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ABSTRACT OF THE DISSERTATION 
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Professor Roger E. Farmer, Chair 

 

The first chapter proposes a method for solving and estimating linear rational 

expectations models that exhibit indeterminacy. The method implements an idea of moving 

expectational errors to the set of fundamental shocks, reducing the number of solutions from 

infinity to one. This transformation allows one to treat indeterminate models as determinate and, 

therefore, apply standard solution and estimation methods to them. While not all expectational 

errors have to be moved to the set of fundamental shocks, it is shown that the choice of which 

expectational errors to move is irrelevant for theoretical solutions of indeterminate models, but is 

important when an indeterminate model is taken to data. As it is hard to identify empirically 

which expectational errors lead to indeterminacy, model estimation results might vary, 

depending on which expectational errors are moved into the set of fundamental shocks. To solve 

this problem, this chapter provides a simple “rule of thumb,” based on a Bayesian model 
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comparison, for identifying expectational errors that generate indeterminacy. Simulation results 

support the robustness of this idea. Step-by-step guidelines for implementing this method in the 

Matlab-based packages Dynare and Gensys are provided. 

The second chapter reexamines the source of the Great Moderation by estimating New-

Keynesian DSGE models with capital accumulation. In this framework, an increase of the 

nominal interest rate by the monetary authority influences the cost of renting capital, leading to 

cost-push inflation. To understand the role of this channel, a model with capital was estimated on 

U.S. data from 1960 to 2008. By not restricting the monetary policy to be active and allowing 

indeterminacy to occur, it was found that, in contrast to canonical papers, the Federal Reserve’s 

monetary policy rule remained passive in response to inflation before (1960-1979) and after 

(1982-2008) the Great Moderation. Bayesian model comparisons enable a declaration that, when 

capital is added, passive monetary policy with indeterminacy provides a better fit to the data in 

both subperiods. The results of this chapter suggest that during the Great Moderation structural 

changes were primarily on the demand side of the economy, supporting the idea of financial 

innovations.  

The third chapter sheds light on a narrow but crucial question in finance: What should be 

the parameters of a model of the short-term real interest rate? Although models for the nominal 

interest rate are well studied and estimated, dynamics of the real interest rate are rarely explored. 

Simple ad hoc processes for the short-term real interest rate are usually assumed as building 

blocks for more sophisticated models. In this chapter, parameters of the real interest rate model 

are estimated in the broad class of single-factor interest rate diffusion processes on U.S. monthly 

data. It is shown that the elasticity of interest rate volatility—the relationship between the 

volatility of changes in the interest rate and its level—plays a crucial role in explaining real 
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interest rate dynamics. The empirical estimates of the elasticity of the real interest rate volatility 

are found to be about 0.5, much lower than that of the nominal interest rate. These estimates 

show that the square root process, as in the Cox-Ingersoll-Ross model, provides a good 

characterization of the short-term real interest rate process. 
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Chapter 1. Note on Solving and Estimating Indeterminate DSGE 

Models. 

 

1. Introduction 

It is well known that linear rational expectations (LRE) models can have an indeterminate 

set of equilibria under realistic sets of parameters. In this paper, we propose a simple and robust 

method for solving and estimating linear rational expectations models that exhibit indeterminacy. 

Our method is built upon the Sims (2000) approach and uses the notion of rational expectation 

errors as a solution device. By moving expectational errors to the set of fundamental shocks, the 

number of solutions is reduced from infinity to one, allowing the standard solution algorithms to 

treat these models as determinate. We provide step-by-step guidelines for implementing this 

method in the Matlab-based packages Dynare and Gensys. 

Using LRE models became very popular in the economic profession in the past decade, 

making problems of solving and estimating these models important. The baseline solution 

approach was proposed some time ago by Blanchard and Kahn (1980), who showed that a LRE 

model can be written as a linear combination of backward-looking and forward-looking 

solutions. Since then a number of alternative approaches for solving linear rational expectations 

models have emerged (see, for example, King and Watson (1998), Klein (1999), Uhlig (1999), 

and Sims (2001)). All of these methods provide a solution only if the dynamics equilibrium path 

is unique, or, in other words, if the model is determinate. Usually, solution algorithms are based 

on the idea that under determinacy dynamics of forecast errors are uniquely defined by 

fundamental shocks, such that the explosive dynamics of real variables are eliminated. A 
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commonly used Sims (2001) solution method for determinate models basically defines 

expectational errors as functions of exogenous shocks to eliminate explosive components from 

the dynamics of real variables. 

A recent body of literature has emerged that exploits the existence of an indeterminate set 

of equlibria as a means of better understanding full the dynamics of standard models (see a 

review in Benhabib and Farmer (1999)). Existence of indeterminacy moved from been a 

theoretical artifact to a new approach for modeling the self-fulfilling dynamics of business cycles 

and monetary transmission mechanisms. Benhabib and Farmer (1994) showed that a standard 

one-sector growth model with increasing returns displays an indeterminate steady state and can 

be exploited to generate business fluctuations driven by self-fulfilling beliefs. More recent New-

Keynesian models exhibit indeterminacy if the monetary authority does not increase the nominal 

interest rate enough in response to higher inflation (see, for example, Kerr and King (1996), 

Rotemberg and Woodford (1998), and Christiano and Gust (1999)). 

Taking a model with indeterminacy to data has always been a complex task. Farmer and 

Guo (1994) showed that impulse response functions of major economic variables from an 

indeterminate model with increasing returns match moments of U.S data better than traditional 

models. Farmer and Guo (1995) were the first to demonstrate that a general equilibrium model 

with an indeterminate steady state does a good job of accounting for the propagation mechanism 

in U.S. data. Lubik and Schorfheide (2004) use a Bayesian approach to estimate the DSGE 

model on U.S. data and found that U.S. monetary policy post-1982 is consistent with 

determinacy, whereas the pre-Volcker policy is not. 

Solving and estimating indeterminate models is challenging, as non-fundamental shocks 

may contribute to the variance of economic fluctuations. In this framework, a direct application 
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of Sims' (2001) algorithm, as well as other algorithms, will not deliver a solution, as the 

Blanchard-Kahn stability conditions would be violated. Therefore, solution methods of 

indeterminate models are usually based on the idea of adding non-fundamental shocks in the 

solution of a model. If the equilibrium is not unique, it is possible to construct sunspot equilibria, 

in which stochastic disturbances that are unrelated to fundamental shocks influence model 

dynamics. Lubik and Schorfheide (2003) provide simple methods for analyzing the effects of 

fundamental and sunspot shocks in indeterminate LRE models. They show that imposing certain 

restrictions on the structure of sunspot shocks is important to characterize the full set of 

equilibria and indentify model parameters. 

Estimation of indeterminate models is sometimes connected with identification issues, as 

additional non-fundamental shocks might influence the dynamics of real variables differently. 

Beyer and Farmer (2007) show that sometimes it is not possible to decide whether data is 

generated by a determinate or an indeterminate model, without imposing additional assumptions 

regarding the structure of the model. Lubik and Schorfheide (2003) show that not all parameters 

are unidentifiable when the model is indeterminate and, therefore, additional restrictions are 

necessary. 

This paper provides a coherent transformation method for solving indeterminate models. 

Our method implements the idea of moving expectational errors to the set of fundamental 

shocks, reducing the number of solutions from infinity to one. This transformation allows 

treating indeterminate models as determinate and, therefore, applying standard solution and 

estimation methods to them. Also, we establish a method for empirically identifying which 

expectational errors lead to indeterminacy and provide a simple rule of thumb based on a 

Bayesian model comparison for it. We provide recommendations for choosing parameters of 
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sunspot shock priors. We show that for identification purposes it should not matter which 

expectational error is moved to the set of fundamental shocks, as parameters of their covariances 

with fundamentals shocks and variances are functions of each other. 

This paper is organized as follows. In Section 2, we provide a general solution method 

for indeterminate models. In Section 3, we discuss the choice of expectational errors that should 

be moved to the set of fundamental shocks. In Section 4, we document the fact that there is a 

one-to-one correspondence between variances and covariances of shocks under different 

selections of expectational errors that are moved to the set of fundamental shocks. In Section 5, 

we provide a step-by-step application of the proposed solution method to a simple New-

Keynesian model. We provide step-by-step guidelines for implementing this method in the 

Matlab-based packages Dynare and Gensys in Sections 6 and 7, respectively. Then we conclude. 

 

2. The Solution Method of Indeterminate Models 

In this section, we provide a general solution method for linear rational expectations 

(LRE) models that exhibit indeterminacy. Under indeterminacy, the equilibrium is not unique 

and non-fundamental (co-called “sunspot”) shocks influence model dynamics. One way to deal 

with indeterminate models is based on using expectational errors as a solution vehicle. The 

proposed method implements this idea, by moving expectational errors to the set of fundamental 

shocks. This transformation reduces the number of solutions from infinity to one and allows us to 

treat indeterminate models as determinate with additional shocks. In this section, a description of 

this idea is provided. 

Consider a k -equation LRE model with p  expectational variables and l  exogenous 
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shocks. It is typical to add an expectational error equation for each expectational variable, such 

that the model can be presented as a system of )( pk   equations:
1
  

(2.1)      ,110 tttt zXX  
 

 where 
tX  is a 1)(  pk  vector of variables, which include k  endogenous and p  

expectational variables, 
tz  is an 1l  vector of exogenous shocks, and 

t  is a 1p  vector of 

expectational errors. ,,, 10   and   are matrices of coefficients of the model.   

T

ttt zzE 1  is 

an ll  covariance matrix of exogenous shocks. Each expectational variable, 
tit XE ,1
 , has a 

corresponding expectational (forecast) error equation: 

(2.2)      .,1,, tittiti XEX   

The model is determinate if the number of expectational variables equals the number of 

unstable (that are more than one in absolute value) roots of system (2.1).
2
 Under determinacy, 

dynamics of forecast errors are uniquely defined by fundamental shocks, such that explosive 

dynamics of real variables are eliminated. Sims' (2001) solution algorithm for determinate 

models basically chooses expectational errors, 
t  , as functions of exogenous shocks, 

tz  , to 

eliminate explosive components in the dynamics of 
tX . 

In many cases, the number of expectational variables is bigger than the number of 

unstable roots of system (2.1). In other words, there are many (a continuum of) equilibrium 

paths, making the solution of the model indeterminate. In this case, a direct application of Sims' 

(2001) algorithm will not deliver a solution, as the Blanchard and Kahn (1980) conditions would 

be violated. 

                                                      

1
Although there is no constant term in this model, the conclusions do not change for the model with a non-

zero vector of constants. 
2
This condition is the usual case. Sims (2001) provides more general conditions. 
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The proposed method solves this problem. Under indeterminacy, sunspot shocks affect 

model dynamics through endogenous expectational errors. Lubik and Schorfheide (2003) show 

explicitly that in the solution of indeterminate LRE models, dynamics of real economic variables 

become a function of exogenous shocks and expectational errors. As expectational errors 

influence real economic variables under indeterminacy, they can be treated as fundamental 

shocks. The proposed method suggests moving expectational errors to the set of fundamental 

shocks, reducing the number of solutions from infinity to one. If a model has m  degrees of 

indeterminacy (the difference between the number of stable roots and the number of 

expectational variables), then m  expectational errors should be moved to the set of fundamental 

shocks. This transformation allows one to treat indeterminate models as determinate and, 

therefore, to apply standard solution and estimation methods. 

Keeping this in mind, consider model (2.1) with m  degrees of indeterminacy. The vector 

t  can be split in two sub-vectors 
t,1  and 

t,2  :  

(2.3)        ,
,2

,1

21110 







 

t

t

ttt zXX



 

where 









t

t

t

,2

,1




  and   21   , such that 

t,1  is an 1m  vector, consistent with 

m  degrees of indeterminacy of the model.
3
 

Our method of solving LRE models with indeterminacy proposes treating m  

expectational errors as fundamental shocks. One can re-write the system by moving 
t,1  from the 

vector of expectational shocks to the vector of fundamental shocks:  

                                                      

3
By the definition of  m  , it is always the case that  pm  . 
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(2.4)        ,~
,221110 tttt zXX  

 

where 
tz~ = 









t

tz

,1
 should be treated as a new vector of fundamental shocks and 

t,2  as a new 

vector of expectational errors. A new covariance matrix of fundamental shocks is 

1

,1,1

1 
































T

t

t

t

t

t

zz
E


. Note that, by specifying how the new fundamental error 

t,1  covaries 

with 
tz , a particular dynamics path is picked. 

As the number of expectational errors was decreased by m , the number of degrees of 

indeterminacy of the model (2.4) was decreased from m  to zero. Therefore, the model (2.4) can 

be treated as determinate and standard solution methods can be applied to it. As m  expectational 

errors were moved to the set of fundamental shocks, the solution of the model would be a 

function of these expectational errors, as well as of the function of fundamental shocks. Below, 

we show how the model can be solved in this case. 

Solving the model (2.4) for 
tX :

4
  

(2.5)        ,
~~~~~

,22111 tttt zXX    

where 
1

1

01

~
  ,  1

0

~
, 1

1

01

~
 

, and 2

1

02

~
 

 

Using the Jordan decomposition 1

1

~  JJ  , the system can be re-written as:  

(2.6)        ,
~~~~

,2211

1

tttt zXJJX  

  

Multiplying both sides by 1J  , the system takes the form:  

(2.7)        ,ˆ~ˆˆ
,2211 tttt zww    

                                                      

4
It is assumes that  

0   is invertible. Although it is a special case, it is often observed in practice. 
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where 
1

1



 tt XJw ,   ~ˆ 1J , 
1

1

1

~ˆ  J , and 
2

1

2

~ˆ  J . 

 The matrix   is diagonal with eigenvalues of 
1

~
  on its diagonal and, therefore, the 

equations of the system (2.7) are independent of each other. As this model has m  degrees of 

indeterminacy, the matrix 
1

~
  must have )( mp   unstable (larger than one in absolute value) and 

)( pk   stable (smaller than one in absolute value) eigenvalues.
5
 The system (2.7) can be re-

arranged in the order such that )( mp   equations related to unstable eigenvalues (elements of   

that are greater than one in absolute value) are at the bottom. As unstable solutions must be 

eliminated by adjustment of expectational errors, the solution of the model requires satisfying the 

following condition:  

(2.8)        ,ˆ~ˆˆ
,2,2,1 tUtUU z   

where 
UA][  denotes rows of the matrix A  related to unstable roots of matrix  . 

Equation (2.8) determines the dynamics of expectational errors as functions of the new 

vector of fundamental shocks 
tz ,1

~ . In the solution, the expectational error vector 
t,2  is a function 

of 
tz ,1

~ :
6,7

  

(2.9)        .~ˆˆˆ
,1

1

,2,2 tUUUt z   

Substituting (2.9) in (2.5), the solution of the model takes the form:  

(2.10)          .ˆˆ~ˆ~ˆˆ~~~
,1,1

1

,221

1

,2211 tUUtUUtt zXX  

  

 

                                                      

5
A determinate model would have  p   unstable and  k   stable eigenvalues. 

6
 U,2̂  is a  )()( mpmp    square matrix, as its dimensions are determined by the number of 

expectational errors,  p  , minus the number of degrees of indeterminacy, m . 

7
 U,2̂  is an invertible matrix to by its construction. 
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The solution of the LRE model (2.1) under indeterminacy is a function of fundamental 

shocks 
tz ,1
 , as well as of the vector of expectational shocks .,1 t  An important element that 

determines the dynamics of the model (in the continuum of solutions under indeterminacy), is 

the covariance matrix 1  , which specifies how expectational errors 
t,1  covary with the 

fundamental shocks 
tz . 

To summarize, the proposed transformation method allows treating indeterminate model 

as determinate with an extended vector of fundamental shocks. Standard solution techniques can 

be applied in this case. As some expectational errors become fundamental shocks, they influence 

the dynamics of real variables under indeterminacy. 

 

3. Choice of Expectational Errors 

In the previous section we split the vector 
t  into the vectors 

t,1  and 
t,2  and then chose 

t,1  to move to the set of fundamental shocks. This choice was somewhat arbitrary, as it was 

necessary to move only  m  out of p  expectational errors. In this section, it is shown that the 

selection of expectational errors, which are chosen to be moved to the vector of fundamental 

shocks, is irrelevant for the solution. The only difference is that the solution is expressed as a 

function of different expectational errors under different selections. In other words, there is a 

linear combination of expectational errors that delivers the same dynamics under different 

selections of expectational errors. 

On order to get an intuitive confirmation of this result, let's first consider a simple case 

and assume that 
t,1  and 

t,2  have the same dimensions (or that p  is even and 2/pm   ). And 
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let's choose 
t,2  instead of 

t,1  to be moved to the set of fundamental shocks. In this case, the 

model can be solved for 
t,1  as a function of 

tz  and .,2 t  Parallel to (2.10), the solution of the 

model takes the form:  

(3.1)      .ˆˆ~ˆ~ˆˆ~~~
,2,2

1

,112

1

,1111 tUUtUUtt zXX  

  

with the covariance matrix 2  , which specifies how the expectational error 
t,2  

covariates with fundamental shocks, 
tz . 

The solution in this case is a function of the fundamental shock 
tz ,1
 and the expectational 

error 
t,2  , not 

t,1  as in (2.10). Note that dynamics of the expectational errors 
t,2  and 

t,1  are 

not observed, making the choice of an equilibrium path under indeterminacy somewhat arbitrary. 

