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RESEARCH Open Access

IL-1β suppresses cLTP-induced surface
expression of GluA1 and actin
polymerization via ceramide-mediated Src
activation
Liqi Tong1* , G. Aleph Prieto1 and Carl W. Cotman1,2

Abstract

Background: Brain inflammation including increases in inflammatory cytokines such as IL-1β is widely believed to
contribute to the pathophysiology of Alzheimer’s disease. Although IL-1β-induced impairments in long-term
potentiation (LTP) in acute hippocampal slices and memory functions in vivo have been well documented, the
neuron-specific molecular mechanisms of IL-1β-mediated impairments of LTP and memory remain unclear.

Methods: This study uses an in vitro approach in primary hippocampal neurons to evaluate the effect of IL-1β on
chemical LTP (cLTP)-induced structural plasticity and signaling.

Results: We found that IL-1β reduces both the surface expression of alpha-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor subunit GluA1 and the spine growth following cLTP. These effects of IL-1β
were mediated by impairing actin polymerization during cLTP, as IL-1β decreased the cLTP-induced formation of
F-actin, and the effect of IL-1β on cLTP-induced surface expression of GluA1 can be mimicked by latrunculin, a
toxin that disrupts dynamics of actin filaments, and can be prevented by jasplakinolide, a cell-permeable peptide
that stabilizes F-actin. Moreover, live-cell imaging demonstrated that IL-1β decreased the stability of the actin
cytoskeleton in spines, which is required for LTP consolidation. We further examined the role of sphingolipid
signaling in the IL-1β-mediated impairment of spine plasticity and found that both the neutral sphingomyelinase
inhibitor GW4869 and the inhibitor of Src kinase PP2 attenuated the IL-1β-mediated suppression of cLTP-induced
surface expression of GluA1 and actin polymerization.

Conclusions: These findings support a mechanism by which IL-1β, via the sphingomyelinase/ceramide/Src
pathway, impairs structural spine remodeling essential for LTP consolidation and memory.

Keywords: IL-1β, Synaptic plasticity, Dendritic spine, GluA1, Actin dynamics

Background
Brain inflammation is widely believed to underlie the
pathophysiology of Alzheimer’s disease (AD) [1–4]. The
pro-inflammatory cytokine IL-1β plays a pivotal role in
brain inflammation and mediates the effect of inflamma-
tion on cognition and synaptic plasticity. Accumulating
evidence indicates that elevated IL-1β levels cause cogni-
tive decline, especially on hippocampal-dependent tasks

[5]. IL-1β overexpression in an inducible transgenic
mouse shows impaired hippocampal-dependent long-
term contextual and spatial memory with normal non-
hippocampal memory [6]. In addition, peripheral Escher-
ichia coli infection increases IL-1β levels in the hippo-
campus and impairs contextual fear conditioning in old
animals, and the loss of memory is prevented by the spe-
cific IL-1β receptor antagonist IL-1ra [7, 8]. Several re-
ports have demonstrated that IL-1β suppresses long-
term potentiation (LTP) [9–11], a form of synaptic plas-
ticity broadly defined as an activity-dependent increase
in synaptic strength and considered to be a cellular
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mechanism for memory formation. In an aged animal,
inflammation impairs theta-burst-induced LTP (theta-
LTP), which is thought to mimic the firing patterns ob-
served in the hippocampus during behavioral learning in
animals in vivo [12], via IL-1β signaling [13]. In trans-
genic mouse models of AD, the deficit in LTP correlates
with increased expression of IL-1β [14, 15]. Blocking IL-
1 signaling by IL-1 receptor antibody prevented
amyloid-beta (Aβ)-induced impairment on LTP and
memory [16].
Dendritic spines are a major site of information pro-

cessing in the brain. Therefore, mechanisms that regu-
late the plasticity of dendritic spines are fundamental to
cognitive functions including learning and memory (for
review, see [17]). It is well known that activity-driven
changes in synaptic efficacy modulate spine morphology
due to alterations in the underlying actin cytoskeleton.
Excitatory synaptic transmission is tightly regulated by
the total number and activation of AMPA receptors
(AMPARs) present at the synapse. During LTP, AMPARs
are inserted into the postsynaptic membrane, the spine
heads enlarge, and synaptic connections are strength-
ened [18, 19]. Actin polymerization has been proposed
to be a critical event for the stabilization of LTP [18, 20].
Thus, actin dynamics plays an important role in synaptic
development and plasticity.
Our previous study has shown that IL-1β impairs the

stabilization of theta-LTP and actin polymerization in
acute hippocampal slices [21]. Whether IL-1β suppresses
activity-dependent actin polymerization by direct effects
on neurons or by indirect mechanisms mediated by
non-neuronal cells is poorly understood. Elucidating
neuron-specific effects of IL-1β in hippocampal slices
has been challenging because most brain cells express
IL-1 receptors and IL-1β increases the expression of
multiple cytokines in their target cells. Here, to study
neuron-specific effects and further focus on dendritic
spines, we used chemical LTP (cLTP) in low-density pri-
mary neuronal cultures, an experimental system com-
monly used to elucidate molecular and cellular changes
during LTP [22]. The characterization of glycine-induced
cLTP has confirmed that the induction method shares
many key properties with theta-LTP of CA1 neurons
[23]. For example, LTP in dissociated hippocampal neur-
onal cultures is also dependent on Ca2+ influx through
post-synaptic NMDA receptors, subsequent activation
and autophosphorylation of the Ca2+/calmodulin-
dependent protein kinase II (CaMKII), and an increase
in AMPAR receptor insertion at the post-synaptic mem-
brane [24, 25].
Here, we show that IL-1β impairs cLTP-induced struc-

