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Matrix models are critical for conservation planning of endangered species or any species

with limited data. Sufficient growth data to construct growth-transition matrices required
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for size-structured population dynamics models may be lacking using traditional meth-

ods. We present a simple semi-empirical method for converting limited growth data

into estimated transition probabilities required as elements in structured matrix models.

Rather than approximating transition probabilities by counting actual transition frequen-

cies between sparsely populated size classes, we assume that a selected function represents

the entire data set, we obtain the model parameters by conventional curve fitting, and we

construct the matrix model from the assumed model function. To illustrate the method,

we use a sparse, scattered sample of growth data from the endangered white abalone. We

use the slope and intercept of the von Bertalanffy model function to determine the growth-

transition matrix elements, where the paucity and or scatter of the data preclude using the

traditional counting method. The method we propose can accommodate both linear and

non-linear mappings of size into growth rate, as we demonstrate with a Gaussian function

which has been used to model growth of red abalone and red sea urchins. We illustrate how

our method can convert confidence intervals from the model function into confidence inter-

vals for the matrix elements. We suggest that this modelling procedure, which is simple to

use and is suitable in data poor situations, will be broadly applicable for conservation practi-

tioners in developing quantitative models to evaluate the population viability of endangered

species.

© 2005 Published by Elsevier B.V.

. Introduction

uantitative tools such as the suite of population viability
nalyses (PVA), including stage-structured matrix models, are
ow used in the conservation of endangered species (Caswell,
001; Morris and Doak, 2002; Beissinger and McCullough,
002). Elasticity analyses of matrix models can be conducted
o determine which life stages and vital rates have the most

∗ Corresponding author. Tel.: +1 707 875 2035; fax: +1 707 875 2089.
E-mail addresses: rogersbennett@ucdavis.edu (L. Rogers-Bennett), bklynsci@aol.com (D.W. Rogers).

influence on population growth rate (de Kroon et al., 1986), an
indicator of the life stages that recovery actions should tar-
get. Matrix models have been influential in shaping policy for
a number of endangered species including the northern spot-
ted owl (Lande, 1988), desert tortoise (Doak et al., 1994), and red
cockaded woodpeckers (Heppell et al., 1994). The results and
application of an elasticity analysis of a matrix model of log-
gerhead sea turtles are well documented (Crouse et al., 1987;

304-3800/$ – see front matter © 2005 Published by Elsevier B.V.
oi:10.1016/j.ecolmodel.2005.11.019
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Morris and Doak, 2002). Can these quantitative tools help us16