More generally, the stability conditions of the LRE model (2.4) are determined by the 

equation (2.8), which is a linear combination of fundamental shocks, zt  , and the expectational 

errors 
t,1  and 

t,2 . A general version of this condition can be written in the form:  

(3.2)  .0ˆˆ
,2  tUtU z   

This equation shows that any sub-set of expectational errors can be fundamental shocks 

in the indeterminate model, as all errors are linearly dependent. If the model has m  degrees of 

indeterminacy, m  out of p  expectational errors have to be moved from the vector of 

expectational errors, ,t  to the set of fundamental shocks, 
tz . The dynamics of the remaining 

)( mp   expectational errors become endogenous. As expectational errors in the vector 
t  are 

linearly dependent in (3.2), it does not matter for the solution which of them are moved to the set 

of fundamental shocks. More precisely, there is a linear combination of expectational errors that 

would deliver the same solution. 
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Comparing solutions (2.10) and (3.1), one might expect that there exist such variance of 

expectational errors and their covariances with fundamental shocks that dynamics of 
tX  are the 

same in both cases. In other words, both solutions can produce the same dynamics of real 

variables under certain restrictions on covariance matrices 1  and .2  We provide a formal 

characterization of this idea below and give examples in the next sections. 

 

4. Specifying Covariances of Expectational Errors 

As discussed in the previous section, the choice of which expectational error to move to 

the set of fundamental shocks is somewhat arbitrary, as expectational errors are linearly 

dependent. While the question of which set of expectational errors should be fundamental shocks 

is irrelevant from the theoretical standpoint, it becomes crucial when one decided to take a model 

to data. As it is typical to use the Bayesian approach to estimate DSGE models, specification of 

priors of estimated parameters, including parameters of expectational shocks (if the model is 

indeterminate) becomes necessary. Estimation results would vary, depending on which 

expectational error is moved into the set of fundamental shock. 

In this section we document the fact that there is a way of specifying priors that 

reintroduces equivalence, or there is a one-to-one correspondence between variances and 

covariances of shocks under different selections of expectational errors that are moved to the set 

of fundamental shocks. In other words, under two choices of two expectational variables, 
t,1  or 

t,2  , that are moved to the set of fundamental shocks, their covariances with fundamental shocks 

and variances (both are elements of matrices 1  and 2  ) can be expressed as function of each 

other. 
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Following the previous section, the vector 
t  can be split into two sub-vectors 

t,1  and 

t,2  with dimensions 1m  and ,1)( mp  respectively. The condition (3.2) can be written as:  

(4.1)      .0ˆˆˆ
,2,2,1,1  tUtUtU z   

Assuming that the covariance between expectational errors is zero, one can express the 

variance of one expectational error and its covariance with the fundamental shock as a function 

of the variance of another expectational shock and its covariance with the fundamental shock. If 

t,1  is decided to be an exogenous shock, the covariance matrix of exogenous shocks includes 

the variance (matrix) of ,,1 t  as well as the covariance matrix of 
t,1  and .tz  In this case, the 

expectational shock 
t,2  becomes endogenous and its dynamics are a function of 

t,1  and zt  :  

(4.2)       ,ˆˆˆ
,1,1

1

,2,2 tUtUUt z     

which can be re-written as:  

(4.3)      ,,11,2 tt zV  

where  UUUUV ,1

1

,2

1

,21
ˆˆˆˆ     and the extended vector 










t

t

t

z
z

,1

,1 
 with its 

covariance matrix 1 . 

As discussed in the previous sections, the solution of the model in this case is a function 

of the fundamental shock, 
tz  , and the expectational errors 

t,1 . The covariance matrix 1  

includes covariances between the elements of the new vector of fundamental shocks z1,t . This 

matrix plays an important role for model estimation, when it is important to estimate the 

structure of shocks. 

Now, consider the extended vector 









t

t

t

z
z

,2

,2 
. The covariance matrix of its elements 
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can be decomposed into the variance matrices of its components:  

(4.4)      .
][][

][][
)(

,2,21,21

,211

,2,2

1,212


















































 T

ttt

T

ttt

T

ttt

T

ttt

T

t

t

t

t

ttt
EzE

zEzzEzz
EzVar






 

Note that ][1
T

ttt zzE 
 is a variance matrix of fundamental shocks, which does not depend 

on the selection of expectational errors. The covariance matrix ][ ,21

T

ttt zE   can be derived, using 

(4.3):  

(4.5)      .][][
,1

11,111,21












  T

tt

T

tt

t

T

ttt

T

ttt
z

zz
EVzzVEzE


  

Also, note that the variance matrix ][ ,2,21

T

tttE   is:  

(4.6)      ,][ 111,2,21 VVE TT

ttt    

where 1  is a covariance matrix of 
tz  and .,1 t   

These findings are particularly important when one decides to estimate an indeterminate 

model, using the Bayesian approach, when specification of priors for expectational shock 

parameters becomes necessary. Equations (4.5) and (4.6) show that elements of the matrix 2  

can be expressed as functions of elements of the matrix 1 . Therefore, for identification 

purposes it should not matter which expectational error is moved to the set of fundamental 

shocks, as parameters of their covariances with fundamentals shocks and variances are functions 

of each other. In the following sections, we discuss the implications of these results for two 

models with indeterminacy. 

 

5. Example: a Simple New-Keynesian Model 

In this section, we provide a step-by-step application of the proposed solution method to 
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a simple New-Keynesian model, discussed in Lubik and Schorfheide (2003). A canonical version 

of this model is a system of three equations: 

(5.1)      ,][][ 11 tttttt RxExE   
 

(5.2)      ,tttR    

(5.3)      ,][ 1 tttt xE   
 

where 
tx  is output, 

t  is inflation, 
tR  is the interest rate, and 

t  is an interest rate shock. 

The first equation is a consumption-Euler equation, the second one is a monetary policy rule of 

the monetary authority, and the third one is a New-Keynesian Phillips curve. This model has two 

forward-looking variables and one fundamental shock. As in the monetary policy rule the 

nominal interest rate is a function of the current inflation only, this model can be solved 

analytically. 

Substituting 
tR  with (5.1) and using the expectational error equations  

( ][1,1 tttt xEx   and ][1,2 tttt E    ), this model can be reduced to a system of two 

equations:  

(5.4)      ,])[(][][][ 1,21,111 ttttttttttt ExEExE   
 

(5.5)       ]).[(][][ 1,11,21 tttttttt xEEE     

 

In matrix notations, this system can be presented in the standard form (2.1):  

(5.6)      ,110 tttt zXX  
 

where ,

100

100

1000

0100

,

000

100

0010

0001

10


















































 ,

0

0

0






















 and 























1

1

10

01




. 
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  ][],[,, 11 ttttttt ExExX   is a vector of variables, ][ ttz   is a vector of fundamental shocks, 

and ],[ ,1,1
 ttt   is a vector of expectational shocks. 

As a first step towards solving the model, both sides of the system (5.6) are multiplied by 

1

0

  :  

(5.7)      ,1

0

1

011

1

0 tttt zXX  



  

where 

 

1

1

0

000

100

0010

0001



























 = 




























1000

100

0010

0001

 , 

 



















































































 




11

1

1

0

00

100

1000

0100

100

100

1000

0100

000

100

0010

0001

 , 

 
































































0

0

0

0

0

0

000

100

0010

0001

1

1

0







 , and 

 



















































































 




11

1

0 1

10

01

1

1

10

01

000

100

0010

0001

. 

The system takes the form:  
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(5.8)      

.
1

10

01

0

0

0

][

][

00

100

1000

0100

][

][

1

1

1

1

1

1

1

1

tt

tt

tt

t

t

tt

tt

t

t

z

E

xE

x

E

xE

x
























































































































































 

 

5.1. Stability 

Stability properties of this model are determined by the matrix 
1

1

0   with its eigenvalues 

 114222 222

2
1

1  


 , 

  114222 222

2
1

2  


 , and 043   . 

As the system has two forward-looking variables, the model is determinate if two 

eigenvalues are greater than one in absolute value. Note that the eigenvalues 
3  and 4  are 

always less than one. It can be shown that )1()1()1( 421

2

11

2

1
2,1 








   . If 1  

, then eigenvalues 11   and 12   and the model is determinate. If 1  , one of these 

eigenvalues is less than one and the model is indeterminate. 

 

5.2. Case of Determinacy 

First, consider a standard case when the model is determinate ( 1  ). As the system's 

matrix is block-triangular, one can focus on the last two equations of system (5.8):  
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(5.9)      ,
1

0

1

111 tttt zYY 






















































 

 

where 













][

][

1

1

tt

tt

t
E

xE
Y


. 

As both variables, ][ 1tt xE  and ][ 1ttE   , are forward-looking, the stable solution must 

satisfy the following condition:  

(5.10)      .0
1

0 1






















ttz 












 

In this case, the vector of expectational errors is endogenous and is a function of the 

fundamental shock:  

(5.11)      

,
1

0

1

0

1

1

1
1

1

1

t

ttt

z

zz



















































































 

implying that:  

(5.12)      .0
][

][

][

][

1

1

1

1



























tt

tt

tt

tt

E

xE

E

xE


 

Re-substituting the expectational errors in the first two equations of system (5.8), the 

solution for 
tx  and 

t  takes the form:  

(5.13)      .
1

110

01

1

1

tt

t

t
zz

x













































 





 

This example shows that under determinacy dynamics of real variables are determined 

only by the dynamics of fundamental shocks. Note that the variances of x t  and 
t  are linear 

functions of the variance of 
tz :      )(1

2

11 zVarxVar ttt  

  and     )(1

22

11 zVarVar ttt   

 . 
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5.3. Case of Indeterminacy 

Next, consider the case of the indeterminate model with one degree of indeterminacy 

)1(  . Recall the last two equations of the system: 

(5.14)      ,1 tttt zYY 



   

where 













][

][

1

1

tt

tt

t
E

xE
Y


, 

























 

1

1
 , 










0


 , and 

.
1

1 











 








 

 

Using the Jordan decomposition 1  JJ  , the system takes the form:  

(5.15)      
tttt zYJJY 



  1

1  

or  

(5.16)      ,11

1 tttt JzJww 

   

where 
tt YJw 1 . 

Let 
.1][A  denote the first row of the 2x2 matrix A . As the first eigenvalue of the system 

is more than one, the stability condition is:  

(5.17)          ,0.1

1

.1

1  

tt JzJ   

which is equivalent to a linear combination of the fundamental shock, 
tz  , and the 

expectational errors 
t,1  and 

t,2 :  

(5.18)      ,0,22,110  ttt aaza   

where   ,1
2
1

0   da
d

  

      ,11 1
2
1

1 




 

dd
da   

      ,1 1
2
1

2 


 
dd

da  and 
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 14222 222  d . 

 To solve this model under indeterminacy, we have to specify a “sunspot” shock. 

Following the method discussed in Section 1, one of the expectational errors (either 
t,1  or 

t,2  ) 

should be moved to the set of fundamental shocks. 

 Case 1. Consider 
t,1  to be a fundamental shock. In this case, the expectational error 

t,2  

can be expressed as:  

(5.19)       .,110

1

2,2 ttt azaa   
 

The solution of the model takes the form (see Appendix 1 for details):  

(5.20)      

.
0

1
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1,1

1

1

1

0

1
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


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







 

Case 2. Consider 
t,2  to be a fundamental shock. In this case, the expectational shock 

t,1  

can, likewise, be expressed as:  

(5.21)       .,220

1

1,1 ttt azaa   
 

The solution of the model takes the form (see Appendix 2 for details):  

(5.22)      
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5.4. Selection of Expectational Errors 

Moving an expectational error (either 
t,1  or 

t,2  ) to the set of fundamental shocks 

allows us to reduce the number of solutions to one under indeterminacy, making the model 

determinate. By specifying how the expectational error covariates with fundamental shocks, a 

particular sunspot equilibria (dynamic path) is chosen. If the expectational error for ][ 1tt xE  

becomes a fundamental shock, 
t,1  becomes the only fundamental shock that influences 

tx  (see 

(5.20)). From the estimation perspective, if the variance of 
t,1  is known, the variance of 

tz  is 

identifiable from the second equation simultaneously with the covariance between 
t,1  and 

tz . 

Likewise, if the expectational error for ][ 1ttE   is used as a fundamental shock, 
t,2  becomes the 

only fundamental shock that influences 
t  (see (5.22)). In this case, if the variance of 

t,2  is 

known, the variance of 
tz  is identifiable from the second equation simultaneously with the 

covariance between 
t,2  and 

tz . 

As mentioned above, the stability of this model is determined by the equation (5.17), 

which is equivalent to a linear combination between the fundamental shock 
tz  and the 

expectational errors 
t,1  and 

t,2  :  

(5.23)      .0,22,110  ttt aaza   

This equations shows that any of the two expectational errors can be a fundamental shock 

in the indeterminate model, as both errors are linearly dependent. Assuming that the covariance 

between expectational errors is zero, one can express the variance of one expectational shock and 

its covariance with the fundamental shock as a function of the variance of the other expectational 

shock and its covariance with the fundamental shock. For example, consider 
t,1  to be a 
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fundamental shock. In this case, ),(cov ,11 ttt z
 , ),( ,11 ttVar 

 and )(1 tt zVar 
 are know and the 

expectational shocks 
t,2  can be expressed as a function of fundamental shocks:  

(5.24)       ,,110

1

2,2 ttt azaa   
 

with the variance:  

      ),()()( ,11

2

1

1

21

2

0

1

2,11

1

20

1

21,21 ttttttttt VaraazVaraaaazaaVarVar  







  and its 

covariance with 
tz  :  

).,(cov)(),(cov),(cov ,211

1

210

1

2,11

1

20

1

21,21 tttttttttttt zaazVaraazaazaaz  







  If 

one considers 
t,2  to be a fundamental shock, 

t,1  becomes an endogenous error and )( ,11 ttVar 
 

and ),(cov ,11 ttt z
 can be expressed as functions of ),(cov ,21 ttt z

 , ),( ,21 ttVar 
 and )(1 tt zVar 

. 

In both cases, the variance of the two expectational shocks and their covariance with the 

fundamental shock are linearly connected. This simple example shows that the choice of which 

expectational error to move to the set of fundamental shocks is irrelevant for identification 

purposes. 

  

6. Solving and Estimating Indeterminate Models in Dynare. 

This section describes the application of the proposed method for solving and estimating 

indeterminate LRE models in Dynare.
8
 We start with an example of a code for the canonical 

New-Keynesian model with two expectational variables and three shocks. Then we discuss a 

                                                      

8
Dynare is a Matlab-based software platform for handling a wide class of economic models, in particular 

dynamic stochastic general equilibrium (DSGE). Visit www.dynare.org for details. 
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method for choosing which expectational errors that should be moved to the set of fundamental 

shocks. We propose a simple “rule of thumb” for identifying the expectational errors that lead to 

indeterminacy. We also provide recommendations for choosing parameters of sunspot shock 

priors. Finally, we provide simulation tests in Dynare, applying the “rule of thumb.” 

 

6.1. Example: a Dynare code for the Canonical New-Keynesian Model 

In this section, we show how to estimate indeterminate models in Dynare and suggest a 

rule of thumb for choosing which expectational errors should be fundamental shocks when 

solving indeterminate models. Consider the canonical New-Keynesian model, which can be 

presented as a system of three equations (details can be found, for instance, in King (2000) and 

Woodford (2003)):  

(6.1)      ,])[(][ 11 ttttttt gERxEx     

(6.2)       ,][ 1 ttttt zxE     

(6.3)       ,))(1( ,211 tRttRtRt xRR   
 

where 
tx  is output, 

t  is inflation, and Rt  is the interest rate. The first equation is a 

consumption-Euler equation, the second one is the New-Keynesian Phillips curve, and the third 

one is a monetary policy rule. This model has two expectational variables, ][ 1tt xE  and ][ 1ttE   

, and three exogenous shocks. Note that, as the monetary policy rule is a function of output and 

the previous period's interest rate, there is no simple analytical solution for this model, as there 

was in the previous section. Therefore, numerical methods have to be applied. A standard result 

is that this model is indeterminate of degree one if the monetary policy is passive ( 11   ) and 

determinate if the monetary policy is active ( 11   ). 
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In the case of the determinate model ( 11   ), Dynare solves the model forward for both 

forward-looking variables and finds the series of expectational errors that does not allow real 

variables to explode. This path is unique in the determinate model. The Dynare code for this 

model is relatively standard. In Appendix 3, we provide a simple Dynare code that solves, 

simulates, saves simulated data series, and then estimates this model based on the simulated data. 

In the case of the indeterminate model ( 11   ), running the Dynare code that was 

applied to the determinate model would show an error with a message “Blanchard-Kahn 

conditions are not satisfied: indeterminacy.” As the model is indeterminate, following the 

proposed method, one of the two expectational errors (either for ][ 1tt xE  or for ][ 1ttE   ) has to 

be moved to the set of fundamental shocks. There are only two ways to do that and, therefore, 

two indeterminate models are considered - Model 1, where the expectational error for ][ 1tt xE  is 

a fundamental shock, and Model 2, where the expectational error for ][ 1ttE   is a fundamental 

shock. 