tural spine remodeling underlying plasticity, including
surface insertion of GluA1-containing AMPAR, spine
enlargement, and actin polymerization in primary

cultured hippocampal neurons. We also investigated the
possible role of sphingolipid signaling in the IL-1β-
mediated suppression of cLTP.

Methods
Hippocampal cell culture and transfection
The use of all animals was approved by the Institutional
Animal Care and Use Committee at the University of
California, Irvine. Primary hippocampal cell cultures
were previously described [26]. Briefly, primary hippo-
campal neurons were obtained from the hippocampi of
Sprague–Dawley rat embryos (E18-19) (Charles River).
Hippocampi were incubated in Hank’s Balanced Salt
Solution (HBSS; Invitrogen, USA) with 0.025% trypsin
(Invitrogen) for 10 min at 37 °C. Neurons dissociated in
NeuroBasal medium (Invitrogen) supplemented with B27
(Invitrogen), and penicillin/streptomycin were plated on
poly-D-lysine (Sigma)-coated six-well plates for Western
blot analysis and glass bottom dishes (Mattek) for
immunocytochemistry. The neuronal cultures were main-
tained in Neurobasal medium supplemented with 2% B27
supplement, 0.5% GlutaMax, and 1% penicillin/strepto-
mycin mix (Invitrogen) in a 37 °C, 5% CO2 incubator. The
neurons were transfected using lipofectamine 2000
(Invitrogen) following the supplier’s protocol.

DNA constructs, reagents, and treatments
tdTomato and Lifeact-GFP were purchased from ibidi,
Inc. Ser3 peptides with the sequence of MAS(p)
GVAVSDGVIKVFN were synthesized by GenScript
(GenScript). GW4869, desipramine, fumonisin B1, C2-
ceramide, and Pyrazolopyrimidine 2 (PP2) were pur-
chased from Sigma-Aldrich (Sigma-Aldrich, USA). Re-
combinant IL-1β (PeproTech) was dissolved in DMEM
and used after one freeze–thaw cycle at 50 ng/ml. After
14–18 days in vitro (DIV), neurons were treated at 37 °C
with 50 ng/ml IL-1β, with control neurons receiving equal
volumes of vehicle. cLTP was induced as described previ-
ously [24, 25]. Briefly, hippocampal neurons were main-
tained in normal ACSF (5 mM HEPES [pH 7.3], 125 mM
NaCl, 2.5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, and
33 mM glucose). Osmolarity was adjusted to 290 mosmol/
l. Chemical LTP was induced by changing the medium to
Mg2+-free ACSF (5 mM HEPES [pH 7.3], 125 mM NaCl,
2.5 mM KCl, 2 mM CaCl2, 33 mM glucose, 0.2 mM
glycine, 0.02 mM bicuculline, and 0.003 mM
strychnine) for 10 min. After that, the incubation
solution was altered back to control solution without
glycine for 20 min before surface GluA1 labeling and for
30 min before fixation for immunohistochemistry to
detect changes in F-actin, respectively. Neurons were
treated with vehicle or IL-1β before (1 h), during (10 min),
and after cLTP stimulation at indicated time points.
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Western blotting
Cultures were washed twice with cold PBS prior to incuba-
tion in RIPA buffer (Thermo Fisher) containing a protein-
ase and phosphatase cocktail (Thermo Fisher) for 20 min
on ice. Lysates were centrifuged at 12,000×g at 4 °C for
20 min. The total amount of protein in cultures was deter-
mined using BCA protein quantitation assay (Pierce),
according to the manufacturer’s protocol. Equivalent
amounts of protein for each sample were electrophoresed
on 4–12% SDS-polyacrylamide gel (Lonza). Proteins were
then electrotransferred to PVDF membranes (Bio-Rad),
blocked with 5% nonfat milk in Tris-buffered saline (TBS),
and probed with various antibodies. The membrane was
stained with an appropriate primary antibody overnight at
4 °C. The following antibodies were used as indicated:
phosphorylated Src (P-Src, detects Src phosphorylated at
Tyr416, 1:1000, Cell signaling), Total-Src (T-Src, 1:1000,
Millipore), total cofilin (T-Cof, 1:1000, Millipore), phos-
phorylated cofilin (P-Cof, detects cofilin phosphorylated at
Ser3, 1:2000, Millipore), and actin (1:2000, Cytoskeleton).
The immunoreactivity was revealed using horseradish
peroxidase-conjugated secondary antibody (goat anti-rabbit
IgG or goat anti-mouse IgG, Vector Laboratories) and
SuperSignal Wester Dura Extended Duration Chemilumin-
escence Substrate (Thermo Fisher) according to the recom-
mended conditions. The membranes were developed using
AFP Imaging Developing System (MRX) or Bio-Rad
ChemiDoc Imaging System (Bio-Rad), respectively. Immu-
noreactivity was quantified using ImageJ (NIH). Quantifica-
tion of the data obtained from Western blots derived from
cultures under the various experimental conditions was
analyzed.

