

(39–58 years of age) HIV-1-infected adults and age matched SN

controls. As shown in Figure 1A, both older age and HIV-1

infection were associated with significantly decreased numbers

of CD31+CD4+ T-cells. Young HIV-1-infected individuals

Effects of HIV-1 and Aging on Naı̈ve CD4+ T-Cells
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demonstrated an average of 139 fewer CD31+CD4+ T-cells/mm3

than SN age-matched controls (317 cells/mm3 versus 178 cells/

mm3, respectively; p,0.0002), and in older SP individuals, HIV-1

was associated with an additional difference of 113 cells/mm3 in

this subset beyond what was accounted for by aging alone (223

cells/mm3 versus 110 cells/mm3, respectively; p = 0.0004). Since

there was no evidence of an interaction between age and HIV-1

infection (p = 0.6423), the effect of HIV-1 infection on

CD31+CD4+ T-cell numbers appears to be additive to the effects

of aging alone. Notably, the absolute number of CD31+ CD4+

naı̈ve T-cells in young SP individuals closely matched those of SN

participants who were 17 to 28 years their senior (Figure 1A).

HIV-1 infection, but not age, was associated with a significant

reduction of CD31-CD4+ naı̈ve T-cells. While younger SN

individuals had an average of 178 cells/mm3 CD31-CD4+ naı̈ve

T-cells, a decrease of 117 cells/mm3 was observed in the younger

SP individuals (p,0.0002). However, this effect was independent

of age; younger and older SP men had similar absolute cell

numbers (61 cells/mm3 and 75 cells/mm3, respectively; interac-

tion p = 0.9455). Aging in the absence of HIV-1 infection was not

significantly associated with a difference in the number of

CD31-CD4+ naı̈ve T-cells (an average of 178 cells/mm3 and

188 cells/mm3 in the younger and older groups respectively;

interaction p = 0.7476), consistent with previous reports by our

group [27] and others [45], demonstrating that HIV-1 infection is

associated with negative effects on this subset that are distinct from

aging.

Of note, the decrease in the absolute number of CD31-CD4+

naı̈ve T-cells associated with HIV-1 infection was greater than the

decrease observed for any other CD4+ T-cell phenotype tested

(Figure 1B). The number of CD31-CD4+ naı̈ve T-cells was 2.9

times lower in young SP participants than in young SN

participants (p = 0.0070). This is in contrast to a 1.8- and a 1.9-

fold difference in the numbers of CD31+CD4+ naı̈ve and

CD45RA- effector/memory T-cell subsets, respectively, between

the same two groups of participants (Figure 1B). There was also a

larger difference in CD31-CD4+ naı̈ve T-cell number between

older SN and older SP participants than in the CD31+CD4+

subset for these two groups, 2.5-fold versus 2.0-fold difference

respectively, but it did not reach significance. Whereas the loss of

either naı̈ve CD4+ T-cell subsets is likely to be detrimental to the

host, our previous study has shown that the CD45RA+CD31-

subset is particularly important for maintaining the naı̈ve CD4+ T-

cell pool during aging [27].

HIV-1 infection is associated with shortened telomeres
within naı̈ve CD4+ T-cells

As shown in Figure 2, HIV-1 infection was associated with

significant telomere shortening within both subsets of naı̈ve CD4+

T-cells across both age groups (younger: p = 0.0004 for CD31+,

p = 0.0096 for CD31-; older: p,0.0002 for both naive subsets). In

agreement with our previous findings [27], aging was also

associated with telomere shortening in both naı̈ve CD4+ T-cell

subsets, (younger vs. older SN: p = 0.0132 for CD31+ and

p = 0.0018 for CD31- subsets; younger vs. older SP: p = 0.0036

for CD31+ and p,0.0002 for CD31-). There was no evidence of

an interaction between age and HIV-1 infection in either naı̈ve

subset (interaction p = 0.9564 for CD31+ and p = 0.5492 for

CD31- CD4+ naı̈ve T-cell subsets) indicating that, although age

and HIV-1 serostatus each contribute to telomere shortening,

these effects appear to be additive.