Consider, for example, that we want to solve and estimate Model 1. Basically, in 

comparison with the Dynare code for the determinate model, it is necessary to modify three 

elements of the code to adapt it for the indeterminate model: variables, parameters, and the 

model structure. In Table 1, we provide a comparison of the parts of Dynare codes for 

determinate and two indeterminate models. Note that the variable ][ 1tt xE  is normally written as 

x(+1) in Dynare, such that Dynare treats it as a conditional expectation of this variable at time t. 

Instead of supplying Dynare with x(+1), one can use a new variable xs for ][ 1tt xE  and make it 

an endogenous variable in the list of variables. As we want to eliminate one forward-looking 

variable, an expectational error equation, 
tttt xxE 1
 , should be added to the model part of 
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the code. 

The following changes have to be applied to the determinate model's Dynare code: 

 1. Add a variable xs (for ][ 1tt xE  ) to the set of endogenous variables in the code: 

var x, R, pi, xs;  

 2. Add an expectational shock (sunspot) into the set of exogenous shocks: 

varexo er_R, er_g, er_z, sunspot;  

 3. Add the variance parameter (sigmasun) of the expectational shock into the set of 

parameters: 

parameters tau, kappa, rho_R, psi1, psi2, sigmag, sigmaz, sigmaR, sigmasun; 

 4. Instead of x(+1) for ][ 1tt xE  , use xs in the consumption-Euler equation: 

x=xs-1/invtau*(R-pi(+1))+sigmag*er_g;  

 5. Add the expectational error equation, 
tttt xxE 1
 , to the model: 

xs(-1)=x+sigmasun*sunspot; 

 

Similar steps should be taken to solve and estimate Model 2, where the expectational 

error for ][ 1ttE   is a fundamental shock. 

Note that, by substituting expectations of forward-looking variables x(+1) in Model 1 and 

pi(+1) in Model 2 with xs and pis, respectively, the number of forward-looking variables was 

decreased by one in each case. This transformation makes Dynare treat these models as 

determinate. Once this substitution is made, we have to add an equation that describes the 

dynamics of an expectational error, which we decided to move to the set of exogenous shocks. 

We add an expectational error equation (
tttt xxE 1
 in Model 1 and 

ttttE  1
 in Model 

2) in the Dynare code and add a sunspot shock in the set of exogenous shocks. Dynare treats 



25 

 

these models as determinate with one additional exogenous (sunspot) shock. 

In Appendix 3, we provide complete Dynare codes for the determinate model and two 

indeterminate models. The codes solve the models, simulate data series, save simulated data 

series, and then estimate these models based on the simulated data. 

 

 

Table 1. Comparison of Dynare codes. 

 

 

6.2. Which Expectational Errors Should be Fundamental Shocks? The 

“Rule of Thumb.” 

In this section, we propose a “rule of thumb” on how to decide which expectational 

error(s) should be moved to the set of fundamental shocks in the model with p  expectational 

variables and m  degrees of indeterminacy. The rule is based on the idea of estimating all 

possible indeterminate models and then choosing the model that has the highest Bayesian 
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posterior probability. The proposed “rule of thumb” has the following steps: 

 Step 1. Write a standard Dynare code that would solve a determinate model. (If you run 

this code, Matlab should stop with a message, “Blanchard-Kahn conditions are not satisfied: 

indeterminacy.”) 

 Step 2. Determine the number of degrees of indeterminacy of the model, the difference 

between the number of stable roots and the number of expectational variables (a command check 

can be used for it). 

 Step 3. In the model with m degrees of indeterminacy, m expectational errors should 

become fundamental shocks and m expectational error equations should be added in the code. 

For that, write down all possible combinations of m (out of p  total)
9
 expectational errors that 

can be moved to the set of fundamental shocks. 

 Step 4. Write Dynare codes for models with all the different combinations of 

expectational variables from Step 3. When specifying priors, it is important to impose minimum 

restrictions on correlation between expectational shocks and other shocks. It is reasonable to use 

zero average correlations as priors and assume that correlation coefficients have a uniform 

distribution along the (-1,1) interval. 

 Step 5. Estimate all models. 

 Step 6. Provide Bayesian comparisons of these models (command model_comparison). 

Choose the model that has the highest posterior probability as the final model. 

                                                      

9
The number of combinations is !)!(

!),( mmp

ppmC  . (Usually this number is relatively small. For 

example, if the number of degrees of indeterminacy is one and the model has two expectational errors, then there are 

two ways to move an expectational error to the set of fundamental shocks.) 
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In the next section, we apply this rule when estimating a canonical New-Keynesian 

model with two expectational errors. We show that this rule is robust in identifying expectational 

errors that lead to indeterminacy. 

 

6.3. Applying the “Rule of Thumb.” 

In this section, the model (6.1)-(6.3) is simulated and estimated in Dynare under 

indeterminacy (see Dynare codes in Appendix 3). Prior means, standard deviations, and 

distributions of parameters of the model are specified (see Appendix 4). The monetary policy is 

assumed to be passive ( 11  ), making the model exhibit one degree of indeterminacy. As there 

are two expectational errors (for ][ 1tt xE  and ][ 1ttE  ), two indeterminate models are considered 

- Model 1, where the expectational error for ][ 1tt xE  is a fundamental shock, and Model 2, where 

the expectational error for ][ 1ttE   is a fundamental shock. First, both models were simulated 

and data series were generated from both models. Second, both models were estimated on both 

data series. Third, Bayesian comparisons were provided to evaluate which model better fits the 

data for each simulated data set. 

The simulated and estimated results are presented in Appendix 4. Results of Bayesian 

comparisons of these models are presented in Table 2 and Table 3. The conclusions are not 

surprising. If data are generated from Model 1, the Bayesian comparison shows that Model 1 

dominates Model 2 with probability of almost one (Table 3). If data are generated from Model 2, 

Model 2 dominates Model 1 (Table 3). Therefore, Bayesian comparisons of these models allow 

us to empirically identify expectational errors that lead to indeterminacy. This method gives a 

clear answer as to the type of model data were generated from and supports the proposed “rule of 
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thumb” in choosing which expectational errors should be fundamental shocks. 

 

 

Table 2. Bayesian comparison of the indeterminate models, based on data generated from Model 1. 

 

 

 

Table 3. Bayesian comparison of the indeterminate models, based on data generated from Model 2. 

 

 

7. Solving Indeterminate Models in “Gensys” 

The proposed method can be applied when solving LRE models in Gensys, a Matlab 

code developed by Chris Sims (see Sims (2001)). This code provides a computationally robust 

solution method, based on the QZ matrix decomposition. The code automatically determines 

whether the model satisfies Blanchard-Kahn stability/uniqueness conditions and provides 

solutions only for determinate models. This code requires specifying how expectational errors 

enter the system. Basically, Gensys requires the specification of matrices ,,, 10   and  . 

As an example, consider the standard New-Keynesian Model (5.1)-(5.3), discussed in 
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Section 5. Recall that in matrix notations this model can be presented as (2.1):  

(7.1) ,110 tttt zXX  
 

where   ],[],[,][],[,, ,1,111
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Under determinacy, Gensys will provide a solution of this model if matrices ,,, 10   

and   are supplied as inputs. 

If the model is indeterminate, Gensys will not provide a solution, referring to its non-

uniqueness. Using the proposed method, the model can be re-specified in a way, such that one of 

the expectational errors (either 
t,1  or 

t,2  ) becomes a fundamental shock. Assuming that 
t,1  is 

moved to the set of fundamental shocks, then the model takes the form: 

(7.2) ,110



  tttt zXX   
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. 

 In this case, Gensys should be supplied with the same matrices 
0  and 1  and new 

matrices   and  . Under this specification, Gensys treats 
t,1  as the second fundamental 

shock and the number of expectational errors is decreased by one. Note that, as the model was 

indeterminate with one degree of indeterminacy, by moving 
t,1  into the set of fundamentals 

shocks, we “eliminated” one stable root, such that the system in its new specification (7.2) is 

determinate. In this case, Gensys will provide a solution of this model as a function of 
t  and 
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t,1 . 

Likewise, if 
t,2  is moved to the set of fundamental shocks, it would be necessary to re-

specify matrices   and   and Gensys would provide the solution as a function of 
t  and 

t,2 . 

 
Conclusion 

Solving and estimating indeterminate LRE models has always been an issue, as standard 

solution algorithms are unable deliver solution for these models. To overcome this problem, this 

paper provides a coherent and robust method for solving and estimating LRE models with 

indeterminacy. Our method implements the idea of transforming indeterminate models in such a 

way that they could be treated as determinate and, therefore, standard solution and estimation 

methods can be applied. We provide examples of the application of our method to solutions of 

standard New-Keynesian models, with step-by-step implementation guidelines in Dynare and 

Gensys. 

In our method, some expectational errors have to be treated as fundamental shocks, 

which raises the question of which set of expectational errors should be moved to the set of 

fundamental shocks. We provide an evaluation of different choices and show that it does not 

matter for the solution which expectation errors are moved to the set of fundamental shocks. As 

it is hard to identify which expectational errors lead to indeterminacy, we establish an empirical 

method for discovering expectational errors that lead to indeterminacy in data and provide a 

simple rule of thumb based on a Bayesian model comparison. Simulation results support the 

robustness of this technique. 

This paper may be of particular interest to economists, who deal with estimating and 
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solving LRE models and do not want to restrict their models to be determinate.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 

 

References 

1.      Benhabib, Jess and Roger E. A. Farmer, Indeterminacy and Increasing Returns, Journal of 

Economic Theory 63 (1994), pp. 19-46. 

2.      Beyer, Andreas and Roger E. A. Farmer, Testing for Indeterminacy: An Application to U.S. 

Monetary Policy: Comment. The American Economic Review, Vol. 97, No. 1 (Mar., 2007), pp. 524-529. 

3.      Blanchard, Olivier J. and Charles M. Kahn, The Solution of Linear Difference Models under 

Rational Expectations, Econometrica 48 (1980), pp. 1305-1313. 

4.      Christiano, Lawrence J. and Christopher J. Gust, Taylor Rules in a Limited Participation Model. 

NBER Working Paper 7017 (1999). 

5.      Farmer, Roger E. A. and Jang Ting Guo, Real Business Cycles and the Animal Spirits 

Hypothesis, Journal of Economic Theory 63 (1994), pp. 42-73. 

6.      Farmer, Roger E. A. and Jang-Ting Guo, The Econometrics of Indeterminacy, Carnegie 

Rochester Series on Public Policy 43 (1995), pp. 225-273. 

7.      Kerr, William R. and Robert G. King, Limits on interest rate rules in the IS-LM model. Federal 

Reserve Bank of Richmond Economic Quarterly (1996). 

8.      King, Robert G., & Watson, Mark W., The solution of singular linear difference systems under 

rational expectations. International Economic Review, 39(4) (1998), pp.10151026. 

9.      Klein, Paul, Using the generalized Schur form to solve a multivariate linear rational expectations 

model. Journal of Economic Dynamics and Control, 24 (1999), pp.14051423. 

10.      Lubik, Thomas A. and Schorfheide, Frank, Computing Sunspot Equilibria in Linear Rational 

Expectations Models, Journal of Economic Dynamics and Control 28, 2 (2003), pp. 273-285. 

11.      Lubik, Thomas A. and Schorfheide, Frank, Testing for Indeterminacy: An Application to U.S. 

Monetary Policy, American Economic Review 94 (2004), pp. 190-219. 

12.      Sims, Christopher A., Solving Linear Rational Expectations Models, Journal of Computational 

Economics 20, 1-2 (2001), pp. 1-20. 



33 

 

13.      Uhlig, Harald, A toolkit for analyzing nonlinear dynamic stochastic models easily. Users Guide, 

(1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

Appendix 1. Case of Indeterminacy 1 

Consider the case when 
t,1  is moved to the set of fundamental shocks. As the system 

(5.8) matrix is block-triangular, we can focus on its last two equations of the system:  

(A.1)      ,1 tttt zYY 



   

where 













][

][

1

1

tt

tt

t
E

xE
Y


 , 





















 

1

1
 ,   









0


 , and 






















 

1

1

. 

Step 1. Using Jordan decomposition JJ   1  , we have: 

(A.2)      ,11

1 tttt JzJww 

   

where 













][

][

1

11

tt

tt

t
E

xE
Jw


 , 

   











11

11

22

1

22

1 dd
J




 , 

 
 

 












10

01

2

1

2

1

d

d








 , and 

   
    
















dd

dd

d

d
J

1

2

1

1

2

1

1

1

1
. 

Note that with   11
2

1
1  d


 and   11

2

1
2  d


 , where 

14222 222  d . 

 

Step 2. Let 
.1][A  denote the first row of the 2x2 matrix A . As 11   , we would have to 

eliminate the first row in the system of equations. 
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(A.3)      As      
   

 
 























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2
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d
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d
J

d

d

dd
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 , 

(A.4)          1
2
1

.1

1   dJ
d

. 

And as 
   
   











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



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









 




11

2

1

1

2

1

1
1

1

1

dd

dd

d

d
J   

         
         

















111

111

2

111

2

1

1

2
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



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




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


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
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1

1
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 The system takes the form: 

(A.5)      
 
 
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 Step 3. As the first eigenvalue of the system is more than one, the stability condition is 

determined by the equation:  

(A.6)          ,0.1

1

.1

1  

tt JzJ   
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(A.7)      
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

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 The equation that determines the dynamics of the expectational errors is:  
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(A.8)      
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(A.9)      ,0,22,110  ttt aaza   
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1
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d
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 Step 4. Consider 
t,1  to be a fundamental shock. In this case, the expectational shocks 

t,2  can be expressed as a function of fundamental shocks: 

(A.10)       .,110

1

2,2 ttt azaa   
 

The system takes the form: 
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Step 5. The solution for ][ 1tt xE  and ][ 1ttE   is of the form:  
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Using the definition of expectational errors:  
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Moving 
1t  to the right hand side and separating :t   
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 and re-grouping: 
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 Re-writing the system one period backwards: 
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Appendix 2. Case of Indeterminacy 2 

Consider the case when 
t,2  is moved to the set of fundamental shocks. The step of the 

solution are similar to those in Appendix 1. From the stability condition (5.18)  

(A.24)      ,0,22,110  ttt aaza   

The expectational error 
t,1  :  
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The model takes the form: 
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 We found the solution for ][ 1tt xE  and ][ 1ttE   in the form:  
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Using expressions for expectational errors: 
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(A.28)       
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we obtain: 
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 and re-grouping: 
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 Re-writing for one period backwards: 
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 The final solution is:  
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Appendix 3. Dynare Codes 

Dynare Code 1. Determinate model. 

// The Standard New-Keynesian Model with Two Forward-looking Variables and One 

Fundamental Shock 

// Determinate model 

 

 // Variables 

var x, R, pi; 

varexo er_R,er_g,er_z; 

 

 //Parameters 

parameters tau, kappa, rho_R, psi1, psi2, sigmag, sigmaz, sigmaR; 

tau=0.5; 

kappa=0.5; 

rho_R=0.5; 

psi1=1.5; 

psi2=0.25; 

sigmaR=1; 

sigmag=1; 

sigmaz=1; 

 

 //Model 

model(linear); 

x=x(+1)-tau*(R-pi(+1))+sigmag*er_g; 

pi=0.95*pi(+1)+kappa*x+sigmaz*er_z; 

R=rho_R*R(-1)+(1-rho_R)*(psi1*pi+psi2*x)+sigmaR*er_R; 

end; 

 

 initval; 

x=0 ; 

pi=0 ; 

R=0 ; 

er_R=0 ; 

er_g=0 ; 

er_z=0; 

end; 

 

 steady; 

 

 shocks; 

var er_R=1; 

var er_g=1; 

var er_z=1; 

corr er_g,er_z =0; 
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end ; 

 

 // Simulations 

stoch_simul(irf=50,order=1,periods=200); 

datatomfile('simudataX',[]); 

 

 // Estimation of parameters 

estimated_params; 

tau,gamma_pdf,0.5,0.5 ; 

kappa,gamma_pdf,0.5,0.2 ; 

rho_R, beta_pdf,0.5,0.2 ; 

psi1,gamma_pdf,1.5,0.1 ; 

psi2,gamma_pdf,0.25,0.15 ; 

sigmaR,inv_gamma_pdf,1,1 ; 

sigmag,inv_gamma_pdf,1,1 ; 

sigmaz,inv_gamma_pdf,1,1 ; 

corr er_g, er_z, normal_pdf, 0, 0.4 ; 

end; 

 

 varobs x pi R; 

estimation(datafile=simudataPI, mode_compute=6,nograph, mh_replic=100000) ; 

 

  

Dynare Code 2. Indeterminate Model 1. 