plan for the recovery of the endangered white abalone, Haliotis17

sorenseni, even when growth data are severely limited?18

Abalone populations are declining around the world19

(Campbell, 2000; Shepherd et al., 2001). In California, deple-20

tion of the abalone complex has occurred (Dugan and Davis,21

1993; Karpov et al., 2000; Rogers-Bennett et al., 2002) and the22

commercial fishery is now closed. White abalone were the23

first marine invertebrates to be listed as endangered, while24

black, H. cracherodii, and pinto abalone, H. kamtschatkana, are25

listed as species of concern. Today, white abalone are found26

only in remnant populations on deep offshore banks, having27

been nearly extirpated from their historic distribution by over-28

fishing (Hobday et al., 2001; Lafferty et al., 2004). Recruitment29

failure has been observed (Davis, 1995; Rogers-Bennett et al.,30

2004) and recovery actions for this species are being consid-31

ered by the NOAA Fisheries White Abalone Recovery Team,32

which is drafting a recovery plan. Quantitative analyses com-33

paring the relative utility of recovery actions and the severity34

of threats would benefit the recovery planning process. These35

analyses, however, are hindered by a lack of size-specific vital36

rate data. Furthermore, for white abalone and many endan-37

gered species, collection of additional data may not be feasible.38

While structured matrix models have aided in the manage-39

ment of some endangered species (Beissinger and Westphal,40

1998), growth-transition data required to construct reliable41

size-based matrix models may be lacking. Meanwhile, iden-42

tifying key life history stages to target recovery actions is43

crucial. Typically, growth information is obtained using tag-44

recapture data in which the numbers of organisms growing45

into the next stage (or size) or remaining in the current stage46

is observed (Caswell, 1989; Ebert, 1999). Growth transitions for47

endangered species, however, are likely to be based on data48

that are few and scattered. Small sample sizes can lead to49

sampling error when calculating growth transitions. Clumped50

data (e.g., data only for adults) can lead to distribution error.51

Low recapture rates or samples from limited portions of the52

size range make size class width selection difficult or arbitrary.53

Vandermeer (1978) and Moloney (1986) have developed algo-54

rithms that attempt to minimize sampling and distribution55

errors when selecting size class widths, but they do not solve56

them. In some cases, their algorithms suggest such small size57

class widths that the data for an endangered species cannot58

support them. Furthermore, Enright et al. (1995) demonstrated59

that the number of stage classes is important and can influ-60

ence elasticity values.61

We present a semi-empirical method for extracting growth62

probabilities from an assumed mathematical model of growth63

as a function of size, which we call a “model function” as64

distinguished from the function obtained by empirical curve65

fitting. In the field of molecular modelling, purely theoreti-66

cal models having no adjustable parameters lie at one end67

of the methodological spectrum and purely empirical curve68

fitting lies at the other. In between are semi-empirical mod-69

els (Pople, 1999) consisting of theoretical models having one70

or more parameters that are determined by empirical com-71

parison to experimental data. The method we present here72

is a semi-empirical treatment of a “poor” data set for white73

abalone, used because it is the only data set available or likely74

to be available in the forseeable future.75

In our method, the selected model function is assumed to 76

represent a data set that may be sparse and scattered, for 77

construction of structured matrix models of any dimension. 78

We outline the mechanics of the modelling method using a 79

hypothetical data set fitted by the simple first order von Berta- 80

lanffy growth model. As a practical application, we construct a 81

size-based growth-transition matrix for the endangered white 82

abalone which has model parameters that are identical to 83

the hypothetical model population, but for which the actual 84

growth data are limited. Growth transitions depend on the 85

number of size classes selected (dimensions of the matrix) and 86

is user defined to accommodate exploring stages (or sizes) at 87

breaks relevant to life history or management and conserva- 88

tion planning. We show how the semi-empirical method can 89

incorporate animal growth into more than one size class dur- 90

ing a time step, as happens when the growth rate is larger 91

than the class size interval. Finally, we describe how the mod- 92

elling method can be used for non-linear growth models. 93

As a practical application to a non-linear growth versus size 94

model function, we treat growth data for the red abalone, H. 95

rufescens, using a Gaussian function (Rogers-Bennett et al., in 96

preparation). We illustrate how the 95% confidence limits from 97

the model function generate upper and lower bounds of the 98

growth-transition elements for use in elasticity analyses. We 99

examine the benefits and assumptions inherent in the semi- 100

empirical method. 101
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2. Theory

We wish to determine the elements and uncertainties of a
size-based growth-transition matrix from a distribution of ani-
mal growth versus size S(t) in which there are no age data, no
discrete stages, and for which the data set is limited. We pro-
pose deriving the growth-transition probability matrix for a
distribution over equal size classes of the rate of growth d

dt
S(t)

as a function of time t derived from an assumed model func-
tion fitted to tag-recapture data. The method involves finding
the probability that an animal located anywhere in an earlier
size class will make the transition to a later size class. Because
it is based on a model function assumed to represent all data,
the model function (as distinct from the data set) is not sub-
ject to some of the statistical problems (e.g., distribution error,
stochasticity, and sampling error) that afflict the usual meth-
ods of determining growth transitions for a Lefkovitch matrix
(Caswell, 2001) from a limited number of growth frequencies.

Growth over a segment of the lifespan of an animal can be
determined using the tag-recapture method by which the ani-
mal is captured at time t1 and marked so that at some later
time t2 it can be identified and its growth over the interval
(t2 − t1) can be determined. In general, the time of birth or
larval settlement t0 is not known. Taking growth over, say, a 1-
year interval, annual growth �S(t) can be plotted against size
at initial capture S(t1) to yield a modified Walford plot (1946)
as in Fig. 1. The Walford plot (Ebert, 1999) is a (presumed) lin-
ear approach of the function S(t + 1) versus S(t) to the linear
function S(t + 1) = S(t). In our modification of the Walford plot,
we have subtracted S(t) from S(t + 1) to obtain �S(t) on the ver-
tical axis in Fig. 1 while retaining S(t) as the variable on the
horizontal axis. It is noteworthy that Walford considered only
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Fig. 1 – Growth as a function of abalone size (shell length).
Five arbitrary size classes of 5 cm width leading to a 5 × 5
matrix are marked on the S(t) axis.

growth data above the inflection point in the S(t) versus t curve132

(Walford, 1946).133

The horizontal axis in Fig. 1 can be subdivided into size134

intervals, which, for simplicity, we shall take as equal. Adding135

a single observation of an animal’s annual growth to its initial136

size tells one whether the animal has progressed from its ini-137

tial size class to the next higher class (or, occasionally, skipped138

one or more size classes).139

Dividing the number of individuals that have progressed140

out of a size class by the number of individuals initially in that141

size class gives the frequency of transition from that class to142

the next. This frequency is often taken as a probability. Sub-143

tracting that probability from 1.0, gives the probability that an144

individual initially in the selected size class will stay there.145

These two probabilities are elements in the transition matrix.146

By repeating this procedure over all size classes, one can147

construct a matrix with transition probabilities on the princi-148

pal subdiagonal (or subdiagonals) and retention probabilities149

on the principal diagonal. Such a size-based growth-transition150

matrix is a (partial) Leslie or Lefkovitch matrix (1965), shown151

as matrix 1, where r1 is the probability of retention in size class152

1, g2 is the probability of growth into size class 2, and so on:
153

A




r1 0 . . . 0 0

g2 r2 . . . 0 0

.