Assay for the ratio of G-actin to F-actin
The ratio of G-actin to F-actin was analyzed using a kit
(Cytoskeleton) according to manufacturer’s instructions.
Briefly, after treatment, cells were lysed in a detergent-
based lysis buffer that stabilizes and maintains the G–
and F– forms of cellular actin. Cell lysates were trans-
ferred to an ultracentrifuge and spun at 150,000×g for
1 h to separate the globular (G)-actin (supernatant) and
filamentous (F)-actin fractions (Beckman). Samples of
supernatant and pellet were electrophoresed on SDS-
polyacrylamide gel. All samples were diluted with appro-
priate loading buffer and boiled for 5 min. Actin was
quantified by Western blot analysis.

FRAP (fluorescence recovery after photobleaching)
The 14–16 DIV neurons were transfected with Lifeact-
GFP. For the imaging, the cell culture dishes were placed
on an imaging stage in the microscope environmental
chamber (37 °C, 5% CO2). FRAP experiments were per-
formed using a macro function of the stimulus setting
menu in LSM510 software to control sequential image

acquisition and emission of a photobleaching laser pulse
to the ROI (region of interest). A single dendritic spine
of hippocampal neuron was set as ROI and five pre-
bleaching images acquired at 5-s intervals and the fluor-
escence of spine photobleached with an Argon 488 laser
at low power (2–4%) to avoid photobleaching during the
time-lapse imaging; the emitted light was passed through
a band pass emission filter. The recovery of fluorescence
was traced for an additional 5 min by acquiring images
at 5-s intervals. Minimum laser power was used to pre-
vent photobleaching during the pre- and post-bleaching
stages. Pre-bleaching, bleaching, and post-bleaching im-
ages were utilized for analyzing the dynamics of target
proteins. Images were taken by a confocal laser scanning
microscope (CLSM) (Zeiss LSM 510) and quantified
with ImageJ. The mobile fraction (fm) and the immobile
fraction (fi) were calculated by the following equations:
fm = F∞/ F0, where F∞ is the fluorescence intensity after
full recovery, and F0 is the fluorescence intensity before
photobleaching, fi = 1 − fm.

Immunocytochemistry, confocal imaging, and analysis
Cultured cells were fixed with 4% paraformaldehyde (PFA)
and permeabilized using 0.1% TX-100, and non-specific
binding of the antibodies was blocked by incubation with
5% normal goat serum (Vector). The permeabilized and
blocked samples were incubated with primary antibodies
overnight at 4 °C. Excess antibodies were washed off and
the samples were incubated with corresponding Alexa
Fluor 488 or 555 secondary antibodies for 1 h at room
temperature. For surface GluA1 staining, neurons were
incubated with an antibody to the N terminus of GluA1
(Calbiochem) in recording solution for 20 min at 37 °C,
washed with phosphate-buffered saline (PBS), fixed with 4%
paraformaldehyde (PFA, wt/vol) and 4% sucrose (wt/vol) in
PBS for 20 min, and incubated with appropriate secondary
antibody in 1% BSA (wt/vol) for 45 min before imaging.
For F-actin labeling, neurons were first fixed for 20 min in
4% PFA before permeabilizing with 0.1% Triton X-100
(vol/vol) in PBS for 10 min and labeling with Alexa
568–phalloidin for 15 min (Invitrogen, 1:1000). For
spine density analysis, dissociated hippocampal cultures
were transfected with Lifeact-GFP for 24 h before treat-
ments. After fixation, dendrites were straightened using
ImageJ, and spine density was determined by manually
counting spines. All immunocytochemistry experiments
were performed from at least three individual batches
of cultures for different conditions in parallel. Images
were acquired by confocal laser scanning microscopy
(CLSM) (LSM 510, Zeiss or Olympus Fluoview 3000,
Olympus) using identical settings for parallel cultured
and quantified using ImageJ. Quantitative analysis of
surface GluA1 (sGluA1) expression was carried out in
3D by Z-stacking with 0.5 μm each step for 5–8 steps
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using a confocal microscope and Volocity software for
deconvolution. Quantification of sGluA1 average pixel
intensities on the surface of dendrites was carried out
using the ImageJ software. Dendrites were identified
using threshold adjustment for background fluores-
cence, and only clearly identifiable dendrites were se-
lected for analysis. All analyses were performed blind to
the experimental manipulation. A single value was ob-
tained from each independent experiment and used to
construct the mean and standard error. The number of
independent experiments was the number of observa-
tions used for statistical analysis. For live imaging, neu-
rons expressing Lifeact-mCherry were stimulated by
cLTP using glycine stimulation as described above and
then imagined by Olympus Fluoview 3000, Olympus) on
the stage of 37 °C and CO2 environment at the indicated
time after glycine stimulation. Images were analyzed by
ImageJ.