// The Standard New-Keynesian Model with Two Forward-looking Variables and One 

Fundamental Shock 

// Indeterminate Model 1. X is replaced by sunspot shock 

 

 

var x, R, pi, xs; 

varexo er_R,er_g,er_z, sunspot; 

 

parameters invtau, kappa,rho_R, psi1, psi2, sigmag, sigmaz, sigmaR, sigmasun; 

invtau=2; 

kappa=0.5; 

rho_R=0.5; 

psi1=0.5; 

psi2=0.25; 

sigmaR=1; 

sigmag=1; 

sigmaz=2; 

sigmasun=0.5; 

 

model(linear); 

x=xs-1/invtau*(R-pi(+1))+sigmag*er_g ; 

pi=0.95*pi(+1)+kappa*x+sigmaz*er_z ; 
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R=rho_R*R(-1)+(1-rho_R)*(psi1*pi+psi2*x)+sigmaR*er_R ; 

xs(-1)=x+sigmasun*sunspot; 

end; 

 

initval; 

x=0 ; 

pi=0 ; 

R=0 ; 

er_R=0 ; 

er_g=0 ; 

er_z=0; 

end; 

 

steady; 

 

shocks; 

var er_R=1; 

var er_g=1; 

var er_z=1; 

var sunspot=1; 

corr er_g,er_z =0.5 ; 

corr sunspot,er_g= 0; 

corr sunspot,er_z= 0; 

end ; 

 

stoch_simul(irf=50,order=1,periods=200); 

datatomfile('simudataX',[]); 

 

 

estimated_params; 

invtau,gamma_pdf,2,0.5 ; 

kappa,gamma_pdf,0.5,0.2 ; 

rho_R, beta_pdf,0.5,0.2 ; 

psi1,gamma_pdf,0.5,0.1 ; 

psi2,gamma_pdf,0.25,0.15 ; 

sigmaR,inv_gamma_pdf,1,1 ; 

sigmag,inv_gamma_pdf,1,1 ; 

sigmaz,inv_gamma_pdf,1,1 ; 

sigmasun,inv_gamma_pdf,1,1 ; 

corr er_g, er_z, normal_pdf, 0, 0.4 ; 

corr sunspot, er_g, uniform_pdf,,,-1,1; 

corr sunspot, er_z, uniform_pdf,,,-1,1; 

end; 

 

estimated_params_bounds ; 

psi1, 0, 2 ; 
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end ; 

 

varobs x pi R; 

estimation(datafile=simudataX, mode_compute=6,nograph, mh_replic=20000, 

mh_nblocks=5) ;z= 0; 

end ; 

 

stoch_simul(irf=50,order=1,periods=200); 

datatomfile('simudataX',[]); 

 

 

estimated_params; 

invtau,gamma_pdf,2,0.5 ; 

kappa,gamma_pdf,0.5,0.2 ; 

rho_R, beta_pdf,0.5,0.2 ; 

psi1,gamma_pdf,0.5,0.1 ; 

psi2,gamma_pdf,0.25,0.15 ; 

sigmaR,inv_gamma_pdf,1,1 ; 

sigmag,inv_gamma_pdf,1,1 ; 

sigmaz,inv_gamma_pdf,1,1 ; 

sigmasun,inv_gamma_pdf,1,1 ; 

corr er_g, er_z, normal_pdf, 0, 0.4 ; 

corr sunspot, er_g, uniform_pdf,,,-1,1; 

corr sunspot, er_z, uniform_pdf,,,-1,1; 

end; 

 

estimated_params_bounds ; 

psi1, 0, 2 ; 

end ; 

 

varobs x pi R; 

estimation(datafile=simudataX, mode_compute=6,nograph, mh_replic=20000, 

mh_nblocks=5) ; 

corr sunspot, er_z, uniform_pdf,,,-1,1; 

end; 

 

estimated_params_bounds ; 

psi1, 0, 2 ; 

end ; 

 

varobs x pi R; 

estimation(datafile=simudataX, mode_compute=6,nograph, mh_replic=20000, 

mh_nblocks=5) ; 
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Dynare Code 3. Indeterminate Model 2. 

// The Standard New-Keynesian Model with Two Forward-looking Variables and One 

Fundamental Shock 

// Indeterminate Model 1. PI is replaced by sunspot shock 

var x, R, pi, pis; 

varexo er_R,er_g,er_z, sunspot; 

 

parameters invtau, kappa,rho_R, psi1, psi2, sigmag, sigmaz, sigmaR, sigmasun; 

invtau=2; 

kappa=0.5; 

rho_R=0.5; 

psi1=0.5; 

psi2=0.25; 

sigmaR=1; 

sigmag=1; 

sigmaz=2; 

sigmasun=0.5; 

 

 

model(linear); 

x=x(+1)-1/invtau*(R-pis)+sigmag*er_g ; 

pi=0.95*pis+kappa*x+sigmaz*er_z ; 

R=rho_R*R(-1)+(1-rho_R)*(psi1*pi+psi2*x)+sigmaR*er_R ; 

pis(-1)=pi+sigmasun*sunspot; 

end; 

 

 

initval; 

x=0 ; 

pi=0 ; 

R=0 ; 

er_R=0 ; 

er_g=0 ; 

er_z=0; 

end; 

 

 steady; 

 

 shocks; 

var er_R=1; 

var er_g=1; 

var er_z=1; 

var sunspot=1; 

corr er_g,er_z =0.5 ; 

corr sunspot,er_g= 0; 

corr sunspot,er_z= 0; 
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end ; 

 

 

stoch_simul(irf=50,order=1,periods=200); 

datatomfile('simudataPI',[]); 

 

 

estimated_params; 

invtau,gamma_pdf,2,0.5 ; 

kappa,gamma_pdf,0.5,0.2 ; 

rho_R, beta_pdf,0.5,0.2 ; 

psi1,gamma_pdf,0.5,0.1 ; 

psi2,gamma_pdf,0.25,0.15 ; 

sigmaR,inv_gamma_pdf,1,1 ; 

sigmag,inv_gamma_pdf,1,1 ; 

sigmaz,inv_gamma_pdf,1,1 ; 

sigmasun,inv_gamma_pdf,1,1 ; 

corr er_g, er_z, normal_pdf, 0, 0.4 ; 

corr sunspot, er_g, uniform_pdf,,,-1,1; 

corr sunspot, er_z, uniform_pdf,,,-1,1; 

end; 

 

 

estimated_params_bounds ; 

psi1, 0, 2 ; 

end ; 

 

 

varobs x pi R; 

estimation(datafile=simudataPI, mode_compute=6,nograph, mh_replic=20000, 

mh_nblocks=5) ; 
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Appendix 4. Estimation Results of Simulated Indeterminate Models 

 
Table 4. Priors and posterior estimation results, based on data generated from Model 1. 

 
Table 5. Priors and posterior estimation results, based on data generated from Model 2. 

 



49 

 

Chapter 2. Assessing DSGE Models with Indeterminacy and Capital 

Accumulation: What Really Happened During the Great 

Moderation. 

 

Introduction 

This paper assesses New-Keynesian Dynamic Stochastic General Equilibrium (DSGE) 

models with capital accumulation. In this framework, when the monetary authority increases the 

interest rate, the cost of renting capital likewise increases, leading to cost-push inflation. 

Bayesian empirical estimates of these models on U.S. data from 1960 to 2008 enable a 

reconsideration of the sources of the Great Moderation, a reduction in the volatility of business 

cycle fluctuations starting in the mid-1980s.  

Canonical papers consider that there was a change in U.S. the monetary policy rule from 

passive (when the nominal interest rate increases less than one-to-one with inflation) during the 

pre-Volcker period to active (when the nominal interest rate increases more than one-to-one with 

inflation) during the post-1982 period (see, namely, Clarida, Gali, and Gertler (2000) and Lubik 

and Schorfheide (2004)). This is then pointed to as the main source of the Great Moderation. In 

contrast to these papers, it was found that, when capital is taken into account, a model with 

passive monetary policy and indeterminacy provides a better fit to the data before (the pre-

Volcker period, 1960-1979) and after (the post-1982 period, 1982-2008) the Great Moderation. 

In fact, according to the empirical estimates of this paper, little evidence was found in favor of a 

change in the monetary policy rule between these subperiods—monetary policy remained 
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passive in response to inflation and its response to output changed only slightly. 

Structural changes between the two subperiods were found to be primarily on the demand 

side of the economy. Driven by private market developments and by adjustments in government 

policy, changes in financial markets enhanced the ability of households to borrow funds and 

thereby to smooth their spending in the face of swings in income and interest rates. According to 

the empirical estimates of this paper, the main change was in households’ inverse elasticity of 

intertemporal substitution of consumption, which almost tripled between these subperiods, such 

that the dynamics of consumption became much less sensitive to interest rates. These findings 

support the idea of financial innovations, proposed by Dynan, Elmendorf, and Sichel (2006a), as 

an alternate source of the Great Moderation.   

Nevertheless, canonical results indicating a change in the U.S. monetary policy rule from 

passive during the pre-Volcker period to active during the post-1982 remain popular. However, 

modeling the transition from passive to active monetary policy is very challenging, as standard 

New-Keynesian DSGE models exhibit indeterminacy under passive monetary policy. The 

standard result is that determinacy arises mainly under active monetary policy rules, while 

passive monetary policy leads to indeterminacy (see, for example, Kerr and King (1996), 

Rotemberg and Woodford (1998), and Christiano and Gust (1999)). There is a limited set of 

econometric estimation methods that can be applied if indeterminacy exists and, therefore, the 

majority of papers ex-ante limited themselves to active monetary policy and determinate 

equilibria models (for example, Smets and Wouters (2003) and Smets and Wouters (2007)). The 

possibility of indeterminacy was usually ruled out and the Bayesian estimation approach to 

DSGE models was rarely applied.  

Farmer and Guo (1995) were the first to demonstrate that a general equilibrium model 
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with an indeterminate steady state does a good job of accounting for the propagation mechanism 

in U.S. data. Lubik and Schorfheide (2004) then estimated a three-equation New-Keynesian 

model with for indeterminacy. Using the Bayesian approach, they estimated the model on U.S. 

data and found that U.S. monetary policy post-1982 is consistent with determinacy, whereas the 

pre-Volcker policy is not. 

Later research attempts to determine whether there were switches in monetary policy or 

structural changes in the fundamental parameters of the economy during the great Moderation. 

Sims and Zha (2006) use a vector autoregression (VAR) approach to estimate a multivariate 

regime-switching model for U.S. monetary policy. They find that the main changes were in the 

monetary policy rules. The main drawback of the VAR approach is that, due to rational 

expectations, agents can anticipate changes in parameters of the economy, leading to inconsistent 

estimates. Likewise, there are identification issues with the estimation of forward-looking 

Markov-switching rational expectations models. Beyer and Farmer (2007) argue that it is not 

always possible to decide whether the data are generated from determinate or indeterminate 

models. Farmer, Waggoner, and Zha (2008) provide a set of necessary and sufficient conditions 

for determinacy in a class of forward looking Markov-switching rational expectations models. 

One method to overcome this problem is to estimate a fully-specified DSGE model that can be 

re-solved for alternative policy rules. Smets and Wouters (2003) and Smets and Wouters (2007) 

find most of the structural parameters remained the same before and after the Great Moderation. 

The biggest difference concerns the variances of the structural shocks. Lubik and Schorfheide 

(2004) exogenously split data into two sets and show that U.S. monetary policy during the post-

1982 period was consistent with determinacy, whereas during the pre-Volcker policy it was 

consistent with indeterminacy. Schorfheide (2005) estimates a basic New-Keynesian monetary 
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DSGE model, in which monetary policy follows a regime switching process, and confirms the 

switch in monetary policy between the pre-Volcker and post-Volker periods. Mavroeidis’s 

(2010) model shows that policy before Volcker led to indeterminacy, however, the model is not 

accurately identifiable using data after 1979. 

To understand the sources of the Great Moderation, this paper extends the canonical 

New-Keynesian model by adding a no-arbitrage condition between the real return on bonds and 

the real return on capital and a capital accumulation equation in the standard model.  While most 

of the studies focus on the implications of how the rate of interest affects consumption-savings 

decisions, the channel by which the rate of interest affects investment decisions has also begun to 

draw attention recently. The no-arbitrage condition between the real return on bonds and the real 

return on capital implies that the capital rental rate increases when monetary policy responds to 

higher inflation by increasing the interest rate. This response increases the cost of renting capital, 

leading to cost-push inflation. This paper is an attempt to explore the role of this channel in 

estimating models. In order to clearly understand how capital accumulation influences the 

results, we expand the canonical model with indeterminacy used in Lubik and Schorfheide 

(2004) by only one dimension – by adding capital in it.
10

 Dupor (2001), Carlstrom and Fuerst 

(2005), Kurozumi and Zandweghe (2008), Kurozumi (2006), Huang and Meng (2007), and Xiao 

(2008) study properties of models with capital accumulation and show that this crucial feature 

changes the stability structure and dynamics of the models, making indeterminacy likely. By 

estimating the model with capital accumulation and potential for indeterminacy, this paper shows 

that capital accumulation activity has a strong influence on the model dynamics. Investment 

                                                      

10
 Models with many real and nominal frictions, such as in Christiano, Eichenbaum and Evans (2005), 

Smets and Wouters (2003), and Smets and Wouters (2007), can be considered to be extensions of the baseline model 

and, therefore, are not used in this paper to better highlight the role of investment, rather than other frictions, in this 

framework. 
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activity changes the monetary transmission mechanisms and allows for the reconsideration and 

re-estimation of monetary policy.  

First, different versions of New-Keynesian models with capital accumulation are 

simulated, and their dynamic properties are discussed.  Though baseline New-Keynesian models 

have become very popular in the analysis of monetary policy, many authors show that these 

models are unable to generate enough persistence in inflation and output. Fuhrer and Moore 

(1995) show that a sticky wage model can generate persistence in the price level but not in the 

inflation rate. Chari, Kehoe and McGrattan (2000) point out that models with nominal rigidities 

do not generate enough persistence in output following a monetary shock. The simulated results 

of this paper show that models with capital accumulation can generate substantial persistence 

among the major economic variables, as the stock nature of capital adds persistence to the 

dynamics of all other variables in the models. 

Second, models with capital accumulation and indeterminacy are estimated on U.S. data 

from 1960:I to 2008:I. Using state-space decomposition and the Kalman filter, the overall 

likelihood of the model is maximized taking into account prior distributions of the parameters, 

and inferences are made with a likelihood-based approach by adopting the Metropolis-Hastings 

techniques.  The estimated models are compared using the Bayesian approach. While some 

explanations of the results are consistent with the recent findings of Mavroeidis (2010), the 

empirical estimates of this paper differ from the results of Lubik and Schorfheide (2004) and 

Clarida, Gali and Gertler (2000). It is shown that during the Great Moderation there was almost 

no change in monetary policy rules and it remained passive. Bayesian comparison of the models 

declared that models with indeterminacy and passive monetary policy dominate determinate 

models for various periods of U.S. history. Major structural changes were mainly related to 
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consumer behavior. Consumption became more smoothed and a response of consumption to 

interest rates decreased, supporting the idea of “financial innovations.” Although, as in Lubik 

and Schorfheide (2004), it was found that steady state real interest rates increased and steady 

state inflation declined, this paper finds very different explanation for this change. Instead of a 

change in monetary policy this paper shows that higher real returns were related to changes in 

consumers risk aversion and higher share of capital income in output, which is consistent with 

empirical evidence.
11

  

The paper is structured as follows. In Section 1, a New-Keynesian DSGE model with 

capital accumulation and different monetary policy rules is derived. In Section 2, different 

versions of this model are simulated and their dynamic properties are analyzed. In Section 3, the 

model is fitted to quarterly U.S. data on output, inflation, nominal interest rates, consumption, 

and capital from 1960:I to 2008:I and the estimation methodology and prior distributions of the 

parameters are discussed. The empirical results and model comparisons are presented in Section 

4. The last section contains concluding remarks. 

 

1. Model 

Following Yun (1998), Carlstrom and Fuerst (2005), and Kurozumi and Zandweghe 

(2008), a New-Keynesian DSGE model with sticky prices and capital accumulation in discrete 

time is constructed. The economy consists of a large number of households, monopolistically 

competitive firms, and a monetary authority that changes the nominal interest rate in response to 

inflation and output. 

                                                      

11
 See, for example, Bental and Demougin (2010) and Gomme and Rupert (2004). 
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1.1. Households 

Households seek to maximize their expected life-time utility function: 
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where tE  is the conditional expectations operator on the information set available at date t,   is 

the discount factor, tC  is consumption, 1tM  is nominal money holdings and the beginning of the 

period (t+1), 
t

t

P

M 1  is real money balances,
12

 and ( tL1 ) is leisure. 

The utility function is separable in leisure and takes the following functional form: 
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At the beginning of each period t, a household has tM cash balances and 1tB  nominal 

bonds. A household starts period t by trading bonds and receiving a lump-sum monetary transfer 

tT  from the government. A household receives interest payments on bonds 1tB  with gross interest 

rate 1tR  and spends money on new bonds tB . A household also receives real factor payments 

from the labor market tt Lw  and capital market tt Kr )]1([  , receives firm’s profits t , and 

spends money on next period capital 1tK  and current consumption tC  at current prices tP . Each 

household chooses tC , 1tM , and tL  to maximize (1) subject to the sequence of intertemporal 

budget constraints:  

(3)      tttttttttttttttt KrLwPRBTMKPCPBM   })]1([{1111  .  

The first order conditions for the household’s maximization problem are the following: 

                                                      

12
 As in recent papers end-of-period money holdings are introduced to be consistent with the Dupor 

continuous-time analysis (for discussion, see Carlstrom and Fuerst, 2005). 
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Equation (4) is a standard consumption-labor condition. Equation (5) is the Euler 

equation of consumption dynamics. Equation (6) is the Fisher equation that connects inflation 

and the interest rate. Equation (7) is a money demand equation.  