CD31 expression correlates with TREC number in
CD31+CD4+ naive T-cells

Due to the challenge of obtaining the quantity of CD31+ CD4+

naı̈ve T-cells from both older adults and HIV-1-infected

Figure 1. ART-naı̈ve seropositive individuals 1-3 years post-
infection have significantly fewer naı̈ve CD4+ T-cells than
seronegative controls. PBMC from each individual in our cross-
sectional study were analyzed for the CD4+ naı̈ve T-cell subsets, defined
as CD45RA+CD27+ and either CD31+ or CD31-, and for the CD4+ T-cell
effector/memory subset, defined as CD45RA-CD27-, using flow cytom-
etry. A.) The distribution of the absolute number of naı̈ve and effector/
memory CD4+ T-cells was determined for each serotype and age group.
B.) The average absolute number of cells of each subset was
determined for each serotype and age group. For each subset, the
fold difference between the seronegative and seropositive age-
matched groups is shown above the bars. The asterisks signify the
following values, * p,0.05, ** p,0.01, ***p,0.005.
doi:10.1371/journal.pone.0016459.g001
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individuals required for TREC and telomere analysis, we

investigated alternative methods to determine the proliferative

history of CD31+CD4+ naı̈ve T-cells for use in the experiments

described below. Based on the observation that CD31 is

eventually lost from the surface of CD31+ naı̈ve CD4+ T-cells

[32,46], we investigated whether the relative fluorescence intensity

of CD31 on CD31+CD4+ naı̈ve T-cells was associated with

differing levels of TREC content. PBMC from five seronegative

participants were sorted into three subsets based on the relative

number of CD31 molecules on the surface of the cells:

CD31+brightCD4+, CD31+dimCD4+, and total CD31+CD4+

(Figure 3A). As shown in Figure 3B, the level of CD31 expression

was, in fact, strongly associated with TREC number in

CD31+CD4+ naive T-cells. The CD31+brightCD4+ naı̈ve T-cells

showed an average of 80% more TREC than were found within

total CD31+CD4+ naı̈ve T-cells, while the CD31+dimCD4+ naı̈ve

T-cell subset showed an average of 60% fewer TREC

(p = 0.0088). These data suggest that CD31+brightCD4+ naive T-

cells, as compared to CD31+dimCD4+ naı̈ve T-cells, are more

highly enriched in RTE that have not undergone proliferation.

Thus, relative fluorescence intensity can be used as an indirect

measure of proliferative history within RTE in situations where

cell numbers are limiting.

Successful ART treatment does not fully reconstitute the
CD31-CD4+ naı̈ve T-cell subset

Since we determined that HIV-1 infection has detrimental

effects on the absolute numbers of both naı̈ve CD4+ T-cell

subsets, we evaluated whether ART was able to restore these

subsets to age-appropriate levels. Using the CD31 marker as an

indicator of emigration of naı̈ve cells from the thymus, we

performed a longitudinal study on cryopreserved PBMC obtained

from MACS participants before, and after, initiation of ART.

One year post-ART, the absolute number of CD31+brightCD4+

naı̈ve T-cells significantly increased from an average of 60 cells/

mm3 to an average of 180 cells/mm3 (Figure 4, p = 0.0013). In

fact, 2 years post-ART there was no significant difference in cell

number between SP men and their SN age-matched controls

(p = 0.4904).

Since CD31+brightCD4+ naı̈ve T-cells appear to be enriched for

non-proliferated RTE (Figure 3B), the data in Figure 4 are

consistent with previous reports of measurable thymic emigration

after only one year of ART [43,47] and continuing after that

time. Interestingly, although there was no significant difference

between the CD31+CD4+ naı̈ve T-cell subset and SN controls

after 2 years of ART (p = 0.2670), the absolute number of

CD31-CD4+ naı̈ve T-cells at the same time point showed no

significant increase (Figure 5). The ultimate outcome, there-

fore, is a significant difference in CD31-CD4+ T-cell numbers

between SP and SN age-matched controls two years post-ART

(p = 0.0022).

Discussion

Our results demonstrate that the negative effects of HIV-1

infection and aging on naı̈ve CD4+ T-cells are predominantly

additive. However, HIV-1 infection also exerts a distinct negative

effect on CD31-CD4+ T-cell number that is not seen with aging.