154

155

s156

g157

m158

b159

l160

s161

Once the final population matrix is constructed, it can then 162

be multiplied into a population vector q, consisting of a cho- 163

sen population distribution of (in this case) five size classes, 164

whereupon a new population vector is produced: 165

Aq(t2) = q(t3) (2) 166

This process can be repeated indefinitely and if it is assumed 167

that vital rates in the population matrix are constant over 168

time, future population projections can be made (Caswell, 169

2001). The dominant eigenvalue of the matrix, �, can be deter- 170

mined and if this is greater than 1.0 the model population 171

is increasing. If it is less than 1.0, the model population is 172

decreasing, given the assumptions made. Sensitivity and elas- 173

ticity analyses can be obtained from the population matrix in 174

order to examine which of the matrix elements has the most 175

influence on population growth �. 176

The method of tabulating growth transitions described 177

above is not ideal. All valid criticisms involving treating a 178

finite sample frequency distribution as though it were a prob- 179

ability distribution apply. In a finite sample of organism size, 180

there will be an uneven size distribution within or among size 181

classes, particularly in animals that exhibit pulsed settlement 182

or reproduction. Sampling error can be serious in animals 183

where an exposed part of the population may be over repre- 184

sented in the sample and a cryptic portion may be under repre- 185

sented. Moreover, criticisms of frequency distributions apply 186
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C
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0 g3
. . 0 0

0 0
. . . rn−1 0

0 0 . . . gn rn


(1)

When the growth-transition matrix has been constructed,
urvival can be built into the model by multiplication of the
rowth transitions by the survival estimate. Fecundity infor-
ation (the number of females produced by each female) can

e included in the top row of the matrix. Non-zero fecundities
ead to replenishment of the population through the smallest
ize class, augmenting the 1, 1 element of the matrix.
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more to some size intervals than to others because there are
fewer data points in some size intervals. Vandermeer (1978)
and Moloney (1986) have proposed methods for minimizing
errors arising from the arbitrary selection of size intervals
(Caswell, 2001). In the semi-empirical method, a model func-
tion is assumed. None of the errors above exist within the
model function, which is independent of the population. Once
selected the model function is then made to coincide with the
population as closely as possible by conventional fitting meth-
ods.

3. Methods and results

3.1. The model function

We propose selecting a model function, locating it on the �S(t)
versus S(t) coordinate system by a conventional fitting pro-
cedure, then calculating the transition matrix from the fitted
curve. The philosophy behind this approach is that a model
function better represents the entire data set than transition
frequencies taken from a small sample with sparsely popu-
lated size intervals. Selection of a model function is, itself, a
profound assumption which includes, in an average way, sev-
eral error sources.

For illustrative purposes, we shall imagine a hypothetical
animal that grows over an ideal growth trajectory (see Fig. 2)
of S(t) versus t, where S(t) is the size at time t, to a limiting
size of S∞ = 25.0 cm at very long t. The animal is observed very
many times (strictly, infinitely many) over its growth period.
The model function also describes very many animals, evenly
distributed over the size range and observed at time t1 and
some later time t2. We shall take the time interval t2 − t1 as
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Fig. 2 – Size as a function of time over: (a) 30 years and (b)
2.23 years. The curve between t = 0 and 2.23 is not quite
linear.