 

1.2. Firms 

Firms are monopolistic competitors in the intermediate good market. The final output tY  

is produced from intermediate goods )(iyt  with Dixit-Stiglitz (1977) technology: 
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The corresponding demand for an intermediate good possesses constant price elasticity 

 : 
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where )(iPt  is the price of the intermediate good and tP is the price of the final good. 

The production function of each firm exhibits constant returns to scale: 

(10)        1),( LKLKf . 
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The first order conditions for the cost minimization problem are the following:  

(11)      ),( ttKtt LKfzr  , 

(12)      ),( ttLtt LKfzw  . 

where 
tz  is the marginal cost of production (see Appendix 1 for details). 

With the Cobb-Douglas production function (10) the first order conditions take the form: 

(13)      tttt KYzr / , 
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The Calvo (1983) staggered pricing model is used, assuming that each period a fraction 

)1(   of firms gets a signal to set a new price. Therefore, each firm maximizes the sum of 

discounted profits taking into account the probability of changing its price. Firms choose )(iP
t  to 

maximize expected profits: 
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The profit maximization conditions give a log-linearized New-Keynesian Phillips 

Curve
13

 of the form: 

(16)      tttt zE ˆˆˆ
1    , 

where t̂ is inflation and 





)1)(1( 
  is the real marginal cost elasticity of inflation. 

 

                                                      

13
 See Gali and Gertler (1998) and Clarida, Gali and Gertler (1999) for details. 
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1.3. Monetary policy rule 

Monetary policy reacts to inflation and output with interest rate smoothing: 
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where YR ,,   are the steady-state values of the interest rate, inflation, and output, respectively. 

Parameters   and 
Y  are the elasticities of the interest rate by inflation and output, 

respectively. Interest rate smoothing is introduced with the autocorrelation coefficient
R . In this 

framework, the monetary policy is active if the nominal interest rate increases more than one-to-

one with inflation ( 1 ), otherwise, it is passive ( 1 ). Also, a model with 0Y  would give 

a standard model with capital in discrete time as in Carlstrom and Fuerst (2005) — an analog of 

the Dupor (2001) continuous time model.  

  

1.4. Dynamics of the model 

The dynamics of the model are represented by a system of first order conditions log-

linearized around the steady state for households and firms (18-23), the monetary policy rule 

(24), shocks of preferences and marginal cost (25-26) (see Appendix 2 for details): 

(18)      )ˆˆ(ˆˆ
,11 tgtttttt CCEER    , 

(19)      )ˆˆˆ)](1(1[ˆˆ
1111   tttttttt KYEzEER  , 

(20)      )ˆˆ(
1

ˆˆ
tttt YKzC 







 , 

(21)      ttt IKK ˆˆ)1(ˆ
1  

, 

(22)      
tItCt IsCsY ˆˆˆ  , 



59 

 

(23)      
tztttt zE ,1

ˆˆˆ   
, 

(24)      
tRtYtRtRt YRR ,1 )ˆˆ)(1(ˆˆ    
, 

(25)      
tgtggtg ,1,,   
,    tg ,  is iid (0, 2

g ), 

(26)      
tz , =

tztzz ,1,  
,    tz,  is iid (0, 2

z ), 

Equation (18) is the Euler equation for the household’s dynamic optimization problem 

with a preference shock 
tg , , which follows an AR(1) process with an autocorrelation coefficient 

of g  (Equation (25)). Equation (19) is the Fisher relation between the nominal interest rate, 

expected future inflation, and real interest rate, where the latter is determined in the production 

sector. Equation (20) is the wage-equilibrium relation of the log-linearized equations (4) and 

(14). Equation (21) is the capital accumulation relation with a depreciation rate  . Equation (22) 

is the division of the steady-state output between consumption and investment with shares Cs  and 

Is , respectively. Equation (23) is a New-Keynesian Phillips curve derived from the Calvo 

staggered-pricing model with a marginal cost shock 
tz , , which follows an AR(1) process with an 

autocorrelation coefficient of 
z  (Equation (26)). Equation (24) is the log-linearized monetary 

policy rule (17) with an interest rate shock 
tR, . As the money supply is endogenous and the 

Ricardian equivalence holds in this model, the hidden government budget constraint and the 

equation for the evolution of government debt are implicitly satisfied.  

Straightforward re-arrangements of the variables 
tẑ and tÎ  in the model give a system of 

variables ,,ˆ,ˆ,ˆ,ˆ,ˆ
,tgttttt KYRC  and tz , : 

(27)        tgtttttt ERCEC ,11
ˆˆ1ˆˆ 


 

, 

(28)       )ˆˆ
1

1
)ˆ()](1(1[ˆˆ

1111  


 ttttttttt KEYECEER


 , 
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(29)        )ˆ)1ˆ(ˆ)1(ˆ
1 tIt

I
tt CsY

s
KK 


 , 

(30)      
tztttttt YKCE ,1 ))ˆˆ(

1
ˆ(ˆˆ 




 


 

, 

(31)      ,)ˆˆ)(1(ˆˆ
,1 tRtYktRtRt YRR   


   

tR,  is iid (0, 2
R ), 

(32)      
tgtggtg ,1,,   
,    tg ,  is iid (0, 2

g ), 

(33)      
tz , =

tztzz ,1,  
,    tz,  is iid (0, 2

z ). 

To compare, the canonical New-Keynesian model can be presented by a system of three 

equations: the IS equation, the Phillips curve, and a monetary policy rule, similar to equations 

(27), (30), and (31), respectively.  In that way, the interest rate affects output only through the 

consumption-savings decision of the household and not through the production sector.   

Adding capital accumulation to the model real makes interest rate connected to the 

marginal product of capital, this is contained in the Fisher equation (28). Also, output does not 

equal consumption in the absence of capital, as in Lubik and Schorfheide (2004), but is split 

between consumption and investment in this model. This is incorporated in the New-Keynesian 

Phillips curve equation (30) through the output equation (22). By including investment, this 

model has the capital accumulation equation (29), which influences interest rates through the 

equations (26) and (28).  

 

2. Model simulations 

The model (27)-(33) exhibits different types of dynamics depending on its parameter 

values (see Carlstrom and Fuerst (2005), Sosunov and Khramov (2008), Kurozumi and 

Zandweghe (2008), Kurozumi (2006), Huang and Meng (2007), and Xiao (2008)). Under a wide 

set of parameters, the model is determinate if the monetary authority implements an active 
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monetary policy ( 1 ), and the model is indeterminate if the monetary policy is passive (

1 ). Therefore, two major versions of the model (27)-(33), with active and passive monetary 

policies, are simulated.
14

  In the baseline calibration most of the parameter values are the same as 

prior means used by Lubik and Schorfheide (2004); the rest of the parameters are calibrated 

according to stylized facts (Table 6). The Matlab-based computer package Dynare was used to 

calculate theoretical moments for the endogenous variables of the model.  The simulation results 

of the two versions of the model with active and passive monetary policy rules and 

corresponding moments of consumption, interest rate, inflation, output, and capital are presented 

in Tables 1-4.  

The version of the model with passive monetary policy demonstrates substantially higher 

volatility of interest rate and inflation compared to the version with active monetary policy 

(Table 1). This can be explained by the existence of indeterminate equilibria in this model. As 

long as the monetary policy authority is unable to respond sufficiently to changes in inflation by 

raising interest rates substantially, the volatility of inflation and, therefore, nominal interest rates, 

is higher. Both models reproduce a similar volatility of capital to that of U.S. data with lower 

volatilities of consumption, interest rate, and inflation (Table 5). 

The crucial differences between the two versions of the model arise from the variance 

decomposition of shocks, correlation matrices of endogenous variables, and impulse response 

functions (IRFs). First, the preferences (demand) shock is the main drivers of volatility in the 

version of the model with passive monetary policy, explaining more than 90 percent of the 

volatility of endogenous variables (Table 2). In contrast, the marginal cost (supply) shock 

                                                      

14
 Dynamics of the versions of the model with forward-looking monetary policy rules are similar to 

versions with current-looking monetary policy rules and, therefore, is not discussed in this paper.  
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explains more than 50 percent of variance in the model with active monetary policy. These 

results are similar to the findings of Smets and Wouters (2007), who show that “demand” shocks 

can explain a substantial share of the variance in output in the general version of a New-

Keynesian model.  

The two versions of the model demonstrate different correlations among the major 

variables (Table 3). In the version of the model with active monetary policy, the nominal interest 

rate plays the role of the active monetary policy instrument and is negatively correlated with 

output and capital. These theoretical results are consistent with the stabilizing role of a nominal 

interest rate in the economy.  In contrast, in the version of the model with passive monetary 

policy, the nominal interest rate is positively correlated with output, capital, and consumption.  

As passive monetary policy is unable to respond sufficiently to shocks, indeterminacy and 

additional shock propagation. A response of the monetary authority to supply and demand 

shocks leads to co-movements in the dynamics of the interest rate and real variables as changes 

in the nominal interest rate are not enough to diminish the effect of shocks and reverse the 

dynamics of the economy. Therefore, the version of the model with passive monetary policy 

demonstrates substantially higher volatility among the economic variables, which is consistent 

with U.S. data for the pre-Volcker period (1960:I to 1979:II).  Theoretical IRFs support this 

intuition (Appendixes 3-4). 

As stated in the Introduction, while the baseline “New-Keynesian” models became very 

popular in the analysis of monetary policy, many papers show that these models are unable to 

generate enough persistence in inflation and output (see Chari, Kehoe, and McGrattan (2000), 

Fuhrer and Moore (1995), and Fernandez-Villaverde and Rubio-Ramirez (2004)). First-order 

autocorrelation coefficients for consumption, interest rate, output, and capital are more than 0.85 
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in the U.S. data (Appendix 6). Most of the New-Keynesian models fail to replicate even half of 

these correlation levels (see Rubio-Ramirez and Rabanal (2005)). In contrast, the simulated 

results of this paper show that models with capital accumulation can, in fact, generate substantial 

persistence (Table 4). The autocorrelation coefficients for consumption and capital are more than 

0.9 in both active and passive monetary policy rule versions of the model. The autocorrelations 

of nominal variables, such as inflation and the nominal interest rate, are also very high due to the 

stock nature of capital, which adds persistence to the dynamics of all other variables. The 

autocorrelation coefficients for consumption and capital are very high, representing substantial 

consumption smoothing and slow adjustment of capital stock. In the version with passive 

monetary policy, the interest rate and output autocorrelation coefficients are higher than in the 

version with active monetary policy, again, due to the fact that passive monetary policy is unable 

to adjust the interest rate sufficiently to control shock propagation.   

 

 

 

Version with passive 

monetary policy. 

Version with active 

monetary policy. 

Variable Mean St. dev.  Mean St. dev.  

Consumption 0 0.36 0 0.30 

Interest rate 0 0.40 0 0.16 

Inflation 0 0.50 0 0.30 

Output 0 1 0 1 

Capital 0 0.46 0 0.53 

Table 1. Simulation results of the model. Theoretical moments.  

Note: all variables are in log deviations from their steady-state values. 
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Version with passive monetary policy. 

Version with active monetary 

policy. 

 

Interest 

rate 

shock 

Preference 

(demand) 

shock  

Marginal 

cost 

(supply) 

shock 

Sunspot 

shock 

Interest 

rate 

shock 

Preference 

(demand) 

shock  

Marginal 

cost 

(supply) 

shock 

Consumption 0.33 92.75 6.35 0.57 0.21 44.95 54.84 

Interest rate 0.72 95.31 3.3 0.67 0 34.74 65.25 

Inflation 0.62 96.61 2.03 0.74 0.46 32.89 66.65 

Output 0.18 95.5 3.65 0.67 1.49 31.25 67.26 

Capital 0.31 93.14 6.01 0.54 0.23 40.38 59.4 

Table 2. Simulation results of the model. Variance decomposition (in percent). 

Note: all variables are in log deviations from their steady-state values. 

 

 

 

 

Version with passive monetary policy 

Variables Consumption Interest rate Inflation Output Capital 

Consumption 1 0.6 0.54 0.30 0.98 

Interest rate 0.6 1 0.98 0.81 0.73 

Inflation 0.54 0.98 1 0.89 0.69 

Output 0.30 0.81 0.89 1 0.45 

Capital 0.98 0.73 0.69 0.45 1 

Version with active monetary policy 

Variables Consumption Interest rate Inflation Output Capital 

Consumption 1 -0.09 0.01 0.04 0.81 

Interest rate -0.09 1 0.98 -0.96 -0.46 

Inflation 0.01 0.98 1 -0.92 -0.35 

Output 0.04 -0.96 -0.92 1 0.39 

Capital 0.81 -0.46 -0.35 0.39 1 

Table 3. Simulation results of the model. Matrix of correlations. 

Note: all variables are in log deviations from their steady states. 
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Version with passive monetary policy 

Order 1 2 3 4 5 

Consumption 0.995 0.983 0.965 0.943 0.918 

Interest rate 0.885 0.782 0.690 0.609 0.537 

Inflation 0.779 0.692 0.614 0.544 0.482 

Output 0.384 0.330 0.286 0.248 0.216 

Capital 0.991 0.975 0.956 0.933 0.908 

Version with active monetary policy 

Order 1 2 3 4 5 

Consumption 0.896 0.812 0.745 0.689 0.641 

Interest rate 0.723 0.527 0.389 0.292 0.223 

Inflation 0.603 0.423 0.297 0.208 0.147 

Output 0.799 0.549 0.375 0.253 0.168 

Capital 0.992 0.972 0.943 0.910 0.874 

Table 4. Simulation results of the model. Coefficients of autocorrelation. 

 

3. Empirical Approach 

3.1. Data  

The system of equations (27)-(33) is fitted to quarterly postwar U.S. data on output, 

inflation, nominal interest rates, consumption and capital from 1960:I to 2008:I. Output is a log 

of real per capita GDP (GDPQ), inflation is the annualized percentage change of CPI-U 

(PUNEW), and the Federal Funds Rate (FYFF) in percent is used as the nominal interest rate. 

Real Personal Consumption Expenditures (PCECC96) is used for consumption from the St. 

Louis Fed database. The time series for capital is constructed using Real Gross Private Domestic 

Investment (GPDIC96) starting from 1947, taking the initial amount of capital consistent with 

the steady state level of capital and iterating it forward with a depreciation rate of 2 percent.   

To make our empirical analysis comparable to canonical studies, the Hodrick-Prescott (HP) filter 

is used to remove trends from the consumption, output, and capital series (see the sample moments in 

Table 5, Appendices 5-6, and Figure 1). Unfortunately, the Hodrick-Prescott filter has substantial 
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limitations, as it eliminates low-frequency movements that can be important and might not properly 

identify the cyclical versus trend components. Furthermore, while it would appear that the HP filtered 

series can capture essential features of business cycle fluctuations, filtering can impart some substantively 

different properties to series. Therefore, the main reason the HP filter is used in this paper is to make the 

analysis comparable to the canonical papers in this field, in particular, to Clarida, Gali and Gertler (2000) 

and Lubik and Schorfheide (2004).  

Consistent with earlier papers, the data sample 1960:I to 2008:I can be analyzed 

according to the following sub-samples:
15

 

1. the pre-Volcker period (1960:I to 1979:II), usually considered to be a period of 

passive monetary policy; 

2. the post-1982 period (1982:IV to 2008:I), usually considered to be a period of active 

monetary policy. 

 

 

  

 

Consumption * 

Interest 

rate Inflation Output* Capital* 

Full data sample (1960:I to 2008:I) 

  Mean -0.004 6.056 4.142 -0.001 -0.014 

  Std 1.238 3.259 3.171 1.526 0.742 

  StD/Output 0.811 2.136 2.078 1.000 0.486 

Pre-Volcker period (1960:I to 1979:II) 

  Mean 0.030 5.473 4.646 -0.012 -0.106 

  Std 1.435 2.425 3.359 1.759 0.753 

  StD/Output 0.816 1.379 1.910 1.000 0.428 

Post-1982 period (1982:IV to 2008:I) 

  Mean 0.083 5.478 3.081 0.024 -0.051 

  Std 0.911 2.458 1.849 1.219 0.704 

 

StD/Output 0.747 2.016 1.517 1.000 0.578 

Table 5. Sample moments for quarterly postwar U.S. data on output, inflation,  

nominal interest rates, consumption, and capital.  

* In log deviations from the Hodrick-Prescott filtered trend. 

                                                      

15
  The Volcker disinflation period (1978:III to 1997:IV) is commonly excluded from estimates. 
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Figure 1. Dynamics of U.S. output, inflation, nominal interest rate, consumption, and capital (in log deviations from 

the Hodrick-Prescott filtered trend), 1960:I -2008:I. 

 

 

3.2. Estimation approach 

The Bayesian approach is used to estimate the model by constructing prior distributions 

of the parameters and maximizing the likelihood of the model. The Kalman filter with state and 

measurement equations is used to fit the data to the model. The Bayesian approach takes 

advantage of the general equilibrium approach and outperforms GMM and ML in small samples. 

Furthermore,  it does not rely on the identification scheme of the VAR, though does follow the 

likelihood principle. 