Statistical analysis
Data are expressed as means ± SEM and were analyzed
using one-way ANOVA followed by a Bonferroni’s post
hoc test. The level of significance was set at p < 0.05.

Results
IL-1β decreased cLTP-induced GluA1surface expression
and spine growth
We first tested the possibility that IL-1β impairs GluA1-
containing AMPAR trafficking and insertion into spines
following cLTP. We used a cell culture model of cLTP in
which pharmacological activation of NMDA receptors
leads to an increase in the surface expression of synaptic
AMPARs [24, 25, 27, 28]. Rat hippocampal neurons (14-
18 DIV) were treated with IL-1β, and the surface expres-
sion of GluA1 was examined by immunocytochemistry.
Consistent with prior results, application of the NMDAR
co-agonist glycine in the presence of a GABA receptor
antagonist bicuculline led to a significant increase in the
surface expression of endogenous GluA1-containing
AMPARs compared to unstimulated control cells
(Fig. 1a). IL-1β significantly reduced cLTP-induced
surface expression of GluA1 (Fig. 1a, b).
Consistent with a previous report [29], GluA1 inser-

tion occurs primarily in spines, identified in neurons
transfected with TdTomato (Fig. 1c). To provide direct
evidence that glycine-induced LTP promotes GluA1 in-
sertion at postsynaptic sites, we next labeled GluA1,
under nonpermeant conditions, and subsequently
stained the same neurons for the presynaptic marker
protein synaptophysin, under permeant conditions, to
identify synapses. Treatment of cultures with glycine in-
creased GluA1/synaptophysin co-localization, whereas
IL-1β decreased cLTP-induced GluA1/synaptophysin co-
localization (Fig. 1d). These results indicate that IL-1β

impairs cLTP-induced increase in the number of GluA1
at postsynaptic sites.
Several studies have demonstrated that LTP increases

both the number and size of dendritic spines [25, 29].
To examine the effect of IL-1β on cLTP-induced growth
of dendritic spines, we transfected neurons with Lifeact-
GFP and measured the formation of new spines in
response to cLTP. Consistent with previous reports, the
number of dendritic protrusions of existing spines
increased after glycine treatment (Fig. 1e, f ). cLTP
induced a 1.4-fold increase in the total number of den-
dritic spines. IL-1β treatment decreased cLTP-induced
increases in the number of dendritic spines (Fig. 1e, f ).
We further performed live imaging experiment to test
directly whether IL-1β affects cLTP-induced new spine
formation. As shown in Fig. 1g, h, cLTP increased new
spine formation and IL-1β decreased the effect of cLTP.
These results suggest that IL-1β inhibits cLTP-induced
structural changes critical to synaptic plasticity.

IL-1β suppresses cLTP-induced GluA1 surface expression
by affecting actin dynamics
LTP at mature excitatory synapses requires both the traf-
ficking of AMPA receptors and the growth of dendritic
spines, in which dynamic reorganization of actin cyto-
skeleton plays a crucial role [30]. There are two forms of
actins: monomeric globular actin (G-actin) and polymer-
ized filamentous actin (F-actin). The transition between
these two forms is controlled by synaptic activity. We have
previously reported that IL-1β decreased TBS-LTP-induced
F-actin in acute hippocampal slice [21]. This led us to
investigate, in a neuron-enriched experimental system, the
effect of IL-1β in both actin polymerization and GluA1
insertion following cLTP. We first examined the effect of
IL-1β on cLTP-induced actin polymerization (F-actin),
which was measured by phalloidin staining. Consistent with
previous reports [25], glycine stimulation increased actin
polymerization. We found that treatment of cultured
neurons with IL-1β significantly decreased cLTP-induced
F-actin (Fig. 2a, b). As an alternative approach, we moni-
tored F-actin with Lifeact, a 17 amino acid peptide which
can be attached to a fluorophore and allows visualization of
actin dynamics [31]. IL-1β attenuated the induction of
F-actin by cLTP, as measured by imaging Lifeact-GFP in
neurons co-transfected with tdtomato (to visualize spines)
(Fig. 2c).
Because IL-1β-mediated suppression of cLTP-induced

GluA1 insertion correlates with decreased actin
polymerization, we next tested the possibility that the
effect of IL-1β on cLTP-induced GluA1 insertion is
mediated by the regulation of actin dynamics. For this
purpose, we examined the effect of IL-1β on cLTP-
induced surface expression of GluA1 in the presence of
jasplakinolide, a cell-permeable peptide that stabilizes
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actin filaments. Jasplakinolide prevented the inhibitory
effect of IL-1β on GluA1 surface expression (Fig. 3a, b).
We further examined the effect of latrunculin, a toxin

that disrupts dynamic actin filaments, on cLTP-induced
surface expression of GluA1. We found that latrunculin
decreased cLTP-induced actin polymerization (Fig. 3c)