1.00 year. In the discussion that follows, we shall imagine a215

single individual on an ideal growth trajectory or an infinite216

number of individuals on the same trajectory.217

3.2. The growth model218

Initially, let us choose the simple first order von Bertalanffy219

model function:220

d
dt

S(t) = −kS(t) (3)221

with a growth constant k = 0.100 year−1 that is not dependent222

on the time. We would first like to know how long it will take223

for a hypothetical animal to reach the upper limit of the first224

size class, 5.0 cm, starting from S(t) = 0. The growth equation225

(Fabens, 1965; Ebert, 1999) is found by integrating Eq. (3):226

S(t) = S∞(1 − e−kt) = S∞ − S∞e−kt
227

that is,228

S∞ − S(t)
S∞

= e−kt (4)229

Having stipulated that S∞ = 25.0 cm, k = 0.100 year−1, and S(t) 230

for the upper limit of the first size class as 5.0 cm, we have: 231

S∞ − S(t)
S∞

= e−kt = 25.0 − 5.0
25.0

= e−0.100t
232

or
233

ln 0.800 = −0.2231 = −0.100t, t = 2.231 years 234

Because the von Bertalanffy model is linear in rate d
dt

S(t) 235

versus t, with a horizontal intercept at 25.0 cm and a slope of 236

−0.100 year−1, the vertical intercept in Fig. 1 is 2.50 cm year−1. 237

The horizontal intercept is never reached because t is never 238

t∞. For an animal that is exactly 5.00 cm at t = 2.231 years, we 239

would like to know how big the animal was 1.00 years earlier. 240

We find:
241

t = 1.231 years

25.0 − S(t) = 25.0e−0.1231 = 22.103

S(t) = 25.0 − 22.103 = 2.897 = 2.90 cm

242

The animal may be anywhere on the growth curve from 243

0 to 5.0 cm initially. We would like to know its probability of 244

being close enough to the upper limit of 5.0 cm to make the 245

transition into size class 2. Regarding the model function as 246

representing many animals on the same growth curve (Fig. 2a 247

248
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and b), those with initial size greater than or equal to 2.90 cm
will make it. Those with initial size less than 2.90 cm will not.

5.00 − 2.90
5.00

= 0.421 = 42% make it;

2.90
5.00

= 0.579 = 58% do not make it.

These probabilities are the elements in the first column of the
transition matrix:




.58 etc.

.42

0

0

0 etc.




We can check this result and see how to extend the method
by looking at the curve of S(t) versus t between t = 0 and 30 years
and between 0 and 2.3 years in Fig. 2a and b. Verticals drawn at
t = 1.2 and 2.2 years intersect the growth curve at about S(t) = 2.9
and 5.0 cm. For more complicated functions, these points can
be found using a commercial plotting or CAS program such as
Mathcad©as in Fig. 2b.

For the time to grow to 10.0 cm, a similar calculation yields
t2/5 = 5.108 years and the completed probability calculation for
t = 4.108 and 5.108 years, corresponding to sizes S(t) = 8.41 and
10.00 cm gives 10.00−8.41

5.00 = 0.32 as the proportion of animals
in the lower size class that make it into the higher class.
This yields 0.68 and 0.32 as the diagonal and subdiagonal
matrix elements in column 2 of the 5 × 5 transition matrix.
The remaining two calculations (exclusive of the 5, 5 element
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which is 1 by definition) give the transition matrix:270




.58 0 0 0 0

.42 .68 0 0 0

0 .32 .79 0 0

0 0 .21 .89 0

0 0 0 .11 1




(6)271

The probability that an animal will progress from a272

lower size class to a higher size class (subdiagonal ele-273

ment) decreases as the animal ages. There is a corresponding274

increase in the probability that the animal will remain in it275

is size class, ending up in the final size class from which276

the animal does not progress. These trends are smooth and277

monotonic for this model function because of the simple lin-278

ear growth trend shown in Fig. 1 but they need not be either279

smooth or monotonic for other size class choices or other280

model functions (see below).281

4. Application: white abalone

Growth data for the endangered white abalone are shown in282

Fig. 3. The conventional least squares fit of the von Bertalanffy283

function to the data (Eq. (3), Fig. 1) is shown as a line through284

the points. Severe scatter is evident. One would be hesitant285

t286

m287

d288

t289

t290

n291

292

m293

t294

t295

i296

a297

F
f
A
a
m
t

other data set are statistically identical, the growth curves and 298

transition matrices will be the same no matter how much or 299

little the data are scattered. 300

By contrast, the transition matrix obtained by the tradi- 301

tional (counting) method is matrix 7, which bears little resem- 302

blance to matrix 6 derived from the semi-empirical model 303

function: 304




0 0 0 0 0

1 .167 0 0 0

0 .833 .429 0 0

0 0 .571 0 0

0 0 0 1 1




(7) 305

As we should expect, the probabilities are highly depen- 306

dent upon the number of size classes chosen. For five equal 307

size classes of 3.5 cm each, either the model population or the 308

scattered sample of white abalone data yields the 5 × 5 matrix: 309




.35 0 0 0 0

.65 .46 0 0 0

0 .54 .56 0 0

0 0 .44 .67 0

0 0 0 .33 .77




(8) 310
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320
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o rely on any single point or small group of points to deter-
ine characteristics of the sample, yet that is just what one

oes in determining transition probabilities using the tradi-
ional method by counting the number of abalone that make
he transition from one arbitrarily defined size class to the
ext higher class.