The model (27)-(33) is a system of the variables ,,ˆ,ˆ,ˆ,ˆ,ˆ
,tgttttt KYRC   

and 
tR , , with a 

vector of parameters presented in Table 6. The observed capital, consumption, and output 

deviations from the trends, along with inflation and interest rate are stacked in the vector 

  ,ˆ,ˆ,ˆ,ˆ,ˆ
T

tttttt KYRCy   
such that the measurement equation is of the form: 
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The state equation is: 

(34)      ttt QFss  1 , 

where r* and *  are the steady-state inflation and real interest rate, respectively, 

 Ttztgtttttt KYRCs ,, ,,ˆ,ˆ,ˆ,ˆ,ˆ   is a vector  of system variables,  r* is determined from ,*)1( 4/1r  

F and Q are the system matrixes, and t  is a vector of shocks. 

As the posterior distribution of the estimated model is proportional to the product of the 

likelihood function and the prior, the overall likelihood of the model is maximized taking into 

account the prior distributions of the parameters and using the state-space decomposition with 

the Kalman filter. The inference is made with a likelihood-based approach by adopting the 

random walk Metropolis-Hastings algorithm to obtain 500,000 draws and estimate the moments 

of the parameter distributions.   

 

3.3. Prior Distributions 

The specification of the prior distributions is summarized in Table 6. Most of the priors 

are the same as in Lubik and Schorfheide (2004). The model is estimated separately for the pre-

Volcker period from 1960:I to 1979:II and for the post-1982 period. The Beta distribution is used 

as a prior for the response of the monetary policy rule to the inflation parameter (  ) centered 
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around 0.5 for indeterminate model and 1.5 for determinate model. 

The response of the monetary policy rule to the output parameter ( Y ) is centered around 

0.25, which is consistent with empirical findings in the range of 0.06 to 0.43. Persistency of the 

interest rate parameter in the monetary policy rule ( R ) is centered around 0.5 and bounded by 

the beta distribution to be in the interval (0,1). The steady state inflation ( * ) and the interest 

rate ( r*) are centered around 4 and 2 percent per annum, respectively. The real marginal cost 

elasticity of inflation ( ) is centered around 0.3, assuming that firms reset optimal prices once 

every three or five quarters, on average. The prior for household risk aversion parameter ( ) is 

centered around 2, which makes households more risk averse than in the case of logarithmic 

utility. Shocks of preferences and technology are assumed to follow an AR(1) process with 

autocorrelation parameters centered around 0.7 and to have a zero prior correlation. Variances of 

shocks are considered to have inverse gamma distributions. In model exhibits indeterminacy, a 

sunspot shock is introduced, which is possible correlated with fundamental shocks.  

Adding capital and investment activity into the model makes it necessary to specify 

parameters related to capital accumulation activity and production sector. The priors for capital 

share in output ( ) and investment share in output (
Is  ) are centered around 0.3 with the standard 

deviation of 0.1 and are bounded by the beta distribution to be in the interval (0,1).  
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Parameter 
 

Mean Std 
Distri 

bution 

Monetary policy rule 
 

Response of monetary policy rule to inflation 

(determinate model) 

 1.5 0.20 Gamma 

Response of monetary policy rule to inflation 

(indeterminate model) 

 0.5 0.20 Gamma 

Response of monetary policy rule to output Y  0.25 0.15 Gamma 

Persistency of interest rate in monetary policy 

rule 
R
 0.50 0.20 Beta 

Steady state inflation and real interest rate 

Steady-state inflation *  4.00 2.00 Gamma 

Steady-state interest rate r* 2.00 1.00 Gamma 

Standard model parameters 

Inverse elasticity of intertemporal substitution 

of consumption 
  2.00 0.50 Gamma 

Real marginal most elasticity of inflation in 

Calvo model 
  0.30 0.10 Beta 

Persistence of preference shock g  0.70 0.10 Beta 

Persistence of technology (marginal cost) shock z  0.70 0.10 Beta 

Capital-related parameters 

Share of capital in output   0.33 0.05 Beta 

Share of investment in output Is  0.30 0.10 Beta 

Variance of shocks 

Standard deviation of the interest rate shock R  0.31 0.16 Inv Gamma 

Standard deviation of the preference shock g  0.38 0.20 Inv Gamma 

Standard deviation of the marginal cost shock z  1.00 0.52 Inv Gamma 

Standard deviation of the sunspot shock s  0.10 0.01 Inv Gamma 

Correlation of shocks 

Correlation between technology (marginal cost) 

and preference shocks 
gz

 
0.00 0.40 Normal 

Correlation between sunspot and preference 

shocks 
sg

 0.00 0.5774 Uniform 

Correlation between sunspot and technology 

shocks 
sz

 0.00 0.5774 Uniform 

Table 6. Baseline calibration and prior distributions of the parameters of the model. 

 

4. Empirical results 

4.1. Model comparison 

Models with passive monetary policy ( 1 ) and active monetary policy ( 1 ) were 

estimated separately for the pre-Volcker and post-1982 periods.  The two versions of the model 

are estimated and compared on the two data samples in order to evaluate the odds of each model 

for a certain period of time. The Bayesian approach is used to evaluate the probability of each 

model. In a simple two-model case, the ratio of the posterior probabilities of the two models is 
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calculated as: 
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Equal prior probabilities are assumed for each model and Bayes factor probabilities are calculated 

using empirical distributions of the estimated parameters: 
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The probability ),|( iTA AYp   is integrated over the set 
iA of k estimated parameters, assuming a 

normal distribution for the estimation of ),(ˆ
iT AYp .  

A comparison of the versions of the model with indeterminacy and determinacy under is 

presented in Table 7. In contrast to canonical papers, the model with indeterminacy and passive 

monetary policy dominates the determinate model with a posterior probability of 1.000 for both 

sample periods.  In the next section, the estimation results for the indeterminate model are 

presented.  

 

Indeterminacy and 

passive monetary policy 

rule 

Determinacy and active  

monetary policy rule 

Pre-Volcker period (1960:I to 1979:II) 

Priors 0.50 0.50 

Log Marginal Density -677.52 -2484.83 

Posterior probability 1.000 0.000 

Post-1982 period (1982:IV to 2008:I) 

Priors 0.50 0.50 

Log Marginal Density -501.76   -4327.34 

Posterior probability 1.000 0.000 

Table 7. Bayesian comparison of the models. 
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4.2. Model estimates 

As it was shown in the previous section, indeterminate model dominates the determinate 

model for the pre-Volcker and post-1982 periods. The estimation results of this model on U.S. 

data from 1960 to 2008 are presented in Table 7. Bayesian empirical estimates show that during 

the Great Moderation, in contract to canonical papers, there was almost no change in the Fed’s 

monetary policy rule and it remained passive.  The priors, the posterior parameter estimates, and 

the confidence intervals for the model with indeterminacy and passive monetary policy are 

presented in Table 8.  The inference is made with a likelihood-based approach by adopting the 

Metropolis-Hastings techniques
16

.  

Regarding monetary policy rule, the estimates of the response of monetary policy to 

inflation (  ) almost did not change during the Great Moderation, being around 0.581 for the 

pre-Volcker period and 0.570 for the post-1982 period. These estimates differ substantially from 

those in Lubik and Schorfheide (2004) or in Clarida, Gali and Gertler (2000), who found that 

monetary policy was passive  during the pre-Volcker period and became active (the estimates of 

the response of monetary policy to inflation is about 2) during the post-1982 period. This 

explained by the fact that in the model with capital accumulation there is an additional channel of 

monetary policy influence through the real interest rate in the production sector. Therefore, the 

monetary policy can respond less aggressively to changes in inflation to obtain the same goals 

and remained passive during all times. Furthermore, it was found that the response of the 

monetary policy rule to output ( Y ) did not change either, meaning that there was no change in 

monetary policy rules. 

                                                      

16
 The Markov Chain Monte Carlo (MCMC) Metropolis-Hastings algorithm with five blocks was used with 

500,000 simulations to obtain the inference. 
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The steady-state inflation and real interest rate estimates of this paper are very similar to 

Lubik and Schorfheide (2004), showing that real interest rates increased and inflation decreased 

after the Great Moderation, while the level of nominal interest rates stayed at about the same 

level. In contrast to canonical models, the model with capital is able to trace higher real return in 

a higher share of capital income in output, as the share of capital income in output ( ) increased 

from 0.565 to 0.809.
17

 Although in canonical models this change would attribute the increase in 

real interest rates and lower inflation to changes in monetary policy rules, in the model with 

capital this change is proven to be not due with the changes in monetary policy rules, according 

to the estimates.  

Instead, it was found that during the Great Moderation major structural changes were 

primarily of the demand side of the economy. Household’s inverse elasticity of intertemporal 

substitution ( ) increased substantially from about 1 during the pre-Volcker period to about 2.7 

during the post-1982 period. This result arises from the fact that in the model with capital 

investment activity permits a breaking of the direct connection between the interest rate and 

consumption dynamics in the Euler equation, due to the additional no-arbitrage condition 

between bonds and real sector returns. This allows for the explanation of consumption dynamics 

not only in terms of shifts in the interest rate but shifts in preferences as well. The empirical 

findings of this paper show that the dynamics of consumption became much less sensitive to 

interest rates, as the inverse elasticity of intertemporal substitution increased substantially. 

Namely, a one percentage point increase in the real interest rate would lead to a three times 

smaller response of consumption.   

                                                      

17
 This measure of capital income in output is a relative measure, as the model does not take into account 

human capital and other factor that might bias the estimates.  
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One of the explanations of this decrease is that different market-driven changes have 

increased the fraction of households that have access to credit, supporting the idea of financial 

innovations proposed by Dynan, Elmendorf, and Sichel (2006b). Households that previously had 

some access to credit have likely gained improved access in terms of both the amount of credit 

and the consistency of its availability under different macroeconomic conditions. Driven by 

private market developments and by adjustments in government policy, changes in financial 

markets enhanced the ability of households to borrow funds and thereby to smooth their 

spending in the face of swings in income and interest rates. Dynan, Elmendorf, and Sichel 

(2006a) showed that aggregate consumer spending has become less responsive over time to 

contemporaneous shifts in aggregate income. Similar results were demonstrated by Dynan, 

Elmendorf, and Sichel (2006b) on individual household data.   

As neither government expenditures nor net exports are included in the model directly, 

some fluctuations in output are not explained by changes in investment and consumption. This 

influences the estimates of capital share in output ( ), which are about 0.56 and 0.08 for the pre-

Volcker and post-1982 periods, respectively. Also, the estimate of the share of investment in 

output ( Is ) is about 0.07 in the baseline specification of the model. The standard deviations 

estimates ( g , z , and R ) as well as those for the degree of persistence of shocks( g and z )  

are consistent with other empirical findings.  
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Pre-Volcker period 

(1960-1979) 

Post-1982 period 

(1982-2008) 

 
Mean Std 

Distri 

bution 

Posterior 

mean 
90 percent CI Posterior mean 90 percent CI 

Monetary policy rule
 


 0.5 0.20 Gamma 0.581 [0.432,0.735] 0.570 [0.306,0.836] 

Y  0.25 0.15 Gamma 0.398 [0.216,0.558] 0.331 [0.060,0.584] 

R
 0.50 0.20 Beta 0.781 [0.700,0.868] 0.959 [0.929,0.986] 

Steady state inflation and real interest rate 

*  4.00 2.00 Gamma 4.728 [3.300,6.097] 3.786 [0.789,7.103] 

r* 2.00 1.00 Gamma 0.728 [0.569,0.892] 2.012 [1.617,2.432] 

Standard model parameters 

  2.00 0.50 Gamma 1.131 [0.699,1.521] 2.647 [2.029,3.293] 

  0.30 0.10 Beta 0.578 [0.440,0.706] 0.584 [0.468,0.693] 

g  0.70 0.10 Beta 0.628 [0.537,0.730] 0.439 [0.341,0.540] 

z  0.70 0.10 Beta 0.694 [0.598,0.785] 0.916 [0.888,0.943] 

Capital-related parameters 

  0.33 0.05 Beta 0.565 [0.489,0.636] 0.809 [0.760,0.861] 

Is  0.30 0.10 Beta 0.069 [0.065,0.073] 0.065 [0.060,0.071] 

Variance of shocks 

R  0.31 0.16 
Inv 

Gamma 
0.172 [0.148,0.198] 0.138 [0.121,0.154] 

g  0.38 0.20 
Inv 

Gamma 
0.273 [0.202,0.342] 0.136 [0.112,0.162] 

z  1.00 0.52 
Inv 

Gamma 
1.164 [0.820,1.468] 1.000 [0.789,1.199] 

s  0.10 0.01 
Inv 

Gamma 
0.217 [0.216,0.218] 0.213 [0.208,0.218] 

Correlation of shocks 

gz
 

0.00 0.40 Normal 0.211 [0.201,0.218] 0.195 [0.166,0.218] 

sg
 0.00 0.5774 Uniform 0.105 [0.084,0.124] 0.095 [0.082,0.108] 

sz
 0.00 0.5774 Uniform 0.107 [0.086,0.127] 0.100 [0.085,0.116] 

 

Table 8. Priors and posterior estimation results of the model with indeterminacy for the pre-Volcker period (1960:I 

to 1979:II) and the post-1982 period. 
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Conclusions 

The New-Keynesian model with capital accumulation and the possibility of 

indeterminacy are simulated and estimated in this paper.  Capital accumulation activity 

introduces new channels of influence for monetary policy on the economy through the no-

arbitrage condition between bonds and real sector returns. In canonical models, interest rates 

affect output solely through the consumption-savings decision of the household in the absence of 

investment. It is shown in this paper that investment activity changes the monetary transmission 

mechanisms and allows monetary policy to be passive to achieve the same goals. In this 

environment, multiple equilibria or indeterminacy are very likely and, therefore, only a limited 

set of methods can be applied to estimate these models. Many previous papers, did not take this 

monetary policy channel into account and, therefore, ex-post observed active monetary policy. 

Introducing capital accumulation and indeterminacy allows for the reconsideration and 

re-estimation of monetary policy. Different versions of a New-Keynesian model with capital 

accumulation are simulated and their dynamic properties are discussed. While most of the 

canonical Keynesian models cannot replicate high autocorrelation levels among the main 

economic variables, the simulation results of this paper show a model with capital accumulation 

can generate substantial persistencies in major economic variables. The stock nature of capital 

adds persistency to the dynamics of all other variables in a model.  

The model with capital accumulation was fitted to the quarterly postwar U.S. data on 

output, inflation, nominal interest rates, consumption, and capital from 1960:I to 2008:I. The 

versions were estimated separately for the pre-Volcker and post-1982 periods. Bayesian 

comparisons of the models declared that models with indeterminacy and passive monetary policy 

dominate determinate models for various periods of U.S. history. In contrast to Lubik and 
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Schorfheide (2004) and Clarida, Gali and Gertler (2000), the estimates of the response of 

monetary policy to inflation almost did not change during the Great Moderation, being around 

0.581 for the pre-Volcker period and 0.570 for the post-1982 period. Furthermore, it was found 

that the response of the monetary policy rule to output did not change either, meaning that there 

was no change in monetary policy rules.  

This explained by the fact that in the model with capital accumulation there is an 

additional channel of monetary policy influence through the real interest rate in the production 

sector. Monetary policy could respond less aggressively to changes in inflation to obtain the 

same goals and, therefore, remained passive. Instead, it was found that during the Great 

Moderation major structural changes were mainly related to consumer behavior. A striking 

finding of the paper is that the inverse elasticity of intertemporal substitution increased 

substantially over time in the U.S. from about 1.1 for the pre-Volcker period to about 2.67 for the 

post-1982 period, meaning that dynamics of consumption became smoother and its response to 

interest rates decreased, supporting the idea of financial innovations as a source of the Great 

Moderation. 
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Appendix 1. Firm’s problem. 

The first order conditions for the cost minimization problem are:  

),( ttKtt LKfzr  , 

),( ttLtt LKfzw  , 

where tz  is the marginal cost of production. 

Proof: 

Minimize ttt KrLw  ,  subject to the restriction: fLKf ),( . 

The Lagrangian function takes the form: 

)),(( fLKfKrLw£ ttt     

The first order conditions are: 

 ),( ttLtt LKfw  , 

 ),( ttKtt LKfr   . 

Dual problem: 

 )),(()),(( fLKfLKfc£ tt    . 

The first order conditions are: 

 
tttt zLKfc  )),((  , 

Combining the equation, we have: 

),( ttKtt LKfzr  , 

),( ttLtt LKfzw  . 
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Appendix 2. Log-linearization of the model. 

Consumption Euler equation 

 Substituting CtUC )( in the FOC: 


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In the log-linearized form:    
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1
ˆˆ)ˆˆ(   tttttt ERCCE 


, 

or  

 11
ˆˆ1ˆˆ
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
. 

 

Fisher equation 

From 

)]}1()[1({)( 1   tCC rtUtU .  

and from 

  
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Using  
1

1

11




 
t

t

K

Y

tt zr  , we have: 

  )1(1
1

 


tP

P

t rR
t

t . 

