UCLA

Papers

Title
Sympathy: A Debugging System for Sensor Networks

Permalink
https://escholarship.org/uc/item/8918c9m§g

Authors

Ramanathan, Nithya
Kohler, Eddie
Girod, Lewis

Publication Date
2004-05-05

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/8q18c9m8
https://escholarship.org/uc/item/8q18c9m8#author
https://escholarship.org
http://www.cdlib.org/

Sympathy: A Debugging System for Sensor Networks

Nithya Ramanathan, Eddie Kohler, Lewis Girod, and Deborstnirc
UCLA Center for Embedded Network Sensing
{nithya, kohler, girod, destrin}@cs.ucla.edu

I. INTRODUCTION of a failure. While log files can provide context to a failure,
_ they often contain excessive data which can obfuscate impor
‘Sensor networks—networks of small, resource-constraingght events. Sympathy distinguishes itself from passivia da
wireless devices embedded in a dynamic physicglyging approaches by proactively collecting and higktiiag

environment—have led to new algorithm, protocol, anfytentially relevant events and their context in order thii
operating system designs [1], [2]. Interactions betweersce isolating their causes.

hardware, protocols, and environmental characteristies a

impossible to predict, so sensor network application desig [I. ARCHITECTURE

an iterative process between debugging and deployment [3]. Sympathys general architecture is as follows: Sympathy
Current debugging techniques fall short for systems whi@wllects metrics from all nodes and watches the metrics for

contain bugs characteristic of both distribut@utl embedded indications of events, which are metric changes that often

systems. Such bugs can be difficult to track because they @mrgicate important changes in application state. On infgrr

often multicausal, non-repeatible, timing-sensitive drave an event, Sympathy:

ephemeral triggers such as race conditions, decisionsibasel) stores all metrics it has collected from the past 200 time

on asynchronous changes in distributed state, or interati units for the node causing the trigger, providing temporal

with the physical environment. Furthermore, it is a chajketo context.

extract debugging information from a running system withou 2) stores all metrics it has collected from the past 200 time
introducing the probing effect (alteration of normal beloav units for the nodes neighboring the node where the event
due to instrumentation) or draining excessive energy. was detected, providing spatial context.

This paper presents a preliminary design and evaluationd) Prints event and context information to a log file, which

of Sympathy, a debugging tool for pre-deployment sensor can aid in correlating events.
networks and motivated by Ruan and Pai's DeBox system [4].4) Calls applications interested in the event.

Sympathy consists of mechanisms for collecting SYSteM P&ixe version of Sympathy described here collects four metric
formancemetrics with minimal memory overhead; mechayeignhor Jists, link quality, nodes’ top two choices for hex

nisms for recognizingevents based on these metrics; and 55 and associated next-hop path loss. It watches for two
system for collecting events and thepatio-temporal context. types of events based on these metrics, namely missing or

Sympathy introduces the idea of correlating seemingly Usplated nodes and changes in route selection, neighlisy lis
related events, and providing context for these eventsidero o jink quality.
to track down bugs and find their root causes. Using Sympathy
we have begun to distill out the important metrics, events I1l. EVALUATION
and generic correlators that help find bugs quickly, and to To demonstrate Sympathy’s potential as a debugging tool,
transmit this data in ways that minimize energy consumptiate ran it with a nesC implementation tifhy diffusion [7],
and probing effects. This process is ongoing. Our current caa routing algorithm based on directed diffusion [8]. In tiny
tribution, then, is a tool that can be used for pre-deploytmetiiffusion, nodes periodically flood neighbor beacons (tb ca
debugging, and for analysis on the role of a debugging tool dulate link quality), neighbor lists and associated linklifies
the entire design process. Eventually, Sympathy will bé @lar (to identify assymetric links), angradients which carry a
a system that can aid in debugging sensor networks both piede’s next hop and projected path loss (to determine a sode’
and post-deployment. Below we present a useful case stutbkt hop). We debugged this system pre-deployment, using
that demonstrates our current contributions by showing haimulations on a 14-node network that ran for two hours.
Sympathy was used to debug a failure in tiny diffusion. Our goal was to determine why tiny diffusion had been
In related work, [5] and [6] address the data collectioexperiencing loss rates an order of magnitude higher than
aspects of post-deployment debugging, but focus on the meekpected in data delivery to the sink.
anism togather statistics instead of theontent. Our work After the first run, using the events triggered in Sympathy,
is complementary, since Sympathy is so far mostly concerne@ saw nodes change their next-hop selection approximately
with content: discovering the most useful metrics to callecevery 170 seconds. Sympathy aided over traditional debgggi
Simulations and visualization tools are also helpful, bat dechniques by highlighting the frequent changes in next-ho
not capture historical context or aid in determining theseauselection and providing spatial correlation, which reedahat

100 , Histoaram of Gradients/umber of netghbors | , debugging techniques in three ways: it facilitates discpve
of correlations by associating context with a specific evint

provides event tracking, which involves maintaining stated
s00 |- 1 it determines which events are important to track (only adini
number of events can be tracked). In addition to highlightin
correlations, Sympathy avoids several iterations of dghngy
300 - 1 and re-running that would otherwise be needed to capture and
analyze metrics in order to find events.