Together, these results suggest a role for impaired helper T-cell

responses, particularly to neoantigens, in the more rapid

progression to AIDS observed in individuals 50 years of age or

older.

Older SN individuals demonstrate diminished absolute numbers

of CD31+CD4+ naı̈ve T-cells and shortened telomeres within

those subsets [27]. Both of these deficits undoubtedly contribute to

the well-documented reduced responses to vaccines and other

neoantigens well documented in older adults [29–31]. Indeed,

initial HIV-1 infection of older individuals is likely to be met with a

diminished CD4+ T-cell response, which, in turn, would affect

both B- and T-cell responses to HIV-1, allowing the virus to

spread quickly. Moreover, our results suggest that once infection is

established, the naı̈ve CD4+ T-cell compartment is further

impaired by an accelerated loss of CD31+CD4+ naı̈ve T-cells,

and a loss of CD31- naı̈ve T-cells that is not normally associated

with SN adults in their fifties [27]. Compounding this cell loss is

the additive effect of aging and HIV-1 infection on telomere

shortening within both subsets of naı̈ve CD4+ T-cells (Figure 2).

Since telomere length is associated with proliferative capacity,

those naı̈ve CD4+ T-cells still present after the initial HIV-1

infection would be unlikely to generate, or support, robust CD8+

T- and B-cell responses to HIV-1 or opportunistic infections. Not

only would HIV-1 be allowed to replicate more rapidly in older

adults, but there would also be less CD4+ T-cell reserves, due to

the reduced numbers of CD4+ T-cells and their progeny. These

effects would undoubtedly contribute to the more rapid progres-

sion to AIDS.

The underlying mechanisms for the accelerated loss of the naı̈ve

CD4+ T-cells during HIV-1 disease most likely include increased

recruitment into the effector/memory pool as well as direct

infection with HIV-1 and eventual cell death. The latter is

supported by previous reports showing that naı̈ve CD4+ T-cells

can be infected by HIV-1 [48,49]. Our own unpublished

observation that the CD31- naı̈ve subset harbors HIV-1 in vivo

in ART-naı̈ve individuals (data not shown) may also partially

explain why this subset declines in HIV-1-infected, but not age

matched SN, individuals.

Figure 2. Telomeres are significantly shortened in naı̈ve CD4+

T-cells within 1-3 years of HIV-1 infection. PBMC from each
individual in the cross-sectional study were sorted into CD31+CD4+and
CD31-CD4+ T-cell subsets. The sorted cells were then subjected to
telomere length Real-Time PCR. Telomere length values are expressed
as a percentage of telomere lengths within a human T-cell leukemia cell
line, 1301 cells. Each symbol represents a sample from a single
individual within the indicated serostatus and age group. The asterisks
signify the following values, * p#0.05, ** p#0.01, *** p,0.005.
doi:10.1371/journal.pone.0016459.g002
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Loss of the CD31-CD4+ naı̈ve T-cells subset, and failure of this

subset to reconstitute, is likely to have long-term deleterious effects

on the immune response to neoantigens in individuals treated with

ART. We previously demonstrated that homeostasis of the naı̈ve

CD4+ T-cell subset in adults is largely maintained by proliferation

of CD31-CD4+ naı̈ve T-cells and not by recent thymic emigrants

(CD31+CD4+ naı̈ve T-cells) [27]. Furthermore, the presence of

clonal expansions of naı̈ve CD31-CD4+ T-cells in HIV-1-infected

individuals, similar to those in the effector/memory CD4+ T-cell

pool, suggest that it is the CD31-CD4+ T-cells which are recruited

into the effector/memory pool in response to antigen (Kilpatrick,

et al. unpublished results). Failure of this subset to fully reconstitute

in the older SP group within 2 years after ART initiation (Figure 5)

suggests that, despite reconstitution of the CD31+ naı̈ve CD4+ T-

cell compartment shown by us and others [50], fewer naı̈ve CD4+

T-cells are available for recruitment into the effector/memory

pool, as compared to uninfected peers. The lack of reconstitution

could be due to a true ‘‘block’’ in differentiation from

CD31+CD4+ to CD31-CD4+, or by CD31-CD4+ T-cells being

rapidly recruited into the effector/memory pool to fill the

‘‘immunologic space’’. These two mechanisms would have very

different implications for the health of ART-treated individuals

and could suggest very different therapeutic strategies for

enhancing overall CD4+ T-cell reconstitution.