Fig. 1 IL-1β impaired cLTP-induced GluA1 insertion and spine formation. a Representative fluorescence images show the expression of surface GluA1
(sGluA1) in unstimulated control cells and cells treated with cLTP in the presence or absence of IL-1β. cLTP was induced in hippocampal neurons at 14–18
DIV. sGluA1 level was assessed by immunocytochemistry as described in the “Methods” section. Scale bar: top panel, 10 μm; bottom panel, 5 μm. b
Quantification of the images shown in a. Data are mean ± SEM from three independent experiments expressed in terms of control (*p < 0.05, ANOVA).
c GluA1 (green) insertion occurs primarily in spines, identified in neurons transfected with TdTomato (red). Scale bar, 5 μm. d Cells double-labeled with
GluA1, under nonpermeant conditions, and synaptophysin (Syn), under permeant conditions. The co-localization of GluA1 and Syn was illustrated by
the arrowhead. Scale bar, 10 μm. e IL-1β decreased cLTP-induced growth of dendritic spines. Representative fluorescence images of hippocampal
dendritic spines visualized in cells transfected with Lifeact-GFP. Thirty minutes min after cLTP, cells were fixed and image was taken and spine density
was quantified. cLTP increased the density of dendritic spines. Scale bar, 10 μm. f Quantification of dendritic spine density. Data are mean ± SEM from
three independent experiments expressed in terms of spine numbers obtained in the control cultures (*p < 0.05, ANOVA). g Glycine stimulation
induces new spine formation (arrow) and preexisting spine growth (arrow head). Neurons expressing Lifeact-mCherry were stimulated by glycine
(200 μM, 10 min) and then imaged at the indicated time after glycine stimulation. Scale bar, 20 μm. h Quantitative of spine formation following glycine
stimulation. N number of dendritic protrusions per 10 μm at 25 min after glycine stimulation, N0 number of dendritic protrusions per 10 μm before
glycine stimulation. Data are mean ± SEM (n = 4) (*p < 0.05, Student’s t test)
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and surface expression of GluA1 (Fig. 3d, e). These
results suggest that IL-1β decreases cLTP-induced GluA1
insertion by selectively interfering with actin dynamics.

IL-1β decreases the stability of the cytoskeleton in
dendritic spines
To explore the mechanism underlying the effect of IL-1β-
mediated impairment on actin dynamics, we performed
live-cell imaging, using FRAP (fluorescence recovery after
photobleaching) assays (Fig. 4a) to monitor the turnover
of actin filaments at single spines. This assay is based on
the fluorescence recovery of Lifeact-GFP after photo-
bleaching using time-lapse imaging [32]. To analyze the
movement of actin, FRAP analyses were conducted after
transfection of Lifeact-GFP. The actin cytoskeleton shows
a very high turnover rate in dendritic spines. We observed
that the recovery of Lifeact-GFP was rapidly completed
within 5 min, a time consistent with a previous report [33]
(Fig. 4b, top panel). The FRAP assay confirmed that cLTP
induces F-actin stabilization (Fig. 4b, middle panel, and c,
25.6 ± 11% of immobile fraction before cLTP vs 62.8 ± 6.
4% of immobile fraction 20s after cLTP, n = 4), consistent
with previous finding [34]. However, cLTP treatment
failed to stabilize F-actin in IL-1β-treated neurons (Fig. 4b,

bottom panel, and c, 22.5 ± 9% of immobile fraction in IL-
1β-treated group vs 58.2 ± 10.2% of immobile fraction in
control group, n = 4). Under control conditions, IL-1β treat-
ment did not affect significantly actin dynamics (18.6 ± 4.5%
of immobile fraction in IL-1β-treated group vs 28.1 ± 8% of
immobile fraction in control group, n = 4). These results
suggest that IL-1β impairs cLTP-induced F-actin
stabilization during spine remodeling after cLTP.

Cofilin signaling contributes to the inhibitory effects of
IL-1β on cLTP-induced GluA1 insertion
To confirm the effect of IL-1β on cLTP-induced actin
polymerization, we first measured the ratio of G-actin and
F-actin, which is composed of aggregated G-actin. The
ratio of F-actin to G-actin, which reflects the balance
between actin polymerization and depolymerization, was
increased by cLTP and reduced by IL-1β (Fig. 5a, b). Next,
we examined the effect of IL-1β on molecules that regu-
late actin dynamics. Cofilin is an actin-binding protein
whose activation depolymerizes actin filaments [35]. Given
that theta-LTP increased cofilin phosphorylation at Ser3
[35], which inhibits cofilin activity, and that IL-1β de-
creased brain-derived neurotrophic factor (BDNF)-in-
duced cofilin phosphorylation in CA1 of organotypic