The von Bertalanffy function produces a 5 × 5 transition
atrix for this sample of white abalone that is identical to

he hypothetical model matrix (matrix 6) with the exception
hat it is fitted to a very scattered data set rather than to an
deal hypothetical model. The point here is that if the slopes
nd intercepts of the (scaled) data set for white abalone or any

ig. 3 – Annual Growth vs. length (scaled from cm to mm)
or a sample of N = 21 white abalone (Tutschulte, 1976).
lthough the data are scattered, the slope −0.0993 year−1

nd intercept 252 mm are statistically identical to the
odel population, hence the S(t) vs. t curves (Fig. 2) and

ransition matrices are the same (matrix 6).
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The last element on the diagonal is not 1 because S∞ is 252
and the categories only go up to 175.

For six equal size categories, covering the entire range from
0 to S∞ = 25.2 cm in Fig. 3, the categories should be 4.2 cm in
width (6 × 42 = 252). This leads to the 6 × 6 transition matrix 9.
Because the size intervals are smaller (4.2 cm as compared to
5.0 cm), the probabilities for transition from one size class to
the next are greater in matrix 9 than they are in matrix 6. Other
things being equal, the probabilities of retention in a smaller
size class are less than they are in a larger size class:




.48 0 0 0 0 0

.52 .58 0 0 0 0

0 .42 .69 0 0 0

0 0 .31 .79 0 0

0 0 0 .21 .90 0

0 0 0 0 .10 1




(9)

Calculation of a transition matrix for size classes that are
unequal is a straightforward variation of the model method
already described. Using the present method for size classes
chosen as S(t) = 4.0, 4.0, 4.0, 6.5, 6.5 cm in Fig. 1 (sum = 25.0 cm)
gives transition matrix 10:




.45 0 0 0 0

.55 .55 0 0 0

0 .45 .66 0 0

0 0 .34 .89 0

0 0 0 .11 1




(10)
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In matrix 10, trends in the diagonal and subdiagonal elements328

are monotonic but not smooth because of the choice of the size329

classes.330

5. Transitions over more than one size
class

If the growth rate constant for the model is doubled to331

k = 0.200 year−1 but all other characteristics of the model cal-332

culation are the same, Fig. 2b is altered to give a curve that is333

similar but twice as steep. One can determine the time nec-334

essary to cover the first 5.00 cm growth interval as 1.116 years335

and the size of the animal 1 year earlier as 0.57 cm. This leads336

to the 1, 1 and 2, 1 element in matrix 11 which take the values337

of 0.11 and 0.89, in which the augmented subdiagonal element338

reflects the increase in the growth constant:339




.11 0 0 0 0

.89 .33 0 0 0

0 .67 .55 0 0

0 0 .45 .77 0

0 0 0 .23 1




(11)340

Matrix 11 should be compared with matrix 6 obtained341

at k = 0.100 year−1. The subdiagonal elements of matrix 11342

decrease approximately linearly from left to right and they343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

Because the growth curve is so steep, small differences in 371

choice of size versus growth time make a noticeable difference 372

in the matrix. For example, if the growth model had produced 373

S(t) = 6.45 cm at t = 1.00 years, the 2, 1 and 3, 1 matrix elements 374

would have been 0.71 and 0.29. Calculating elements in the 375

second column in the same way as in the first, one arrives at 376

0.0, 0.71, and 0.29. The remaining elements are calculated as 377

they were for matrix 6. The full matrix is: 378




0 0 0 0 0

.69 0 0 0 0

.31 .71 .04 0 0

0 .29 .96 .64 0

0 0 0 .36 1




(13) 379

The growth parameter k = 0.300 year−1 results in a sharp 380

change-over from subdiagonal dominance to diagonal dom- 381

inance as a result of the steep growth curve. The same 382

feature brings about a sharp change between diagonal ele- 383

ments in the third and fourth columns showing that the 384

system rapidly switches from growth to stasis in element 385

5, 5.
386

6. Curvilinear functions: red abalone

387
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are slightly more than twice as large as the corresponding ele-
ments in matrix 6 (.89 compared to 2 (.42), etc.). They are not
precisely double the subdiagonal elements in matrix 6 because
the growth curve is not linear.

Increasing k to 0.300 year−1 leads to 0.738 year necessary to
reach the 5.00 barrier, that is, the probability of passing at least
into the next class in 1 years is 1.0 with 0.26 years growth time
“left over”. This leads to a growth overflow into the third size
class and a non-zero 3, 1 matrix element. If the growth curve
were linear, we would expect a ratio of animals transferring
from one size class to animals transferring to two classes to
be about 0.74:0.26. Because of curvature, this expectation is
nearly, but not quite true. When a curve is so steep, as in the
case of the curve at k = 0.300 year−1, that the width of the size
interval chosen is covered in less than 1 year, the amount of
overflow can be calculated by drawing verticals at the lower
and upper time limits of a 1.0 year time interval. Taking the
ratio of growth beyond the upper limit to growth within the
interval yields the subdiagonal and sub-subdiagonal elements
in matrix 12.