However, Sympathy cannot be used in a vacuum, nor can it

Number over all time

100 r H 1 be used to find bugs automatically. We used our knowledge of
o ‘ S o I RO N ‘ tiny diffusion to dismiss extraneous correlations, anddd the
o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
% (gradients/#neighbors) per-node second-best gradient to the final list of metrics collect&tile

_ , _ _ _most of the metrics collected by Sympathy act application-
Fig. 1. Histogram of number of gradients received by a nodedhanged its

next hop, as a percentage of the number of neighbors in thi'siaeighbor SpeCIfIC, ongoing work will include a ComprEhens'Ve anastS|

list. Each node should receive roughly as many gradients lasineighbors, Of more generic metrics, events and correlators.
but the graph shows that most nodes received gradients frdyn10% of

their neigbhors (a minority of nodes may send multiple grati, resulting IV. CONCLUSIONFUTURE WORK
in greater than 100%). The final bar represents nodes whal la¢deast one . . .
gradient, but had 0 neighbors recorded This work is one step on the road to a debugging tool that

will cover both pre- and post-deployment debugging. Future
work will focus on developing better methods for identifgin
during each period, on average 39% of nodes changed tr#gnificant correlations and porting the tool to enable post
next hop. While we would expect some churn in next-hogeployment debugging.
selection, the continuous flux appeared suspicious. Post-deployment debugging will rely more on inferences of
We then investigated the temporal context provided f@ystem state based on externally observable metrics, sich a
each event by Sympathy: that is, the metrics and evefessages, and will not be as precise as the pre-deployment
that occurred close in time to the unusual changes in ndgghniques discussed here. We plan to deploy strategically
hop. Surprisingly, we found that most nodes that chang@taced Linux-based microservers that could shift poweviie
their next hop did so becauskey had received only one debugging, logging and transmission operations off the- low
gradient message and thus had only one choice for a nexpower sensor nodes, while preserving timing. Interesfinagl
hop. Clearly, this was the cause for the frequent changestfird-party snooper observing a network running tiny-akfon
next-hop selection. Furthermore, there was a high proipabilcould collect all of the metrics utilized by Sympathy today,
that nodes frequently selected high-loss paths, as theg wentirely avoiding extra broadcasts containing debuggirfiori
given only one choice for next hop: had they received moraation.
than one gradient message, nodes could have chosen a better
next hop with lower path loss. This in turn was a probable o
cause for the high loss rates observed at the sink, 1, Seeuezye J orere, and . anuancg, essormr s
To quantify our findings, we graphed the ratio of gradients Networks, Berlin, Germany, January 2004.
received vs. number of neighbors. Figure 1 presents thétses(?] M. Hamilton, "Hummercams, robots, and the virtual resgt Feb. 2000.
in a histogram: the vast majority of next hop changes todR & (égt"rﬁ] T ison, A Serpa, T Stathopoulos, ’\é'e\Z"I‘(;‘;?:;I 2o
place when the node received gradients from 10% or less of pjoying Wireless Sensor Networks,” Proceedings of the 2004 USENIX
its neighbors. This is particularly strange because neighb Technical Conference, Boston, MA, 2004, USENIX, To appear.
lists are recalculated each period from neighbor beacaats tif] Y- Ruan and V. Pai, *Making the ‘box' transparent Systerall
. . . performance as a first-class result,” Bnoceedings of the 2004 USENIX
are flooded out immediately before the gradient messages. SO Technical Conference, Boston, MA, 2004, To appear.

on an ideal, minimally varying, O-loss link, a node shoult] J. Zhao, R. Govindan, and D. Estrin, “Computing aggregafor

; ; onitoring wireless sensor networks,” Rroceedings of the IEEE ICC
receive 100% of the gradient messages sent by the nodes Ormbrkshopgon renr Notork Protocols and App“gaﬂons Anchorage

its neighbor list. Yet an order of magnitude fewer gradient ak, 2003, IEEE.
messages than neighbor beacons were received. [6] J. Zhao, R. Govindan, and D. Estrin, “Residual energynscéor
; ; _ monitoring wireless sensor networks,” iRroceedings of the |EEE
We theonze_that many nOd,eS received such a Sma”_ Per Wireless Communications and Networking Conference, Florida, 2002,
centage of their intended gradient messages due to caobisio |Egg.
caused by synchronization of nodes’ gradient floods. Cofié J. Heidemann, F. Silva, and D. Estrin, “Matching Data dRisination
i ; ; ; o Algorithms to Application Requirements,” igensys, Los Angeles, 2003.
examination corroborated_thys theory, reveallng thatwmer . &8] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Direttdiffusion:
was added to the transmission of neighbor beacons, no jitter o scalable and robust communication paradigm for sensovarks,”
had been added to the transmission of gradient floods. in Proceedings of the Sxth Annual International Conference on Mobile
Sympathy’s strength lies in its support for highlighting g?ewsg“t'”g and Networking, Boston, MA, Aug. 2000, pp. 56-67, ACM
events and correlating them with metrics in their spatio-

temporal context. This is an improvement over traditional

REFERENCES