Fig. 2 IL-1β impaired cLTP-induced actin polymerization. a Cells were fixed following cLTP (30 min) and F-actin staining by phallodin. Scale bar,
5 μm. b Quantification of the images shown in a. Data are mean ± SEM from three independent experiments expressed in terms of
control (*p < 0.05, ANOVA). c F-actin in control and cLTP-stimulated cells were labeled by Lifeact/tdtomato co-transfection. Scale bar, 5 μm
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hippocampal slices [35], we reasoned that IL-1β might
affect cLTP-induced actin polymerization through modu-
lating cofilin signaling. Indeed, IL-1β treatment decreased
cLTP-induced increase in cofilin phosphorylation (177 +
5% of control by cLTP vs 150 + 8% of control by cLTP and
IL-1β, n = 4). (Fig. 5c, d), indicating that IL-1β impairs

cLTP-induced suppression of cofilin activity. We further
tested whether an IL-1β-mediated decrease of cLTP-
induced GluA1 insertion can be reversed by decreasing
cofilin activity. Since cofilin is inactivated by phosphoryl-
ation at Ser3, we used a peptide consisting of 1-16 residues
of cofilin with Ser3-phosphorylation (P-Ser3) [36] to block

Fig. 3 The effect of IL-1β on cLTP-induced GluA1 insertion was mediated by the regulation of actin dynamics. a The expression of sGluA1 in
unstimulated control cells and cells treated with cLTP in the presence or absence of IL-1β with or without jasplakinolide (200 nM). b Quantification of
the images shown in a. Data are mean ± SEM from three independent experiments expressed in terms of control (*p< 0.05, ANOVA). c Cells transfected
with GFP were stained by phallodin. d The expression of sGluA1 in unstimulated control cells and cells treated with cLTP in the presence or absence of
latrunculin A (1 μM). e Quantification of the images shown in d. Data are mean ± SEM from three independent experiments expressed in terms of control
(*p< 0.05, ANOVA)
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endogenous cofilin activity. P-Ser3 treatment prevented IL-
1β-mediated decrease of cLTP-induced GluA1 insertion
(Fig. 5e, f).

IL-1β-mediated impairment of cLTP-induced synaptic
plasticity requires ceramide signaling
Previously, we showed that IL-1β suppresses BDNF
neuroprotection via a sphingolipids/ceramide pathway [37].
Sphingolipids are major components of neuronal
membranes, where they are particularly enriched [38].
Ceramide, generated from the sphingomyelin pathway, is
a major sphingolipid contributing to synaptic plasticity.
Indeed, synthetic cell-permeable ceramide analogs
increase excitatory postsynaptic currents transiently and

led to sustained depression of excitatory postsynaptic cur-
rents [39–41]. Further, ceramide mediates cellular signals
of cytokines such as tumor necrosis factor-α that are rap-
idly produced in the brain in response to vigorous neur-
onal activity and tissue injury [42, 43]. As ceramide
generation may occur via either de novo synthesis or the
hydrolysis of sphingomylin by acidic or neutral sphingo-
myelinases, we first examined the effect of the inhibitors
of sphingomyelinases, selective to these ceramide-
producing routes. Specifically, we tested the effects of
GW4869 (a neutral sphingomyelinase inhibitor), desipra-
mine (an acidic sphingomyelinase inhibitor), and fumoni-
sin B1 (FB1) (an inhibitor of the de novo pathway) on IL-
1β-mediated impairment of cLTP-induced spine plasticity.
Inhibitors of neutral sphingomyelinase significantly atten-
uated both the IL-1β-mediated suppression of actin
polymerization (Fig. 6a, b) and the expression of sGluA1
following cLTP (Fig. 6c, d). In contrast, neither the de
novo pathway inhibitor FB1 nor desipramine, an inhibitor
of acidic sphingomyelinase, affected IL-1β-mediated sup-
pression of cLTP-induced expression of sGluA1 (data not
shown). Moreover, consistent with the idea that IL-1β
suppresses spine plasticity via ceramide generation, C2-
ceramide treatment decreased cLTP-induced expression
of sGluA1 (Fig. 6e, f ). These results suggest that sphingo-
myelin pathway is involved into IL-1β-mediated impair-
ment of cLTP-induced synaptic plasticity.

Src activation by IL-1β is required for IL-1β-mediated
impairment of spine cLTP
It has been reported that IL-1β [40, 44] and C2-
ceramide [45] can activate Src, a protein tyrosine kinase
that controls many functions, including cell adhesion,
growth, movement, and differentiation [46]. Consistent
with previous reports, we observed that IL-1β treatment
increased Src phosphorylation in cultured hippocampal
neurons (Fig. 7a, b). To identify the downstream target
of IL-1β-induced ceramide activation, we examined the
role of Src in IL-1β-mediated impairment of cLTP-
induced synaptic plasticity. Pyrazolopyrimidine 2 (PP2),
a Src inhibitor, decreased IL-1β-induced suppression of
cLTP-induced actin polymerization (Fig. 7c, d). Pretreat-
ment with PP2 also prevented IL-1β-induced impair-
ment of cLTP-induced GluA1 insertion (Fig. 7e, f ).
These results suggest that activation of Src via ceramide
contributes to the suppressive effect of IL-1β on cLTP-
induced synaptic plasticity.