According to the model function, the size is 6.53 cm at
t = 1.00 years hence the ratio of animals transferring two
classes to those transferring one class is 6.53–5.00/5 = 0.31 rel-
ative to 0.69. The ratio 0.69:0.31 is a refinement of the previous
estimate of 0.74:0.26. The corresponding column 1 matrix ele-
ments are:




0 etc.

.69

.31

0

0 etc.




(12)
ECOMOD 4254 1–10

Functions that go through a maximum have been used to
model growth (Rogers-Bennett et al., 2003) on the reasonable
supposition that newly settled animals do not achieve their
maximum growth immediately, but have a maximum growth
rate sometime after birth (or settlement). The empirical fit of
the Gaussian model function by a commercial curve fitting
program (TableCurve®, www.systat.com) to tag-recapture data
for both red and white abalone is shown in Fig. 5(top). It yields
fitting parameters of peak height a = 22.0 mm year−1 (maxi-
mum annual growth), � = 62.0 mm (size at maximum growth),
and � = 70.2 mm (standard deviation of annual growth away
from its maximum value), for the red abalone sample (N = 231)
and 20.7 mm year−1, 37.8, and 80.7 mm year−1, respectively, for
the white abalone sample (N = 21):

�S(t) = ae−(S−�)2/2�2
(14)

Fitting is by the Levenberg–Marquardt algorithm (Lourakis,
2005), which entails iterative solution of the normal equations
arising from least squares successive approximations to the
minimum sum of squares of residuals away from a non-linear
function, the Gaussian in this case.

To obtain the S(t) versus t curve, we started at t = 0, S(t) ∼= 0,
and found �S(t) = 14.9 by Eq. (14). The size at the end of 1 year
is S(1) = 14.9 mm. This value was substituted into Eq. (14) to
give �S(t) = 17.6 mm for the second year, which was added to
S(1) to give S(2) = 32.5 mm. This recursive calculation was con-
tinued (by a simple program) to an arbitrary upper limit taken
as S(∞) = S∞, which was approximated by S(20) in this case.
The result is 20 points on an S(t) versus t curve Fig. 4 which
was roughly similar to Fig. 2a, but which showed an induc-
tion period near t = 0 giving a sigmoidal curve rather than the
exponential limiting form as in Fig. 2a.

http://www.systat.com/
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Fig. 4 – A Gaussian model of red abalone growth shell
length �S(t) vs. time (t) for abalone (N = 231) growing 1 year
in northern California (unpublished data, California
Department of Fish and Game, Burge and Schultz).

The S(t) versus t curve Fig. 4 was examined by using the418

Screen Reader option of TableCurve® (or Mathcad©) to yield pre-419

cise beginning and end growth times of the curve at the limits420

imposed by size class selection (the vertical axis is taken to421

be a locus of points). With this information, we found the ratio422

of the probability that an animal grows from one size class to423

the next in the way already shown, except that for the abalone424

data sets, the size interval was taken as 5.0 cm. The 2, 1 sub-425

diagonal element for the red abalone matrix treated here is: 426
427

50.0 − S(t − 1)
50.0

= 50.0 − 30.1
50

= 0.40 428

The full transfer matrix for this sample of red abalone by the 429

Gaussian method is matrix 15: 430




.60 0 0 0 0

.40 .58 0 0 0

0 .42 .75 0 0

0 0 .25 .93 0

0 0 0 .07 1




(15) 431

7. Curvilinear functions: white abalone

On the ground that red and white abalone are congeners and 432

that the Gaussian function represents curvilinear red abalone 433

growth (Fig. 5, top, left), it is reasonable to select it as a the- 434

oretical model function for white abalone. It is important to 435

note that the data set is so “poor” that it forces neither the 436

von Bertalanffy model nor the Gaussian model; we select the 437

Gaussian function because it is plausible (Rogers-Bennett et 438

al., 2003, in preparation). Data from well-known congeners 439

have been used in lieu of data for lesser known endangered 440

species (Caswell et al., 1998). It is when we fix the parameters 441

442

443

444

445

F
a

U
N

C

ig. 5 – Gaussian models (top) and von Bertalanffy models (botto
balone, N = 21 (right) (Tutschulte, 1976) discussed in the text.
a, �, and � by an empirical curve fitting routine (Lourakis, 2005)
that the model becomes semi-empirical (Pople, 1999). The final
curve has an empirical component because of the parameter
fit, but it is semi-empirical because the theoretical function
ECOMOD 4254 1–10