To our knowledge, this is the first study demonstrating

shortened telomere lengths in naı̈ve CD4+ T-cells sorted from

HIV-1-infected participants and subdivided by the surface

markers CD31 and CD27. While these data accord with the

majority of studies examining telomere length in total, or

effector/memory, CD4+ T-cell populations during HIV-1

infection [51–54], they do conflict with the findings of Miedema

and colleagues [55]. Using CD45RA and CD45RO to sort naı̈ve

and effector/memory cells, Wolthers et al. [55] failed to find

evidence of telomere shortening in either CD4+ T-cell subset

during HIV-1 infection. The difference between the Wolthers

et al. results and our own study may be due, at least in part, to a

difference in flow cytometry gating strategies. For example,

expression of CD45RA is not a stringent phenotype for naı̈ve

CD4+ T-cells; other cell types, such as terminally differentiated

cells would be included in this population. In addition, in contrast

to the Wolthers, et al. study, our own HIV-1 infected cohort was

age-matched to the SN controls to avoid the confounding effects

of aging on the telomere lengths within our HIV-1 infected

individuals.

Our observation of telomere shortening in even the least

differentiated naı̈ve CD4+ T-cells (i.e.,the CD31+CD4+ T-cell

subset) in response to both aging and HIV-1 infection (Figure 2) is

intriguing and implies possible telomere shortening in an earlier

progenitor cell. In support of this hypothesis, both HIV-1 infection

and aging have been linked to decreased telomerase activity within

hematopoietic progenitors [56–58]. Alternatively, it is possible that

extensive cellular proliferation, oxidative stress, or a deficit in

Figure 4. Seropositive individuals two years post-ART have significantly greater numbers of CD31+bright cells. Cryopreserved PBMC
from ten HIV-1 seropositive MACS participants collected at the indicated times pre- and post-ART were analyzed by flow cytometry for expression of
CD4, CD45RA, and CD31. Absolute numbers of CD31+brightCD4+ naı̈ve T-cells were determined for each participant at the indicated time points. The
data is shown in a box plot format where the top and bottom of the box represent the 25th and 75th percentile and middle band represents the 50th

percentile. The asterisks signify the following value, *** p,0.005.
doi:10.1371/journal.pone.0016459.g004

Figure 3. TREC content correlates with levels of CD31 expression on CD31+CD4+ naive T-cells. Fresh PBMC from five HIV-1 seronegative
individuals, ranging from 25-56 years of age, were sorted into total CD31+CD4+, CD31+brightCD4+ and CD31+dimCD4+ naı̈ve T-cell subsets. A.) Pre-sort
gates for determining the CD31+brightCD4+, CD31+dimCD4+, and CD31-CD4+ naı̈ve T-cell subsets are shown. The bottom three plots depict
representative post-sort analysis of the subsets. B.) Genomic DNA was extracted from each subset and subjected to quantitative Real-Time PCR to
quantify TREC content. The data is expressed as a percentage of TREC number in the indicated subset shown relative to TREC number in total
CD31+CD4+ naı̈ve T-cells. The asterisks signify the following value, ** p = 0.009.
doi:10.1371/journal.pone.0016459.g003
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telomerase directly contributes to telomere shortening within the

peripheral CD4+ naı̈ve T-cells. Our data do not support a major

role for extensive proliferation of the naı̈ve T-cells alone in the

telomere shortening. Based on the correlation between TREC

levels and CD31 expression (Figure 3B), we performed a cross-

sectional analysis of CD31 expression levels on naı̈ve CD31+

CD4+ T-cells from older vs. younger SN and HIV-1 infected age

matched adults, but did not find a diminution of the CD31 relative

fluorescence intensity that would be consistent with extensive

cellular turnover during aging or HIV-1 infection (data not

shown). In addition, in a previous cross-sectional study of the naı̈ve

CD4+ T-cell compartment during aging, we observed a significant

decline in TREC in naı̈ve CD31+ T cells over a 1-2 decade period

[27]. However, the T-cell expansion was subtle and unlikely to

completely account for the significant telomere shortening

associated with aging, suggesting that additional factors, possibly

oxidative stress, may be involved. Indeed, oxidative stress is

associated with chronic inflammation, which is well documented

in both HIV-1 infection [59] and aging [60–63] and is known to

accelerate telomere shortening in both the presence and absence

of proliferation [64,65].