Discussion
In this study, we demonstrated that IL-1β impairs cLTP-
induced AMPA receptor insertion and spine growth in
cultured hippocampal neurons shortly after stimulation

Fig. 4 IL-1β treatment decreased the cLTP-induced F-actin stabilization.
FRAP analyses were performed using hippocampal neurons at 16–18 DIV
that were transfected with Lifeact-GFP. a Illustration of FRAP setting. b
Representative fluorescence images show spines of control group (-cLTP,
top panel), cLTP group (middle panel), and cLTP+IL-1β group (bottom)
during FRAP. Scale bar, 2 μm c Analysis of immobile fractions from data
obtained in b. The mobile fraction and the immobile fraction (fi) were
calculated as described in the “Methods” section. Data are mean± SEM
(n= 4, (*p< 0.05, ANOVA)
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by interfering with actin dynamics through a ceramide-
associated mechanism.
To focus on neuron-specific effects, we used a cell culture

model of chemical LTP that uses glycine stimulation to

selectively activate synaptic NMDA receptors in cultured
neurons [24]. It is noteworthy that several lines of evidence
have demonstrate that glycine-induced cLTP and the classic
electrophysiological theta-burst-induced LTP (theta-LTP)

Fig. 5 IL-1β impaired cLTP-induced signaling associated with actin dynamics. a Western blots of G-actin and F-actin. b Quantification of the blots
shown in a. Data are mean ± SEM from three independent experiments expressed in terms of the ratio of G-actin to F-actin obtained in the control
cultures (*p < 0.05, ANOVA). c Western blots of phosphorylation of cofilin (P-Cof). d Quantification of the blots shown in c. Data are means ± SE of
values from three independent experiments expressed in terms of P-Cof obtained in the control cultures (*p < 0.05, ANOVA). e Representative fluores-
cence images show the expression of sGluA1 measured by immunostaining in cells treated with cLTP in the presence or absence of IL-1β with or with-
out Ser3 peptide. Scale bar, 5 μm. f Quantification of the images shown in e. Data are mean ± SEM from three independent experiments expressed in
terms of control (*p< 0.05, ANOVA)
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share cellular processes that are key to activity-dependent
plasticity [23]. cLTP and theta-LTP share the key features
of LTP including NMDA receptor-dependent activation of

CAMKII [22], AMPA receptor insertion to the postsynap-
tic membrane, and increase in dendritic spine volume [25,
28, 47]. While proinflammatory cytokines such as IL-1β

Fig. 6 Neutral sphingomyelinase inhibitor GW4869 attenuated IL-1β-mediated suppression of cLTP-induced synaptic plasticity. a Representative
fluorescence images show F-actin, which was stained by phallodin, in unstimulated control cells and cells treated with cLTP in the presence or
absence of IL-1β with or without GW4869 (5 μM). Scale bar, 10 μm. b Quantification of the images shown in a. The intensity of phallodin staining
was normalized by MAP2 staining. Data are mean ± SEM from three independent experiments expressed in terms of control (*p < 0.05, ANOVA). c
Neutral sphingomyelinase inhibitor GW4869 (5 μM) attenuated IL-1β-mediated suppression of cLTP-induced GluA1 insertion. Representative fluorescence
images show the expression of sGluA1 in unstimulated control cells and cells treated with cLTP in the presence or absence of IL-1β with or without
GW4869. Scale bar, 10 μm. d Quantification of the images shown in c. Data are mean ± SEM from three independent experiments expressed in terms of
control (*p< 0.05, ANOVA). e Representative fluorescence images show the expression of sGluA1 in unstimulated control cells and cells treated with cLTP
in the presence or absence of C2-ceramide (10 μM). Scale bar, 20 μm. f Quantification of the images shown in e. Data are mean ± SEM from three
independent experiments expressed in terms of control (*p< 0.05, ANOVA)
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[48] and TNFα [49] have been shown to impair activity-
dependent signaling and survival, the effect of cytokines
on cLTP-induced synaptic plasticity in primary neuronal
culture has not been studied. Our data disclose a cascade
by which IL-1β, through activating N-SMase and increas-
ing Src activity, affects activity-dependent synaptic remod-
eling in spines. This cascade, which conveys IL-1β signal
from membrane to actin cytoskeleton and AMPA receptor
insertion, may represent an underlying mechanism that
contributes to IL-1β-dependent inflammation-induced

LTP deficits in in vivo models of AD where glia activation
increases IL-1β [1, 11].
In our study, we showed that the effect of IL-1β on

cLTP-induced AMPA receptor insertion and spine en-
largement correlates with the inhibitory effect of IL-1β
on cLTP-induced F-actin formation and stabilization in
spines and can be prevented by a peptide that stabilizes
actin filaments. Actin is highly enriched in dendritic
spines and provides the foundation for the structural
changes accompanying LTP, including an increased