m) for the samples of red abalone, N = 231 (left) and white



E
D

 P
R

O
O

F

8 e c o l o g i c a l m o d e l l i n g x x x ( 2 0 0 5 ) xxx–xxx

was selected before infusion of empirical data into the model.446

The model function is independent of the data set but the447

parameters are not.
448

8. Confidence limits and summary of
results

Using the Interval option of TableCurve® one can find the 95%449

confidence limit curves above and below the �S(t) versus S(t)450

curve for model functions. Using the Screen Reader option,451

three numbers can be found, the value of the function at some452

specific S(t), say the midpoint of the first size interval, and453

the upper and lower confidence limits on �S(t) at that S(t).454

For example, the upper 95% confidence limit is 2.3 mm year−1
455

or 12% higher than �S(t) = 19.2 mm year−1 at the midpoint of456

the first size category of the Gaussian model function for red457

abalone (Fig. 5, top, left).458

We shall take confidence limits as being approximately459

symmetrical about the function so the lower confidence limit460

is ∼2.3 mm year−1 below the central value. Thinking in terms461

of very many individuals progressing along the model func-462

tion curve, an increase in speed of 12% will enable 12% more463

of them to cross the boundary from the first size class to the464

second than if the growth rate were exactly given by the model465

function. Therefore, the subdiagonal matrix element will be466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

GW =




.52 ∓ .26 0 0 0 0

.48 ± .26 .67 ∓ .16 0 0 0

0 .33 ± .16 .79 ∓ .15 0 0

0 0 .21 ± .15 .93 ∓ .17 0

0 0 0 .07 ± .17 1




(19) 482

Not surprisingly, the matrix elements are very similar for 483

analysis of the two congeners. Indeed, ignoring confidence 484

limits, BW = BR. There is little to choose between the mod- 485

els, i.e., the data set does not force either model function (the 486

apparent quality of a von Bertalanffy representation of growth 487

curves that go through a maximum is somewhat deceptive, as 488

shown by Rogers-Bennett et al., 2003). The striking differences 489

among the transfer matrices is not in their elements but rather 490

in their uncertainties as seen by contrasting the red and white 491

matrices 16 and 18 with matrices 17 and 19. This is, off course, 492

a reflection of the difference in quality of the two data sets, red 493

and white. 494

The matrices for white abalone are similar to each other but 495

quite different from the matrix found by the counting method 496

(matrix 7). The point is that for a poor data set, either model 497

function, or presumably any plausible model function, is a bet- 498

ter method of obtaining a self-consistent growth-transition 499

matrix than the counting method. The counting method for 500

red abalone produces matrix 20. Other than the 1, 1 and 2, 1 501

elements, matrix 20 begins to approximate matrices 16 and 502

503

504
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506
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augmented by 12% and the element on the principal diagonal
will be decremented by the same amount. A comparable calcu-
lation yields both the upper and lower confidence limits of all
of the matrix elements except the 5, 5 element which is 1. For
both confidence limits, the subdiagonal elements will be incre-
mented or decremented within a range of 0.12 × 0.40 = 0.05
(±.05) and the diagonal element will be decremented or incre-
mented (∓.05) by the same amount. These confidence limits
pertain to the 1, 1 element in matrix 16.

The resulting transfer matrices are matrices 16–19, where
GR, BW, BR, and GW designate Gaussian red, Bertalanffy
white, Bertalanffy red, and Gaussian white, respectively.

GR =




.60 ∓ .05 0 0 0 0

.40 ± .05 .58 ∓ .03 0 0 0

0 .42 ± .03 .75 ∓ .02 0 0

0 0 .25 ± .02 .93 ∓ .02 0

0 0 0 .07 ± .02 1




(16)

BW =




.58 ∓ .17 0 0 0 0

.42 ± .17 .68 ∓ .10 0 0 0

0 .32 ± .10 .79 ∓ .14 0 0

0 0 .21 ± .14 .89 ∓ .20 0

0 0 0 .11 ± .20 1




(17)

BR =




.58 ∓ .04 0 0 0 0

.42 ± .04 .68 ∓ .02 0 0 0

0 .32 ± .02 .79 ∓ .02 0 0

0 0 .21 ± .02 .89 ∓ .02 0

0 0 0 .11 ± .02 1




(18)
ECOMOD 4254 1–10

18, which is not surprising for a larger and “better” data set.




.91 0 0 0 0

.09 .53 .01 0 0

0 .47 .68 0 0

0 0 .30 1 0

0 0 0 0 1




(20)

9. Discussion

We have presented a simple method for calculating growth
transitions using a model of growth fitted to tag-recapture
data to construct a size-based matrix model. Assuming the
model function, we circumvent problems like sampling and
distribution error that have previously been minimized, but
not eliminated, by the Vandermeer–Moloney algorithms. We
do this by making the sweeping assumption that our model
is a good representation of the data set. The transition matrix
resulting from data sets with the same slope and intercept will
be identical regardless of the scatter. We demonstrate how this
method can be used for sparse data sets frequently associated
with endangered species.