Our results lead us to hypothesize that the additive effects of

HIV-1 and aging on the CD31+CD4+ naı̈ve T-cell subset, and the

HIV-1 associated loss of the CD31- naı̈ve CD4+ T-cells, contribute

to accelerated HIV-1 disease progression in HIV-1-infected adults

over the age of 50 [66,67], and to the decreased response to anti-

retroviral therapy in older HIV-1-infected adults [68,69].

Moreover, there is accumulating evidence that ART-treated

HIV-1-infected individuals clinically present with malignancies

and infectious diseases more consistent with older SN adults [3–

5,70,71]. Further elucidation of the mechanisms contributing to

naı̈ve CD4+ T-cell loss, telomere shortening, and delayed or

arrested reconstitution of the CD31- naı̈ve CD4+ T-cell subset may

lead to the identification of novel therapeutic targets to enhance

the immune response against HIV-1 and other pathogens, as well

as strategies to retard the formation of neoplasms in ART-treated

individuals.

Acknowledgments

We thank all the study participants for their contribution to this work,

Charlie Price and Effie Eraklis for their efforts in recruiting our study

participants, and Dr. Christel Uittenbogaart and Dr. Catherine Brennan

for careful reading of this manuscript and constructive criticism of the

work.

The cryopreserved longitudinal samples were obtained from the Multi-

Center AIDS Cohort Study (MACS) with centers located at: The Johns

Hopkins Bloomberg School of Public Health (Joseph Margolick); Howard

Brown Health Center and Northwestern University Medical School (John

Phair); University of California, Los Angeles (Roger Detels); University of

Pittsburgh (Charles Rinaldo); and Data Analysis Center (Lisa Jacobson and

Keri Althoff).

Author Contributions

Conceived and designed the experiments: TMR RDK BDJ. Performed the

experiments: TMR LEH PMH MAH. Analyzed the data: CAS RDK.

Contributed reagents/materials/analysis tools: JBM CRR RD JP KNA.

Wrote the paper: TMR BDJ. Provided intellectual contribution, assisted in

data interpretation: RBE.

Figure 5. Seropositive individuals demonstrate evidence of post-ART reconstitution in CD31+CD4+, but not CD31-CD4+ T-cells.
Cryopreserved PBMC from ten seropositive MACS participants collected at the indicated time points pre- and post-ART, were analyzed for the CD31+

and CD31- naı̈ve CD4+ T-cell subsets by flow cytometry. Cryopreserved PBMC from ten age-matched seronegative participants in the MACS were used
as controls. The data is shown in a box plot format where the top and bottom of the box represent the 25th and 75th percentile and middle band
represents the 50th percentile. The asterisks signify the following value, *** p,0.005.
doi:10.1371/journal.pone.0016459.g005

Effects of HIV-1 and Aging on Naı̈ve CD4+ T-Cells

PLoS ONE | www.plosone.org 8 January 2011 | Volume 6 | Issue 1 | e16459



References

1. Mascolini M (2010) What speeds aging with HIV-and what can be done about

it? Research Initiative-Treatment Action! 15: 1–59.

2. Desquilbet L, Jacobson LP, Fried LP, Phair JP, Jamieson BD, et al. (2007) HIV-

1 infection is associated with an earlier occurrence of a phenotype related to

frailty. J Gerontol A Biol Sci Med Sci 62: 1279–1286.

3. Engels EA, Pfeiffer RM, Landgren O, Moore RD (2010) Immunologic and

virologic predictors of AIDS-related non-hodgkin lymphoma in the highly active

antiretroviral therapy era. J Acquir Immune Defic Syndr 54: 78–84.