Fig. 7 Src inhibitor PP2 attenuated IL-1β-mediated suppression of cLTP-induced synaptic plasticity. a Gel image shows Western blots of phosphorylated Src
(P-Src). Hippocampal neurons were exposed to IL-1β for 20 min. b Quantification of the blots shown in a. Data are mean± SEM from three independent
experiments expressed in terms of P-Src obtained in the control cultures (*p< 0.05, ANOVA). c Representative fluorescence images show F-actin labeled by
phallodin in unstimulated control cells and cells treated with cLTP in the presence or absence of IL-1β with or without PP2 (10 μM). Scale bars, 5 μm. d
Quantification of the images shown in c. Data are mean± SEM from three independent experiments expressed in terms of control (*p< 0.05, ANOVA). e
Representative fluorescence images show the expression of sGluA1 in unstimulated control cells and cells treated with cLTP in the presence or absence of IL-
1β with or without PP2. Scale bar, 10 μm. f Quantification of the images shown in e. Data are mean± SEM from three independent experiments expressed
in terms of control (*p< 0.05, ANOVA)
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number of spines [29, 47, 50], and supports the scaffold
for anchoring and clustering glutamate receptors [29, 51].
Actin depolymerization by latrunculin elicits AMPA
receptor internalization [52]. By contrast, stabilization of
F-actin by jasplakinolide prevents AMPA receptor endo-
cytosis. Actin polymerization is required for the produc-
tion of stable LTP after theta-burst stimulation. In the
theta-LTP paradigm, two synaptic signaling cascades for
LTP induction have been proposed: RhoA-ROCK-cofilin
leads to actin polymerization, whereas Rac-PAK stabilizes
the newly formed filaments [35]. Our data that IL-1β
suppresses F-actin formation, GluA1 surface insertion,
and cofilin deactivation (phosphorylation) during early
phase cLTP in cultured neurons, including live-cell
imaging, support a model based on direct IL-1β action on
the dendritic spine. Also supporting the local and neuron-
specific deleterious action of IL-1β on LTP, we have found
that this cytokine directly suppresses cLTP in isolated hip-
pocampal synaptosomes, which contain IL-1 receptor sub-
units [26].
We investigated the role of sphingolipids in IL-1β-

mediated impairment of cLTP-induced synaptic plasti-
city. Our data indicate that the IL-1β-induced impair-
ment of cLTP is mediated, at least in part, by activation
of neutral sphingomyelinase via Src signaling. Our study
identified a role of Src activation in the molecular mech-
anism by which IL-1β locally affects cLTP-induced actin
remodeling and AMPA receptor insertion. Our data are
consistent with previous finding that IL-1β can initiate a
signaling pathway that activates Src family kinases
(SFKs) to modulate Ca2+ signaling in central neurons.
IL-1β-mediated activation of SFKs enhances Ca2+ influx
via NMDA receptors [44]. IL-1β activates neutral sphin-
gomyelinase to produce ceramide, which subsequently
activates Src kinase in hypothalamic neurons [40, 53, 54]
and hippocampal neurons [55]. The IL-1β-mediated acti-
vation of neutral sphingomyelinase depends on MyD88
[40], an adaptor protein that we found is essential for
the suppression of cLTP by IL-1β in aged synaptosomes
[26].
Importantly, Src is closely associated with the regula-

tion of actin cytoskeleton. The Src-mediated regulation
of F-actin dynamics has been examined in neuronal
migration [56]. In this paradigm, overexpression of Src
induced dephosphorylation of cofilin as Ser3. The con-
nection between Src and actin dynamics also has been
indicated in Chorea-acanthocytosis, a neurodegenerative
disease [57]. In disease-specific-induced pluripotent stem
cells (iPSCs), the pathologically altered synaptic activity
in ChAc neurons was reversed by F-actin stabilizer
phallacidin and the Src kinase inhibitor PP2 [57]. The
influence of hyperactive Src on synaptic plasticity has
been demonstrated in p140Cap knock-out mice [58].
p140Cap, a scaffold protein, localizes into dendritic

spines and interacts with Src as an inhibitor [58].
p140Cap−/− mice display specific learning defects,
F-actin disorganization, and impaired LTP. In this
model, activated Src inhibits actin polymerization
through phosphorylation of the RhoA-specific
GTPase-activating protein p190RhoGAP and inter-
acting with RhoA-binding protein Citron-N. The loss
of p140Cap results in hyperactivation of Src kinases
and leads to a decrease in actin polymerization
through downregulation of RhoA/ROCK/cofilin path-
way. In addition, the defects in synaptic plasticity of
p140Cap−/− primary neurons can be reverted by Src
inhibitors. Consistent with the model that hyper-
active Src impairs RhoA/ROCK/cofilin pathway, we
also found that IL-1β decreased cofilin phosphoryl-
ation and F-actin levels after cLTP. As BDNF also
activates RhoA/ROCK/cofilin pathway, we cannot,
however, rule out the contribution of possible IL-1β-
mediated suppression of endogenous BDNF signaling
during cLTP to IL-1β effect on synaptic plasticity.
Our data provide another link between IL-1β signal-
ing and actin polymerization. Thus, multiple mecha-
nisms that link IL-1β signaling to RhoA and actin
cytoskeletal dynamics may act collectively and con-
tribute to inflammation-induced declines in learning
and memory functions.

Conclusion
By focusing on the structural changes during cLTP, our
study identified a critical link between ceramide-mediated
Src activation, a well-documented signaling pathway of
IL-1β, and actin dynamics, thus providing insights into
the mechanism underlying inflammation-mediated im-
pairments of learning and memory.
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