Our method is simple and yet flexible enough to accom-
modate matrices of varying sizes. In general, the smaller the
size class the faster animals will transition out of size classes,
whereas for larger size classes the probability of retention
within the size class increases. Since size class width can
have an impact on elasticity values of various matrix ele-
ments (Enright et al., 1995) these decisions of matrix size
play an important role in conservation policy decisions. This
method allows for the creation of multiple matrices of var-
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ious size class widths, to examine the influence of matrix526

size, without being constrained by the limits of the data527

set. Furthermore, matrices which incorporate natural break528

points and sizes of importance for managers (e.g., minimum529

legal sizes for exploited species) can be explored freely with-530

out being constrained by limitations of the data set. Our531

method also allows for incorporation of confidence limits532

for each of the matrix elements relative to the model func-533

tion. Conducting parameter uncertainty analyses is very help-534

ful in setting future research priorities to target parame-535

ters which strongly influence model outcomes (Hunter et al.,536

2000).537

Working from a model of growth is an improvement over538

the traditional method of obtaining growth transitions for539

matrices by observing the number of animals that grow out540

of or remain within a size class (Rogers-Bennett and Leaf, in541

press). In a sparse data set, a change in one data point using the542

traditional method can have a large impact on the transition543

probabilities. In some cases, changes in survival transitions544

(which include both growth and survival in stage-based mod-545

els) can have a large impact on elasticity values (Ebert, 1998)546

and consequently management decisions derived from the547

analysis. This is a highly undesirable feature of the traditional548

observation method and one that is eliminated by the model549

function method presented here.550

Given the limitations of the traditional method other meth-551

ods have been proposed to determine growth transitions, such552

a553
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d555

w556

w557

a558

e559

a560

a561

a562

t563

564

m565

r566

r567

v568

(569

m570

n571

d572

l573

p574

m575

t576

i577

578

a579

b580

i581

e582

n583

o584

t585

growth parameters for green sea urchins which are the basis 586

of an important fishery in Maine (Chen et al., 2003). 587

Federico and Canziani (2005) describe a deterministic 588

stage-based matrix model for the South American capybara 589

(the largest living rodent) and they investigate the influence 590

of different harvesting strategies on this population. Much of 591

this work is preliminary, as the vital rates are, at present not 592

known, however, early publication of this model is appropri- 593

ate because resource managers need tools to aid in develop- 594

ing a management plan prior to exploitation (Federico and 595

Canziani, 2005). 596

We suggest our method is simple and broadly applicable 597

for generating growth information required for the construc- 598

tion of transition matrices for species with minimal data and 599

for which size is a good predictor of vital rate. Tagging and 600

recapture studies for endangered species, such as the white 601

abalone, may be problematic since they may induce mortality 602

and as such would not be recommended simply to improve 603

growth data for quantitative modelling. Nevertheless quanti- 604

tative modelling results are valuable (Heppell et al., 2000) and 605

desperately needed for conservation and recovery planning 606

(Gerber and Hatch, 2002; Morris et al., 2002). Consequently, we 607

propose the semi-empirical modelling method presented here 608

may be useful for constructing growth- transition matrices of 609

endangered species or any species with limited data.
610
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s the direct estimation method (DEM) (Nichols et al., 1992).
he DEM method, however, requires substantial amounts of
ata to estimate transition probabilities (survival combined
ith growth) between size classes. Alternatively, data from
ell-studied similar species can be used (Caswell et al., 1998),

lthough selection of “similar” species is arbitrary (Heppell
t al., 2000). Another method, the integral projection model,
voids the problems associated with dividing continuous vari-
bles such as age and size into discrete classes (Easterling et
l., 2000), however, application of this method may be compu-
ationally challenging.

In principle, any statistical method can be used for esti-
ating projection matrix parameters, whether the data set is

ich or sparse. For example Lefkovitch (1965) first proposed a
egression method to aid in the estimation of growth and sur-
ival rates when there were limited data. Caswell and Tombley
1989) used this method in stage-based matrix models for esti-

ating zooplankton demographic parameters. Caswell (2001)
otes, however, that results are subject to unknown bias in
ata sparse situations. Davis (1995) have proposed a maximum

ikelihood method of data treatment. Values of the matrix
arameters are estimated by searching for those that maxi-
ize the probability of seeing the results obtained experimen-

ally over the time period. This method requires estimates of
nitial values of the parameters.

An iterative method for estimating growth and survival has
lso been suggested by Caswell (1989) for populations that are
est described by stages of fixed duration. In this method, an

nitial population growth rate (�) is proposed and the matrix
lements are computed from it. Next � is changed for the
ew matrix and the process is repeated until the coefficients
f the matrix are compatible with their eigenvalues. Growth-
ransition matrices have been estimated using von Bertalanffy
ECOMOD 4254 1–10
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