4. D’Souza G, Wiley DJ, Li X, Chmiel JS, Margolick JB, et al. (2008) Incidence

and epidemiology of anal cancer in the multicenter AIDS cohort study. J Acquir

Immune Defic Syndr 48: 491–499.

5. Dorrucci M, Suligoi B, Serraino D, Tirelli U, Rezza G (2001) Incidence of

invasive cervical cancer in a cohort of HIV-seropositive women before and after

the introduction of highly active antiretroviral therapy. J Acquir Immune Defic

Syndr 26: 377–380.

6. Thomas J, Doherty SM (2003) HIV infection–a risk factor for osteoporosis.

J Acquir Immune Defic Syndr 33: 281–291.

7. Fausto A, Bongiovanni M, Cicconi P, Menicagli L, Ligabo EV, et al. (2006)

Potential predictive factors of osteoporosis in HIV-positive subjects. Bone 38:

893–897.

8. Weber R, Sabin CA, Friis-Moller N, Reiss P, El-Sadr WM, et al. (2006) Liver-

related deaths in persons infected with the human immunodeficiency virus: the

D:A:D study. Arch Intern Med 166: 1632–1641.

9. Hooshyar D, Hanson DL, Wolfe M, Selik RM, Buskin SE, et al. (2007) Trends

in perimortal conditions and mortality rates among HIV-infected patients. AIDS

21: 2093–2100.

10. Arnold DM, Julian JA, Walker IR (2006) Mortality rates and causes of death

among all HIV-positive individuals with hemophilia in Canada over 21 years of

follow-up. Blood 108: 460–464.

11. Lucas GM, Mehta SH, Atta MG, Kirk GD, Galai N, et al. (2007) End-stage

renal disease and chronic kidney disease in a cohort of African-American HIV-

infected and at-risk HIV-seronegative participants followed between 1988 and

2004. AIDS 21: 2435–2443.

12. Baker JV, Peng G, Rapkin J, Abrams DI, Silverberg MJ, et al. (2008) CD4+
count and risk of non-AIDS diseases following initial treatment for HIV

infection. AIDS 22: 841–848.

13. Smit C, Geskus R, Walker S, Sabin C, Coutinho R, et al. (2006) Effective

therapy has altered the spectrum of cause-specific mortality following HIV

seroconversion. AIDS 20: 741–749.

14. Triant VA, Lee H, Hadigan C, Grinspoon SK (2007) Increased acute

myocardial infarction rates and cardiovascular risk factors among patients with

human immunodeficiency virus disease. J Clin Endocrinol Metab 92:

2506–2512.

15. Hsue PY, Deeks SG, Farah HH, Palav S, Ahmed SY, et al. (2008) Role of HIV

and human herpesvirus-8 infection in pulmonary arterial hypertension. AIDS

22: 825–833.

16. The Antiretroviral Therapy Cohort Collaboration (2008) Life expectancy of

individuals on combination antiretroviral therapy in high-income countries: a

collaborative analysis of 14 cohort studies. Lancet 372: 293–299.

17. Baker JV, Peng G, Rapkin J, Krason D, Reilly C, et al. (2008) Poor initial CD4+
recovery with antiretroviral therapy prolongs immune depletion and increases

risk for AIDS and non-AIDS diseases. J Acquir Immune Defic Syndr 48:

541–546.

18. Plaeger-Marshall S, Hultin P, Bertolli J, O’Rourke S, Kobayashi R, et al. (1993)

Activation and differentiation antigens on T cells of healthy, at-risk, and HIV-

infected children. J Acquir Immune Defic Syndr 6: 984–993.

19. Rabin RL, Roederer M, Maldonado Y, Petru A, Herzenberg LA, et al. (1995)

Altered representation of naive and memory CD8 T cell subsets in HIV-infected

children. J Clin Invest 95: 2054–2060.

20. Chattopadhyay PK, Douek DC, Gange SJ, Chadwick KR, Hellerstein M, et al.

(2006) Longitudinal Assessment of de Novo T Cell Production in Relation to

HIV-Associated T Cell Homeostasis Failure. AIDS Res Hum Retroviruses 22:

501–507.