 

As in the steady state:    11
ssr , the log-linearized form is:    

 
111111)1(1

1

1
ˆˆˆ)]1(1[]ˆˆˆ[ˆˆ

1

1





  ttttttttttttt KYEzEKYEzEER 






   

or 

)ˆˆˆ)](1(1[ˆˆ
1111   tttttttt KYEzEER   

 

Consumption-labor condition 

 

Using wU

U

L

C 1  and taking into account that U  linear in L,. we have: 

wCU 1  

and 

1

)1(
L

Y

tt
tzC 


  

In the log-linearized form:    

)ˆˆ(ˆˆ
tttt LYzC   

or 

)ˆˆ(
1

1
ˆ

1ˆ
tttt YKzC 









 

Capital accumulation equation 

From the capital accumulation equation: 

ttt IKK  )1(1  . 
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Using steady-state values: 

tK

I

tK

K

t IKK
ss

ss

ss

ss ˆˆˆ )1(

1 




 , 

and 


ss

ss

K

I
, 

we have:  

ttt IKK ˆˆ)1(ˆ
1  

. 

 

Output 

Using the definition of output: 

ICY   

we have:  

tCtCt IsCsY ˆ)1(ˆˆ  , 

where  
ss

ss

Y

C

Cs    is the share of consumption in output 

 

New-Keynesian Phillips curve 

From the Calvo model: 

tttt zE ˆˆˆ
1   

. 

Monetary policy rule 

The log-linearized form: 

tRtYkttRtRt YERR ,1 )ˆˆ)(1(ˆˆ    
. 
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Model 
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Appendix 3. Theoretical IRFs, model with indeterminacy. 

Theoretical IRFs to the interest rate shock. 

 

Theoretical IRFs to the preference shock.
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Theoretical IRFs to the marginal cost shock.
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Appendix 4. Theoretical IRFs, model with determinacy. 

Theoretical IRFs to the interest rate shock. 

 

Theoretical IRFs to the preference shock. 
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Theoretical IRFs to the marginal cost shock. 
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Appendix 5. Empirical correlation matrices. 

Full sample 

(1960:I to 2008:IV) 

 

Consumption Interest rate Inflation Output Capital 

Consumption 1.000 0.031 0.185 0.869 0.272 

Interest rate 0.031 1.000 0.652 0.202 0.413 

Inflation 0.185 0.652 1.000 0.288 0.380 

Output 0.869 0.202 0.288 1.000 0.461 

Capital 0.272 0.413 0.380 0.461 1.000 

      Pre-Volcker period 

(1960:I to 1979:II) 

 

Consumption Interest rate Inflation Output Capital 

Consumption 1.000 0.284 0.243 0.888 0.127 

Interest rate 0.284 1.000 0.867 0.397 0.569 

Inflation 0.243 0.867 1.000 0.288 0.410 

Output 0.888 0.397 0.288 1.000 0.403 

Capital 0.127 0.569 0.410 0.403 1.000 

      Post-1978 period 

(1978:III to 1997:IV) 

 

Consumption Interest rate Inflation Output Capital 

Consumption 1.000 -0.075 0.312 0.860 0.271 

Interest rate -0.075 1.000 0.667 0.168 0.466 

Inflation 0.312 0.667 1.000 0.481 0.559 

Output 0.860 0.168 0.481 1.000 0.464 

Capital 0.271 0.466 0.559 0.464 1.000 

      Post-1982 period 

(1982:IV to 2008:I) 

 

Consumption Interest rate Inflation Output Capital 

Consumption 1.000 0.205 0.273 0.864 0.631 

Interest rate 0.205 1.000 0.265 0.193 0.091 

Inflation 0.273 0.265 1.000 0.268 0.145 

Output 0.864 0.193 0.268 1.000 0.594 

Capital 0.631 0.091 0.145 0.594 1.000 
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Appendix 6. Empirical autocorrelations.  

Full sample (1960:I to 2008:IV) 

   
Lag Consumption Interest rate Inflation Output Capital 

1 0.871 0.952 0.669 0.858 0.949 

2 0.711 0.885 0.671 0.670 0.836 

3 0.527 0.830 0.691 0.449 0.677 

4 0.317 0.769 0.574 0.253 0.492 

5 0.125 0.701 0.520 0.066 0.297 

      
Pre-Volcker period (1960:I to 1979:II) 

   
Lag Consumption Interest rate Inflation Output Capital 

1 0.859 0.906 0.765 0.831 0.931 

2 0.667 0.757 0.728 0.617 0.791 

3 0.431 0.624 0.650 0.360 0.600 

4 0.168 0.500 0.579 0.148 0.390 

5 -0.067 0.353 0.483 -0.061 0.175 

      
Post-1982 period (1982:IV to 2008:I) 

   
Lag Consumption Interest rate Inflation Output Capital 

1 0.841 0.960 -0.003 0.825 0.946 

2 0.677 0.904 0.168 0.618 0.841 

3 0.532 0.837 0.280 0.403 0.703 

4 0.358 0.762 -0.026 0.229 0.545 

5 0.224 0.683 0.032 0.084 0.385 
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Chapter 3. Estimating Parameters of Short-Term Real Interest Rate 

Models. 

 

1. Introduction 

Modeling and estimating the volatility of interest rates has significant implications in 

finance, particularly in pricing bonds, options, and other derivatives. While there is some degree 

of theoretical and empirical consensus about models for the nominal interest rate, only recently 

has research tended toward the simultaneous analysis of these main components of the nominal 

interest rate–real interest rate, expected inflation, and inflation risk premia– though, primarily 

focusing on the latter two (see, for example, Haubrich, Pennacchi, and Ritchken (2012), Ang, 

Bekaert, and Wei (2008), and Grishchenko and Huang (2012)).  Some papers focus on the term-

structure of real interest rates, while dynamics of the real interest rate at the short end of the yield 

curve are barely studied. An ad hoc process for the short-term real interest rate is usually 

assumed as a building block for more sophisticated models.  

To my knowledge, this is the first paper that attempts to shed light on a narrow but 

crucial question in finance: What should be the parameters of a model of the short-term real 

interest rate? By estimating single-factor models for the short-term real interest rate, it is shown 

that the relationship between the volatility of changes in the interest rate and its level–called the 

elasticity of interest rate volatility–plays a crucial role in explaining real interest rate dynamics. 

Model comparison shows that a square root interest rate process (as in Cox, Ingersoll, and Ross 

(1985)) is enough to capture the dependence of volatility on the level of interest rates. Many 

models fail to incorporate this feature, though it should an important assumption according to the 
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empirical results of this paper. 

A number of interest rate models that are commonly used to price and hedge interest-rate-

dependent securities begin with an assumed process for the instantaneous short-term interest rate. 

These models differ most notably in the volatility structure assumed to govern interest rate 

movements. Many empirical papers focus on nominal interest rates and do not consider the fact 

that two major components of the nominal interest rate are the real interest rate and expected 

inflation.
18

 Researchers have developed many models for the short-term nominal interest rate 

(see the discussion of nominal interest rate models in Dai and Singleton (2000) and Dai and 

Singleton (2003)),
19

 but fewer models were developed for the real interest rate (see, for example, 

the discussion in Ang, Bekaert, and Wei (2008)).  

There is some understanding of the sources of inflation and factors that can influence it, 

as well as the way policymakers can forecast and control it, though only a small number of 

papers devote attention to real interest rates.  Although theoretical research often assumes that 

the real interest rate is constant, empirical estimates for the real interest rate process vary 

between constancy (Fama (1975)), mean-reverting behavior (Hamilton (1985)), and a unit root 

process (Rose (1988)). There seems to be greater consensus on the fact that the real interest rate 

variation mainly affects the short end of the term structure and expected inflation and inflation 

risk premia influence long-term interest rates (see, among others, Fama (1990) and Mishkin 

(1990)). Ang, Bekaert, and Wei (2008) show that real interest rates are quite variable at short 

maturities but smooth and persistent at long maturities. Haubrich, Pennacchi, and Ritchken 

                                                      

18
 Ang, Bekaert, and Wei (2008) show that inflation compensation explains about 80 percent of the 

variation in nominal rates for both short and long maturities.   
19

 A partial listing of theoretical interest rate models includes those by Merton (1973), Brennan and 

Schwartz (1977, 1980), Vasicek (1977), Dothan (1978), Cox, Ingersoll, and Ross (1980, 1985), Constantinides and 

Ingersoll (1984), Schaefer and Schwartz (1984), Sundaresan (1984), Feldman (1989), Longstaff (1989), and 

Longstaff and Schwartz (1992). 



95 

 

(2012) develop and estimate a model of nominal and real bond yield curves.  They show that 

time-varying volatility is particularly apparent in short-term real rates and expected inflation.  

It is typical to follow the standard stochastic discount factor approach and assume that the 

real interest rate is a function only of fundamentals or of a vector of state variables (see, for 

example, Ang, Bekaert, and Wei (2008), Chernov and Mueller (2012), and Haubrich, Pennacchi, 

and Ritchken (2012)). In these models, the variance of the real interest rate does not depend on 

the level of interest rate, but instead is assumed to be constant or to have a GARCH structure. 

This approach allows estimating risk premia, inflation expectations, and various parameters of 

models, though it suffers from overly simplistic assumptions about the dynamics of the real 

interest rate.  

A number of theoretical models of the short-term interest rate have been built. Canonical 

term structure models imply dynamics for the short-term riskless rate that can be nested in a 

single-factor stochastic differential equation of the form: dzrdtrdr   )( , where r is 

the interest rate and dz  is the Brownian motion. An important volatility structure parameter that 

distinguishes models from each other is the elasticity of volatility with respect to the level of 

interest rates,  . While other parameters are parts of the linear structure of the interest rate 

model, the elasticity of volatility of the interest rate adds a non-linearity component. 

Studies of the nominal interest rate dynamics show a relatively high level of elasticity of 

interest rate volatility in the U.S. In the class of single-factor term structure models, a famous 

result is that of Chan, Karolyi, Longstaff, and Sanders (CKLS, 1992), who compare a series of 

models for the short-term 1-month Treasury-Bill nominal interest rate over the period 1964 

through 1989 for the U.S. They found that an elasticity of volatility with respect to the interest 

rate level,  , of 1.5 is required to properly model the nominal interest rate dynamics. Bliss and 
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Smith (1998) provide a re-examination of the CKLS (1992) results and find the elasticity of 

interest rate volatility to be around 1 if the structural changes in monetary policy in the 1980s are 

properly taken into account. Empirical estimates of the elasticity of volatility vary among 

countries. Nowman (1997) shows that the volatility of the short-term interest rate is highly 

sensitive to its level in the U.S. (the elasticity is about 1.5), while it is not in the U.K. (the 

elasticity is about 0.28).  More advanced estimation methods found lower levels of elasticity of 

volatility of the nominal interest rate in the U.S. (Episcopos (2000) and Andersen and Lund 

(1997)). Evidence for other countries is mixed (Episcopos (2000), Hiraki and Takezawa (1997)).  

Much less has been done in the analysis of the real interest rate dynamics. The major 

problem here is that real interest rates are not directly observed. In the U.S., Treasury Inflation-

Protection Securities (TIPS), “real” bonds, are issued in terms of 5, 10, and 30 years and, 

therefore, do not allow extracting short-tem inflation expectations. Furthermore, TIPS did not 

start trading until 1997 and had considerable liquidity problems during the first few years, 

making a consistent analysis of real interest rates for the entire interest rate history of the U.S. 

almost impossible.  

In theory, the Fisher equation tells us that the nominal interest rate is simply the sum of 

the real interest rate and expected inflation. When inflation is stochastic, the Fisher equation is 

extended by inflation risk premia and other “higher-order” components, related to nonlinearities, 

when calculating inflation expectations (see the discussion in Sarte (1998)).  

The problem is more complex with longer-term real interest rates and different 

econometric methods have been applied to estimate real interest rates and their term structure. 

Older papers simply used projected ex-post real interest rates on instrumental variables (Mishkin 

(1981) and Huizinga and Mishkin (1986)). Hamilton (1985), Fama and Gibbons (1982), and 
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Burmeister, Wall, and Hamilton (1986) use ARIMA models and identify expected inflation and 

real interest rates under the assumption of rational expectations using the Kalman filter. Ang, 

Bekaert, and Wei (2008) were the first to establish a comprehensive set of stylized facts 

regarding the term structure of real interest rates. They found that the term structure of real 

interest rates has a fairly flat shape and that the real short-term interest rate is negatively 

correlated with both expected and unexpected inflation. 

Another problem for calculating the real interest rate is expected inflation. There are a 

variety of methods for forecasting inflation and evaluating inflation expectations. The most 

popular are: time-series ARIMA models; regressions based on the Phillips curve; term structure 

models that include linear, non-linear, and arbitrage-free specifications; and survey-based 

measures. Ang, Bekaert, and Wei (2007) examine the forecasting power of these four methods 

and show that surveys outperform other methods for the U.S. To calculate real interest rates, this 

paper uses two major expected inflation surveys in the U.S.—the Michigan Survey of Consumer 

Attitudes and Behavior (MICH), which surveys a cross-section of the population on their 

inflation expectations, and the Livingston Survey, which surveys economists from industry, 

government, banking, and academia. 

To summarize, a lot has been done in the field of nominal interest rate modeling, while 

the dynamics of the real interest rate are rarely studied. Ang, Bekaert, and Wei (2007) recently 

documented some stylized facts about the real interest rate dynamics, though some basic 

questions about the dynamics of the real interest rate are still to be answered. This paper 

proposes an answer to one of them: What should be the parameters of a model of the short-term 

real interest rate? This paper estimates parameters of the real interest rate model in the broad 

class of single-factor continuous interest rate diffusion processes. The empirical estimates show 
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that the key parameters of the nominal and real interest rate models differ substantially. The 

major difference comes from the volatility structure of these models, mainly related to the 

elasticity of interest rate volatility, which is estimated to be much lower for the real interest rate 

model. The empirical estimates of this paper document the fact that the square root process, as in 

the Cox, Ingersoll, and Ross (1985) model, provides a good characterization of the short-term 

real interest rate process. 

The remainder of paper is organized as follows. Section 2 discusses different theoretical 

single-factor short-term interest rate models. Section 3 provides the estimation methodology, 

data description, and empirical results.  In Section 4, potential implications of the results of this 

paper are discussed. Section 5 concludes.  

 

2. Models of the Short-Term Interest Rate  

In this section, I briefly discuss canonical models that can be nested in the broad class of 

single-factor continuous interest rate diffusion processes. To model the interest rate dynamics, it 

is common to consider a continuous-time diffusion process defined by:  

(1)      dzrdtrdr   )( , 

where r is the continuous (real) interest rate and dz  is the Brownian motion.  

This continuous-time model can be represented as the following discrete-time analog: 

(2)      1,1   trttt rrr  , 

(3)       222

1, ][ ttrt rE  , 

where tr is the (real) interest rate and 1, tr  is the iid shock with the variance 
 22

tr . In this 

model,   represents a drift,   is the parameter of mean-reversal,   is the variance level, and   
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is a measure of the dependence of volatility on the interest rate level, or the elasticity of the 

interest rate volatility. This general version of the model comprises nine special cases that 

impose restrictions on the values of  ,, , and   (Table 1).  

Models Model name 
Parameters Degrees of 

freedom         

Model 1 Unrestricted - - - - 0 

Model 2 CEV 0 - - - 1 

Model 3 0,0    0 0 - - 2 

Model 4 Merton - 0 - 0 2 

Model 5 Vasicek - - - 0 1 

Model 6 GBM 0 - - 1 2 

Model 7 CIR-SR - - - 0.5 1 

Model 8 Dothan 0 0 - 1.0 3 

Model 9 
Brennan-

Schwartz 
- - - 1 1 

Model 10 CIR-VR 0 0 - 1.5 3 

Table 1. Parameter restrictions (degrees of freedom) imposed by alternative models of the short-term interest rate. 

 

Model 1 is an “unrestricted” version of the single-factor interest rate diffusion processes 

in discrete time, estimated by CKLS (1992). Model 2 is the constant elasticity of variance (CEV) 

process introduced by Cox (1975) and by Cox and Ross (1976). Model 3 is a version of the 

constant elasticity of variance (CEV) process with 0 and 0 . Model 4 is used in Merton 

(1973) to derive a model of discount bond prices. Model 5 is the Ornstein-Uhlenbeck process 

used by Vasicek (1977) in deriving an equilibrium model of discount bond prices. Model 6 is the 

geometric Brownian motion (GBM) process. Model 7 is the square root (SR) process, which 

appears in Cox, Ingersoll, and Ross (CIR, 1985). Model 8 is used by Dothan (1978) in valuing 

discount bonds. Model 9 is used by Brennan and Schwartz (1980) in deriving a numerical model 

for convertible bond prices. Model 10 is introduced by Cox, Ingersoll, and Ross (1980) in their 
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study of variable-rate (VR) securities.  

 

3. Empirical Estimates 

3.1. The Real Interest Rate. 

Many theoretical models use a certain interest rate process as an assumption. From a 

theoretical standpoint, many canonical models mentioned above do not require interest rates to 

be positive, implying a better fit with real interest rates. A theoretical calculation of the real 

interest rate is usually based on the stochastic discount factor approach. To satisfy the no-

arbitrage condition, the real price of an arbitrary financial instrument must adhere to the law of 

one price: 

(4)      )( 11  tttt PMEP , 

where 
1tM is a real stochastic discount factor, 

tP  is the price level, and 
tE  is the conditional 

expectation operator at time t.  