21. Roederer M, Dubs JG, Anderson MT, Raju PA, Herzenberg LA, et al. (1995)

CD8 naive T cell counts decrease progressively in HIV-infected adults. J Clin

Invest 95: 2061–2066.

22. Kelley CF, Kitchen CM, Hunt PW, Rodriguez B, Hecht FM, et al. (2009)

Incomplete peripheral CD4+ cell count restoration in HIV-infected patients

receiving long-term antiretroviral treatment. Clin Infect Dis 48: 787–794.

23. Lange CG, Valdez H, Medvik K, Asaad R, Lederman MM (2002) CD4+ T-

lymphocyte nadir and the effect of highly active antiretroviral therapy on

phenotypic and functional immune restoration in HIV-1 infection. Clin

Immunol 102: 154–161.

24. Rodriguez B, Valdez H, Lange CG, Asaad R, Medvik K, et al. (2010) In vitro

naive T cell proliferation failure predicts poor post-immunization responses to

neoantigen, but not recall antigens, in HIV-infection. Clin Immunol.

25. Aspinall R, Andrew D (2000) Thymic involution in aging. J Clin Immunol 20:

250–256.

26. Fulop T, Larbi A, Douziech N, Levesque I, Varin A, et al. (2006) Cytokine

receptor signalling and aging. Mechanisms of Ageing and Development 127:

526–537.

27. Kilpatrick RD, Rickabaugh T, Hultin LE, Hultin P, Hausner MA, et al. (2008)

Homeostasis of the naive CD4+ T cell compartment during aging. J Immunol

180: 1499–1507.

28. Whisler RL, Newhouse YG, Bagenstose SE (1996) Age-related reductions in the

activation of mitogen-activated protein kinases p44mapk/ERK1 and p42mapk/

ERK2 in human T cells stimulated via ligation of the T cell receptor complex.

Cell Immunol 168: 201–210.

29. Webster RG (2000) Immunity to influenza in the elderly. Vaccine 18:

1686–1689.

30. Effros RB (2000) Long-term immunological memory against viruses. Mech

Aging Dev 121: 161–171.

31. Herndler-Brandstetter D, Cioca DP, Grubeck-Loebenstein B (2006) Immuni-

zations in the elderly: do they live up to their promise? Wien med Wochenschr

156: 130–141.

32. Kimmig S, Przybylski GK, Schmidt CA, Laurisch K, Mowes B, et al. (2002)

Two Subsets of Naive T Helper Cells with Distinct T Cell Receptor Excision

Circle Content in Human Adult Peripheral Blood. The Journal of Experimental

Medicine 195: 789–794.

33. Kaslow RA, Ostrow DG, Detels R, Phair JP, Polk BF, et al. (1987) The

Multicenter AIDS Cohort Study: rationale, organization, and selected

characteristics of the participants. Am J Epidemiol 126: 310–318.

34. Detels R, Munoz A, McFarlane G, Kingsley LA, Margolick JB, et al. (1998)

Effect of potent antiretroviral therapy on time to AIDS and death in men with

known HIV infection duration. J Am Med Assoc 230: 1497–1503.

35. Hultin L, Hultin P (2006) Flow Cytometry-Based Immunophenotyping Method

and Applications. In: Detrick B, Hamilton R, Folds J, eds. Manual of Molecular

and Clinical Laboratory Immunology. Washington, D.C.: ASM Press. pp

147–157.

36. Schmid I, Krall WJ, Uittenbogaart CH, Braun J, Giorgi JV (1992) Dead cell

discrimination with 7-amino-actinomycin D in combination with dual color

immunofluorescence in single laser flow cytometry. Cytometry 13: 204–208.

37. Iyer SB, Bishop JE, Abrams B, Maino VC, Ward AJ, et al. (1997)

QuantiBRITE: A new standard for fluorescence quantitation. BDIS Part No.:

23-3496 (White Paper).

38. Iyer SB, Hultin LE, Zawadzki JA, Davis KA, Giorgi JV (1998) Quantitation of

CD38 expression using QuantiBRITETM beads. Cytometry 33: 206–212.

39. Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic

Acids Res 30: e47.
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