As the nominal and real stochastic discount factors are connected through inflation, under 

standard assumptions of log-normality, the one-period nominal interest rate can be expressed as: 

(5)      )(
2

1
),()( 1111   ttttttttt VarmCovErR  , 

where 
tR  is the nominal interest rate, 

tr  is the real interest rate, 
1t  is inflation in period  t+1, 

and 
1tm  is a log of the real stochastic discount factor. This equation is different from the 

standard Fisher equation through the third and four terms, which account for the inflation 

premium and Jensen’s inequality “higher-order” term, respectively.  

For short horizons, it is typical to assume that the interest rate is risk-free and the 
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inflation risk premium is negligible (see, for example, Ang, Bekaert, and Wei (2007)). Also, if 

interest rates are small, second-order components that come from Jensen’s inequality are 

insignificant. Therefore, the canonical Fisher equation would hold for short horizons and the 

calculation of the real interest rate boils down to subtracting the expected inflation from the 

nominal interest rate:  

(6)      )( 1 tttt ERr  . 

In this paper, I study short term (3 months) interest rates and assume that there is only a 

negligible inflation risk in it. I intentionally do not attempt to decompose the nominal interest 

rate into other components, as they are very small for the short-term interest rate and any 

procedure for estimating the risk premia would demand prior ad hoc assumptions about the 

structure of the real interest rate model. Instead, I focus on estimating the model of the short-term 

real interest rate using only data on 3-month Treasury-Bill interest rates and expected inflation. 

 

3.2. Data 

The real interest rate is calculated using the standard Fisher equation (6). For the short-

term nominal interest rate, I use the 3-month Treasury-Bill interest rate included in the Federal 

Reserve’s weekly H.15 release (monthly data is available from January 1934 to December 2012).  

While there are many models of inflation expectations, the necessity of extended 

historical data on inflation expectations limits choice options. A typical approach of using TIPS 

for measuring expected inflation would not work either, as TIPS are issued in terms of 5, 10, and 

30 years and, therefore, do not allow extracting short-tem inflation expectations.  Ang, Bekaert, 

and Wei (2007) show that surveys outperform other forecasting methods. Therefore, two 

inflation expectation surveys are used in this paper to measure expected inflation: (1) monthly 
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data from University of Michigan Inflation Expectation survey (MICH) available from the St. 

Louis Fed database and (2) the Livingston Survey from the Philadelphia Fed database. MICH 

data is available from January 1978 to December 2012 on a monthly basis. As the Livingston 

Survey data is available from 1954 to 2012 only on a semiannual basis, a linear interpolation is 

used to transform data into monthly series.  

Dynamics of expected inflation, nominal interest rates, and real interest rates are 

presented in Figures 1 and 2. Both surveys provide similar dynamics of real interest rates. Since 

1947, the dynamics of real interest rates was usually between -5 percent and 5 percent (Figure 1) 

and the dynamics of real interest rates looks more like a random process without clear trends, 

although expected inflation and nominal interest rates have historical trends and were influenced 

by economic policies. In the early 80s, inflation was high and Paul Volker, the chairman of the 

Federal Reserve, implemented the policy of high interest rates, pushing real interest rates up. 

Since the beginning of the 2008 crisis, nominal interest rates fell almost to zero, while inflation 

expectations were rather volatile, leading to substantial volatility in real interest rates.    
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Figure  1. Expected inflation (Livingston Survey), 3-Month Treasury-Bill rate, and real interest rate,  

 Jan 1947-Dec 2012. 

 

 

Figure  2. Expected inflation (MICH Survey), 3-Month Treasury-Bill rate, and real interest rate,   

Jan 1978-Dec 2012. 
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3.3. Empirical Estimates 

I begin by estimating a single-equation model for the short-term interest rate of the form: 

(7)      ,1,1   trttt rrr   

(8)      ,][ 222

1,

 ttr rE 
 

where 
tr is the real interest rate and 

1, tr is a shock.   

I follow CKLS (1992) and use the GMM to estimate the model, a logical choice for the 

estimation of the single-factor interest rate processes.  GMM estimators are consistent even if the 

errors are conditionally heteroskedastic, which is important in our case, as the variance of the 

interest rate process, ][ 2

1, trE  , depends on the level of interest rates. Also, the justification for 

the GMM procedure only requires that the distribution of interest rate changes be stationary and 

ergodic and that the relevant expectations exist. 

For comparison, I estimate both the real and nominal interest rate models.
20

 As expected 

inflation data from two surveys are available for different periods, empirical estimates are 

provided for two samples: from January 1978 to December 2012 and from January 1947 to 

December 2012. As only the MICH survey has monthly data, estimates for the January 1978-

December 2012 period should be considered to be the most robust.  

First, for comparison purposes, the process for the nominal interest rate is estimated 

(Table 1). The estimates of  and   are not statistically different from zero, which is consistent 

with no-arbitrage assumptions. The estimate for   is very small. The estimate of the elasticity of 

the volatility of the nominal interest rate,  , for the 1978-2012 period is about 1.8, which is 

                                                      

20
 The nominal interest rate model is the same as the real interest rate model, expect for the use of the 

nominal interest rate instead of the real.  
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consistent with the CKLS (1992) finding of about 1.5 for the 1964-1989 period. Such a high 

level of   explains that the nominal interest rate becomes much more volatile when the level of 

interest rates is high.  

Second, the process for the real interest rate, with the expected inflation taken from the 

MICH and Livingston surveys, is estimated.  Results are similar for both real interest rate data 

series. The estimates of   are not statistically different from zero, which explains the absence of 

drift in the real interest rate dynamics.  The estimate of the mean-reversal parameter,  , is very 

small and negative, which is consistent with standard properties of interest rate processes.   The 

estimates for   are very close to zero, meaning that the variance level is relatively small, which 

is consistent with the observation of Ang, Bekaert, and Wei (2008).  

The estimates show that the real interest rate process has a much lower value for the 

elasticity of the interest rate volatility,  , than the nominal interest rate process. The estimated 

elasticities of volatility of the real interest rate are about 0.55 and 0.47 with standard errors of 

about 0.2 for both data series. These results are striking, as they are much smaller than 1.8 for 

nominal interest rates and a canonical value of about 1.5. 

As the Livingston survey of inflation expectations has data available starting from 1947, I 

estimate the nominal and real interest rate models from January 1947 to December 2012 

separately. The estimates confirm the finding that the nominal interest rate process has a very 

high   but the real interest rate process has a much lower one. Estimates on a full data set for the 

nominal interest rates from 1934 to 2012 confirm the high levels of    of about 1.58 for nominal 

interest rates. 
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Parameters  

 

        

Period: 1978/01-2012/12 

Nominal interest rate model 0.025 -0.008 0.013*** 1.820*** 

s.e. 0.046 0.012 0.007 0.252 

t-stat 0.549 -0.678 1.829 7.229 

     Real interest rate model  

(MICH survey of inflation expectations) 0.000 -0.025*** 0.047** 0.545*** 

s.e. 0.000 0.011 0.034 0.219 

t-stat 0.846 -2.233 1.376 2.487 

 Real interest rate model  

(Livingston survey of inflation expectations) 0.000 -0.008 0.032** 0.468*** 

s.e. 0.000 0.019 0.023 0.234 

t-stat -0.335 -0.425 1.378 1.996 

Period: 1947/01-2012/12 

Nominal interest rate model 0.040 -0.009 0.022*** 1.595*** 

s.e. 0.031 0.009 0.009 0.219 

t-stat 1.287 -1.061 2.359 7.281 

 Real interest rate model  

(Livingston survey of inflation expectations) 0.000 -0.010 0.045** 0.606*** 

s.e. 0.000 0.017 0.028 0.193 

t-stat -0.192 -0.579 1.624 3.134 

Period: 1934-2012 

Nominal interest rate model 0.025 -0.007 0.022*** 1.588*** 

s.e. 0.020 0.007 0.009 0.218 

t-stat 1.226 -0.951 2.362 7.285 

     
 

Table 2. GMM estimation results of the single-equation real and nominal interest rate models.  

 

Note: *** indicates coefficients significant at the 5% level, ** indicates coefficients significant at the 10% level, ** 

indicates coefficients significant at the 15% level. Coefficients   and  are assumed to be non-negative. 
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3.4. Model Comparison 

In this section, I compare the “unrestricted” model for the real interest rate with the nine 

other standard nested models discussed before. Table 3 reports parameter estimates, their 

standard errors, asymptotic t-statistics, and GMM minimized criterion ( 2 ) values for each of 

the nine nested models. Each model imposes restriction(s) on the parameters of the interest rate 

model, influencing estimates of other parameters. The 2  goodness-of-fit test shows the 

“validity” of each model and the restrictions it imposes. The model comparison shows that the 

major parameter that influences the goodness of fit of the model is the parameter of the elasticity 

of volatility of the interest rate.  The 2 -test suggests that the CIR-VR, Brennan-Schwartz, and 

Merton are misspecified and can be rejected at the 90% confidence level. These are followed by 

the Vasicek, GBM, “ 0,0   ”, and Dothan models, all of which have lower 2  values.  

These estimates show that the CIR-SR model provides a good characterization of the 

short-term real interest rate process. The estimates of this model show that, if   is pinned down 

to be 0.5, the estimate of   is not statistically different from zero (which explains the absence of 

a drift in the real interest rate dynamics) and a mean-reversal coefficient,  ,  is slightly negative 

(explaining the mean-reversal dynamics of the real interest rate). These facts are consistent with 

the stylized facts about real interest rates, established by Ang, Bekaert, and Wei (2008).  
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         d.f. 

2  P-value 

Model 1 Unrestricted 0.000 -0.025*** 0.047** 0.545*** 0 - - 

 
s.e. 0.000 0.011 0.034 0.219  

  

 
t-stat 0.846 -2.233 1.376 2.487  

  
Model 2 CEV 0.000 -0.021*** 0.055** 0.603*** 1 0.941 0.332 

 
s.e. 

 
0.010 0.041 0.230  

  

 
t-stat 

 
-2.066 1.321 2.624  

  
Model 3 0,0    0.000 0.000 0.055* 0.603*** 2 4.271 0.118 

 
s.e. 

  
0.039 0.277  

  

 
t-stat 

  
1.081 1.991  

  
Model 4 Merton 0.000 0.000 0.005*** 0.000 2 4.821 0.090 

 
s.e. 0.000 

 
0.001 

 
 

  

 
t-stat 0.130 

 
6.768 

 
 

  
Model 5 Vasicek 0.000 -0.023*** 0.006*** 0.000 1 2.611 0.106 

 
s.e. 0.000 0.011 0.001 

 
 

  

 
t-stat 0.732 -2.072 7.434 

 
 

  
Model 6 GBM 0.000 -0.018** 0.173*** 1.000 2 3.494 0.174 

 
s.e. 

 
0.010 0.020 

 
 

  

 
t-stat 

 
-1.766 8.860 

 
 

  
Model 7 CIR-SR 0.000 -0.025*** 0.040*** 0.500 1 0.048 0.827 

 
s.e. 0.000 0.011 0.005 

 
 

  

 
t-stat 1.020 -2.309 8.653 

 
 

  
Model 8 Dothan 0.000 0.000 0.165*** 1.000 3 6.096 0.107 

 
s.e. 

  
0.020 

 
 

  

 
t-stat 

  
8.061 

 
 

  

Model 9 
Brennan-

Schwartz 
0.000 -0.018** 0.174*** 1.000 1 3.401 0.065 

 
s.e. 0.000 0.010 0.020 

 
 

  

 
t-stat 0.334 -1.766 8.827 

 
 

  
Model 

10 
CIR-VR 0.000 0.000 0.610*** 1.500 3 9.280 0.026 

 
s.e. 

  
0.079 

 
 

  

 
t-stat 

  
7.719 

 
 

  
Table 3. GMM estimates of alternative models for the short-term real interest rates, Jan 1978-Dec 2012. 

 

Note 1. The MICH survey of inflation expectations and 3-month Treasury-Bill interest rates are used to compute 

real interest rates. Number of degrees of freedom (d.f.) are equal to the number of restrictions in the nested model. 

Note 2. *** indicates coefficients significant at the 5% level, ** indicates coefficients significant at the 10% level, 

** indicates coefficients significant at the 15% level. Coefficients   and  are assumed to be non-negative. 

Note 3. Restrictions imposed by each model are in bold. 
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3.5. Structural Breaks 

Many empirical studies conclude that a change in the Federal Reserve’s monetary policy 

during the Volker period led to changes or structural breaks in interest rate processes. To test this 

hypothesis, I introduce a dummy variable, 
tD , that equals unity for monthly observations from 

October 1979 through September 1982 (as in Bliss and Smith (1988)) and zero otherwise. The 

model takes the form: 

(9)      1,211 )()(   trttttt rDDrr  , 

(10)      )(22

3

2

1,
4)(][ tD

tttr rDE
 

  , 

where parameters 1 , 2 , 
3 , and 4  represent marginal changes during the 1979-1982 period of 

 ,  ,  , and  , respectively. As four additional parameters are introduced into the model, for 

GMM estimation purposes the orthogonal vector of instruments is extended by the corresponding 

series of the dummy variables and their products with other variables. The model is estimated on 

the real interest rates data series from January 1947 to December 2012, based on the Livingston 

survey of inflation expectations.
21

 

 

 

 

 

 

 

                                                      

21
 The MICH survey started only in 1978 and, therefore, does not have enough data points to consistently 

evaluate the existence of the structural break in the data. 
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        

1  2  3  
4  

 

0.000 -0.008 0.076*** 0.849*** 0.014** -0.291*** 0.001*** -0.171 

s.e. 
0.000 0.017 0.032 0.118 0.007 0.119 41.739 1.388 

t-stat 
-0.220 -0.495 2.367 7.168 1.909 -2.444 0.000 -0.123 

Table 4. Test for structural breaks in the models of the short-term real interest rate, Jan 1947-Dec 2012. 

 

Note 1. The Livingston survey of inflation expectations is used.  

Note 2. *** indicates coefficients significant at the 5% level, ** indicates coefficients significant at the 10% level, 

** indicates coefficients significant at the 15% level. Coefficients   and  are assumed to be non-negative. 

 

The empirical results are striking (Table 4). The estimates of  and   are not 

statistically different from zero. At the same time, estimates show that there was a statistically 

significant change in the value of these parameters between October 1979 and September 1982. 

The drift parameter   increased slightly ( 014.01  ). Parameter   became substantially 

smaller )291.0( 2  , reflecting more active mean-reversing dynamics of the real interest rate, 

which can be explained by an aggressive policy of the Federal Reserve during this period. While 

there was a statistically significant positive change in  , it was very small )0001.0( 3  . It is 

important to notice that there was no statistically significant change in the volatility structure of 

the real interest rates during this period, which is consistent with the CLKS (1992) estimates for 

the nominal interest rate model. 

 

 

4. Potential Implications 

The empirical results of this paper are important as building blocks for more 

sophisticated interest rate models. Modeling dynamics of the real interest rate simultaneous with 

dynamics of inflation would give a better perspective on the volatility of the nominal interest rate 
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dynamics. The key findings of this paper are the estimates of the parameters of the volatility 

structure of the real interest rate model. The results of this paper can be extended and applied to 

different multi-factor models of interest rates with implications on bond and option pricing.  

One of the potential applications of the results of this paper is the improvement of TIPS 

pricing. The estimated square root process for the real interest rate can be incorporated into a 

model of the term structure of real interest rates, expected inflation, and inflation risk premia, 

similar to Haubrich, Pennacchi, and Ritchken (2012) and Grishchenko and Huang (2012). 

Haubrich, Pennacchi, and Ritchken (2012) construct the model with an ad hoc assumption that 

the real interest rate process has a volatility structure that does not depend on the level of the 

interest rate. Somewhat similar assumptions are used in Grishchenko and Huang (2012). Both 

papers have important empirical implications for pricing TIPS. Using the estimated process for 

the short-term real interest rate of this paper, one might better understand the inflation risk 

premium for longer maturities and pricing of inflation-protected securities.   

Real interest rates might play an important role in understanding the connection between 

yields on Treasury-Bill and the Federal Funds rate.  Piazzesi (2005) shows that nominal bond 

yields respond to policy decisions of the Federal Reserve and vice versa and, therefore, suggests 

that models of the yield curve should take into account monetary policy actions of the Federal 

Reserve. As the Federal Reserve changes its nominal interest rate in response to changes in 

inflation and other macroeconomic variables, incorporating dynamics of the real interest rate 

from this paper in Piazzesi’s framework might provide a better understanding of the connection 

between different short-term interest rates.  

All of these applications are left for future research.  
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5. Conclusion 

While parameters of nominal interest rate models are well studied, not much is done in 

the field of real interest rates. This paper demonstrates that a canonical level of the parameter of 

the elasticity of nominal interest rate volatility of about 1.5 cannot be applied to the real interest 

rate model. Instead, the empirical estimates of this paper on U.S. data show that the short-term 

real interest rate has a much lower level of elasticity of interest rate volatility in the class of 

single-factor diffusion processes. 

Using the 3-month Treasury-Bill interest rate and inflation expectations data, time series 

for real interest rates are constructed. The empirical estimates of this paper found the elasticity of 

the real interest rate volatility to be about 0.5, consistent with the square root single-factor 

diffusion process. The model comparison confirms that the Cox, Ingersoll, and Ross (1985) 

model provides a good characterization of the short-term real interest rate process. The analysis 

of structural changes during the Volcker disinflation period did not confirm the existence of a 

structural break in the volatility structure of the real interest rate model.  
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